d93f9f31bfd94f1d90d8cb9e2e161898ee946673
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
43
44 /* Compliance test status bits  */
45 #define INTEL_DP_RESOLUTION_SHIFT_MASK  0
46 #define INTEL_DP_RESOLUTION_PREFERRED   (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
47 #define INTEL_DP_RESOLUTION_STANDARD    (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
48 #define INTEL_DP_RESOLUTION_FAILSAFE    (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49
50 struct dp_link_dpll {
51         int clock;
52         struct dpll dpll;
53 };
54
55 static const struct dp_link_dpll gen4_dpll[] = {
56         { 162000,
57                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
58         { 270000,
59                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
60 };
61
62 static const struct dp_link_dpll pch_dpll[] = {
63         { 162000,
64                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
65         { 270000,
66                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
67 };
68
69 static const struct dp_link_dpll vlv_dpll[] = {
70         { 162000,
71                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
72         { 270000,
73                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
74 };
75
76 /*
77  * CHV supports eDP 1.4 that have  more link rates.
78  * Below only provides the fixed rate but exclude variable rate.
79  */
80 static const struct dp_link_dpll chv_dpll[] = {
81         /*
82          * CHV requires to program fractional division for m2.
83          * m2 is stored in fixed point format using formula below
84          * (m2_int << 22) | m2_fraction
85          */
86         { 162000,       /* m2_int = 32, m2_fraction = 1677722 */
87                 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
88         { 270000,       /* m2_int = 27, m2_fraction = 0 */
89                 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
90         { 540000,       /* m2_int = 27, m2_fraction = 0 */
91                 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
92 };
93
94 static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
95                                   324000, 432000, 540000 };
96 static const int skl_rates[] = { 162000, 216000, 270000,
97                                   324000, 432000, 540000 };
98 static const int default_rates[] = { 162000, 270000, 540000 };
99
100 /**
101  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
102  * @intel_dp: DP struct
103  *
104  * If a CPU or PCH DP output is attached to an eDP panel, this function
105  * will return true, and false otherwise.
106  */
107 static bool is_edp(struct intel_dp *intel_dp)
108 {
109         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
110
111         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
112 }
113
114 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
115 {
116         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
117
118         return intel_dig_port->base.base.dev;
119 }
120
121 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
122 {
123         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
124 }
125
126 static void intel_dp_link_down(struct intel_dp *intel_dp);
127 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
128 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
129 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
130 static void vlv_steal_power_sequencer(struct drm_device *dev,
131                                       enum pipe pipe);
132
133 static unsigned int intel_dp_unused_lane_mask(int lane_count)
134 {
135         return ~((1 << lane_count) - 1) & 0xf;
136 }
137
138 static int
139 intel_dp_max_link_bw(struct intel_dp  *intel_dp)
140 {
141         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
142
143         switch (max_link_bw) {
144         case DP_LINK_BW_1_62:
145         case DP_LINK_BW_2_7:
146         case DP_LINK_BW_5_4:
147                 break;
148         default:
149                 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
150                      max_link_bw);
151                 max_link_bw = DP_LINK_BW_1_62;
152                 break;
153         }
154         return max_link_bw;
155 }
156
157 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
158 {
159         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
160         struct drm_device *dev = intel_dig_port->base.base.dev;
161         u8 source_max, sink_max;
162
163         source_max = 4;
164         if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
165             (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
166                 source_max = 2;
167
168         sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
169
170         return min(source_max, sink_max);
171 }
172
173 /*
174  * The units on the numbers in the next two are... bizarre.  Examples will
175  * make it clearer; this one parallels an example in the eDP spec.
176  *
177  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
178  *
179  *     270000 * 1 * 8 / 10 == 216000
180  *
181  * The actual data capacity of that configuration is 2.16Gbit/s, so the
182  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
183  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
184  * 119000.  At 18bpp that's 2142000 kilobits per second.
185  *
186  * Thus the strange-looking division by 10 in intel_dp_link_required, to
187  * get the result in decakilobits instead of kilobits.
188  */
189
190 static int
191 intel_dp_link_required(int pixel_clock, int bpp)
192 {
193         return (pixel_clock * bpp + 9) / 10;
194 }
195
196 static int
197 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
198 {
199         return (max_link_clock * max_lanes * 8) / 10;
200 }
201
202 static enum drm_mode_status
203 intel_dp_mode_valid(struct drm_connector *connector,
204                     struct drm_display_mode *mode)
205 {
206         struct intel_dp *intel_dp = intel_attached_dp(connector);
207         struct intel_connector *intel_connector = to_intel_connector(connector);
208         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
209         int target_clock = mode->clock;
210         int max_rate, mode_rate, max_lanes, max_link_clock;
211
212         if (is_edp(intel_dp) && fixed_mode) {
213                 if (mode->hdisplay > fixed_mode->hdisplay)
214                         return MODE_PANEL;
215
216                 if (mode->vdisplay > fixed_mode->vdisplay)
217                         return MODE_PANEL;
218
219                 target_clock = fixed_mode->clock;
220         }
221
222         max_link_clock = intel_dp_max_link_rate(intel_dp);
223         max_lanes = intel_dp_max_lane_count(intel_dp);
224
225         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
226         mode_rate = intel_dp_link_required(target_clock, 18);
227
228         if (mode_rate > max_rate)
229                 return MODE_CLOCK_HIGH;
230
231         if (mode->clock < 10000)
232                 return MODE_CLOCK_LOW;
233
234         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
235                 return MODE_H_ILLEGAL;
236
237         return MODE_OK;
238 }
239
240 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
241 {
242         int     i;
243         uint32_t v = 0;
244
245         if (src_bytes > 4)
246                 src_bytes = 4;
247         for (i = 0; i < src_bytes; i++)
248                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
249         return v;
250 }
251
252 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
253 {
254         int i;
255         if (dst_bytes > 4)
256                 dst_bytes = 4;
257         for (i = 0; i < dst_bytes; i++)
258                 dst[i] = src >> ((3-i) * 8);
259 }
260
261 static void
262 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
263                                     struct intel_dp *intel_dp);
264 static void
265 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
266                                               struct intel_dp *intel_dp);
267
268 static void pps_lock(struct intel_dp *intel_dp)
269 {
270         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
271         struct intel_encoder *encoder = &intel_dig_port->base;
272         struct drm_device *dev = encoder->base.dev;
273         struct drm_i915_private *dev_priv = dev->dev_private;
274         enum intel_display_power_domain power_domain;
275
276         /*
277          * See vlv_power_sequencer_reset() why we need
278          * a power domain reference here.
279          */
280         power_domain = intel_display_port_power_domain(encoder);
281         intel_display_power_get(dev_priv, power_domain);
282
283         mutex_lock(&dev_priv->pps_mutex);
284 }
285
286 static void pps_unlock(struct intel_dp *intel_dp)
287 {
288         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
289         struct intel_encoder *encoder = &intel_dig_port->base;
290         struct drm_device *dev = encoder->base.dev;
291         struct drm_i915_private *dev_priv = dev->dev_private;
292         enum intel_display_power_domain power_domain;
293
294         mutex_unlock(&dev_priv->pps_mutex);
295
296         power_domain = intel_display_port_power_domain(encoder);
297         intel_display_power_put(dev_priv, power_domain);
298 }
299
300 static void
301 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
302 {
303         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
304         struct drm_device *dev = intel_dig_port->base.base.dev;
305         struct drm_i915_private *dev_priv = dev->dev_private;
306         enum pipe pipe = intel_dp->pps_pipe;
307         bool pll_enabled, release_cl_override = false;
308         enum dpio_phy phy = DPIO_PHY(pipe);
309         enum dpio_channel ch = vlv_pipe_to_channel(pipe);
310         uint32_t DP;
311
312         if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
313                  "skipping pipe %c power seqeuncer kick due to port %c being active\n",
314                  pipe_name(pipe), port_name(intel_dig_port->port)))
315                 return;
316
317         DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
318                       pipe_name(pipe), port_name(intel_dig_port->port));
319
320         /* Preserve the BIOS-computed detected bit. This is
321          * supposed to be read-only.
322          */
323         DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
324         DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
325         DP |= DP_PORT_WIDTH(1);
326         DP |= DP_LINK_TRAIN_PAT_1;
327
328         if (IS_CHERRYVIEW(dev))
329                 DP |= DP_PIPE_SELECT_CHV(pipe);
330         else if (pipe == PIPE_B)
331                 DP |= DP_PIPEB_SELECT;
332
333         pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
334
335         /*
336          * The DPLL for the pipe must be enabled for this to work.
337          * So enable temporarily it if it's not already enabled.
338          */
339         if (!pll_enabled) {
340                 release_cl_override = IS_CHERRYVIEW(dev) &&
341                         !chv_phy_powergate_ch(dev_priv, phy, ch, true);
342
343                 vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
344                                  &chv_dpll[0].dpll : &vlv_dpll[0].dpll);
345         }
346
347         /*
348          * Similar magic as in intel_dp_enable_port().
349          * We _must_ do this port enable + disable trick
350          * to make this power seqeuencer lock onto the port.
351          * Otherwise even VDD force bit won't work.
352          */
353         I915_WRITE(intel_dp->output_reg, DP);
354         POSTING_READ(intel_dp->output_reg);
355
356         I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
357         POSTING_READ(intel_dp->output_reg);
358
359         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
360         POSTING_READ(intel_dp->output_reg);
361
362         if (!pll_enabled) {
363                 vlv_force_pll_off(dev, pipe);
364
365                 if (release_cl_override)
366                         chv_phy_powergate_ch(dev_priv, phy, ch, false);
367         }
368 }
369
370 static enum pipe
371 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
372 {
373         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
374         struct drm_device *dev = intel_dig_port->base.base.dev;
375         struct drm_i915_private *dev_priv = dev->dev_private;
376         struct intel_encoder *encoder;
377         unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
378         enum pipe pipe;
379
380         lockdep_assert_held(&dev_priv->pps_mutex);
381
382         /* We should never land here with regular DP ports */
383         WARN_ON(!is_edp(intel_dp));
384
385         if (intel_dp->pps_pipe != INVALID_PIPE)
386                 return intel_dp->pps_pipe;
387
388         /*
389          * We don't have power sequencer currently.
390          * Pick one that's not used by other ports.
391          */
392         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
393                             base.head) {
394                 struct intel_dp *tmp;
395
396                 if (encoder->type != INTEL_OUTPUT_EDP)
397                         continue;
398
399                 tmp = enc_to_intel_dp(&encoder->base);
400
401                 if (tmp->pps_pipe != INVALID_PIPE)
402                         pipes &= ~(1 << tmp->pps_pipe);
403         }
404
405         /*
406          * Didn't find one. This should not happen since there
407          * are two power sequencers and up to two eDP ports.
408          */
409         if (WARN_ON(pipes == 0))
410                 pipe = PIPE_A;
411         else
412                 pipe = ffs(pipes) - 1;
413
414         vlv_steal_power_sequencer(dev, pipe);
415         intel_dp->pps_pipe = pipe;
416
417         DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
418                       pipe_name(intel_dp->pps_pipe),
419                       port_name(intel_dig_port->port));
420
421         /* init power sequencer on this pipe and port */
422         intel_dp_init_panel_power_sequencer(dev, intel_dp);
423         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
424
425         /*
426          * Even vdd force doesn't work until we've made
427          * the power sequencer lock in on the port.
428          */
429         vlv_power_sequencer_kick(intel_dp);
430
431         return intel_dp->pps_pipe;
432 }
433
434 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
435                                enum pipe pipe);
436
437 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
438                                enum pipe pipe)
439 {
440         return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
441 }
442
443 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
444                                 enum pipe pipe)
445 {
446         return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
447 }
448
449 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
450                          enum pipe pipe)
451 {
452         return true;
453 }
454
455 static enum pipe
456 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
457                      enum port port,
458                      vlv_pipe_check pipe_check)
459 {
460         enum pipe pipe;
461
462         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
463                 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
464                         PANEL_PORT_SELECT_MASK;
465
466                 if (port_sel != PANEL_PORT_SELECT_VLV(port))
467                         continue;
468
469                 if (!pipe_check(dev_priv, pipe))
470                         continue;
471
472                 return pipe;
473         }
474
475         return INVALID_PIPE;
476 }
477
478 static void
479 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
480 {
481         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
482         struct drm_device *dev = intel_dig_port->base.base.dev;
483         struct drm_i915_private *dev_priv = dev->dev_private;
484         enum port port = intel_dig_port->port;
485
486         lockdep_assert_held(&dev_priv->pps_mutex);
487
488         /* try to find a pipe with this port selected */
489         /* first pick one where the panel is on */
490         intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
491                                                   vlv_pipe_has_pp_on);
492         /* didn't find one? pick one where vdd is on */
493         if (intel_dp->pps_pipe == INVALID_PIPE)
494                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
495                                                           vlv_pipe_has_vdd_on);
496         /* didn't find one? pick one with just the correct port */
497         if (intel_dp->pps_pipe == INVALID_PIPE)
498                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
499                                                           vlv_pipe_any);
500
501         /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
502         if (intel_dp->pps_pipe == INVALID_PIPE) {
503                 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
504                               port_name(port));
505                 return;
506         }
507
508         DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
509                       port_name(port), pipe_name(intel_dp->pps_pipe));
510
511         intel_dp_init_panel_power_sequencer(dev, intel_dp);
512         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
513 }
514
515 void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
516 {
517         struct drm_device *dev = dev_priv->dev;
518         struct intel_encoder *encoder;
519
520         if (WARN_ON(!IS_VALLEYVIEW(dev)))
521                 return;
522
523         /*
524          * We can't grab pps_mutex here due to deadlock with power_domain
525          * mutex when power_domain functions are called while holding pps_mutex.
526          * That also means that in order to use pps_pipe the code needs to
527          * hold both a power domain reference and pps_mutex, and the power domain
528          * reference get/put must be done while _not_ holding pps_mutex.
529          * pps_{lock,unlock}() do these steps in the correct order, so one
530          * should use them always.
531          */
532
533         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
534                 struct intel_dp *intel_dp;
535
536                 if (encoder->type != INTEL_OUTPUT_EDP)
537                         continue;
538
539                 intel_dp = enc_to_intel_dp(&encoder->base);
540                 intel_dp->pps_pipe = INVALID_PIPE;
541         }
542 }
543
544 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
545 {
546         struct drm_device *dev = intel_dp_to_dev(intel_dp);
547
548         if (IS_BROXTON(dev))
549                 return BXT_PP_CONTROL(0);
550         else if (HAS_PCH_SPLIT(dev))
551                 return PCH_PP_CONTROL;
552         else
553                 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
554 }
555
556 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
557 {
558         struct drm_device *dev = intel_dp_to_dev(intel_dp);
559
560         if (IS_BROXTON(dev))
561                 return BXT_PP_STATUS(0);
562         else if (HAS_PCH_SPLIT(dev))
563                 return PCH_PP_STATUS;
564         else
565                 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
566 }
567
568 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
569    This function only applicable when panel PM state is not to be tracked */
570 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
571                               void *unused)
572 {
573         struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
574                                                  edp_notifier);
575         struct drm_device *dev = intel_dp_to_dev(intel_dp);
576         struct drm_i915_private *dev_priv = dev->dev_private;
577
578         if (!is_edp(intel_dp) || code != SYS_RESTART)
579                 return 0;
580
581         pps_lock(intel_dp);
582
583         if (IS_VALLEYVIEW(dev)) {
584                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
585                 u32 pp_ctrl_reg, pp_div_reg;
586                 u32 pp_div;
587
588                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
589                 pp_div_reg  = VLV_PIPE_PP_DIVISOR(pipe);
590                 pp_div = I915_READ(pp_div_reg);
591                 pp_div &= PP_REFERENCE_DIVIDER_MASK;
592
593                 /* 0x1F write to PP_DIV_REG sets max cycle delay */
594                 I915_WRITE(pp_div_reg, pp_div | 0x1F);
595                 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
596                 msleep(intel_dp->panel_power_cycle_delay);
597         }
598
599         pps_unlock(intel_dp);
600
601         return 0;
602 }
603
604 static bool edp_have_panel_power(struct intel_dp *intel_dp)
605 {
606         struct drm_device *dev = intel_dp_to_dev(intel_dp);
607         struct drm_i915_private *dev_priv = dev->dev_private;
608
609         lockdep_assert_held(&dev_priv->pps_mutex);
610
611         if (IS_VALLEYVIEW(dev) &&
612             intel_dp->pps_pipe == INVALID_PIPE)
613                 return false;
614
615         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
616 }
617
618 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
619 {
620         struct drm_device *dev = intel_dp_to_dev(intel_dp);
621         struct drm_i915_private *dev_priv = dev->dev_private;
622
623         lockdep_assert_held(&dev_priv->pps_mutex);
624
625         if (IS_VALLEYVIEW(dev) &&
626             intel_dp->pps_pipe == INVALID_PIPE)
627                 return false;
628
629         return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
630 }
631
632 static void
633 intel_dp_check_edp(struct intel_dp *intel_dp)
634 {
635         struct drm_device *dev = intel_dp_to_dev(intel_dp);
636         struct drm_i915_private *dev_priv = dev->dev_private;
637
638         if (!is_edp(intel_dp))
639                 return;
640
641         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
642                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
643                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
644                               I915_READ(_pp_stat_reg(intel_dp)),
645                               I915_READ(_pp_ctrl_reg(intel_dp)));
646         }
647 }
648
649 static uint32_t
650 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
651 {
652         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
653         struct drm_device *dev = intel_dig_port->base.base.dev;
654         struct drm_i915_private *dev_priv = dev->dev_private;
655         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
656         uint32_t status;
657         bool done;
658
659 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
660         if (has_aux_irq)
661                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
662                                           msecs_to_jiffies_timeout(10));
663         else
664                 done = wait_for_atomic(C, 10) == 0;
665         if (!done)
666                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
667                           has_aux_irq);
668 #undef C
669
670         return status;
671 }
672
673 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
674 {
675         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
676         struct drm_device *dev = intel_dig_port->base.base.dev;
677
678         /*
679          * The clock divider is based off the hrawclk, and would like to run at
680          * 2MHz.  So, take the hrawclk value and divide by 2 and use that
681          */
682         return index ? 0 : intel_hrawclk(dev) / 2;
683 }
684
685 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
686 {
687         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
688         struct drm_device *dev = intel_dig_port->base.base.dev;
689         struct drm_i915_private *dev_priv = dev->dev_private;
690
691         if (index)
692                 return 0;
693
694         if (intel_dig_port->port == PORT_A) {
695                 return DIV_ROUND_UP(dev_priv->cdclk_freq, 2000);
696
697         } else {
698                 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
699         }
700 }
701
702 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
703 {
704         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
705         struct drm_device *dev = intel_dig_port->base.base.dev;
706         struct drm_i915_private *dev_priv = dev->dev_private;
707
708         if (intel_dig_port->port == PORT_A) {
709                 if (index)
710                         return 0;
711                 return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
712         } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
713                 /* Workaround for non-ULT HSW */
714                 switch (index) {
715                 case 0: return 63;
716                 case 1: return 72;
717                 default: return 0;
718                 }
719         } else  {
720                 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
721         }
722 }
723
724 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
725 {
726         return index ? 0 : 100;
727 }
728
729 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
730 {
731         /*
732          * SKL doesn't need us to program the AUX clock divider (Hardware will
733          * derive the clock from CDCLK automatically). We still implement the
734          * get_aux_clock_divider vfunc to plug-in into the existing code.
735          */
736         return index ? 0 : 1;
737 }
738
739 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
740                                       bool has_aux_irq,
741                                       int send_bytes,
742                                       uint32_t aux_clock_divider)
743 {
744         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
745         struct drm_device *dev = intel_dig_port->base.base.dev;
746         uint32_t precharge, timeout;
747
748         if (IS_GEN6(dev))
749                 precharge = 3;
750         else
751                 precharge = 5;
752
753         if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
754                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
755         else
756                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
757
758         return DP_AUX_CH_CTL_SEND_BUSY |
759                DP_AUX_CH_CTL_DONE |
760                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
761                DP_AUX_CH_CTL_TIME_OUT_ERROR |
762                timeout |
763                DP_AUX_CH_CTL_RECEIVE_ERROR |
764                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
765                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
766                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
767 }
768
769 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
770                                       bool has_aux_irq,
771                                       int send_bytes,
772                                       uint32_t unused)
773 {
774         return DP_AUX_CH_CTL_SEND_BUSY |
775                DP_AUX_CH_CTL_DONE |
776                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
777                DP_AUX_CH_CTL_TIME_OUT_ERROR |
778                DP_AUX_CH_CTL_TIME_OUT_1600us |
779                DP_AUX_CH_CTL_RECEIVE_ERROR |
780                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
781                DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
782 }
783
784 static int
785 intel_dp_aux_ch(struct intel_dp *intel_dp,
786                 const uint8_t *send, int send_bytes,
787                 uint8_t *recv, int recv_size)
788 {
789         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
790         struct drm_device *dev = intel_dig_port->base.base.dev;
791         struct drm_i915_private *dev_priv = dev->dev_private;
792         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
793         uint32_t ch_data = ch_ctl + 4;
794         uint32_t aux_clock_divider;
795         int i, ret, recv_bytes;
796         uint32_t status;
797         int try, clock = 0;
798         bool has_aux_irq = HAS_AUX_IRQ(dev);
799         bool vdd;
800
801         pps_lock(intel_dp);
802
803         /*
804          * We will be called with VDD already enabled for dpcd/edid/oui reads.
805          * In such cases we want to leave VDD enabled and it's up to upper layers
806          * to turn it off. But for eg. i2c-dev access we need to turn it on/off
807          * ourselves.
808          */
809         vdd = edp_panel_vdd_on(intel_dp);
810
811         /* dp aux is extremely sensitive to irq latency, hence request the
812          * lowest possible wakeup latency and so prevent the cpu from going into
813          * deep sleep states.
814          */
815         pm_qos_update_request(&dev_priv->pm_qos, 0);
816
817         intel_dp_check_edp(intel_dp);
818
819         intel_aux_display_runtime_get(dev_priv);
820
821         /* Try to wait for any previous AUX channel activity */
822         for (try = 0; try < 3; try++) {
823                 status = I915_READ_NOTRACE(ch_ctl);
824                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
825                         break;
826                 msleep(1);
827         }
828
829         if (try == 3) {
830                 static u32 last_status = -1;
831                 const u32 status = I915_READ(ch_ctl);
832
833                 if (status != last_status) {
834                         WARN(1, "dp_aux_ch not started status 0x%08x\n",
835                              status);
836                         last_status = status;
837                 }
838
839                 ret = -EBUSY;
840                 goto out;
841         }
842
843         /* Only 5 data registers! */
844         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
845                 ret = -E2BIG;
846                 goto out;
847         }
848
849         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
850                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
851                                                           has_aux_irq,
852                                                           send_bytes,
853                                                           aux_clock_divider);
854
855                 /* Must try at least 3 times according to DP spec */
856                 for (try = 0; try < 5; try++) {
857                         /* Load the send data into the aux channel data registers */
858                         for (i = 0; i < send_bytes; i += 4)
859                                 I915_WRITE(ch_data + i,
860                                            intel_dp_pack_aux(send + i,
861                                                              send_bytes - i));
862
863                         /* Send the command and wait for it to complete */
864                         I915_WRITE(ch_ctl, send_ctl);
865
866                         status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
867
868                         /* Clear done status and any errors */
869                         I915_WRITE(ch_ctl,
870                                    status |
871                                    DP_AUX_CH_CTL_DONE |
872                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
873                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
874
875                         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
876                                 continue;
877
878                         /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
879                          *   400us delay required for errors and timeouts
880                          *   Timeout errors from the HW already meet this
881                          *   requirement so skip to next iteration
882                          */
883                         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
884                                 usleep_range(400, 500);
885                                 continue;
886                         }
887                         if (status & DP_AUX_CH_CTL_DONE)
888                                 goto done;
889                 }
890         }
891
892         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
893                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
894                 ret = -EBUSY;
895                 goto out;
896         }
897
898 done:
899         /* Check for timeout or receive error.
900          * Timeouts occur when the sink is not connected
901          */
902         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
903                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
904                 ret = -EIO;
905                 goto out;
906         }
907
908         /* Timeouts occur when the device isn't connected, so they're
909          * "normal" -- don't fill the kernel log with these */
910         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
911                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
912                 ret = -ETIMEDOUT;
913                 goto out;
914         }
915
916         /* Unload any bytes sent back from the other side */
917         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
918                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
919         if (recv_bytes > recv_size)
920                 recv_bytes = recv_size;
921
922         for (i = 0; i < recv_bytes; i += 4)
923                 intel_dp_unpack_aux(I915_READ(ch_data + i),
924                                     recv + i, recv_bytes - i);
925
926         ret = recv_bytes;
927 out:
928         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
929         intel_aux_display_runtime_put(dev_priv);
930
931         if (vdd)
932                 edp_panel_vdd_off(intel_dp, false);
933
934         pps_unlock(intel_dp);
935
936         return ret;
937 }
938
939 #define BARE_ADDRESS_SIZE       3
940 #define HEADER_SIZE             (BARE_ADDRESS_SIZE + 1)
941 static ssize_t
942 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
943 {
944         struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
945         uint8_t txbuf[20], rxbuf[20];
946         size_t txsize, rxsize;
947         int ret;
948
949         txbuf[0] = (msg->request << 4) |
950                 ((msg->address >> 16) & 0xf);
951         txbuf[1] = (msg->address >> 8) & 0xff;
952         txbuf[2] = msg->address & 0xff;
953         txbuf[3] = msg->size - 1;
954
955         switch (msg->request & ~DP_AUX_I2C_MOT) {
956         case DP_AUX_NATIVE_WRITE:
957         case DP_AUX_I2C_WRITE:
958         case DP_AUX_I2C_WRITE_STATUS_UPDATE:
959                 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
960                 rxsize = 2; /* 0 or 1 data bytes */
961
962                 if (WARN_ON(txsize > 20))
963                         return -E2BIG;
964
965                 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
966
967                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
968                 if (ret > 0) {
969                         msg->reply = rxbuf[0] >> 4;
970
971                         if (ret > 1) {
972                                 /* Number of bytes written in a short write. */
973                                 ret = clamp_t(int, rxbuf[1], 0, msg->size);
974                         } else {
975                                 /* Return payload size. */
976                                 ret = msg->size;
977                         }
978                 }
979                 break;
980
981         case DP_AUX_NATIVE_READ:
982         case DP_AUX_I2C_READ:
983                 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
984                 rxsize = msg->size + 1;
985
986                 if (WARN_ON(rxsize > 20))
987                         return -E2BIG;
988
989                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
990                 if (ret > 0) {
991                         msg->reply = rxbuf[0] >> 4;
992                         /*
993                          * Assume happy day, and copy the data. The caller is
994                          * expected to check msg->reply before touching it.
995                          *
996                          * Return payload size.
997                          */
998                         ret--;
999                         memcpy(msg->buffer, rxbuf + 1, ret);
1000                 }
1001                 break;
1002
1003         default:
1004                 ret = -EINVAL;
1005                 break;
1006         }
1007
1008         return ret;
1009 }
1010
1011 static void
1012 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
1013 {
1014         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1015         struct drm_i915_private *dev_priv = dev->dev_private;
1016         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1017         enum port port = intel_dig_port->port;
1018         struct ddi_vbt_port_info *info = &dev_priv->vbt.ddi_port_info[port];
1019         const char *name = NULL;
1020         uint32_t porte_aux_ctl_reg = DPA_AUX_CH_CTL;
1021         int ret;
1022
1023         /* On SKL we don't have Aux for port E so we rely on VBT to set
1024          * a proper alternate aux channel.
1025          */
1026         if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) && port == PORT_E) {
1027                 switch (info->alternate_aux_channel) {
1028                 case DP_AUX_B:
1029                         porte_aux_ctl_reg = DPB_AUX_CH_CTL;
1030                         break;
1031                 case DP_AUX_C:
1032                         porte_aux_ctl_reg = DPC_AUX_CH_CTL;
1033                         break;
1034                 case DP_AUX_D:
1035                         porte_aux_ctl_reg = DPD_AUX_CH_CTL;
1036                         break;
1037                 case DP_AUX_A:
1038                 default:
1039                         porte_aux_ctl_reg = DPA_AUX_CH_CTL;
1040                 }
1041         }
1042
1043         switch (port) {
1044         case PORT_A:
1045                 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
1046                 name = "DPDDC-A";
1047                 break;
1048         case PORT_B:
1049                 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
1050                 name = "DPDDC-B";
1051                 break;
1052         case PORT_C:
1053                 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
1054                 name = "DPDDC-C";
1055                 break;
1056         case PORT_D:
1057                 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
1058                 name = "DPDDC-D";
1059                 break;
1060         case PORT_E:
1061                 intel_dp->aux_ch_ctl_reg = porte_aux_ctl_reg;
1062                 name = "DPDDC-E";
1063                 break;
1064         default:
1065                 BUG();
1066         }
1067
1068         /*
1069          * The AUX_CTL register is usually DP_CTL + 0x10.
1070          *
1071          * On Haswell and Broadwell though:
1072          *   - Both port A DDI_BUF_CTL and DDI_AUX_CTL are on the CPU
1073          *   - Port B/C/D AUX channels are on the PCH, DDI_BUF_CTL on the CPU
1074          *
1075          * Skylake moves AUX_CTL back next to DDI_BUF_CTL, on the CPU.
1076          */
1077         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev) && port != PORT_E)
1078                 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
1079
1080         intel_dp->aux.name = name;
1081         intel_dp->aux.dev = dev->dev;
1082         intel_dp->aux.transfer = intel_dp_aux_transfer;
1083
1084         DRM_DEBUG_KMS("registering %s bus for %s\n", name,
1085                       connector->base.kdev->kobj.name);
1086
1087         ret = drm_dp_aux_register(&intel_dp->aux);
1088         if (ret < 0) {
1089                 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
1090                           name, ret);
1091                 return;
1092         }
1093
1094         ret = sysfs_create_link(&connector->base.kdev->kobj,
1095                                 &intel_dp->aux.ddc.dev.kobj,
1096                                 intel_dp->aux.ddc.dev.kobj.name);
1097         if (ret < 0) {
1098                 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
1099                 drm_dp_aux_unregister(&intel_dp->aux);
1100         }
1101 }
1102
1103 static void
1104 intel_dp_connector_unregister(struct intel_connector *intel_connector)
1105 {
1106         struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
1107
1108         if (!intel_connector->mst_port)
1109                 sysfs_remove_link(&intel_connector->base.kdev->kobj,
1110                                   intel_dp->aux.ddc.dev.kobj.name);
1111         intel_connector_unregister(intel_connector);
1112 }
1113
1114 static void
1115 skl_edp_set_pll_config(struct intel_crtc_state *pipe_config)
1116 {
1117         u32 ctrl1;
1118
1119         memset(&pipe_config->dpll_hw_state, 0,
1120                sizeof(pipe_config->dpll_hw_state));
1121
1122         pipe_config->ddi_pll_sel = SKL_DPLL0;
1123         pipe_config->dpll_hw_state.cfgcr1 = 0;
1124         pipe_config->dpll_hw_state.cfgcr2 = 0;
1125
1126         ctrl1 = DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
1127         switch (pipe_config->port_clock / 2) {
1128         case 81000:
1129                 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
1130                                               SKL_DPLL0);
1131                 break;
1132         case 135000:
1133                 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350,
1134                                               SKL_DPLL0);
1135                 break;
1136         case 270000:
1137                 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700,
1138                                               SKL_DPLL0);
1139                 break;
1140         case 162000:
1141                 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620,
1142                                               SKL_DPLL0);
1143                 break;
1144         /* TBD: For DP link rates 2.16 GHz and 4.32 GHz, VCO is 8640 which
1145         results in CDCLK change. Need to handle the change of CDCLK by
1146         disabling pipes and re-enabling them */
1147         case 108000:
1148                 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
1149                                               SKL_DPLL0);
1150                 break;
1151         case 216000:
1152                 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160,
1153                                               SKL_DPLL0);
1154                 break;
1155
1156         }
1157         pipe_config->dpll_hw_state.ctrl1 = ctrl1;
1158 }
1159
1160 void
1161 hsw_dp_set_ddi_pll_sel(struct intel_crtc_state *pipe_config)
1162 {
1163         memset(&pipe_config->dpll_hw_state, 0,
1164                sizeof(pipe_config->dpll_hw_state));
1165
1166         switch (pipe_config->port_clock / 2) {
1167         case 81000:
1168                 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
1169                 break;
1170         case 135000:
1171                 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
1172                 break;
1173         case 270000:
1174                 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
1175                 break;
1176         }
1177 }
1178
1179 static int
1180 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1181 {
1182         if (intel_dp->num_sink_rates) {
1183                 *sink_rates = intel_dp->sink_rates;
1184                 return intel_dp->num_sink_rates;
1185         }
1186
1187         *sink_rates = default_rates;
1188
1189         return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1190 }
1191
1192 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1193 {
1194         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1195         struct drm_device *dev = dig_port->base.base.dev;
1196
1197         /* WaDisableHBR2:skl */
1198         if (IS_SKL_REVID(dev, 0, SKL_REVID_B0))
1199                 return false;
1200
1201         if ((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) || IS_BROADWELL(dev) ||
1202             (INTEL_INFO(dev)->gen >= 9))
1203                 return true;
1204         else
1205                 return false;
1206 }
1207
1208 static int
1209 intel_dp_source_rates(struct intel_dp *intel_dp, const int **source_rates)
1210 {
1211         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1212         struct drm_device *dev = dig_port->base.base.dev;
1213         int size;
1214
1215         if (IS_BROXTON(dev)) {
1216                 *source_rates = bxt_rates;
1217                 size = ARRAY_SIZE(bxt_rates);
1218         } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1219                 *source_rates = skl_rates;
1220                 size = ARRAY_SIZE(skl_rates);
1221         } else {
1222                 *source_rates = default_rates;
1223                 size = ARRAY_SIZE(default_rates);
1224         }
1225
1226         /* This depends on the fact that 5.4 is last value in the array */
1227         if (!intel_dp_source_supports_hbr2(intel_dp))
1228                 size--;
1229
1230         return size;
1231 }
1232
1233 static void
1234 intel_dp_set_clock(struct intel_encoder *encoder,
1235                    struct intel_crtc_state *pipe_config)
1236 {
1237         struct drm_device *dev = encoder->base.dev;
1238         const struct dp_link_dpll *divisor = NULL;
1239         int i, count = 0;
1240
1241         if (IS_G4X(dev)) {
1242                 divisor = gen4_dpll;
1243                 count = ARRAY_SIZE(gen4_dpll);
1244         } else if (HAS_PCH_SPLIT(dev)) {
1245                 divisor = pch_dpll;
1246                 count = ARRAY_SIZE(pch_dpll);
1247         } else if (IS_CHERRYVIEW(dev)) {
1248                 divisor = chv_dpll;
1249                 count = ARRAY_SIZE(chv_dpll);
1250         } else if (IS_VALLEYVIEW(dev)) {
1251                 divisor = vlv_dpll;
1252                 count = ARRAY_SIZE(vlv_dpll);
1253         }
1254
1255         if (divisor && count) {
1256                 for (i = 0; i < count; i++) {
1257                         if (pipe_config->port_clock == divisor[i].clock) {
1258                                 pipe_config->dpll = divisor[i].dpll;
1259                                 pipe_config->clock_set = true;
1260                                 break;
1261                         }
1262                 }
1263         }
1264 }
1265
1266 static int intersect_rates(const int *source_rates, int source_len,
1267                            const int *sink_rates, int sink_len,
1268                            int *common_rates)
1269 {
1270         int i = 0, j = 0, k = 0;
1271
1272         while (i < source_len && j < sink_len) {
1273                 if (source_rates[i] == sink_rates[j]) {
1274                         if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
1275                                 return k;
1276                         common_rates[k] = source_rates[i];
1277                         ++k;
1278                         ++i;
1279                         ++j;
1280                 } else if (source_rates[i] < sink_rates[j]) {
1281                         ++i;
1282                 } else {
1283                         ++j;
1284                 }
1285         }
1286         return k;
1287 }
1288
1289 static int intel_dp_common_rates(struct intel_dp *intel_dp,
1290                                  int *common_rates)
1291 {
1292         const int *source_rates, *sink_rates;
1293         int source_len, sink_len;
1294
1295         sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1296         source_len = intel_dp_source_rates(intel_dp, &source_rates);
1297
1298         return intersect_rates(source_rates, source_len,
1299                                sink_rates, sink_len,
1300                                common_rates);
1301 }
1302
1303 static void snprintf_int_array(char *str, size_t len,
1304                                const int *array, int nelem)
1305 {
1306         int i;
1307
1308         str[0] = '\0';
1309
1310         for (i = 0; i < nelem; i++) {
1311                 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1312                 if (r >= len)
1313                         return;
1314                 str += r;
1315                 len -= r;
1316         }
1317 }
1318
1319 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1320 {
1321         const int *source_rates, *sink_rates;
1322         int source_len, sink_len, common_len;
1323         int common_rates[DP_MAX_SUPPORTED_RATES];
1324         char str[128]; /* FIXME: too big for stack? */
1325
1326         if ((drm_debug & DRM_UT_KMS) == 0)
1327                 return;
1328
1329         source_len = intel_dp_source_rates(intel_dp, &source_rates);
1330         snprintf_int_array(str, sizeof(str), source_rates, source_len);
1331         DRM_DEBUG_KMS("source rates: %s\n", str);
1332
1333         sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1334         snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1335         DRM_DEBUG_KMS("sink rates: %s\n", str);
1336
1337         common_len = intel_dp_common_rates(intel_dp, common_rates);
1338         snprintf_int_array(str, sizeof(str), common_rates, common_len);
1339         DRM_DEBUG_KMS("common rates: %s\n", str);
1340 }
1341
1342 static int rate_to_index(int find, const int *rates)
1343 {
1344         int i = 0;
1345
1346         for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1347                 if (find == rates[i])
1348                         break;
1349
1350         return i;
1351 }
1352
1353 int
1354 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1355 {
1356         int rates[DP_MAX_SUPPORTED_RATES] = {};
1357         int len;
1358
1359         len = intel_dp_common_rates(intel_dp, rates);
1360         if (WARN_ON(len <= 0))
1361                 return 162000;
1362
1363         return rates[rate_to_index(0, rates) - 1];
1364 }
1365
1366 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1367 {
1368         return rate_to_index(rate, intel_dp->sink_rates);
1369 }
1370
1371 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1372                            uint8_t *link_bw, uint8_t *rate_select)
1373 {
1374         if (intel_dp->num_sink_rates) {
1375                 *link_bw = 0;
1376                 *rate_select =
1377                         intel_dp_rate_select(intel_dp, port_clock);
1378         } else {
1379                 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1380                 *rate_select = 0;
1381         }
1382 }
1383
1384 bool
1385 intel_dp_compute_config(struct intel_encoder *encoder,
1386                         struct intel_crtc_state *pipe_config)
1387 {
1388         struct drm_device *dev = encoder->base.dev;
1389         struct drm_i915_private *dev_priv = dev->dev_private;
1390         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1391         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1392         enum port port = dp_to_dig_port(intel_dp)->port;
1393         struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1394         struct intel_connector *intel_connector = intel_dp->attached_connector;
1395         int lane_count, clock;
1396         int min_lane_count = 1;
1397         int max_lane_count = intel_dp_max_lane_count(intel_dp);
1398         /* Conveniently, the link BW constants become indices with a shift...*/
1399         int min_clock = 0;
1400         int max_clock;
1401         int bpp, mode_rate;
1402         int link_avail, link_clock;
1403         int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1404         int common_len;
1405         uint8_t link_bw, rate_select;
1406
1407         common_len = intel_dp_common_rates(intel_dp, common_rates);
1408
1409         /* No common link rates between source and sink */
1410         WARN_ON(common_len <= 0);
1411
1412         max_clock = common_len - 1;
1413
1414         if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1415                 pipe_config->has_pch_encoder = true;
1416
1417         pipe_config->has_dp_encoder = true;
1418         pipe_config->has_drrs = false;
1419         pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1420
1421         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1422                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1423                                        adjusted_mode);
1424
1425                 if (INTEL_INFO(dev)->gen >= 9) {
1426                         int ret;
1427                         ret = skl_update_scaler_crtc(pipe_config);
1428                         if (ret)
1429                                 return ret;
1430                 }
1431
1432                 if (HAS_GMCH_DISPLAY(dev))
1433                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
1434                                                  intel_connector->panel.fitting_mode);
1435                 else
1436                         intel_pch_panel_fitting(intel_crtc, pipe_config,
1437                                                 intel_connector->panel.fitting_mode);
1438         }
1439
1440         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1441                 return false;
1442
1443         DRM_DEBUG_KMS("DP link computation with max lane count %i "
1444                       "max bw %d pixel clock %iKHz\n",
1445                       max_lane_count, common_rates[max_clock],
1446                       adjusted_mode->crtc_clock);
1447
1448         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1449          * bpc in between. */
1450         bpp = pipe_config->pipe_bpp;
1451         if (is_edp(intel_dp)) {
1452
1453                 /* Get bpp from vbt only for panels that dont have bpp in edid */
1454                 if (intel_connector->base.display_info.bpc == 0 &&
1455                         (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp)) {
1456                         DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1457                                       dev_priv->vbt.edp_bpp);
1458                         bpp = dev_priv->vbt.edp_bpp;
1459                 }
1460
1461                 /*
1462                  * Use the maximum clock and number of lanes the eDP panel
1463                  * advertizes being capable of. The panels are generally
1464                  * designed to support only a single clock and lane
1465                  * configuration, and typically these values correspond to the
1466                  * native resolution of the panel.
1467                  */
1468                 min_lane_count = max_lane_count;
1469                 min_clock = max_clock;
1470         }
1471
1472         for (; bpp >= 6*3; bpp -= 2*3) {
1473                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1474                                                    bpp);
1475
1476                 for (clock = min_clock; clock <= max_clock; clock++) {
1477                         for (lane_count = min_lane_count;
1478                                 lane_count <= max_lane_count;
1479                                 lane_count <<= 1) {
1480
1481                                 link_clock = common_rates[clock];
1482                                 link_avail = intel_dp_max_data_rate(link_clock,
1483                                                                     lane_count);
1484
1485                                 if (mode_rate <= link_avail) {
1486                                         goto found;
1487                                 }
1488                         }
1489                 }
1490         }
1491
1492         return false;
1493
1494 found:
1495         if (intel_dp->color_range_auto) {
1496                 /*
1497                  * See:
1498                  * CEA-861-E - 5.1 Default Encoding Parameters
1499                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1500                  */
1501                 pipe_config->limited_color_range =
1502                         bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1;
1503         } else {
1504                 pipe_config->limited_color_range =
1505                         intel_dp->limited_color_range;
1506         }
1507
1508         pipe_config->lane_count = lane_count;
1509
1510         pipe_config->pipe_bpp = bpp;
1511         pipe_config->port_clock = common_rates[clock];
1512
1513         intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
1514                               &link_bw, &rate_select);
1515
1516         DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
1517                       link_bw, rate_select, pipe_config->lane_count,
1518                       pipe_config->port_clock, bpp);
1519         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1520                       mode_rate, link_avail);
1521
1522         intel_link_compute_m_n(bpp, lane_count,
1523                                adjusted_mode->crtc_clock,
1524                                pipe_config->port_clock,
1525                                &pipe_config->dp_m_n);
1526
1527         if (intel_connector->panel.downclock_mode != NULL &&
1528                 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1529                         pipe_config->has_drrs = true;
1530                         intel_link_compute_m_n(bpp, lane_count,
1531                                 intel_connector->panel.downclock_mode->clock,
1532                                 pipe_config->port_clock,
1533                                 &pipe_config->dp_m2_n2);
1534         }
1535
1536         if ((IS_SKYLAKE(dev)  || IS_KABYLAKE(dev)) && is_edp(intel_dp))
1537                 skl_edp_set_pll_config(pipe_config);
1538         else if (IS_BROXTON(dev))
1539                 /* handled in ddi */;
1540         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1541                 hsw_dp_set_ddi_pll_sel(pipe_config);
1542         else
1543                 intel_dp_set_clock(encoder, pipe_config);
1544
1545         return true;
1546 }
1547
1548 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
1549 {
1550         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1551         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1552         struct drm_device *dev = crtc->base.dev;
1553         struct drm_i915_private *dev_priv = dev->dev_private;
1554
1555         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n",
1556                       crtc->config->port_clock);
1557
1558         intel_dp->DP &= ~DP_PLL_FREQ_MASK;
1559
1560         if (crtc->config->port_clock == 162000)
1561                 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
1562         else
1563                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1564
1565         I915_WRITE(DP_A, intel_dp->DP);
1566         POSTING_READ(DP_A);
1567         udelay(500);
1568 }
1569
1570 void intel_dp_set_link_params(struct intel_dp *intel_dp,
1571                               const struct intel_crtc_state *pipe_config)
1572 {
1573         intel_dp->link_rate = pipe_config->port_clock;
1574         intel_dp->lane_count = pipe_config->lane_count;
1575 }
1576
1577 static void intel_dp_prepare(struct intel_encoder *encoder)
1578 {
1579         struct drm_device *dev = encoder->base.dev;
1580         struct drm_i915_private *dev_priv = dev->dev_private;
1581         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1582         enum port port = dp_to_dig_port(intel_dp)->port;
1583         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1584         const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
1585
1586         intel_dp_set_link_params(intel_dp, crtc->config);
1587
1588         /*
1589          * There are four kinds of DP registers:
1590          *
1591          *      IBX PCH
1592          *      SNB CPU
1593          *      IVB CPU
1594          *      CPT PCH
1595          *
1596          * IBX PCH and CPU are the same for almost everything,
1597          * except that the CPU DP PLL is configured in this
1598          * register
1599          *
1600          * CPT PCH is quite different, having many bits moved
1601          * to the TRANS_DP_CTL register instead. That
1602          * configuration happens (oddly) in ironlake_pch_enable
1603          */
1604
1605         /* Preserve the BIOS-computed detected bit. This is
1606          * supposed to be read-only.
1607          */
1608         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1609
1610         /* Handle DP bits in common between all three register formats */
1611         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1612         intel_dp->DP |= DP_PORT_WIDTH(crtc->config->lane_count);
1613
1614         /* Split out the IBX/CPU vs CPT settings */
1615
1616         if (IS_GEN7(dev) && port == PORT_A) {
1617                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1618                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1619                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1620                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1621                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1622
1623                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1624                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1625
1626                 intel_dp->DP |= crtc->pipe << 29;
1627         } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
1628                 u32 trans_dp;
1629
1630                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1631
1632                 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1633                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1634                         trans_dp |= TRANS_DP_ENH_FRAMING;
1635                 else
1636                         trans_dp &= ~TRANS_DP_ENH_FRAMING;
1637                 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1638         } else {
1639                 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
1640                     crtc->config->limited_color_range)
1641                         intel_dp->DP |= DP_COLOR_RANGE_16_235;
1642
1643                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1644                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1645                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1646                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1647                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1648
1649                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1650                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1651
1652                 if (IS_CHERRYVIEW(dev))
1653                         intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1654                 else if (crtc->pipe == PIPE_B)
1655                         intel_dp->DP |= DP_PIPEB_SELECT;
1656         }
1657 }
1658
1659 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1660 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1661
1662 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1663 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
1664
1665 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1666 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1667
1668 static void wait_panel_status(struct intel_dp *intel_dp,
1669                                        u32 mask,
1670                                        u32 value)
1671 {
1672         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1673         struct drm_i915_private *dev_priv = dev->dev_private;
1674         u32 pp_stat_reg, pp_ctrl_reg;
1675
1676         lockdep_assert_held(&dev_priv->pps_mutex);
1677
1678         pp_stat_reg = _pp_stat_reg(intel_dp);
1679         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1680
1681         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1682                         mask, value,
1683                         I915_READ(pp_stat_reg),
1684                         I915_READ(pp_ctrl_reg));
1685
1686         if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1687                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1688                                 I915_READ(pp_stat_reg),
1689                                 I915_READ(pp_ctrl_reg));
1690         }
1691
1692         DRM_DEBUG_KMS("Wait complete\n");
1693 }
1694
1695 static void wait_panel_on(struct intel_dp *intel_dp)
1696 {
1697         DRM_DEBUG_KMS("Wait for panel power on\n");
1698         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1699 }
1700
1701 static void wait_panel_off(struct intel_dp *intel_dp)
1702 {
1703         DRM_DEBUG_KMS("Wait for panel power off time\n");
1704         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1705 }
1706
1707 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1708 {
1709         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1710
1711         /* When we disable the VDD override bit last we have to do the manual
1712          * wait. */
1713         wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1714                                        intel_dp->panel_power_cycle_delay);
1715
1716         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1717 }
1718
1719 static void wait_backlight_on(struct intel_dp *intel_dp)
1720 {
1721         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1722                                        intel_dp->backlight_on_delay);
1723 }
1724
1725 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1726 {
1727         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1728                                        intel_dp->backlight_off_delay);
1729 }
1730
1731 /* Read the current pp_control value, unlocking the register if it
1732  * is locked
1733  */
1734
1735 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1736 {
1737         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1738         struct drm_i915_private *dev_priv = dev->dev_private;
1739         u32 control;
1740
1741         lockdep_assert_held(&dev_priv->pps_mutex);
1742
1743         control = I915_READ(_pp_ctrl_reg(intel_dp));
1744         if (!IS_BROXTON(dev)) {
1745                 control &= ~PANEL_UNLOCK_MASK;
1746                 control |= PANEL_UNLOCK_REGS;
1747         }
1748         return control;
1749 }
1750
1751 /*
1752  * Must be paired with edp_panel_vdd_off().
1753  * Must hold pps_mutex around the whole on/off sequence.
1754  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1755  */
1756 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1757 {
1758         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1759         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1760         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1761         struct drm_i915_private *dev_priv = dev->dev_private;
1762         enum intel_display_power_domain power_domain;
1763         u32 pp;
1764         u32 pp_stat_reg, pp_ctrl_reg;
1765         bool need_to_disable = !intel_dp->want_panel_vdd;
1766
1767         lockdep_assert_held(&dev_priv->pps_mutex);
1768
1769         if (!is_edp(intel_dp))
1770                 return false;
1771
1772         cancel_delayed_work(&intel_dp->panel_vdd_work);
1773         intel_dp->want_panel_vdd = true;
1774
1775         if (edp_have_panel_vdd(intel_dp))
1776                 return need_to_disable;
1777
1778         power_domain = intel_display_port_power_domain(intel_encoder);
1779         intel_display_power_get(dev_priv, power_domain);
1780
1781         DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1782                       port_name(intel_dig_port->port));
1783
1784         if (!edp_have_panel_power(intel_dp))
1785                 wait_panel_power_cycle(intel_dp);
1786
1787         pp = ironlake_get_pp_control(intel_dp);
1788         pp |= EDP_FORCE_VDD;
1789
1790         pp_stat_reg = _pp_stat_reg(intel_dp);
1791         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1792
1793         I915_WRITE(pp_ctrl_reg, pp);
1794         POSTING_READ(pp_ctrl_reg);
1795         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1796                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1797         /*
1798          * If the panel wasn't on, delay before accessing aux channel
1799          */
1800         if (!edp_have_panel_power(intel_dp)) {
1801                 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1802                               port_name(intel_dig_port->port));
1803                 msleep(intel_dp->panel_power_up_delay);
1804         }
1805
1806         return need_to_disable;
1807 }
1808
1809 /*
1810  * Must be paired with intel_edp_panel_vdd_off() or
1811  * intel_edp_panel_off().
1812  * Nested calls to these functions are not allowed since
1813  * we drop the lock. Caller must use some higher level
1814  * locking to prevent nested calls from other threads.
1815  */
1816 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1817 {
1818         bool vdd;
1819
1820         if (!is_edp(intel_dp))
1821                 return;
1822
1823         pps_lock(intel_dp);
1824         vdd = edp_panel_vdd_on(intel_dp);
1825         pps_unlock(intel_dp);
1826
1827         I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1828              port_name(dp_to_dig_port(intel_dp)->port));
1829 }
1830
1831 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1832 {
1833         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1834         struct drm_i915_private *dev_priv = dev->dev_private;
1835         struct intel_digital_port *intel_dig_port =
1836                 dp_to_dig_port(intel_dp);
1837         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1838         enum intel_display_power_domain power_domain;
1839         u32 pp;
1840         u32 pp_stat_reg, pp_ctrl_reg;
1841
1842         lockdep_assert_held(&dev_priv->pps_mutex);
1843
1844         WARN_ON(intel_dp->want_panel_vdd);
1845
1846         if (!edp_have_panel_vdd(intel_dp))
1847                 return;
1848
1849         DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
1850                       port_name(intel_dig_port->port));
1851
1852         pp = ironlake_get_pp_control(intel_dp);
1853         pp &= ~EDP_FORCE_VDD;
1854
1855         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1856         pp_stat_reg = _pp_stat_reg(intel_dp);
1857
1858         I915_WRITE(pp_ctrl_reg, pp);
1859         POSTING_READ(pp_ctrl_reg);
1860
1861         /* Make sure sequencer is idle before allowing subsequent activity */
1862         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1863         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1864
1865         if ((pp & POWER_TARGET_ON) == 0)
1866                 intel_dp->last_power_cycle = jiffies;
1867
1868         power_domain = intel_display_port_power_domain(intel_encoder);
1869         intel_display_power_put(dev_priv, power_domain);
1870 }
1871
1872 static void edp_panel_vdd_work(struct work_struct *__work)
1873 {
1874         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1875                                                  struct intel_dp, panel_vdd_work);
1876
1877         pps_lock(intel_dp);
1878         if (!intel_dp->want_panel_vdd)
1879                 edp_panel_vdd_off_sync(intel_dp);
1880         pps_unlock(intel_dp);
1881 }
1882
1883 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1884 {
1885         unsigned long delay;
1886
1887         /*
1888          * Queue the timer to fire a long time from now (relative to the power
1889          * down delay) to keep the panel power up across a sequence of
1890          * operations.
1891          */
1892         delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1893         schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1894 }
1895
1896 /*
1897  * Must be paired with edp_panel_vdd_on().
1898  * Must hold pps_mutex around the whole on/off sequence.
1899  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1900  */
1901 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1902 {
1903         struct drm_i915_private *dev_priv =
1904                 intel_dp_to_dev(intel_dp)->dev_private;
1905
1906         lockdep_assert_held(&dev_priv->pps_mutex);
1907
1908         if (!is_edp(intel_dp))
1909                 return;
1910
1911         I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
1912              port_name(dp_to_dig_port(intel_dp)->port));
1913
1914         intel_dp->want_panel_vdd = false;
1915
1916         if (sync)
1917                 edp_panel_vdd_off_sync(intel_dp);
1918         else
1919                 edp_panel_vdd_schedule_off(intel_dp);
1920 }
1921
1922 static void edp_panel_on(struct intel_dp *intel_dp)
1923 {
1924         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1925         struct drm_i915_private *dev_priv = dev->dev_private;
1926         u32 pp;
1927         u32 pp_ctrl_reg;
1928
1929         lockdep_assert_held(&dev_priv->pps_mutex);
1930
1931         if (!is_edp(intel_dp))
1932                 return;
1933
1934         DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
1935                       port_name(dp_to_dig_port(intel_dp)->port));
1936
1937         if (WARN(edp_have_panel_power(intel_dp),
1938                  "eDP port %c panel power already on\n",
1939                  port_name(dp_to_dig_port(intel_dp)->port)))
1940                 return;
1941
1942         wait_panel_power_cycle(intel_dp);
1943
1944         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1945         pp = ironlake_get_pp_control(intel_dp);
1946         if (IS_GEN5(dev)) {
1947                 /* ILK workaround: disable reset around power sequence */
1948                 pp &= ~PANEL_POWER_RESET;
1949                 I915_WRITE(pp_ctrl_reg, pp);
1950                 POSTING_READ(pp_ctrl_reg);
1951         }
1952
1953         pp |= POWER_TARGET_ON;
1954         if (!IS_GEN5(dev))
1955                 pp |= PANEL_POWER_RESET;
1956
1957         I915_WRITE(pp_ctrl_reg, pp);
1958         POSTING_READ(pp_ctrl_reg);
1959
1960         wait_panel_on(intel_dp);
1961         intel_dp->last_power_on = jiffies;
1962
1963         if (IS_GEN5(dev)) {
1964                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1965                 I915_WRITE(pp_ctrl_reg, pp);
1966                 POSTING_READ(pp_ctrl_reg);
1967         }
1968 }
1969
1970 void intel_edp_panel_on(struct intel_dp *intel_dp)
1971 {
1972         if (!is_edp(intel_dp))
1973                 return;
1974
1975         pps_lock(intel_dp);
1976         edp_panel_on(intel_dp);
1977         pps_unlock(intel_dp);
1978 }
1979
1980
1981 static void edp_panel_off(struct intel_dp *intel_dp)
1982 {
1983         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1984         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1985         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1986         struct drm_i915_private *dev_priv = dev->dev_private;
1987         enum intel_display_power_domain power_domain;
1988         u32 pp;
1989         u32 pp_ctrl_reg;
1990
1991         lockdep_assert_held(&dev_priv->pps_mutex);
1992
1993         if (!is_edp(intel_dp))
1994                 return;
1995
1996         DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
1997                       port_name(dp_to_dig_port(intel_dp)->port));
1998
1999         WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2000              port_name(dp_to_dig_port(intel_dp)->port));
2001
2002         pp = ironlake_get_pp_control(intel_dp);
2003         /* We need to switch off panel power _and_ force vdd, for otherwise some
2004          * panels get very unhappy and cease to work. */
2005         pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2006                 EDP_BLC_ENABLE);
2007
2008         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2009
2010         intel_dp->want_panel_vdd = false;
2011
2012         I915_WRITE(pp_ctrl_reg, pp);
2013         POSTING_READ(pp_ctrl_reg);
2014
2015         intel_dp->last_power_cycle = jiffies;
2016         wait_panel_off(intel_dp);
2017
2018         /* We got a reference when we enabled the VDD. */
2019         power_domain = intel_display_port_power_domain(intel_encoder);
2020         intel_display_power_put(dev_priv, power_domain);
2021 }
2022
2023 void intel_edp_panel_off(struct intel_dp *intel_dp)
2024 {
2025         if (!is_edp(intel_dp))
2026                 return;
2027
2028         pps_lock(intel_dp);
2029         edp_panel_off(intel_dp);
2030         pps_unlock(intel_dp);
2031 }
2032
2033 /* Enable backlight in the panel power control. */
2034 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2035 {
2036         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2037         struct drm_device *dev = intel_dig_port->base.base.dev;
2038         struct drm_i915_private *dev_priv = dev->dev_private;
2039         u32 pp;
2040         u32 pp_ctrl_reg;
2041
2042         /*
2043          * If we enable the backlight right away following a panel power
2044          * on, we may see slight flicker as the panel syncs with the eDP
2045          * link.  So delay a bit to make sure the image is solid before
2046          * allowing it to appear.
2047          */
2048         wait_backlight_on(intel_dp);
2049
2050         pps_lock(intel_dp);
2051
2052         pp = ironlake_get_pp_control(intel_dp);
2053         pp |= EDP_BLC_ENABLE;
2054
2055         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2056
2057         I915_WRITE(pp_ctrl_reg, pp);
2058         POSTING_READ(pp_ctrl_reg);
2059
2060         pps_unlock(intel_dp);
2061 }
2062
2063 /* Enable backlight PWM and backlight PP control. */
2064 void intel_edp_backlight_on(struct intel_dp *intel_dp)
2065 {
2066         if (!is_edp(intel_dp))
2067                 return;
2068
2069         DRM_DEBUG_KMS("\n");
2070
2071         intel_panel_enable_backlight(intel_dp->attached_connector);
2072         _intel_edp_backlight_on(intel_dp);
2073 }
2074
2075 /* Disable backlight in the panel power control. */
2076 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2077 {
2078         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2079         struct drm_i915_private *dev_priv = dev->dev_private;
2080         u32 pp;
2081         u32 pp_ctrl_reg;
2082
2083         if (!is_edp(intel_dp))
2084                 return;
2085
2086         pps_lock(intel_dp);
2087
2088         pp = ironlake_get_pp_control(intel_dp);
2089         pp &= ~EDP_BLC_ENABLE;
2090
2091         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2092
2093         I915_WRITE(pp_ctrl_reg, pp);
2094         POSTING_READ(pp_ctrl_reg);
2095
2096         pps_unlock(intel_dp);
2097
2098         intel_dp->last_backlight_off = jiffies;
2099         edp_wait_backlight_off(intel_dp);
2100 }
2101
2102 /* Disable backlight PP control and backlight PWM. */
2103 void intel_edp_backlight_off(struct intel_dp *intel_dp)
2104 {
2105         if (!is_edp(intel_dp))
2106                 return;
2107
2108         DRM_DEBUG_KMS("\n");
2109
2110         _intel_edp_backlight_off(intel_dp);
2111         intel_panel_disable_backlight(intel_dp->attached_connector);
2112 }
2113
2114 /*
2115  * Hook for controlling the panel power control backlight through the bl_power
2116  * sysfs attribute. Take care to handle multiple calls.
2117  */
2118 static void intel_edp_backlight_power(struct intel_connector *connector,
2119                                       bool enable)
2120 {
2121         struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2122         bool is_enabled;
2123
2124         pps_lock(intel_dp);
2125         is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2126         pps_unlock(intel_dp);
2127
2128         if (is_enabled == enable)
2129                 return;
2130
2131         DRM_DEBUG_KMS("panel power control backlight %s\n",
2132                       enable ? "enable" : "disable");
2133
2134         if (enable)
2135                 _intel_edp_backlight_on(intel_dp);
2136         else
2137                 _intel_edp_backlight_off(intel_dp);
2138 }
2139
2140 static const char *state_string(bool enabled)
2141 {
2142         return enabled ? "on" : "off";
2143 }
2144
2145 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2146 {
2147         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2148         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2149         bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2150
2151         I915_STATE_WARN(cur_state != state,
2152                         "DP port %c state assertion failure (expected %s, current %s)\n",
2153                         port_name(dig_port->port),
2154                         state_string(state), state_string(cur_state));
2155 }
2156 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2157
2158 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2159 {
2160         bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2161
2162         I915_STATE_WARN(cur_state != state,
2163                         "eDP PLL state assertion failure (expected %s, current %s)\n",
2164                         state_string(state), state_string(cur_state));
2165 }
2166 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2167 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2168
2169 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
2170 {
2171         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2172         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2173         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2174
2175         assert_pipe_disabled(dev_priv, crtc->pipe);
2176         assert_dp_port_disabled(intel_dp);
2177         assert_edp_pll_disabled(dev_priv);
2178
2179         DRM_DEBUG_KMS("\n");
2180         intel_dp->DP |= DP_PLL_ENABLE;
2181
2182         I915_WRITE(DP_A, intel_dp->DP);
2183         POSTING_READ(DP_A);
2184         udelay(200);
2185 }
2186
2187 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2188 {
2189         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2190         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2191         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2192
2193         assert_pipe_disabled(dev_priv, crtc->pipe);
2194         assert_dp_port_disabled(intel_dp);
2195         assert_edp_pll_enabled(dev_priv);
2196
2197         intel_dp->DP &= ~DP_PLL_ENABLE;
2198
2199         I915_WRITE(DP_A, intel_dp->DP);
2200         POSTING_READ(DP_A);
2201         udelay(200);
2202 }
2203
2204 /* If the sink supports it, try to set the power state appropriately */
2205 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2206 {
2207         int ret, i;
2208
2209         /* Should have a valid DPCD by this point */
2210         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2211                 return;
2212
2213         if (mode != DRM_MODE_DPMS_ON) {
2214                 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2215                                          DP_SET_POWER_D3);
2216         } else {
2217                 /*
2218                  * When turning on, we need to retry for 1ms to give the sink
2219                  * time to wake up.
2220                  */
2221                 for (i = 0; i < 3; i++) {
2222                         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2223                                                  DP_SET_POWER_D0);
2224                         if (ret == 1)
2225                                 break;
2226                         msleep(1);
2227                 }
2228         }
2229
2230         if (ret != 1)
2231                 DRM_DEBUG_KMS("failed to %s sink power state\n",
2232                               mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2233 }
2234
2235 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2236                                   enum pipe *pipe)
2237 {
2238         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2239         enum port port = dp_to_dig_port(intel_dp)->port;
2240         struct drm_device *dev = encoder->base.dev;
2241         struct drm_i915_private *dev_priv = dev->dev_private;
2242         enum intel_display_power_domain power_domain;
2243         u32 tmp;
2244
2245         power_domain = intel_display_port_power_domain(encoder);
2246         if (!intel_display_power_is_enabled(dev_priv, power_domain))
2247                 return false;
2248
2249         tmp = I915_READ(intel_dp->output_reg);
2250
2251         if (!(tmp & DP_PORT_EN))
2252                 return false;
2253
2254         if (IS_GEN7(dev) && port == PORT_A) {
2255                 *pipe = PORT_TO_PIPE_CPT(tmp);
2256         } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
2257                 enum pipe p;
2258
2259                 for_each_pipe(dev_priv, p) {
2260                         u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2261                         if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2262                                 *pipe = p;
2263                                 return true;
2264                         }
2265                 }
2266
2267                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2268                               intel_dp->output_reg);
2269         } else if (IS_CHERRYVIEW(dev)) {
2270                 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2271         } else {
2272                 *pipe = PORT_TO_PIPE(tmp);
2273         }
2274
2275         return true;
2276 }
2277
2278 static void intel_dp_get_config(struct intel_encoder *encoder,
2279                                 struct intel_crtc_state *pipe_config)
2280 {
2281         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2282         u32 tmp, flags = 0;
2283         struct drm_device *dev = encoder->base.dev;
2284         struct drm_i915_private *dev_priv = dev->dev_private;
2285         enum port port = dp_to_dig_port(intel_dp)->port;
2286         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2287         int dotclock;
2288
2289         tmp = I915_READ(intel_dp->output_reg);
2290
2291         pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2292
2293         if (HAS_PCH_CPT(dev) && port != PORT_A) {
2294                 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2295
2296                 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2297                         flags |= DRM_MODE_FLAG_PHSYNC;
2298                 else
2299                         flags |= DRM_MODE_FLAG_NHSYNC;
2300
2301                 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2302                         flags |= DRM_MODE_FLAG_PVSYNC;
2303                 else
2304                         flags |= DRM_MODE_FLAG_NVSYNC;
2305         } else {
2306                 if (tmp & DP_SYNC_HS_HIGH)
2307                         flags |= DRM_MODE_FLAG_PHSYNC;
2308                 else
2309                         flags |= DRM_MODE_FLAG_NHSYNC;
2310
2311                 if (tmp & DP_SYNC_VS_HIGH)
2312                         flags |= DRM_MODE_FLAG_PVSYNC;
2313                 else
2314                         flags |= DRM_MODE_FLAG_NVSYNC;
2315         }
2316
2317         pipe_config->base.adjusted_mode.flags |= flags;
2318
2319         if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2320             tmp & DP_COLOR_RANGE_16_235)
2321                 pipe_config->limited_color_range = true;
2322
2323         pipe_config->has_dp_encoder = true;
2324
2325         pipe_config->lane_count =
2326                 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2327
2328         intel_dp_get_m_n(crtc, pipe_config);
2329
2330         if (port == PORT_A) {
2331                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2332                         pipe_config->port_clock = 162000;
2333                 else
2334                         pipe_config->port_clock = 270000;
2335         }
2336
2337         dotclock = intel_dotclock_calculate(pipe_config->port_clock,
2338                                             &pipe_config->dp_m_n);
2339
2340         if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
2341                 ironlake_check_encoder_dotclock(pipe_config, dotclock);
2342
2343         pipe_config->base.adjusted_mode.crtc_clock = dotclock;
2344
2345         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
2346             pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
2347                 /*
2348                  * This is a big fat ugly hack.
2349                  *
2350                  * Some machines in UEFI boot mode provide us a VBT that has 18
2351                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2352                  * unknown we fail to light up. Yet the same BIOS boots up with
2353                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2354                  * max, not what it tells us to use.
2355                  *
2356                  * Note: This will still be broken if the eDP panel is not lit
2357                  * up by the BIOS, and thus we can't get the mode at module
2358                  * load.
2359                  */
2360                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2361                               pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
2362                 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
2363         }
2364 }
2365
2366 static void intel_disable_dp(struct intel_encoder *encoder)
2367 {
2368         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2369         struct drm_device *dev = encoder->base.dev;
2370         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2371
2372         if (crtc->config->has_audio)
2373                 intel_audio_codec_disable(encoder);
2374
2375         if (HAS_PSR(dev) && !HAS_DDI(dev))
2376                 intel_psr_disable(intel_dp);
2377
2378         /* Make sure the panel is off before trying to change the mode. But also
2379          * ensure that we have vdd while we switch off the panel. */
2380         intel_edp_panel_vdd_on(intel_dp);
2381         intel_edp_backlight_off(intel_dp);
2382         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2383         intel_edp_panel_off(intel_dp);
2384
2385         /* disable the port before the pipe on g4x */
2386         if (INTEL_INFO(dev)->gen < 5)
2387                 intel_dp_link_down(intel_dp);
2388 }
2389
2390 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2391 {
2392         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2393         enum port port = dp_to_dig_port(intel_dp)->port;
2394
2395         intel_dp_link_down(intel_dp);
2396         if (port == PORT_A)
2397                 ironlake_edp_pll_off(intel_dp);
2398 }
2399
2400 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2401 {
2402         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2403
2404         intel_dp_link_down(intel_dp);
2405 }
2406
2407 static void chv_data_lane_soft_reset(struct intel_encoder *encoder,
2408                                      bool reset)
2409 {
2410         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2411         enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
2412         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2413         enum pipe pipe = crtc->pipe;
2414         uint32_t val;
2415
2416         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2417         if (reset)
2418                 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2419         else
2420                 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
2421         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2422
2423         if (crtc->config->lane_count > 2) {
2424                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2425                 if (reset)
2426                         val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2427                 else
2428                         val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
2429                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2430         }
2431
2432         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2433         val |= CHV_PCS_REQ_SOFTRESET_EN;
2434         if (reset)
2435                 val &= ~DPIO_PCS_CLK_SOFT_RESET;
2436         else
2437                 val |= DPIO_PCS_CLK_SOFT_RESET;
2438         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2439
2440         if (crtc->config->lane_count > 2) {
2441                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2442                 val |= CHV_PCS_REQ_SOFTRESET_EN;
2443                 if (reset)
2444                         val &= ~DPIO_PCS_CLK_SOFT_RESET;
2445                 else
2446                         val |= DPIO_PCS_CLK_SOFT_RESET;
2447                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2448         }
2449 }
2450
2451 static void chv_post_disable_dp(struct intel_encoder *encoder)
2452 {
2453         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2454         struct drm_device *dev = encoder->base.dev;
2455         struct drm_i915_private *dev_priv = dev->dev_private;
2456
2457         intel_dp_link_down(intel_dp);
2458
2459         mutex_lock(&dev_priv->sb_lock);
2460
2461         /* Assert data lane reset */
2462         chv_data_lane_soft_reset(encoder, true);
2463
2464         mutex_unlock(&dev_priv->sb_lock);
2465 }
2466
2467 static void
2468 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2469                          uint32_t *DP,
2470                          uint8_t dp_train_pat)
2471 {
2472         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2473         struct drm_device *dev = intel_dig_port->base.base.dev;
2474         struct drm_i915_private *dev_priv = dev->dev_private;
2475         enum port port = intel_dig_port->port;
2476
2477         if (HAS_DDI(dev)) {
2478                 uint32_t temp = I915_READ(DP_TP_CTL(port));
2479
2480                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2481                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2482                 else
2483                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2484
2485                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2486                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2487                 case DP_TRAINING_PATTERN_DISABLE:
2488                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2489
2490                         break;
2491                 case DP_TRAINING_PATTERN_1:
2492                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2493                         break;
2494                 case DP_TRAINING_PATTERN_2:
2495                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2496                         break;
2497                 case DP_TRAINING_PATTERN_3:
2498                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2499                         break;
2500                 }
2501                 I915_WRITE(DP_TP_CTL(port), temp);
2502
2503         } else if ((IS_GEN7(dev) && port == PORT_A) ||
2504                    (HAS_PCH_CPT(dev) && port != PORT_A)) {
2505                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2506
2507                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2508                 case DP_TRAINING_PATTERN_DISABLE:
2509                         *DP |= DP_LINK_TRAIN_OFF_CPT;
2510                         break;
2511                 case DP_TRAINING_PATTERN_1:
2512                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2513                         break;
2514                 case DP_TRAINING_PATTERN_2:
2515                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2516                         break;
2517                 case DP_TRAINING_PATTERN_3:
2518                         DRM_ERROR("DP training pattern 3 not supported\n");
2519                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2520                         break;
2521                 }
2522
2523         } else {
2524                 if (IS_CHERRYVIEW(dev))
2525                         *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2526                 else
2527                         *DP &= ~DP_LINK_TRAIN_MASK;
2528
2529                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2530                 case DP_TRAINING_PATTERN_DISABLE:
2531                         *DP |= DP_LINK_TRAIN_OFF;
2532                         break;
2533                 case DP_TRAINING_PATTERN_1:
2534                         *DP |= DP_LINK_TRAIN_PAT_1;
2535                         break;
2536                 case DP_TRAINING_PATTERN_2:
2537                         *DP |= DP_LINK_TRAIN_PAT_2;
2538                         break;
2539                 case DP_TRAINING_PATTERN_3:
2540                         if (IS_CHERRYVIEW(dev)) {
2541                                 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2542                         } else {
2543                                 DRM_ERROR("DP training pattern 3 not supported\n");
2544                                 *DP |= DP_LINK_TRAIN_PAT_2;
2545                         }
2546                         break;
2547                 }
2548         }
2549 }
2550
2551 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2552 {
2553         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2554         struct drm_i915_private *dev_priv = dev->dev_private;
2555         struct intel_crtc *crtc =
2556                 to_intel_crtc(dp_to_dig_port(intel_dp)->base.base.crtc);
2557
2558         /* enable with pattern 1 (as per spec) */
2559         _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2560                                  DP_TRAINING_PATTERN_1);
2561
2562         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2563         POSTING_READ(intel_dp->output_reg);
2564
2565         /*
2566          * Magic for VLV/CHV. We _must_ first set up the register
2567          * without actually enabling the port, and then do another
2568          * write to enable the port. Otherwise link training will
2569          * fail when the power sequencer is freshly used for this port.
2570          */
2571         intel_dp->DP |= DP_PORT_EN;
2572         if (crtc->config->has_audio)
2573                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2574
2575         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2576         POSTING_READ(intel_dp->output_reg);
2577 }
2578
2579 static void intel_enable_dp(struct intel_encoder *encoder)
2580 {
2581         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2582         struct drm_device *dev = encoder->base.dev;
2583         struct drm_i915_private *dev_priv = dev->dev_private;
2584         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2585         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2586         enum port port = dp_to_dig_port(intel_dp)->port;
2587         enum pipe pipe = crtc->pipe;
2588
2589         if (WARN_ON(dp_reg & DP_PORT_EN))
2590                 return;
2591
2592         pps_lock(intel_dp);
2593
2594         if (IS_VALLEYVIEW(dev))
2595                 vlv_init_panel_power_sequencer(intel_dp);
2596
2597         intel_dp_enable_port(intel_dp);
2598
2599         if (port == PORT_A && IS_GEN5(dev_priv)) {
2600                 /*
2601                  * Underrun reporting for the other pipe was disabled in
2602                  * g4x_pre_enable_dp(). The eDP PLL and port have now been
2603                  * enabled, so it's now safe to re-enable underrun reporting.
2604                  */
2605                 intel_wait_for_vblank_if_active(dev_priv->dev, !pipe);
2606                 intel_set_cpu_fifo_underrun_reporting(dev_priv, !pipe, true);
2607                 intel_set_pch_fifo_underrun_reporting(dev_priv, !pipe, true);
2608         }
2609
2610         edp_panel_vdd_on(intel_dp);
2611         edp_panel_on(intel_dp);
2612         edp_panel_vdd_off(intel_dp, true);
2613
2614         pps_unlock(intel_dp);
2615
2616         if (IS_VALLEYVIEW(dev)) {
2617                 unsigned int lane_mask = 0x0;
2618
2619                 if (IS_CHERRYVIEW(dev))
2620                         lane_mask = intel_dp_unused_lane_mask(crtc->config->lane_count);
2621
2622                 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2623                                     lane_mask);
2624         }
2625
2626         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2627         intel_dp_start_link_train(intel_dp);
2628         intel_dp_stop_link_train(intel_dp);
2629
2630         if (crtc->config->has_audio) {
2631                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2632                                  pipe_name(pipe));
2633                 intel_audio_codec_enable(encoder);
2634         }
2635 }
2636
2637 static void g4x_enable_dp(struct intel_encoder *encoder)
2638 {
2639         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2640
2641         intel_enable_dp(encoder);
2642         intel_edp_backlight_on(intel_dp);
2643 }
2644
2645 static void vlv_enable_dp(struct intel_encoder *encoder)
2646 {
2647         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2648
2649         intel_edp_backlight_on(intel_dp);
2650         intel_psr_enable(intel_dp);
2651 }
2652
2653 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2654 {
2655         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2656         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2657         enum port port = dp_to_dig_port(intel_dp)->port;
2658         enum pipe pipe = to_intel_crtc(encoder->base.crtc)->pipe;
2659
2660         intel_dp_prepare(encoder);
2661
2662         if (port == PORT_A && IS_GEN5(dev_priv)) {
2663                 /*
2664                  * We get FIFO underruns on the other pipe when
2665                  * enabling the CPU eDP PLL, and when enabling CPU
2666                  * eDP port. We could potentially avoid the PLL
2667                  * underrun with a vblank wait just prior to enabling
2668                  * the PLL, but that doesn't appear to help the port
2669                  * enable case. Just sweep it all under the rug.
2670                  */
2671                 intel_set_cpu_fifo_underrun_reporting(dev_priv, !pipe, false);
2672                 intel_set_pch_fifo_underrun_reporting(dev_priv, !pipe, false);
2673         }
2674
2675         /* Only ilk+ has port A */
2676         if (port == PORT_A) {
2677                 ironlake_set_pll_cpu_edp(intel_dp);
2678                 ironlake_edp_pll_on(intel_dp);
2679         }
2680 }
2681
2682 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2683 {
2684         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2685         struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private;
2686         enum pipe pipe = intel_dp->pps_pipe;
2687         int pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
2688
2689         edp_panel_vdd_off_sync(intel_dp);
2690
2691         /*
2692          * VLV seems to get confused when multiple power seqeuencers
2693          * have the same port selected (even if only one has power/vdd
2694          * enabled). The failure manifests as vlv_wait_port_ready() failing
2695          * CHV on the other hand doesn't seem to mind having the same port
2696          * selected in multiple power seqeuencers, but let's clear the
2697          * port select always when logically disconnecting a power sequencer
2698          * from a port.
2699          */
2700         DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2701                       pipe_name(pipe), port_name(intel_dig_port->port));
2702         I915_WRITE(pp_on_reg, 0);
2703         POSTING_READ(pp_on_reg);
2704
2705         intel_dp->pps_pipe = INVALID_PIPE;
2706 }
2707
2708 static void vlv_steal_power_sequencer(struct drm_device *dev,
2709                                       enum pipe pipe)
2710 {
2711         struct drm_i915_private *dev_priv = dev->dev_private;
2712         struct intel_encoder *encoder;
2713
2714         lockdep_assert_held(&dev_priv->pps_mutex);
2715
2716         if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2717                 return;
2718
2719         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2720                             base.head) {
2721                 struct intel_dp *intel_dp;
2722                 enum port port;
2723
2724                 if (encoder->type != INTEL_OUTPUT_EDP)
2725                         continue;
2726
2727                 intel_dp = enc_to_intel_dp(&encoder->base);
2728                 port = dp_to_dig_port(intel_dp)->port;
2729
2730                 if (intel_dp->pps_pipe != pipe)
2731                         continue;
2732
2733                 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2734                               pipe_name(pipe), port_name(port));
2735
2736                 WARN(encoder->base.crtc,
2737                      "stealing pipe %c power sequencer from active eDP port %c\n",
2738                      pipe_name(pipe), port_name(port));
2739
2740                 /* make sure vdd is off before we steal it */
2741                 vlv_detach_power_sequencer(intel_dp);
2742         }
2743 }
2744
2745 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2746 {
2747         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2748         struct intel_encoder *encoder = &intel_dig_port->base;
2749         struct drm_device *dev = encoder->base.dev;
2750         struct drm_i915_private *dev_priv = dev->dev_private;
2751         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2752
2753         lockdep_assert_held(&dev_priv->pps_mutex);
2754
2755         if (!is_edp(intel_dp))
2756                 return;
2757
2758         if (intel_dp->pps_pipe == crtc->pipe)
2759                 return;
2760
2761         /*
2762          * If another power sequencer was being used on this
2763          * port previously make sure to turn off vdd there while
2764          * we still have control of it.
2765          */
2766         if (intel_dp->pps_pipe != INVALID_PIPE)
2767                 vlv_detach_power_sequencer(intel_dp);
2768
2769         /*
2770          * We may be stealing the power
2771          * sequencer from another port.
2772          */
2773         vlv_steal_power_sequencer(dev, crtc->pipe);
2774
2775         /* now it's all ours */
2776         intel_dp->pps_pipe = crtc->pipe;
2777
2778         DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2779                       pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2780
2781         /* init power sequencer on this pipe and port */
2782         intel_dp_init_panel_power_sequencer(dev, intel_dp);
2783         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2784 }
2785
2786 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2787 {
2788         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2789         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2790         struct drm_device *dev = encoder->base.dev;
2791         struct drm_i915_private *dev_priv = dev->dev_private;
2792         struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2793         enum dpio_channel port = vlv_dport_to_channel(dport);
2794         int pipe = intel_crtc->pipe;
2795         u32 val;
2796
2797         mutex_lock(&dev_priv->sb_lock);
2798
2799         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2800         val = 0;
2801         if (pipe)
2802                 val |= (1<<21);
2803         else
2804                 val &= ~(1<<21);
2805         val |= 0x001000c4;
2806         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2807         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2808         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2809
2810         mutex_unlock(&dev_priv->sb_lock);
2811
2812         intel_enable_dp(encoder);
2813 }
2814
2815 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2816 {
2817         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2818         struct drm_device *dev = encoder->base.dev;
2819         struct drm_i915_private *dev_priv = dev->dev_private;
2820         struct intel_crtc *intel_crtc =
2821                 to_intel_crtc(encoder->base.crtc);
2822         enum dpio_channel port = vlv_dport_to_channel(dport);
2823         int pipe = intel_crtc->pipe;
2824
2825         intel_dp_prepare(encoder);
2826
2827         /* Program Tx lane resets to default */
2828         mutex_lock(&dev_priv->sb_lock);
2829         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2830                          DPIO_PCS_TX_LANE2_RESET |
2831                          DPIO_PCS_TX_LANE1_RESET);
2832         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2833                          DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2834                          DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2835                          (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2836                                  DPIO_PCS_CLK_SOFT_RESET);
2837
2838         /* Fix up inter-pair skew failure */
2839         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2840         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2841         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2842         mutex_unlock(&dev_priv->sb_lock);
2843 }
2844
2845 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2846 {
2847         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2848         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2849         struct drm_device *dev = encoder->base.dev;
2850         struct drm_i915_private *dev_priv = dev->dev_private;
2851         struct intel_crtc *intel_crtc =
2852                 to_intel_crtc(encoder->base.crtc);
2853         enum dpio_channel ch = vlv_dport_to_channel(dport);
2854         int pipe = intel_crtc->pipe;
2855         int data, i, stagger;
2856         u32 val;
2857
2858         mutex_lock(&dev_priv->sb_lock);
2859
2860         /* allow hardware to manage TX FIFO reset source */
2861         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2862         val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2863         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2864
2865         if (intel_crtc->config->lane_count > 2) {
2866                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2867                 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2868                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2869         }
2870
2871         /* Program Tx lane latency optimal setting*/
2872         for (i = 0; i < intel_crtc->config->lane_count; i++) {
2873                 /* Set the upar bit */
2874                 if (intel_crtc->config->lane_count == 1)
2875                         data = 0x0;
2876                 else
2877                         data = (i == 1) ? 0x0 : 0x1;
2878                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2879                                 data << DPIO_UPAR_SHIFT);
2880         }
2881
2882         /* Data lane stagger programming */
2883         if (intel_crtc->config->port_clock > 270000)
2884                 stagger = 0x18;
2885         else if (intel_crtc->config->port_clock > 135000)
2886                 stagger = 0xd;
2887         else if (intel_crtc->config->port_clock > 67500)
2888                 stagger = 0x7;
2889         else if (intel_crtc->config->port_clock > 33750)
2890                 stagger = 0x4;
2891         else
2892                 stagger = 0x2;
2893
2894         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2895         val |= DPIO_TX2_STAGGER_MASK(0x1f);
2896         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2897
2898         if (intel_crtc->config->lane_count > 2) {
2899                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2900                 val |= DPIO_TX2_STAGGER_MASK(0x1f);
2901                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2902         }
2903
2904         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
2905                        DPIO_LANESTAGGER_STRAP(stagger) |
2906                        DPIO_LANESTAGGER_STRAP_OVRD |
2907                        DPIO_TX1_STAGGER_MASK(0x1f) |
2908                        DPIO_TX1_STAGGER_MULT(6) |
2909                        DPIO_TX2_STAGGER_MULT(0));
2910
2911         if (intel_crtc->config->lane_count > 2) {
2912                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
2913                                DPIO_LANESTAGGER_STRAP(stagger) |
2914                                DPIO_LANESTAGGER_STRAP_OVRD |
2915                                DPIO_TX1_STAGGER_MASK(0x1f) |
2916                                DPIO_TX1_STAGGER_MULT(7) |
2917                                DPIO_TX2_STAGGER_MULT(5));
2918         }
2919
2920         /* Deassert data lane reset */
2921         chv_data_lane_soft_reset(encoder, false);
2922
2923         mutex_unlock(&dev_priv->sb_lock);
2924
2925         intel_enable_dp(encoder);
2926
2927         /* Second common lane will stay alive on its own now */
2928         if (dport->release_cl2_override) {
2929                 chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
2930                 dport->release_cl2_override = false;
2931         }
2932 }
2933
2934 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2935 {
2936         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2937         struct drm_device *dev = encoder->base.dev;
2938         struct drm_i915_private *dev_priv = dev->dev_private;
2939         struct intel_crtc *intel_crtc =
2940                 to_intel_crtc(encoder->base.crtc);
2941         enum dpio_channel ch = vlv_dport_to_channel(dport);
2942         enum pipe pipe = intel_crtc->pipe;
2943         unsigned int lane_mask =
2944                 intel_dp_unused_lane_mask(intel_crtc->config->lane_count);
2945         u32 val;
2946
2947         intel_dp_prepare(encoder);
2948
2949         /*
2950          * Must trick the second common lane into life.
2951          * Otherwise we can't even access the PLL.
2952          */
2953         if (ch == DPIO_CH0 && pipe == PIPE_B)
2954                 dport->release_cl2_override =
2955                         !chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
2956
2957         chv_phy_powergate_lanes(encoder, true, lane_mask);
2958
2959         mutex_lock(&dev_priv->sb_lock);
2960
2961         /* Assert data lane reset */
2962         chv_data_lane_soft_reset(encoder, true);
2963
2964         /* program left/right clock distribution */
2965         if (pipe != PIPE_B) {
2966                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2967                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2968                 if (ch == DPIO_CH0)
2969                         val |= CHV_BUFLEFTENA1_FORCE;
2970                 if (ch == DPIO_CH1)
2971                         val |= CHV_BUFRIGHTENA1_FORCE;
2972                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2973         } else {
2974                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2975                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2976                 if (ch == DPIO_CH0)
2977                         val |= CHV_BUFLEFTENA2_FORCE;
2978                 if (ch == DPIO_CH1)
2979                         val |= CHV_BUFRIGHTENA2_FORCE;
2980                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2981         }
2982
2983         /* program clock channel usage */
2984         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2985         val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2986         if (pipe != PIPE_B)
2987                 val &= ~CHV_PCS_USEDCLKCHANNEL;
2988         else
2989                 val |= CHV_PCS_USEDCLKCHANNEL;
2990         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2991
2992         if (intel_crtc->config->lane_count > 2) {
2993                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2994                 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2995                 if (pipe != PIPE_B)
2996                         val &= ~CHV_PCS_USEDCLKCHANNEL;
2997                 else
2998                         val |= CHV_PCS_USEDCLKCHANNEL;
2999                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
3000         }
3001
3002         /*
3003          * This a a bit weird since generally CL
3004          * matches the pipe, but here we need to
3005          * pick the CL based on the port.
3006          */
3007         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
3008         if (pipe != PIPE_B)
3009                 val &= ~CHV_CMN_USEDCLKCHANNEL;
3010         else
3011                 val |= CHV_CMN_USEDCLKCHANNEL;
3012         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
3013
3014         mutex_unlock(&dev_priv->sb_lock);
3015 }
3016
3017 static void chv_dp_post_pll_disable(struct intel_encoder *encoder)
3018 {
3019         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3020         enum pipe pipe = to_intel_crtc(encoder->base.crtc)->pipe;
3021         u32 val;
3022
3023         mutex_lock(&dev_priv->sb_lock);
3024
3025         /* disable left/right clock distribution */
3026         if (pipe != PIPE_B) {
3027                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
3028                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
3029                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
3030         } else {
3031                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
3032                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
3033                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
3034         }
3035
3036         mutex_unlock(&dev_priv->sb_lock);
3037
3038         /*
3039          * Leave the power down bit cleared for at least one
3040          * lane so that chv_powergate_phy_ch() will power
3041          * on something when the channel is otherwise unused.
3042          * When the port is off and the override is removed
3043          * the lanes power down anyway, so otherwise it doesn't
3044          * really matter what the state of power down bits is
3045          * after this.
3046          */
3047         chv_phy_powergate_lanes(encoder, false, 0x0);
3048 }
3049
3050 /*
3051  * Native read with retry for link status and receiver capability reads for
3052  * cases where the sink may still be asleep.
3053  *
3054  * Sinks are *supposed* to come up within 1ms from an off state, but we're also
3055  * supposed to retry 3 times per the spec.
3056  */
3057 static ssize_t
3058 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
3059                         void *buffer, size_t size)
3060 {
3061         ssize_t ret;
3062         int i;
3063
3064         /*
3065          * Sometime we just get the same incorrect byte repeated
3066          * over the entire buffer. Doing just one throw away read
3067          * initially seems to "solve" it.
3068          */
3069         drm_dp_dpcd_read(aux, DP_DPCD_REV, buffer, 1);
3070
3071         for (i = 0; i < 3; i++) {
3072                 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
3073                 if (ret == size)
3074                         return ret;
3075                 msleep(1);
3076         }
3077
3078         return ret;
3079 }
3080
3081 /*
3082  * Fetch AUX CH registers 0x202 - 0x207 which contain
3083  * link status information
3084  */
3085 bool
3086 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
3087 {
3088         return intel_dp_dpcd_read_wake(&intel_dp->aux,
3089                                        DP_LANE0_1_STATUS,
3090                                        link_status,
3091                                        DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3092 }
3093
3094 /* These are source-specific values. */
3095 uint8_t
3096 intel_dp_voltage_max(struct intel_dp *intel_dp)
3097 {
3098         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3099         struct drm_i915_private *dev_priv = dev->dev_private;
3100         enum port port = dp_to_dig_port(intel_dp)->port;
3101
3102         if (IS_BROXTON(dev))
3103                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3104         else if (INTEL_INFO(dev)->gen >= 9) {
3105                 if (dev_priv->edp_low_vswing && port == PORT_A)
3106                         return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3107                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3108         } else if (IS_VALLEYVIEW(dev))
3109                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3110         else if (IS_GEN7(dev) && port == PORT_A)
3111                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3112         else if (HAS_PCH_CPT(dev) && port != PORT_A)
3113                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3114         else
3115                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3116 }
3117
3118 uint8_t
3119 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
3120 {
3121         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3122         enum port port = dp_to_dig_port(intel_dp)->port;
3123
3124         if (INTEL_INFO(dev)->gen >= 9) {
3125                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3126                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3127                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3128                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3129                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3130                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3131                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3132                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3133                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3134                 default:
3135                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3136                 }
3137         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3138                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3139                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3140                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3141                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3142                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3143                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3144                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3145                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3146                 default:
3147                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3148                 }
3149         } else if (IS_VALLEYVIEW(dev)) {
3150                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3151                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3152                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3153                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3154                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3155                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3156                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3157                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3158                 default:
3159                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3160                 }
3161         } else if (IS_GEN7(dev) && port == PORT_A) {
3162                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3163                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3164                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3165                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3166                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3167                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3168                 default:
3169                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3170                 }
3171         } else {
3172                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3173                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3174                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3175                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3176                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3177                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3178                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3179                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3180                 default:
3181                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3182                 }
3183         }
3184 }
3185
3186 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3187 {
3188         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3189         struct drm_i915_private *dev_priv = dev->dev_private;
3190         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3191         struct intel_crtc *intel_crtc =
3192                 to_intel_crtc(dport->base.base.crtc);
3193         unsigned long demph_reg_value, preemph_reg_value,
3194                 uniqtranscale_reg_value;
3195         uint8_t train_set = intel_dp->train_set[0];
3196         enum dpio_channel port = vlv_dport_to_channel(dport);
3197         int pipe = intel_crtc->pipe;
3198
3199         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3200         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3201                 preemph_reg_value = 0x0004000;
3202                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3203                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3204                         demph_reg_value = 0x2B405555;
3205                         uniqtranscale_reg_value = 0x552AB83A;
3206                         break;
3207                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3208                         demph_reg_value = 0x2B404040;
3209                         uniqtranscale_reg_value = 0x5548B83A;
3210                         break;
3211                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3212                         demph_reg_value = 0x2B245555;
3213                         uniqtranscale_reg_value = 0x5560B83A;
3214                         break;
3215                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3216                         demph_reg_value = 0x2B405555;
3217                         uniqtranscale_reg_value = 0x5598DA3A;
3218                         break;
3219                 default:
3220                         return 0;
3221                 }
3222                 break;
3223         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3224                 preemph_reg_value = 0x0002000;
3225                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3226                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3227                         demph_reg_value = 0x2B404040;
3228                         uniqtranscale_reg_value = 0x5552B83A;
3229                         break;
3230                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3231                         demph_reg_value = 0x2B404848;
3232                         uniqtranscale_reg_value = 0x5580B83A;
3233                         break;
3234                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3235                         demph_reg_value = 0x2B404040;
3236                         uniqtranscale_reg_value = 0x55ADDA3A;
3237                         break;
3238                 default:
3239                         return 0;
3240                 }
3241                 break;
3242         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3243                 preemph_reg_value = 0x0000000;
3244                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3245                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3246                         demph_reg_value = 0x2B305555;
3247                         uniqtranscale_reg_value = 0x5570B83A;
3248                         break;
3249                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3250                         demph_reg_value = 0x2B2B4040;
3251                         uniqtranscale_reg_value = 0x55ADDA3A;
3252                         break;
3253                 default:
3254                         return 0;
3255                 }
3256                 break;
3257         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3258                 preemph_reg_value = 0x0006000;
3259                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3260                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3261                         demph_reg_value = 0x1B405555;
3262                         uniqtranscale_reg_value = 0x55ADDA3A;
3263                         break;
3264                 default:
3265                         return 0;
3266                 }
3267                 break;
3268         default:
3269                 return 0;
3270         }
3271
3272         mutex_lock(&dev_priv->sb_lock);
3273         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
3274         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
3275         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
3276                          uniqtranscale_reg_value);
3277         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
3278         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
3279         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
3280         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
3281         mutex_unlock(&dev_priv->sb_lock);
3282
3283         return 0;
3284 }
3285
3286 static bool chv_need_uniq_trans_scale(uint8_t train_set)
3287 {
3288         return (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) == DP_TRAIN_PRE_EMPH_LEVEL_0 &&
3289                 (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3290 }
3291
3292 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3293 {
3294         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3295         struct drm_i915_private *dev_priv = dev->dev_private;
3296         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3297         struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
3298         u32 deemph_reg_value, margin_reg_value, val;
3299         uint8_t train_set = intel_dp->train_set[0];
3300         enum dpio_channel ch = vlv_dport_to_channel(dport);
3301         enum pipe pipe = intel_crtc->pipe;
3302         int i;
3303
3304         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3305         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3306                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3307                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3308                         deemph_reg_value = 128;
3309                         margin_reg_value = 52;
3310                         break;
3311                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3312                         deemph_reg_value = 128;
3313                         margin_reg_value = 77;
3314                         break;
3315                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3316                         deemph_reg_value = 128;
3317                         margin_reg_value = 102;
3318                         break;
3319                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3320                         deemph_reg_value = 128;
3321                         margin_reg_value = 154;
3322                         /* FIXME extra to set for 1200 */
3323                         break;
3324                 default:
3325                         return 0;
3326                 }
3327                 break;
3328         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3329                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3330                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3331                         deemph_reg_value = 85;
3332                         margin_reg_value = 78;
3333                         break;
3334                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3335                         deemph_reg_value = 85;
3336                         margin_reg_value = 116;
3337                         break;
3338                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3339                         deemph_reg_value = 85;
3340                         margin_reg_value = 154;
3341                         break;
3342                 default:
3343                         return 0;
3344                 }
3345                 break;
3346         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3347                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3348                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3349                         deemph_reg_value = 64;
3350                         margin_reg_value = 104;
3351                         break;
3352                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3353                         deemph_reg_value = 64;
3354                         margin_reg_value = 154;
3355                         break;
3356                 default:
3357                         return 0;
3358                 }
3359                 break;
3360         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3361                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3362                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3363                         deemph_reg_value = 43;
3364                         margin_reg_value = 154;
3365                         break;
3366                 default:
3367                         return 0;
3368                 }
3369                 break;
3370         default:
3371                 return 0;
3372         }
3373
3374         mutex_lock(&dev_priv->sb_lock);
3375
3376         /* Clear calc init */
3377         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3378         val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3379         val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3380         val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3381         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3382
3383         if (intel_crtc->config->lane_count > 2) {
3384                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3385                 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3386                 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3387                 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3388                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3389         }
3390
3391         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
3392         val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3393         val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3394         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
3395
3396         if (intel_crtc->config->lane_count > 2) {
3397                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
3398                 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3399                 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3400                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
3401         }
3402
3403         /* Program swing deemph */
3404         for (i = 0; i < intel_crtc->config->lane_count; i++) {
3405                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
3406                 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
3407                 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
3408                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
3409         }
3410
3411         /* Program swing margin */
3412         for (i = 0; i < intel_crtc->config->lane_count; i++) {
3413                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3414
3415                 val &= ~DPIO_SWING_MARGIN000_MASK;
3416                 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
3417
3418                 /*
3419                  * Supposedly this value shouldn't matter when unique transition
3420                  * scale is disabled, but in fact it does matter. Let's just
3421                  * always program the same value and hope it's OK.
3422                  */
3423                 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3424                 val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
3425
3426                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3427         }
3428
3429         /*
3430          * The document said it needs to set bit 27 for ch0 and bit 26
3431          * for ch1. Might be a typo in the doc.
3432          * For now, for this unique transition scale selection, set bit
3433          * 27 for ch0 and ch1.
3434          */
3435         for (i = 0; i < intel_crtc->config->lane_count; i++) {
3436                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3437                 if (chv_need_uniq_trans_scale(train_set))
3438                         val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
3439                 else
3440                         val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
3441                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3442         }
3443
3444         /* Start swing calculation */
3445         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3446         val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3447         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3448
3449         if (intel_crtc->config->lane_count > 2) {
3450                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3451                 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3452                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3453         }
3454
3455         mutex_unlock(&dev_priv->sb_lock);
3456
3457         return 0;
3458 }
3459
3460 static uint32_t
3461 gen4_signal_levels(uint8_t train_set)
3462 {
3463         uint32_t        signal_levels = 0;
3464
3465         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3466         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3467         default:
3468                 signal_levels |= DP_VOLTAGE_0_4;
3469                 break;
3470         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3471                 signal_levels |= DP_VOLTAGE_0_6;
3472                 break;
3473         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3474                 signal_levels |= DP_VOLTAGE_0_8;
3475                 break;
3476         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3477                 signal_levels |= DP_VOLTAGE_1_2;
3478                 break;
3479         }
3480         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3481         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3482         default:
3483                 signal_levels |= DP_PRE_EMPHASIS_0;
3484                 break;
3485         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3486                 signal_levels |= DP_PRE_EMPHASIS_3_5;
3487                 break;
3488         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3489                 signal_levels |= DP_PRE_EMPHASIS_6;
3490                 break;
3491         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3492                 signal_levels |= DP_PRE_EMPHASIS_9_5;
3493                 break;
3494         }
3495         return signal_levels;
3496 }
3497
3498 /* Gen6's DP voltage swing and pre-emphasis control */
3499 static uint32_t
3500 gen6_edp_signal_levels(uint8_t train_set)
3501 {
3502         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3503                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3504         switch (signal_levels) {
3505         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3506         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3507                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3508         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3509                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3510         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3511         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3512                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3513         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3514         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3515                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3516         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3517         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3518                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3519         default:
3520                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3521                               "0x%x\n", signal_levels);
3522                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3523         }
3524 }
3525
3526 /* Gen7's DP voltage swing and pre-emphasis control */
3527 static uint32_t
3528 gen7_edp_signal_levels(uint8_t train_set)
3529 {
3530         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3531                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3532         switch (signal_levels) {
3533         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3534                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3535         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3536                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3537         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3538                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3539
3540         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3541                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3542         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3543                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3544
3545         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3546                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3547         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3548                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3549
3550         default:
3551                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3552                               "0x%x\n", signal_levels);
3553                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3554         }
3555 }
3556
3557 void
3558 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3559 {
3560         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3561         enum port port = intel_dig_port->port;
3562         struct drm_device *dev = intel_dig_port->base.base.dev;
3563         struct drm_i915_private *dev_priv = to_i915(dev);
3564         uint32_t signal_levels, mask = 0;
3565         uint8_t train_set = intel_dp->train_set[0];
3566
3567         if (HAS_DDI(dev)) {
3568                 signal_levels = ddi_signal_levels(intel_dp);
3569
3570                 if (IS_BROXTON(dev))
3571                         signal_levels = 0;
3572                 else
3573                         mask = DDI_BUF_EMP_MASK;
3574         } else if (IS_CHERRYVIEW(dev)) {
3575                 signal_levels = chv_signal_levels(intel_dp);
3576         } else if (IS_VALLEYVIEW(dev)) {
3577                 signal_levels = vlv_signal_levels(intel_dp);
3578         } else if (IS_GEN7(dev) && port == PORT_A) {
3579                 signal_levels = gen7_edp_signal_levels(train_set);
3580                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3581         } else if (IS_GEN6(dev) && port == PORT_A) {
3582                 signal_levels = gen6_edp_signal_levels(train_set);
3583                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3584         } else {
3585                 signal_levels = gen4_signal_levels(train_set);
3586                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3587         }
3588
3589         if (mask)
3590                 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3591
3592         DRM_DEBUG_KMS("Using vswing level %d\n",
3593                 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3594         DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3595                 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3596                         DP_TRAIN_PRE_EMPHASIS_SHIFT);
3597
3598         intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3599
3600         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3601         POSTING_READ(intel_dp->output_reg);
3602 }
3603
3604 void
3605 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3606                                        uint8_t dp_train_pat)
3607 {
3608         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3609         struct drm_i915_private *dev_priv =
3610                 to_i915(intel_dig_port->base.base.dev);
3611
3612         _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3613
3614         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3615         POSTING_READ(intel_dp->output_reg);
3616 }
3617
3618 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3619 {
3620         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3621         struct drm_device *dev = intel_dig_port->base.base.dev;
3622         struct drm_i915_private *dev_priv = dev->dev_private;
3623         enum port port = intel_dig_port->port;
3624         uint32_t val;
3625
3626         if (!HAS_DDI(dev))
3627                 return;
3628
3629         val = I915_READ(DP_TP_CTL(port));
3630         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3631         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3632         I915_WRITE(DP_TP_CTL(port), val);
3633
3634         /*
3635          * On PORT_A we can have only eDP in SST mode. There the only reason
3636          * we need to set idle transmission mode is to work around a HW issue
3637          * where we enable the pipe while not in idle link-training mode.
3638          * In this case there is requirement to wait for a minimum number of
3639          * idle patterns to be sent.
3640          */
3641         if (port == PORT_A)
3642                 return;
3643
3644         if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3645                      1))
3646                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3647 }
3648
3649 static void
3650 intel_dp_link_down(struct intel_dp *intel_dp)
3651 {
3652         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3653         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3654         enum port port = intel_dig_port->port;
3655         struct drm_device *dev = intel_dig_port->base.base.dev;
3656         struct drm_i915_private *dev_priv = dev->dev_private;
3657         uint32_t DP = intel_dp->DP;
3658
3659         if (WARN_ON(HAS_DDI(dev)))
3660                 return;
3661
3662         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3663                 return;
3664
3665         DRM_DEBUG_KMS("\n");
3666
3667         if ((IS_GEN7(dev) && port == PORT_A) ||
3668             (HAS_PCH_CPT(dev) && port != PORT_A)) {
3669                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3670                 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3671         } else {
3672                 if (IS_CHERRYVIEW(dev))
3673                         DP &= ~DP_LINK_TRAIN_MASK_CHV;
3674                 else
3675                         DP &= ~DP_LINK_TRAIN_MASK;
3676                 DP |= DP_LINK_TRAIN_PAT_IDLE;
3677         }
3678         I915_WRITE(intel_dp->output_reg, DP);
3679         POSTING_READ(intel_dp->output_reg);
3680
3681         DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3682         I915_WRITE(intel_dp->output_reg, DP);
3683         POSTING_READ(intel_dp->output_reg);
3684
3685         /*
3686          * HW workaround for IBX, we need to move the port
3687          * to transcoder A after disabling it to allow the
3688          * matching HDMI port to be enabled on transcoder A.
3689          */
3690         if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B && port != PORT_A) {
3691                 /*
3692                  * We get CPU/PCH FIFO underruns on the other pipe when
3693                  * doing the workaround. Sweep them under the rug.
3694                  */
3695                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3696                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3697
3698                 /* always enable with pattern 1 (as per spec) */
3699                 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3700                 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3701                 I915_WRITE(intel_dp->output_reg, DP);
3702                 POSTING_READ(intel_dp->output_reg);
3703
3704                 DP &= ~DP_PORT_EN;
3705                 I915_WRITE(intel_dp->output_reg, DP);
3706                 POSTING_READ(intel_dp->output_reg);
3707
3708                 intel_wait_for_vblank_if_active(dev_priv->dev, PIPE_A);
3709                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3710                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3711         }
3712
3713         msleep(intel_dp->panel_power_down_delay);
3714
3715         intel_dp->DP = DP;
3716 }
3717
3718 static bool
3719 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3720 {
3721         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3722         struct drm_device *dev = dig_port->base.base.dev;
3723         struct drm_i915_private *dev_priv = dev->dev_private;
3724         uint8_t rev;
3725
3726         if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3727                                     sizeof(intel_dp->dpcd)) < 0)
3728                 return false; /* aux transfer failed */
3729
3730         DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3731
3732         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3733                 return false; /* DPCD not present */
3734
3735         /* Check if the panel supports PSR */
3736         memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3737         if (is_edp(intel_dp)) {
3738                 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3739                                         intel_dp->psr_dpcd,
3740                                         sizeof(intel_dp->psr_dpcd));
3741                 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3742                         dev_priv->psr.sink_support = true;
3743                         DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3744                 }
3745
3746                 if (INTEL_INFO(dev)->gen >= 9 &&
3747                         (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3748                         uint8_t frame_sync_cap;
3749
3750                         dev_priv->psr.sink_support = true;
3751                         intel_dp_dpcd_read_wake(&intel_dp->aux,
3752                                         DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3753                                         &frame_sync_cap, 1);
3754                         dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3755                         /* PSR2 needs frame sync as well */
3756                         dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3757                         DRM_DEBUG_KMS("PSR2 %s on sink",
3758                                 dev_priv->psr.psr2_support ? "supported" : "not supported");
3759                 }
3760         }
3761
3762         DRM_DEBUG_KMS("Display Port TPS3 support: source %s, sink %s\n",
3763                       yesno(intel_dp_source_supports_hbr2(intel_dp)),
3764                       yesno(drm_dp_tps3_supported(intel_dp->dpcd)));
3765
3766         /* Intermediate frequency support */
3767         if (is_edp(intel_dp) &&
3768             (intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3769             (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_EDP_DPCD_REV, &rev, 1) == 1) &&
3770             (rev >= 0x03)) { /* eDp v1.4 or higher */
3771                 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3772                 int i;
3773
3774                 intel_dp_dpcd_read_wake(&intel_dp->aux,
3775                                 DP_SUPPORTED_LINK_RATES,
3776                                 sink_rates,
3777                                 sizeof(sink_rates));
3778
3779                 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3780                         int val = le16_to_cpu(sink_rates[i]);
3781
3782                         if (val == 0)
3783                                 break;
3784
3785                         /* Value read is in kHz while drm clock is saved in deca-kHz */
3786                         intel_dp->sink_rates[i] = (val * 200) / 10;
3787                 }
3788                 intel_dp->num_sink_rates = i;
3789         }
3790
3791         intel_dp_print_rates(intel_dp);
3792
3793         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3794               DP_DWN_STRM_PORT_PRESENT))
3795                 return true; /* native DP sink */
3796
3797         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3798                 return true; /* no per-port downstream info */
3799
3800         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3801                                     intel_dp->downstream_ports,
3802                                     DP_MAX_DOWNSTREAM_PORTS) < 0)
3803                 return false; /* downstream port status fetch failed */
3804
3805         return true;
3806 }
3807
3808 static void
3809 intel_dp_probe_oui(struct intel_dp *intel_dp)
3810 {
3811         u8 buf[3];
3812
3813         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3814                 return;
3815
3816         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3817                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3818                               buf[0], buf[1], buf[2]);
3819
3820         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3821                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3822                               buf[0], buf[1], buf[2]);
3823 }
3824
3825 static bool
3826 intel_dp_probe_mst(struct intel_dp *intel_dp)
3827 {
3828         u8 buf[1];
3829
3830         if (!intel_dp->can_mst)
3831                 return false;
3832
3833         if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3834                 return false;
3835
3836         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3837                 if (buf[0] & DP_MST_CAP) {
3838                         DRM_DEBUG_KMS("Sink is MST capable\n");
3839                         intel_dp->is_mst = true;
3840                 } else {
3841                         DRM_DEBUG_KMS("Sink is not MST capable\n");
3842                         intel_dp->is_mst = false;
3843                 }
3844         }
3845
3846         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3847         return intel_dp->is_mst;
3848 }
3849
3850 static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
3851 {
3852         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3853         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3854         u8 buf;
3855         int ret = 0;
3856
3857         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
3858                 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3859                 ret = -EIO;
3860                 goto out;
3861         }
3862
3863         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3864                                buf & ~DP_TEST_SINK_START) < 0) {
3865                 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3866                 ret = -EIO;
3867                 goto out;
3868         }
3869
3870         intel_dp->sink_crc.started = false;
3871  out:
3872         hsw_enable_ips(intel_crtc);
3873         return ret;
3874 }
3875
3876 static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
3877 {
3878         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3879         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3880         u8 buf;
3881         int ret;
3882
3883         if (intel_dp->sink_crc.started) {
3884                 ret = intel_dp_sink_crc_stop(intel_dp);
3885                 if (ret)
3886                         return ret;
3887         }
3888
3889         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3890                 return -EIO;
3891
3892         if (!(buf & DP_TEST_CRC_SUPPORTED))
3893                 return -ENOTTY;
3894
3895         intel_dp->sink_crc.last_count = buf & DP_TEST_COUNT_MASK;
3896
3897         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3898                 return -EIO;
3899
3900         hsw_disable_ips(intel_crtc);
3901
3902         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3903                                buf | DP_TEST_SINK_START) < 0) {
3904                 hsw_enable_ips(intel_crtc);
3905                 return -EIO;
3906         }
3907
3908         intel_dp->sink_crc.started = true;
3909         return 0;
3910 }
3911
3912 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3913 {
3914         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3915         struct drm_device *dev = dig_port->base.base.dev;
3916         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3917         u8 buf;
3918         int count, ret;
3919         int attempts = 6;
3920         bool old_equal_new;
3921
3922         ret = intel_dp_sink_crc_start(intel_dp);
3923         if (ret)
3924                 return ret;
3925
3926         do {
3927                 intel_wait_for_vblank(dev, intel_crtc->pipe);
3928
3929                 if (drm_dp_dpcd_readb(&intel_dp->aux,
3930                                       DP_TEST_SINK_MISC, &buf) < 0) {
3931                         ret = -EIO;
3932                         goto stop;
3933                 }
3934                 count = buf & DP_TEST_COUNT_MASK;
3935
3936                 /*
3937                  * Count might be reset during the loop. In this case
3938                  * last known count needs to be reset as well.
3939                  */
3940                 if (count == 0)
3941                         intel_dp->sink_crc.last_count = 0;
3942
3943                 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
3944                         ret = -EIO;
3945                         goto stop;
3946                 }
3947
3948                 old_equal_new = (count == intel_dp->sink_crc.last_count &&
3949                                  !memcmp(intel_dp->sink_crc.last_crc, crc,
3950                                          6 * sizeof(u8)));
3951
3952         } while (--attempts && (count == 0 || old_equal_new));
3953
3954         intel_dp->sink_crc.last_count = buf & DP_TEST_COUNT_MASK;
3955         memcpy(intel_dp->sink_crc.last_crc, crc, 6 * sizeof(u8));
3956
3957         if (attempts == 0) {
3958                 if (old_equal_new) {
3959                         DRM_DEBUG_KMS("Unreliable Sink CRC counter: Current returned CRC is identical to the previous one\n");
3960                 } else {
3961                         DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
3962                         ret = -ETIMEDOUT;
3963                         goto stop;
3964                 }
3965         }
3966
3967 stop:
3968         intel_dp_sink_crc_stop(intel_dp);
3969         return ret;
3970 }
3971
3972 static bool
3973 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3974 {
3975         return intel_dp_dpcd_read_wake(&intel_dp->aux,
3976                                        DP_DEVICE_SERVICE_IRQ_VECTOR,
3977                                        sink_irq_vector, 1) == 1;
3978 }
3979
3980 static bool
3981 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3982 {
3983         int ret;
3984
3985         ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
3986                                              DP_SINK_COUNT_ESI,
3987                                              sink_irq_vector, 14);
3988         if (ret != 14)
3989                 return false;
3990
3991         return true;
3992 }
3993
3994 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
3995 {
3996         uint8_t test_result = DP_TEST_ACK;
3997         return test_result;
3998 }
3999
4000 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4001 {
4002         uint8_t test_result = DP_TEST_NAK;
4003         return test_result;
4004 }
4005
4006 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
4007 {
4008         uint8_t test_result = DP_TEST_NAK;
4009         struct intel_connector *intel_connector = intel_dp->attached_connector;
4010         struct drm_connector *connector = &intel_connector->base;
4011
4012         if (intel_connector->detect_edid == NULL ||
4013             connector->edid_corrupt ||
4014             intel_dp->aux.i2c_defer_count > 6) {
4015                 /* Check EDID read for NACKs, DEFERs and corruption
4016                  * (DP CTS 1.2 Core r1.1)
4017                  *    4.2.2.4 : Failed EDID read, I2C_NAK
4018                  *    4.2.2.5 : Failed EDID read, I2C_DEFER
4019                  *    4.2.2.6 : EDID corruption detected
4020                  * Use failsafe mode for all cases
4021                  */
4022                 if (intel_dp->aux.i2c_nack_count > 0 ||
4023                         intel_dp->aux.i2c_defer_count > 0)
4024                         DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4025                                       intel_dp->aux.i2c_nack_count,
4026                                       intel_dp->aux.i2c_defer_count);
4027                 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
4028         } else {
4029                 struct edid *block = intel_connector->detect_edid;
4030
4031                 /* We have to write the checksum
4032                  * of the last block read
4033                  */
4034                 block += intel_connector->detect_edid->extensions;
4035
4036                 if (!drm_dp_dpcd_write(&intel_dp->aux,
4037                                         DP_TEST_EDID_CHECKSUM,
4038                                         &block->checksum,
4039                                         1))
4040                         DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4041
4042                 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4043                 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
4044         }
4045
4046         /* Set test active flag here so userspace doesn't interrupt things */
4047         intel_dp->compliance_test_active = 1;
4048
4049         return test_result;
4050 }
4051
4052 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4053 {
4054         uint8_t test_result = DP_TEST_NAK;
4055         return test_result;
4056 }
4057
4058 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4059 {
4060         uint8_t response = DP_TEST_NAK;
4061         uint8_t rxdata = 0;
4062         int status = 0;
4063
4064         intel_dp->compliance_test_active = 0;
4065         intel_dp->compliance_test_type = 0;
4066         intel_dp->compliance_test_data = 0;
4067
4068         intel_dp->aux.i2c_nack_count = 0;
4069         intel_dp->aux.i2c_defer_count = 0;
4070
4071         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
4072         if (status <= 0) {
4073                 DRM_DEBUG_KMS("Could not read test request from sink\n");
4074                 goto update_status;
4075         }
4076
4077         switch (rxdata) {
4078         case DP_TEST_LINK_TRAINING:
4079                 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4080                 intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
4081                 response = intel_dp_autotest_link_training(intel_dp);
4082                 break;
4083         case DP_TEST_LINK_VIDEO_PATTERN:
4084                 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4085                 intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
4086                 response = intel_dp_autotest_video_pattern(intel_dp);
4087                 break;
4088         case DP_TEST_LINK_EDID_READ:
4089                 DRM_DEBUG_KMS("EDID test requested\n");
4090                 intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
4091                 response = intel_dp_autotest_edid(intel_dp);
4092                 break;
4093         case DP_TEST_LINK_PHY_TEST_PATTERN:
4094                 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4095                 intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
4096                 response = intel_dp_autotest_phy_pattern(intel_dp);
4097                 break;
4098         default:
4099                 DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
4100                 break;
4101         }
4102
4103 update_status:
4104         status = drm_dp_dpcd_write(&intel_dp->aux,
4105                                    DP_TEST_RESPONSE,
4106                                    &response, 1);
4107         if (status <= 0)
4108                 DRM_DEBUG_KMS("Could not write test response to sink\n");
4109 }
4110
4111 static int
4112 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4113 {
4114         bool bret;
4115
4116         if (intel_dp->is_mst) {
4117                 u8 esi[16] = { 0 };
4118                 int ret = 0;
4119                 int retry;
4120                 bool handled;
4121                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4122 go_again:
4123                 if (bret == true) {
4124
4125                         /* check link status - esi[10] = 0x200c */
4126                         if (intel_dp->active_mst_links &&
4127                             !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4128                                 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4129                                 intel_dp_start_link_train(intel_dp);
4130                                 intel_dp_stop_link_train(intel_dp);
4131                         }
4132
4133                         DRM_DEBUG_KMS("got esi %3ph\n", esi);
4134                         ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4135
4136                         if (handled) {
4137                                 for (retry = 0; retry < 3; retry++) {
4138                                         int wret;
4139                                         wret = drm_dp_dpcd_write(&intel_dp->aux,
4140                                                                  DP_SINK_COUNT_ESI+1,
4141                                                                  &esi[1], 3);
4142                                         if (wret == 3) {
4143                                                 break;
4144                                         }
4145                                 }
4146
4147                                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4148                                 if (bret == true) {
4149                                         DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4150                                         goto go_again;
4151                                 }
4152                         } else
4153                                 ret = 0;
4154
4155                         return ret;
4156                 } else {
4157                         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4158                         DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4159                         intel_dp->is_mst = false;
4160                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4161                         /* send a hotplug event */
4162                         drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
4163                 }
4164         }
4165         return -EINVAL;
4166 }
4167
4168 /*
4169  * According to DP spec
4170  * 5.1.2:
4171  *  1. Read DPCD
4172  *  2. Configure link according to Receiver Capabilities
4173  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
4174  *  4. Check link status on receipt of hot-plug interrupt
4175  */
4176 static void
4177 intel_dp_check_link_status(struct intel_dp *intel_dp)
4178 {
4179         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4180         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4181         u8 sink_irq_vector;
4182         u8 link_status[DP_LINK_STATUS_SIZE];
4183
4184         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4185
4186         if (!intel_encoder->base.crtc)
4187                 return;
4188
4189         if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4190                 return;
4191
4192         /* Try to read receiver status if the link appears to be up */
4193         if (!intel_dp_get_link_status(intel_dp, link_status)) {
4194                 return;
4195         }
4196
4197         /* Now read the DPCD to see if it's actually running */
4198         if (!intel_dp_get_dpcd(intel_dp)) {
4199                 return;
4200         }
4201
4202         /* Try to read the source of the interrupt */
4203         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4204             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4205                 /* Clear interrupt source */
4206                 drm_dp_dpcd_writeb(&intel_dp->aux,
4207                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
4208                                    sink_irq_vector);
4209
4210                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4211                         DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
4212                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4213                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4214         }
4215
4216         if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
4217                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4218                               intel_encoder->base.name);
4219                 intel_dp_start_link_train(intel_dp);
4220                 intel_dp_stop_link_train(intel_dp);
4221         }
4222 }
4223
4224 /* XXX this is probably wrong for multiple downstream ports */
4225 static enum drm_connector_status
4226 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4227 {
4228         uint8_t *dpcd = intel_dp->dpcd;
4229         uint8_t type;
4230
4231         if (!intel_dp_get_dpcd(intel_dp))
4232                 return connector_status_disconnected;
4233
4234         /* if there's no downstream port, we're done */
4235         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4236                 return connector_status_connected;
4237
4238         /* If we're HPD-aware, SINK_COUNT changes dynamically */
4239         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4240             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4241                 uint8_t reg;
4242
4243                 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
4244                                             &reg, 1) < 0)
4245                         return connector_status_unknown;
4246
4247                 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
4248                                               : connector_status_disconnected;
4249         }
4250
4251         /* If no HPD, poke DDC gently */
4252         if (drm_probe_ddc(&intel_dp->aux.ddc))
4253                 return connector_status_connected;
4254
4255         /* Well we tried, say unknown for unreliable port types */
4256         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4257                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4258                 if (type == DP_DS_PORT_TYPE_VGA ||
4259                     type == DP_DS_PORT_TYPE_NON_EDID)
4260                         return connector_status_unknown;
4261         } else {
4262                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4263                         DP_DWN_STRM_PORT_TYPE_MASK;
4264                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4265                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
4266                         return connector_status_unknown;
4267         }
4268
4269         /* Anything else is out of spec, warn and ignore */
4270         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4271         return connector_status_disconnected;
4272 }
4273
4274 static enum drm_connector_status
4275 edp_detect(struct intel_dp *intel_dp)
4276 {
4277         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4278         enum drm_connector_status status;
4279
4280         status = intel_panel_detect(dev);
4281         if (status == connector_status_unknown)
4282                 status = connector_status_connected;
4283
4284         return status;
4285 }
4286
4287 static bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
4288                                        struct intel_digital_port *port)
4289 {
4290         u32 bit;
4291
4292         switch (port->port) {
4293         case PORT_A:
4294                 return true;
4295         case PORT_B:
4296                 bit = SDE_PORTB_HOTPLUG;
4297                 break;
4298         case PORT_C:
4299                 bit = SDE_PORTC_HOTPLUG;
4300                 break;
4301         case PORT_D:
4302                 bit = SDE_PORTD_HOTPLUG;
4303                 break;
4304         default:
4305                 MISSING_CASE(port->port);
4306                 return false;
4307         }
4308
4309         return I915_READ(SDEISR) & bit;
4310 }
4311
4312 static bool cpt_digital_port_connected(struct drm_i915_private *dev_priv,
4313                                        struct intel_digital_port *port)
4314 {
4315         u32 bit;
4316
4317         switch (port->port) {
4318         case PORT_A:
4319                 return true;
4320         case PORT_B:
4321                 bit = SDE_PORTB_HOTPLUG_CPT;
4322                 break;
4323         case PORT_C:
4324                 bit = SDE_PORTC_HOTPLUG_CPT;
4325                 break;
4326         case PORT_D:
4327                 bit = SDE_PORTD_HOTPLUG_CPT;
4328                 break;
4329         case PORT_E:
4330                 bit = SDE_PORTE_HOTPLUG_SPT;
4331                 break;
4332         default:
4333                 MISSING_CASE(port->port);
4334                 return false;
4335         }
4336
4337         return I915_READ(SDEISR) & bit;
4338 }
4339
4340 static bool g4x_digital_port_connected(struct drm_i915_private *dev_priv,
4341                                        struct intel_digital_port *port)
4342 {
4343         u32 bit;
4344
4345         switch (port->port) {
4346         case PORT_B:
4347                 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4348                 break;
4349         case PORT_C:
4350                 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4351                 break;
4352         case PORT_D:
4353                 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4354                 break;
4355         default:
4356                 MISSING_CASE(port->port);
4357                 return false;
4358         }
4359
4360         return I915_READ(PORT_HOTPLUG_STAT) & bit;
4361 }
4362
4363 static bool vlv_digital_port_connected(struct drm_i915_private *dev_priv,
4364                                        struct intel_digital_port *port)
4365 {
4366         u32 bit;
4367
4368         switch (port->port) {
4369         case PORT_B:
4370                 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
4371                 break;
4372         case PORT_C:
4373                 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
4374                 break;
4375         case PORT_D:
4376                 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
4377                 break;
4378         default:
4379                 MISSING_CASE(port->port);
4380                 return false;
4381         }
4382
4383         return I915_READ(PORT_HOTPLUG_STAT) & bit;
4384 }
4385
4386 static bool bxt_digital_port_connected(struct drm_i915_private *dev_priv,
4387                                        struct intel_digital_port *intel_dig_port)
4388 {
4389         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4390         enum port port;
4391         u32 bit;
4392
4393         intel_hpd_pin_to_port(intel_encoder->hpd_pin, &port);
4394         switch (port) {
4395         case PORT_A:
4396                 bit = BXT_DE_PORT_HP_DDIA;
4397                 break;
4398         case PORT_B:
4399                 bit = BXT_DE_PORT_HP_DDIB;
4400                 break;
4401         case PORT_C:
4402                 bit = BXT_DE_PORT_HP_DDIC;
4403                 break;
4404         default:
4405                 MISSING_CASE(port);
4406                 return false;
4407         }
4408
4409         return I915_READ(GEN8_DE_PORT_ISR) & bit;
4410 }
4411
4412 /*
4413  * intel_digital_port_connected - is the specified port connected?
4414  * @dev_priv: i915 private structure
4415  * @port: the port to test
4416  *
4417  * Return %true if @port is connected, %false otherwise.
4418  */
4419 bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
4420                                          struct intel_digital_port *port)
4421 {
4422         if (HAS_PCH_IBX(dev_priv))
4423                 return ibx_digital_port_connected(dev_priv, port);
4424         if (HAS_PCH_SPLIT(dev_priv))
4425                 return cpt_digital_port_connected(dev_priv, port);
4426         else if (IS_BROXTON(dev_priv))
4427                 return bxt_digital_port_connected(dev_priv, port);
4428         else if (IS_VALLEYVIEW(dev_priv))
4429                 return vlv_digital_port_connected(dev_priv, port);
4430         else
4431                 return g4x_digital_port_connected(dev_priv, port);
4432 }
4433
4434 static enum drm_connector_status
4435 ironlake_dp_detect(struct intel_dp *intel_dp)
4436 {
4437         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4438         struct drm_i915_private *dev_priv = dev->dev_private;
4439         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4440
4441         if (!intel_digital_port_connected(dev_priv, intel_dig_port))
4442                 return connector_status_disconnected;
4443
4444         return intel_dp_detect_dpcd(intel_dp);
4445 }
4446
4447 static enum drm_connector_status
4448 g4x_dp_detect(struct intel_dp *intel_dp)
4449 {
4450         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4451         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4452
4453         /* Can't disconnect eDP, but you can close the lid... */
4454         if (is_edp(intel_dp)) {
4455                 enum drm_connector_status status;
4456
4457                 status = intel_panel_detect(dev);
4458                 if (status == connector_status_unknown)
4459                         status = connector_status_connected;
4460                 return status;
4461         }
4462
4463         if (!intel_digital_port_connected(dev->dev_private, intel_dig_port))
4464                 return connector_status_disconnected;
4465
4466         return intel_dp_detect_dpcd(intel_dp);
4467 }
4468
4469 static struct edid *
4470 intel_dp_get_edid(struct intel_dp *intel_dp)
4471 {
4472         struct intel_connector *intel_connector = intel_dp->attached_connector;
4473
4474         /* use cached edid if we have one */
4475         if (intel_connector->edid) {
4476                 /* invalid edid */
4477                 if (IS_ERR(intel_connector->edid))
4478                         return NULL;
4479
4480                 return drm_edid_duplicate(intel_connector->edid);
4481         } else
4482                 return drm_get_edid(&intel_connector->base,
4483                                     &intel_dp->aux.ddc);
4484 }
4485
4486 static void
4487 intel_dp_set_edid(struct intel_dp *intel_dp)
4488 {
4489         struct intel_connector *intel_connector = intel_dp->attached_connector;
4490         struct edid *edid;
4491
4492         edid = intel_dp_get_edid(intel_dp);
4493         intel_connector->detect_edid = edid;
4494
4495         if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4496                 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4497         else
4498                 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4499 }
4500
4501 static void
4502 intel_dp_unset_edid(struct intel_dp *intel_dp)
4503 {
4504         struct intel_connector *intel_connector = intel_dp->attached_connector;
4505
4506         kfree(intel_connector->detect_edid);
4507         intel_connector->detect_edid = NULL;
4508
4509         intel_dp->has_audio = false;
4510 }
4511
4512 static enum intel_display_power_domain
4513 intel_dp_power_get(struct intel_dp *dp)
4514 {
4515         struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4516         enum intel_display_power_domain power_domain;
4517
4518         power_domain = intel_display_port_power_domain(encoder);
4519         intel_display_power_get(to_i915(encoder->base.dev), power_domain);
4520
4521         return power_domain;
4522 }
4523
4524 static void
4525 intel_dp_power_put(struct intel_dp *dp,
4526                    enum intel_display_power_domain power_domain)
4527 {
4528         struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4529         intel_display_power_put(to_i915(encoder->base.dev), power_domain);
4530 }
4531
4532 static enum drm_connector_status
4533 intel_dp_detect(struct drm_connector *connector, bool force)
4534 {
4535         struct intel_dp *intel_dp = intel_attached_dp(connector);
4536         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4537         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4538         struct drm_device *dev = connector->dev;
4539         enum drm_connector_status status;
4540         enum intel_display_power_domain power_domain;
4541         bool ret;
4542         u8 sink_irq_vector;
4543
4544         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4545                       connector->base.id, connector->name);
4546         intel_dp_unset_edid(intel_dp);
4547
4548         if (intel_dp->is_mst) {
4549                 /* MST devices are disconnected from a monitor POV */
4550                 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4551                         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4552                 return connector_status_disconnected;
4553         }
4554
4555         power_domain = intel_dp_power_get(intel_dp);
4556
4557         /* Can't disconnect eDP, but you can close the lid... */
4558         if (is_edp(intel_dp))
4559                 status = edp_detect(intel_dp);
4560         else if (HAS_PCH_SPLIT(dev))
4561                 status = ironlake_dp_detect(intel_dp);
4562         else
4563                 status = g4x_dp_detect(intel_dp);
4564         if (status != connector_status_connected)
4565                 goto out;
4566
4567         intel_dp_probe_oui(intel_dp);
4568
4569         ret = intel_dp_probe_mst(intel_dp);
4570         if (ret) {
4571                 /* if we are in MST mode then this connector
4572                    won't appear connected or have anything with EDID on it */
4573                 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4574                         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4575                 status = connector_status_disconnected;
4576                 goto out;
4577         }
4578
4579         intel_dp_set_edid(intel_dp);
4580
4581         if (intel_encoder->type != INTEL_OUTPUT_EDP)
4582                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4583         status = connector_status_connected;
4584
4585         /* Try to read the source of the interrupt */
4586         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4587             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4588                 /* Clear interrupt source */
4589                 drm_dp_dpcd_writeb(&intel_dp->aux,
4590                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
4591                                    sink_irq_vector);
4592
4593                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4594                         intel_dp_handle_test_request(intel_dp);
4595                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4596                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4597         }
4598
4599 out:
4600         intel_dp_power_put(intel_dp, power_domain);
4601         return status;
4602 }
4603
4604 static void
4605 intel_dp_force(struct drm_connector *connector)
4606 {
4607         struct intel_dp *intel_dp = intel_attached_dp(connector);
4608         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4609         enum intel_display_power_domain power_domain;
4610
4611         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4612                       connector->base.id, connector->name);
4613         intel_dp_unset_edid(intel_dp);
4614
4615         if (connector->status != connector_status_connected)
4616                 return;
4617
4618         power_domain = intel_dp_power_get(intel_dp);
4619
4620         intel_dp_set_edid(intel_dp);
4621
4622         intel_dp_power_put(intel_dp, power_domain);
4623
4624         if (intel_encoder->type != INTEL_OUTPUT_EDP)
4625                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4626 }
4627
4628 static int intel_dp_get_modes(struct drm_connector *connector)
4629 {
4630         struct intel_connector *intel_connector = to_intel_connector(connector);
4631         struct edid *edid;
4632
4633         edid = intel_connector->detect_edid;
4634         if (edid) {
4635                 int ret = intel_connector_update_modes(connector, edid);
4636                 if (ret)
4637                         return ret;
4638         }
4639
4640         /* if eDP has no EDID, fall back to fixed mode */
4641         if (is_edp(intel_attached_dp(connector)) &&
4642             intel_connector->panel.fixed_mode) {
4643                 struct drm_display_mode *mode;
4644
4645                 mode = drm_mode_duplicate(connector->dev,
4646                                           intel_connector->panel.fixed_mode);
4647                 if (mode) {
4648                         drm_mode_probed_add(connector, mode);
4649                         return 1;
4650                 }
4651         }
4652
4653         return 0;
4654 }
4655
4656 static bool
4657 intel_dp_detect_audio(struct drm_connector *connector)
4658 {
4659         bool has_audio = false;
4660         struct edid *edid;
4661
4662         edid = to_intel_connector(connector)->detect_edid;
4663         if (edid)
4664                 has_audio = drm_detect_monitor_audio(edid);
4665
4666         return has_audio;
4667 }
4668
4669 static int
4670 intel_dp_set_property(struct drm_connector *connector,
4671                       struct drm_property *property,
4672                       uint64_t val)
4673 {
4674         struct drm_i915_private *dev_priv = connector->dev->dev_private;
4675         struct intel_connector *intel_connector = to_intel_connector(connector);
4676         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4677         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4678         int ret;
4679
4680         ret = drm_object_property_set_value(&connector->base, property, val);
4681         if (ret)
4682                 return ret;
4683
4684         if (property == dev_priv->force_audio_property) {
4685                 int i = val;
4686                 bool has_audio;
4687
4688                 if (i == intel_dp->force_audio)
4689                         return 0;
4690
4691                 intel_dp->force_audio = i;
4692
4693                 if (i == HDMI_AUDIO_AUTO)
4694                         has_audio = intel_dp_detect_audio(connector);
4695                 else
4696                         has_audio = (i == HDMI_AUDIO_ON);
4697
4698                 if (has_audio == intel_dp->has_audio)
4699                         return 0;
4700
4701                 intel_dp->has_audio = has_audio;
4702                 goto done;
4703         }
4704
4705         if (property == dev_priv->broadcast_rgb_property) {
4706                 bool old_auto = intel_dp->color_range_auto;
4707                 bool old_range = intel_dp->limited_color_range;
4708
4709                 switch (val) {
4710                 case INTEL_BROADCAST_RGB_AUTO:
4711                         intel_dp->color_range_auto = true;
4712                         break;
4713                 case INTEL_BROADCAST_RGB_FULL:
4714                         intel_dp->color_range_auto = false;
4715                         intel_dp->limited_color_range = false;
4716                         break;
4717                 case INTEL_BROADCAST_RGB_LIMITED:
4718                         intel_dp->color_range_auto = false;
4719                         intel_dp->limited_color_range = true;
4720                         break;
4721                 default:
4722                         return -EINVAL;
4723                 }
4724
4725                 if (old_auto == intel_dp->color_range_auto &&
4726                     old_range == intel_dp->limited_color_range)
4727                         return 0;
4728
4729                 goto done;
4730         }
4731
4732         if (is_edp(intel_dp) &&
4733             property == connector->dev->mode_config.scaling_mode_property) {
4734                 if (val == DRM_MODE_SCALE_NONE) {
4735                         DRM_DEBUG_KMS("no scaling not supported\n");
4736                         return -EINVAL;
4737                 }
4738
4739                 if (intel_connector->panel.fitting_mode == val) {
4740                         /* the eDP scaling property is not changed */
4741                         return 0;
4742                 }
4743                 intel_connector->panel.fitting_mode = val;
4744
4745                 goto done;
4746         }
4747
4748         return -EINVAL;
4749
4750 done:
4751         if (intel_encoder->base.crtc)
4752                 intel_crtc_restore_mode(intel_encoder->base.crtc);
4753
4754         return 0;
4755 }
4756
4757 static void
4758 intel_dp_connector_destroy(struct drm_connector *connector)
4759 {
4760         struct intel_connector *intel_connector = to_intel_connector(connector);
4761
4762         kfree(intel_connector->detect_edid);
4763
4764         if (!IS_ERR_OR_NULL(intel_connector->edid))
4765                 kfree(intel_connector->edid);
4766
4767         /* Can't call is_edp() since the encoder may have been destroyed
4768          * already. */
4769         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4770                 intel_panel_fini(&intel_connector->panel);
4771
4772         drm_connector_cleanup(connector);
4773         kfree(connector);
4774 }
4775
4776 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4777 {
4778         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4779         struct intel_dp *intel_dp = &intel_dig_port->dp;
4780
4781         drm_dp_aux_unregister(&intel_dp->aux);
4782         intel_dp_mst_encoder_cleanup(intel_dig_port);
4783         if (is_edp(intel_dp)) {
4784                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4785                 /*
4786                  * vdd might still be enabled do to the delayed vdd off.
4787                  * Make sure vdd is actually turned off here.
4788                  */
4789                 pps_lock(intel_dp);
4790                 edp_panel_vdd_off_sync(intel_dp);
4791                 pps_unlock(intel_dp);
4792
4793                 if (intel_dp->edp_notifier.notifier_call) {
4794                         unregister_reboot_notifier(&intel_dp->edp_notifier);
4795                         intel_dp->edp_notifier.notifier_call = NULL;
4796                 }
4797         }
4798         drm_encoder_cleanup(encoder);
4799         kfree(intel_dig_port);
4800 }
4801
4802 static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4803 {
4804         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4805
4806         if (!is_edp(intel_dp))
4807                 return;
4808
4809         /*
4810          * vdd might still be enabled do to the delayed vdd off.
4811          * Make sure vdd is actually turned off here.
4812          */
4813         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4814         pps_lock(intel_dp);
4815         edp_panel_vdd_off_sync(intel_dp);
4816         pps_unlock(intel_dp);
4817 }
4818
4819 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4820 {
4821         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4822         struct drm_device *dev = intel_dig_port->base.base.dev;
4823         struct drm_i915_private *dev_priv = dev->dev_private;
4824         enum intel_display_power_domain power_domain;
4825
4826         lockdep_assert_held(&dev_priv->pps_mutex);
4827
4828         if (!edp_have_panel_vdd(intel_dp))
4829                 return;
4830
4831         /*
4832          * The VDD bit needs a power domain reference, so if the bit is
4833          * already enabled when we boot or resume, grab this reference and
4834          * schedule a vdd off, so we don't hold on to the reference
4835          * indefinitely.
4836          */
4837         DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4838         power_domain = intel_display_port_power_domain(&intel_dig_port->base);
4839         intel_display_power_get(dev_priv, power_domain);
4840
4841         edp_panel_vdd_schedule_off(intel_dp);
4842 }
4843
4844 static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4845 {
4846         struct intel_dp *intel_dp;
4847
4848         if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4849                 return;
4850
4851         intel_dp = enc_to_intel_dp(encoder);
4852
4853         pps_lock(intel_dp);
4854
4855         /*
4856          * Read out the current power sequencer assignment,
4857          * in case the BIOS did something with it.
4858          */
4859         if (IS_VALLEYVIEW(encoder->dev))
4860                 vlv_initial_power_sequencer_setup(intel_dp);
4861
4862         intel_edp_panel_vdd_sanitize(intel_dp);
4863
4864         pps_unlock(intel_dp);
4865 }
4866
4867 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4868         .dpms = drm_atomic_helper_connector_dpms,
4869         .detect = intel_dp_detect,
4870         .force = intel_dp_force,
4871         .fill_modes = drm_helper_probe_single_connector_modes,
4872         .set_property = intel_dp_set_property,
4873         .atomic_get_property = intel_connector_atomic_get_property,
4874         .destroy = intel_dp_connector_destroy,
4875         .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4876         .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
4877 };
4878
4879 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4880         .get_modes = intel_dp_get_modes,
4881         .mode_valid = intel_dp_mode_valid,
4882         .best_encoder = intel_best_encoder,
4883 };
4884
4885 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4886         .reset = intel_dp_encoder_reset,
4887         .destroy = intel_dp_encoder_destroy,
4888 };
4889
4890 enum irqreturn
4891 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4892 {
4893         struct intel_dp *intel_dp = &intel_dig_port->dp;
4894         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4895         struct drm_device *dev = intel_dig_port->base.base.dev;
4896         struct drm_i915_private *dev_priv = dev->dev_private;
4897         enum intel_display_power_domain power_domain;
4898         enum irqreturn ret = IRQ_NONE;
4899
4900         if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4901                 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4902
4903         if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4904                 /*
4905                  * vdd off can generate a long pulse on eDP which
4906                  * would require vdd on to handle it, and thus we
4907                  * would end up in an endless cycle of
4908                  * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
4909                  */
4910                 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
4911                               port_name(intel_dig_port->port));
4912                 return IRQ_HANDLED;
4913         }
4914
4915         DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4916                       port_name(intel_dig_port->port),
4917                       long_hpd ? "long" : "short");
4918
4919         power_domain = intel_display_port_power_domain(intel_encoder);
4920         intel_display_power_get(dev_priv, power_domain);
4921
4922         if (long_hpd) {
4923                 /* indicate that we need to restart link training */
4924                 intel_dp->train_set_valid = false;
4925
4926                 if (!intel_digital_port_connected(dev_priv, intel_dig_port))
4927                         goto mst_fail;
4928
4929                 if (!intel_dp_get_dpcd(intel_dp)) {
4930                         goto mst_fail;
4931                 }
4932
4933                 intel_dp_probe_oui(intel_dp);
4934
4935                 if (!intel_dp_probe_mst(intel_dp)) {
4936                         drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4937                         intel_dp_check_link_status(intel_dp);
4938                         drm_modeset_unlock(&dev->mode_config.connection_mutex);
4939                         goto mst_fail;
4940                 }
4941         } else {
4942                 if (intel_dp->is_mst) {
4943                         if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
4944                                 goto mst_fail;
4945                 }
4946
4947                 if (!intel_dp->is_mst) {
4948                         drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4949                         intel_dp_check_link_status(intel_dp);
4950                         drm_modeset_unlock(&dev->mode_config.connection_mutex);
4951                 }
4952         }
4953
4954         ret = IRQ_HANDLED;
4955
4956         goto put_power;
4957 mst_fail:
4958         /* if we were in MST mode, and device is not there get out of MST mode */
4959         if (intel_dp->is_mst) {
4960                 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4961                 intel_dp->is_mst = false;
4962                 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4963         }
4964 put_power:
4965         intel_display_power_put(dev_priv, power_domain);
4966
4967         return ret;
4968 }
4969
4970 /* Return which DP Port should be selected for Transcoder DP control */
4971 int
4972 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4973 {
4974         struct drm_device *dev = crtc->dev;
4975         struct intel_encoder *intel_encoder;
4976         struct intel_dp *intel_dp;
4977
4978         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4979                 intel_dp = enc_to_intel_dp(&intel_encoder->base);
4980
4981                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4982                     intel_encoder->type == INTEL_OUTPUT_EDP)
4983                         return intel_dp->output_reg;
4984         }
4985
4986         return -1;
4987 }
4988
4989 /* check the VBT to see whether the eDP is on another port */
4990 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4991 {
4992         struct drm_i915_private *dev_priv = dev->dev_private;
4993         union child_device_config *p_child;
4994         int i;
4995         static const short port_mapping[] = {
4996                 [PORT_B] = DVO_PORT_DPB,
4997                 [PORT_C] = DVO_PORT_DPC,
4998                 [PORT_D] = DVO_PORT_DPD,
4999                 [PORT_E] = DVO_PORT_DPE,
5000         };
5001
5002         /*
5003          * eDP not supported on g4x. so bail out early just
5004          * for a bit extra safety in case the VBT is bonkers.
5005          */
5006         if (INTEL_INFO(dev)->gen < 5)
5007                 return false;
5008
5009         if (port == PORT_A)
5010                 return true;
5011
5012         if (!dev_priv->vbt.child_dev_num)
5013                 return false;
5014
5015         for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
5016                 p_child = dev_priv->vbt.child_dev + i;
5017
5018                 if (p_child->common.dvo_port == port_mapping[port] &&
5019                     (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
5020                     (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
5021                         return true;
5022         }
5023         return false;
5024 }
5025
5026 void
5027 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
5028 {
5029         struct intel_connector *intel_connector = to_intel_connector(connector);
5030
5031         intel_attach_force_audio_property(connector);
5032         intel_attach_broadcast_rgb_property(connector);
5033         intel_dp->color_range_auto = true;
5034
5035         if (is_edp(intel_dp)) {
5036                 drm_mode_create_scaling_mode_property(connector->dev);
5037                 drm_object_attach_property(
5038                         &connector->base,
5039                         connector->dev->mode_config.scaling_mode_property,
5040                         DRM_MODE_SCALE_ASPECT);
5041                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
5042         }
5043 }
5044
5045 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
5046 {
5047         intel_dp->last_power_cycle = jiffies;
5048         intel_dp->last_power_on = jiffies;
5049         intel_dp->last_backlight_off = jiffies;
5050 }
5051
5052 static void
5053 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
5054                                     struct intel_dp *intel_dp)
5055 {
5056         struct drm_i915_private *dev_priv = dev->dev_private;
5057         struct edp_power_seq cur, vbt, spec,
5058                 *final = &intel_dp->pps_delays;
5059         u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
5060         int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg = 0;
5061
5062         lockdep_assert_held(&dev_priv->pps_mutex);
5063
5064         /* already initialized? */
5065         if (final->t11_t12 != 0)
5066                 return;
5067
5068         if (IS_BROXTON(dev)) {
5069                 /*
5070                  * TODO: BXT has 2 sets of PPS registers.
5071                  * Correct Register for Broxton need to be identified
5072                  * using VBT. hardcoding for now
5073                  */
5074                 pp_ctrl_reg = BXT_PP_CONTROL(0);
5075                 pp_on_reg = BXT_PP_ON_DELAYS(0);
5076                 pp_off_reg = BXT_PP_OFF_DELAYS(0);
5077         } else if (HAS_PCH_SPLIT(dev)) {
5078                 pp_ctrl_reg = PCH_PP_CONTROL;
5079                 pp_on_reg = PCH_PP_ON_DELAYS;
5080                 pp_off_reg = PCH_PP_OFF_DELAYS;
5081                 pp_div_reg = PCH_PP_DIVISOR;
5082         } else {
5083                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5084
5085                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
5086                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5087                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5088                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5089         }
5090
5091         /* Workaround: Need to write PP_CONTROL with the unlock key as
5092          * the very first thing. */
5093         pp_ctl = ironlake_get_pp_control(intel_dp);
5094
5095         pp_on = I915_READ(pp_on_reg);
5096         pp_off = I915_READ(pp_off_reg);
5097         if (!IS_BROXTON(dev)) {
5098                 I915_WRITE(pp_ctrl_reg, pp_ctl);
5099                 pp_div = I915_READ(pp_div_reg);
5100         }
5101
5102         /* Pull timing values out of registers */
5103         cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
5104                 PANEL_POWER_UP_DELAY_SHIFT;
5105
5106         cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
5107                 PANEL_LIGHT_ON_DELAY_SHIFT;
5108
5109         cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
5110                 PANEL_LIGHT_OFF_DELAY_SHIFT;
5111
5112         cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
5113                 PANEL_POWER_DOWN_DELAY_SHIFT;
5114
5115         if (IS_BROXTON(dev)) {
5116                 u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
5117                         BXT_POWER_CYCLE_DELAY_SHIFT;
5118                 if (tmp > 0)
5119                         cur.t11_t12 = (tmp - 1) * 1000;
5120                 else
5121                         cur.t11_t12 = 0;
5122         } else {
5123                 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
5124                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
5125         }
5126
5127         DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5128                       cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
5129
5130         vbt = dev_priv->vbt.edp_pps;
5131
5132         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5133          * our hw here, which are all in 100usec. */
5134         spec.t1_t3 = 210 * 10;
5135         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5136         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5137         spec.t10 = 500 * 10;
5138         /* This one is special and actually in units of 100ms, but zero
5139          * based in the hw (so we need to add 100 ms). But the sw vbt
5140          * table multiplies it with 1000 to make it in units of 100usec,
5141          * too. */
5142         spec.t11_t12 = (510 + 100) * 10;
5143
5144         DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5145                       vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
5146
5147         /* Use the max of the register settings and vbt. If both are
5148          * unset, fall back to the spec limits. */
5149 #define assign_final(field)     final->field = (max(cur.field, vbt.field) == 0 ? \
5150                                        spec.field : \
5151                                        max(cur.field, vbt.field))
5152         assign_final(t1_t3);
5153         assign_final(t8);
5154         assign_final(t9);
5155         assign_final(t10);
5156         assign_final(t11_t12);
5157 #undef assign_final
5158
5159 #define get_delay(field)        (DIV_ROUND_UP(final->field, 10))
5160         intel_dp->panel_power_up_delay = get_delay(t1_t3);
5161         intel_dp->backlight_on_delay = get_delay(t8);
5162         intel_dp->backlight_off_delay = get_delay(t9);
5163         intel_dp->panel_power_down_delay = get_delay(t10);
5164         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5165 #undef get_delay
5166
5167         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5168                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5169                       intel_dp->panel_power_cycle_delay);
5170
5171         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5172                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5173 }
5174
5175 static void
5176 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5177                                               struct intel_dp *intel_dp)
5178 {
5179         struct drm_i915_private *dev_priv = dev->dev_private;
5180         u32 pp_on, pp_off, pp_div, port_sel = 0;
5181         int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
5182         int pp_on_reg, pp_off_reg, pp_div_reg = 0, pp_ctrl_reg;
5183         enum port port = dp_to_dig_port(intel_dp)->port;
5184         const struct edp_power_seq *seq = &intel_dp->pps_delays;
5185
5186         lockdep_assert_held(&dev_priv->pps_mutex);
5187
5188         if (IS_BROXTON(dev)) {
5189                 /*
5190                  * TODO: BXT has 2 sets of PPS registers.
5191                  * Correct Register for Broxton need to be identified
5192                  * using VBT. hardcoding for now
5193                  */
5194                 pp_ctrl_reg = BXT_PP_CONTROL(0);
5195                 pp_on_reg = BXT_PP_ON_DELAYS(0);
5196                 pp_off_reg = BXT_PP_OFF_DELAYS(0);
5197
5198         } else if (HAS_PCH_SPLIT(dev)) {
5199                 pp_on_reg = PCH_PP_ON_DELAYS;
5200                 pp_off_reg = PCH_PP_OFF_DELAYS;
5201                 pp_div_reg = PCH_PP_DIVISOR;
5202         } else {
5203                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5204
5205                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5206                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5207                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5208         }
5209
5210         /*
5211          * And finally store the new values in the power sequencer. The
5212          * backlight delays are set to 1 because we do manual waits on them. For
5213          * T8, even BSpec recommends doing it. For T9, if we don't do this,
5214          * we'll end up waiting for the backlight off delay twice: once when we
5215          * do the manual sleep, and once when we disable the panel and wait for
5216          * the PP_STATUS bit to become zero.
5217          */
5218         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5219                 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
5220         pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5221                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5222         /* Compute the divisor for the pp clock, simply match the Bspec
5223          * formula. */
5224         if (IS_BROXTON(dev)) {
5225                 pp_div = I915_READ(pp_ctrl_reg);
5226                 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5227                 pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000)
5228                                 << BXT_POWER_CYCLE_DELAY_SHIFT);
5229         } else {
5230                 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5231                 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5232                                 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5233         }
5234
5235         /* Haswell doesn't have any port selection bits for the panel
5236          * power sequencer any more. */
5237         if (IS_VALLEYVIEW(dev)) {
5238                 port_sel = PANEL_PORT_SELECT_VLV(port);
5239         } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5240                 if (port == PORT_A)
5241                         port_sel = PANEL_PORT_SELECT_DPA;
5242                 else
5243                         port_sel = PANEL_PORT_SELECT_DPD;
5244         }
5245
5246         pp_on |= port_sel;
5247
5248         I915_WRITE(pp_on_reg, pp_on);
5249         I915_WRITE(pp_off_reg, pp_off);
5250         if (IS_BROXTON(dev))
5251                 I915_WRITE(pp_ctrl_reg, pp_div);
5252         else
5253                 I915_WRITE(pp_div_reg, pp_div);
5254
5255         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5256                       I915_READ(pp_on_reg),
5257                       I915_READ(pp_off_reg),
5258                       IS_BROXTON(dev) ?
5259                       (I915_READ(pp_ctrl_reg) & BXT_POWER_CYCLE_DELAY_MASK) :
5260                       I915_READ(pp_div_reg));
5261 }
5262
5263 /**
5264  * intel_dp_set_drrs_state - program registers for RR switch to take effect
5265  * @dev: DRM device
5266  * @refresh_rate: RR to be programmed
5267  *
5268  * This function gets called when refresh rate (RR) has to be changed from
5269  * one frequency to another. Switches can be between high and low RR
5270  * supported by the panel or to any other RR based on media playback (in
5271  * this case, RR value needs to be passed from user space).
5272  *
5273  * The caller of this function needs to take a lock on dev_priv->drrs.
5274  */
5275 static void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
5276 {
5277         struct drm_i915_private *dev_priv = dev->dev_private;
5278         struct intel_encoder *encoder;
5279         struct intel_digital_port *dig_port = NULL;
5280         struct intel_dp *intel_dp = dev_priv->drrs.dp;
5281         struct intel_crtc_state *config = NULL;
5282         struct intel_crtc *intel_crtc = NULL;
5283         enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5284
5285         if (refresh_rate <= 0) {
5286                 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5287                 return;
5288         }
5289
5290         if (intel_dp == NULL) {
5291                 DRM_DEBUG_KMS("DRRS not supported.\n");
5292                 return;
5293         }
5294
5295         /*
5296          * FIXME: This needs proper synchronization with psr state for some
5297          * platforms that cannot have PSR and DRRS enabled at the same time.
5298          */
5299
5300         dig_port = dp_to_dig_port(intel_dp);
5301         encoder = &dig_port->base;
5302         intel_crtc = to_intel_crtc(encoder->base.crtc);
5303
5304         if (!intel_crtc) {
5305                 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5306                 return;
5307         }
5308
5309         config = intel_crtc->config;
5310
5311         if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5312                 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5313                 return;
5314         }
5315
5316         if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5317                         refresh_rate)
5318                 index = DRRS_LOW_RR;
5319
5320         if (index == dev_priv->drrs.refresh_rate_type) {
5321                 DRM_DEBUG_KMS(
5322                         "DRRS requested for previously set RR...ignoring\n");
5323                 return;
5324         }
5325
5326         if (!intel_crtc->active) {
5327                 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5328                 return;
5329         }
5330
5331         if (INTEL_INFO(dev)->gen >= 8 && !IS_CHERRYVIEW(dev)) {
5332                 switch (index) {
5333                 case DRRS_HIGH_RR:
5334                         intel_dp_set_m_n(intel_crtc, M1_N1);
5335                         break;
5336                 case DRRS_LOW_RR:
5337                         intel_dp_set_m_n(intel_crtc, M2_N2);
5338                         break;
5339                 case DRRS_MAX_RR:
5340                 default:
5341                         DRM_ERROR("Unsupported refreshrate type\n");
5342                 }
5343         } else if (INTEL_INFO(dev)->gen > 6) {
5344                 u32 reg = PIPECONF(intel_crtc->config->cpu_transcoder);
5345                 u32 val;
5346
5347                 val = I915_READ(reg);
5348                 if (index > DRRS_HIGH_RR) {
5349                         if (IS_VALLEYVIEW(dev))
5350                                 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5351                         else
5352                                 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5353                 } else {
5354                         if (IS_VALLEYVIEW(dev))
5355                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5356                         else
5357                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5358                 }
5359                 I915_WRITE(reg, val);
5360         }
5361
5362         dev_priv->drrs.refresh_rate_type = index;
5363
5364         DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5365 }
5366
5367 /**
5368  * intel_edp_drrs_enable - init drrs struct if supported
5369  * @intel_dp: DP struct
5370  *
5371  * Initializes frontbuffer_bits and drrs.dp
5372  */
5373 void intel_edp_drrs_enable(struct intel_dp *intel_dp)
5374 {
5375         struct drm_device *dev = intel_dp_to_dev(intel_dp);
5376         struct drm_i915_private *dev_priv = dev->dev_private;
5377         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5378         struct drm_crtc *crtc = dig_port->base.base.crtc;
5379         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5380
5381         if (!intel_crtc->config->has_drrs) {
5382                 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5383                 return;
5384         }
5385
5386         mutex_lock(&dev_priv->drrs.mutex);
5387         if (WARN_ON(dev_priv->drrs.dp)) {
5388                 DRM_ERROR("DRRS already enabled\n");
5389                 goto unlock;
5390         }
5391
5392         dev_priv->drrs.busy_frontbuffer_bits = 0;
5393
5394         dev_priv->drrs.dp = intel_dp;
5395
5396 unlock:
5397         mutex_unlock(&dev_priv->drrs.mutex);
5398 }
5399
5400 /**
5401  * intel_edp_drrs_disable - Disable DRRS
5402  * @intel_dp: DP struct
5403  *
5404  */
5405 void intel_edp_drrs_disable(struct intel_dp *intel_dp)
5406 {
5407         struct drm_device *dev = intel_dp_to_dev(intel_dp);
5408         struct drm_i915_private *dev_priv = dev->dev_private;
5409         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5410         struct drm_crtc *crtc = dig_port->base.base.crtc;
5411         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5412
5413         if (!intel_crtc->config->has_drrs)
5414                 return;
5415
5416         mutex_lock(&dev_priv->drrs.mutex);
5417         if (!dev_priv->drrs.dp) {
5418                 mutex_unlock(&dev_priv->drrs.mutex);
5419                 return;
5420         }
5421
5422         if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5423                 intel_dp_set_drrs_state(dev_priv->dev,
5424                         intel_dp->attached_connector->panel.
5425                         fixed_mode->vrefresh);
5426
5427         dev_priv->drrs.dp = NULL;
5428         mutex_unlock(&dev_priv->drrs.mutex);
5429
5430         cancel_delayed_work_sync(&dev_priv->drrs.work);
5431 }
5432
5433 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5434 {
5435         struct drm_i915_private *dev_priv =
5436                 container_of(work, typeof(*dev_priv), drrs.work.work);
5437         struct intel_dp *intel_dp;
5438
5439         mutex_lock(&dev_priv->drrs.mutex);
5440
5441         intel_dp = dev_priv->drrs.dp;
5442
5443         if (!intel_dp)
5444                 goto unlock;
5445
5446         /*
5447          * The delayed work can race with an invalidate hence we need to
5448          * recheck.
5449          */
5450
5451         if (dev_priv->drrs.busy_frontbuffer_bits)
5452                 goto unlock;
5453
5454         if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR)
5455                 intel_dp_set_drrs_state(dev_priv->dev,
5456                         intel_dp->attached_connector->panel.
5457                         downclock_mode->vrefresh);
5458
5459 unlock:
5460         mutex_unlock(&dev_priv->drrs.mutex);
5461 }
5462
5463 /**
5464  * intel_edp_drrs_invalidate - Disable Idleness DRRS
5465  * @dev: DRM device
5466  * @frontbuffer_bits: frontbuffer plane tracking bits
5467  *
5468  * This function gets called everytime rendering on the given planes start.
5469  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5470  *
5471  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5472  */
5473 void intel_edp_drrs_invalidate(struct drm_device *dev,
5474                 unsigned frontbuffer_bits)
5475 {
5476         struct drm_i915_private *dev_priv = dev->dev_private;
5477         struct drm_crtc *crtc;
5478         enum pipe pipe;
5479
5480         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5481                 return;
5482
5483         cancel_delayed_work(&dev_priv->drrs.work);
5484
5485         mutex_lock(&dev_priv->drrs.mutex);
5486         if (!dev_priv->drrs.dp) {
5487                 mutex_unlock(&dev_priv->drrs.mutex);
5488                 return;
5489         }
5490
5491         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5492         pipe = to_intel_crtc(crtc)->pipe;
5493
5494         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5495         dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5496
5497         /* invalidate means busy screen hence upclock */
5498         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5499                 intel_dp_set_drrs_state(dev_priv->dev,
5500                                 dev_priv->drrs.dp->attached_connector->panel.
5501                                 fixed_mode->vrefresh);
5502
5503         mutex_unlock(&dev_priv->drrs.mutex);
5504 }
5505
5506 /**
5507  * intel_edp_drrs_flush - Restart Idleness DRRS
5508  * @dev: DRM device
5509  * @frontbuffer_bits: frontbuffer plane tracking bits
5510  *
5511  * This function gets called every time rendering on the given planes has
5512  * completed or flip on a crtc is completed. So DRRS should be upclocked
5513  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5514  * if no other planes are dirty.
5515  *
5516  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5517  */
5518 void intel_edp_drrs_flush(struct drm_device *dev,
5519                 unsigned frontbuffer_bits)
5520 {
5521         struct drm_i915_private *dev_priv = dev->dev_private;
5522         struct drm_crtc *crtc;
5523         enum pipe pipe;
5524
5525         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5526                 return;
5527
5528         cancel_delayed_work(&dev_priv->drrs.work);
5529
5530         mutex_lock(&dev_priv->drrs.mutex);
5531         if (!dev_priv->drrs.dp) {
5532                 mutex_unlock(&dev_priv->drrs.mutex);
5533                 return;
5534         }
5535
5536         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5537         pipe = to_intel_crtc(crtc)->pipe;
5538
5539         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5540         dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5541
5542         /* flush means busy screen hence upclock */
5543         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5544                 intel_dp_set_drrs_state(dev_priv->dev,
5545                                 dev_priv->drrs.dp->attached_connector->panel.
5546                                 fixed_mode->vrefresh);
5547
5548         /*
5549          * flush also means no more activity hence schedule downclock, if all
5550          * other fbs are quiescent too
5551          */
5552         if (!dev_priv->drrs.busy_frontbuffer_bits)
5553                 schedule_delayed_work(&dev_priv->drrs.work,
5554                                 msecs_to_jiffies(1000));
5555         mutex_unlock(&dev_priv->drrs.mutex);
5556 }
5557
5558 /**
5559  * DOC: Display Refresh Rate Switching (DRRS)
5560  *
5561  * Display Refresh Rate Switching (DRRS) is a power conservation feature
5562  * which enables swtching between low and high refresh rates,
5563  * dynamically, based on the usage scenario. This feature is applicable
5564  * for internal panels.
5565  *
5566  * Indication that the panel supports DRRS is given by the panel EDID, which
5567  * would list multiple refresh rates for one resolution.
5568  *
5569  * DRRS is of 2 types - static and seamless.
5570  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5571  * (may appear as a blink on screen) and is used in dock-undock scenario.
5572  * Seamless DRRS involves changing RR without any visual effect to the user
5573  * and can be used during normal system usage. This is done by programming
5574  * certain registers.
5575  *
5576  * Support for static/seamless DRRS may be indicated in the VBT based on
5577  * inputs from the panel spec.
5578  *
5579  * DRRS saves power by switching to low RR based on usage scenarios.
5580  *
5581  * eDP DRRS:-
5582  *        The implementation is based on frontbuffer tracking implementation.
5583  * When there is a disturbance on the screen triggered by user activity or a
5584  * periodic system activity, DRRS is disabled (RR is changed to high RR).
5585  * When there is no movement on screen, after a timeout of 1 second, a switch
5586  * to low RR is made.
5587  *        For integration with frontbuffer tracking code,
5588  * intel_edp_drrs_invalidate() and intel_edp_drrs_flush() are called.
5589  *
5590  * DRRS can be further extended to support other internal panels and also
5591  * the scenario of video playback wherein RR is set based on the rate
5592  * requested by userspace.
5593  */
5594
5595 /**
5596  * intel_dp_drrs_init - Init basic DRRS work and mutex.
5597  * @intel_connector: eDP connector
5598  * @fixed_mode: preferred mode of panel
5599  *
5600  * This function is  called only once at driver load to initialize basic
5601  * DRRS stuff.
5602  *
5603  * Returns:
5604  * Downclock mode if panel supports it, else return NULL.
5605  * DRRS support is determined by the presence of downclock mode (apart
5606  * from VBT setting).
5607  */
5608 static struct drm_display_mode *
5609 intel_dp_drrs_init(struct intel_connector *intel_connector,
5610                 struct drm_display_mode *fixed_mode)
5611 {
5612         struct drm_connector *connector = &intel_connector->base;
5613         struct drm_device *dev = connector->dev;
5614         struct drm_i915_private *dev_priv = dev->dev_private;
5615         struct drm_display_mode *downclock_mode = NULL;
5616
5617         INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5618         mutex_init(&dev_priv->drrs.mutex);
5619
5620         if (INTEL_INFO(dev)->gen <= 6) {
5621                 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5622                 return NULL;
5623         }
5624
5625         if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5626                 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5627                 return NULL;
5628         }
5629
5630         downclock_mode = intel_find_panel_downclock
5631                                         (dev, fixed_mode, connector);
5632
5633         if (!downclock_mode) {
5634                 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5635                 return NULL;
5636         }
5637
5638         dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5639
5640         dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5641         DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5642         return downclock_mode;
5643 }
5644
5645 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5646                                      struct intel_connector *intel_connector)
5647 {
5648         struct drm_connector *connector = &intel_connector->base;
5649         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5650         struct intel_encoder *intel_encoder = &intel_dig_port->base;
5651         struct drm_device *dev = intel_encoder->base.dev;
5652         struct drm_i915_private *dev_priv = dev->dev_private;
5653         struct drm_display_mode *fixed_mode = NULL;
5654         struct drm_display_mode *downclock_mode = NULL;
5655         bool has_dpcd;
5656         struct drm_display_mode *scan;
5657         struct edid *edid;
5658         enum pipe pipe = INVALID_PIPE;
5659
5660         if (!is_edp(intel_dp))
5661                 return true;
5662
5663         pps_lock(intel_dp);
5664         intel_edp_panel_vdd_sanitize(intel_dp);
5665         pps_unlock(intel_dp);
5666
5667         /* Cache DPCD and EDID for edp. */
5668         has_dpcd = intel_dp_get_dpcd(intel_dp);
5669
5670         if (has_dpcd) {
5671                 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
5672                         dev_priv->no_aux_handshake =
5673                                 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
5674                                 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
5675         } else {
5676                 /* if this fails, presume the device is a ghost */
5677                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5678                 return false;
5679         }
5680
5681         /* We now know it's not a ghost, init power sequence regs. */
5682         pps_lock(intel_dp);
5683         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5684         pps_unlock(intel_dp);
5685
5686         mutex_lock(&dev->mode_config.mutex);
5687         edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5688         if (edid) {
5689                 if (drm_add_edid_modes(connector, edid)) {
5690                         drm_mode_connector_update_edid_property(connector,
5691                                                                 edid);
5692                         drm_edid_to_eld(connector, edid);
5693                 } else {
5694                         kfree(edid);
5695                         edid = ERR_PTR(-EINVAL);
5696                 }
5697         } else {
5698                 edid = ERR_PTR(-ENOENT);
5699         }
5700         intel_connector->edid = edid;
5701
5702         /* prefer fixed mode from EDID if available */
5703         list_for_each_entry(scan, &connector->probed_modes, head) {
5704                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5705                         fixed_mode = drm_mode_duplicate(dev, scan);
5706                         downclock_mode = intel_dp_drrs_init(
5707                                                 intel_connector, fixed_mode);
5708                         break;
5709                 }
5710         }
5711
5712         /* fallback to VBT if available for eDP */
5713         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5714                 fixed_mode = drm_mode_duplicate(dev,
5715                                         dev_priv->vbt.lfp_lvds_vbt_mode);
5716                 if (fixed_mode)
5717                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5718         }
5719         mutex_unlock(&dev->mode_config.mutex);
5720
5721         if (IS_VALLEYVIEW(dev)) {
5722                 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5723                 register_reboot_notifier(&intel_dp->edp_notifier);
5724
5725                 /*
5726                  * Figure out the current pipe for the initial backlight setup.
5727                  * If the current pipe isn't valid, try the PPS pipe, and if that
5728                  * fails just assume pipe A.
5729                  */
5730                 if (IS_CHERRYVIEW(dev))
5731                         pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5732                 else
5733                         pipe = PORT_TO_PIPE(intel_dp->DP);
5734
5735                 if (pipe != PIPE_A && pipe != PIPE_B)
5736                         pipe = intel_dp->pps_pipe;
5737
5738                 if (pipe != PIPE_A && pipe != PIPE_B)
5739                         pipe = PIPE_A;
5740
5741                 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5742                               pipe_name(pipe));
5743         }
5744
5745         intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5746         intel_connector->panel.backlight.power = intel_edp_backlight_power;
5747         intel_panel_setup_backlight(connector, pipe);
5748
5749         return true;
5750 }
5751
5752 bool
5753 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5754                         struct intel_connector *intel_connector)
5755 {
5756         struct drm_connector *connector = &intel_connector->base;
5757         struct intel_dp *intel_dp = &intel_dig_port->dp;
5758         struct intel_encoder *intel_encoder = &intel_dig_port->base;
5759         struct drm_device *dev = intel_encoder->base.dev;
5760         struct drm_i915_private *dev_priv = dev->dev_private;
5761         enum port port = intel_dig_port->port;
5762         int type;
5763
5764         intel_dp->pps_pipe = INVALID_PIPE;
5765
5766         /* intel_dp vfuncs */
5767         if (INTEL_INFO(dev)->gen >= 9)
5768                 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5769         else if (IS_VALLEYVIEW(dev))
5770                 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
5771         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5772                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5773         else if (HAS_PCH_SPLIT(dev))
5774                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5775         else
5776                 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
5777
5778         if (INTEL_INFO(dev)->gen >= 9)
5779                 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5780         else
5781                 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
5782
5783         if (HAS_DDI(dev))
5784                 intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
5785
5786         /* Preserve the current hw state. */
5787         intel_dp->DP = I915_READ(intel_dp->output_reg);
5788         intel_dp->attached_connector = intel_connector;
5789
5790         if (intel_dp_is_edp(dev, port))
5791                 type = DRM_MODE_CONNECTOR_eDP;
5792         else
5793                 type = DRM_MODE_CONNECTOR_DisplayPort;
5794
5795         /*
5796          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5797          * for DP the encoder type can be set by the caller to
5798          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5799          */
5800         if (type == DRM_MODE_CONNECTOR_eDP)
5801                 intel_encoder->type = INTEL_OUTPUT_EDP;
5802
5803         /* eDP only on port B and/or C on vlv/chv */
5804         if (WARN_ON(IS_VALLEYVIEW(dev) && is_edp(intel_dp) &&
5805                     port != PORT_B && port != PORT_C))
5806                 return false;
5807
5808         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5809                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5810                         port_name(port));
5811
5812         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5813         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5814
5815         connector->interlace_allowed = true;
5816         connector->doublescan_allowed = 0;
5817
5818         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5819                           edp_panel_vdd_work);
5820
5821         intel_connector_attach_encoder(intel_connector, intel_encoder);
5822         drm_connector_register(connector);
5823
5824         if (HAS_DDI(dev))
5825                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5826         else
5827                 intel_connector->get_hw_state = intel_connector_get_hw_state;
5828         intel_connector->unregister = intel_dp_connector_unregister;
5829
5830         /* Set up the hotplug pin. */
5831         switch (port) {
5832         case PORT_A:
5833                 intel_encoder->hpd_pin = HPD_PORT_A;
5834                 break;
5835         case PORT_B:
5836                 intel_encoder->hpd_pin = HPD_PORT_B;
5837                 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
5838                         intel_encoder->hpd_pin = HPD_PORT_A;
5839                 break;
5840         case PORT_C:
5841                 intel_encoder->hpd_pin = HPD_PORT_C;
5842                 break;
5843         case PORT_D:
5844                 intel_encoder->hpd_pin = HPD_PORT_D;
5845                 break;
5846         case PORT_E:
5847                 intel_encoder->hpd_pin = HPD_PORT_E;
5848                 break;
5849         default:
5850                 BUG();
5851         }
5852
5853         if (is_edp(intel_dp)) {
5854                 pps_lock(intel_dp);
5855                 intel_dp_init_panel_power_timestamps(intel_dp);
5856                 if (IS_VALLEYVIEW(dev))
5857                         vlv_initial_power_sequencer_setup(intel_dp);
5858                 else
5859                         intel_dp_init_panel_power_sequencer(dev, intel_dp);
5860                 pps_unlock(intel_dp);
5861         }
5862
5863         intel_dp_aux_init(intel_dp, intel_connector);
5864
5865         /* init MST on ports that can support it */
5866         if (HAS_DP_MST(dev) &&
5867             (port == PORT_B || port == PORT_C || port == PORT_D))
5868                 intel_dp_mst_encoder_init(intel_dig_port,
5869                                           intel_connector->base.base.id);
5870
5871         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5872                 drm_dp_aux_unregister(&intel_dp->aux);
5873                 if (is_edp(intel_dp)) {
5874                         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5875                         /*
5876                          * vdd might still be enabled do to the delayed vdd off.
5877                          * Make sure vdd is actually turned off here.
5878                          */
5879                         pps_lock(intel_dp);
5880                         edp_panel_vdd_off_sync(intel_dp);
5881                         pps_unlock(intel_dp);
5882                 }
5883                 drm_connector_unregister(connector);
5884                 drm_connector_cleanup(connector);
5885                 return false;
5886         }
5887
5888         intel_dp_add_properties(intel_dp, connector);
5889
5890         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5891          * 0xd.  Failure to do so will result in spurious interrupts being
5892          * generated on the port when a cable is not attached.
5893          */
5894         if (IS_G4X(dev) && !IS_GM45(dev)) {
5895                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5896                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5897         }
5898
5899         i915_debugfs_connector_add(connector);
5900
5901         return true;
5902 }
5903
5904 void
5905 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
5906 {
5907         struct drm_i915_private *dev_priv = dev->dev_private;
5908         struct intel_digital_port *intel_dig_port;
5909         struct intel_encoder *intel_encoder;
5910         struct drm_encoder *encoder;
5911         struct intel_connector *intel_connector;
5912
5913         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5914         if (!intel_dig_port)
5915                 return;
5916
5917         intel_connector = intel_connector_alloc();
5918         if (!intel_connector)
5919                 goto err_connector_alloc;
5920
5921         intel_encoder = &intel_dig_port->base;
5922         encoder = &intel_encoder->base;
5923
5924         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5925                          DRM_MODE_ENCODER_TMDS);
5926
5927         intel_encoder->compute_config = intel_dp_compute_config;
5928         intel_encoder->disable = intel_disable_dp;
5929         intel_encoder->get_hw_state = intel_dp_get_hw_state;
5930         intel_encoder->get_config = intel_dp_get_config;
5931         intel_encoder->suspend = intel_dp_encoder_suspend;
5932         if (IS_CHERRYVIEW(dev)) {
5933                 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5934                 intel_encoder->pre_enable = chv_pre_enable_dp;
5935                 intel_encoder->enable = vlv_enable_dp;
5936                 intel_encoder->post_disable = chv_post_disable_dp;
5937                 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
5938         } else if (IS_VALLEYVIEW(dev)) {
5939                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5940                 intel_encoder->pre_enable = vlv_pre_enable_dp;
5941                 intel_encoder->enable = vlv_enable_dp;
5942                 intel_encoder->post_disable = vlv_post_disable_dp;
5943         } else {
5944                 intel_encoder->pre_enable = g4x_pre_enable_dp;
5945                 intel_encoder->enable = g4x_enable_dp;
5946                 if (INTEL_INFO(dev)->gen >= 5)
5947                         intel_encoder->post_disable = ilk_post_disable_dp;
5948         }
5949
5950         intel_dig_port->port = port;
5951         intel_dig_port->dp.output_reg = output_reg;
5952
5953         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
5954         if (IS_CHERRYVIEW(dev)) {
5955                 if (port == PORT_D)
5956                         intel_encoder->crtc_mask = 1 << 2;
5957                 else
5958                         intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5959         } else {
5960                 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5961         }
5962         intel_encoder->cloneable = 0;
5963
5964         intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5965         dev_priv->hotplug.irq_port[port] = intel_dig_port;
5966
5967         if (!intel_dp_init_connector(intel_dig_port, intel_connector))
5968                 goto err_init_connector;
5969
5970         return;
5971
5972 err_init_connector:
5973         drm_encoder_cleanup(encoder);
5974         kfree(intel_connector);
5975 err_connector_alloc:
5976         kfree(intel_dig_port);
5977
5978         return;
5979 }
5980
5981 void intel_dp_mst_suspend(struct drm_device *dev)
5982 {
5983         struct drm_i915_private *dev_priv = dev->dev_private;
5984         int i;
5985
5986         /* disable MST */
5987         for (i = 0; i < I915_MAX_PORTS; i++) {
5988                 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5989                 if (!intel_dig_port)
5990                         continue;
5991
5992                 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5993                         if (!intel_dig_port->dp.can_mst)
5994                                 continue;
5995                         if (intel_dig_port->dp.is_mst)
5996                                 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5997                 }
5998         }
5999 }
6000
6001 void intel_dp_mst_resume(struct drm_device *dev)
6002 {
6003         struct drm_i915_private *dev_priv = dev->dev_private;
6004         int i;
6005
6006         for (i = 0; i < I915_MAX_PORTS; i++) {
6007                 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6008                 if (!intel_dig_port)
6009                         continue;
6010                 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
6011                         int ret;
6012
6013                         if (!intel_dig_port->dp.can_mst)
6014                                 continue;
6015
6016                         ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
6017                         if (ret != 0) {
6018                                 intel_dp_check_mst_status(&intel_dig_port->dp);
6019                         }
6020                 }
6021         }
6022 }