drm/i915: Add missing parameter to intel_dp_set_drrs_state documentation.
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
43
44 /* Compliance test status bits  */
45 #define INTEL_DP_RESOLUTION_SHIFT_MASK  0
46 #define INTEL_DP_RESOLUTION_PREFERRED   (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
47 #define INTEL_DP_RESOLUTION_STANDARD    (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
48 #define INTEL_DP_RESOLUTION_FAILSAFE    (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49
50 struct dp_link_dpll {
51         int clock;
52         struct dpll dpll;
53 };
54
55 static const struct dp_link_dpll gen4_dpll[] = {
56         { 162000,
57                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
58         { 270000,
59                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
60 };
61
62 static const struct dp_link_dpll pch_dpll[] = {
63         { 162000,
64                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
65         { 270000,
66                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
67 };
68
69 static const struct dp_link_dpll vlv_dpll[] = {
70         { 162000,
71                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
72         { 270000,
73                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
74 };
75
76 /*
77  * CHV supports eDP 1.4 that have  more link rates.
78  * Below only provides the fixed rate but exclude variable rate.
79  */
80 static const struct dp_link_dpll chv_dpll[] = {
81         /*
82          * CHV requires to program fractional division for m2.
83          * m2 is stored in fixed point format using formula below
84          * (m2_int << 22) | m2_fraction
85          */
86         { 162000,       /* m2_int = 32, m2_fraction = 1677722 */
87                 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
88         { 270000,       /* m2_int = 27, m2_fraction = 0 */
89                 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
90         { 540000,       /* m2_int = 27, m2_fraction = 0 */
91                 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
92 };
93
94 static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
95                                   324000, 432000, 540000 };
96 static const int skl_rates[] = { 162000, 216000, 270000,
97                                   324000, 432000, 540000 };
98 static const int default_rates[] = { 162000, 270000, 540000 };
99
100 /**
101  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
102  * @intel_dp: DP struct
103  *
104  * If a CPU or PCH DP output is attached to an eDP panel, this function
105  * will return true, and false otherwise.
106  */
107 static bool is_edp(struct intel_dp *intel_dp)
108 {
109         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
110
111         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
112 }
113
114 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
115 {
116         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
117
118         return intel_dig_port->base.base.dev;
119 }
120
121 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
122 {
123         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
124 }
125
126 static void intel_dp_link_down(struct intel_dp *intel_dp);
127 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
128 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
129 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
130 static void vlv_steal_power_sequencer(struct drm_device *dev,
131                                       enum pipe pipe);
132 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
133
134 static int
135 intel_dp_max_link_bw(struct intel_dp  *intel_dp)
136 {
137         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
138
139         switch (max_link_bw) {
140         case DP_LINK_BW_1_62:
141         case DP_LINK_BW_2_7:
142         case DP_LINK_BW_5_4:
143                 break;
144         default:
145                 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
146                      max_link_bw);
147                 max_link_bw = DP_LINK_BW_1_62;
148                 break;
149         }
150         return max_link_bw;
151 }
152
153 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
154 {
155         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
156         u8 source_max, sink_max;
157
158         source_max = intel_dig_port->max_lanes;
159         sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
160
161         return min(source_max, sink_max);
162 }
163
164 /*
165  * The units on the numbers in the next two are... bizarre.  Examples will
166  * make it clearer; this one parallels an example in the eDP spec.
167  *
168  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
169  *
170  *     270000 * 1 * 8 / 10 == 216000
171  *
172  * The actual data capacity of that configuration is 2.16Gbit/s, so the
173  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
174  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
175  * 119000.  At 18bpp that's 2142000 kilobits per second.
176  *
177  * Thus the strange-looking division by 10 in intel_dp_link_required, to
178  * get the result in decakilobits instead of kilobits.
179  */
180
181 static int
182 intel_dp_link_required(int pixel_clock, int bpp)
183 {
184         return (pixel_clock * bpp + 9) / 10;
185 }
186
187 static int
188 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
189 {
190         return (max_link_clock * max_lanes * 8) / 10;
191 }
192
193 static enum drm_mode_status
194 intel_dp_mode_valid(struct drm_connector *connector,
195                     struct drm_display_mode *mode)
196 {
197         struct intel_dp *intel_dp = intel_attached_dp(connector);
198         struct intel_connector *intel_connector = to_intel_connector(connector);
199         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
200         int target_clock = mode->clock;
201         int max_rate, mode_rate, max_lanes, max_link_clock;
202         int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
203
204         if (is_edp(intel_dp) && fixed_mode) {
205                 if (mode->hdisplay > fixed_mode->hdisplay)
206                         return MODE_PANEL;
207
208                 if (mode->vdisplay > fixed_mode->vdisplay)
209                         return MODE_PANEL;
210
211                 target_clock = fixed_mode->clock;
212         }
213
214         max_link_clock = intel_dp_max_link_rate(intel_dp);
215         max_lanes = intel_dp_max_lane_count(intel_dp);
216
217         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
218         mode_rate = intel_dp_link_required(target_clock, 18);
219
220         if (mode_rate > max_rate || target_clock > max_dotclk)
221                 return MODE_CLOCK_HIGH;
222
223         if (mode->clock < 10000)
224                 return MODE_CLOCK_LOW;
225
226         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
227                 return MODE_H_ILLEGAL;
228
229         return MODE_OK;
230 }
231
232 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
233 {
234         int     i;
235         uint32_t v = 0;
236
237         if (src_bytes > 4)
238                 src_bytes = 4;
239         for (i = 0; i < src_bytes; i++)
240                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
241         return v;
242 }
243
244 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
245 {
246         int i;
247         if (dst_bytes > 4)
248                 dst_bytes = 4;
249         for (i = 0; i < dst_bytes; i++)
250                 dst[i] = src >> ((3-i) * 8);
251 }
252
253 static void
254 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
255                                     struct intel_dp *intel_dp);
256 static void
257 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
258                                               struct intel_dp *intel_dp);
259 static void
260 intel_dp_pps_init(struct drm_device *dev, struct intel_dp *intel_dp);
261
262 static void pps_lock(struct intel_dp *intel_dp)
263 {
264         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
265         struct intel_encoder *encoder = &intel_dig_port->base;
266         struct drm_device *dev = encoder->base.dev;
267         struct drm_i915_private *dev_priv = to_i915(dev);
268         enum intel_display_power_domain power_domain;
269
270         /*
271          * See vlv_power_sequencer_reset() why we need
272          * a power domain reference here.
273          */
274         power_domain = intel_display_port_aux_power_domain(encoder);
275         intel_display_power_get(dev_priv, power_domain);
276
277         mutex_lock(&dev_priv->pps_mutex);
278 }
279
280 static void pps_unlock(struct intel_dp *intel_dp)
281 {
282         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
283         struct intel_encoder *encoder = &intel_dig_port->base;
284         struct drm_device *dev = encoder->base.dev;
285         struct drm_i915_private *dev_priv = to_i915(dev);
286         enum intel_display_power_domain power_domain;
287
288         mutex_unlock(&dev_priv->pps_mutex);
289
290         power_domain = intel_display_port_aux_power_domain(encoder);
291         intel_display_power_put(dev_priv, power_domain);
292 }
293
294 static void
295 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
296 {
297         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
298         struct drm_device *dev = intel_dig_port->base.base.dev;
299         struct drm_i915_private *dev_priv = to_i915(dev);
300         enum pipe pipe = intel_dp->pps_pipe;
301         bool pll_enabled, release_cl_override = false;
302         enum dpio_phy phy = DPIO_PHY(pipe);
303         enum dpio_channel ch = vlv_pipe_to_channel(pipe);
304         uint32_t DP;
305
306         if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
307                  "skipping pipe %c power seqeuncer kick due to port %c being active\n",
308                  pipe_name(pipe), port_name(intel_dig_port->port)))
309                 return;
310
311         DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
312                       pipe_name(pipe), port_name(intel_dig_port->port));
313
314         /* Preserve the BIOS-computed detected bit. This is
315          * supposed to be read-only.
316          */
317         DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
318         DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
319         DP |= DP_PORT_WIDTH(1);
320         DP |= DP_LINK_TRAIN_PAT_1;
321
322         if (IS_CHERRYVIEW(dev))
323                 DP |= DP_PIPE_SELECT_CHV(pipe);
324         else if (pipe == PIPE_B)
325                 DP |= DP_PIPEB_SELECT;
326
327         pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
328
329         /*
330          * The DPLL for the pipe must be enabled for this to work.
331          * So enable temporarily it if it's not already enabled.
332          */
333         if (!pll_enabled) {
334                 release_cl_override = IS_CHERRYVIEW(dev) &&
335                         !chv_phy_powergate_ch(dev_priv, phy, ch, true);
336
337                 if (vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
338                                      &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
339                         DRM_ERROR("Failed to force on pll for pipe %c!\n",
340                                   pipe_name(pipe));
341                         return;
342                 }
343         }
344
345         /*
346          * Similar magic as in intel_dp_enable_port().
347          * We _must_ do this port enable + disable trick
348          * to make this power seqeuencer lock onto the port.
349          * Otherwise even VDD force bit won't work.
350          */
351         I915_WRITE(intel_dp->output_reg, DP);
352         POSTING_READ(intel_dp->output_reg);
353
354         I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
355         POSTING_READ(intel_dp->output_reg);
356
357         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
358         POSTING_READ(intel_dp->output_reg);
359
360         if (!pll_enabled) {
361                 vlv_force_pll_off(dev, pipe);
362
363                 if (release_cl_override)
364                         chv_phy_powergate_ch(dev_priv, phy, ch, false);
365         }
366 }
367
368 static enum pipe
369 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
370 {
371         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
372         struct drm_device *dev = intel_dig_port->base.base.dev;
373         struct drm_i915_private *dev_priv = to_i915(dev);
374         struct intel_encoder *encoder;
375         unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
376         enum pipe pipe;
377
378         lockdep_assert_held(&dev_priv->pps_mutex);
379
380         /* We should never land here with regular DP ports */
381         WARN_ON(!is_edp(intel_dp));
382
383         if (intel_dp->pps_pipe != INVALID_PIPE)
384                 return intel_dp->pps_pipe;
385
386         /*
387          * We don't have power sequencer currently.
388          * Pick one that's not used by other ports.
389          */
390         for_each_intel_encoder(dev, encoder) {
391                 struct intel_dp *tmp;
392
393                 if (encoder->type != INTEL_OUTPUT_EDP)
394                         continue;
395
396                 tmp = enc_to_intel_dp(&encoder->base);
397
398                 if (tmp->pps_pipe != INVALID_PIPE)
399                         pipes &= ~(1 << tmp->pps_pipe);
400         }
401
402         /*
403          * Didn't find one. This should not happen since there
404          * are two power sequencers and up to two eDP ports.
405          */
406         if (WARN_ON(pipes == 0))
407                 pipe = PIPE_A;
408         else
409                 pipe = ffs(pipes) - 1;
410
411         vlv_steal_power_sequencer(dev, pipe);
412         intel_dp->pps_pipe = pipe;
413
414         DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
415                       pipe_name(intel_dp->pps_pipe),
416                       port_name(intel_dig_port->port));
417
418         /* init power sequencer on this pipe and port */
419         intel_dp_init_panel_power_sequencer(dev, intel_dp);
420         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
421
422         /*
423          * Even vdd force doesn't work until we've made
424          * the power sequencer lock in on the port.
425          */
426         vlv_power_sequencer_kick(intel_dp);
427
428         return intel_dp->pps_pipe;
429 }
430
431 static int
432 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
433 {
434         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
435         struct drm_device *dev = intel_dig_port->base.base.dev;
436         struct drm_i915_private *dev_priv = to_i915(dev);
437
438         lockdep_assert_held(&dev_priv->pps_mutex);
439
440         /* We should never land here with regular DP ports */
441         WARN_ON(!is_edp(intel_dp));
442
443         /*
444          * TODO: BXT has 2 PPS instances. The correct port->PPS instance
445          * mapping needs to be retrieved from VBT, for now just hard-code to
446          * use instance #0 always.
447          */
448         if (!intel_dp->pps_reset)
449                 return 0;
450
451         intel_dp->pps_reset = false;
452
453         /*
454          * Only the HW needs to be reprogrammed, the SW state is fixed and
455          * has been setup during connector init.
456          */
457         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
458
459         return 0;
460 }
461
462 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
463                                enum pipe pipe);
464
465 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
466                                enum pipe pipe)
467 {
468         return I915_READ(PP_STATUS(pipe)) & PP_ON;
469 }
470
471 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
472                                 enum pipe pipe)
473 {
474         return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
475 }
476
477 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
478                          enum pipe pipe)
479 {
480         return true;
481 }
482
483 static enum pipe
484 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
485                      enum port port,
486                      vlv_pipe_check pipe_check)
487 {
488         enum pipe pipe;
489
490         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
491                 u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
492                         PANEL_PORT_SELECT_MASK;
493
494                 if (port_sel != PANEL_PORT_SELECT_VLV(port))
495                         continue;
496
497                 if (!pipe_check(dev_priv, pipe))
498                         continue;
499
500                 return pipe;
501         }
502
503         return INVALID_PIPE;
504 }
505
506 static void
507 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
508 {
509         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
510         struct drm_device *dev = intel_dig_port->base.base.dev;
511         struct drm_i915_private *dev_priv = to_i915(dev);
512         enum port port = intel_dig_port->port;
513
514         lockdep_assert_held(&dev_priv->pps_mutex);
515
516         /* try to find a pipe with this port selected */
517         /* first pick one where the panel is on */
518         intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
519                                                   vlv_pipe_has_pp_on);
520         /* didn't find one? pick one where vdd is on */
521         if (intel_dp->pps_pipe == INVALID_PIPE)
522                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
523                                                           vlv_pipe_has_vdd_on);
524         /* didn't find one? pick one with just the correct port */
525         if (intel_dp->pps_pipe == INVALID_PIPE)
526                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
527                                                           vlv_pipe_any);
528
529         /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
530         if (intel_dp->pps_pipe == INVALID_PIPE) {
531                 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
532                               port_name(port));
533                 return;
534         }
535
536         DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
537                       port_name(port), pipe_name(intel_dp->pps_pipe));
538
539         intel_dp_init_panel_power_sequencer(dev, intel_dp);
540         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
541 }
542
543 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
544 {
545         struct drm_device *dev = &dev_priv->drm;
546         struct intel_encoder *encoder;
547
548         if (WARN_ON(!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
549                     !IS_BROXTON(dev)))
550                 return;
551
552         /*
553          * We can't grab pps_mutex here due to deadlock with power_domain
554          * mutex when power_domain functions are called while holding pps_mutex.
555          * That also means that in order to use pps_pipe the code needs to
556          * hold both a power domain reference and pps_mutex, and the power domain
557          * reference get/put must be done while _not_ holding pps_mutex.
558          * pps_{lock,unlock}() do these steps in the correct order, so one
559          * should use them always.
560          */
561
562         for_each_intel_encoder(dev, encoder) {
563                 struct intel_dp *intel_dp;
564
565                 if (encoder->type != INTEL_OUTPUT_EDP)
566                         continue;
567
568                 intel_dp = enc_to_intel_dp(&encoder->base);
569                 if (IS_BROXTON(dev))
570                         intel_dp->pps_reset = true;
571                 else
572                         intel_dp->pps_pipe = INVALID_PIPE;
573         }
574 }
575
576 struct pps_registers {
577         i915_reg_t pp_ctrl;
578         i915_reg_t pp_stat;
579         i915_reg_t pp_on;
580         i915_reg_t pp_off;
581         i915_reg_t pp_div;
582 };
583
584 static void intel_pps_get_registers(struct drm_i915_private *dev_priv,
585                                     struct intel_dp *intel_dp,
586                                     struct pps_registers *regs)
587 {
588         int pps_idx = 0;
589
590         memset(regs, 0, sizeof(*regs));
591
592         if (IS_BROXTON(dev_priv))
593                 pps_idx = bxt_power_sequencer_idx(intel_dp);
594         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
595                 pps_idx = vlv_power_sequencer_pipe(intel_dp);
596
597         regs->pp_ctrl = PP_CONTROL(pps_idx);
598         regs->pp_stat = PP_STATUS(pps_idx);
599         regs->pp_on = PP_ON_DELAYS(pps_idx);
600         regs->pp_off = PP_OFF_DELAYS(pps_idx);
601         if (!IS_BROXTON(dev_priv))
602                 regs->pp_div = PP_DIVISOR(pps_idx);
603 }
604
605 static i915_reg_t
606 _pp_ctrl_reg(struct intel_dp *intel_dp)
607 {
608         struct pps_registers regs;
609
610         intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
611                                 &regs);
612
613         return regs.pp_ctrl;
614 }
615
616 static i915_reg_t
617 _pp_stat_reg(struct intel_dp *intel_dp)
618 {
619         struct pps_registers regs;
620
621         intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
622                                 &regs);
623
624         return regs.pp_stat;
625 }
626
627 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
628    This function only applicable when panel PM state is not to be tracked */
629 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
630                               void *unused)
631 {
632         struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
633                                                  edp_notifier);
634         struct drm_device *dev = intel_dp_to_dev(intel_dp);
635         struct drm_i915_private *dev_priv = to_i915(dev);
636
637         if (!is_edp(intel_dp) || code != SYS_RESTART)
638                 return 0;
639
640         pps_lock(intel_dp);
641
642         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
643                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
644                 i915_reg_t pp_ctrl_reg, pp_div_reg;
645                 u32 pp_div;
646
647                 pp_ctrl_reg = PP_CONTROL(pipe);
648                 pp_div_reg  = PP_DIVISOR(pipe);
649                 pp_div = I915_READ(pp_div_reg);
650                 pp_div &= PP_REFERENCE_DIVIDER_MASK;
651
652                 /* 0x1F write to PP_DIV_REG sets max cycle delay */
653                 I915_WRITE(pp_div_reg, pp_div | 0x1F);
654                 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
655                 msleep(intel_dp->panel_power_cycle_delay);
656         }
657
658         pps_unlock(intel_dp);
659
660         return 0;
661 }
662
663 static bool edp_have_panel_power(struct intel_dp *intel_dp)
664 {
665         struct drm_device *dev = intel_dp_to_dev(intel_dp);
666         struct drm_i915_private *dev_priv = to_i915(dev);
667
668         lockdep_assert_held(&dev_priv->pps_mutex);
669
670         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
671             intel_dp->pps_pipe == INVALID_PIPE)
672                 return false;
673
674         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
675 }
676
677 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
678 {
679         struct drm_device *dev = intel_dp_to_dev(intel_dp);
680         struct drm_i915_private *dev_priv = to_i915(dev);
681
682         lockdep_assert_held(&dev_priv->pps_mutex);
683
684         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
685             intel_dp->pps_pipe == INVALID_PIPE)
686                 return false;
687
688         return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
689 }
690
691 static void
692 intel_dp_check_edp(struct intel_dp *intel_dp)
693 {
694         struct drm_device *dev = intel_dp_to_dev(intel_dp);
695         struct drm_i915_private *dev_priv = to_i915(dev);
696
697         if (!is_edp(intel_dp))
698                 return;
699
700         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
701                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
702                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
703                               I915_READ(_pp_stat_reg(intel_dp)),
704                               I915_READ(_pp_ctrl_reg(intel_dp)));
705         }
706 }
707
708 static uint32_t
709 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
710 {
711         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
712         struct drm_device *dev = intel_dig_port->base.base.dev;
713         struct drm_i915_private *dev_priv = to_i915(dev);
714         i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
715         uint32_t status;
716         bool done;
717
718 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
719         if (has_aux_irq)
720                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
721                                           msecs_to_jiffies_timeout(10));
722         else
723                 done = wait_for(C, 10) == 0;
724         if (!done)
725                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
726                           has_aux_irq);
727 #undef C
728
729         return status;
730 }
731
732 static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
733 {
734         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
735         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
736
737         if (index)
738                 return 0;
739
740         /*
741          * The clock divider is based off the hrawclk, and would like to run at
742          * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
743          */
744         return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
745 }
746
747 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
748 {
749         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
750         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
751
752         if (index)
753                 return 0;
754
755         /*
756          * The clock divider is based off the cdclk or PCH rawclk, and would
757          * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
758          * divide by 2000 and use that
759          */
760         if (intel_dig_port->port == PORT_A)
761                 return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
762         else
763                 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
764 }
765
766 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
767 {
768         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
769         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
770
771         if (intel_dig_port->port != PORT_A && HAS_PCH_LPT_H(dev_priv)) {
772                 /* Workaround for non-ULT HSW */
773                 switch (index) {
774                 case 0: return 63;
775                 case 1: return 72;
776                 default: return 0;
777                 }
778         }
779
780         return ilk_get_aux_clock_divider(intel_dp, index);
781 }
782
783 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
784 {
785         /*
786          * SKL doesn't need us to program the AUX clock divider (Hardware will
787          * derive the clock from CDCLK automatically). We still implement the
788          * get_aux_clock_divider vfunc to plug-in into the existing code.
789          */
790         return index ? 0 : 1;
791 }
792
793 static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
794                                      bool has_aux_irq,
795                                      int send_bytes,
796                                      uint32_t aux_clock_divider)
797 {
798         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
799         struct drm_device *dev = intel_dig_port->base.base.dev;
800         uint32_t precharge, timeout;
801
802         if (IS_GEN6(dev))
803                 precharge = 3;
804         else
805                 precharge = 5;
806
807         if (IS_BROADWELL(dev) && intel_dig_port->port == PORT_A)
808                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
809         else
810                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
811
812         return DP_AUX_CH_CTL_SEND_BUSY |
813                DP_AUX_CH_CTL_DONE |
814                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
815                DP_AUX_CH_CTL_TIME_OUT_ERROR |
816                timeout |
817                DP_AUX_CH_CTL_RECEIVE_ERROR |
818                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
819                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
820                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
821 }
822
823 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
824                                       bool has_aux_irq,
825                                       int send_bytes,
826                                       uint32_t unused)
827 {
828         return DP_AUX_CH_CTL_SEND_BUSY |
829                DP_AUX_CH_CTL_DONE |
830                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
831                DP_AUX_CH_CTL_TIME_OUT_ERROR |
832                DP_AUX_CH_CTL_TIME_OUT_1600us |
833                DP_AUX_CH_CTL_RECEIVE_ERROR |
834                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
835                DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
836                DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
837 }
838
839 static int
840 intel_dp_aux_ch(struct intel_dp *intel_dp,
841                 const uint8_t *send, int send_bytes,
842                 uint8_t *recv, int recv_size)
843 {
844         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
845         struct drm_device *dev = intel_dig_port->base.base.dev;
846         struct drm_i915_private *dev_priv = to_i915(dev);
847         i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
848         uint32_t aux_clock_divider;
849         int i, ret, recv_bytes;
850         uint32_t status;
851         int try, clock = 0;
852         bool has_aux_irq = HAS_AUX_IRQ(dev);
853         bool vdd;
854
855         pps_lock(intel_dp);
856
857         /*
858          * We will be called with VDD already enabled for dpcd/edid/oui reads.
859          * In such cases we want to leave VDD enabled and it's up to upper layers
860          * to turn it off. But for eg. i2c-dev access we need to turn it on/off
861          * ourselves.
862          */
863         vdd = edp_panel_vdd_on(intel_dp);
864
865         /* dp aux is extremely sensitive to irq latency, hence request the
866          * lowest possible wakeup latency and so prevent the cpu from going into
867          * deep sleep states.
868          */
869         pm_qos_update_request(&dev_priv->pm_qos, 0);
870
871         intel_dp_check_edp(intel_dp);
872
873         /* Try to wait for any previous AUX channel activity */
874         for (try = 0; try < 3; try++) {
875                 status = I915_READ_NOTRACE(ch_ctl);
876                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
877                         break;
878                 msleep(1);
879         }
880
881         if (try == 3) {
882                 static u32 last_status = -1;
883                 const u32 status = I915_READ(ch_ctl);
884
885                 if (status != last_status) {
886                         WARN(1, "dp_aux_ch not started status 0x%08x\n",
887                              status);
888                         last_status = status;
889                 }
890
891                 ret = -EBUSY;
892                 goto out;
893         }
894
895         /* Only 5 data registers! */
896         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
897                 ret = -E2BIG;
898                 goto out;
899         }
900
901         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
902                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
903                                                           has_aux_irq,
904                                                           send_bytes,
905                                                           aux_clock_divider);
906
907                 /* Must try at least 3 times according to DP spec */
908                 for (try = 0; try < 5; try++) {
909                         /* Load the send data into the aux channel data registers */
910                         for (i = 0; i < send_bytes; i += 4)
911                                 I915_WRITE(intel_dp->aux_ch_data_reg[i >> 2],
912                                            intel_dp_pack_aux(send + i,
913                                                              send_bytes - i));
914
915                         /* Send the command and wait for it to complete */
916                         I915_WRITE(ch_ctl, send_ctl);
917
918                         status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
919
920                         /* Clear done status and any errors */
921                         I915_WRITE(ch_ctl,
922                                    status |
923                                    DP_AUX_CH_CTL_DONE |
924                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
925                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
926
927                         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
928                                 continue;
929
930                         /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
931                          *   400us delay required for errors and timeouts
932                          *   Timeout errors from the HW already meet this
933                          *   requirement so skip to next iteration
934                          */
935                         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
936                                 usleep_range(400, 500);
937                                 continue;
938                         }
939                         if (status & DP_AUX_CH_CTL_DONE)
940                                 goto done;
941                 }
942         }
943
944         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
945                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
946                 ret = -EBUSY;
947                 goto out;
948         }
949
950 done:
951         /* Check for timeout or receive error.
952          * Timeouts occur when the sink is not connected
953          */
954         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
955                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
956                 ret = -EIO;
957                 goto out;
958         }
959
960         /* Timeouts occur when the device isn't connected, so they're
961          * "normal" -- don't fill the kernel log with these */
962         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
963                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
964                 ret = -ETIMEDOUT;
965                 goto out;
966         }
967
968         /* Unload any bytes sent back from the other side */
969         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
970                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
971
972         /*
973          * By BSpec: "Message sizes of 0 or >20 are not allowed."
974          * We have no idea of what happened so we return -EBUSY so
975          * drm layer takes care for the necessary retries.
976          */
977         if (recv_bytes == 0 || recv_bytes > 20) {
978                 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
979                               recv_bytes);
980                 /*
981                  * FIXME: This patch was created on top of a series that
982                  * organize the retries at drm level. There EBUSY should
983                  * also take care for 1ms wait before retrying.
984                  * That aux retries re-org is still needed and after that is
985                  * merged we remove this sleep from here.
986                  */
987                 usleep_range(1000, 1500);
988                 ret = -EBUSY;
989                 goto out;
990         }
991
992         if (recv_bytes > recv_size)
993                 recv_bytes = recv_size;
994
995         for (i = 0; i < recv_bytes; i += 4)
996                 intel_dp_unpack_aux(I915_READ(intel_dp->aux_ch_data_reg[i >> 2]),
997                                     recv + i, recv_bytes - i);
998
999         ret = recv_bytes;
1000 out:
1001         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
1002
1003         if (vdd)
1004                 edp_panel_vdd_off(intel_dp, false);
1005
1006         pps_unlock(intel_dp);
1007
1008         return ret;
1009 }
1010
1011 #define BARE_ADDRESS_SIZE       3
1012 #define HEADER_SIZE             (BARE_ADDRESS_SIZE + 1)
1013 static ssize_t
1014 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1015 {
1016         struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1017         uint8_t txbuf[20], rxbuf[20];
1018         size_t txsize, rxsize;
1019         int ret;
1020
1021         txbuf[0] = (msg->request << 4) |
1022                 ((msg->address >> 16) & 0xf);
1023         txbuf[1] = (msg->address >> 8) & 0xff;
1024         txbuf[2] = msg->address & 0xff;
1025         txbuf[3] = msg->size - 1;
1026
1027         switch (msg->request & ~DP_AUX_I2C_MOT) {
1028         case DP_AUX_NATIVE_WRITE:
1029         case DP_AUX_I2C_WRITE:
1030         case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1031                 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1032                 rxsize = 2; /* 0 or 1 data bytes */
1033
1034                 if (WARN_ON(txsize > 20))
1035                         return -E2BIG;
1036
1037                 WARN_ON(!msg->buffer != !msg->size);
1038
1039                 if (msg->buffer)
1040                         memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1041
1042                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1043                 if (ret > 0) {
1044                         msg->reply = rxbuf[0] >> 4;
1045
1046                         if (ret > 1) {
1047                                 /* Number of bytes written in a short write. */
1048                                 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1049                         } else {
1050                                 /* Return payload size. */
1051                                 ret = msg->size;
1052                         }
1053                 }
1054                 break;
1055
1056         case DP_AUX_NATIVE_READ:
1057         case DP_AUX_I2C_READ:
1058                 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1059                 rxsize = msg->size + 1;
1060
1061                 if (WARN_ON(rxsize > 20))
1062                         return -E2BIG;
1063
1064                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1065                 if (ret > 0) {
1066                         msg->reply = rxbuf[0] >> 4;
1067                         /*
1068                          * Assume happy day, and copy the data. The caller is
1069                          * expected to check msg->reply before touching it.
1070                          *
1071                          * Return payload size.
1072                          */
1073                         ret--;
1074                         memcpy(msg->buffer, rxbuf + 1, ret);
1075                 }
1076                 break;
1077
1078         default:
1079                 ret = -EINVAL;
1080                 break;
1081         }
1082
1083         return ret;
1084 }
1085
1086 static i915_reg_t g4x_aux_ctl_reg(struct drm_i915_private *dev_priv,
1087                                        enum port port)
1088 {
1089         switch (port) {
1090         case PORT_B:
1091         case PORT_C:
1092         case PORT_D:
1093                 return DP_AUX_CH_CTL(port);
1094         default:
1095                 MISSING_CASE(port);
1096                 return DP_AUX_CH_CTL(PORT_B);
1097         }
1098 }
1099
1100 static i915_reg_t g4x_aux_data_reg(struct drm_i915_private *dev_priv,
1101                                         enum port port, int index)
1102 {
1103         switch (port) {
1104         case PORT_B:
1105         case PORT_C:
1106         case PORT_D:
1107                 return DP_AUX_CH_DATA(port, index);
1108         default:
1109                 MISSING_CASE(port);
1110                 return DP_AUX_CH_DATA(PORT_B, index);
1111         }
1112 }
1113
1114 static i915_reg_t ilk_aux_ctl_reg(struct drm_i915_private *dev_priv,
1115                                        enum port port)
1116 {
1117         switch (port) {
1118         case PORT_A:
1119                 return DP_AUX_CH_CTL(port);
1120         case PORT_B:
1121         case PORT_C:
1122         case PORT_D:
1123                 return PCH_DP_AUX_CH_CTL(port);
1124         default:
1125                 MISSING_CASE(port);
1126                 return DP_AUX_CH_CTL(PORT_A);
1127         }
1128 }
1129
1130 static i915_reg_t ilk_aux_data_reg(struct drm_i915_private *dev_priv,
1131                                         enum port port, int index)
1132 {
1133         switch (port) {
1134         case PORT_A:
1135                 return DP_AUX_CH_DATA(port, index);
1136         case PORT_B:
1137         case PORT_C:
1138         case PORT_D:
1139                 return PCH_DP_AUX_CH_DATA(port, index);
1140         default:
1141                 MISSING_CASE(port);
1142                 return DP_AUX_CH_DATA(PORT_A, index);
1143         }
1144 }
1145
1146 /*
1147  * On SKL we don't have Aux for port E so we rely
1148  * on VBT to set a proper alternate aux channel.
1149  */
1150 static enum port skl_porte_aux_port(struct drm_i915_private *dev_priv)
1151 {
1152         const struct ddi_vbt_port_info *info =
1153                 &dev_priv->vbt.ddi_port_info[PORT_E];
1154
1155         switch (info->alternate_aux_channel) {
1156         case DP_AUX_A:
1157                 return PORT_A;
1158         case DP_AUX_B:
1159                 return PORT_B;
1160         case DP_AUX_C:
1161                 return PORT_C;
1162         case DP_AUX_D:
1163                 return PORT_D;
1164         default:
1165                 MISSING_CASE(info->alternate_aux_channel);
1166                 return PORT_A;
1167         }
1168 }
1169
1170 static i915_reg_t skl_aux_ctl_reg(struct drm_i915_private *dev_priv,
1171                                        enum port port)
1172 {
1173         if (port == PORT_E)
1174                 port = skl_porte_aux_port(dev_priv);
1175
1176         switch (port) {
1177         case PORT_A:
1178         case PORT_B:
1179         case PORT_C:
1180         case PORT_D:
1181                 return DP_AUX_CH_CTL(port);
1182         default:
1183                 MISSING_CASE(port);
1184                 return DP_AUX_CH_CTL(PORT_A);
1185         }
1186 }
1187
1188 static i915_reg_t skl_aux_data_reg(struct drm_i915_private *dev_priv,
1189                                         enum port port, int index)
1190 {
1191         if (port == PORT_E)
1192                 port = skl_porte_aux_port(dev_priv);
1193
1194         switch (port) {
1195         case PORT_A:
1196         case PORT_B:
1197         case PORT_C:
1198         case PORT_D:
1199                 return DP_AUX_CH_DATA(port, index);
1200         default:
1201                 MISSING_CASE(port);
1202                 return DP_AUX_CH_DATA(PORT_A, index);
1203         }
1204 }
1205
1206 static i915_reg_t intel_aux_ctl_reg(struct drm_i915_private *dev_priv,
1207                                          enum port port)
1208 {
1209         if (INTEL_INFO(dev_priv)->gen >= 9)
1210                 return skl_aux_ctl_reg(dev_priv, port);
1211         else if (HAS_PCH_SPLIT(dev_priv))
1212                 return ilk_aux_ctl_reg(dev_priv, port);
1213         else
1214                 return g4x_aux_ctl_reg(dev_priv, port);
1215 }
1216
1217 static i915_reg_t intel_aux_data_reg(struct drm_i915_private *dev_priv,
1218                                           enum port port, int index)
1219 {
1220         if (INTEL_INFO(dev_priv)->gen >= 9)
1221                 return skl_aux_data_reg(dev_priv, port, index);
1222         else if (HAS_PCH_SPLIT(dev_priv))
1223                 return ilk_aux_data_reg(dev_priv, port, index);
1224         else
1225                 return g4x_aux_data_reg(dev_priv, port, index);
1226 }
1227
1228 static void intel_aux_reg_init(struct intel_dp *intel_dp)
1229 {
1230         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1231         enum port port = dp_to_dig_port(intel_dp)->port;
1232         int i;
1233
1234         intel_dp->aux_ch_ctl_reg = intel_aux_ctl_reg(dev_priv, port);
1235         for (i = 0; i < ARRAY_SIZE(intel_dp->aux_ch_data_reg); i++)
1236                 intel_dp->aux_ch_data_reg[i] = intel_aux_data_reg(dev_priv, port, i);
1237 }
1238
1239 static void
1240 intel_dp_aux_fini(struct intel_dp *intel_dp)
1241 {
1242         kfree(intel_dp->aux.name);
1243 }
1244
1245 static void
1246 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
1247 {
1248         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1249         enum port port = intel_dig_port->port;
1250
1251         intel_aux_reg_init(intel_dp);
1252         drm_dp_aux_init(&intel_dp->aux);
1253
1254         /* Failure to allocate our preferred name is not critical */
1255         intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", port_name(port));
1256         intel_dp->aux.transfer = intel_dp_aux_transfer;
1257 }
1258
1259 static int
1260 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1261 {
1262         if (intel_dp->num_sink_rates) {
1263                 *sink_rates = intel_dp->sink_rates;
1264                 return intel_dp->num_sink_rates;
1265         }
1266
1267         *sink_rates = default_rates;
1268
1269         return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1270 }
1271
1272 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1273 {
1274         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1275         struct drm_device *dev = dig_port->base.base.dev;
1276
1277         /* WaDisableHBR2:skl */
1278         if (IS_SKL_REVID(dev, 0, SKL_REVID_B0))
1279                 return false;
1280
1281         if ((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) || IS_BROADWELL(dev) ||
1282             (INTEL_INFO(dev)->gen >= 9))
1283                 return true;
1284         else
1285                 return false;
1286 }
1287
1288 static int
1289 intel_dp_source_rates(struct intel_dp *intel_dp, const int **source_rates)
1290 {
1291         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1292         struct drm_device *dev = dig_port->base.base.dev;
1293         int size;
1294
1295         if (IS_BROXTON(dev)) {
1296                 *source_rates = bxt_rates;
1297                 size = ARRAY_SIZE(bxt_rates);
1298         } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1299                 *source_rates = skl_rates;
1300                 size = ARRAY_SIZE(skl_rates);
1301         } else {
1302                 *source_rates = default_rates;
1303                 size = ARRAY_SIZE(default_rates);
1304         }
1305
1306         /* This depends on the fact that 5.4 is last value in the array */
1307         if (!intel_dp_source_supports_hbr2(intel_dp))
1308                 size--;
1309
1310         return size;
1311 }
1312
1313 static void
1314 intel_dp_set_clock(struct intel_encoder *encoder,
1315                    struct intel_crtc_state *pipe_config)
1316 {
1317         struct drm_device *dev = encoder->base.dev;
1318         const struct dp_link_dpll *divisor = NULL;
1319         int i, count = 0;
1320
1321         if (IS_G4X(dev)) {
1322                 divisor = gen4_dpll;
1323                 count = ARRAY_SIZE(gen4_dpll);
1324         } else if (HAS_PCH_SPLIT(dev)) {
1325                 divisor = pch_dpll;
1326                 count = ARRAY_SIZE(pch_dpll);
1327         } else if (IS_CHERRYVIEW(dev)) {
1328                 divisor = chv_dpll;
1329                 count = ARRAY_SIZE(chv_dpll);
1330         } else if (IS_VALLEYVIEW(dev)) {
1331                 divisor = vlv_dpll;
1332                 count = ARRAY_SIZE(vlv_dpll);
1333         }
1334
1335         if (divisor && count) {
1336                 for (i = 0; i < count; i++) {
1337                         if (pipe_config->port_clock == divisor[i].clock) {
1338                                 pipe_config->dpll = divisor[i].dpll;
1339                                 pipe_config->clock_set = true;
1340                                 break;
1341                         }
1342                 }
1343         }
1344 }
1345
1346 static int intersect_rates(const int *source_rates, int source_len,
1347                            const int *sink_rates, int sink_len,
1348                            int *common_rates)
1349 {
1350         int i = 0, j = 0, k = 0;
1351
1352         while (i < source_len && j < sink_len) {
1353                 if (source_rates[i] == sink_rates[j]) {
1354                         if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
1355                                 return k;
1356                         common_rates[k] = source_rates[i];
1357                         ++k;
1358                         ++i;
1359                         ++j;
1360                 } else if (source_rates[i] < sink_rates[j]) {
1361                         ++i;
1362                 } else {
1363                         ++j;
1364                 }
1365         }
1366         return k;
1367 }
1368
1369 static int intel_dp_common_rates(struct intel_dp *intel_dp,
1370                                  int *common_rates)
1371 {
1372         const int *source_rates, *sink_rates;
1373         int source_len, sink_len;
1374
1375         sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1376         source_len = intel_dp_source_rates(intel_dp, &source_rates);
1377
1378         return intersect_rates(source_rates, source_len,
1379                                sink_rates, sink_len,
1380                                common_rates);
1381 }
1382
1383 static void snprintf_int_array(char *str, size_t len,
1384                                const int *array, int nelem)
1385 {
1386         int i;
1387
1388         str[0] = '\0';
1389
1390         for (i = 0; i < nelem; i++) {
1391                 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1392                 if (r >= len)
1393                         return;
1394                 str += r;
1395                 len -= r;
1396         }
1397 }
1398
1399 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1400 {
1401         const int *source_rates, *sink_rates;
1402         int source_len, sink_len, common_len;
1403         int common_rates[DP_MAX_SUPPORTED_RATES];
1404         char str[128]; /* FIXME: too big for stack? */
1405
1406         if ((drm_debug & DRM_UT_KMS) == 0)
1407                 return;
1408
1409         source_len = intel_dp_source_rates(intel_dp, &source_rates);
1410         snprintf_int_array(str, sizeof(str), source_rates, source_len);
1411         DRM_DEBUG_KMS("source rates: %s\n", str);
1412
1413         sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1414         snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1415         DRM_DEBUG_KMS("sink rates: %s\n", str);
1416
1417         common_len = intel_dp_common_rates(intel_dp, common_rates);
1418         snprintf_int_array(str, sizeof(str), common_rates, common_len);
1419         DRM_DEBUG_KMS("common rates: %s\n", str);
1420 }
1421
1422 static int rate_to_index(int find, const int *rates)
1423 {
1424         int i = 0;
1425
1426         for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1427                 if (find == rates[i])
1428                         break;
1429
1430         return i;
1431 }
1432
1433 int
1434 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1435 {
1436         int rates[DP_MAX_SUPPORTED_RATES] = {};
1437         int len;
1438
1439         len = intel_dp_common_rates(intel_dp, rates);
1440         if (WARN_ON(len <= 0))
1441                 return 162000;
1442
1443         return rates[len - 1];
1444 }
1445
1446 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1447 {
1448         return rate_to_index(rate, intel_dp->sink_rates);
1449 }
1450
1451 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1452                            uint8_t *link_bw, uint8_t *rate_select)
1453 {
1454         if (intel_dp->num_sink_rates) {
1455                 *link_bw = 0;
1456                 *rate_select =
1457                         intel_dp_rate_select(intel_dp, port_clock);
1458         } else {
1459                 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1460                 *rate_select = 0;
1461         }
1462 }
1463
1464 bool
1465 intel_dp_compute_config(struct intel_encoder *encoder,
1466                         struct intel_crtc_state *pipe_config,
1467                         struct drm_connector_state *conn_state)
1468 {
1469         struct drm_device *dev = encoder->base.dev;
1470         struct drm_i915_private *dev_priv = to_i915(dev);
1471         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1472         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1473         enum port port = dp_to_dig_port(intel_dp)->port;
1474         struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1475         struct intel_connector *intel_connector = intel_dp->attached_connector;
1476         int lane_count, clock;
1477         int min_lane_count = 1;
1478         int max_lane_count = intel_dp_max_lane_count(intel_dp);
1479         /* Conveniently, the link BW constants become indices with a shift...*/
1480         int min_clock = 0;
1481         int max_clock;
1482         int bpp, mode_rate;
1483         int link_avail, link_clock;
1484         int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1485         int common_len;
1486         uint8_t link_bw, rate_select;
1487
1488         common_len = intel_dp_common_rates(intel_dp, common_rates);
1489
1490         /* No common link rates between source and sink */
1491         WARN_ON(common_len <= 0);
1492
1493         max_clock = common_len - 1;
1494
1495         if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1496                 pipe_config->has_pch_encoder = true;
1497
1498         pipe_config->has_drrs = false;
1499         pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1500
1501         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1502                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1503                                        adjusted_mode);
1504
1505                 if (INTEL_INFO(dev)->gen >= 9) {
1506                         int ret;
1507                         ret = skl_update_scaler_crtc(pipe_config);
1508                         if (ret)
1509                                 return ret;
1510                 }
1511
1512                 if (HAS_GMCH_DISPLAY(dev))
1513                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
1514                                                  intel_connector->panel.fitting_mode);
1515                 else
1516                         intel_pch_panel_fitting(intel_crtc, pipe_config,
1517                                                 intel_connector->panel.fitting_mode);
1518         }
1519
1520         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1521                 return false;
1522
1523         DRM_DEBUG_KMS("DP link computation with max lane count %i "
1524                       "max bw %d pixel clock %iKHz\n",
1525                       max_lane_count, common_rates[max_clock],
1526                       adjusted_mode->crtc_clock);
1527
1528         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1529          * bpc in between. */
1530         bpp = pipe_config->pipe_bpp;
1531         if (is_edp(intel_dp)) {
1532
1533                 /* Get bpp from vbt only for panels that dont have bpp in edid */
1534                 if (intel_connector->base.display_info.bpc == 0 &&
1535                         (dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp)) {
1536                         DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1537                                       dev_priv->vbt.edp.bpp);
1538                         bpp = dev_priv->vbt.edp.bpp;
1539                 }
1540
1541                 /*
1542                  * Use the maximum clock and number of lanes the eDP panel
1543                  * advertizes being capable of. The panels are generally
1544                  * designed to support only a single clock and lane
1545                  * configuration, and typically these values correspond to the
1546                  * native resolution of the panel.
1547                  */
1548                 min_lane_count = max_lane_count;
1549                 min_clock = max_clock;
1550         }
1551
1552         for (; bpp >= 6*3; bpp -= 2*3) {
1553                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1554                                                    bpp);
1555
1556                 for (clock = min_clock; clock <= max_clock; clock++) {
1557                         for (lane_count = min_lane_count;
1558                                 lane_count <= max_lane_count;
1559                                 lane_count <<= 1) {
1560
1561                                 link_clock = common_rates[clock];
1562                                 link_avail = intel_dp_max_data_rate(link_clock,
1563                                                                     lane_count);
1564
1565                                 if (mode_rate <= link_avail) {
1566                                         goto found;
1567                                 }
1568                         }
1569                 }
1570         }
1571
1572         return false;
1573
1574 found:
1575         if (intel_dp->color_range_auto) {
1576                 /*
1577                  * See:
1578                  * CEA-861-E - 5.1 Default Encoding Parameters
1579                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1580                  */
1581                 pipe_config->limited_color_range =
1582                         bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1;
1583         } else {
1584                 pipe_config->limited_color_range =
1585                         intel_dp->limited_color_range;
1586         }
1587
1588         pipe_config->lane_count = lane_count;
1589
1590         pipe_config->pipe_bpp = bpp;
1591         pipe_config->port_clock = common_rates[clock];
1592
1593         intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
1594                               &link_bw, &rate_select);
1595
1596         DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
1597                       link_bw, rate_select, pipe_config->lane_count,
1598                       pipe_config->port_clock, bpp);
1599         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1600                       mode_rate, link_avail);
1601
1602         intel_link_compute_m_n(bpp, lane_count,
1603                                adjusted_mode->crtc_clock,
1604                                pipe_config->port_clock,
1605                                &pipe_config->dp_m_n);
1606
1607         if (intel_connector->panel.downclock_mode != NULL &&
1608                 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1609                         pipe_config->has_drrs = true;
1610                         intel_link_compute_m_n(bpp, lane_count,
1611                                 intel_connector->panel.downclock_mode->clock,
1612                                 pipe_config->port_clock,
1613                                 &pipe_config->dp_m2_n2);
1614         }
1615
1616         /*
1617          * DPLL0 VCO may need to be adjusted to get the correct
1618          * clock for eDP. This will affect cdclk as well.
1619          */
1620         if (is_edp(intel_dp) &&
1621             (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))) {
1622                 int vco;
1623
1624                 switch (pipe_config->port_clock / 2) {
1625                 case 108000:
1626                 case 216000:
1627                         vco = 8640000;
1628                         break;
1629                 default:
1630                         vco = 8100000;
1631                         break;
1632                 }
1633
1634                 to_intel_atomic_state(pipe_config->base.state)->cdclk_pll_vco = vco;
1635         }
1636
1637         if (!HAS_DDI(dev))
1638                 intel_dp_set_clock(encoder, pipe_config);
1639
1640         return true;
1641 }
1642
1643 void intel_dp_set_link_params(struct intel_dp *intel_dp,
1644                               const struct intel_crtc_state *pipe_config)
1645 {
1646         intel_dp->link_rate = pipe_config->port_clock;
1647         intel_dp->lane_count = pipe_config->lane_count;
1648         intel_dp->link_mst = intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST);
1649 }
1650
1651 static void intel_dp_prepare(struct intel_encoder *encoder,
1652                              struct intel_crtc_state *pipe_config)
1653 {
1654         struct drm_device *dev = encoder->base.dev;
1655         struct drm_i915_private *dev_priv = to_i915(dev);
1656         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1657         enum port port = dp_to_dig_port(intel_dp)->port;
1658         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1659         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1660
1661         intel_dp_set_link_params(intel_dp, pipe_config);
1662
1663         /*
1664          * There are four kinds of DP registers:
1665          *
1666          *      IBX PCH
1667          *      SNB CPU
1668          *      IVB CPU
1669          *      CPT PCH
1670          *
1671          * IBX PCH and CPU are the same for almost everything,
1672          * except that the CPU DP PLL is configured in this
1673          * register
1674          *
1675          * CPT PCH is quite different, having many bits moved
1676          * to the TRANS_DP_CTL register instead. That
1677          * configuration happens (oddly) in ironlake_pch_enable
1678          */
1679
1680         /* Preserve the BIOS-computed detected bit. This is
1681          * supposed to be read-only.
1682          */
1683         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1684
1685         /* Handle DP bits in common between all three register formats */
1686         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1687         intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
1688
1689         /* Split out the IBX/CPU vs CPT settings */
1690
1691         if (IS_GEN7(dev) && port == PORT_A) {
1692                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1693                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1694                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1695                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1696                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1697
1698                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1699                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1700
1701                 intel_dp->DP |= crtc->pipe << 29;
1702         } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
1703                 u32 trans_dp;
1704
1705                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1706
1707                 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1708                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1709                         trans_dp |= TRANS_DP_ENH_FRAMING;
1710                 else
1711                         trans_dp &= ~TRANS_DP_ENH_FRAMING;
1712                 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1713         } else {
1714                 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
1715                     !IS_CHERRYVIEW(dev) && pipe_config->limited_color_range)
1716                         intel_dp->DP |= DP_COLOR_RANGE_16_235;
1717
1718                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1719                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1720                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1721                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1722                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1723
1724                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1725                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1726
1727                 if (IS_CHERRYVIEW(dev))
1728                         intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1729                 else if (crtc->pipe == PIPE_B)
1730                         intel_dp->DP |= DP_PIPEB_SELECT;
1731         }
1732 }
1733
1734 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1735 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1736
1737 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1738 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
1739
1740 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1741 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1742
1743 static void intel_pps_verify_state(struct drm_i915_private *dev_priv,
1744                                    struct intel_dp *intel_dp);
1745
1746 static void wait_panel_status(struct intel_dp *intel_dp,
1747                                        u32 mask,
1748                                        u32 value)
1749 {
1750         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1751         struct drm_i915_private *dev_priv = to_i915(dev);
1752         i915_reg_t pp_stat_reg, pp_ctrl_reg;
1753
1754         lockdep_assert_held(&dev_priv->pps_mutex);
1755
1756         intel_pps_verify_state(dev_priv, intel_dp);
1757
1758         pp_stat_reg = _pp_stat_reg(intel_dp);
1759         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1760
1761         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1762                         mask, value,
1763                         I915_READ(pp_stat_reg),
1764                         I915_READ(pp_ctrl_reg));
1765
1766         if (intel_wait_for_register(dev_priv,
1767                                     pp_stat_reg, mask, value,
1768                                     5000))
1769                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1770                                 I915_READ(pp_stat_reg),
1771                                 I915_READ(pp_ctrl_reg));
1772
1773         DRM_DEBUG_KMS("Wait complete\n");
1774 }
1775
1776 static void wait_panel_on(struct intel_dp *intel_dp)
1777 {
1778         DRM_DEBUG_KMS("Wait for panel power on\n");
1779         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1780 }
1781
1782 static void wait_panel_off(struct intel_dp *intel_dp)
1783 {
1784         DRM_DEBUG_KMS("Wait for panel power off time\n");
1785         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1786 }
1787
1788 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1789 {
1790         ktime_t panel_power_on_time;
1791         s64 panel_power_off_duration;
1792
1793         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1794
1795         /* take the difference of currrent time and panel power off time
1796          * and then make panel wait for t11_t12 if needed. */
1797         panel_power_on_time = ktime_get_boottime();
1798         panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
1799
1800         /* When we disable the VDD override bit last we have to do the manual
1801          * wait. */
1802         if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
1803                 wait_remaining_ms_from_jiffies(jiffies,
1804                                        intel_dp->panel_power_cycle_delay - panel_power_off_duration);
1805
1806         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1807 }
1808
1809 static void wait_backlight_on(struct intel_dp *intel_dp)
1810 {
1811         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1812                                        intel_dp->backlight_on_delay);
1813 }
1814
1815 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1816 {
1817         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1818                                        intel_dp->backlight_off_delay);
1819 }
1820
1821 /* Read the current pp_control value, unlocking the register if it
1822  * is locked
1823  */
1824
1825 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1826 {
1827         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1828         struct drm_i915_private *dev_priv = to_i915(dev);
1829         u32 control;
1830
1831         lockdep_assert_held(&dev_priv->pps_mutex);
1832
1833         control = I915_READ(_pp_ctrl_reg(intel_dp));
1834         if (WARN_ON(!HAS_DDI(dev_priv) &&
1835                     (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
1836                 control &= ~PANEL_UNLOCK_MASK;
1837                 control |= PANEL_UNLOCK_REGS;
1838         }
1839         return control;
1840 }
1841
1842 /*
1843  * Must be paired with edp_panel_vdd_off().
1844  * Must hold pps_mutex around the whole on/off sequence.
1845  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1846  */
1847 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1848 {
1849         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1850         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1851         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1852         struct drm_i915_private *dev_priv = to_i915(dev);
1853         enum intel_display_power_domain power_domain;
1854         u32 pp;
1855         i915_reg_t pp_stat_reg, pp_ctrl_reg;
1856         bool need_to_disable = !intel_dp->want_panel_vdd;
1857
1858         lockdep_assert_held(&dev_priv->pps_mutex);
1859
1860         if (!is_edp(intel_dp))
1861                 return false;
1862
1863         cancel_delayed_work(&intel_dp->panel_vdd_work);
1864         intel_dp->want_panel_vdd = true;
1865
1866         if (edp_have_panel_vdd(intel_dp))
1867                 return need_to_disable;
1868
1869         power_domain = intel_display_port_aux_power_domain(intel_encoder);
1870         intel_display_power_get(dev_priv, power_domain);
1871
1872         DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1873                       port_name(intel_dig_port->port));
1874
1875         if (!edp_have_panel_power(intel_dp))
1876                 wait_panel_power_cycle(intel_dp);
1877
1878         pp = ironlake_get_pp_control(intel_dp);
1879         pp |= EDP_FORCE_VDD;
1880
1881         pp_stat_reg = _pp_stat_reg(intel_dp);
1882         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1883
1884         I915_WRITE(pp_ctrl_reg, pp);
1885         POSTING_READ(pp_ctrl_reg);
1886         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1887                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1888         /*
1889          * If the panel wasn't on, delay before accessing aux channel
1890          */
1891         if (!edp_have_panel_power(intel_dp)) {
1892                 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1893                               port_name(intel_dig_port->port));
1894                 msleep(intel_dp->panel_power_up_delay);
1895         }
1896
1897         return need_to_disable;
1898 }
1899
1900 /*
1901  * Must be paired with intel_edp_panel_vdd_off() or
1902  * intel_edp_panel_off().
1903  * Nested calls to these functions are not allowed since
1904  * we drop the lock. Caller must use some higher level
1905  * locking to prevent nested calls from other threads.
1906  */
1907 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1908 {
1909         bool vdd;
1910
1911         if (!is_edp(intel_dp))
1912                 return;
1913
1914         pps_lock(intel_dp);
1915         vdd = edp_panel_vdd_on(intel_dp);
1916         pps_unlock(intel_dp);
1917
1918         I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1919              port_name(dp_to_dig_port(intel_dp)->port));
1920 }
1921
1922 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1923 {
1924         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1925         struct drm_i915_private *dev_priv = to_i915(dev);
1926         struct intel_digital_port *intel_dig_port =
1927                 dp_to_dig_port(intel_dp);
1928         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1929         enum intel_display_power_domain power_domain;
1930         u32 pp;
1931         i915_reg_t pp_stat_reg, pp_ctrl_reg;
1932
1933         lockdep_assert_held(&dev_priv->pps_mutex);
1934
1935         WARN_ON(intel_dp->want_panel_vdd);
1936
1937         if (!edp_have_panel_vdd(intel_dp))
1938                 return;
1939
1940         DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
1941                       port_name(intel_dig_port->port));
1942
1943         pp = ironlake_get_pp_control(intel_dp);
1944         pp &= ~EDP_FORCE_VDD;
1945
1946         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1947         pp_stat_reg = _pp_stat_reg(intel_dp);
1948
1949         I915_WRITE(pp_ctrl_reg, pp);
1950         POSTING_READ(pp_ctrl_reg);
1951
1952         /* Make sure sequencer is idle before allowing subsequent activity */
1953         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1954         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1955
1956         if ((pp & PANEL_POWER_ON) == 0)
1957                 intel_dp->panel_power_off_time = ktime_get_boottime();
1958
1959         power_domain = intel_display_port_aux_power_domain(intel_encoder);
1960         intel_display_power_put(dev_priv, power_domain);
1961 }
1962
1963 static void edp_panel_vdd_work(struct work_struct *__work)
1964 {
1965         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1966                                                  struct intel_dp, panel_vdd_work);
1967
1968         pps_lock(intel_dp);
1969         if (!intel_dp->want_panel_vdd)
1970                 edp_panel_vdd_off_sync(intel_dp);
1971         pps_unlock(intel_dp);
1972 }
1973
1974 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1975 {
1976         unsigned long delay;
1977
1978         /*
1979          * Queue the timer to fire a long time from now (relative to the power
1980          * down delay) to keep the panel power up across a sequence of
1981          * operations.
1982          */
1983         delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1984         schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1985 }
1986
1987 /*
1988  * Must be paired with edp_panel_vdd_on().
1989  * Must hold pps_mutex around the whole on/off sequence.
1990  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1991  */
1992 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1993 {
1994         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1995
1996         lockdep_assert_held(&dev_priv->pps_mutex);
1997
1998         if (!is_edp(intel_dp))
1999                 return;
2000
2001         I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2002              port_name(dp_to_dig_port(intel_dp)->port));
2003
2004         intel_dp->want_panel_vdd = false;
2005
2006         if (sync)
2007                 edp_panel_vdd_off_sync(intel_dp);
2008         else
2009                 edp_panel_vdd_schedule_off(intel_dp);
2010 }
2011
2012 static void edp_panel_on(struct intel_dp *intel_dp)
2013 {
2014         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2015         struct drm_i915_private *dev_priv = to_i915(dev);
2016         u32 pp;
2017         i915_reg_t pp_ctrl_reg;
2018
2019         lockdep_assert_held(&dev_priv->pps_mutex);
2020
2021         if (!is_edp(intel_dp))
2022                 return;
2023
2024         DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2025                       port_name(dp_to_dig_port(intel_dp)->port));
2026
2027         if (WARN(edp_have_panel_power(intel_dp),
2028                  "eDP port %c panel power already on\n",
2029                  port_name(dp_to_dig_port(intel_dp)->port)))
2030                 return;
2031
2032         wait_panel_power_cycle(intel_dp);
2033
2034         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2035         pp = ironlake_get_pp_control(intel_dp);
2036         if (IS_GEN5(dev)) {
2037                 /* ILK workaround: disable reset around power sequence */
2038                 pp &= ~PANEL_POWER_RESET;
2039                 I915_WRITE(pp_ctrl_reg, pp);
2040                 POSTING_READ(pp_ctrl_reg);
2041         }
2042
2043         pp |= PANEL_POWER_ON;
2044         if (!IS_GEN5(dev))
2045                 pp |= PANEL_POWER_RESET;
2046
2047         I915_WRITE(pp_ctrl_reg, pp);
2048         POSTING_READ(pp_ctrl_reg);
2049
2050         wait_panel_on(intel_dp);
2051         intel_dp->last_power_on = jiffies;
2052
2053         if (IS_GEN5(dev)) {
2054                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2055                 I915_WRITE(pp_ctrl_reg, pp);
2056                 POSTING_READ(pp_ctrl_reg);
2057         }
2058 }
2059
2060 void intel_edp_panel_on(struct intel_dp *intel_dp)
2061 {
2062         if (!is_edp(intel_dp))
2063                 return;
2064
2065         pps_lock(intel_dp);
2066         edp_panel_on(intel_dp);
2067         pps_unlock(intel_dp);
2068 }
2069
2070
2071 static void edp_panel_off(struct intel_dp *intel_dp)
2072 {
2073         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2074         struct intel_encoder *intel_encoder = &intel_dig_port->base;
2075         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2076         struct drm_i915_private *dev_priv = to_i915(dev);
2077         enum intel_display_power_domain power_domain;
2078         u32 pp;
2079         i915_reg_t pp_ctrl_reg;
2080
2081         lockdep_assert_held(&dev_priv->pps_mutex);
2082
2083         if (!is_edp(intel_dp))
2084                 return;
2085
2086         DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2087                       port_name(dp_to_dig_port(intel_dp)->port));
2088
2089         WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2090              port_name(dp_to_dig_port(intel_dp)->port));
2091
2092         pp = ironlake_get_pp_control(intel_dp);
2093         /* We need to switch off panel power _and_ force vdd, for otherwise some
2094          * panels get very unhappy and cease to work. */
2095         pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2096                 EDP_BLC_ENABLE);
2097
2098         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2099
2100         intel_dp->want_panel_vdd = false;
2101
2102         I915_WRITE(pp_ctrl_reg, pp);
2103         POSTING_READ(pp_ctrl_reg);
2104
2105         intel_dp->panel_power_off_time = ktime_get_boottime();
2106         wait_panel_off(intel_dp);
2107
2108         /* We got a reference when we enabled the VDD. */
2109         power_domain = intel_display_port_aux_power_domain(intel_encoder);
2110         intel_display_power_put(dev_priv, power_domain);
2111 }
2112
2113 void intel_edp_panel_off(struct intel_dp *intel_dp)
2114 {
2115         if (!is_edp(intel_dp))
2116                 return;
2117
2118         pps_lock(intel_dp);
2119         edp_panel_off(intel_dp);
2120         pps_unlock(intel_dp);
2121 }
2122
2123 /* Enable backlight in the panel power control. */
2124 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2125 {
2126         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2127         struct drm_device *dev = intel_dig_port->base.base.dev;
2128         struct drm_i915_private *dev_priv = to_i915(dev);
2129         u32 pp;
2130         i915_reg_t pp_ctrl_reg;
2131
2132         /*
2133          * If we enable the backlight right away following a panel power
2134          * on, we may see slight flicker as the panel syncs with the eDP
2135          * link.  So delay a bit to make sure the image is solid before
2136          * allowing it to appear.
2137          */
2138         wait_backlight_on(intel_dp);
2139
2140         pps_lock(intel_dp);
2141
2142         pp = ironlake_get_pp_control(intel_dp);
2143         pp |= EDP_BLC_ENABLE;
2144
2145         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2146
2147         I915_WRITE(pp_ctrl_reg, pp);
2148         POSTING_READ(pp_ctrl_reg);
2149
2150         pps_unlock(intel_dp);
2151 }
2152
2153 /* Enable backlight PWM and backlight PP control. */
2154 void intel_edp_backlight_on(struct intel_dp *intel_dp)
2155 {
2156         if (!is_edp(intel_dp))
2157                 return;
2158
2159         DRM_DEBUG_KMS("\n");
2160
2161         intel_panel_enable_backlight(intel_dp->attached_connector);
2162         _intel_edp_backlight_on(intel_dp);
2163 }
2164
2165 /* Disable backlight in the panel power control. */
2166 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2167 {
2168         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2169         struct drm_i915_private *dev_priv = to_i915(dev);
2170         u32 pp;
2171         i915_reg_t pp_ctrl_reg;
2172
2173         if (!is_edp(intel_dp))
2174                 return;
2175
2176         pps_lock(intel_dp);
2177
2178         pp = ironlake_get_pp_control(intel_dp);
2179         pp &= ~EDP_BLC_ENABLE;
2180
2181         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2182
2183         I915_WRITE(pp_ctrl_reg, pp);
2184         POSTING_READ(pp_ctrl_reg);
2185
2186         pps_unlock(intel_dp);
2187
2188         intel_dp->last_backlight_off = jiffies;
2189         edp_wait_backlight_off(intel_dp);
2190 }
2191
2192 /* Disable backlight PP control and backlight PWM. */
2193 void intel_edp_backlight_off(struct intel_dp *intel_dp)
2194 {
2195         if (!is_edp(intel_dp))
2196                 return;
2197
2198         DRM_DEBUG_KMS("\n");
2199
2200         _intel_edp_backlight_off(intel_dp);
2201         intel_panel_disable_backlight(intel_dp->attached_connector);
2202 }
2203
2204 /*
2205  * Hook for controlling the panel power control backlight through the bl_power
2206  * sysfs attribute. Take care to handle multiple calls.
2207  */
2208 static void intel_edp_backlight_power(struct intel_connector *connector,
2209                                       bool enable)
2210 {
2211         struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2212         bool is_enabled;
2213
2214         pps_lock(intel_dp);
2215         is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2216         pps_unlock(intel_dp);
2217
2218         if (is_enabled == enable)
2219                 return;
2220
2221         DRM_DEBUG_KMS("panel power control backlight %s\n",
2222                       enable ? "enable" : "disable");
2223
2224         if (enable)
2225                 _intel_edp_backlight_on(intel_dp);
2226         else
2227                 _intel_edp_backlight_off(intel_dp);
2228 }
2229
2230 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2231 {
2232         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2233         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2234         bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2235
2236         I915_STATE_WARN(cur_state != state,
2237                         "DP port %c state assertion failure (expected %s, current %s)\n",
2238                         port_name(dig_port->port),
2239                         onoff(state), onoff(cur_state));
2240 }
2241 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2242
2243 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2244 {
2245         bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2246
2247         I915_STATE_WARN(cur_state != state,
2248                         "eDP PLL state assertion failure (expected %s, current %s)\n",
2249                         onoff(state), onoff(cur_state));
2250 }
2251 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2252 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2253
2254 static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2255                                 struct intel_crtc_state *pipe_config)
2256 {
2257         struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2258         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2259
2260         assert_pipe_disabled(dev_priv, crtc->pipe);
2261         assert_dp_port_disabled(intel_dp);
2262         assert_edp_pll_disabled(dev_priv);
2263
2264         DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2265                       pipe_config->port_clock);
2266
2267         intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2268
2269         if (pipe_config->port_clock == 162000)
2270                 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2271         else
2272                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2273
2274         I915_WRITE(DP_A, intel_dp->DP);
2275         POSTING_READ(DP_A);
2276         udelay(500);
2277
2278         /*
2279          * [DevILK] Work around required when enabling DP PLL
2280          * while a pipe is enabled going to FDI:
2281          * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
2282          * 2. Program DP PLL enable
2283          */
2284         if (IS_GEN5(dev_priv))
2285                 intel_wait_for_vblank_if_active(&dev_priv->drm, !crtc->pipe);
2286
2287         intel_dp->DP |= DP_PLL_ENABLE;
2288
2289         I915_WRITE(DP_A, intel_dp->DP);
2290         POSTING_READ(DP_A);
2291         udelay(200);
2292 }
2293
2294 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2295 {
2296         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2297         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2298         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2299
2300         assert_pipe_disabled(dev_priv, crtc->pipe);
2301         assert_dp_port_disabled(intel_dp);
2302         assert_edp_pll_enabled(dev_priv);
2303
2304         DRM_DEBUG_KMS("disabling eDP PLL\n");
2305
2306         intel_dp->DP &= ~DP_PLL_ENABLE;
2307
2308         I915_WRITE(DP_A, intel_dp->DP);
2309         POSTING_READ(DP_A);
2310         udelay(200);
2311 }
2312
2313 /* If the sink supports it, try to set the power state appropriately */
2314 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2315 {
2316         int ret, i;
2317
2318         /* Should have a valid DPCD by this point */
2319         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2320                 return;
2321
2322         if (mode != DRM_MODE_DPMS_ON) {
2323                 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2324                                          DP_SET_POWER_D3);
2325         } else {
2326                 /*
2327                  * When turning on, we need to retry for 1ms to give the sink
2328                  * time to wake up.
2329                  */
2330                 for (i = 0; i < 3; i++) {
2331                         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2332                                                  DP_SET_POWER_D0);
2333                         if (ret == 1)
2334                                 break;
2335                         msleep(1);
2336                 }
2337         }
2338
2339         if (ret != 1)
2340                 DRM_DEBUG_KMS("failed to %s sink power state\n",
2341                               mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2342 }
2343
2344 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2345                                   enum pipe *pipe)
2346 {
2347         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2348         enum port port = dp_to_dig_port(intel_dp)->port;
2349         struct drm_device *dev = encoder->base.dev;
2350         struct drm_i915_private *dev_priv = to_i915(dev);
2351         enum intel_display_power_domain power_domain;
2352         u32 tmp;
2353         bool ret;
2354
2355         power_domain = intel_display_port_power_domain(encoder);
2356         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2357                 return false;
2358
2359         ret = false;
2360
2361         tmp = I915_READ(intel_dp->output_reg);
2362
2363         if (!(tmp & DP_PORT_EN))
2364                 goto out;
2365
2366         if (IS_GEN7(dev) && port == PORT_A) {
2367                 *pipe = PORT_TO_PIPE_CPT(tmp);
2368         } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
2369                 enum pipe p;
2370
2371                 for_each_pipe(dev_priv, p) {
2372                         u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2373                         if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2374                                 *pipe = p;
2375                                 ret = true;
2376
2377                                 goto out;
2378                         }
2379                 }
2380
2381                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2382                               i915_mmio_reg_offset(intel_dp->output_reg));
2383         } else if (IS_CHERRYVIEW(dev)) {
2384                 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2385         } else {
2386                 *pipe = PORT_TO_PIPE(tmp);
2387         }
2388
2389         ret = true;
2390
2391 out:
2392         intel_display_power_put(dev_priv, power_domain);
2393
2394         return ret;
2395 }
2396
2397 static void intel_dp_get_config(struct intel_encoder *encoder,
2398                                 struct intel_crtc_state *pipe_config)
2399 {
2400         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2401         u32 tmp, flags = 0;
2402         struct drm_device *dev = encoder->base.dev;
2403         struct drm_i915_private *dev_priv = to_i915(dev);
2404         enum port port = dp_to_dig_port(intel_dp)->port;
2405         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2406
2407         tmp = I915_READ(intel_dp->output_reg);
2408
2409         pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2410
2411         if (HAS_PCH_CPT(dev) && port != PORT_A) {
2412                 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2413
2414                 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2415                         flags |= DRM_MODE_FLAG_PHSYNC;
2416                 else
2417                         flags |= DRM_MODE_FLAG_NHSYNC;
2418
2419                 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2420                         flags |= DRM_MODE_FLAG_PVSYNC;
2421                 else
2422                         flags |= DRM_MODE_FLAG_NVSYNC;
2423         } else {
2424                 if (tmp & DP_SYNC_HS_HIGH)
2425                         flags |= DRM_MODE_FLAG_PHSYNC;
2426                 else
2427                         flags |= DRM_MODE_FLAG_NHSYNC;
2428
2429                 if (tmp & DP_SYNC_VS_HIGH)
2430                         flags |= DRM_MODE_FLAG_PVSYNC;
2431                 else
2432                         flags |= DRM_MODE_FLAG_NVSYNC;
2433         }
2434
2435         pipe_config->base.adjusted_mode.flags |= flags;
2436
2437         if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2438             !IS_CHERRYVIEW(dev) && tmp & DP_COLOR_RANGE_16_235)
2439                 pipe_config->limited_color_range = true;
2440
2441         pipe_config->lane_count =
2442                 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2443
2444         intel_dp_get_m_n(crtc, pipe_config);
2445
2446         if (port == PORT_A) {
2447                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2448                         pipe_config->port_clock = 162000;
2449                 else
2450                         pipe_config->port_clock = 270000;
2451         }
2452
2453         pipe_config->base.adjusted_mode.crtc_clock =
2454                 intel_dotclock_calculate(pipe_config->port_clock,
2455                                          &pipe_config->dp_m_n);
2456
2457         if (is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
2458             pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
2459                 /*
2460                  * This is a big fat ugly hack.
2461                  *
2462                  * Some machines in UEFI boot mode provide us a VBT that has 18
2463                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2464                  * unknown we fail to light up. Yet the same BIOS boots up with
2465                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2466                  * max, not what it tells us to use.
2467                  *
2468                  * Note: This will still be broken if the eDP panel is not lit
2469                  * up by the BIOS, and thus we can't get the mode at module
2470                  * load.
2471                  */
2472                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2473                               pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
2474                 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
2475         }
2476 }
2477
2478 static void intel_disable_dp(struct intel_encoder *encoder,
2479                              struct intel_crtc_state *old_crtc_state,
2480                              struct drm_connector_state *old_conn_state)
2481 {
2482         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2483         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2484
2485         if (old_crtc_state->has_audio)
2486                 intel_audio_codec_disable(encoder);
2487
2488         if (HAS_PSR(dev_priv) && !HAS_DDI(dev_priv))
2489                 intel_psr_disable(intel_dp);
2490
2491         /* Make sure the panel is off before trying to change the mode. But also
2492          * ensure that we have vdd while we switch off the panel. */
2493         intel_edp_panel_vdd_on(intel_dp);
2494         intel_edp_backlight_off(intel_dp);
2495         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2496         intel_edp_panel_off(intel_dp);
2497
2498         /* disable the port before the pipe on g4x */
2499         if (INTEL_GEN(dev_priv) < 5)
2500                 intel_dp_link_down(intel_dp);
2501 }
2502
2503 static void ilk_post_disable_dp(struct intel_encoder *encoder,
2504                                 struct intel_crtc_state *old_crtc_state,
2505                                 struct drm_connector_state *old_conn_state)
2506 {
2507         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2508         enum port port = dp_to_dig_port(intel_dp)->port;
2509
2510         intel_dp_link_down(intel_dp);
2511
2512         /* Only ilk+ has port A */
2513         if (port == PORT_A)
2514                 ironlake_edp_pll_off(intel_dp);
2515 }
2516
2517 static void vlv_post_disable_dp(struct intel_encoder *encoder,
2518                                 struct intel_crtc_state *old_crtc_state,
2519                                 struct drm_connector_state *old_conn_state)
2520 {
2521         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2522
2523         intel_dp_link_down(intel_dp);
2524 }
2525
2526 static void chv_post_disable_dp(struct intel_encoder *encoder,
2527                                 struct intel_crtc_state *old_crtc_state,
2528                                 struct drm_connector_state *old_conn_state)
2529 {
2530         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2531         struct drm_device *dev = encoder->base.dev;
2532         struct drm_i915_private *dev_priv = to_i915(dev);
2533
2534         intel_dp_link_down(intel_dp);
2535
2536         mutex_lock(&dev_priv->sb_lock);
2537
2538         /* Assert data lane reset */
2539         chv_data_lane_soft_reset(encoder, true);
2540
2541         mutex_unlock(&dev_priv->sb_lock);
2542 }
2543
2544 static void
2545 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2546                          uint32_t *DP,
2547                          uint8_t dp_train_pat)
2548 {
2549         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2550         struct drm_device *dev = intel_dig_port->base.base.dev;
2551         struct drm_i915_private *dev_priv = to_i915(dev);
2552         enum port port = intel_dig_port->port;
2553
2554         if (dp_train_pat & DP_TRAINING_PATTERN_MASK)
2555                 DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
2556                               dp_train_pat & DP_TRAINING_PATTERN_MASK);
2557
2558         if (HAS_DDI(dev)) {
2559                 uint32_t temp = I915_READ(DP_TP_CTL(port));
2560
2561                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2562                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2563                 else
2564                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2565
2566                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2567                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2568                 case DP_TRAINING_PATTERN_DISABLE:
2569                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2570
2571                         break;
2572                 case DP_TRAINING_PATTERN_1:
2573                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2574                         break;
2575                 case DP_TRAINING_PATTERN_2:
2576                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2577                         break;
2578                 case DP_TRAINING_PATTERN_3:
2579                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2580                         break;
2581                 }
2582                 I915_WRITE(DP_TP_CTL(port), temp);
2583
2584         } else if ((IS_GEN7(dev) && port == PORT_A) ||
2585                    (HAS_PCH_CPT(dev) && port != PORT_A)) {
2586                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2587
2588                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2589                 case DP_TRAINING_PATTERN_DISABLE:
2590                         *DP |= DP_LINK_TRAIN_OFF_CPT;
2591                         break;
2592                 case DP_TRAINING_PATTERN_1:
2593                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2594                         break;
2595                 case DP_TRAINING_PATTERN_2:
2596                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2597                         break;
2598                 case DP_TRAINING_PATTERN_3:
2599                         DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2600                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2601                         break;
2602                 }
2603
2604         } else {
2605                 if (IS_CHERRYVIEW(dev))
2606                         *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2607                 else
2608                         *DP &= ~DP_LINK_TRAIN_MASK;
2609
2610                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2611                 case DP_TRAINING_PATTERN_DISABLE:
2612                         *DP |= DP_LINK_TRAIN_OFF;
2613                         break;
2614                 case DP_TRAINING_PATTERN_1:
2615                         *DP |= DP_LINK_TRAIN_PAT_1;
2616                         break;
2617                 case DP_TRAINING_PATTERN_2:
2618                         *DP |= DP_LINK_TRAIN_PAT_2;
2619                         break;
2620                 case DP_TRAINING_PATTERN_3:
2621                         if (IS_CHERRYVIEW(dev)) {
2622                                 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2623                         } else {
2624                                 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2625                                 *DP |= DP_LINK_TRAIN_PAT_2;
2626                         }
2627                         break;
2628                 }
2629         }
2630 }
2631
2632 static void intel_dp_enable_port(struct intel_dp *intel_dp,
2633                                  struct intel_crtc_state *old_crtc_state)
2634 {
2635         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2636         struct drm_i915_private *dev_priv = to_i915(dev);
2637
2638         /* enable with pattern 1 (as per spec) */
2639
2640         intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
2641
2642         /*
2643          * Magic for VLV/CHV. We _must_ first set up the register
2644          * without actually enabling the port, and then do another
2645          * write to enable the port. Otherwise link training will
2646          * fail when the power sequencer is freshly used for this port.
2647          */
2648         intel_dp->DP |= DP_PORT_EN;
2649         if (old_crtc_state->has_audio)
2650                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2651
2652         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2653         POSTING_READ(intel_dp->output_reg);
2654 }
2655
2656 static void intel_enable_dp(struct intel_encoder *encoder,
2657                             struct intel_crtc_state *pipe_config)
2658 {
2659         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2660         struct drm_device *dev = encoder->base.dev;
2661         struct drm_i915_private *dev_priv = to_i915(dev);
2662         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2663         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2664         enum pipe pipe = crtc->pipe;
2665
2666         if (WARN_ON(dp_reg & DP_PORT_EN))
2667                 return;
2668
2669         pps_lock(intel_dp);
2670
2671         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2672                 vlv_init_panel_power_sequencer(intel_dp);
2673
2674         intel_dp_enable_port(intel_dp, pipe_config);
2675
2676         edp_panel_vdd_on(intel_dp);
2677         edp_panel_on(intel_dp);
2678         edp_panel_vdd_off(intel_dp, true);
2679
2680         pps_unlock(intel_dp);
2681
2682         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
2683                 unsigned int lane_mask = 0x0;
2684
2685                 if (IS_CHERRYVIEW(dev))
2686                         lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
2687
2688                 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2689                                     lane_mask);
2690         }
2691
2692         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2693         intel_dp_start_link_train(intel_dp);
2694         intel_dp_stop_link_train(intel_dp);
2695
2696         if (pipe_config->has_audio) {
2697                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2698                                  pipe_name(pipe));
2699                 intel_audio_codec_enable(encoder);
2700         }
2701 }
2702
2703 static void g4x_enable_dp(struct intel_encoder *encoder,
2704                           struct intel_crtc_state *pipe_config,
2705                           struct drm_connector_state *conn_state)
2706 {
2707         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2708
2709         intel_enable_dp(encoder, pipe_config);
2710         intel_edp_backlight_on(intel_dp);
2711 }
2712
2713 static void vlv_enable_dp(struct intel_encoder *encoder,
2714                           struct intel_crtc_state *pipe_config,
2715                           struct drm_connector_state *conn_state)
2716 {
2717         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2718
2719         intel_edp_backlight_on(intel_dp);
2720         intel_psr_enable(intel_dp);
2721 }
2722
2723 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
2724                               struct intel_crtc_state *pipe_config,
2725                               struct drm_connector_state *conn_state)
2726 {
2727         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2728         enum port port = dp_to_dig_port(intel_dp)->port;
2729
2730         intel_dp_prepare(encoder, pipe_config);
2731
2732         /* Only ilk+ has port A */
2733         if (port == PORT_A)
2734                 ironlake_edp_pll_on(intel_dp, pipe_config);
2735 }
2736
2737 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2738 {
2739         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2740         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
2741         enum pipe pipe = intel_dp->pps_pipe;
2742         i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
2743
2744         edp_panel_vdd_off_sync(intel_dp);
2745
2746         /*
2747          * VLV seems to get confused when multiple power seqeuencers
2748          * have the same port selected (even if only one has power/vdd
2749          * enabled). The failure manifests as vlv_wait_port_ready() failing
2750          * CHV on the other hand doesn't seem to mind having the same port
2751          * selected in multiple power seqeuencers, but let's clear the
2752          * port select always when logically disconnecting a power sequencer
2753          * from a port.
2754          */
2755         DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2756                       pipe_name(pipe), port_name(intel_dig_port->port));
2757         I915_WRITE(pp_on_reg, 0);
2758         POSTING_READ(pp_on_reg);
2759
2760         intel_dp->pps_pipe = INVALID_PIPE;
2761 }
2762
2763 static void vlv_steal_power_sequencer(struct drm_device *dev,
2764                                       enum pipe pipe)
2765 {
2766         struct drm_i915_private *dev_priv = to_i915(dev);
2767         struct intel_encoder *encoder;
2768
2769         lockdep_assert_held(&dev_priv->pps_mutex);
2770
2771         if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2772                 return;
2773
2774         for_each_intel_encoder(dev, encoder) {
2775                 struct intel_dp *intel_dp;
2776                 enum port port;
2777
2778                 if (encoder->type != INTEL_OUTPUT_EDP)
2779                         continue;
2780
2781                 intel_dp = enc_to_intel_dp(&encoder->base);
2782                 port = dp_to_dig_port(intel_dp)->port;
2783
2784                 if (intel_dp->pps_pipe != pipe)
2785                         continue;
2786
2787                 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2788                               pipe_name(pipe), port_name(port));
2789
2790                 WARN(encoder->base.crtc,
2791                      "stealing pipe %c power sequencer from active eDP port %c\n",
2792                      pipe_name(pipe), port_name(port));
2793
2794                 /* make sure vdd is off before we steal it */
2795                 vlv_detach_power_sequencer(intel_dp);
2796         }
2797 }
2798
2799 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2800 {
2801         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2802         struct intel_encoder *encoder = &intel_dig_port->base;
2803         struct drm_device *dev = encoder->base.dev;
2804         struct drm_i915_private *dev_priv = to_i915(dev);
2805         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2806
2807         lockdep_assert_held(&dev_priv->pps_mutex);
2808
2809         if (!is_edp(intel_dp))
2810                 return;
2811
2812         if (intel_dp->pps_pipe == crtc->pipe)
2813                 return;
2814
2815         /*
2816          * If another power sequencer was being used on this
2817          * port previously make sure to turn off vdd there while
2818          * we still have control of it.
2819          */
2820         if (intel_dp->pps_pipe != INVALID_PIPE)
2821                 vlv_detach_power_sequencer(intel_dp);
2822
2823         /*
2824          * We may be stealing the power
2825          * sequencer from another port.
2826          */
2827         vlv_steal_power_sequencer(dev, crtc->pipe);
2828
2829         /* now it's all ours */
2830         intel_dp->pps_pipe = crtc->pipe;
2831
2832         DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2833                       pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2834
2835         /* init power sequencer on this pipe and port */
2836         intel_dp_init_panel_power_sequencer(dev, intel_dp);
2837         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2838 }
2839
2840 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
2841                               struct intel_crtc_state *pipe_config,
2842                               struct drm_connector_state *conn_state)
2843 {
2844         vlv_phy_pre_encoder_enable(encoder);
2845
2846         intel_enable_dp(encoder, pipe_config);
2847 }
2848
2849 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
2850                                   struct intel_crtc_state *pipe_config,
2851                                   struct drm_connector_state *conn_state)
2852 {
2853         intel_dp_prepare(encoder, pipe_config);
2854
2855         vlv_phy_pre_pll_enable(encoder);
2856 }
2857
2858 static void chv_pre_enable_dp(struct intel_encoder *encoder,
2859                               struct intel_crtc_state *pipe_config,
2860                               struct drm_connector_state *conn_state)
2861 {
2862         chv_phy_pre_encoder_enable(encoder);
2863
2864         intel_enable_dp(encoder, pipe_config);
2865
2866         /* Second common lane will stay alive on its own now */
2867         chv_phy_release_cl2_override(encoder);
2868 }
2869
2870 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
2871                                   struct intel_crtc_state *pipe_config,
2872                                   struct drm_connector_state *conn_state)
2873 {
2874         intel_dp_prepare(encoder, pipe_config);
2875
2876         chv_phy_pre_pll_enable(encoder);
2877 }
2878
2879 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
2880                                     struct intel_crtc_state *pipe_config,
2881                                     struct drm_connector_state *conn_state)
2882 {
2883         chv_phy_post_pll_disable(encoder);
2884 }
2885
2886 /*
2887  * Fetch AUX CH registers 0x202 - 0x207 which contain
2888  * link status information
2889  */
2890 bool
2891 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2892 {
2893         return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
2894                                 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2895 }
2896
2897 /* These are source-specific values. */
2898 uint8_t
2899 intel_dp_voltage_max(struct intel_dp *intel_dp)
2900 {
2901         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2902         struct drm_i915_private *dev_priv = to_i915(dev);
2903         enum port port = dp_to_dig_port(intel_dp)->port;
2904
2905         if (IS_BROXTON(dev))
2906                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2907         else if (INTEL_INFO(dev)->gen >= 9) {
2908                 if (dev_priv->vbt.edp.low_vswing && port == PORT_A)
2909                         return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2910                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2911         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2912                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2913         else if (IS_GEN7(dev) && port == PORT_A)
2914                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2915         else if (HAS_PCH_CPT(dev) && port != PORT_A)
2916                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2917         else
2918                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2919 }
2920
2921 uint8_t
2922 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2923 {
2924         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2925         enum port port = dp_to_dig_port(intel_dp)->port;
2926
2927         if (INTEL_INFO(dev)->gen >= 9) {
2928                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2929                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2930                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
2931                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2932                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
2933                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2934                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
2935                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2936                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
2937                 default:
2938                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
2939                 }
2940         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2941                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2942                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2943                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
2944                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2945                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
2946                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2947                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
2948                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2949                 default:
2950                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
2951                 }
2952         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
2953                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2954                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2955                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
2956                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2957                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
2958                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2959                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
2960                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2961                 default:
2962                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
2963                 }
2964         } else if (IS_GEN7(dev) && port == PORT_A) {
2965                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2966                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2967                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
2968                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2969                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2970                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
2971                 default:
2972                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
2973                 }
2974         } else {
2975                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2976                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2977                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
2978                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2979                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
2980                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2981                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
2982                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2983                 default:
2984                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
2985                 }
2986         }
2987 }
2988
2989 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
2990 {
2991         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
2992         unsigned long demph_reg_value, preemph_reg_value,
2993                 uniqtranscale_reg_value;
2994         uint8_t train_set = intel_dp->train_set[0];
2995
2996         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2997         case DP_TRAIN_PRE_EMPH_LEVEL_0:
2998                 preemph_reg_value = 0x0004000;
2999                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3000                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3001                         demph_reg_value = 0x2B405555;
3002                         uniqtranscale_reg_value = 0x552AB83A;
3003                         break;
3004                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3005                         demph_reg_value = 0x2B404040;
3006                         uniqtranscale_reg_value = 0x5548B83A;
3007                         break;
3008                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3009                         demph_reg_value = 0x2B245555;
3010                         uniqtranscale_reg_value = 0x5560B83A;
3011                         break;
3012                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3013                         demph_reg_value = 0x2B405555;
3014                         uniqtranscale_reg_value = 0x5598DA3A;
3015                         break;
3016                 default:
3017                         return 0;
3018                 }
3019                 break;
3020         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3021                 preemph_reg_value = 0x0002000;
3022                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3023                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3024                         demph_reg_value = 0x2B404040;
3025                         uniqtranscale_reg_value = 0x5552B83A;
3026                         break;
3027                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3028                         demph_reg_value = 0x2B404848;
3029                         uniqtranscale_reg_value = 0x5580B83A;
3030                         break;
3031                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3032                         demph_reg_value = 0x2B404040;
3033                         uniqtranscale_reg_value = 0x55ADDA3A;
3034                         break;
3035                 default:
3036                         return 0;
3037                 }
3038                 break;
3039         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3040                 preemph_reg_value = 0x0000000;
3041                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3042                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3043                         demph_reg_value = 0x2B305555;
3044                         uniqtranscale_reg_value = 0x5570B83A;
3045                         break;
3046                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3047                         demph_reg_value = 0x2B2B4040;
3048                         uniqtranscale_reg_value = 0x55ADDA3A;
3049                         break;
3050                 default:
3051                         return 0;
3052                 }
3053                 break;
3054         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3055                 preemph_reg_value = 0x0006000;
3056                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3057                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3058                         demph_reg_value = 0x1B405555;
3059                         uniqtranscale_reg_value = 0x55ADDA3A;
3060                         break;
3061                 default:
3062                         return 0;
3063                 }
3064                 break;
3065         default:
3066                 return 0;
3067         }
3068
3069         vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3070                                  uniqtranscale_reg_value, 0);
3071
3072         return 0;
3073 }
3074
3075 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3076 {
3077         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3078         u32 deemph_reg_value, margin_reg_value;
3079         bool uniq_trans_scale = false;
3080         uint8_t train_set = intel_dp->train_set[0];
3081
3082         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3083         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3084                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3085                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3086                         deemph_reg_value = 128;
3087                         margin_reg_value = 52;
3088                         break;
3089                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3090                         deemph_reg_value = 128;
3091                         margin_reg_value = 77;
3092                         break;
3093                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3094                         deemph_reg_value = 128;
3095                         margin_reg_value = 102;
3096                         break;
3097                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3098                         deemph_reg_value = 128;
3099                         margin_reg_value = 154;
3100                         uniq_trans_scale = true;
3101                         break;
3102                 default:
3103                         return 0;
3104                 }
3105                 break;
3106         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3107                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3108                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3109                         deemph_reg_value = 85;
3110                         margin_reg_value = 78;
3111                         break;
3112                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3113                         deemph_reg_value = 85;
3114                         margin_reg_value = 116;
3115                         break;
3116                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3117                         deemph_reg_value = 85;
3118                         margin_reg_value = 154;
3119                         break;
3120                 default:
3121                         return 0;
3122                 }
3123                 break;
3124         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3125                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3126                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3127                         deemph_reg_value = 64;
3128                         margin_reg_value = 104;
3129                         break;
3130                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3131                         deemph_reg_value = 64;
3132                         margin_reg_value = 154;
3133                         break;
3134                 default:
3135                         return 0;
3136                 }
3137                 break;
3138         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3139                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3140                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3141                         deemph_reg_value = 43;
3142                         margin_reg_value = 154;
3143                         break;
3144                 default:
3145                         return 0;
3146                 }
3147                 break;
3148         default:
3149                 return 0;
3150         }
3151
3152         chv_set_phy_signal_level(encoder, deemph_reg_value,
3153                                  margin_reg_value, uniq_trans_scale);
3154
3155         return 0;
3156 }
3157
3158 static uint32_t
3159 gen4_signal_levels(uint8_t train_set)
3160 {
3161         uint32_t        signal_levels = 0;
3162
3163         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3164         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3165         default:
3166                 signal_levels |= DP_VOLTAGE_0_4;
3167                 break;
3168         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3169                 signal_levels |= DP_VOLTAGE_0_6;
3170                 break;
3171         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3172                 signal_levels |= DP_VOLTAGE_0_8;
3173                 break;
3174         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3175                 signal_levels |= DP_VOLTAGE_1_2;
3176                 break;
3177         }
3178         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3179         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3180         default:
3181                 signal_levels |= DP_PRE_EMPHASIS_0;
3182                 break;
3183         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3184                 signal_levels |= DP_PRE_EMPHASIS_3_5;
3185                 break;
3186         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3187                 signal_levels |= DP_PRE_EMPHASIS_6;
3188                 break;
3189         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3190                 signal_levels |= DP_PRE_EMPHASIS_9_5;
3191                 break;
3192         }
3193         return signal_levels;
3194 }
3195
3196 /* Gen6's DP voltage swing and pre-emphasis control */
3197 static uint32_t
3198 gen6_edp_signal_levels(uint8_t train_set)
3199 {
3200         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3201                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3202         switch (signal_levels) {
3203         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3204         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3205                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3206         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3207                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3208         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3209         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3210                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3211         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3212         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3213                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3214         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3215         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3216                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3217         default:
3218                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3219                               "0x%x\n", signal_levels);
3220                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3221         }
3222 }
3223
3224 /* Gen7's DP voltage swing and pre-emphasis control */
3225 static uint32_t
3226 gen7_edp_signal_levels(uint8_t train_set)
3227 {
3228         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3229                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3230         switch (signal_levels) {
3231         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3232                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3233         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3234                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3235         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3236                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3237
3238         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3239                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3240         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3241                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3242
3243         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3244                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3245         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3246                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3247
3248         default:
3249                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3250                               "0x%x\n", signal_levels);
3251                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3252         }
3253 }
3254
3255 void
3256 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3257 {
3258         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3259         enum port port = intel_dig_port->port;
3260         struct drm_device *dev = intel_dig_port->base.base.dev;
3261         struct drm_i915_private *dev_priv = to_i915(dev);
3262         uint32_t signal_levels, mask = 0;
3263         uint8_t train_set = intel_dp->train_set[0];
3264
3265         if (HAS_DDI(dev)) {
3266                 signal_levels = ddi_signal_levels(intel_dp);
3267
3268                 if (IS_BROXTON(dev))
3269                         signal_levels = 0;
3270                 else
3271                         mask = DDI_BUF_EMP_MASK;
3272         } else if (IS_CHERRYVIEW(dev)) {
3273                 signal_levels = chv_signal_levels(intel_dp);
3274         } else if (IS_VALLEYVIEW(dev)) {
3275                 signal_levels = vlv_signal_levels(intel_dp);
3276         } else if (IS_GEN7(dev) && port == PORT_A) {
3277                 signal_levels = gen7_edp_signal_levels(train_set);
3278                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3279         } else if (IS_GEN6(dev) && port == PORT_A) {
3280                 signal_levels = gen6_edp_signal_levels(train_set);
3281                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3282         } else {
3283                 signal_levels = gen4_signal_levels(train_set);
3284                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3285         }
3286
3287         if (mask)
3288                 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3289
3290         DRM_DEBUG_KMS("Using vswing level %d\n",
3291                 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3292         DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3293                 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3294                         DP_TRAIN_PRE_EMPHASIS_SHIFT);
3295
3296         intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3297
3298         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3299         POSTING_READ(intel_dp->output_reg);
3300 }
3301
3302 void
3303 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3304                                        uint8_t dp_train_pat)
3305 {
3306         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3307         struct drm_i915_private *dev_priv =
3308                 to_i915(intel_dig_port->base.base.dev);
3309
3310         _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3311
3312         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3313         POSTING_READ(intel_dp->output_reg);
3314 }
3315
3316 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3317 {
3318         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3319         struct drm_device *dev = intel_dig_port->base.base.dev;
3320         struct drm_i915_private *dev_priv = to_i915(dev);
3321         enum port port = intel_dig_port->port;
3322         uint32_t val;
3323
3324         if (!HAS_DDI(dev))
3325                 return;
3326
3327         val = I915_READ(DP_TP_CTL(port));
3328         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3329         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3330         I915_WRITE(DP_TP_CTL(port), val);
3331
3332         /*
3333          * On PORT_A we can have only eDP in SST mode. There the only reason
3334          * we need to set idle transmission mode is to work around a HW issue
3335          * where we enable the pipe while not in idle link-training mode.
3336          * In this case there is requirement to wait for a minimum number of
3337          * idle patterns to be sent.
3338          */
3339         if (port == PORT_A)
3340                 return;
3341
3342         if (intel_wait_for_register(dev_priv,DP_TP_STATUS(port),
3343                                     DP_TP_STATUS_IDLE_DONE,
3344                                     DP_TP_STATUS_IDLE_DONE,
3345                                     1))
3346                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3347 }
3348
3349 static void
3350 intel_dp_link_down(struct intel_dp *intel_dp)
3351 {
3352         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3353         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3354         enum port port = intel_dig_port->port;
3355         struct drm_device *dev = intel_dig_port->base.base.dev;
3356         struct drm_i915_private *dev_priv = to_i915(dev);
3357         uint32_t DP = intel_dp->DP;
3358
3359         if (WARN_ON(HAS_DDI(dev)))
3360                 return;
3361
3362         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3363                 return;
3364
3365         DRM_DEBUG_KMS("\n");
3366
3367         if ((IS_GEN7(dev) && port == PORT_A) ||
3368             (HAS_PCH_CPT(dev) && port != PORT_A)) {
3369                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3370                 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3371         } else {
3372                 if (IS_CHERRYVIEW(dev))
3373                         DP &= ~DP_LINK_TRAIN_MASK_CHV;
3374                 else
3375                         DP &= ~DP_LINK_TRAIN_MASK;
3376                 DP |= DP_LINK_TRAIN_PAT_IDLE;
3377         }
3378         I915_WRITE(intel_dp->output_reg, DP);
3379         POSTING_READ(intel_dp->output_reg);
3380
3381         DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3382         I915_WRITE(intel_dp->output_reg, DP);
3383         POSTING_READ(intel_dp->output_reg);
3384
3385         /*
3386          * HW workaround for IBX, we need to move the port
3387          * to transcoder A after disabling it to allow the
3388          * matching HDMI port to be enabled on transcoder A.
3389          */
3390         if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B && port != PORT_A) {
3391                 /*
3392                  * We get CPU/PCH FIFO underruns on the other pipe when
3393                  * doing the workaround. Sweep them under the rug.
3394                  */
3395                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3396                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3397
3398                 /* always enable with pattern 1 (as per spec) */
3399                 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3400                 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3401                 I915_WRITE(intel_dp->output_reg, DP);
3402                 POSTING_READ(intel_dp->output_reg);
3403
3404                 DP &= ~DP_PORT_EN;
3405                 I915_WRITE(intel_dp->output_reg, DP);
3406                 POSTING_READ(intel_dp->output_reg);
3407
3408                 intel_wait_for_vblank_if_active(&dev_priv->drm, PIPE_A);
3409                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3410                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3411         }
3412
3413         msleep(intel_dp->panel_power_down_delay);
3414
3415         intel_dp->DP = DP;
3416 }
3417
3418 static bool
3419 intel_dp_read_dpcd(struct intel_dp *intel_dp)
3420 {
3421         if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
3422                              sizeof(intel_dp->dpcd)) < 0)
3423                 return false; /* aux transfer failed */
3424
3425         DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3426
3427         return intel_dp->dpcd[DP_DPCD_REV] != 0;
3428 }
3429
3430 static bool
3431 intel_edp_init_dpcd(struct intel_dp *intel_dp)
3432 {
3433         struct drm_i915_private *dev_priv =
3434                 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
3435
3436         /* this function is meant to be called only once */
3437         WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
3438
3439         if (!intel_dp_read_dpcd(intel_dp))
3440                 return false;
3441
3442         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3443                 dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3444                         DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3445
3446         /* Check if the panel supports PSR */
3447         drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT,
3448                          intel_dp->psr_dpcd,
3449                          sizeof(intel_dp->psr_dpcd));
3450         if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3451                 dev_priv->psr.sink_support = true;
3452                 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3453         }
3454
3455         if (INTEL_GEN(dev_priv) >= 9 &&
3456             (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3457                 uint8_t frame_sync_cap;
3458
3459                 dev_priv->psr.sink_support = true;
3460                 drm_dp_dpcd_read(&intel_dp->aux,
3461                                  DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3462                                  &frame_sync_cap, 1);
3463                 dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3464                 /* PSR2 needs frame sync as well */
3465                 dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3466                 DRM_DEBUG_KMS("PSR2 %s on sink",
3467                               dev_priv->psr.psr2_support ? "supported" : "not supported");
3468         }
3469
3470         /* Read the eDP Display control capabilities registers */
3471         if ((intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3472             drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
3473                              intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd) ==
3474                              sizeof(intel_dp->edp_dpcd)))
3475                 DRM_DEBUG_KMS("EDP DPCD : %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
3476                               intel_dp->edp_dpcd);
3477
3478         /* Intermediate frequency support */
3479         if (intel_dp->edp_dpcd[0] >= 0x03) { /* eDp v1.4 or higher */
3480                 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3481                 int i;
3482
3483                 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
3484                                 sink_rates, sizeof(sink_rates));
3485
3486                 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3487                         int val = le16_to_cpu(sink_rates[i]);
3488
3489                         if (val == 0)
3490                                 break;
3491
3492                         /* Value read is in kHz while drm clock is saved in deca-kHz */
3493                         intel_dp->sink_rates[i] = (val * 200) / 10;
3494                 }
3495                 intel_dp->num_sink_rates = i;
3496         }
3497
3498         return true;
3499 }
3500
3501
3502 static bool
3503 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3504 {
3505         if (!intel_dp_read_dpcd(intel_dp))
3506                 return false;
3507
3508         if (drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT,
3509                              &intel_dp->sink_count, 1) < 0)
3510                 return false;
3511
3512         /*
3513          * Sink count can change between short pulse hpd hence
3514          * a member variable in intel_dp will track any changes
3515          * between short pulse interrupts.
3516          */
3517         intel_dp->sink_count = DP_GET_SINK_COUNT(intel_dp->sink_count);
3518
3519         /*
3520          * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
3521          * a dongle is present but no display. Unless we require to know
3522          * if a dongle is present or not, we don't need to update
3523          * downstream port information. So, an early return here saves
3524          * time from performing other operations which are not required.
3525          */
3526         if (!is_edp(intel_dp) && !intel_dp->sink_count)
3527                 return false;
3528
3529         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3530               DP_DWN_STRM_PORT_PRESENT))
3531                 return true; /* native DP sink */
3532
3533         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3534                 return true; /* no per-port downstream info */
3535
3536         if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3537                              intel_dp->downstream_ports,
3538                              DP_MAX_DOWNSTREAM_PORTS) < 0)
3539                 return false; /* downstream port status fetch failed */
3540
3541         return true;
3542 }
3543
3544 static void
3545 intel_dp_probe_oui(struct intel_dp *intel_dp)
3546 {
3547         u8 buf[3];
3548
3549         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3550                 return;
3551
3552         if (drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3553                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3554                               buf[0], buf[1], buf[2]);
3555
3556         if (drm_dp_dpcd_read(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3557                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3558                               buf[0], buf[1], buf[2]);
3559 }
3560
3561 static bool
3562 intel_dp_can_mst(struct intel_dp *intel_dp)
3563 {
3564         u8 buf[1];
3565
3566         if (!i915.enable_dp_mst)
3567                 return false;
3568
3569         if (!intel_dp->can_mst)
3570                 return false;
3571
3572         if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3573                 return false;
3574
3575         if (drm_dp_dpcd_read(&intel_dp->aux, DP_MSTM_CAP, buf, 1) != 1)
3576                 return false;
3577
3578         return buf[0] & DP_MST_CAP;
3579 }
3580
3581 static void
3582 intel_dp_configure_mst(struct intel_dp *intel_dp)
3583 {
3584         if (!i915.enable_dp_mst)
3585                 return;
3586
3587         if (!intel_dp->can_mst)
3588                 return;
3589
3590         intel_dp->is_mst = intel_dp_can_mst(intel_dp);
3591
3592         if (intel_dp->is_mst)
3593                 DRM_DEBUG_KMS("Sink is MST capable\n");
3594         else
3595                 DRM_DEBUG_KMS("Sink is not MST capable\n");
3596
3597         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
3598                                         intel_dp->is_mst);
3599 }
3600
3601 static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
3602 {
3603         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3604         struct drm_device *dev = dig_port->base.base.dev;
3605         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3606         u8 buf;
3607         int ret = 0;
3608         int count = 0;
3609         int attempts = 10;
3610
3611         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
3612                 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3613                 ret = -EIO;
3614                 goto out;
3615         }
3616
3617         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3618                                buf & ~DP_TEST_SINK_START) < 0) {
3619                 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3620                 ret = -EIO;
3621                 goto out;
3622         }
3623
3624         do {
3625                 intel_wait_for_vblank(dev, intel_crtc->pipe);
3626
3627                 if (drm_dp_dpcd_readb(&intel_dp->aux,
3628                                       DP_TEST_SINK_MISC, &buf) < 0) {
3629                         ret = -EIO;
3630                         goto out;
3631                 }
3632                 count = buf & DP_TEST_COUNT_MASK;
3633         } while (--attempts && count);
3634
3635         if (attempts == 0) {
3636                 DRM_DEBUG_KMS("TIMEOUT: Sink CRC counter is not zeroed after calculation is stopped\n");
3637                 ret = -ETIMEDOUT;
3638         }
3639
3640  out:
3641         hsw_enable_ips(intel_crtc);
3642         return ret;
3643 }
3644
3645 static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
3646 {
3647         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3648         struct drm_device *dev = dig_port->base.base.dev;
3649         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3650         u8 buf;
3651         int ret;
3652
3653         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3654                 return -EIO;
3655
3656         if (!(buf & DP_TEST_CRC_SUPPORTED))
3657                 return -ENOTTY;
3658
3659         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3660                 return -EIO;
3661
3662         if (buf & DP_TEST_SINK_START) {
3663                 ret = intel_dp_sink_crc_stop(intel_dp);
3664                 if (ret)
3665                         return ret;
3666         }
3667
3668         hsw_disable_ips(intel_crtc);
3669
3670         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3671                                buf | DP_TEST_SINK_START) < 0) {
3672                 hsw_enable_ips(intel_crtc);
3673                 return -EIO;
3674         }
3675
3676         intel_wait_for_vblank(dev, intel_crtc->pipe);
3677         return 0;
3678 }
3679
3680 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3681 {
3682         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3683         struct drm_device *dev = dig_port->base.base.dev;
3684         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3685         u8 buf;
3686         int count, ret;
3687         int attempts = 6;
3688
3689         ret = intel_dp_sink_crc_start(intel_dp);
3690         if (ret)
3691                 return ret;
3692
3693         do {
3694                 intel_wait_for_vblank(dev, intel_crtc->pipe);
3695
3696                 if (drm_dp_dpcd_readb(&intel_dp->aux,
3697                                       DP_TEST_SINK_MISC, &buf) < 0) {
3698                         ret = -EIO;
3699                         goto stop;
3700                 }
3701                 count = buf & DP_TEST_COUNT_MASK;
3702
3703         } while (--attempts && count == 0);
3704
3705         if (attempts == 0) {
3706                 DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
3707                 ret = -ETIMEDOUT;
3708                 goto stop;
3709         }
3710
3711         if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
3712                 ret = -EIO;
3713                 goto stop;
3714         }
3715
3716 stop:
3717         intel_dp_sink_crc_stop(intel_dp);
3718         return ret;
3719 }
3720
3721 static bool
3722 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3723 {
3724         return drm_dp_dpcd_read(&intel_dp->aux,
3725                                        DP_DEVICE_SERVICE_IRQ_VECTOR,
3726                                        sink_irq_vector, 1) == 1;
3727 }
3728
3729 static bool
3730 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3731 {
3732         int ret;
3733
3734         ret = drm_dp_dpcd_read(&intel_dp->aux,
3735                                              DP_SINK_COUNT_ESI,
3736                                              sink_irq_vector, 14);
3737         if (ret != 14)
3738                 return false;
3739
3740         return true;
3741 }
3742
3743 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
3744 {
3745         uint8_t test_result = DP_TEST_ACK;
3746         return test_result;
3747 }
3748
3749 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
3750 {
3751         uint8_t test_result = DP_TEST_NAK;
3752         return test_result;
3753 }
3754
3755 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
3756 {
3757         uint8_t test_result = DP_TEST_NAK;
3758         struct intel_connector *intel_connector = intel_dp->attached_connector;
3759         struct drm_connector *connector = &intel_connector->base;
3760
3761         if (intel_connector->detect_edid == NULL ||
3762             connector->edid_corrupt ||
3763             intel_dp->aux.i2c_defer_count > 6) {
3764                 /* Check EDID read for NACKs, DEFERs and corruption
3765                  * (DP CTS 1.2 Core r1.1)
3766                  *    4.2.2.4 : Failed EDID read, I2C_NAK
3767                  *    4.2.2.5 : Failed EDID read, I2C_DEFER
3768                  *    4.2.2.6 : EDID corruption detected
3769                  * Use failsafe mode for all cases
3770                  */
3771                 if (intel_dp->aux.i2c_nack_count > 0 ||
3772                         intel_dp->aux.i2c_defer_count > 0)
3773                         DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
3774                                       intel_dp->aux.i2c_nack_count,
3775                                       intel_dp->aux.i2c_defer_count);
3776                 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
3777         } else {
3778                 struct edid *block = intel_connector->detect_edid;
3779
3780                 /* We have to write the checksum
3781                  * of the last block read
3782                  */
3783                 block += intel_connector->detect_edid->extensions;
3784
3785                 if (!drm_dp_dpcd_write(&intel_dp->aux,
3786                                         DP_TEST_EDID_CHECKSUM,
3787                                         &block->checksum,
3788                                         1))
3789                         DRM_DEBUG_KMS("Failed to write EDID checksum\n");
3790
3791                 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
3792                 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
3793         }
3794
3795         /* Set test active flag here so userspace doesn't interrupt things */
3796         intel_dp->compliance_test_active = 1;
3797
3798         return test_result;
3799 }
3800
3801 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
3802 {
3803         uint8_t test_result = DP_TEST_NAK;
3804         return test_result;
3805 }
3806
3807 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
3808 {
3809         uint8_t response = DP_TEST_NAK;
3810         uint8_t rxdata = 0;
3811         int status = 0;
3812
3813         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
3814         if (status <= 0) {
3815                 DRM_DEBUG_KMS("Could not read test request from sink\n");
3816                 goto update_status;
3817         }
3818
3819         switch (rxdata) {
3820         case DP_TEST_LINK_TRAINING:
3821                 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
3822                 intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
3823                 response = intel_dp_autotest_link_training(intel_dp);
3824                 break;
3825         case DP_TEST_LINK_VIDEO_PATTERN:
3826                 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
3827                 intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
3828                 response = intel_dp_autotest_video_pattern(intel_dp);
3829                 break;
3830         case DP_TEST_LINK_EDID_READ:
3831                 DRM_DEBUG_KMS("EDID test requested\n");
3832                 intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
3833                 response = intel_dp_autotest_edid(intel_dp);
3834                 break;
3835         case DP_TEST_LINK_PHY_TEST_PATTERN:
3836                 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
3837                 intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
3838                 response = intel_dp_autotest_phy_pattern(intel_dp);
3839                 break;
3840         default:
3841                 DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
3842                 break;
3843         }
3844
3845 update_status:
3846         status = drm_dp_dpcd_write(&intel_dp->aux,
3847                                    DP_TEST_RESPONSE,
3848                                    &response, 1);
3849         if (status <= 0)
3850                 DRM_DEBUG_KMS("Could not write test response to sink\n");
3851 }
3852
3853 static int
3854 intel_dp_check_mst_status(struct intel_dp *intel_dp)
3855 {
3856         bool bret;
3857
3858         if (intel_dp->is_mst) {
3859                 u8 esi[16] = { 0 };
3860                 int ret = 0;
3861                 int retry;
3862                 bool handled;
3863                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3864 go_again:
3865                 if (bret == true) {
3866
3867                         /* check link status - esi[10] = 0x200c */
3868                         if (intel_dp->active_mst_links &&
3869                             !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3870                                 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3871                                 intel_dp_start_link_train(intel_dp);
3872                                 intel_dp_stop_link_train(intel_dp);
3873                         }
3874
3875                         DRM_DEBUG_KMS("got esi %3ph\n", esi);
3876                         ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3877
3878                         if (handled) {
3879                                 for (retry = 0; retry < 3; retry++) {
3880                                         int wret;
3881                                         wret = drm_dp_dpcd_write(&intel_dp->aux,
3882                                                                  DP_SINK_COUNT_ESI+1,
3883                                                                  &esi[1], 3);
3884                                         if (wret == 3) {
3885                                                 break;
3886                                         }
3887                                 }
3888
3889                                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3890                                 if (bret == true) {
3891                                         DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
3892                                         goto go_again;
3893                                 }
3894                         } else
3895                                 ret = 0;
3896
3897                         return ret;
3898                 } else {
3899                         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3900                         DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3901                         intel_dp->is_mst = false;
3902                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3903                         /* send a hotplug event */
3904                         drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
3905                 }
3906         }
3907         return -EINVAL;
3908 }
3909
3910 static void
3911 intel_dp_check_link_status(struct intel_dp *intel_dp)
3912 {
3913         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3914         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3915         u8 link_status[DP_LINK_STATUS_SIZE];
3916
3917         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3918
3919         if (!intel_dp_get_link_status(intel_dp, link_status)) {
3920                 DRM_ERROR("Failed to get link status\n");
3921                 return;
3922         }
3923
3924         if (!intel_encoder->base.crtc)
3925                 return;
3926
3927         if (!to_intel_crtc(intel_encoder->base.crtc)->active)
3928                 return;
3929
3930         /* if link training is requested we should perform it always */
3931         if ((intel_dp->compliance_test_type == DP_TEST_LINK_TRAINING) ||
3932             (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count))) {
3933                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3934                               intel_encoder->base.name);
3935                 intel_dp_start_link_train(intel_dp);
3936                 intel_dp_stop_link_train(intel_dp);
3937         }
3938 }
3939
3940 /*
3941  * According to DP spec
3942  * 5.1.2:
3943  *  1. Read DPCD
3944  *  2. Configure link according to Receiver Capabilities
3945  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
3946  *  4. Check link status on receipt of hot-plug interrupt
3947  *
3948  * intel_dp_short_pulse -  handles short pulse interrupts
3949  * when full detection is not required.
3950  * Returns %true if short pulse is handled and full detection
3951  * is NOT required and %false otherwise.
3952  */
3953 static bool
3954 intel_dp_short_pulse(struct intel_dp *intel_dp)
3955 {
3956         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3957         u8 sink_irq_vector = 0;
3958         u8 old_sink_count = intel_dp->sink_count;
3959         bool ret;
3960
3961         /*
3962          * Clearing compliance test variables to allow capturing
3963          * of values for next automated test request.
3964          */
3965         intel_dp->compliance_test_active = 0;
3966         intel_dp->compliance_test_type = 0;
3967         intel_dp->compliance_test_data = 0;
3968
3969         /*
3970          * Now read the DPCD to see if it's actually running
3971          * If the current value of sink count doesn't match with
3972          * the value that was stored earlier or dpcd read failed
3973          * we need to do full detection
3974          */
3975         ret = intel_dp_get_dpcd(intel_dp);
3976
3977         if ((old_sink_count != intel_dp->sink_count) || !ret) {
3978                 /* No need to proceed if we are going to do full detect */
3979                 return false;
3980         }
3981
3982         /* Try to read the source of the interrupt */
3983         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3984             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
3985             sink_irq_vector != 0) {
3986                 /* Clear interrupt source */
3987                 drm_dp_dpcd_writeb(&intel_dp->aux,
3988                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
3989                                    sink_irq_vector);
3990
3991                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3992                         DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
3993                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3994                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3995         }
3996
3997         drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
3998         intel_dp_check_link_status(intel_dp);
3999         drm_modeset_unlock(&dev->mode_config.connection_mutex);
4000
4001         return true;
4002 }
4003
4004 /* XXX this is probably wrong for multiple downstream ports */
4005 static enum drm_connector_status
4006 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4007 {
4008         uint8_t *dpcd = intel_dp->dpcd;
4009         uint8_t type;
4010
4011         if (!intel_dp_get_dpcd(intel_dp))
4012                 return connector_status_disconnected;
4013
4014         if (is_edp(intel_dp))
4015                 return connector_status_connected;
4016
4017         /* if there's no downstream port, we're done */
4018         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4019                 return connector_status_connected;
4020
4021         /* If we're HPD-aware, SINK_COUNT changes dynamically */
4022         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4023             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4024
4025                 return intel_dp->sink_count ?
4026                 connector_status_connected : connector_status_disconnected;
4027         }
4028
4029         if (intel_dp_can_mst(intel_dp))
4030                 return connector_status_connected;
4031
4032         /* If no HPD, poke DDC gently */
4033         if (drm_probe_ddc(&intel_dp->aux.ddc))
4034                 return connector_status_connected;
4035
4036         /* Well we tried, say unknown for unreliable port types */
4037         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4038                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4039                 if (type == DP_DS_PORT_TYPE_VGA ||
4040                     type == DP_DS_PORT_TYPE_NON_EDID)
4041                         return connector_status_unknown;
4042         } else {
4043                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4044                         DP_DWN_STRM_PORT_TYPE_MASK;
4045                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4046                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
4047                         return connector_status_unknown;
4048         }
4049
4050         /* Anything else is out of spec, warn and ignore */
4051         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4052         return connector_status_disconnected;
4053 }
4054
4055 static enum drm_connector_status
4056 edp_detect(struct intel_dp *intel_dp)
4057 {
4058         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4059         enum drm_connector_status status;
4060
4061         status = intel_panel_detect(dev);
4062         if (status == connector_status_unknown)
4063                 status = connector_status_connected;
4064
4065         return status;
4066 }
4067
4068 static bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
4069                                        struct intel_digital_port *port)
4070 {
4071         u32 bit;
4072
4073         switch (port->port) {
4074         case PORT_A:
4075                 return true;
4076         case PORT_B:
4077                 bit = SDE_PORTB_HOTPLUG;
4078                 break;
4079         case PORT_C:
4080                 bit = SDE_PORTC_HOTPLUG;
4081                 break;
4082         case PORT_D:
4083                 bit = SDE_PORTD_HOTPLUG;
4084                 break;
4085         default:
4086                 MISSING_CASE(port->port);
4087                 return false;
4088         }
4089
4090         return I915_READ(SDEISR) & bit;
4091 }
4092
4093 static bool cpt_digital_port_connected(struct drm_i915_private *dev_priv,
4094                                        struct intel_digital_port *port)
4095 {
4096         u32 bit;
4097
4098         switch (port->port) {
4099         case PORT_A:
4100                 return true;
4101         case PORT_B:
4102                 bit = SDE_PORTB_HOTPLUG_CPT;
4103                 break;
4104         case PORT_C:
4105                 bit = SDE_PORTC_HOTPLUG_CPT;
4106                 break;
4107         case PORT_D:
4108                 bit = SDE_PORTD_HOTPLUG_CPT;
4109                 break;
4110         case PORT_E:
4111                 bit = SDE_PORTE_HOTPLUG_SPT;
4112                 break;
4113         default:
4114                 MISSING_CASE(port->port);
4115                 return false;
4116         }
4117
4118         return I915_READ(SDEISR) & bit;
4119 }
4120
4121 static bool g4x_digital_port_connected(struct drm_i915_private *dev_priv,
4122                                        struct intel_digital_port *port)
4123 {
4124         u32 bit;
4125
4126         switch (port->port) {
4127         case PORT_B:
4128                 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4129                 break;
4130         case PORT_C:
4131                 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4132                 break;
4133         case PORT_D:
4134                 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4135                 break;
4136         default:
4137                 MISSING_CASE(port->port);
4138                 return false;
4139         }
4140
4141         return I915_READ(PORT_HOTPLUG_STAT) & bit;
4142 }
4143
4144 static bool gm45_digital_port_connected(struct drm_i915_private *dev_priv,
4145                                         struct intel_digital_port *port)
4146 {
4147         u32 bit;
4148
4149         switch (port->port) {
4150         case PORT_B:
4151                 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4152                 break;
4153         case PORT_C:
4154                 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4155                 break;
4156         case PORT_D:
4157                 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4158                 break;
4159         default:
4160                 MISSING_CASE(port->port);
4161                 return false;
4162         }
4163
4164         return I915_READ(PORT_HOTPLUG_STAT) & bit;
4165 }
4166
4167 static bool bxt_digital_port_connected(struct drm_i915_private *dev_priv,
4168                                        struct intel_digital_port *intel_dig_port)
4169 {
4170         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4171         enum port port;
4172         u32 bit;
4173
4174         intel_hpd_pin_to_port(intel_encoder->hpd_pin, &port);
4175         switch (port) {
4176         case PORT_A:
4177                 bit = BXT_DE_PORT_HP_DDIA;
4178                 break;
4179         case PORT_B:
4180                 bit = BXT_DE_PORT_HP_DDIB;
4181                 break;
4182         case PORT_C:
4183                 bit = BXT_DE_PORT_HP_DDIC;
4184                 break;
4185         default:
4186                 MISSING_CASE(port);
4187                 return false;
4188         }
4189
4190         return I915_READ(GEN8_DE_PORT_ISR) & bit;
4191 }
4192
4193 /*
4194  * intel_digital_port_connected - is the specified port connected?
4195  * @dev_priv: i915 private structure
4196  * @port: the port to test
4197  *
4198  * Return %true if @port is connected, %false otherwise.
4199  */
4200 bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
4201                                          struct intel_digital_port *port)
4202 {
4203         if (HAS_PCH_IBX(dev_priv))
4204                 return ibx_digital_port_connected(dev_priv, port);
4205         else if (HAS_PCH_SPLIT(dev_priv))
4206                 return cpt_digital_port_connected(dev_priv, port);
4207         else if (IS_BROXTON(dev_priv))
4208                 return bxt_digital_port_connected(dev_priv, port);
4209         else if (IS_GM45(dev_priv))
4210                 return gm45_digital_port_connected(dev_priv, port);
4211         else
4212                 return g4x_digital_port_connected(dev_priv, port);
4213 }
4214
4215 static struct edid *
4216 intel_dp_get_edid(struct intel_dp *intel_dp)
4217 {
4218         struct intel_connector *intel_connector = intel_dp->attached_connector;
4219
4220         /* use cached edid if we have one */
4221         if (intel_connector->edid) {
4222                 /* invalid edid */
4223                 if (IS_ERR(intel_connector->edid))
4224                         return NULL;
4225
4226                 return drm_edid_duplicate(intel_connector->edid);
4227         } else
4228                 return drm_get_edid(&intel_connector->base,
4229                                     &intel_dp->aux.ddc);
4230 }
4231
4232 static void
4233 intel_dp_set_edid(struct intel_dp *intel_dp)
4234 {
4235         struct intel_connector *intel_connector = intel_dp->attached_connector;
4236         struct edid *edid;
4237
4238         intel_dp_unset_edid(intel_dp);
4239         edid = intel_dp_get_edid(intel_dp);
4240         intel_connector->detect_edid = edid;
4241
4242         if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4243                 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4244         else
4245                 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4246 }
4247
4248 static void
4249 intel_dp_unset_edid(struct intel_dp *intel_dp)
4250 {
4251         struct intel_connector *intel_connector = intel_dp->attached_connector;
4252
4253         kfree(intel_connector->detect_edid);
4254         intel_connector->detect_edid = NULL;
4255
4256         intel_dp->has_audio = false;
4257 }
4258
4259 static void
4260 intel_dp_long_pulse(struct intel_connector *intel_connector)
4261 {
4262         struct drm_connector *connector = &intel_connector->base;
4263         struct intel_dp *intel_dp = intel_attached_dp(connector);
4264         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4265         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4266         struct drm_device *dev = connector->dev;
4267         enum drm_connector_status status;
4268         enum intel_display_power_domain power_domain;
4269         u8 sink_irq_vector = 0;
4270
4271         power_domain = intel_display_port_aux_power_domain(intel_encoder);
4272         intel_display_power_get(to_i915(dev), power_domain);
4273
4274         /* Can't disconnect eDP, but you can close the lid... */
4275         if (is_edp(intel_dp))
4276                 status = edp_detect(intel_dp);
4277         else if (intel_digital_port_connected(to_i915(dev),
4278                                               dp_to_dig_port(intel_dp)))
4279                 status = intel_dp_detect_dpcd(intel_dp);
4280         else
4281                 status = connector_status_disconnected;
4282
4283         if (status != connector_status_connected) {
4284                 intel_dp->compliance_test_active = 0;
4285                 intel_dp->compliance_test_type = 0;
4286                 intel_dp->compliance_test_data = 0;
4287
4288                 if (intel_dp->is_mst) {
4289                         DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4290                                       intel_dp->is_mst,
4291                                       intel_dp->mst_mgr.mst_state);
4292                         intel_dp->is_mst = false;
4293                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4294                                                         intel_dp->is_mst);
4295                 }
4296
4297                 goto out;
4298         }
4299
4300         if (intel_encoder->type != INTEL_OUTPUT_EDP)
4301                 intel_encoder->type = INTEL_OUTPUT_DP;
4302
4303         DRM_DEBUG_KMS("Display Port TPS3 support: source %s, sink %s\n",
4304                       yesno(intel_dp_source_supports_hbr2(intel_dp)),
4305                       yesno(drm_dp_tps3_supported(intel_dp->dpcd)));
4306
4307         intel_dp_print_rates(intel_dp);
4308
4309         intel_dp_probe_oui(intel_dp);
4310
4311         intel_dp_configure_mst(intel_dp);
4312
4313         if (intel_dp->is_mst) {
4314                 /*
4315                  * If we are in MST mode then this connector
4316                  * won't appear connected or have anything
4317                  * with EDID on it
4318                  */
4319                 status = connector_status_disconnected;
4320                 goto out;
4321         } else if (connector->status == connector_status_connected) {
4322                 /*
4323                  * If display was connected already and is still connected
4324                  * check links status, there has been known issues of
4325                  * link loss triggerring long pulse!!!!
4326                  */
4327                 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4328                 intel_dp_check_link_status(intel_dp);
4329                 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4330                 goto out;
4331         }
4332
4333         /*
4334          * Clearing NACK and defer counts to get their exact values
4335          * while reading EDID which are required by Compliance tests
4336          * 4.2.2.4 and 4.2.2.5
4337          */
4338         intel_dp->aux.i2c_nack_count = 0;
4339         intel_dp->aux.i2c_defer_count = 0;
4340
4341         intel_dp_set_edid(intel_dp);
4342
4343         status = connector_status_connected;
4344         intel_dp->detect_done = true;
4345
4346         /* Try to read the source of the interrupt */
4347         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4348             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
4349             sink_irq_vector != 0) {
4350                 /* Clear interrupt source */
4351                 drm_dp_dpcd_writeb(&intel_dp->aux,
4352                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
4353                                    sink_irq_vector);
4354
4355                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4356                         intel_dp_handle_test_request(intel_dp);
4357                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4358                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4359         }
4360
4361 out:
4362         if ((status != connector_status_connected) &&
4363             (intel_dp->is_mst == false))
4364                 intel_dp_unset_edid(intel_dp);
4365
4366         intel_display_power_put(to_i915(dev), power_domain);
4367         return;
4368 }
4369
4370 static enum drm_connector_status
4371 intel_dp_detect(struct drm_connector *connector, bool force)
4372 {
4373         struct intel_dp *intel_dp = intel_attached_dp(connector);
4374         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4375         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4376         struct intel_connector *intel_connector = to_intel_connector(connector);
4377
4378         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4379                       connector->base.id, connector->name);
4380
4381         if (intel_dp->is_mst) {
4382                 /* MST devices are disconnected from a monitor POV */
4383                 intel_dp_unset_edid(intel_dp);
4384                 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4385                         intel_encoder->type = INTEL_OUTPUT_DP;
4386                 return connector_status_disconnected;
4387         }
4388
4389         /* If full detect is not performed yet, do a full detect */
4390         if (!intel_dp->detect_done)
4391                 intel_dp_long_pulse(intel_dp->attached_connector);
4392
4393         intel_dp->detect_done = false;
4394
4395         if (is_edp(intel_dp) || intel_connector->detect_edid)
4396                 return connector_status_connected;
4397         else
4398                 return connector_status_disconnected;
4399 }
4400
4401 static void
4402 intel_dp_force(struct drm_connector *connector)
4403 {
4404         struct intel_dp *intel_dp = intel_attached_dp(connector);
4405         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4406         struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
4407         enum intel_display_power_domain power_domain;
4408
4409         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4410                       connector->base.id, connector->name);
4411         intel_dp_unset_edid(intel_dp);
4412
4413         if (connector->status != connector_status_connected)
4414                 return;
4415
4416         power_domain = intel_display_port_aux_power_domain(intel_encoder);
4417         intel_display_power_get(dev_priv, power_domain);
4418
4419         intel_dp_set_edid(intel_dp);
4420
4421         intel_display_power_put(dev_priv, power_domain);
4422
4423         if (intel_encoder->type != INTEL_OUTPUT_EDP)
4424                 intel_encoder->type = INTEL_OUTPUT_DP;
4425 }
4426
4427 static int intel_dp_get_modes(struct drm_connector *connector)
4428 {
4429         struct intel_connector *intel_connector = to_intel_connector(connector);
4430         struct edid *edid;
4431
4432         edid = intel_connector->detect_edid;
4433         if (edid) {
4434                 int ret = intel_connector_update_modes(connector, edid);
4435                 if (ret)
4436                         return ret;
4437         }
4438
4439         /* if eDP has no EDID, fall back to fixed mode */
4440         if (is_edp(intel_attached_dp(connector)) &&
4441             intel_connector->panel.fixed_mode) {
4442                 struct drm_display_mode *mode;
4443
4444                 mode = drm_mode_duplicate(connector->dev,
4445                                           intel_connector->panel.fixed_mode);
4446                 if (mode) {
4447                         drm_mode_probed_add(connector, mode);
4448                         return 1;
4449                 }
4450         }
4451
4452         return 0;
4453 }
4454
4455 static bool
4456 intel_dp_detect_audio(struct drm_connector *connector)
4457 {
4458         bool has_audio = false;
4459         struct edid *edid;
4460
4461         edid = to_intel_connector(connector)->detect_edid;
4462         if (edid)
4463                 has_audio = drm_detect_monitor_audio(edid);
4464
4465         return has_audio;
4466 }
4467
4468 static int
4469 intel_dp_set_property(struct drm_connector *connector,
4470                       struct drm_property *property,
4471                       uint64_t val)
4472 {
4473         struct drm_i915_private *dev_priv = to_i915(connector->dev);
4474         struct intel_connector *intel_connector = to_intel_connector(connector);
4475         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4476         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4477         int ret;
4478
4479         ret = drm_object_property_set_value(&connector->base, property, val);
4480         if (ret)
4481                 return ret;
4482
4483         if (property == dev_priv->force_audio_property) {
4484                 int i = val;
4485                 bool has_audio;
4486
4487                 if (i == intel_dp->force_audio)
4488                         return 0;
4489
4490                 intel_dp->force_audio = i;
4491
4492                 if (i == HDMI_AUDIO_AUTO)
4493                         has_audio = intel_dp_detect_audio(connector);
4494                 else
4495                         has_audio = (i == HDMI_AUDIO_ON);
4496
4497                 if (has_audio == intel_dp->has_audio)
4498                         return 0;
4499
4500                 intel_dp->has_audio = has_audio;
4501                 goto done;
4502         }
4503
4504         if (property == dev_priv->broadcast_rgb_property) {
4505                 bool old_auto = intel_dp->color_range_auto;
4506                 bool old_range = intel_dp->limited_color_range;
4507
4508                 switch (val) {
4509                 case INTEL_BROADCAST_RGB_AUTO:
4510                         intel_dp->color_range_auto = true;
4511                         break;
4512                 case INTEL_BROADCAST_RGB_FULL:
4513                         intel_dp->color_range_auto = false;
4514                         intel_dp->limited_color_range = false;
4515                         break;
4516                 case INTEL_BROADCAST_RGB_LIMITED:
4517                         intel_dp->color_range_auto = false;
4518                         intel_dp->limited_color_range = true;
4519                         break;
4520                 default:
4521                         return -EINVAL;
4522                 }
4523
4524                 if (old_auto == intel_dp->color_range_auto &&
4525                     old_range == intel_dp->limited_color_range)
4526                         return 0;
4527
4528                 goto done;
4529         }
4530
4531         if (is_edp(intel_dp) &&
4532             property == connector->dev->mode_config.scaling_mode_property) {
4533                 if (val == DRM_MODE_SCALE_NONE) {
4534                         DRM_DEBUG_KMS("no scaling not supported\n");
4535                         return -EINVAL;
4536                 }
4537                 if (HAS_GMCH_DISPLAY(dev_priv) &&
4538                     val == DRM_MODE_SCALE_CENTER) {
4539                         DRM_DEBUG_KMS("centering not supported\n");
4540                         return -EINVAL;
4541                 }
4542
4543                 if (intel_connector->panel.fitting_mode == val) {
4544                         /* the eDP scaling property is not changed */
4545                         return 0;
4546                 }
4547                 intel_connector->panel.fitting_mode = val;
4548
4549                 goto done;
4550         }
4551
4552         return -EINVAL;
4553
4554 done:
4555         if (intel_encoder->base.crtc)
4556                 intel_crtc_restore_mode(intel_encoder->base.crtc);
4557
4558         return 0;
4559 }
4560
4561 static int
4562 intel_dp_connector_register(struct drm_connector *connector)
4563 {
4564         struct intel_dp *intel_dp = intel_attached_dp(connector);
4565         int ret;
4566
4567         ret = intel_connector_register(connector);
4568         if (ret)
4569                 return ret;
4570
4571         i915_debugfs_connector_add(connector);
4572
4573         DRM_DEBUG_KMS("registering %s bus for %s\n",
4574                       intel_dp->aux.name, connector->kdev->kobj.name);
4575
4576         intel_dp->aux.dev = connector->kdev;
4577         return drm_dp_aux_register(&intel_dp->aux);
4578 }
4579
4580 static void
4581 intel_dp_connector_unregister(struct drm_connector *connector)
4582 {
4583         drm_dp_aux_unregister(&intel_attached_dp(connector)->aux);
4584         intel_connector_unregister(connector);
4585 }
4586
4587 static void
4588 intel_dp_connector_destroy(struct drm_connector *connector)
4589 {
4590         struct intel_connector *intel_connector = to_intel_connector(connector);
4591
4592         kfree(intel_connector->detect_edid);
4593
4594         if (!IS_ERR_OR_NULL(intel_connector->edid))
4595                 kfree(intel_connector->edid);
4596
4597         /* Can't call is_edp() since the encoder may have been destroyed
4598          * already. */
4599         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4600                 intel_panel_fini(&intel_connector->panel);
4601
4602         drm_connector_cleanup(connector);
4603         kfree(connector);
4604 }
4605
4606 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4607 {
4608         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4609         struct intel_dp *intel_dp = &intel_dig_port->dp;
4610
4611         intel_dp_mst_encoder_cleanup(intel_dig_port);
4612         if (is_edp(intel_dp)) {
4613                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4614                 /*
4615                  * vdd might still be enabled do to the delayed vdd off.
4616                  * Make sure vdd is actually turned off here.
4617                  */
4618                 pps_lock(intel_dp);
4619                 edp_panel_vdd_off_sync(intel_dp);
4620                 pps_unlock(intel_dp);
4621
4622                 if (intel_dp->edp_notifier.notifier_call) {
4623                         unregister_reboot_notifier(&intel_dp->edp_notifier);
4624                         intel_dp->edp_notifier.notifier_call = NULL;
4625                 }
4626         }
4627
4628         intel_dp_aux_fini(intel_dp);
4629
4630         drm_encoder_cleanup(encoder);
4631         kfree(intel_dig_port);
4632 }
4633
4634 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4635 {
4636         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4637
4638         if (!is_edp(intel_dp))
4639                 return;
4640
4641         /*
4642          * vdd might still be enabled do to the delayed vdd off.
4643          * Make sure vdd is actually turned off here.
4644          */
4645         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4646         pps_lock(intel_dp);
4647         edp_panel_vdd_off_sync(intel_dp);
4648         pps_unlock(intel_dp);
4649 }
4650
4651 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4652 {
4653         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4654         struct drm_device *dev = intel_dig_port->base.base.dev;
4655         struct drm_i915_private *dev_priv = to_i915(dev);
4656         enum intel_display_power_domain power_domain;
4657
4658         lockdep_assert_held(&dev_priv->pps_mutex);
4659
4660         if (!edp_have_panel_vdd(intel_dp))
4661                 return;
4662
4663         /*
4664          * The VDD bit needs a power domain reference, so if the bit is
4665          * already enabled when we boot or resume, grab this reference and
4666          * schedule a vdd off, so we don't hold on to the reference
4667          * indefinitely.
4668          */
4669         DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4670         power_domain = intel_display_port_aux_power_domain(&intel_dig_port->base);
4671         intel_display_power_get(dev_priv, power_domain);
4672
4673         edp_panel_vdd_schedule_off(intel_dp);
4674 }
4675
4676 void intel_dp_encoder_reset(struct drm_encoder *encoder)
4677 {
4678         struct drm_i915_private *dev_priv = to_i915(encoder->dev);
4679         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4680
4681         if (!HAS_DDI(dev_priv))
4682                 intel_dp->DP = I915_READ(intel_dp->output_reg);
4683
4684         if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4685                 return;
4686
4687         pps_lock(intel_dp);
4688
4689         /* Reinit the power sequencer, in case BIOS did something with it. */
4690         intel_dp_pps_init(encoder->dev, intel_dp);
4691         intel_edp_panel_vdd_sanitize(intel_dp);
4692
4693         pps_unlock(intel_dp);
4694 }
4695
4696 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4697         .dpms = drm_atomic_helper_connector_dpms,
4698         .detect = intel_dp_detect,
4699         .force = intel_dp_force,
4700         .fill_modes = drm_helper_probe_single_connector_modes,
4701         .set_property = intel_dp_set_property,
4702         .atomic_get_property = intel_connector_atomic_get_property,
4703         .late_register = intel_dp_connector_register,
4704         .early_unregister = intel_dp_connector_unregister,
4705         .destroy = intel_dp_connector_destroy,
4706         .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4707         .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
4708 };
4709
4710 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4711         .get_modes = intel_dp_get_modes,
4712         .mode_valid = intel_dp_mode_valid,
4713 };
4714
4715 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4716         .reset = intel_dp_encoder_reset,
4717         .destroy = intel_dp_encoder_destroy,
4718 };
4719
4720 enum irqreturn
4721 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4722 {
4723         struct intel_dp *intel_dp = &intel_dig_port->dp;
4724         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4725         struct drm_device *dev = intel_dig_port->base.base.dev;
4726         struct drm_i915_private *dev_priv = to_i915(dev);
4727         enum intel_display_power_domain power_domain;
4728         enum irqreturn ret = IRQ_NONE;
4729
4730         if (intel_dig_port->base.type != INTEL_OUTPUT_EDP &&
4731             intel_dig_port->base.type != INTEL_OUTPUT_HDMI)
4732                 intel_dig_port->base.type = INTEL_OUTPUT_DP;
4733
4734         if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4735                 /*
4736                  * vdd off can generate a long pulse on eDP which
4737                  * would require vdd on to handle it, and thus we
4738                  * would end up in an endless cycle of
4739                  * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
4740                  */
4741                 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
4742                               port_name(intel_dig_port->port));
4743                 return IRQ_HANDLED;
4744         }
4745
4746         DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4747                       port_name(intel_dig_port->port),
4748                       long_hpd ? "long" : "short");
4749
4750         power_domain = intel_display_port_aux_power_domain(intel_encoder);
4751         intel_display_power_get(dev_priv, power_domain);
4752
4753         if (long_hpd) {
4754                 intel_dp_long_pulse(intel_dp->attached_connector);
4755                 if (intel_dp->is_mst)
4756                         ret = IRQ_HANDLED;
4757                 goto put_power;
4758
4759         } else {
4760                 if (intel_dp->is_mst) {
4761                         if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
4762                                 /*
4763                                  * If we were in MST mode, and device is not
4764                                  * there, get out of MST mode
4765                                  */
4766                                 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4767                                               intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4768                                 intel_dp->is_mst = false;
4769                                 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4770                                                                 intel_dp->is_mst);
4771                                 goto put_power;
4772                         }
4773                 }
4774
4775                 if (!intel_dp->is_mst) {
4776                         if (!intel_dp_short_pulse(intel_dp)) {
4777                                 intel_dp_long_pulse(intel_dp->attached_connector);
4778                                 goto put_power;
4779                         }
4780                 }
4781         }
4782
4783         ret = IRQ_HANDLED;
4784
4785 put_power:
4786         intel_display_power_put(dev_priv, power_domain);
4787
4788         return ret;
4789 }
4790
4791 /* check the VBT to see whether the eDP is on another port */
4792 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4793 {
4794         struct drm_i915_private *dev_priv = to_i915(dev);
4795
4796         /*
4797          * eDP not supported on g4x. so bail out early just
4798          * for a bit extra safety in case the VBT is bonkers.
4799          */
4800         if (INTEL_INFO(dev)->gen < 5)
4801                 return false;
4802
4803         if (port == PORT_A)
4804                 return true;
4805
4806         return intel_bios_is_port_edp(dev_priv, port);
4807 }
4808
4809 void
4810 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4811 {
4812         struct intel_connector *intel_connector = to_intel_connector(connector);
4813
4814         intel_attach_force_audio_property(connector);
4815         intel_attach_broadcast_rgb_property(connector);
4816         intel_dp->color_range_auto = true;
4817
4818         if (is_edp(intel_dp)) {
4819                 drm_mode_create_scaling_mode_property(connector->dev);
4820                 drm_object_attach_property(
4821                         &connector->base,
4822                         connector->dev->mode_config.scaling_mode_property,
4823                         DRM_MODE_SCALE_ASPECT);
4824                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4825         }
4826 }
4827
4828 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4829 {
4830         intel_dp->panel_power_off_time = ktime_get_boottime();
4831         intel_dp->last_power_on = jiffies;
4832         intel_dp->last_backlight_off = jiffies;
4833 }
4834
4835 static void
4836 intel_pps_readout_hw_state(struct drm_i915_private *dev_priv,
4837                            struct intel_dp *intel_dp, struct edp_power_seq *seq)
4838 {
4839         u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
4840         struct pps_registers regs;
4841
4842         intel_pps_get_registers(dev_priv, intel_dp, &regs);
4843
4844         /* Workaround: Need to write PP_CONTROL with the unlock key as
4845          * the very first thing. */
4846         pp_ctl = ironlake_get_pp_control(intel_dp);
4847
4848         pp_on = I915_READ(regs.pp_on);
4849         pp_off = I915_READ(regs.pp_off);
4850         if (!IS_BROXTON(dev_priv)) {
4851                 I915_WRITE(regs.pp_ctrl, pp_ctl);
4852                 pp_div = I915_READ(regs.pp_div);
4853         }
4854
4855         /* Pull timing values out of registers */
4856         seq->t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4857                      PANEL_POWER_UP_DELAY_SHIFT;
4858
4859         seq->t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4860                   PANEL_LIGHT_ON_DELAY_SHIFT;
4861
4862         seq->t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4863                   PANEL_LIGHT_OFF_DELAY_SHIFT;
4864
4865         seq->t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4866                    PANEL_POWER_DOWN_DELAY_SHIFT;
4867
4868         if (IS_BROXTON(dev_priv)) {
4869                 u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
4870                         BXT_POWER_CYCLE_DELAY_SHIFT;
4871                 if (tmp > 0)
4872                         seq->t11_t12 = (tmp - 1) * 1000;
4873                 else
4874                         seq->t11_t12 = 0;
4875         } else {
4876                 seq->t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4877                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4878         }
4879 }
4880
4881 static void
4882 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
4883 {
4884         DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4885                       state_name,
4886                       seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
4887 }
4888
4889 static void
4890 intel_pps_verify_state(struct drm_i915_private *dev_priv,
4891                        struct intel_dp *intel_dp)
4892 {
4893         struct edp_power_seq hw;
4894         struct edp_power_seq *sw = &intel_dp->pps_delays;
4895
4896         intel_pps_readout_hw_state(dev_priv, intel_dp, &hw);
4897
4898         if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
4899             hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
4900                 DRM_ERROR("PPS state mismatch\n");
4901                 intel_pps_dump_state("sw", sw);
4902                 intel_pps_dump_state("hw", &hw);
4903         }
4904 }
4905
4906 static void
4907 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4908                                     struct intel_dp *intel_dp)
4909 {
4910         struct drm_i915_private *dev_priv = to_i915(dev);
4911         struct edp_power_seq cur, vbt, spec,
4912                 *final = &intel_dp->pps_delays;
4913
4914         lockdep_assert_held(&dev_priv->pps_mutex);
4915
4916         /* already initialized? */
4917         if (final->t11_t12 != 0)
4918                 return;
4919
4920         intel_pps_readout_hw_state(dev_priv, intel_dp, &cur);
4921
4922         intel_pps_dump_state("cur", &cur);
4923
4924         vbt = dev_priv->vbt.edp.pps;
4925
4926         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
4927          * our hw here, which are all in 100usec. */
4928         spec.t1_t3 = 210 * 10;
4929         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
4930         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
4931         spec.t10 = 500 * 10;
4932         /* This one is special and actually in units of 100ms, but zero
4933          * based in the hw (so we need to add 100 ms). But the sw vbt
4934          * table multiplies it with 1000 to make it in units of 100usec,
4935          * too. */
4936         spec.t11_t12 = (510 + 100) * 10;
4937
4938         intel_pps_dump_state("vbt", &vbt);
4939
4940         /* Use the max of the register settings and vbt. If both are
4941          * unset, fall back to the spec limits. */
4942 #define assign_final(field)     final->field = (max(cur.field, vbt.field) == 0 ? \
4943                                        spec.field : \
4944                                        max(cur.field, vbt.field))
4945         assign_final(t1_t3);
4946         assign_final(t8);
4947         assign_final(t9);
4948         assign_final(t10);
4949         assign_final(t11_t12);
4950 #undef assign_final
4951
4952 #define get_delay(field)        (DIV_ROUND_UP(final->field, 10))
4953         intel_dp->panel_power_up_delay = get_delay(t1_t3);
4954         intel_dp->backlight_on_delay = get_delay(t8);
4955         intel_dp->backlight_off_delay = get_delay(t9);
4956         intel_dp->panel_power_down_delay = get_delay(t10);
4957         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
4958 #undef get_delay
4959
4960         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
4961                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
4962                       intel_dp->panel_power_cycle_delay);
4963
4964         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
4965                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
4966
4967         /*
4968          * We override the HW backlight delays to 1 because we do manual waits
4969          * on them. For T8, even BSpec recommends doing it. For T9, if we
4970          * don't do this, we'll end up waiting for the backlight off delay
4971          * twice: once when we do the manual sleep, and once when we disable
4972          * the panel and wait for the PP_STATUS bit to become zero.
4973          */
4974         final->t8 = 1;
4975         final->t9 = 1;
4976 }
4977
4978 static void
4979 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
4980                                               struct intel_dp *intel_dp)
4981 {
4982         struct drm_i915_private *dev_priv = to_i915(dev);
4983         u32 pp_on, pp_off, pp_div, port_sel = 0;
4984         int div = dev_priv->rawclk_freq / 1000;
4985         struct pps_registers regs;
4986         enum port port = dp_to_dig_port(intel_dp)->port;
4987         const struct edp_power_seq *seq = &intel_dp->pps_delays;
4988
4989         lockdep_assert_held(&dev_priv->pps_mutex);
4990
4991         intel_pps_get_registers(dev_priv, intel_dp, &regs);
4992
4993         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
4994                 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
4995         pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
4996                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
4997         /* Compute the divisor for the pp clock, simply match the Bspec
4998          * formula. */
4999         if (IS_BROXTON(dev)) {
5000                 pp_div = I915_READ(regs.pp_ctrl);
5001                 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5002                 pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000)
5003                                 << BXT_POWER_CYCLE_DELAY_SHIFT);
5004         } else {
5005                 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5006                 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5007                                 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5008         }
5009
5010         /* Haswell doesn't have any port selection bits for the panel
5011          * power sequencer any more. */
5012         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5013                 port_sel = PANEL_PORT_SELECT_VLV(port);
5014         } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5015                 if (port == PORT_A)
5016                         port_sel = PANEL_PORT_SELECT_DPA;
5017                 else
5018                         port_sel = PANEL_PORT_SELECT_DPD;
5019         }
5020
5021         pp_on |= port_sel;
5022
5023         I915_WRITE(regs.pp_on, pp_on);
5024         I915_WRITE(regs.pp_off, pp_off);
5025         if (IS_BROXTON(dev))
5026                 I915_WRITE(regs.pp_ctrl, pp_div);
5027         else
5028                 I915_WRITE(regs.pp_div, pp_div);
5029
5030         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5031                       I915_READ(regs.pp_on),
5032                       I915_READ(regs.pp_off),
5033                       IS_BROXTON(dev) ?
5034                       (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK) :
5035                       I915_READ(regs.pp_div));
5036 }
5037
5038 static void intel_dp_pps_init(struct drm_device *dev,
5039                               struct intel_dp *intel_dp)
5040 {
5041         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5042                 vlv_initial_power_sequencer_setup(intel_dp);
5043         } else {
5044                 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5045                 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5046         }
5047 }
5048
5049 /**
5050  * intel_dp_set_drrs_state - program registers for RR switch to take effect
5051  * @dev: DRM device
5052  * @crtc_state: a pointer to the active intel_crtc_state
5053  * @refresh_rate: RR to be programmed
5054  *
5055  * This function gets called when refresh rate (RR) has to be changed from
5056  * one frequency to another. Switches can be between high and low RR
5057  * supported by the panel or to any other RR based on media playback (in
5058  * this case, RR value needs to be passed from user space).
5059  *
5060  * The caller of this function needs to take a lock on dev_priv->drrs.
5061  */
5062 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
5063                                     struct intel_crtc_state *crtc_state,
5064                                     int refresh_rate)
5065 {
5066         struct intel_encoder *encoder;
5067         struct intel_digital_port *dig_port = NULL;
5068         struct intel_dp *intel_dp = dev_priv->drrs.dp;
5069         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
5070         enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5071
5072         if (refresh_rate <= 0) {
5073                 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5074                 return;
5075         }
5076
5077         if (intel_dp == NULL) {
5078                 DRM_DEBUG_KMS("DRRS not supported.\n");
5079                 return;
5080         }
5081
5082         /*
5083          * FIXME: This needs proper synchronization with psr state for some
5084          * platforms that cannot have PSR and DRRS enabled at the same time.
5085          */
5086
5087         dig_port = dp_to_dig_port(intel_dp);
5088         encoder = &dig_port->base;
5089         intel_crtc = to_intel_crtc(encoder->base.crtc);
5090
5091         if (!intel_crtc) {
5092                 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5093                 return;
5094         }
5095
5096         if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5097                 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5098                 return;
5099         }
5100
5101         if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5102                         refresh_rate)
5103                 index = DRRS_LOW_RR;
5104
5105         if (index == dev_priv->drrs.refresh_rate_type) {
5106                 DRM_DEBUG_KMS(
5107                         "DRRS requested for previously set RR...ignoring\n");
5108                 return;
5109         }
5110
5111         if (!crtc_state->base.active) {
5112                 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5113                 return;
5114         }
5115
5116         if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
5117                 switch (index) {
5118                 case DRRS_HIGH_RR:
5119                         intel_dp_set_m_n(intel_crtc, M1_N1);
5120                         break;
5121                 case DRRS_LOW_RR:
5122                         intel_dp_set_m_n(intel_crtc, M2_N2);
5123                         break;
5124                 case DRRS_MAX_RR:
5125                 default:
5126                         DRM_ERROR("Unsupported refreshrate type\n");
5127                 }
5128         } else if (INTEL_GEN(dev_priv) > 6) {
5129                 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
5130                 u32 val;
5131
5132                 val = I915_READ(reg);
5133                 if (index > DRRS_HIGH_RR) {
5134                         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5135                                 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5136                         else
5137                                 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5138                 } else {
5139                         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5140                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5141                         else
5142                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5143                 }
5144                 I915_WRITE(reg, val);
5145         }
5146
5147         dev_priv->drrs.refresh_rate_type = index;
5148
5149         DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5150 }
5151
5152 /**
5153  * intel_edp_drrs_enable - init drrs struct if supported
5154  * @intel_dp: DP struct
5155  *
5156  * Initializes frontbuffer_bits and drrs.dp
5157  */
5158 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
5159                            struct intel_crtc_state *crtc_state)
5160 {
5161         struct drm_device *dev = intel_dp_to_dev(intel_dp);
5162         struct drm_i915_private *dev_priv = to_i915(dev);
5163
5164         if (!crtc_state->has_drrs) {
5165                 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5166                 return;
5167         }
5168
5169         mutex_lock(&dev_priv->drrs.mutex);
5170         if (WARN_ON(dev_priv->drrs.dp)) {
5171                 DRM_ERROR("DRRS already enabled\n");
5172                 goto unlock;
5173         }
5174
5175         dev_priv->drrs.busy_frontbuffer_bits = 0;
5176
5177         dev_priv->drrs.dp = intel_dp;
5178
5179 unlock:
5180         mutex_unlock(&dev_priv->drrs.mutex);
5181 }
5182
5183 /**
5184  * intel_edp_drrs_disable - Disable DRRS
5185  * @intel_dp: DP struct
5186  *
5187  */
5188 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
5189                             struct intel_crtc_state *old_crtc_state)
5190 {
5191         struct drm_device *dev = intel_dp_to_dev(intel_dp);
5192         struct drm_i915_private *dev_priv = to_i915(dev);
5193
5194         if (!old_crtc_state->has_drrs)
5195                 return;
5196
5197         mutex_lock(&dev_priv->drrs.mutex);
5198         if (!dev_priv->drrs.dp) {
5199                 mutex_unlock(&dev_priv->drrs.mutex);
5200                 return;
5201         }
5202
5203         if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5204                 intel_dp_set_drrs_state(dev_priv, old_crtc_state,
5205                         intel_dp->attached_connector->panel.fixed_mode->vrefresh);
5206
5207         dev_priv->drrs.dp = NULL;
5208         mutex_unlock(&dev_priv->drrs.mutex);
5209
5210         cancel_delayed_work_sync(&dev_priv->drrs.work);
5211 }
5212
5213 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5214 {
5215         struct drm_i915_private *dev_priv =
5216                 container_of(work, typeof(*dev_priv), drrs.work.work);
5217         struct intel_dp *intel_dp;
5218
5219         mutex_lock(&dev_priv->drrs.mutex);
5220
5221         intel_dp = dev_priv->drrs.dp;
5222
5223         if (!intel_dp)
5224                 goto unlock;
5225
5226         /*
5227          * The delayed work can race with an invalidate hence we need to
5228          * recheck.
5229          */
5230
5231         if (dev_priv->drrs.busy_frontbuffer_bits)
5232                 goto unlock;
5233
5234         if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
5235                 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
5236
5237                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5238                         intel_dp->attached_connector->panel.downclock_mode->vrefresh);
5239         }
5240
5241 unlock:
5242         mutex_unlock(&dev_priv->drrs.mutex);
5243 }
5244
5245 /**
5246  * intel_edp_drrs_invalidate - Disable Idleness DRRS
5247  * @dev_priv: i915 device
5248  * @frontbuffer_bits: frontbuffer plane tracking bits
5249  *
5250  * This function gets called everytime rendering on the given planes start.
5251  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5252  *
5253  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5254  */
5255 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
5256                                unsigned int frontbuffer_bits)
5257 {
5258         struct drm_crtc *crtc;
5259         enum pipe pipe;
5260
5261         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5262                 return;
5263
5264         cancel_delayed_work(&dev_priv->drrs.work);
5265
5266         mutex_lock(&dev_priv->drrs.mutex);
5267         if (!dev_priv->drrs.dp) {
5268                 mutex_unlock(&dev_priv->drrs.mutex);
5269                 return;
5270         }
5271
5272         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5273         pipe = to_intel_crtc(crtc)->pipe;
5274
5275         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5276         dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5277
5278         /* invalidate means busy screen hence upclock */
5279         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5280                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5281                         dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5282
5283         mutex_unlock(&dev_priv->drrs.mutex);
5284 }
5285
5286 /**
5287  * intel_edp_drrs_flush - Restart Idleness DRRS
5288  * @dev_priv: i915 device
5289  * @frontbuffer_bits: frontbuffer plane tracking bits
5290  *
5291  * This function gets called every time rendering on the given planes has
5292  * completed or flip on a crtc is completed. So DRRS should be upclocked
5293  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5294  * if no other planes are dirty.
5295  *
5296  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5297  */
5298 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
5299                           unsigned int frontbuffer_bits)
5300 {
5301         struct drm_crtc *crtc;
5302         enum pipe pipe;
5303
5304         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5305                 return;
5306
5307         cancel_delayed_work(&dev_priv->drrs.work);
5308
5309         mutex_lock(&dev_priv->drrs.mutex);
5310         if (!dev_priv->drrs.dp) {
5311                 mutex_unlock(&dev_priv->drrs.mutex);
5312                 return;
5313         }
5314
5315         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5316         pipe = to_intel_crtc(crtc)->pipe;
5317
5318         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5319         dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5320
5321         /* flush means busy screen hence upclock */
5322         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5323                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5324                                 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5325
5326         /*
5327          * flush also means no more activity hence schedule downclock, if all
5328          * other fbs are quiescent too
5329          */
5330         if (!dev_priv->drrs.busy_frontbuffer_bits)
5331                 schedule_delayed_work(&dev_priv->drrs.work,
5332                                 msecs_to_jiffies(1000));
5333         mutex_unlock(&dev_priv->drrs.mutex);
5334 }
5335
5336 /**
5337  * DOC: Display Refresh Rate Switching (DRRS)
5338  *
5339  * Display Refresh Rate Switching (DRRS) is a power conservation feature
5340  * which enables swtching between low and high refresh rates,
5341  * dynamically, based on the usage scenario. This feature is applicable
5342  * for internal panels.
5343  *
5344  * Indication that the panel supports DRRS is given by the panel EDID, which
5345  * would list multiple refresh rates for one resolution.
5346  *
5347  * DRRS is of 2 types - static and seamless.
5348  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5349  * (may appear as a blink on screen) and is used in dock-undock scenario.
5350  * Seamless DRRS involves changing RR without any visual effect to the user
5351  * and can be used during normal system usage. This is done by programming
5352  * certain registers.
5353  *
5354  * Support for static/seamless DRRS may be indicated in the VBT based on
5355  * inputs from the panel spec.
5356  *
5357  * DRRS saves power by switching to low RR based on usage scenarios.
5358  *
5359  * The implementation is based on frontbuffer tracking implementation.  When
5360  * there is a disturbance on the screen triggered by user activity or a periodic
5361  * system activity, DRRS is disabled (RR is changed to high RR).  When there is
5362  * no movement on screen, after a timeout of 1 second, a switch to low RR is
5363  * made.
5364  *
5365  * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
5366  * and intel_edp_drrs_flush() are called.
5367  *
5368  * DRRS can be further extended to support other internal panels and also
5369  * the scenario of video playback wherein RR is set based on the rate
5370  * requested by userspace.
5371  */
5372
5373 /**
5374  * intel_dp_drrs_init - Init basic DRRS work and mutex.
5375  * @intel_connector: eDP connector
5376  * @fixed_mode: preferred mode of panel
5377  *
5378  * This function is  called only once at driver load to initialize basic
5379  * DRRS stuff.
5380  *
5381  * Returns:
5382  * Downclock mode if panel supports it, else return NULL.
5383  * DRRS support is determined by the presence of downclock mode (apart
5384  * from VBT setting).
5385  */
5386 static struct drm_display_mode *
5387 intel_dp_drrs_init(struct intel_connector *intel_connector,
5388                 struct drm_display_mode *fixed_mode)
5389 {
5390         struct drm_connector *connector = &intel_connector->base;
5391         struct drm_device *dev = connector->dev;
5392         struct drm_i915_private *dev_priv = to_i915(dev);
5393         struct drm_display_mode *downclock_mode = NULL;
5394
5395         INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5396         mutex_init(&dev_priv->drrs.mutex);
5397
5398         if (INTEL_INFO(dev)->gen <= 6) {
5399                 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5400                 return NULL;
5401         }
5402
5403         if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5404                 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5405                 return NULL;
5406         }
5407
5408         downclock_mode = intel_find_panel_downclock
5409                                         (dev, fixed_mode, connector);
5410
5411         if (!downclock_mode) {
5412                 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5413                 return NULL;
5414         }
5415
5416         dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5417
5418         dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5419         DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5420         return downclock_mode;
5421 }
5422
5423 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5424                                      struct intel_connector *intel_connector)
5425 {
5426         struct drm_connector *connector = &intel_connector->base;
5427         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5428         struct intel_encoder *intel_encoder = &intel_dig_port->base;
5429         struct drm_device *dev = intel_encoder->base.dev;
5430         struct drm_i915_private *dev_priv = to_i915(dev);
5431         struct drm_display_mode *fixed_mode = NULL;
5432         struct drm_display_mode *downclock_mode = NULL;
5433         bool has_dpcd;
5434         struct drm_display_mode *scan;
5435         struct edid *edid;
5436         enum pipe pipe = INVALID_PIPE;
5437
5438         if (!is_edp(intel_dp))
5439                 return true;
5440
5441         /*
5442          * On IBX/CPT we may get here with LVDS already registered. Since the
5443          * driver uses the only internal power sequencer available for both
5444          * eDP and LVDS bail out early in this case to prevent interfering
5445          * with an already powered-on LVDS power sequencer.
5446          */
5447         if (intel_get_lvds_encoder(dev)) {
5448                 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
5449                 DRM_INFO("LVDS was detected, not registering eDP\n");
5450
5451                 return false;
5452         }
5453
5454         pps_lock(intel_dp);
5455
5456         intel_dp_init_panel_power_timestamps(intel_dp);
5457         intel_dp_pps_init(dev, intel_dp);
5458         intel_edp_panel_vdd_sanitize(intel_dp);
5459
5460         pps_unlock(intel_dp);
5461
5462         /* Cache DPCD and EDID for edp. */
5463         has_dpcd = intel_edp_init_dpcd(intel_dp);
5464
5465         if (!has_dpcd) {
5466                 /* if this fails, presume the device is a ghost */
5467                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5468                 goto out_vdd_off;
5469         }
5470
5471         mutex_lock(&dev->mode_config.mutex);
5472         edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5473         if (edid) {
5474                 if (drm_add_edid_modes(connector, edid)) {
5475                         drm_mode_connector_update_edid_property(connector,
5476                                                                 edid);
5477                         drm_edid_to_eld(connector, edid);
5478                 } else {
5479                         kfree(edid);
5480                         edid = ERR_PTR(-EINVAL);
5481                 }
5482         } else {
5483                 edid = ERR_PTR(-ENOENT);
5484         }
5485         intel_connector->edid = edid;
5486
5487         /* prefer fixed mode from EDID if available */
5488         list_for_each_entry(scan, &connector->probed_modes, head) {
5489                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5490                         fixed_mode = drm_mode_duplicate(dev, scan);
5491                         downclock_mode = intel_dp_drrs_init(
5492                                                 intel_connector, fixed_mode);
5493                         break;
5494                 }
5495         }
5496
5497         /* fallback to VBT if available for eDP */
5498         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5499                 fixed_mode = drm_mode_duplicate(dev,
5500                                         dev_priv->vbt.lfp_lvds_vbt_mode);
5501                 if (fixed_mode) {
5502                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5503                         connector->display_info.width_mm = fixed_mode->width_mm;
5504                         connector->display_info.height_mm = fixed_mode->height_mm;
5505                 }
5506         }
5507         mutex_unlock(&dev->mode_config.mutex);
5508
5509         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5510                 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5511                 register_reboot_notifier(&intel_dp->edp_notifier);
5512
5513                 /*
5514                  * Figure out the current pipe for the initial backlight setup.
5515                  * If the current pipe isn't valid, try the PPS pipe, and if that
5516                  * fails just assume pipe A.
5517                  */
5518                 if (IS_CHERRYVIEW(dev))
5519                         pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5520                 else
5521                         pipe = PORT_TO_PIPE(intel_dp->DP);
5522
5523                 if (pipe != PIPE_A && pipe != PIPE_B)
5524                         pipe = intel_dp->pps_pipe;
5525
5526                 if (pipe != PIPE_A && pipe != PIPE_B)
5527                         pipe = PIPE_A;
5528
5529                 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5530                               pipe_name(pipe));
5531         }
5532
5533         intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5534         intel_connector->panel.backlight.power = intel_edp_backlight_power;
5535         intel_panel_setup_backlight(connector, pipe);
5536
5537         return true;
5538
5539 out_vdd_off:
5540         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5541         /*
5542          * vdd might still be enabled do to the delayed vdd off.
5543          * Make sure vdd is actually turned off here.
5544          */
5545         pps_lock(intel_dp);
5546         edp_panel_vdd_off_sync(intel_dp);
5547         pps_unlock(intel_dp);
5548
5549         return false;
5550 }
5551
5552 bool
5553 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5554                         struct intel_connector *intel_connector)
5555 {
5556         struct drm_connector *connector = &intel_connector->base;
5557         struct intel_dp *intel_dp = &intel_dig_port->dp;
5558         struct intel_encoder *intel_encoder = &intel_dig_port->base;
5559         struct drm_device *dev = intel_encoder->base.dev;
5560         struct drm_i915_private *dev_priv = to_i915(dev);
5561         enum port port = intel_dig_port->port;
5562         int type;
5563
5564         if (WARN(intel_dig_port->max_lanes < 1,
5565                  "Not enough lanes (%d) for DP on port %c\n",
5566                  intel_dig_port->max_lanes, port_name(port)))
5567                 return false;
5568
5569         intel_dp->pps_pipe = INVALID_PIPE;
5570
5571         /* intel_dp vfuncs */
5572         if (INTEL_INFO(dev)->gen >= 9)
5573                 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5574         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5575                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5576         else if (HAS_PCH_SPLIT(dev))
5577                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5578         else
5579                 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
5580
5581         if (INTEL_INFO(dev)->gen >= 9)
5582                 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5583         else
5584                 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
5585
5586         if (HAS_DDI(dev))
5587                 intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
5588
5589         /* Preserve the current hw state. */
5590         intel_dp->DP = I915_READ(intel_dp->output_reg);
5591         intel_dp->attached_connector = intel_connector;
5592
5593         if (intel_dp_is_edp(dev, port))
5594                 type = DRM_MODE_CONNECTOR_eDP;
5595         else
5596                 type = DRM_MODE_CONNECTOR_DisplayPort;
5597
5598         /*
5599          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5600          * for DP the encoder type can be set by the caller to
5601          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5602          */
5603         if (type == DRM_MODE_CONNECTOR_eDP)
5604                 intel_encoder->type = INTEL_OUTPUT_EDP;
5605
5606         /* eDP only on port B and/or C on vlv/chv */
5607         if (WARN_ON((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
5608                     is_edp(intel_dp) && port != PORT_B && port != PORT_C))
5609                 return false;
5610
5611         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5612                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5613                         port_name(port));
5614
5615         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5616         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5617
5618         connector->interlace_allowed = true;
5619         connector->doublescan_allowed = 0;
5620
5621         intel_dp_aux_init(intel_dp, intel_connector);
5622
5623         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5624                           edp_panel_vdd_work);
5625
5626         intel_connector_attach_encoder(intel_connector, intel_encoder);
5627
5628         if (HAS_DDI(dev))
5629                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5630         else
5631                 intel_connector->get_hw_state = intel_connector_get_hw_state;
5632
5633         /* Set up the hotplug pin. */
5634         switch (port) {
5635         case PORT_A:
5636                 intel_encoder->hpd_pin = HPD_PORT_A;
5637                 break;
5638         case PORT_B:
5639                 intel_encoder->hpd_pin = HPD_PORT_B;
5640                 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
5641                         intel_encoder->hpd_pin = HPD_PORT_A;
5642                 break;
5643         case PORT_C:
5644                 intel_encoder->hpd_pin = HPD_PORT_C;
5645                 break;
5646         case PORT_D:
5647                 intel_encoder->hpd_pin = HPD_PORT_D;
5648                 break;
5649         case PORT_E:
5650                 intel_encoder->hpd_pin = HPD_PORT_E;
5651                 break;
5652         default:
5653                 BUG();
5654         }
5655
5656         /* init MST on ports that can support it */
5657         if (HAS_DP_MST(dev) && !is_edp(intel_dp) &&
5658             (port == PORT_B || port == PORT_C || port == PORT_D))
5659                 intel_dp_mst_encoder_init(intel_dig_port,
5660                                           intel_connector->base.base.id);
5661
5662         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5663                 intel_dp_aux_fini(intel_dp);
5664                 intel_dp_mst_encoder_cleanup(intel_dig_port);
5665                 goto fail;
5666         }
5667
5668         intel_dp_add_properties(intel_dp, connector);
5669
5670         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5671          * 0xd.  Failure to do so will result in spurious interrupts being
5672          * generated on the port when a cable is not attached.
5673          */
5674         if (IS_G4X(dev) && !IS_GM45(dev)) {
5675                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5676                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5677         }
5678
5679         return true;
5680
5681 fail:
5682         drm_connector_cleanup(connector);
5683
5684         return false;
5685 }
5686
5687 bool intel_dp_init(struct drm_device *dev,
5688                    i915_reg_t output_reg,
5689                    enum port port)
5690 {
5691         struct drm_i915_private *dev_priv = to_i915(dev);
5692         struct intel_digital_port *intel_dig_port;
5693         struct intel_encoder *intel_encoder;
5694         struct drm_encoder *encoder;
5695         struct intel_connector *intel_connector;
5696
5697         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5698         if (!intel_dig_port)
5699                 return false;
5700
5701         intel_connector = intel_connector_alloc();
5702         if (!intel_connector)
5703                 goto err_connector_alloc;
5704
5705         intel_encoder = &intel_dig_port->base;
5706         encoder = &intel_encoder->base;
5707
5708         if (drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5709                              DRM_MODE_ENCODER_TMDS, "DP %c", port_name(port)))
5710                 goto err_encoder_init;
5711
5712         intel_encoder->compute_config = intel_dp_compute_config;
5713         intel_encoder->disable = intel_disable_dp;
5714         intel_encoder->get_hw_state = intel_dp_get_hw_state;
5715         intel_encoder->get_config = intel_dp_get_config;
5716         intel_encoder->suspend = intel_dp_encoder_suspend;
5717         if (IS_CHERRYVIEW(dev)) {
5718                 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5719                 intel_encoder->pre_enable = chv_pre_enable_dp;
5720                 intel_encoder->enable = vlv_enable_dp;
5721                 intel_encoder->post_disable = chv_post_disable_dp;
5722                 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
5723         } else if (IS_VALLEYVIEW(dev)) {
5724                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5725                 intel_encoder->pre_enable = vlv_pre_enable_dp;
5726                 intel_encoder->enable = vlv_enable_dp;
5727                 intel_encoder->post_disable = vlv_post_disable_dp;
5728         } else {
5729                 intel_encoder->pre_enable = g4x_pre_enable_dp;
5730                 intel_encoder->enable = g4x_enable_dp;
5731                 if (INTEL_INFO(dev)->gen >= 5)
5732                         intel_encoder->post_disable = ilk_post_disable_dp;
5733         }
5734
5735         intel_dig_port->port = port;
5736         intel_dig_port->dp.output_reg = output_reg;
5737         intel_dig_port->max_lanes = 4;
5738
5739         intel_encoder->type = INTEL_OUTPUT_DP;
5740         if (IS_CHERRYVIEW(dev)) {
5741                 if (port == PORT_D)
5742                         intel_encoder->crtc_mask = 1 << 2;
5743                 else
5744                         intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5745         } else {
5746                 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5747         }
5748         intel_encoder->cloneable = 0;
5749
5750         intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5751         dev_priv->hotplug.irq_port[port] = intel_dig_port;
5752
5753         if (!intel_dp_init_connector(intel_dig_port, intel_connector))
5754                 goto err_init_connector;
5755
5756         return true;
5757
5758 err_init_connector:
5759         drm_encoder_cleanup(encoder);
5760 err_encoder_init:
5761         kfree(intel_connector);
5762 err_connector_alloc:
5763         kfree(intel_dig_port);
5764         return false;
5765 }
5766
5767 void intel_dp_mst_suspend(struct drm_device *dev)
5768 {
5769         struct drm_i915_private *dev_priv = to_i915(dev);
5770         int i;
5771
5772         /* disable MST */
5773         for (i = 0; i < I915_MAX_PORTS; i++) {
5774                 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5775
5776                 if (!intel_dig_port || !intel_dig_port->dp.can_mst)
5777                         continue;
5778
5779                 if (intel_dig_port->dp.is_mst)
5780                         drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5781         }
5782 }
5783
5784 void intel_dp_mst_resume(struct drm_device *dev)
5785 {
5786         struct drm_i915_private *dev_priv = to_i915(dev);
5787         int i;
5788
5789         for (i = 0; i < I915_MAX_PORTS; i++) {
5790                 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5791                 int ret;
5792
5793                 if (!intel_dig_port || !intel_dig_port->dp.can_mst)
5794                         continue;
5795
5796                 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
5797                 if (ret)
5798                         intel_dp_check_mst_status(&intel_dig_port->dp);
5799         }
5800 }