MAINTAINERS: mmc: Move the mmc tree to kernel.org
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL             (1 << 0x2)
146 #define RING_EXECLIST1_VALID            (1 << 0x3)
147 #define RING_EXECLIST0_VALID            (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
158
159 #define CTX_LRI_HEADER_0                0x01
160 #define CTX_CONTEXT_CONTROL             0x02
161 #define CTX_RING_HEAD                   0x04
162 #define CTX_RING_TAIL                   0x06
163 #define CTX_RING_BUFFER_START           0x08
164 #define CTX_RING_BUFFER_CONTROL         0x0a
165 #define CTX_BB_HEAD_U                   0x0c
166 #define CTX_BB_HEAD_L                   0x0e
167 #define CTX_BB_STATE                    0x10
168 #define CTX_SECOND_BB_HEAD_U            0x12
169 #define CTX_SECOND_BB_HEAD_L            0x14
170 #define CTX_SECOND_BB_STATE             0x16
171 #define CTX_BB_PER_CTX_PTR              0x18
172 #define CTX_RCS_INDIRECT_CTX            0x1a
173 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
174 #define CTX_LRI_HEADER_1                0x21
175 #define CTX_CTX_TIMESTAMP               0x22
176 #define CTX_PDP3_UDW                    0x24
177 #define CTX_PDP3_LDW                    0x26
178 #define CTX_PDP2_UDW                    0x28
179 #define CTX_PDP2_LDW                    0x2a
180 #define CTX_PDP1_UDW                    0x2c
181 #define CTX_PDP1_LDW                    0x2e
182 #define CTX_PDP0_UDW                    0x30
183 #define CTX_PDP0_LDW                    0x32
184 #define CTX_LRI_HEADER_2                0x41
185 #define CTX_R_PWR_CLK_STATE             0x42
186 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
187
188 #define GEN8_CTX_VALID (1<<0)
189 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190 #define GEN8_CTX_FORCE_RESTORE (1<<2)
191 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
192 #define GEN8_CTX_PRIVILEGE (1<<8)
193
194 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195         (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196         (reg_state)[(pos)+1] = (val); \
197 } while (0)
198
199 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {                \
200         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
201         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203 } while (0)
204
205 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206         reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207         reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208 } while (0)
209
210 enum {
211         FAULT_AND_HANG = 0,
212         FAULT_AND_HALT, /* Debug only */
213         FAULT_AND_STREAM,
214         FAULT_AND_CONTINUE /* Unsupported */
215 };
216 #define GEN8_CTX_ID_SHIFT 32
217 #define GEN8_CTX_ID_WIDTH 21
218 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x17
219 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x26
220
221 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
222 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
223
224 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
225                                             struct intel_engine_cs *engine);
226 static int intel_lr_context_pin(struct i915_gem_context *ctx,
227                                 struct intel_engine_cs *engine);
228
229 /**
230  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
231  * @dev_priv: i915 device private
232  * @enable_execlists: value of i915.enable_execlists module parameter.
233  *
234  * Only certain platforms support Execlists (the prerequisites being
235  * support for Logical Ring Contexts and Aliasing PPGTT or better).
236  *
237  * Return: 1 if Execlists is supported and has to be enabled.
238  */
239 int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
240 {
241         /* On platforms with execlist available, vGPU will only
242          * support execlist mode, no ring buffer mode.
243          */
244         if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
245                 return 1;
246
247         if (INTEL_GEN(dev_priv) >= 9)
248                 return 1;
249
250         if (enable_execlists == 0)
251                 return 0;
252
253         if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
254             USES_PPGTT(dev_priv) &&
255             i915.use_mmio_flip >= 0)
256                 return 1;
257
258         return 0;
259 }
260
261 static void
262 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
263 {
264         struct drm_i915_private *dev_priv = engine->i915;
265
266         if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv))
267                 engine->idle_lite_restore_wa = ~0;
268
269         engine->disable_lite_restore_wa = (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
270                                         IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
271                                         (engine->id == VCS || engine->id == VCS2);
272
273         engine->ctx_desc_template = GEN8_CTX_VALID;
274         if (IS_GEN8(dev_priv))
275                 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
276         engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
277
278         /* TODO: WaDisableLiteRestore when we start using semaphore
279          * signalling between Command Streamers */
280         /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
281
282         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
283         /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
284         if (engine->disable_lite_restore_wa)
285                 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
286 }
287
288 /**
289  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
290  *                                        descriptor for a pinned context
291  *
292  * @ctx: Context to work on
293  * @engine: Engine the descriptor will be used with
294  *
295  * The context descriptor encodes various attributes of a context,
296  * including its GTT address and some flags. Because it's fairly
297  * expensive to calculate, we'll just do it once and cache the result,
298  * which remains valid until the context is unpinned.
299  *
300  * This is what a descriptor looks like, from LSB to MSB:
301  *    bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
302  *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
303  *    bits 32-52:    ctx ID, a globally unique tag
304  *    bits 53-54:    mbz, reserved for use by hardware
305  *    bits 55-63:    group ID, currently unused and set to 0
306  */
307 static void
308 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
309                                    struct intel_engine_cs *engine)
310 {
311         struct intel_context *ce = &ctx->engine[engine->id];
312         u64 desc;
313
314         BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
315
316         desc = ctx->desc_template;                              /* bits  3-4  */
317         desc |= engine->ctx_desc_template;                      /* bits  0-11 */
318         desc |= ce->lrc_vma->node.start + LRC_PPHWSP_PN * PAGE_SIZE;
319                                                                 /* bits 12-31 */
320         desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;           /* bits 32-52 */
321
322         ce->lrc_desc = desc;
323 }
324
325 uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
326                                      struct intel_engine_cs *engine)
327 {
328         return ctx->engine[engine->id].lrc_desc;
329 }
330
331 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
332                                  struct drm_i915_gem_request *rq1)
333 {
334
335         struct intel_engine_cs *engine = rq0->engine;
336         struct drm_i915_private *dev_priv = rq0->i915;
337         uint64_t desc[2];
338
339         if (rq1) {
340                 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
341                 rq1->elsp_submitted++;
342         } else {
343                 desc[1] = 0;
344         }
345
346         desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
347         rq0->elsp_submitted++;
348
349         /* You must always write both descriptors in the order below. */
350         I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
351         I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
352
353         I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
354         /* The context is automatically loaded after the following */
355         I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
356
357         /* ELSP is a wo register, use another nearby reg for posting */
358         POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
359 }
360
361 static void
362 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
363 {
364         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
365         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
366         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
367         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
368 }
369
370 static void execlists_update_context(struct drm_i915_gem_request *rq)
371 {
372         struct intel_engine_cs *engine = rq->engine;
373         struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
374         uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
375
376         reg_state[CTX_RING_TAIL+1] = rq->tail;
377
378         /* True 32b PPGTT with dynamic page allocation: update PDP
379          * registers and point the unallocated PDPs to scratch page.
380          * PML4 is allocated during ppgtt init, so this is not needed
381          * in 48-bit mode.
382          */
383         if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
384                 execlists_update_context_pdps(ppgtt, reg_state);
385 }
386
387 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
388                                       struct drm_i915_gem_request *rq1)
389 {
390         struct drm_i915_private *dev_priv = rq0->i915;
391         unsigned int fw_domains = rq0->engine->fw_domains;
392
393         execlists_update_context(rq0);
394
395         if (rq1)
396                 execlists_update_context(rq1);
397
398         spin_lock_irq(&dev_priv->uncore.lock);
399         intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
400
401         execlists_elsp_write(rq0, rq1);
402
403         intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
404         spin_unlock_irq(&dev_priv->uncore.lock);
405 }
406
407 static inline void execlists_context_status_change(
408                 struct drm_i915_gem_request *rq,
409                 unsigned long status)
410 {
411         /*
412          * Only used when GVT-g is enabled now. When GVT-g is disabled,
413          * The compiler should eliminate this function as dead-code.
414          */
415         if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
416                 return;
417
418         atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
419 }
420
421 static void execlists_context_unqueue(struct intel_engine_cs *engine)
422 {
423         struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
424         struct drm_i915_gem_request *cursor, *tmp;
425
426         assert_spin_locked(&engine->execlist_lock);
427
428         /*
429          * If irqs are not active generate a warning as batches that finish
430          * without the irqs may get lost and a GPU Hang may occur.
431          */
432         WARN_ON(!intel_irqs_enabled(engine->i915));
433
434         /* Try to read in pairs */
435         list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
436                                  execlist_link) {
437                 if (!req0) {
438                         req0 = cursor;
439                 } else if (req0->ctx == cursor->ctx) {
440                         /* Same ctx: ignore first request, as second request
441                          * will update tail past first request's workload */
442                         cursor->elsp_submitted = req0->elsp_submitted;
443                         list_del(&req0->execlist_link);
444                         i915_gem_request_unreference(req0);
445                         req0 = cursor;
446                 } else {
447                         if (IS_ENABLED(CONFIG_DRM_I915_GVT)) {
448                                 /*
449                                  * req0 (after merged) ctx requires single
450                                  * submission, stop picking
451                                  */
452                                 if (req0->ctx->execlists_force_single_submission)
453                                         break;
454                                 /*
455                                  * req0 ctx doesn't require single submission,
456                                  * but next req ctx requires, stop picking
457                                  */
458                                 if (cursor->ctx->execlists_force_single_submission)
459                                         break;
460                         }
461                         req1 = cursor;
462                         WARN_ON(req1->elsp_submitted);
463                         break;
464                 }
465         }
466
467         if (unlikely(!req0))
468                 return;
469
470         execlists_context_status_change(req0, INTEL_CONTEXT_SCHEDULE_IN);
471
472         if (req1)
473                 execlists_context_status_change(req1,
474                                                 INTEL_CONTEXT_SCHEDULE_IN);
475
476         if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
477                 /*
478                  * WaIdleLiteRestore: make sure we never cause a lite restore
479                  * with HEAD==TAIL.
480                  *
481                  * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
482                  * resubmit the request. See gen8_emit_request() for where we
483                  * prepare the padding after the end of the request.
484                  */
485                 struct intel_ringbuffer *ringbuf;
486
487                 ringbuf = req0->ctx->engine[engine->id].ringbuf;
488                 req0->tail += 8;
489                 req0->tail &= ringbuf->size - 1;
490         }
491
492         execlists_submit_requests(req0, req1);
493 }
494
495 static unsigned int
496 execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
497 {
498         struct drm_i915_gem_request *head_req;
499
500         assert_spin_locked(&engine->execlist_lock);
501
502         head_req = list_first_entry_or_null(&engine->execlist_queue,
503                                             struct drm_i915_gem_request,
504                                             execlist_link);
505
506         if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
507                return 0;
508
509         WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
510
511         if (--head_req->elsp_submitted > 0)
512                 return 0;
513
514         execlists_context_status_change(head_req, INTEL_CONTEXT_SCHEDULE_OUT);
515
516         list_del(&head_req->execlist_link);
517         i915_gem_request_unreference(head_req);
518
519         return 1;
520 }
521
522 static u32
523 get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
524                    u32 *context_id)
525 {
526         struct drm_i915_private *dev_priv = engine->i915;
527         u32 status;
528
529         read_pointer %= GEN8_CSB_ENTRIES;
530
531         status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
532
533         if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
534                 return 0;
535
536         *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
537                                                               read_pointer));
538
539         return status;
540 }
541
542 /**
543  * intel_lrc_irq_handler() - handle Context Switch interrupts
544  * @data: tasklet handler passed in unsigned long
545  *
546  * Check the unread Context Status Buffers and manage the submission of new
547  * contexts to the ELSP accordingly.
548  */
549 static void intel_lrc_irq_handler(unsigned long data)
550 {
551         struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
552         struct drm_i915_private *dev_priv = engine->i915;
553         u32 status_pointer;
554         unsigned int read_pointer, write_pointer;
555         u32 csb[GEN8_CSB_ENTRIES][2];
556         unsigned int csb_read = 0, i;
557         unsigned int submit_contexts = 0;
558
559         intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
560
561         status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
562
563         read_pointer = engine->next_context_status_buffer;
564         write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
565         if (read_pointer > write_pointer)
566                 write_pointer += GEN8_CSB_ENTRIES;
567
568         while (read_pointer < write_pointer) {
569                 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
570                         break;
571                 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
572                                                       &csb[csb_read][1]);
573                 csb_read++;
574         }
575
576         engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
577
578         /* Update the read pointer to the old write pointer. Manual ringbuffer
579          * management ftw </sarcasm> */
580         I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
581                       _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
582                                     engine->next_context_status_buffer << 8));
583
584         intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
585
586         spin_lock(&engine->execlist_lock);
587
588         for (i = 0; i < csb_read; i++) {
589                 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
590                         if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
591                                 if (execlists_check_remove_request(engine, csb[i][1]))
592                                         WARN(1, "Lite Restored request removed from queue\n");
593                         } else
594                                 WARN(1, "Preemption without Lite Restore\n");
595                 }
596
597                 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
598                     GEN8_CTX_STATUS_ELEMENT_SWITCH))
599                         submit_contexts +=
600                                 execlists_check_remove_request(engine, csb[i][1]);
601         }
602
603         if (submit_contexts) {
604                 if (!engine->disable_lite_restore_wa ||
605                     (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
606                         execlists_context_unqueue(engine);
607         }
608
609         spin_unlock(&engine->execlist_lock);
610
611         if (unlikely(submit_contexts > 2))
612                 DRM_ERROR("More than two context complete events?\n");
613 }
614
615 static void execlists_context_queue(struct drm_i915_gem_request *request)
616 {
617         struct intel_engine_cs *engine = request->engine;
618         struct drm_i915_gem_request *cursor;
619         int num_elements = 0;
620
621         spin_lock_bh(&engine->execlist_lock);
622
623         list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
624                 if (++num_elements > 2)
625                         break;
626
627         if (num_elements > 2) {
628                 struct drm_i915_gem_request *tail_req;
629
630                 tail_req = list_last_entry(&engine->execlist_queue,
631                                            struct drm_i915_gem_request,
632                                            execlist_link);
633
634                 if (request->ctx == tail_req->ctx) {
635                         WARN(tail_req->elsp_submitted != 0,
636                                 "More than 2 already-submitted reqs queued\n");
637                         list_del(&tail_req->execlist_link);
638                         i915_gem_request_unreference(tail_req);
639                 }
640         }
641
642         i915_gem_request_reference(request);
643         list_add_tail(&request->execlist_link, &engine->execlist_queue);
644         request->ctx_hw_id = request->ctx->hw_id;
645         if (num_elements == 0)
646                 execlists_context_unqueue(engine);
647
648         spin_unlock_bh(&engine->execlist_lock);
649 }
650
651 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
652 {
653         struct intel_engine_cs *engine = req->engine;
654         uint32_t flush_domains;
655         int ret;
656
657         flush_domains = 0;
658         if (engine->gpu_caches_dirty)
659                 flush_domains = I915_GEM_GPU_DOMAINS;
660
661         ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
662         if (ret)
663                 return ret;
664
665         engine->gpu_caches_dirty = false;
666         return 0;
667 }
668
669 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
670                                  struct list_head *vmas)
671 {
672         const unsigned other_rings = ~intel_engine_flag(req->engine);
673         struct i915_vma *vma;
674         uint32_t flush_domains = 0;
675         bool flush_chipset = false;
676         int ret;
677
678         list_for_each_entry(vma, vmas, exec_list) {
679                 struct drm_i915_gem_object *obj = vma->obj;
680
681                 if (obj->active & other_rings) {
682                         ret = i915_gem_object_sync(obj, req->engine, &req);
683                         if (ret)
684                                 return ret;
685                 }
686
687                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
688                         flush_chipset |= i915_gem_clflush_object(obj, false);
689
690                 flush_domains |= obj->base.write_domain;
691         }
692
693         if (flush_domains & I915_GEM_DOMAIN_GTT)
694                 wmb();
695
696         /* Unconditionally invalidate gpu caches and ensure that we do flush
697          * any residual writes from the previous batch.
698          */
699         return logical_ring_invalidate_all_caches(req);
700 }
701
702 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
703 {
704         struct intel_engine_cs *engine = request->engine;
705         struct intel_context *ce = &request->ctx->engine[engine->id];
706         int ret;
707
708         /* Flush enough space to reduce the likelihood of waiting after
709          * we start building the request - in which case we will just
710          * have to repeat work.
711          */
712         request->reserved_space += EXECLISTS_REQUEST_SIZE;
713
714         if (!ce->state) {
715                 ret = execlists_context_deferred_alloc(request->ctx, engine);
716                 if (ret)
717                         return ret;
718         }
719
720         request->ringbuf = ce->ringbuf;
721
722         if (i915.enable_guc_submission) {
723                 /*
724                  * Check that the GuC has space for the request before
725                  * going any further, as the i915_add_request() call
726                  * later on mustn't fail ...
727                  */
728                 ret = i915_guc_wq_check_space(request);
729                 if (ret)
730                         return ret;
731         }
732
733         ret = intel_lr_context_pin(request->ctx, engine);
734         if (ret)
735                 return ret;
736
737         ret = intel_ring_begin(request, 0);
738         if (ret)
739                 goto err_unpin;
740
741         if (!ce->initialised) {
742                 ret = engine->init_context(request);
743                 if (ret)
744                         goto err_unpin;
745
746                 ce->initialised = true;
747         }
748
749         /* Note that after this point, we have committed to using
750          * this request as it is being used to both track the
751          * state of engine initialisation and liveness of the
752          * golden renderstate above. Think twice before you try
753          * to cancel/unwind this request now.
754          */
755
756         request->reserved_space -= EXECLISTS_REQUEST_SIZE;
757         return 0;
758
759 err_unpin:
760         intel_lr_context_unpin(request->ctx, engine);
761         return ret;
762 }
763
764 /*
765  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
766  * @request: Request to advance the logical ringbuffer of.
767  *
768  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
769  * really happens during submission is that the context and current tail will be placed
770  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
771  * point, the tail *inside* the context is updated and the ELSP written to.
772  */
773 static int
774 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
775 {
776         struct intel_ringbuffer *ringbuf = request->ringbuf;
777         struct intel_engine_cs *engine = request->engine;
778
779         intel_logical_ring_advance(ringbuf);
780         request->tail = ringbuf->tail;
781
782         /*
783          * Here we add two extra NOOPs as padding to avoid
784          * lite restore of a context with HEAD==TAIL.
785          *
786          * Caller must reserve WA_TAIL_DWORDS for us!
787          */
788         intel_logical_ring_emit(ringbuf, MI_NOOP);
789         intel_logical_ring_emit(ringbuf, MI_NOOP);
790         intel_logical_ring_advance(ringbuf);
791
792         /* We keep the previous context alive until we retire the following
793          * request. This ensures that any the context object is still pinned
794          * for any residual writes the HW makes into it on the context switch
795          * into the next object following the breadcrumb. Otherwise, we may
796          * retire the context too early.
797          */
798         request->previous_context = engine->last_context;
799         engine->last_context = request->ctx;
800
801         if (i915.enable_guc_submission)
802                 i915_guc_submit(request);
803         else
804                 execlists_context_queue(request);
805
806         return 0;
807 }
808
809 /**
810  * execlists_submission() - submit a batchbuffer for execution, Execlists style
811  * @params: execbuffer call parameters.
812  * @args: execbuffer call arguments.
813  * @vmas: list of vmas.
814  *
815  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
816  * away the submission details of the execbuffer ioctl call.
817  *
818  * Return: non-zero if the submission fails.
819  */
820 int intel_execlists_submission(struct i915_execbuffer_params *params,
821                                struct drm_i915_gem_execbuffer2 *args,
822                                struct list_head *vmas)
823 {
824         struct drm_device       *dev = params->dev;
825         struct intel_engine_cs *engine = params->engine;
826         struct drm_i915_private *dev_priv = to_i915(dev);
827         struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
828         u64 exec_start;
829         int instp_mode;
830         u32 instp_mask;
831         int ret;
832
833         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
834         instp_mask = I915_EXEC_CONSTANTS_MASK;
835         switch (instp_mode) {
836         case I915_EXEC_CONSTANTS_REL_GENERAL:
837         case I915_EXEC_CONSTANTS_ABSOLUTE:
838         case I915_EXEC_CONSTANTS_REL_SURFACE:
839                 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
840                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
841                         return -EINVAL;
842                 }
843
844                 if (instp_mode != dev_priv->relative_constants_mode) {
845                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
846                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
847                                 return -EINVAL;
848                         }
849
850                         /* The HW changed the meaning on this bit on gen6 */
851                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
852                 }
853                 break;
854         default:
855                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
856                 return -EINVAL;
857         }
858
859         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
860                 DRM_DEBUG("sol reset is gen7 only\n");
861                 return -EINVAL;
862         }
863
864         ret = execlists_move_to_gpu(params->request, vmas);
865         if (ret)
866                 return ret;
867
868         if (engine == &dev_priv->engine[RCS] &&
869             instp_mode != dev_priv->relative_constants_mode) {
870                 ret = intel_ring_begin(params->request, 4);
871                 if (ret)
872                         return ret;
873
874                 intel_logical_ring_emit(ringbuf, MI_NOOP);
875                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
876                 intel_logical_ring_emit_reg(ringbuf, INSTPM);
877                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
878                 intel_logical_ring_advance(ringbuf);
879
880                 dev_priv->relative_constants_mode = instp_mode;
881         }
882
883         exec_start = params->batch_obj_vm_offset +
884                      args->batch_start_offset;
885
886         ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
887         if (ret)
888                 return ret;
889
890         trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
891
892         i915_gem_execbuffer_move_to_active(vmas, params->request);
893
894         return 0;
895 }
896
897 void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
898 {
899         struct drm_i915_gem_request *req, *tmp;
900         LIST_HEAD(cancel_list);
901
902         WARN_ON(!mutex_is_locked(&engine->i915->drm.struct_mutex));
903
904         spin_lock_bh(&engine->execlist_lock);
905         list_replace_init(&engine->execlist_queue, &cancel_list);
906         spin_unlock_bh(&engine->execlist_lock);
907
908         list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
909                 list_del(&req->execlist_link);
910                 i915_gem_request_unreference(req);
911         }
912 }
913
914 void intel_logical_ring_stop(struct intel_engine_cs *engine)
915 {
916         struct drm_i915_private *dev_priv = engine->i915;
917         int ret;
918
919         if (!intel_engine_initialized(engine))
920                 return;
921
922         ret = intel_engine_idle(engine);
923         if (ret)
924                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
925                           engine->name, ret);
926
927         /* TODO: Is this correct with Execlists enabled? */
928         I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
929         if (intel_wait_for_register(dev_priv,
930                                     RING_MI_MODE(engine->mmio_base),
931                                     MODE_IDLE, MODE_IDLE,
932                                     1000)) {
933                 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
934                 return;
935         }
936         I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
937 }
938
939 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
940 {
941         struct intel_engine_cs *engine = req->engine;
942         int ret;
943
944         if (!engine->gpu_caches_dirty)
945                 return 0;
946
947         ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
948         if (ret)
949                 return ret;
950
951         engine->gpu_caches_dirty = false;
952         return 0;
953 }
954
955 static int intel_lr_context_pin(struct i915_gem_context *ctx,
956                                 struct intel_engine_cs *engine)
957 {
958         struct drm_i915_private *dev_priv = ctx->i915;
959         struct intel_context *ce = &ctx->engine[engine->id];
960         void *vaddr;
961         u32 *lrc_reg_state;
962         int ret;
963
964         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
965
966         if (ce->pin_count++)
967                 return 0;
968
969         ret = i915_gem_obj_ggtt_pin(ce->state, GEN8_LR_CONTEXT_ALIGN,
970                                     PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
971         if (ret)
972                 goto err;
973
974         vaddr = i915_gem_object_pin_map(ce->state);
975         if (IS_ERR(vaddr)) {
976                 ret = PTR_ERR(vaddr);
977                 goto unpin_ctx_obj;
978         }
979
980         lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
981
982         ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ce->ringbuf);
983         if (ret)
984                 goto unpin_map;
985
986         i915_gem_context_reference(ctx);
987         ce->lrc_vma = i915_gem_obj_to_ggtt(ce->state);
988         intel_lr_context_descriptor_update(ctx, engine);
989
990         lrc_reg_state[CTX_RING_BUFFER_START+1] = ce->ringbuf->vma->node.start;
991         ce->lrc_reg_state = lrc_reg_state;
992         ce->state->dirty = true;
993
994         /* Invalidate GuC TLB. */
995         if (i915.enable_guc_submission)
996                 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
997
998         return 0;
999
1000 unpin_map:
1001         i915_gem_object_unpin_map(ce->state);
1002 unpin_ctx_obj:
1003         i915_gem_object_ggtt_unpin(ce->state);
1004 err:
1005         ce->pin_count = 0;
1006         return ret;
1007 }
1008
1009 void intel_lr_context_unpin(struct i915_gem_context *ctx,
1010                             struct intel_engine_cs *engine)
1011 {
1012         struct intel_context *ce = &ctx->engine[engine->id];
1013
1014         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1015         GEM_BUG_ON(ce->pin_count == 0);
1016
1017         if (--ce->pin_count)
1018                 return;
1019
1020         intel_unpin_ringbuffer_obj(ce->ringbuf);
1021
1022         i915_gem_object_unpin_map(ce->state);
1023         i915_gem_object_ggtt_unpin(ce->state);
1024
1025         ce->lrc_vma = NULL;
1026         ce->lrc_desc = 0;
1027         ce->lrc_reg_state = NULL;
1028
1029         i915_gem_context_unreference(ctx);
1030 }
1031
1032 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1033 {
1034         int ret, i;
1035         struct intel_engine_cs *engine = req->engine;
1036         struct intel_ringbuffer *ringbuf = req->ringbuf;
1037         struct i915_workarounds *w = &req->i915->workarounds;
1038
1039         if (w->count == 0)
1040                 return 0;
1041
1042         engine->gpu_caches_dirty = true;
1043         ret = logical_ring_flush_all_caches(req);
1044         if (ret)
1045                 return ret;
1046
1047         ret = intel_ring_begin(req, w->count * 2 + 2);
1048         if (ret)
1049                 return ret;
1050
1051         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1052         for (i = 0; i < w->count; i++) {
1053                 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1054                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1055         }
1056         intel_logical_ring_emit(ringbuf, MI_NOOP);
1057
1058         intel_logical_ring_advance(ringbuf);
1059
1060         engine->gpu_caches_dirty = true;
1061         ret = logical_ring_flush_all_caches(req);
1062         if (ret)
1063                 return ret;
1064
1065         return 0;
1066 }
1067
1068 #define wa_ctx_emit(batch, index, cmd)                                  \
1069         do {                                                            \
1070                 int __index = (index)++;                                \
1071                 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1072                         return -ENOSPC;                                 \
1073                 }                                                       \
1074                 batch[__index] = (cmd);                                 \
1075         } while (0)
1076
1077 #define wa_ctx_emit_reg(batch, index, reg) \
1078         wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1079
1080 /*
1081  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1082  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1083  * but there is a slight complication as this is applied in WA batch where the
1084  * values are only initialized once so we cannot take register value at the
1085  * beginning and reuse it further; hence we save its value to memory, upload a
1086  * constant value with bit21 set and then we restore it back with the saved value.
1087  * To simplify the WA, a constant value is formed by using the default value
1088  * of this register. This shouldn't be a problem because we are only modifying
1089  * it for a short period and this batch in non-premptible. We can ofcourse
1090  * use additional instructions that read the actual value of the register
1091  * at that time and set our bit of interest but it makes the WA complicated.
1092  *
1093  * This WA is also required for Gen9 so extracting as a function avoids
1094  * code duplication.
1095  */
1096 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1097                                                 uint32_t *const batch,
1098                                                 uint32_t index)
1099 {
1100         struct drm_i915_private *dev_priv = engine->i915;
1101         uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1102
1103         /*
1104          * WaDisableLSQCROPERFforOCL:skl,kbl
1105          * This WA is implemented in skl_init_clock_gating() but since
1106          * this batch updates GEN8_L3SQCREG4 with default value we need to
1107          * set this bit here to retain the WA during flush.
1108          */
1109         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0) ||
1110             IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
1111                 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1112
1113         wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1114                                    MI_SRM_LRM_GLOBAL_GTT));
1115         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1116         wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1117         wa_ctx_emit(batch, index, 0);
1118
1119         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1120         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1121         wa_ctx_emit(batch, index, l3sqc4_flush);
1122
1123         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1124         wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1125                                    PIPE_CONTROL_DC_FLUSH_ENABLE));
1126         wa_ctx_emit(batch, index, 0);
1127         wa_ctx_emit(batch, index, 0);
1128         wa_ctx_emit(batch, index, 0);
1129         wa_ctx_emit(batch, index, 0);
1130
1131         wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1132                                    MI_SRM_LRM_GLOBAL_GTT));
1133         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1134         wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1135         wa_ctx_emit(batch, index, 0);
1136
1137         return index;
1138 }
1139
1140 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1141                                     uint32_t offset,
1142                                     uint32_t start_alignment)
1143 {
1144         return wa_ctx->offset = ALIGN(offset, start_alignment);
1145 }
1146
1147 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1148                              uint32_t offset,
1149                              uint32_t size_alignment)
1150 {
1151         wa_ctx->size = offset - wa_ctx->offset;
1152
1153         WARN(wa_ctx->size % size_alignment,
1154              "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1155              wa_ctx->size, size_alignment);
1156         return 0;
1157 }
1158
1159 /**
1160  * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1161  *
1162  * @engine: only applicable for RCS
1163  * @wa_ctx: structure representing wa_ctx
1164  *  offset: specifies start of the batch, should be cache-aligned. This is updated
1165  *    with the offset value received as input.
1166  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1167  * @batch: page in which WA are loaded
1168  * @offset: This field specifies the start of the batch, it should be
1169  *  cache-aligned otherwise it is adjusted accordingly.
1170  *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
1171  *  initialized at the beginning and shared across all contexts but this field
1172  *  helps us to have multiple batches at different offsets and select them based
1173  *  on a criteria. At the moment this batch always start at the beginning of the page
1174  *  and at this point we don't have multiple wa_ctx batch buffers.
1175  *
1176  *  The number of WA applied are not known at the beginning; we use this field
1177  *  to return the no of DWORDS written.
1178  *
1179  *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1180  *  so it adds NOOPs as padding to make it cacheline aligned.
1181  *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1182  *  makes a complete batch buffer.
1183  *
1184  * Return: non-zero if we exceed the PAGE_SIZE limit.
1185  */
1186
1187 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1188                                     struct i915_wa_ctx_bb *wa_ctx,
1189                                     uint32_t *const batch,
1190                                     uint32_t *offset)
1191 {
1192         uint32_t scratch_addr;
1193         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1194
1195         /* WaDisableCtxRestoreArbitration:bdw,chv */
1196         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1197
1198         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1199         if (IS_BROADWELL(engine->i915)) {
1200                 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1201                 if (rc < 0)
1202                         return rc;
1203                 index = rc;
1204         }
1205
1206         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1207         /* Actual scratch location is at 128 bytes offset */
1208         scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1209
1210         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1211         wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1212                                    PIPE_CONTROL_GLOBAL_GTT_IVB |
1213                                    PIPE_CONTROL_CS_STALL |
1214                                    PIPE_CONTROL_QW_WRITE));
1215         wa_ctx_emit(batch, index, scratch_addr);
1216         wa_ctx_emit(batch, index, 0);
1217         wa_ctx_emit(batch, index, 0);
1218         wa_ctx_emit(batch, index, 0);
1219
1220         /* Pad to end of cacheline */
1221         while (index % CACHELINE_DWORDS)
1222                 wa_ctx_emit(batch, index, MI_NOOP);
1223
1224         /*
1225          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1226          * execution depends on the length specified in terms of cache lines
1227          * in the register CTX_RCS_INDIRECT_CTX
1228          */
1229
1230         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1231 }
1232
1233 /**
1234  * gen8_init_perctx_bb() - initialize per ctx batch with WA
1235  *
1236  * @engine: only applicable for RCS
1237  * @wa_ctx: structure representing wa_ctx
1238  *  offset: specifies start of the batch, should be cache-aligned.
1239  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1240  * @batch: page in which WA are loaded
1241  * @offset: This field specifies the start of this batch.
1242  *   This batch is started immediately after indirect_ctx batch. Since we ensure
1243  *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
1244  *
1245  *   The number of DWORDS written are returned using this field.
1246  *
1247  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1248  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1249  */
1250 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1251                                struct i915_wa_ctx_bb *wa_ctx,
1252                                uint32_t *const batch,
1253                                uint32_t *offset)
1254 {
1255         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1256
1257         /* WaDisableCtxRestoreArbitration:bdw,chv */
1258         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1259
1260         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1261
1262         return wa_ctx_end(wa_ctx, *offset = index, 1);
1263 }
1264
1265 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1266                                     struct i915_wa_ctx_bb *wa_ctx,
1267                                     uint32_t *const batch,
1268                                     uint32_t *offset)
1269 {
1270         int ret;
1271         struct drm_i915_private *dev_priv = engine->i915;
1272         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1273
1274         /* WaDisableCtxRestoreArbitration:skl,bxt */
1275         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
1276             IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1277                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1278
1279         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1280         ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1281         if (ret < 0)
1282                 return ret;
1283         index = ret;
1284
1285         /* WaClearSlmSpaceAtContextSwitch:kbl */
1286         /* Actual scratch location is at 128 bytes offset */
1287         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
1288                 uint32_t scratch_addr
1289                         = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1290
1291                 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1292                 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1293                                            PIPE_CONTROL_GLOBAL_GTT_IVB |
1294                                            PIPE_CONTROL_CS_STALL |
1295                                            PIPE_CONTROL_QW_WRITE));
1296                 wa_ctx_emit(batch, index, scratch_addr);
1297                 wa_ctx_emit(batch, index, 0);
1298                 wa_ctx_emit(batch, index, 0);
1299                 wa_ctx_emit(batch, index, 0);
1300         }
1301
1302         /* WaMediaPoolStateCmdInWABB:bxt */
1303         if (HAS_POOLED_EU(engine->i915)) {
1304                 /*
1305                  * EU pool configuration is setup along with golden context
1306                  * during context initialization. This value depends on
1307                  * device type (2x6 or 3x6) and needs to be updated based
1308                  * on which subslice is disabled especially for 2x6
1309                  * devices, however it is safe to load default
1310                  * configuration of 3x6 device instead of masking off
1311                  * corresponding bits because HW ignores bits of a disabled
1312                  * subslice and drops down to appropriate config. Please
1313                  * see render_state_setup() in i915_gem_render_state.c for
1314                  * possible configurations, to avoid duplication they are
1315                  * not shown here again.
1316                  */
1317                 u32 eu_pool_config = 0x00777000;
1318                 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
1319                 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
1320                 wa_ctx_emit(batch, index, eu_pool_config);
1321                 wa_ctx_emit(batch, index, 0);
1322                 wa_ctx_emit(batch, index, 0);
1323                 wa_ctx_emit(batch, index, 0);
1324         }
1325
1326         /* Pad to end of cacheline */
1327         while (index % CACHELINE_DWORDS)
1328                 wa_ctx_emit(batch, index, MI_NOOP);
1329
1330         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1331 }
1332
1333 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1334                                struct i915_wa_ctx_bb *wa_ctx,
1335                                uint32_t *const batch,
1336                                uint32_t *offset)
1337 {
1338         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1339
1340         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1341         if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
1342             IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1343                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1344                 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1345                 wa_ctx_emit(batch, index,
1346                             _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1347                 wa_ctx_emit(batch, index, MI_NOOP);
1348         }
1349
1350         /* WaClearTdlStateAckDirtyBits:bxt */
1351         if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1352                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1353
1354                 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1355                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1356
1357                 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1358                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1359
1360                 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1361                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1362
1363                 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1364                 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1365                 wa_ctx_emit(batch, index, 0x0);
1366                 wa_ctx_emit(batch, index, MI_NOOP);
1367         }
1368
1369         /* WaDisableCtxRestoreArbitration:skl,bxt */
1370         if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1371             IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1372                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1373
1374         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1375
1376         return wa_ctx_end(wa_ctx, *offset = index, 1);
1377 }
1378
1379 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1380 {
1381         int ret;
1382
1383         engine->wa_ctx.obj = i915_gem_object_create(&engine->i915->drm,
1384                                                     PAGE_ALIGN(size));
1385         if (IS_ERR(engine->wa_ctx.obj)) {
1386                 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1387                 ret = PTR_ERR(engine->wa_ctx.obj);
1388                 engine->wa_ctx.obj = NULL;
1389                 return ret;
1390         }
1391
1392         ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1393         if (ret) {
1394                 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1395                                  ret);
1396                 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1397                 return ret;
1398         }
1399
1400         return 0;
1401 }
1402
1403 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1404 {
1405         if (engine->wa_ctx.obj) {
1406                 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1407                 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1408                 engine->wa_ctx.obj = NULL;
1409         }
1410 }
1411
1412 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1413 {
1414         int ret;
1415         uint32_t *batch;
1416         uint32_t offset;
1417         struct page *page;
1418         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1419
1420         WARN_ON(engine->id != RCS);
1421
1422         /* update this when WA for higher Gen are added */
1423         if (INTEL_GEN(engine->i915) > 9) {
1424                 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1425                           INTEL_GEN(engine->i915));
1426                 return 0;
1427         }
1428
1429         /* some WA perform writes to scratch page, ensure it is valid */
1430         if (engine->scratch.obj == NULL) {
1431                 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1432                 return -EINVAL;
1433         }
1434
1435         ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1436         if (ret) {
1437                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1438                 return ret;
1439         }
1440
1441         page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1442         batch = kmap_atomic(page);
1443         offset = 0;
1444
1445         if (IS_GEN8(engine->i915)) {
1446                 ret = gen8_init_indirectctx_bb(engine,
1447                                                &wa_ctx->indirect_ctx,
1448                                                batch,
1449                                                &offset);
1450                 if (ret)
1451                         goto out;
1452
1453                 ret = gen8_init_perctx_bb(engine,
1454                                           &wa_ctx->per_ctx,
1455                                           batch,
1456                                           &offset);
1457                 if (ret)
1458                         goto out;
1459         } else if (IS_GEN9(engine->i915)) {
1460                 ret = gen9_init_indirectctx_bb(engine,
1461                                                &wa_ctx->indirect_ctx,
1462                                                batch,
1463                                                &offset);
1464                 if (ret)
1465                         goto out;
1466
1467                 ret = gen9_init_perctx_bb(engine,
1468                                           &wa_ctx->per_ctx,
1469                                           batch,
1470                                           &offset);
1471                 if (ret)
1472                         goto out;
1473         }
1474
1475 out:
1476         kunmap_atomic(batch);
1477         if (ret)
1478                 lrc_destroy_wa_ctx_obj(engine);
1479
1480         return ret;
1481 }
1482
1483 static void lrc_init_hws(struct intel_engine_cs *engine)
1484 {
1485         struct drm_i915_private *dev_priv = engine->i915;
1486
1487         I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1488                    (u32)engine->status_page.gfx_addr);
1489         POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1490 }
1491
1492 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1493 {
1494         struct drm_i915_private *dev_priv = engine->i915;
1495         unsigned int next_context_status_buffer_hw;
1496
1497         lrc_init_hws(engine);
1498
1499         I915_WRITE_IMR(engine,
1500                        ~(engine->irq_enable_mask | engine->irq_keep_mask));
1501         I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1502
1503         I915_WRITE(RING_MODE_GEN7(engine),
1504                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1505                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1506         POSTING_READ(RING_MODE_GEN7(engine));
1507
1508         /*
1509          * Instead of resetting the Context Status Buffer (CSB) read pointer to
1510          * zero, we need to read the write pointer from hardware and use its
1511          * value because "this register is power context save restored".
1512          * Effectively, these states have been observed:
1513          *
1514          *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1515          * BDW  | CSB regs not reset       | CSB regs reset       |
1516          * CHT  | CSB regs not reset       | CSB regs not reset   |
1517          * SKL  |         ?                |         ?            |
1518          * BXT  |         ?                |         ?            |
1519          */
1520         next_context_status_buffer_hw =
1521                 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1522
1523         /*
1524          * When the CSB registers are reset (also after power-up / gpu reset),
1525          * CSB write pointer is set to all 1's, which is not valid, use '5' in
1526          * this special case, so the first element read is CSB[0].
1527          */
1528         if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1529                 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1530
1531         engine->next_context_status_buffer = next_context_status_buffer_hw;
1532         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1533
1534         intel_engine_init_hangcheck(engine);
1535
1536         return intel_mocs_init_engine(engine);
1537 }
1538
1539 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1540 {
1541         struct drm_i915_private *dev_priv = engine->i915;
1542         int ret;
1543
1544         ret = gen8_init_common_ring(engine);
1545         if (ret)
1546                 return ret;
1547
1548         /* We need to disable the AsyncFlip performance optimisations in order
1549          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1550          * programmed to '1' on all products.
1551          *
1552          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1553          */
1554         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1555
1556         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1557
1558         return init_workarounds_ring(engine);
1559 }
1560
1561 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1562 {
1563         int ret;
1564
1565         ret = gen8_init_common_ring(engine);
1566         if (ret)
1567                 return ret;
1568
1569         return init_workarounds_ring(engine);
1570 }
1571
1572 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1573 {
1574         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1575         struct intel_engine_cs *engine = req->engine;
1576         struct intel_ringbuffer *ringbuf = req->ringbuf;
1577         const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1578         int i, ret;
1579
1580         ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1581         if (ret)
1582                 return ret;
1583
1584         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1585         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1586                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1587
1588                 intel_logical_ring_emit_reg(ringbuf,
1589                                             GEN8_RING_PDP_UDW(engine, i));
1590                 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1591                 intel_logical_ring_emit_reg(ringbuf,
1592                                             GEN8_RING_PDP_LDW(engine, i));
1593                 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1594         }
1595
1596         intel_logical_ring_emit(ringbuf, MI_NOOP);
1597         intel_logical_ring_advance(ringbuf);
1598
1599         return 0;
1600 }
1601
1602 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1603                               u64 offset, unsigned dispatch_flags)
1604 {
1605         struct intel_ringbuffer *ringbuf = req->ringbuf;
1606         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1607         int ret;
1608
1609         /* Don't rely in hw updating PDPs, specially in lite-restore.
1610          * Ideally, we should set Force PD Restore in ctx descriptor,
1611          * but we can't. Force Restore would be a second option, but
1612          * it is unsafe in case of lite-restore (because the ctx is
1613          * not idle). PML4 is allocated during ppgtt init so this is
1614          * not needed in 48-bit.*/
1615         if (req->ctx->ppgtt &&
1616             (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1617                 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1618                     !intel_vgpu_active(req->i915)) {
1619                         ret = intel_logical_ring_emit_pdps(req);
1620                         if (ret)
1621                                 return ret;
1622                 }
1623
1624                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1625         }
1626
1627         ret = intel_ring_begin(req, 4);
1628         if (ret)
1629                 return ret;
1630
1631         /* FIXME(BDW): Address space and security selectors. */
1632         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1633                                 (ppgtt<<8) |
1634                                 (dispatch_flags & I915_DISPATCH_RS ?
1635                                  MI_BATCH_RESOURCE_STREAMER : 0));
1636         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1637         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1638         intel_logical_ring_emit(ringbuf, MI_NOOP);
1639         intel_logical_ring_advance(ringbuf);
1640
1641         return 0;
1642 }
1643
1644 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1645 {
1646         struct drm_i915_private *dev_priv = engine->i915;
1647         I915_WRITE_IMR(engine,
1648                        ~(engine->irq_enable_mask | engine->irq_keep_mask));
1649         POSTING_READ_FW(RING_IMR(engine->mmio_base));
1650 }
1651
1652 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1653 {
1654         struct drm_i915_private *dev_priv = engine->i915;
1655         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1656 }
1657
1658 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1659                            u32 invalidate_domains,
1660                            u32 unused)
1661 {
1662         struct intel_ringbuffer *ringbuf = request->ringbuf;
1663         struct intel_engine_cs *engine = ringbuf->engine;
1664         struct drm_i915_private *dev_priv = request->i915;
1665         uint32_t cmd;
1666         int ret;
1667
1668         ret = intel_ring_begin(request, 4);
1669         if (ret)
1670                 return ret;
1671
1672         cmd = MI_FLUSH_DW + 1;
1673
1674         /* We always require a command barrier so that subsequent
1675          * commands, such as breadcrumb interrupts, are strictly ordered
1676          * wrt the contents of the write cache being flushed to memory
1677          * (and thus being coherent from the CPU).
1678          */
1679         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1680
1681         if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1682                 cmd |= MI_INVALIDATE_TLB;
1683                 if (engine == &dev_priv->engine[VCS])
1684                         cmd |= MI_INVALIDATE_BSD;
1685         }
1686
1687         intel_logical_ring_emit(ringbuf, cmd);
1688         intel_logical_ring_emit(ringbuf,
1689                                 I915_GEM_HWS_SCRATCH_ADDR |
1690                                 MI_FLUSH_DW_USE_GTT);
1691         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1692         intel_logical_ring_emit(ringbuf, 0); /* value */
1693         intel_logical_ring_advance(ringbuf);
1694
1695         return 0;
1696 }
1697
1698 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1699                                   u32 invalidate_domains,
1700                                   u32 flush_domains)
1701 {
1702         struct intel_ringbuffer *ringbuf = request->ringbuf;
1703         struct intel_engine_cs *engine = ringbuf->engine;
1704         u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1705         bool vf_flush_wa = false, dc_flush_wa = false;
1706         u32 flags = 0;
1707         int ret;
1708         int len;
1709
1710         flags |= PIPE_CONTROL_CS_STALL;
1711
1712         if (flush_domains) {
1713                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1714                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1715                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1716                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1717         }
1718
1719         if (invalidate_domains) {
1720                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1721                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1722                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1723                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1724                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1725                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1726                 flags |= PIPE_CONTROL_QW_WRITE;
1727                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1728
1729                 /*
1730                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1731                  * pipe control.
1732                  */
1733                 if (IS_GEN9(request->i915))
1734                         vf_flush_wa = true;
1735
1736                 /* WaForGAMHang:kbl */
1737                 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1738                         dc_flush_wa = true;
1739         }
1740
1741         len = 6;
1742
1743         if (vf_flush_wa)
1744                 len += 6;
1745
1746         if (dc_flush_wa)
1747                 len += 12;
1748
1749         ret = intel_ring_begin(request, len);
1750         if (ret)
1751                 return ret;
1752
1753         if (vf_flush_wa) {
1754                 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1755                 intel_logical_ring_emit(ringbuf, 0);
1756                 intel_logical_ring_emit(ringbuf, 0);
1757                 intel_logical_ring_emit(ringbuf, 0);
1758                 intel_logical_ring_emit(ringbuf, 0);
1759                 intel_logical_ring_emit(ringbuf, 0);
1760         }
1761
1762         if (dc_flush_wa) {
1763                 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1764                 intel_logical_ring_emit(ringbuf, PIPE_CONTROL_DC_FLUSH_ENABLE);
1765                 intel_logical_ring_emit(ringbuf, 0);
1766                 intel_logical_ring_emit(ringbuf, 0);
1767                 intel_logical_ring_emit(ringbuf, 0);
1768                 intel_logical_ring_emit(ringbuf, 0);
1769         }
1770
1771         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1772         intel_logical_ring_emit(ringbuf, flags);
1773         intel_logical_ring_emit(ringbuf, scratch_addr);
1774         intel_logical_ring_emit(ringbuf, 0);
1775         intel_logical_ring_emit(ringbuf, 0);
1776         intel_logical_ring_emit(ringbuf, 0);
1777
1778         if (dc_flush_wa) {
1779                 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1780                 intel_logical_ring_emit(ringbuf, PIPE_CONTROL_CS_STALL);
1781                 intel_logical_ring_emit(ringbuf, 0);
1782                 intel_logical_ring_emit(ringbuf, 0);
1783                 intel_logical_ring_emit(ringbuf, 0);
1784                 intel_logical_ring_emit(ringbuf, 0);
1785         }
1786
1787         intel_logical_ring_advance(ringbuf);
1788
1789         return 0;
1790 }
1791
1792 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1793 {
1794         /*
1795          * On BXT A steppings there is a HW coherency issue whereby the
1796          * MI_STORE_DATA_IMM storing the completed request's seqno
1797          * occasionally doesn't invalidate the CPU cache. Work around this by
1798          * clflushing the corresponding cacheline whenever the caller wants
1799          * the coherency to be guaranteed. Note that this cacheline is known
1800          * to be clean at this point, since we only write it in
1801          * bxt_a_set_seqno(), where we also do a clflush after the write. So
1802          * this clflush in practice becomes an invalidate operation.
1803          */
1804         intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1805 }
1806
1807 /*
1808  * Reserve space for 2 NOOPs at the end of each request to be
1809  * used as a workaround for not being allowed to do lite
1810  * restore with HEAD==TAIL (WaIdleLiteRestore).
1811  */
1812 #define WA_TAIL_DWORDS 2
1813
1814 static int gen8_emit_request(struct drm_i915_gem_request *request)
1815 {
1816         struct intel_ringbuffer *ringbuf = request->ringbuf;
1817         int ret;
1818
1819         ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1820         if (ret)
1821                 return ret;
1822
1823         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1824         BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1825
1826         intel_logical_ring_emit(ringbuf,
1827                                 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1828         intel_logical_ring_emit(ringbuf,
1829                                 intel_hws_seqno_address(request->engine) |
1830                                 MI_FLUSH_DW_USE_GTT);
1831         intel_logical_ring_emit(ringbuf, 0);
1832         intel_logical_ring_emit(ringbuf, request->seqno);
1833         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1834         intel_logical_ring_emit(ringbuf, MI_NOOP);
1835         return intel_logical_ring_advance_and_submit(request);
1836 }
1837
1838 static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1839 {
1840         struct intel_ringbuffer *ringbuf = request->ringbuf;
1841         int ret;
1842
1843         ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1844         if (ret)
1845                 return ret;
1846
1847         /* We're using qword write, seqno should be aligned to 8 bytes. */
1848         BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1849
1850         /* w/a for post sync ops following a GPGPU operation we
1851          * need a prior CS_STALL, which is emitted by the flush
1852          * following the batch.
1853          */
1854         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1855         intel_logical_ring_emit(ringbuf,
1856                                 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1857                                  PIPE_CONTROL_CS_STALL |
1858                                  PIPE_CONTROL_QW_WRITE));
1859         intel_logical_ring_emit(ringbuf,
1860                                 intel_hws_seqno_address(request->engine));
1861         intel_logical_ring_emit(ringbuf, 0);
1862         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1863         /* We're thrashing one dword of HWS. */
1864         intel_logical_ring_emit(ringbuf, 0);
1865         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1866         intel_logical_ring_emit(ringbuf, MI_NOOP);
1867         return intel_logical_ring_advance_and_submit(request);
1868 }
1869
1870 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1871 {
1872         struct render_state so;
1873         int ret;
1874
1875         ret = i915_gem_render_state_prepare(req->engine, &so);
1876         if (ret)
1877                 return ret;
1878
1879         if (so.rodata == NULL)
1880                 return 0;
1881
1882         ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1883                                        I915_DISPATCH_SECURE);
1884         if (ret)
1885                 goto out;
1886
1887         ret = req->engine->emit_bb_start(req,
1888                                        (so.ggtt_offset + so.aux_batch_offset),
1889                                        I915_DISPATCH_SECURE);
1890         if (ret)
1891                 goto out;
1892
1893         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1894
1895 out:
1896         i915_gem_render_state_fini(&so);
1897         return ret;
1898 }
1899
1900 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1901 {
1902         int ret;
1903
1904         ret = intel_logical_ring_workarounds_emit(req);
1905         if (ret)
1906                 return ret;
1907
1908         ret = intel_rcs_context_init_mocs(req);
1909         /*
1910          * Failing to program the MOCS is non-fatal.The system will not
1911          * run at peak performance. So generate an error and carry on.
1912          */
1913         if (ret)
1914                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1915
1916         return intel_lr_context_render_state_init(req);
1917 }
1918
1919 /**
1920  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1921  *
1922  * @engine: Engine Command Streamer.
1923  *
1924  */
1925 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1926 {
1927         struct drm_i915_private *dev_priv;
1928
1929         if (!intel_engine_initialized(engine))
1930                 return;
1931
1932         /*
1933          * Tasklet cannot be active at this point due intel_mark_active/idle
1934          * so this is just for documentation.
1935          */
1936         if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1937                 tasklet_kill(&engine->irq_tasklet);
1938
1939         dev_priv = engine->i915;
1940
1941         if (engine->buffer) {
1942                 intel_logical_ring_stop(engine);
1943                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1944         }
1945
1946         if (engine->cleanup)
1947                 engine->cleanup(engine);
1948
1949         i915_cmd_parser_fini_ring(engine);
1950         i915_gem_batch_pool_fini(&engine->batch_pool);
1951
1952         intel_engine_fini_breadcrumbs(engine);
1953
1954         if (engine->status_page.obj) {
1955                 i915_gem_object_unpin_map(engine->status_page.obj);
1956                 engine->status_page.obj = NULL;
1957         }
1958         intel_lr_context_unpin(dev_priv->kernel_context, engine);
1959
1960         engine->idle_lite_restore_wa = 0;
1961         engine->disable_lite_restore_wa = false;
1962         engine->ctx_desc_template = 0;
1963
1964         lrc_destroy_wa_ctx_obj(engine);
1965         engine->i915 = NULL;
1966 }
1967
1968 static void
1969 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1970 {
1971         /* Default vfuncs which can be overriden by each engine. */
1972         engine->init_hw = gen8_init_common_ring;
1973         engine->emit_request = gen8_emit_request;
1974         engine->emit_flush = gen8_emit_flush;
1975         engine->irq_enable = gen8_logical_ring_enable_irq;
1976         engine->irq_disable = gen8_logical_ring_disable_irq;
1977         engine->emit_bb_start = gen8_emit_bb_start;
1978         if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1979                 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1980 }
1981
1982 static inline void
1983 logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
1984 {
1985         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1986         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1987 }
1988
1989 static int
1990 lrc_setup_hws(struct intel_engine_cs *engine,
1991               struct drm_i915_gem_object *dctx_obj)
1992 {
1993         void *hws;
1994
1995         /* The HWSP is part of the default context object in LRC mode. */
1996         engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
1997                                        LRC_PPHWSP_PN * PAGE_SIZE;
1998         hws = i915_gem_object_pin_map(dctx_obj);
1999         if (IS_ERR(hws))
2000                 return PTR_ERR(hws);
2001         engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
2002         engine->status_page.obj = dctx_obj;
2003
2004         return 0;
2005 }
2006
2007 static int
2008 logical_ring_init(struct intel_engine_cs *engine)
2009 {
2010         struct i915_gem_context *dctx = engine->i915->kernel_context;
2011         int ret;
2012
2013         ret = intel_engine_init_breadcrumbs(engine);
2014         if (ret)
2015                 goto error;
2016
2017         ret = i915_cmd_parser_init_ring(engine);
2018         if (ret)
2019                 goto error;
2020
2021         ret = execlists_context_deferred_alloc(dctx, engine);
2022         if (ret)
2023                 goto error;
2024
2025         /* As this is the default context, always pin it */
2026         ret = intel_lr_context_pin(dctx, engine);
2027         if (ret) {
2028                 DRM_ERROR("Failed to pin context for %s: %d\n",
2029                           engine->name, ret);
2030                 goto error;
2031         }
2032
2033         /* And setup the hardware status page. */
2034         ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
2035         if (ret) {
2036                 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
2037                 goto error;
2038         }
2039
2040         return 0;
2041
2042 error:
2043         intel_logical_ring_cleanup(engine);
2044         return ret;
2045 }
2046
2047 static int logical_render_ring_init(struct intel_engine_cs *engine)
2048 {
2049         struct drm_i915_private *dev_priv = engine->i915;
2050         int ret;
2051
2052         if (HAS_L3_DPF(dev_priv))
2053                 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2054
2055         /* Override some for render ring. */
2056         if (INTEL_GEN(dev_priv) >= 9)
2057                 engine->init_hw = gen9_init_render_ring;
2058         else
2059                 engine->init_hw = gen8_init_render_ring;
2060         engine->init_context = gen8_init_rcs_context;
2061         engine->cleanup = intel_fini_pipe_control;
2062         engine->emit_flush = gen8_emit_flush_render;
2063         engine->emit_request = gen8_emit_request_render;
2064
2065         ret = intel_init_pipe_control(engine, 4096);
2066         if (ret)
2067                 return ret;
2068
2069         ret = intel_init_workaround_bb(engine);
2070         if (ret) {
2071                 /*
2072                  * We continue even if we fail to initialize WA batch
2073                  * because we only expect rare glitches but nothing
2074                  * critical to prevent us from using GPU
2075                  */
2076                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2077                           ret);
2078         }
2079
2080         ret = logical_ring_init(engine);
2081         if (ret) {
2082                 lrc_destroy_wa_ctx_obj(engine);
2083         }
2084
2085         return ret;
2086 }
2087
2088 static const struct logical_ring_info {
2089         const char *name;
2090         unsigned exec_id;
2091         unsigned guc_id;
2092         u32 mmio_base;
2093         unsigned irq_shift;
2094         int (*init)(struct intel_engine_cs *engine);
2095 } logical_rings[] = {
2096         [RCS] = {
2097                 .name = "render ring",
2098                 .exec_id = I915_EXEC_RENDER,
2099                 .guc_id = GUC_RENDER_ENGINE,
2100                 .mmio_base = RENDER_RING_BASE,
2101                 .irq_shift = GEN8_RCS_IRQ_SHIFT,
2102                 .init = logical_render_ring_init,
2103         },
2104         [BCS] = {
2105                 .name = "blitter ring",
2106                 .exec_id = I915_EXEC_BLT,
2107                 .guc_id = GUC_BLITTER_ENGINE,
2108                 .mmio_base = BLT_RING_BASE,
2109                 .irq_shift = GEN8_BCS_IRQ_SHIFT,
2110                 .init = logical_ring_init,
2111         },
2112         [VCS] = {
2113                 .name = "bsd ring",
2114                 .exec_id = I915_EXEC_BSD,
2115                 .guc_id = GUC_VIDEO_ENGINE,
2116                 .mmio_base = GEN6_BSD_RING_BASE,
2117                 .irq_shift = GEN8_VCS1_IRQ_SHIFT,
2118                 .init = logical_ring_init,
2119         },
2120         [VCS2] = {
2121                 .name = "bsd2 ring",
2122                 .exec_id = I915_EXEC_BSD,
2123                 .guc_id = GUC_VIDEO_ENGINE2,
2124                 .mmio_base = GEN8_BSD2_RING_BASE,
2125                 .irq_shift = GEN8_VCS2_IRQ_SHIFT,
2126                 .init = logical_ring_init,
2127         },
2128         [VECS] = {
2129                 .name = "video enhancement ring",
2130                 .exec_id = I915_EXEC_VEBOX,
2131                 .guc_id = GUC_VIDEOENHANCE_ENGINE,
2132                 .mmio_base = VEBOX_RING_BASE,
2133                 .irq_shift = GEN8_VECS_IRQ_SHIFT,
2134                 .init = logical_ring_init,
2135         },
2136 };
2137
2138 static struct intel_engine_cs *
2139 logical_ring_setup(struct drm_i915_private *dev_priv, enum intel_engine_id id)
2140 {
2141         const struct logical_ring_info *info = &logical_rings[id];
2142         struct intel_engine_cs *engine = &dev_priv->engine[id];
2143         enum forcewake_domains fw_domains;
2144
2145         engine->id = id;
2146         engine->name = info->name;
2147         engine->exec_id = info->exec_id;
2148         engine->guc_id = info->guc_id;
2149         engine->mmio_base = info->mmio_base;
2150
2151         engine->i915 = dev_priv;
2152
2153         /* Intentionally left blank. */
2154         engine->buffer = NULL;
2155
2156         fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2157                                                     RING_ELSP(engine),
2158                                                     FW_REG_WRITE);
2159
2160         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2161                                                      RING_CONTEXT_STATUS_PTR(engine),
2162                                                      FW_REG_READ | FW_REG_WRITE);
2163
2164         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2165                                                      RING_CONTEXT_STATUS_BUF_BASE(engine),
2166                                                      FW_REG_READ);
2167
2168         engine->fw_domains = fw_domains;
2169
2170         INIT_LIST_HEAD(&engine->active_list);
2171         INIT_LIST_HEAD(&engine->request_list);
2172         INIT_LIST_HEAD(&engine->buffers);
2173         INIT_LIST_HEAD(&engine->execlist_queue);
2174         spin_lock_init(&engine->execlist_lock);
2175
2176         tasklet_init(&engine->irq_tasklet,
2177                      intel_lrc_irq_handler, (unsigned long)engine);
2178
2179         logical_ring_init_platform_invariants(engine);
2180         logical_ring_default_vfuncs(engine);
2181         logical_ring_default_irqs(engine, info->irq_shift);
2182
2183         intel_engine_init_hangcheck(engine);
2184         i915_gem_batch_pool_init(&dev_priv->drm, &engine->batch_pool);
2185
2186         return engine;
2187 }
2188
2189 /**
2190  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2191  * @dev: DRM device.
2192  *
2193  * This function inits the engines for an Execlists submission style (the
2194  * equivalent in the legacy ringbuffer submission world would be
2195  * i915_gem_init_engines). It does it only for those engines that are present in
2196  * the hardware.
2197  *
2198  * Return: non-zero if the initialization failed.
2199  */
2200 int intel_logical_rings_init(struct drm_device *dev)
2201 {
2202         struct drm_i915_private *dev_priv = to_i915(dev);
2203         unsigned int mask = 0;
2204         unsigned int i;
2205         int ret;
2206
2207         WARN_ON(INTEL_INFO(dev_priv)->ring_mask &
2208                 GENMASK(sizeof(mask) * BITS_PER_BYTE - 1, I915_NUM_ENGINES));
2209
2210         for (i = 0; i < ARRAY_SIZE(logical_rings); i++) {
2211                 if (!HAS_ENGINE(dev_priv, i))
2212                         continue;
2213
2214                 if (!logical_rings[i].init)
2215                         continue;
2216
2217                 ret = logical_rings[i].init(logical_ring_setup(dev_priv, i));
2218                 if (ret)
2219                         goto cleanup;
2220
2221                 mask |= ENGINE_MASK(i);
2222         }
2223
2224         /*
2225          * Catch failures to update logical_rings table when the new engines
2226          * are added to the driver by a warning and disabling the forgotten
2227          * engines.
2228          */
2229         if (WARN_ON(mask != INTEL_INFO(dev_priv)->ring_mask)) {
2230                 struct intel_device_info *info =
2231                         (struct intel_device_info *)&dev_priv->info;
2232                 info->ring_mask = mask;
2233         }
2234
2235         return 0;
2236
2237 cleanup:
2238         for (i = 0; i < I915_NUM_ENGINES; i++)
2239                 intel_logical_ring_cleanup(&dev_priv->engine[i]);
2240
2241         return ret;
2242 }
2243
2244 static u32
2245 make_rpcs(struct drm_i915_private *dev_priv)
2246 {
2247         u32 rpcs = 0;
2248
2249         /*
2250          * No explicit RPCS request is needed to ensure full
2251          * slice/subslice/EU enablement prior to Gen9.
2252         */
2253         if (INTEL_GEN(dev_priv) < 9)
2254                 return 0;
2255
2256         /*
2257          * Starting in Gen9, render power gating can leave
2258          * slice/subslice/EU in a partially enabled state. We
2259          * must make an explicit request through RPCS for full
2260          * enablement.
2261         */
2262         if (INTEL_INFO(dev_priv)->has_slice_pg) {
2263                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2264                 rpcs |= INTEL_INFO(dev_priv)->slice_total <<
2265                         GEN8_RPCS_S_CNT_SHIFT;
2266                 rpcs |= GEN8_RPCS_ENABLE;
2267         }
2268
2269         if (INTEL_INFO(dev_priv)->has_subslice_pg) {
2270                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2271                 rpcs |= INTEL_INFO(dev_priv)->subslice_per_slice <<
2272                         GEN8_RPCS_SS_CNT_SHIFT;
2273                 rpcs |= GEN8_RPCS_ENABLE;
2274         }
2275
2276         if (INTEL_INFO(dev_priv)->has_eu_pg) {
2277                 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2278                         GEN8_RPCS_EU_MIN_SHIFT;
2279                 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2280                         GEN8_RPCS_EU_MAX_SHIFT;
2281                 rpcs |= GEN8_RPCS_ENABLE;
2282         }
2283
2284         return rpcs;
2285 }
2286
2287 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2288 {
2289         u32 indirect_ctx_offset;
2290
2291         switch (INTEL_GEN(engine->i915)) {
2292         default:
2293                 MISSING_CASE(INTEL_GEN(engine->i915));
2294                 /* fall through */
2295         case 9:
2296                 indirect_ctx_offset =
2297                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2298                 break;
2299         case 8:
2300                 indirect_ctx_offset =
2301                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2302                 break;
2303         }
2304
2305         return indirect_ctx_offset;
2306 }
2307
2308 static int
2309 populate_lr_context(struct i915_gem_context *ctx,
2310                     struct drm_i915_gem_object *ctx_obj,
2311                     struct intel_engine_cs *engine,
2312                     struct intel_ringbuffer *ringbuf)
2313 {
2314         struct drm_i915_private *dev_priv = ctx->i915;
2315         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2316         void *vaddr;
2317         u32 *reg_state;
2318         int ret;
2319
2320         if (!ppgtt)
2321                 ppgtt = dev_priv->mm.aliasing_ppgtt;
2322
2323         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2324         if (ret) {
2325                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2326                 return ret;
2327         }
2328
2329         vaddr = i915_gem_object_pin_map(ctx_obj);
2330         if (IS_ERR(vaddr)) {
2331                 ret = PTR_ERR(vaddr);
2332                 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2333                 return ret;
2334         }
2335         ctx_obj->dirty = true;
2336
2337         /* The second page of the context object contains some fields which must
2338          * be set up prior to the first execution. */
2339         reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2340
2341         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2342          * commands followed by (reg, value) pairs. The values we are setting here are
2343          * only for the first context restore: on a subsequent save, the GPU will
2344          * recreate this batchbuffer with new values (including all the missing
2345          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2346         reg_state[CTX_LRI_HEADER_0] =
2347                 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2348         ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2349                        RING_CONTEXT_CONTROL(engine),
2350                        _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2351                                           CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2352                                           (HAS_RESOURCE_STREAMER(dev_priv) ?
2353                                             CTX_CTRL_RS_CTX_ENABLE : 0)));
2354         ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2355                        0);
2356         ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2357                        0);
2358         /* Ring buffer start address is not known until the buffer is pinned.
2359          * It is written to the context image in execlists_update_context()
2360          */
2361         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2362                        RING_START(engine->mmio_base), 0);
2363         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2364                        RING_CTL(engine->mmio_base),
2365                        ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2366         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2367                        RING_BBADDR_UDW(engine->mmio_base), 0);
2368         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2369                        RING_BBADDR(engine->mmio_base), 0);
2370         ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2371                        RING_BBSTATE(engine->mmio_base),
2372                        RING_BB_PPGTT);
2373         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2374                        RING_SBBADDR_UDW(engine->mmio_base), 0);
2375         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2376                        RING_SBBADDR(engine->mmio_base), 0);
2377         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2378                        RING_SBBSTATE(engine->mmio_base), 0);
2379         if (engine->id == RCS) {
2380                 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2381                                RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2382                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2383                                RING_INDIRECT_CTX(engine->mmio_base), 0);
2384                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2385                                RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2386                 if (engine->wa_ctx.obj) {
2387                         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2388                         uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2389
2390                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
2391                                 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2392                                 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2393
2394                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2395                                 intel_lr_indirect_ctx_offset(engine) << 6;
2396
2397                         reg_state[CTX_BB_PER_CTX_PTR+1] =
2398                                 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2399                                 0x01;
2400                 }
2401         }
2402         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2403         ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2404                        RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2405         /* PDP values well be assigned later if needed */
2406         ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2407                        0);
2408         ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2409                        0);
2410         ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2411                        0);
2412         ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2413                        0);
2414         ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2415                        0);
2416         ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2417                        0);
2418         ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2419                        0);
2420         ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2421                        0);
2422
2423         if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2424                 /* 64b PPGTT (48bit canonical)
2425                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2426                  * other PDP Descriptors are ignored.
2427                  */
2428                 ASSIGN_CTX_PML4(ppgtt, reg_state);
2429         } else {
2430                 /* 32b PPGTT
2431                  * PDP*_DESCRIPTOR contains the base address of space supported.
2432                  * With dynamic page allocation, PDPs may not be allocated at
2433                  * this point. Point the unallocated PDPs to the scratch page
2434                  */
2435                 execlists_update_context_pdps(ppgtt, reg_state);
2436         }
2437
2438         if (engine->id == RCS) {
2439                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2440                 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2441                                make_rpcs(dev_priv));
2442         }
2443
2444         i915_gem_object_unpin_map(ctx_obj);
2445
2446         return 0;
2447 }
2448
2449 /**
2450  * intel_lr_context_size() - return the size of the context for an engine
2451  * @engine: which engine to find the context size for
2452  *
2453  * Each engine may require a different amount of space for a context image,
2454  * so when allocating (or copying) an image, this function can be used to
2455  * find the right size for the specific engine.
2456  *
2457  * Return: size (in bytes) of an engine-specific context image
2458  *
2459  * Note: this size includes the HWSP, which is part of the context image
2460  * in LRC mode, but does not include the "shared data page" used with
2461  * GuC submission. The caller should account for this if using the GuC.
2462  */
2463 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2464 {
2465         int ret = 0;
2466
2467         WARN_ON(INTEL_GEN(engine->i915) < 8);
2468
2469         switch (engine->id) {
2470         case RCS:
2471                 if (INTEL_GEN(engine->i915) >= 9)
2472                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2473                 else
2474                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2475                 break;
2476         case VCS:
2477         case BCS:
2478         case VECS:
2479         case VCS2:
2480                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2481                 break;
2482         }
2483
2484         return ret;
2485 }
2486
2487 /**
2488  * execlists_context_deferred_alloc() - create the LRC specific bits of a context
2489  * @ctx: LR context to create.
2490  * @engine: engine to be used with the context.
2491  *
2492  * This function can be called more than once, with different engines, if we plan
2493  * to use the context with them. The context backing objects and the ringbuffers
2494  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2495  * the creation is a deferred call: it's better to make sure first that we need to use
2496  * a given ring with the context.
2497  *
2498  * Return: non-zero on error.
2499  */
2500 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2501                                             struct intel_engine_cs *engine)
2502 {
2503         struct drm_i915_gem_object *ctx_obj;
2504         struct intel_context *ce = &ctx->engine[engine->id];
2505         uint32_t context_size;
2506         struct intel_ringbuffer *ringbuf;
2507         int ret;
2508
2509         WARN_ON(ce->state);
2510
2511         context_size = round_up(intel_lr_context_size(engine), 4096);
2512
2513         /* One extra page as the sharing data between driver and GuC */
2514         context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2515
2516         ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
2517         if (IS_ERR(ctx_obj)) {
2518                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2519                 return PTR_ERR(ctx_obj);
2520         }
2521
2522         ringbuf = intel_engine_create_ringbuffer(engine, ctx->ring_size);
2523         if (IS_ERR(ringbuf)) {
2524                 ret = PTR_ERR(ringbuf);
2525                 goto error_deref_obj;
2526         }
2527
2528         ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2529         if (ret) {
2530                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2531                 goto error_ringbuf;
2532         }
2533
2534         ce->ringbuf = ringbuf;
2535         ce->state = ctx_obj;
2536         ce->initialised = engine->init_context == NULL;
2537
2538         return 0;
2539
2540 error_ringbuf:
2541         intel_ringbuffer_free(ringbuf);
2542 error_deref_obj:
2543         drm_gem_object_unreference(&ctx_obj->base);
2544         ce->ringbuf = NULL;
2545         ce->state = NULL;
2546         return ret;
2547 }
2548
2549 void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2550                             struct i915_gem_context *ctx)
2551 {
2552         struct intel_engine_cs *engine;
2553
2554         for_each_engine(engine, dev_priv) {
2555                 struct intel_context *ce = &ctx->engine[engine->id];
2556                 struct drm_i915_gem_object *ctx_obj = ce->state;
2557                 void *vaddr;
2558                 uint32_t *reg_state;
2559
2560                 if (!ctx_obj)
2561                         continue;
2562
2563                 vaddr = i915_gem_object_pin_map(ctx_obj);
2564                 if (WARN_ON(IS_ERR(vaddr)))
2565                         continue;
2566
2567                 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2568                 ctx_obj->dirty = true;
2569
2570                 reg_state[CTX_RING_HEAD+1] = 0;
2571                 reg_state[CTX_RING_TAIL+1] = 0;
2572
2573                 i915_gem_object_unpin_map(ctx_obj);
2574
2575                 ce->ringbuf->head = 0;
2576                 ce->ringbuf->tail = 0;
2577         }
2578 }