wext: Fix 32 bit iwpriv compatibility issue with 64 bit Kernel
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138 #include "intel_mocs.h"
139
140 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143
144 #define RING_EXECLIST_QFULL             (1 << 0x2)
145 #define RING_EXECLIST1_VALID            (1 << 0x3)
146 #define RING_EXECLIST0_VALID            (1 << 0x4)
147 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
148 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
149 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
150
151 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
152 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
153 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
154 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
155 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
156 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
157
158 #define CTX_LRI_HEADER_0                0x01
159 #define CTX_CONTEXT_CONTROL             0x02
160 #define CTX_RING_HEAD                   0x04
161 #define CTX_RING_TAIL                   0x06
162 #define CTX_RING_BUFFER_START           0x08
163 #define CTX_RING_BUFFER_CONTROL         0x0a
164 #define CTX_BB_HEAD_U                   0x0c
165 #define CTX_BB_HEAD_L                   0x0e
166 #define CTX_BB_STATE                    0x10
167 #define CTX_SECOND_BB_HEAD_U            0x12
168 #define CTX_SECOND_BB_HEAD_L            0x14
169 #define CTX_SECOND_BB_STATE             0x16
170 #define CTX_BB_PER_CTX_PTR              0x18
171 #define CTX_RCS_INDIRECT_CTX            0x1a
172 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
173 #define CTX_LRI_HEADER_1                0x21
174 #define CTX_CTX_TIMESTAMP               0x22
175 #define CTX_PDP3_UDW                    0x24
176 #define CTX_PDP3_LDW                    0x26
177 #define CTX_PDP2_UDW                    0x28
178 #define CTX_PDP2_LDW                    0x2a
179 #define CTX_PDP1_UDW                    0x2c
180 #define CTX_PDP1_LDW                    0x2e
181 #define CTX_PDP0_UDW                    0x30
182 #define CTX_PDP0_LDW                    0x32
183 #define CTX_LRI_HEADER_2                0x41
184 #define CTX_R_PWR_CLK_STATE             0x42
185 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
186
187 #define GEN8_CTX_VALID (1<<0)
188 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189 #define GEN8_CTX_FORCE_RESTORE (1<<2)
190 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
191 #define GEN8_CTX_PRIVILEGE (1<<8)
192
193 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
194         (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
195         (reg_state)[(pos)+1] = (val); \
196 } while (0)
197
198 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {                \
199         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
200         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
201         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
202 } while (0)
203
204 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
205         reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
206         reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
207 } while (0)
208
209 enum {
210         ADVANCED_CONTEXT = 0,
211         LEGACY_32B_CONTEXT,
212         ADVANCED_AD_CONTEXT,
213         LEGACY_64B_CONTEXT
214 };
215 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
216 #define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
217                 LEGACY_64B_CONTEXT :\
218                 LEGACY_32B_CONTEXT)
219 enum {
220         FAULT_AND_HANG = 0,
221         FAULT_AND_HALT, /* Debug only */
222         FAULT_AND_STREAM,
223         FAULT_AND_CONTINUE /* Unsupported */
224 };
225 #define GEN8_CTX_ID_SHIFT 32
226 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x17
227 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x26
228
229 static int intel_lr_context_pin(struct intel_context *ctx,
230                                 struct intel_engine_cs *engine);
231 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
232                 struct drm_i915_gem_object *default_ctx_obj);
233
234
235 /**
236  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
237  * @dev: DRM device.
238  * @enable_execlists: value of i915.enable_execlists module parameter.
239  *
240  * Only certain platforms support Execlists (the prerequisites being
241  * support for Logical Ring Contexts and Aliasing PPGTT or better).
242  *
243  * Return: 1 if Execlists is supported and has to be enabled.
244  */
245 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
246 {
247         WARN_ON(i915.enable_ppgtt == -1);
248
249         /* On platforms with execlist available, vGPU will only
250          * support execlist mode, no ring buffer mode.
251          */
252         if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
253                 return 1;
254
255         if (INTEL_INFO(dev)->gen >= 9)
256                 return 1;
257
258         if (enable_execlists == 0)
259                 return 0;
260
261         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
262             i915.use_mmio_flip >= 0)
263                 return 1;
264
265         return 0;
266 }
267
268 static void
269 logical_ring_init_platform_invariants(struct intel_engine_cs *ring)
270 {
271         struct drm_device *dev = ring->dev;
272
273         ring->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
274                                         IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
275                                         (ring->id == VCS || ring->id == VCS2);
276
277         ring->ctx_desc_template = GEN8_CTX_VALID;
278         ring->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
279                                    GEN8_CTX_ADDRESSING_MODE_SHIFT;
280         if (IS_GEN8(dev))
281                 ring->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
282         ring->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
283
284         /* TODO: WaDisableLiteRestore when we start using semaphore
285          * signalling between Command Streamers */
286         /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
287
288         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
289         /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
290         if (ring->disable_lite_restore_wa)
291                 ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
292 }
293
294 /**
295  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
296  *                                        descriptor for a pinned context
297  *
298  * @ctx: Context to work on
299  * @ring: Engine the descriptor will be used with
300  *
301  * The context descriptor encodes various attributes of a context,
302  * including its GTT address and some flags. Because it's fairly
303  * expensive to calculate, we'll just do it once and cache the result,
304  * which remains valid until the context is unpinned.
305  *
306  * This is what a descriptor looks like, from LSB to MSB:
307  *    bits 0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
308  *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
309  *    bits 32-51:    ctx ID, a globally unique tag (the LRCA again!)
310  *    bits 52-63:    reserved, may encode the engine ID (for GuC)
311  */
312 static void
313 intel_lr_context_descriptor_update(struct intel_context *ctx,
314                                    struct intel_engine_cs *ring)
315 {
316         uint64_t lrca, desc;
317
318         lrca = ctx->engine[ring->id].lrc_vma->node.start +
319                LRC_PPHWSP_PN * PAGE_SIZE;
320
321         desc = ring->ctx_desc_template;                    /* bits  0-11 */
322         desc |= lrca;                                      /* bits 12-31 */
323         desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */
324
325         ctx->engine[ring->id].lrc_desc = desc;
326 }
327
328 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
329                                      struct intel_engine_cs *ring)
330 {
331         return ctx->engine[ring->id].lrc_desc;
332 }
333
334 /**
335  * intel_execlists_ctx_id() - get the Execlists Context ID
336  * @ctx: Context to get the ID for
337  * @ring: Engine to get the ID for
338  *
339  * Do not confuse with ctx->id! Unfortunately we have a name overload
340  * here: the old context ID we pass to userspace as a handler so that
341  * they can refer to a context, and the new context ID we pass to the
342  * ELSP so that the GPU can inform us of the context status via
343  * interrupts.
344  *
345  * The context ID is a portion of the context descriptor, so we can
346  * just extract the required part from the cached descriptor.
347  *
348  * Return: 20-bits globally unique context ID.
349  */
350 u32 intel_execlists_ctx_id(struct intel_context *ctx,
351                            struct intel_engine_cs *ring)
352 {
353         return intel_lr_context_descriptor(ctx, ring) >> GEN8_CTX_ID_SHIFT;
354 }
355
356 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
357                                  struct drm_i915_gem_request *rq1)
358 {
359
360         struct intel_engine_cs *ring = rq0->ring;
361         struct drm_device *dev = ring->dev;
362         struct drm_i915_private *dev_priv = dev->dev_private;
363         uint64_t desc[2];
364
365         if (rq1) {
366                 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
367                 rq1->elsp_submitted++;
368         } else {
369                 desc[1] = 0;
370         }
371
372         desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
373         rq0->elsp_submitted++;
374
375         /* You must always write both descriptors in the order below. */
376         spin_lock(&dev_priv->uncore.lock);
377         intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
378         I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
379         I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
380
381         I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
382         /* The context is automatically loaded after the following */
383         I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
384
385         /* ELSP is a wo register, use another nearby reg for posting */
386         POSTING_READ_FW(RING_EXECLIST_STATUS_LO(ring));
387         intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
388         spin_unlock(&dev_priv->uncore.lock);
389 }
390
391 static int execlists_update_context(struct drm_i915_gem_request *rq)
392 {
393         struct intel_engine_cs *ring = rq->ring;
394         struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
395         uint32_t *reg_state = rq->ctx->engine[ring->id].lrc_reg_state;
396
397         reg_state[CTX_RING_TAIL+1] = rq->tail;
398
399         if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
400                 /* True 32b PPGTT with dynamic page allocation: update PDP
401                  * registers and point the unallocated PDPs to scratch page.
402                  * PML4 is allocated during ppgtt init, so this is not needed
403                  * in 48-bit mode.
404                  */
405                 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
406                 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
407                 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
408                 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
409         }
410
411         return 0;
412 }
413
414 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
415                                       struct drm_i915_gem_request *rq1)
416 {
417         execlists_update_context(rq0);
418
419         if (rq1)
420                 execlists_update_context(rq1);
421
422         execlists_elsp_write(rq0, rq1);
423 }
424
425 static void execlists_context_unqueue(struct intel_engine_cs *ring)
426 {
427         struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
428         struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
429
430         assert_spin_locked(&ring->execlist_lock);
431
432         /*
433          * If irqs are not active generate a warning as batches that finish
434          * without the irqs may get lost and a GPU Hang may occur.
435          */
436         WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
437
438         if (list_empty(&ring->execlist_queue))
439                 return;
440
441         /* Try to read in pairs */
442         list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
443                                  execlist_link) {
444                 if (!req0) {
445                         req0 = cursor;
446                 } else if (req0->ctx == cursor->ctx) {
447                         /* Same ctx: ignore first request, as second request
448                          * will update tail past first request's workload */
449                         cursor->elsp_submitted = req0->elsp_submitted;
450                         list_move_tail(&req0->execlist_link,
451                                        &ring->execlist_retired_req_list);
452                         req0 = cursor;
453                 } else {
454                         req1 = cursor;
455                         break;
456                 }
457         }
458
459         if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
460                 /*
461                  * WaIdleLiteRestore: make sure we never cause a lite
462                  * restore with HEAD==TAIL
463                  */
464                 if (req0->elsp_submitted) {
465                         /*
466                          * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
467                          * as we resubmit the request. See gen8_emit_request()
468                          * for where we prepare the padding after the end of the
469                          * request.
470                          */
471                         struct intel_ringbuffer *ringbuf;
472
473                         ringbuf = req0->ctx->engine[ring->id].ringbuf;
474                         req0->tail += 8;
475                         req0->tail &= ringbuf->size - 1;
476                 }
477         }
478
479         WARN_ON(req1 && req1->elsp_submitted);
480
481         execlists_submit_requests(req0, req1);
482 }
483
484 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
485                                            u32 request_id)
486 {
487         struct drm_i915_gem_request *head_req;
488
489         assert_spin_locked(&ring->execlist_lock);
490
491         head_req = list_first_entry_or_null(&ring->execlist_queue,
492                                             struct drm_i915_gem_request,
493                                             execlist_link);
494
495         if (head_req != NULL) {
496                 if (intel_execlists_ctx_id(head_req->ctx, ring) == request_id) {
497                         WARN(head_req->elsp_submitted == 0,
498                              "Never submitted head request\n");
499
500                         if (--head_req->elsp_submitted <= 0) {
501                                 list_move_tail(&head_req->execlist_link,
502                                                &ring->execlist_retired_req_list);
503                                 return true;
504                         }
505                 }
506         }
507
508         return false;
509 }
510
511 static void get_context_status(struct intel_engine_cs *ring,
512                                u8 read_pointer,
513                                u32 *status, u32 *context_id)
514 {
515         struct drm_i915_private *dev_priv = ring->dev->dev_private;
516
517         if (WARN_ON(read_pointer >= GEN8_CSB_ENTRIES))
518                 return;
519
520         *status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, read_pointer));
521         *context_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, read_pointer));
522 }
523
524 /**
525  * intel_lrc_irq_handler() - handle Context Switch interrupts
526  * @ring: Engine Command Streamer to handle.
527  *
528  * Check the unread Context Status Buffers and manage the submission of new
529  * contexts to the ELSP accordingly.
530  */
531 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
532 {
533         struct drm_i915_private *dev_priv = ring->dev->dev_private;
534         u32 status_pointer;
535         u8 read_pointer;
536         u8 write_pointer;
537         u32 status = 0;
538         u32 status_id;
539         u32 submit_contexts = 0;
540
541         status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
542
543         read_pointer = ring->next_context_status_buffer;
544         write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
545         if (read_pointer > write_pointer)
546                 write_pointer += GEN8_CSB_ENTRIES;
547
548         spin_lock(&ring->execlist_lock);
549
550         while (read_pointer < write_pointer) {
551
552                 get_context_status(ring, ++read_pointer % GEN8_CSB_ENTRIES,
553                                    &status, &status_id);
554
555                 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
556                         continue;
557
558                 if (status & GEN8_CTX_STATUS_PREEMPTED) {
559                         if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
560                                 if (execlists_check_remove_request(ring, status_id))
561                                         WARN(1, "Lite Restored request removed from queue\n");
562                         } else
563                                 WARN(1, "Preemption without Lite Restore\n");
564                 }
565
566                 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
567                     (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
568                         if (execlists_check_remove_request(ring, status_id))
569                                 submit_contexts++;
570                 }
571         }
572
573         if (ring->disable_lite_restore_wa) {
574                 /* Prevent a ctx to preempt itself */
575                 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) &&
576                     (submit_contexts != 0))
577                         execlists_context_unqueue(ring);
578         } else if (submit_contexts != 0) {
579                 execlists_context_unqueue(ring);
580         }
581
582         spin_unlock(&ring->execlist_lock);
583
584         if (unlikely(submit_contexts > 2))
585                 DRM_ERROR("More than two context complete events?\n");
586
587         ring->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
588
589         /* Update the read pointer to the old write pointer. Manual ringbuffer
590          * management ftw </sarcasm> */
591         I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
592                    _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
593                                  ring->next_context_status_buffer << 8));
594 }
595
596 static int execlists_context_queue(struct drm_i915_gem_request *request)
597 {
598         struct intel_engine_cs *ring = request->ring;
599         struct drm_i915_gem_request *cursor;
600         int num_elements = 0;
601
602         if (request->ctx != request->i915->kernel_context)
603                 intel_lr_context_pin(request->ctx, ring);
604
605         i915_gem_request_reference(request);
606
607         spin_lock_irq(&ring->execlist_lock);
608
609         list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
610                 if (++num_elements > 2)
611                         break;
612
613         if (num_elements > 2) {
614                 struct drm_i915_gem_request *tail_req;
615
616                 tail_req = list_last_entry(&ring->execlist_queue,
617                                            struct drm_i915_gem_request,
618                                            execlist_link);
619
620                 if (request->ctx == tail_req->ctx) {
621                         WARN(tail_req->elsp_submitted != 0,
622                                 "More than 2 already-submitted reqs queued\n");
623                         list_move_tail(&tail_req->execlist_link,
624                                        &ring->execlist_retired_req_list);
625                 }
626         }
627
628         list_add_tail(&request->execlist_link, &ring->execlist_queue);
629         if (num_elements == 0)
630                 execlists_context_unqueue(ring);
631
632         spin_unlock_irq(&ring->execlist_lock);
633
634         return 0;
635 }
636
637 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
638 {
639         struct intel_engine_cs *ring = req->ring;
640         uint32_t flush_domains;
641         int ret;
642
643         flush_domains = 0;
644         if (ring->gpu_caches_dirty)
645                 flush_domains = I915_GEM_GPU_DOMAINS;
646
647         ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
648         if (ret)
649                 return ret;
650
651         ring->gpu_caches_dirty = false;
652         return 0;
653 }
654
655 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
656                                  struct list_head *vmas)
657 {
658         const unsigned other_rings = ~intel_ring_flag(req->ring);
659         struct i915_vma *vma;
660         uint32_t flush_domains = 0;
661         bool flush_chipset = false;
662         int ret;
663
664         list_for_each_entry(vma, vmas, exec_list) {
665                 struct drm_i915_gem_object *obj = vma->obj;
666
667                 if (obj->active & other_rings) {
668                         ret = i915_gem_object_sync(obj, req->ring, &req);
669                         if (ret)
670                                 return ret;
671                 }
672
673                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
674                         flush_chipset |= i915_gem_clflush_object(obj, false);
675
676                 flush_domains |= obj->base.write_domain;
677         }
678
679         if (flush_domains & I915_GEM_DOMAIN_GTT)
680                 wmb();
681
682         /* Unconditionally invalidate gpu caches and ensure that we do flush
683          * any residual writes from the previous batch.
684          */
685         return logical_ring_invalidate_all_caches(req);
686 }
687
688 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
689 {
690         int ret = 0;
691
692         request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
693
694         if (i915.enable_guc_submission) {
695                 /*
696                  * Check that the GuC has space for the request before
697                  * going any further, as the i915_add_request() call
698                  * later on mustn't fail ...
699                  */
700                 struct intel_guc *guc = &request->i915->guc;
701
702                 ret = i915_guc_wq_check_space(guc->execbuf_client);
703                 if (ret)
704                         return ret;
705         }
706
707         if (request->ctx != request->i915->kernel_context)
708                 ret = intel_lr_context_pin(request->ctx, request->ring);
709
710         return ret;
711 }
712
713 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
714                                        int bytes)
715 {
716         struct intel_ringbuffer *ringbuf = req->ringbuf;
717         struct intel_engine_cs *ring = req->ring;
718         struct drm_i915_gem_request *target;
719         unsigned space;
720         int ret;
721
722         if (intel_ring_space(ringbuf) >= bytes)
723                 return 0;
724
725         /* The whole point of reserving space is to not wait! */
726         WARN_ON(ringbuf->reserved_in_use);
727
728         list_for_each_entry(target, &ring->request_list, list) {
729                 /*
730                  * The request queue is per-engine, so can contain requests
731                  * from multiple ringbuffers. Here, we must ignore any that
732                  * aren't from the ringbuffer we're considering.
733                  */
734                 if (target->ringbuf != ringbuf)
735                         continue;
736
737                 /* Would completion of this request free enough space? */
738                 space = __intel_ring_space(target->postfix, ringbuf->tail,
739                                            ringbuf->size);
740                 if (space >= bytes)
741                         break;
742         }
743
744         if (WARN_ON(&target->list == &ring->request_list))
745                 return -ENOSPC;
746
747         ret = i915_wait_request(target);
748         if (ret)
749                 return ret;
750
751         ringbuf->space = space;
752         return 0;
753 }
754
755 /*
756  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
757  * @request: Request to advance the logical ringbuffer of.
758  *
759  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
760  * really happens during submission is that the context and current tail will be placed
761  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
762  * point, the tail *inside* the context is updated and the ELSP written to.
763  */
764 static int
765 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
766 {
767         struct intel_ringbuffer *ringbuf = request->ringbuf;
768         struct drm_i915_private *dev_priv = request->i915;
769         struct intel_engine_cs *engine = request->ring;
770
771         intel_logical_ring_advance(ringbuf);
772         request->tail = ringbuf->tail;
773
774         /*
775          * Here we add two extra NOOPs as padding to avoid
776          * lite restore of a context with HEAD==TAIL.
777          *
778          * Caller must reserve WA_TAIL_DWORDS for us!
779          */
780         intel_logical_ring_emit(ringbuf, MI_NOOP);
781         intel_logical_ring_emit(ringbuf, MI_NOOP);
782         intel_logical_ring_advance(ringbuf);
783
784         if (intel_ring_stopped(engine))
785                 return 0;
786
787         if (engine->last_context != request->ctx) {
788                 if (engine->last_context)
789                         intel_lr_context_unpin(engine->last_context, engine);
790                 if (request->ctx != request->i915->kernel_context) {
791                         intel_lr_context_pin(request->ctx, engine);
792                         engine->last_context = request->ctx;
793                 } else {
794                         engine->last_context = NULL;
795                 }
796         }
797
798         if (dev_priv->guc.execbuf_client)
799                 i915_guc_submit(dev_priv->guc.execbuf_client, request);
800         else
801                 execlists_context_queue(request);
802
803         return 0;
804 }
805
806 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
807 {
808         uint32_t __iomem *virt;
809         int rem = ringbuf->size - ringbuf->tail;
810
811         virt = ringbuf->virtual_start + ringbuf->tail;
812         rem /= 4;
813         while (rem--)
814                 iowrite32(MI_NOOP, virt++);
815
816         ringbuf->tail = 0;
817         intel_ring_update_space(ringbuf);
818 }
819
820 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
821 {
822         struct intel_ringbuffer *ringbuf = req->ringbuf;
823         int remain_usable = ringbuf->effective_size - ringbuf->tail;
824         int remain_actual = ringbuf->size - ringbuf->tail;
825         int ret, total_bytes, wait_bytes = 0;
826         bool need_wrap = false;
827
828         if (ringbuf->reserved_in_use)
829                 total_bytes = bytes;
830         else
831                 total_bytes = bytes + ringbuf->reserved_size;
832
833         if (unlikely(bytes > remain_usable)) {
834                 /*
835                  * Not enough space for the basic request. So need to flush
836                  * out the remainder and then wait for base + reserved.
837                  */
838                 wait_bytes = remain_actual + total_bytes;
839                 need_wrap = true;
840         } else {
841                 if (unlikely(total_bytes > remain_usable)) {
842                         /*
843                          * The base request will fit but the reserved space
844                          * falls off the end. So don't need an immediate wrap
845                          * and only need to effectively wait for the reserved
846                          * size space from the start of ringbuffer.
847                          */
848                         wait_bytes = remain_actual + ringbuf->reserved_size;
849                 } else if (total_bytes > ringbuf->space) {
850                         /* No wrapping required, just waiting. */
851                         wait_bytes = total_bytes;
852                 }
853         }
854
855         if (wait_bytes) {
856                 ret = logical_ring_wait_for_space(req, wait_bytes);
857                 if (unlikely(ret))
858                         return ret;
859
860                 if (need_wrap)
861                         __wrap_ring_buffer(ringbuf);
862         }
863
864         return 0;
865 }
866
867 /**
868  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
869  *
870  * @req: The request to start some new work for
871  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
872  *
873  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
874  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
875  * and also preallocates a request (every workload submission is still mediated through
876  * requests, same as it did with legacy ringbuffer submission).
877  *
878  * Return: non-zero if the ringbuffer is not ready to be written to.
879  */
880 int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
881 {
882         struct drm_i915_private *dev_priv;
883         int ret;
884
885         WARN_ON(req == NULL);
886         dev_priv = req->ring->dev->dev_private;
887
888         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
889                                    dev_priv->mm.interruptible);
890         if (ret)
891                 return ret;
892
893         ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
894         if (ret)
895                 return ret;
896
897         req->ringbuf->space -= num_dwords * sizeof(uint32_t);
898         return 0;
899 }
900
901 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
902 {
903         /*
904          * The first call merely notes the reserve request and is common for
905          * all back ends. The subsequent localised _begin() call actually
906          * ensures that the reservation is available. Without the begin, if
907          * the request creator immediately submitted the request without
908          * adding any commands to it then there might not actually be
909          * sufficient room for the submission commands.
910          */
911         intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
912
913         return intel_logical_ring_begin(request, 0);
914 }
915
916 /**
917  * execlists_submission() - submit a batchbuffer for execution, Execlists style
918  * @dev: DRM device.
919  * @file: DRM file.
920  * @ring: Engine Command Streamer to submit to.
921  * @ctx: Context to employ for this submission.
922  * @args: execbuffer call arguments.
923  * @vmas: list of vmas.
924  * @batch_obj: the batchbuffer to submit.
925  * @exec_start: batchbuffer start virtual address pointer.
926  * @dispatch_flags: translated execbuffer call flags.
927  *
928  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
929  * away the submission details of the execbuffer ioctl call.
930  *
931  * Return: non-zero if the submission fails.
932  */
933 int intel_execlists_submission(struct i915_execbuffer_params *params,
934                                struct drm_i915_gem_execbuffer2 *args,
935                                struct list_head *vmas)
936 {
937         struct drm_device       *dev = params->dev;
938         struct intel_engine_cs  *ring = params->ring;
939         struct drm_i915_private *dev_priv = dev->dev_private;
940         struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
941         u64 exec_start;
942         int instp_mode;
943         u32 instp_mask;
944         int ret;
945
946         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
947         instp_mask = I915_EXEC_CONSTANTS_MASK;
948         switch (instp_mode) {
949         case I915_EXEC_CONSTANTS_REL_GENERAL:
950         case I915_EXEC_CONSTANTS_ABSOLUTE:
951         case I915_EXEC_CONSTANTS_REL_SURFACE:
952                 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
953                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
954                         return -EINVAL;
955                 }
956
957                 if (instp_mode != dev_priv->relative_constants_mode) {
958                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
959                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
960                                 return -EINVAL;
961                         }
962
963                         /* The HW changed the meaning on this bit on gen6 */
964                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
965                 }
966                 break;
967         default:
968                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
969                 return -EINVAL;
970         }
971
972         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
973                 DRM_DEBUG("sol reset is gen7 only\n");
974                 return -EINVAL;
975         }
976
977         ret = execlists_move_to_gpu(params->request, vmas);
978         if (ret)
979                 return ret;
980
981         if (ring == &dev_priv->ring[RCS] &&
982             instp_mode != dev_priv->relative_constants_mode) {
983                 ret = intel_logical_ring_begin(params->request, 4);
984                 if (ret)
985                         return ret;
986
987                 intel_logical_ring_emit(ringbuf, MI_NOOP);
988                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
989                 intel_logical_ring_emit_reg(ringbuf, INSTPM);
990                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
991                 intel_logical_ring_advance(ringbuf);
992
993                 dev_priv->relative_constants_mode = instp_mode;
994         }
995
996         exec_start = params->batch_obj_vm_offset +
997                      args->batch_start_offset;
998
999         ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
1000         if (ret)
1001                 return ret;
1002
1003         trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
1004
1005         i915_gem_execbuffer_move_to_active(vmas, params->request);
1006         i915_gem_execbuffer_retire_commands(params);
1007
1008         return 0;
1009 }
1010
1011 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
1012 {
1013         struct drm_i915_gem_request *req, *tmp;
1014         struct list_head retired_list;
1015
1016         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1017         if (list_empty(&ring->execlist_retired_req_list))
1018                 return;
1019
1020         INIT_LIST_HEAD(&retired_list);
1021         spin_lock_irq(&ring->execlist_lock);
1022         list_replace_init(&ring->execlist_retired_req_list, &retired_list);
1023         spin_unlock_irq(&ring->execlist_lock);
1024
1025         list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
1026                 struct intel_context *ctx = req->ctx;
1027                 struct drm_i915_gem_object *ctx_obj =
1028                                 ctx->engine[ring->id].state;
1029
1030                 if (ctx_obj && (ctx != req->i915->kernel_context))
1031                         intel_lr_context_unpin(ctx, ring);
1032
1033                 list_del(&req->execlist_link);
1034                 i915_gem_request_unreference(req);
1035         }
1036 }
1037
1038 void intel_logical_ring_stop(struct intel_engine_cs *ring)
1039 {
1040         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1041         int ret;
1042
1043         if (!intel_ring_initialized(ring))
1044                 return;
1045
1046         ret = intel_ring_idle(ring);
1047         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
1048                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1049                           ring->name, ret);
1050
1051         /* TODO: Is this correct with Execlists enabled? */
1052         I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
1053         if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
1054                 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
1055                 return;
1056         }
1057         I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
1058 }
1059
1060 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
1061 {
1062         struct intel_engine_cs *ring = req->ring;
1063         int ret;
1064
1065         if (!ring->gpu_caches_dirty)
1066                 return 0;
1067
1068         ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1069         if (ret)
1070                 return ret;
1071
1072         ring->gpu_caches_dirty = false;
1073         return 0;
1074 }
1075
1076 static int intel_lr_context_do_pin(struct intel_context *ctx,
1077                                    struct intel_engine_cs *ring)
1078 {
1079         struct drm_device *dev = ring->dev;
1080         struct drm_i915_private *dev_priv = dev->dev_private;
1081         struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1082         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1083         struct page *lrc_state_page;
1084         uint32_t *lrc_reg_state;
1085         int ret;
1086
1087         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1088
1089         ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1090                         PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1091         if (ret)
1092                 return ret;
1093
1094         lrc_state_page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
1095         if (WARN_ON(!lrc_state_page)) {
1096                 ret = -ENODEV;
1097                 goto unpin_ctx_obj;
1098         }
1099
1100         ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1101         if (ret)
1102                 goto unpin_ctx_obj;
1103
1104         ctx->engine[ring->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
1105         intel_lr_context_descriptor_update(ctx, ring);
1106         lrc_reg_state = kmap(lrc_state_page);
1107         lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
1108         ctx->engine[ring->id].lrc_reg_state = lrc_reg_state;
1109         ctx_obj->dirty = true;
1110
1111         /* Invalidate GuC TLB. */
1112         if (i915.enable_guc_submission)
1113                 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1114
1115         return ret;
1116
1117 unpin_ctx_obj:
1118         i915_gem_object_ggtt_unpin(ctx_obj);
1119
1120         return ret;
1121 }
1122
1123 static int intel_lr_context_pin(struct intel_context *ctx,
1124                                 struct intel_engine_cs *engine)
1125 {
1126         int ret = 0;
1127
1128         if (ctx->engine[engine->id].pin_count++ == 0) {
1129                 ret = intel_lr_context_do_pin(ctx, engine);
1130                 if (ret)
1131                         goto reset_pin_count;
1132
1133                 i915_gem_context_reference(ctx);
1134         }
1135         return ret;
1136
1137 reset_pin_count:
1138         ctx->engine[engine->id].pin_count = 0;
1139         return ret;
1140 }
1141
1142 void intel_lr_context_unpin(struct intel_context *ctx,
1143                             struct intel_engine_cs *engine)
1144 {
1145         struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1146
1147         WARN_ON(!mutex_is_locked(&ctx->i915->dev->struct_mutex));
1148         if (--ctx->engine[engine->id].pin_count == 0) {
1149                 kunmap(kmap_to_page(ctx->engine[engine->id].lrc_reg_state));
1150                 intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
1151                 i915_gem_object_ggtt_unpin(ctx_obj);
1152                 ctx->engine[engine->id].lrc_vma = NULL;
1153                 ctx->engine[engine->id].lrc_desc = 0;
1154                 ctx->engine[engine->id].lrc_reg_state = NULL;
1155
1156                 i915_gem_context_unreference(ctx);
1157         }
1158 }
1159
1160 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1161 {
1162         int ret, i;
1163         struct intel_engine_cs *ring = req->ring;
1164         struct intel_ringbuffer *ringbuf = req->ringbuf;
1165         struct drm_device *dev = ring->dev;
1166         struct drm_i915_private *dev_priv = dev->dev_private;
1167         struct i915_workarounds *w = &dev_priv->workarounds;
1168
1169         if (w->count == 0)
1170                 return 0;
1171
1172         ring->gpu_caches_dirty = true;
1173         ret = logical_ring_flush_all_caches(req);
1174         if (ret)
1175                 return ret;
1176
1177         ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1178         if (ret)
1179                 return ret;
1180
1181         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1182         for (i = 0; i < w->count; i++) {
1183                 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1184                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1185         }
1186         intel_logical_ring_emit(ringbuf, MI_NOOP);
1187
1188         intel_logical_ring_advance(ringbuf);
1189
1190         ring->gpu_caches_dirty = true;
1191         ret = logical_ring_flush_all_caches(req);
1192         if (ret)
1193                 return ret;
1194
1195         return 0;
1196 }
1197
1198 #define wa_ctx_emit(batch, index, cmd)                                  \
1199         do {                                                            \
1200                 int __index = (index)++;                                \
1201                 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1202                         return -ENOSPC;                                 \
1203                 }                                                       \
1204                 batch[__index] = (cmd);                                 \
1205         } while (0)
1206
1207 #define wa_ctx_emit_reg(batch, index, reg) \
1208         wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1209
1210 /*
1211  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1212  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1213  * but there is a slight complication as this is applied in WA batch where the
1214  * values are only initialized once so we cannot take register value at the
1215  * beginning and reuse it further; hence we save its value to memory, upload a
1216  * constant value with bit21 set and then we restore it back with the saved value.
1217  * To simplify the WA, a constant value is formed by using the default value
1218  * of this register. This shouldn't be a problem because we are only modifying
1219  * it for a short period and this batch in non-premptible. We can ofcourse
1220  * use additional instructions that read the actual value of the register
1221  * at that time and set our bit of interest but it makes the WA complicated.
1222  *
1223  * This WA is also required for Gen9 so extracting as a function avoids
1224  * code duplication.
1225  */
1226 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1227                                                 uint32_t *const batch,
1228                                                 uint32_t index)
1229 {
1230         uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1231
1232         /*
1233          * WaDisableLSQCROPERFforOCL:skl
1234          * This WA is implemented in skl_init_clock_gating() but since
1235          * this batch updates GEN8_L3SQCREG4 with default value we need to
1236          * set this bit here to retain the WA during flush.
1237          */
1238         if (IS_SKL_REVID(ring->dev, 0, SKL_REVID_E0))
1239                 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1240
1241         wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1242                                    MI_SRM_LRM_GLOBAL_GTT));
1243         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1244         wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1245         wa_ctx_emit(batch, index, 0);
1246
1247         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1248         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1249         wa_ctx_emit(batch, index, l3sqc4_flush);
1250
1251         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1252         wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1253                                    PIPE_CONTROL_DC_FLUSH_ENABLE));
1254         wa_ctx_emit(batch, index, 0);
1255         wa_ctx_emit(batch, index, 0);
1256         wa_ctx_emit(batch, index, 0);
1257         wa_ctx_emit(batch, index, 0);
1258
1259         wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1260                                    MI_SRM_LRM_GLOBAL_GTT));
1261         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1262         wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1263         wa_ctx_emit(batch, index, 0);
1264
1265         return index;
1266 }
1267
1268 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1269                                     uint32_t offset,
1270                                     uint32_t start_alignment)
1271 {
1272         return wa_ctx->offset = ALIGN(offset, start_alignment);
1273 }
1274
1275 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1276                              uint32_t offset,
1277                              uint32_t size_alignment)
1278 {
1279         wa_ctx->size = offset - wa_ctx->offset;
1280
1281         WARN(wa_ctx->size % size_alignment,
1282              "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1283              wa_ctx->size, size_alignment);
1284         return 0;
1285 }
1286
1287 /**
1288  * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1289  *
1290  * @ring: only applicable for RCS
1291  * @wa_ctx: structure representing wa_ctx
1292  *  offset: specifies start of the batch, should be cache-aligned. This is updated
1293  *    with the offset value received as input.
1294  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1295  * @batch: page in which WA are loaded
1296  * @offset: This field specifies the start of the batch, it should be
1297  *  cache-aligned otherwise it is adjusted accordingly.
1298  *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
1299  *  initialized at the beginning and shared across all contexts but this field
1300  *  helps us to have multiple batches at different offsets and select them based
1301  *  on a criteria. At the moment this batch always start at the beginning of the page
1302  *  and at this point we don't have multiple wa_ctx batch buffers.
1303  *
1304  *  The number of WA applied are not known at the beginning; we use this field
1305  *  to return the no of DWORDS written.
1306  *
1307  *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1308  *  so it adds NOOPs as padding to make it cacheline aligned.
1309  *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1310  *  makes a complete batch buffer.
1311  *
1312  * Return: non-zero if we exceed the PAGE_SIZE limit.
1313  */
1314
1315 static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1316                                     struct i915_wa_ctx_bb *wa_ctx,
1317                                     uint32_t *const batch,
1318                                     uint32_t *offset)
1319 {
1320         uint32_t scratch_addr;
1321         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1322
1323         /* WaDisableCtxRestoreArbitration:bdw,chv */
1324         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1325
1326         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1327         if (IS_BROADWELL(ring->dev)) {
1328                 int rc = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1329                 if (rc < 0)
1330                         return rc;
1331                 index = rc;
1332         }
1333
1334         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1335         /* Actual scratch location is at 128 bytes offset */
1336         scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1337
1338         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1339         wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1340                                    PIPE_CONTROL_GLOBAL_GTT_IVB |
1341                                    PIPE_CONTROL_CS_STALL |
1342                                    PIPE_CONTROL_QW_WRITE));
1343         wa_ctx_emit(batch, index, scratch_addr);
1344         wa_ctx_emit(batch, index, 0);
1345         wa_ctx_emit(batch, index, 0);
1346         wa_ctx_emit(batch, index, 0);
1347
1348         /* Pad to end of cacheline */
1349         while (index % CACHELINE_DWORDS)
1350                 wa_ctx_emit(batch, index, MI_NOOP);
1351
1352         /*
1353          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1354          * execution depends on the length specified in terms of cache lines
1355          * in the register CTX_RCS_INDIRECT_CTX
1356          */
1357
1358         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1359 }
1360
1361 /**
1362  * gen8_init_perctx_bb() - initialize per ctx batch with WA
1363  *
1364  * @ring: only applicable for RCS
1365  * @wa_ctx: structure representing wa_ctx
1366  *  offset: specifies start of the batch, should be cache-aligned.
1367  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1368  * @batch: page in which WA are loaded
1369  * @offset: This field specifies the start of this batch.
1370  *   This batch is started immediately after indirect_ctx batch. Since we ensure
1371  *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
1372  *
1373  *   The number of DWORDS written are returned using this field.
1374  *
1375  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1376  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1377  */
1378 static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1379                                struct i915_wa_ctx_bb *wa_ctx,
1380                                uint32_t *const batch,
1381                                uint32_t *offset)
1382 {
1383         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1384
1385         /* WaDisableCtxRestoreArbitration:bdw,chv */
1386         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1387
1388         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1389
1390         return wa_ctx_end(wa_ctx, *offset = index, 1);
1391 }
1392
1393 static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1394                                     struct i915_wa_ctx_bb *wa_ctx,
1395                                     uint32_t *const batch,
1396                                     uint32_t *offset)
1397 {
1398         int ret;
1399         struct drm_device *dev = ring->dev;
1400         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1401
1402         /* WaDisableCtxRestoreArbitration:skl,bxt */
1403         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1404             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1405                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1406
1407         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1408         ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1409         if (ret < 0)
1410                 return ret;
1411         index = ret;
1412
1413         /* Pad to end of cacheline */
1414         while (index % CACHELINE_DWORDS)
1415                 wa_ctx_emit(batch, index, MI_NOOP);
1416
1417         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1418 }
1419
1420 static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1421                                struct i915_wa_ctx_bb *wa_ctx,
1422                                uint32_t *const batch,
1423                                uint32_t *offset)
1424 {
1425         struct drm_device *dev = ring->dev;
1426         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1427
1428         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1429         if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
1430             IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1431                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1432                 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1433                 wa_ctx_emit(batch, index,
1434                             _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1435                 wa_ctx_emit(batch, index, MI_NOOP);
1436         }
1437
1438         /* WaDisableCtxRestoreArbitration:skl,bxt */
1439         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1440             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1441                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1442
1443         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1444
1445         return wa_ctx_end(wa_ctx, *offset = index, 1);
1446 }
1447
1448 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1449 {
1450         int ret;
1451
1452         ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1453         if (!ring->wa_ctx.obj) {
1454                 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1455                 return -ENOMEM;
1456         }
1457
1458         ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1459         if (ret) {
1460                 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1461                                  ret);
1462                 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1463                 return ret;
1464         }
1465
1466         return 0;
1467 }
1468
1469 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1470 {
1471         if (ring->wa_ctx.obj) {
1472                 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1473                 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1474                 ring->wa_ctx.obj = NULL;
1475         }
1476 }
1477
1478 static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1479 {
1480         int ret;
1481         uint32_t *batch;
1482         uint32_t offset;
1483         struct page *page;
1484         struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1485
1486         WARN_ON(ring->id != RCS);
1487
1488         /* update this when WA for higher Gen are added */
1489         if (INTEL_INFO(ring->dev)->gen > 9) {
1490                 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1491                           INTEL_INFO(ring->dev)->gen);
1492                 return 0;
1493         }
1494
1495         /* some WA perform writes to scratch page, ensure it is valid */
1496         if (ring->scratch.obj == NULL) {
1497                 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1498                 return -EINVAL;
1499         }
1500
1501         ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1502         if (ret) {
1503                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1504                 return ret;
1505         }
1506
1507         page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1508         batch = kmap_atomic(page);
1509         offset = 0;
1510
1511         if (INTEL_INFO(ring->dev)->gen == 8) {
1512                 ret = gen8_init_indirectctx_bb(ring,
1513                                                &wa_ctx->indirect_ctx,
1514                                                batch,
1515                                                &offset);
1516                 if (ret)
1517                         goto out;
1518
1519                 ret = gen8_init_perctx_bb(ring,
1520                                           &wa_ctx->per_ctx,
1521                                           batch,
1522                                           &offset);
1523                 if (ret)
1524                         goto out;
1525         } else if (INTEL_INFO(ring->dev)->gen == 9) {
1526                 ret = gen9_init_indirectctx_bb(ring,
1527                                                &wa_ctx->indirect_ctx,
1528                                                batch,
1529                                                &offset);
1530                 if (ret)
1531                         goto out;
1532
1533                 ret = gen9_init_perctx_bb(ring,
1534                                           &wa_ctx->per_ctx,
1535                                           batch,
1536                                           &offset);
1537                 if (ret)
1538                         goto out;
1539         }
1540
1541 out:
1542         kunmap_atomic(batch);
1543         if (ret)
1544                 lrc_destroy_wa_ctx_obj(ring);
1545
1546         return ret;
1547 }
1548
1549 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1550 {
1551         struct drm_device *dev = ring->dev;
1552         struct drm_i915_private *dev_priv = dev->dev_private;
1553         u8 next_context_status_buffer_hw;
1554
1555         lrc_setup_hardware_status_page(ring,
1556                                 dev_priv->kernel_context->engine[ring->id].state);
1557
1558         I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1559         I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1560
1561         I915_WRITE(RING_MODE_GEN7(ring),
1562                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1563                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1564         POSTING_READ(RING_MODE_GEN7(ring));
1565
1566         /*
1567          * Instead of resetting the Context Status Buffer (CSB) read pointer to
1568          * zero, we need to read the write pointer from hardware and use its
1569          * value because "this register is power context save restored".
1570          * Effectively, these states have been observed:
1571          *
1572          *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1573          * BDW  | CSB regs not reset       | CSB regs reset       |
1574          * CHT  | CSB regs not reset       | CSB regs not reset   |
1575          * SKL  |         ?                |         ?            |
1576          * BXT  |         ?                |         ?            |
1577          */
1578         next_context_status_buffer_hw =
1579                 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(ring)));
1580
1581         /*
1582          * When the CSB registers are reset (also after power-up / gpu reset),
1583          * CSB write pointer is set to all 1's, which is not valid, use '5' in
1584          * this special case, so the first element read is CSB[0].
1585          */
1586         if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1587                 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1588
1589         ring->next_context_status_buffer = next_context_status_buffer_hw;
1590         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1591
1592         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1593
1594         return 0;
1595 }
1596
1597 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1598 {
1599         struct drm_device *dev = ring->dev;
1600         struct drm_i915_private *dev_priv = dev->dev_private;
1601         int ret;
1602
1603         ret = gen8_init_common_ring(ring);
1604         if (ret)
1605                 return ret;
1606
1607         /* We need to disable the AsyncFlip performance optimisations in order
1608          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1609          * programmed to '1' on all products.
1610          *
1611          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1612          */
1613         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1614
1615         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1616
1617         return init_workarounds_ring(ring);
1618 }
1619
1620 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1621 {
1622         int ret;
1623
1624         ret = gen8_init_common_ring(ring);
1625         if (ret)
1626                 return ret;
1627
1628         return init_workarounds_ring(ring);
1629 }
1630
1631 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1632 {
1633         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1634         struct intel_engine_cs *ring = req->ring;
1635         struct intel_ringbuffer *ringbuf = req->ringbuf;
1636         const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1637         int i, ret;
1638
1639         ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1640         if (ret)
1641                 return ret;
1642
1643         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1644         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1645                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1646
1647                 intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1648                 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1649                 intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1650                 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1651         }
1652
1653         intel_logical_ring_emit(ringbuf, MI_NOOP);
1654         intel_logical_ring_advance(ringbuf);
1655
1656         return 0;
1657 }
1658
1659 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1660                               u64 offset, unsigned dispatch_flags)
1661 {
1662         struct intel_ringbuffer *ringbuf = req->ringbuf;
1663         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1664         int ret;
1665
1666         /* Don't rely in hw updating PDPs, specially in lite-restore.
1667          * Ideally, we should set Force PD Restore in ctx descriptor,
1668          * but we can't. Force Restore would be a second option, but
1669          * it is unsafe in case of lite-restore (because the ctx is
1670          * not idle). PML4 is allocated during ppgtt init so this is
1671          * not needed in 48-bit.*/
1672         if (req->ctx->ppgtt &&
1673             (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1674                 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1675                     !intel_vgpu_active(req->i915->dev)) {
1676                         ret = intel_logical_ring_emit_pdps(req);
1677                         if (ret)
1678                                 return ret;
1679                 }
1680
1681                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1682         }
1683
1684         ret = intel_logical_ring_begin(req, 4);
1685         if (ret)
1686                 return ret;
1687
1688         /* FIXME(BDW): Address space and security selectors. */
1689         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1690                                 (ppgtt<<8) |
1691                                 (dispatch_flags & I915_DISPATCH_RS ?
1692                                  MI_BATCH_RESOURCE_STREAMER : 0));
1693         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1694         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1695         intel_logical_ring_emit(ringbuf, MI_NOOP);
1696         intel_logical_ring_advance(ringbuf);
1697
1698         return 0;
1699 }
1700
1701 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1702 {
1703         struct drm_device *dev = ring->dev;
1704         struct drm_i915_private *dev_priv = dev->dev_private;
1705         unsigned long flags;
1706
1707         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1708                 return false;
1709
1710         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1711         if (ring->irq_refcount++ == 0) {
1712                 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1713                 POSTING_READ(RING_IMR(ring->mmio_base));
1714         }
1715         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1716
1717         return true;
1718 }
1719
1720 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1721 {
1722         struct drm_device *dev = ring->dev;
1723         struct drm_i915_private *dev_priv = dev->dev_private;
1724         unsigned long flags;
1725
1726         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1727         if (--ring->irq_refcount == 0) {
1728                 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1729                 POSTING_READ(RING_IMR(ring->mmio_base));
1730         }
1731         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1732 }
1733
1734 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1735                            u32 invalidate_domains,
1736                            u32 unused)
1737 {
1738         struct intel_ringbuffer *ringbuf = request->ringbuf;
1739         struct intel_engine_cs *ring = ringbuf->ring;
1740         struct drm_device *dev = ring->dev;
1741         struct drm_i915_private *dev_priv = dev->dev_private;
1742         uint32_t cmd;
1743         int ret;
1744
1745         ret = intel_logical_ring_begin(request, 4);
1746         if (ret)
1747                 return ret;
1748
1749         cmd = MI_FLUSH_DW + 1;
1750
1751         /* We always require a command barrier so that subsequent
1752          * commands, such as breadcrumb interrupts, are strictly ordered
1753          * wrt the contents of the write cache being flushed to memory
1754          * (and thus being coherent from the CPU).
1755          */
1756         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1757
1758         if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1759                 cmd |= MI_INVALIDATE_TLB;
1760                 if (ring == &dev_priv->ring[VCS])
1761                         cmd |= MI_INVALIDATE_BSD;
1762         }
1763
1764         intel_logical_ring_emit(ringbuf, cmd);
1765         intel_logical_ring_emit(ringbuf,
1766                                 I915_GEM_HWS_SCRATCH_ADDR |
1767                                 MI_FLUSH_DW_USE_GTT);
1768         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1769         intel_logical_ring_emit(ringbuf, 0); /* value */
1770         intel_logical_ring_advance(ringbuf);
1771
1772         return 0;
1773 }
1774
1775 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1776                                   u32 invalidate_domains,
1777                                   u32 flush_domains)
1778 {
1779         struct intel_ringbuffer *ringbuf = request->ringbuf;
1780         struct intel_engine_cs *ring = ringbuf->ring;
1781         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1782         bool vf_flush_wa = false;
1783         u32 flags = 0;
1784         int ret;
1785
1786         flags |= PIPE_CONTROL_CS_STALL;
1787
1788         if (flush_domains) {
1789                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1790                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1791                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1792                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1793         }
1794
1795         if (invalidate_domains) {
1796                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1797                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1798                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1799                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1800                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1801                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1802                 flags |= PIPE_CONTROL_QW_WRITE;
1803                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1804
1805                 /*
1806                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1807                  * pipe control.
1808                  */
1809                 if (IS_GEN9(ring->dev))
1810                         vf_flush_wa = true;
1811         }
1812
1813         ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1814         if (ret)
1815                 return ret;
1816
1817         if (vf_flush_wa) {
1818                 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1819                 intel_logical_ring_emit(ringbuf, 0);
1820                 intel_logical_ring_emit(ringbuf, 0);
1821                 intel_logical_ring_emit(ringbuf, 0);
1822                 intel_logical_ring_emit(ringbuf, 0);
1823                 intel_logical_ring_emit(ringbuf, 0);
1824         }
1825
1826         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1827         intel_logical_ring_emit(ringbuf, flags);
1828         intel_logical_ring_emit(ringbuf, scratch_addr);
1829         intel_logical_ring_emit(ringbuf, 0);
1830         intel_logical_ring_emit(ringbuf, 0);
1831         intel_logical_ring_emit(ringbuf, 0);
1832         intel_logical_ring_advance(ringbuf);
1833
1834         return 0;
1835 }
1836
1837 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1838 {
1839         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1840 }
1841
1842 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1843 {
1844         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1845 }
1846
1847 static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1848 {
1849
1850         /*
1851          * On BXT A steppings there is a HW coherency issue whereby the
1852          * MI_STORE_DATA_IMM storing the completed request's seqno
1853          * occasionally doesn't invalidate the CPU cache. Work around this by
1854          * clflushing the corresponding cacheline whenever the caller wants
1855          * the coherency to be guaranteed. Note that this cacheline is known
1856          * to be clean at this point, since we only write it in
1857          * bxt_a_set_seqno(), where we also do a clflush after the write. So
1858          * this clflush in practice becomes an invalidate operation.
1859          */
1860
1861         if (!lazy_coherency)
1862                 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1863
1864         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1865 }
1866
1867 static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1868 {
1869         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1870
1871         /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1872         intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1873 }
1874
1875 /*
1876  * Reserve space for 2 NOOPs at the end of each request to be
1877  * used as a workaround for not being allowed to do lite
1878  * restore with HEAD==TAIL (WaIdleLiteRestore).
1879  */
1880 #define WA_TAIL_DWORDS 2
1881
1882 static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
1883 {
1884         return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
1885 }
1886
1887 static int gen8_emit_request(struct drm_i915_gem_request *request)
1888 {
1889         struct intel_ringbuffer *ringbuf = request->ringbuf;
1890         int ret;
1891
1892         ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
1893         if (ret)
1894                 return ret;
1895
1896         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1897         BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1898
1899         intel_logical_ring_emit(ringbuf,
1900                                 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1901         intel_logical_ring_emit(ringbuf,
1902                                 hws_seqno_address(request->ring) |
1903                                 MI_FLUSH_DW_USE_GTT);
1904         intel_logical_ring_emit(ringbuf, 0);
1905         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1906         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1907         intel_logical_ring_emit(ringbuf, MI_NOOP);
1908         return intel_logical_ring_advance_and_submit(request);
1909 }
1910
1911 static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1912 {
1913         struct intel_ringbuffer *ringbuf = request->ringbuf;
1914         int ret;
1915
1916         ret = intel_logical_ring_begin(request, 8 + WA_TAIL_DWORDS);
1917         if (ret)
1918                 return ret;
1919
1920         /* We're using qword write, seqno should be aligned to 8 bytes. */
1921         BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1922
1923         /* w/a for post sync ops following a GPGPU operation we
1924          * need a prior CS_STALL, which is emitted by the flush
1925          * following the batch.
1926          */
1927         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1928         intel_logical_ring_emit(ringbuf,
1929                                 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1930                                  PIPE_CONTROL_CS_STALL |
1931                                  PIPE_CONTROL_QW_WRITE));
1932         intel_logical_ring_emit(ringbuf, hws_seqno_address(request->ring));
1933         intel_logical_ring_emit(ringbuf, 0);
1934         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1935         /* We're thrashing one dword of HWS. */
1936         intel_logical_ring_emit(ringbuf, 0);
1937         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1938         intel_logical_ring_emit(ringbuf, MI_NOOP);
1939         return intel_logical_ring_advance_and_submit(request);
1940 }
1941
1942 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1943 {
1944         struct render_state so;
1945         int ret;
1946
1947         ret = i915_gem_render_state_prepare(req->ring, &so);
1948         if (ret)
1949                 return ret;
1950
1951         if (so.rodata == NULL)
1952                 return 0;
1953
1954         ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1955                                        I915_DISPATCH_SECURE);
1956         if (ret)
1957                 goto out;
1958
1959         ret = req->ring->emit_bb_start(req,
1960                                        (so.ggtt_offset + so.aux_batch_offset),
1961                                        I915_DISPATCH_SECURE);
1962         if (ret)
1963                 goto out;
1964
1965         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1966
1967 out:
1968         i915_gem_render_state_fini(&so);
1969         return ret;
1970 }
1971
1972 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1973 {
1974         int ret;
1975
1976         ret = intel_logical_ring_workarounds_emit(req);
1977         if (ret)
1978                 return ret;
1979
1980         ret = intel_rcs_context_init_mocs(req);
1981         /*
1982          * Failing to program the MOCS is non-fatal.The system will not
1983          * run at peak performance. So generate an error and carry on.
1984          */
1985         if (ret)
1986                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1987
1988         return intel_lr_context_render_state_init(req);
1989 }
1990
1991 /**
1992  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1993  *
1994  * @ring: Engine Command Streamer.
1995  *
1996  */
1997 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1998 {
1999         struct drm_i915_private *dev_priv;
2000
2001         if (!intel_ring_initialized(ring))
2002                 return;
2003
2004         dev_priv = ring->dev->dev_private;
2005
2006         if (ring->buffer) {
2007                 intel_logical_ring_stop(ring);
2008                 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
2009         }
2010
2011         if (ring->cleanup)
2012                 ring->cleanup(ring);
2013
2014         i915_cmd_parser_fini_ring(ring);
2015         i915_gem_batch_pool_fini(&ring->batch_pool);
2016
2017         if (ring->status_page.obj) {
2018                 kunmap(sg_page(ring->status_page.obj->pages->sgl));
2019                 ring->status_page.obj = NULL;
2020         }
2021
2022         ring->disable_lite_restore_wa = false;
2023         ring->ctx_desc_template = 0;
2024
2025         lrc_destroy_wa_ctx_obj(ring);
2026         ring->dev = NULL;
2027 }
2028
2029 static void
2030 logical_ring_default_vfuncs(struct drm_device *dev,
2031                             struct intel_engine_cs *ring)
2032 {
2033         /* Default vfuncs which can be overriden by each engine. */
2034         ring->init_hw = gen8_init_common_ring;
2035         ring->emit_request = gen8_emit_request;
2036         ring->emit_flush = gen8_emit_flush;
2037         ring->irq_get = gen8_logical_ring_get_irq;
2038         ring->irq_put = gen8_logical_ring_put_irq;
2039         ring->emit_bb_start = gen8_emit_bb_start;
2040         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2041                 ring->get_seqno = bxt_a_get_seqno;
2042                 ring->set_seqno = bxt_a_set_seqno;
2043         } else {
2044                 ring->get_seqno = gen8_get_seqno;
2045                 ring->set_seqno = gen8_set_seqno;
2046         }
2047 }
2048
2049 static inline void
2050 logical_ring_default_irqs(struct intel_engine_cs *ring, unsigned shift)
2051 {
2052         ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2053         ring->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2054 }
2055
2056 static int
2057 logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
2058 {
2059         struct intel_context *dctx = to_i915(dev)->kernel_context;
2060         int ret;
2061
2062         /* Intentionally left blank. */
2063         ring->buffer = NULL;
2064
2065         ring->dev = dev;
2066         INIT_LIST_HEAD(&ring->active_list);
2067         INIT_LIST_HEAD(&ring->request_list);
2068         i915_gem_batch_pool_init(dev, &ring->batch_pool);
2069         init_waitqueue_head(&ring->irq_queue);
2070
2071         INIT_LIST_HEAD(&ring->buffers);
2072         INIT_LIST_HEAD(&ring->execlist_queue);
2073         INIT_LIST_HEAD(&ring->execlist_retired_req_list);
2074         spin_lock_init(&ring->execlist_lock);
2075
2076         logical_ring_init_platform_invariants(ring);
2077
2078         ret = i915_cmd_parser_init_ring(ring);
2079         if (ret)
2080                 goto error;
2081
2082         ret = intel_lr_context_deferred_alloc(dctx, ring);
2083         if (ret)
2084                 goto error;
2085
2086         /* As this is the default context, always pin it */
2087         ret = intel_lr_context_do_pin(dctx, ring);
2088         if (ret) {
2089                 DRM_ERROR(
2090                         "Failed to pin and map ringbuffer %s: %d\n",
2091                         ring->name, ret);
2092                 goto error;
2093         }
2094
2095         return 0;
2096
2097 error:
2098         intel_logical_ring_cleanup(ring);
2099         return ret;
2100 }
2101
2102 static int logical_render_ring_init(struct drm_device *dev)
2103 {
2104         struct drm_i915_private *dev_priv = dev->dev_private;
2105         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2106         int ret;
2107
2108         ring->name = "render ring";
2109         ring->id = RCS;
2110         ring->exec_id = I915_EXEC_RENDER;
2111         ring->guc_id = GUC_RENDER_ENGINE;
2112         ring->mmio_base = RENDER_RING_BASE;
2113
2114         logical_ring_default_irqs(ring, GEN8_RCS_IRQ_SHIFT);
2115         if (HAS_L3_DPF(dev))
2116                 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2117
2118         logical_ring_default_vfuncs(dev, ring);
2119
2120         /* Override some for render ring. */
2121         if (INTEL_INFO(dev)->gen >= 9)
2122                 ring->init_hw = gen9_init_render_ring;
2123         else
2124                 ring->init_hw = gen8_init_render_ring;
2125         ring->init_context = gen8_init_rcs_context;
2126         ring->cleanup = intel_fini_pipe_control;
2127         ring->emit_flush = gen8_emit_flush_render;
2128         ring->emit_request = gen8_emit_request_render;
2129
2130         ring->dev = dev;
2131
2132         ret = intel_init_pipe_control(ring);
2133         if (ret)
2134                 return ret;
2135
2136         ret = intel_init_workaround_bb(ring);
2137         if (ret) {
2138                 /*
2139                  * We continue even if we fail to initialize WA batch
2140                  * because we only expect rare glitches but nothing
2141                  * critical to prevent us from using GPU
2142                  */
2143                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2144                           ret);
2145         }
2146
2147         ret = logical_ring_init(dev, ring);
2148         if (ret) {
2149                 lrc_destroy_wa_ctx_obj(ring);
2150         }
2151
2152         return ret;
2153 }
2154
2155 static int logical_bsd_ring_init(struct drm_device *dev)
2156 {
2157         struct drm_i915_private *dev_priv = dev->dev_private;
2158         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2159
2160         ring->name = "bsd ring";
2161         ring->id = VCS;
2162         ring->exec_id = I915_EXEC_BSD;
2163         ring->guc_id = GUC_VIDEO_ENGINE;
2164         ring->mmio_base = GEN6_BSD_RING_BASE;
2165
2166         logical_ring_default_irqs(ring, GEN8_VCS1_IRQ_SHIFT);
2167         logical_ring_default_vfuncs(dev, ring);
2168
2169         return logical_ring_init(dev, ring);
2170 }
2171
2172 static int logical_bsd2_ring_init(struct drm_device *dev)
2173 {
2174         struct drm_i915_private *dev_priv = dev->dev_private;
2175         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2176
2177         ring->name = "bsd2 ring";
2178         ring->id = VCS2;
2179         ring->exec_id = I915_EXEC_BSD;
2180         ring->guc_id = GUC_VIDEO_ENGINE2;
2181         ring->mmio_base = GEN8_BSD2_RING_BASE;
2182
2183         logical_ring_default_irqs(ring, GEN8_VCS2_IRQ_SHIFT);
2184         logical_ring_default_vfuncs(dev, ring);
2185
2186         return logical_ring_init(dev, ring);
2187 }
2188
2189 static int logical_blt_ring_init(struct drm_device *dev)
2190 {
2191         struct drm_i915_private *dev_priv = dev->dev_private;
2192         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2193
2194         ring->name = "blitter ring";
2195         ring->id = BCS;
2196         ring->exec_id = I915_EXEC_BLT;
2197         ring->guc_id = GUC_BLITTER_ENGINE;
2198         ring->mmio_base = BLT_RING_BASE;
2199
2200         logical_ring_default_irqs(ring, GEN8_BCS_IRQ_SHIFT);
2201         logical_ring_default_vfuncs(dev, ring);
2202
2203         return logical_ring_init(dev, ring);
2204 }
2205
2206 static int logical_vebox_ring_init(struct drm_device *dev)
2207 {
2208         struct drm_i915_private *dev_priv = dev->dev_private;
2209         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2210
2211         ring->name = "video enhancement ring";
2212         ring->id = VECS;
2213         ring->exec_id = I915_EXEC_VEBOX;
2214         ring->guc_id = GUC_VIDEOENHANCE_ENGINE;
2215         ring->mmio_base = VEBOX_RING_BASE;
2216
2217         logical_ring_default_irqs(ring, GEN8_VECS_IRQ_SHIFT);
2218         logical_ring_default_vfuncs(dev, ring);
2219
2220         return logical_ring_init(dev, ring);
2221 }
2222
2223 /**
2224  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2225  * @dev: DRM device.
2226  *
2227  * This function inits the engines for an Execlists submission style (the equivalent in the
2228  * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2229  * those engines that are present in the hardware.
2230  *
2231  * Return: non-zero if the initialization failed.
2232  */
2233 int intel_logical_rings_init(struct drm_device *dev)
2234 {
2235         struct drm_i915_private *dev_priv = dev->dev_private;
2236         int ret;
2237
2238         ret = logical_render_ring_init(dev);
2239         if (ret)
2240                 return ret;
2241
2242         if (HAS_BSD(dev)) {
2243                 ret = logical_bsd_ring_init(dev);
2244                 if (ret)
2245                         goto cleanup_render_ring;
2246         }
2247
2248         if (HAS_BLT(dev)) {
2249                 ret = logical_blt_ring_init(dev);
2250                 if (ret)
2251                         goto cleanup_bsd_ring;
2252         }
2253
2254         if (HAS_VEBOX(dev)) {
2255                 ret = logical_vebox_ring_init(dev);
2256                 if (ret)
2257                         goto cleanup_blt_ring;
2258         }
2259
2260         if (HAS_BSD2(dev)) {
2261                 ret = logical_bsd2_ring_init(dev);
2262                 if (ret)
2263                         goto cleanup_vebox_ring;
2264         }
2265
2266         return 0;
2267
2268 cleanup_vebox_ring:
2269         intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2270 cleanup_blt_ring:
2271         intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2272 cleanup_bsd_ring:
2273         intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2274 cleanup_render_ring:
2275         intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2276
2277         return ret;
2278 }
2279
2280 static u32
2281 make_rpcs(struct drm_device *dev)
2282 {
2283         u32 rpcs = 0;
2284
2285         /*
2286          * No explicit RPCS request is needed to ensure full
2287          * slice/subslice/EU enablement prior to Gen9.
2288         */
2289         if (INTEL_INFO(dev)->gen < 9)
2290                 return 0;
2291
2292         /*
2293          * Starting in Gen9, render power gating can leave
2294          * slice/subslice/EU in a partially enabled state. We
2295          * must make an explicit request through RPCS for full
2296          * enablement.
2297         */
2298         if (INTEL_INFO(dev)->has_slice_pg) {
2299                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2300                 rpcs |= INTEL_INFO(dev)->slice_total <<
2301                         GEN8_RPCS_S_CNT_SHIFT;
2302                 rpcs |= GEN8_RPCS_ENABLE;
2303         }
2304
2305         if (INTEL_INFO(dev)->has_subslice_pg) {
2306                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2307                 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2308                         GEN8_RPCS_SS_CNT_SHIFT;
2309                 rpcs |= GEN8_RPCS_ENABLE;
2310         }
2311
2312         if (INTEL_INFO(dev)->has_eu_pg) {
2313                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2314                         GEN8_RPCS_EU_MIN_SHIFT;
2315                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2316                         GEN8_RPCS_EU_MAX_SHIFT;
2317                 rpcs |= GEN8_RPCS_ENABLE;
2318         }
2319
2320         return rpcs;
2321 }
2322
2323 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *ring)
2324 {
2325         u32 indirect_ctx_offset;
2326
2327         switch (INTEL_INFO(ring->dev)->gen) {
2328         default:
2329                 MISSING_CASE(INTEL_INFO(ring->dev)->gen);
2330                 /* fall through */
2331         case 9:
2332                 indirect_ctx_offset =
2333                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2334                 break;
2335         case 8:
2336                 indirect_ctx_offset =
2337                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2338                 break;
2339         }
2340
2341         return indirect_ctx_offset;
2342 }
2343
2344 static int
2345 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2346                     struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2347 {
2348         struct drm_device *dev = ring->dev;
2349         struct drm_i915_private *dev_priv = dev->dev_private;
2350         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2351         struct page *page;
2352         uint32_t *reg_state;
2353         int ret;
2354
2355         if (!ppgtt)
2356                 ppgtt = dev_priv->mm.aliasing_ppgtt;
2357
2358         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2359         if (ret) {
2360                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2361                 return ret;
2362         }
2363
2364         ret = i915_gem_object_get_pages(ctx_obj);
2365         if (ret) {
2366                 DRM_DEBUG_DRIVER("Could not get object pages\n");
2367                 return ret;
2368         }
2369
2370         i915_gem_object_pin_pages(ctx_obj);
2371
2372         /* The second page of the context object contains some fields which must
2373          * be set up prior to the first execution. */
2374         page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2375         reg_state = kmap_atomic(page);
2376
2377         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2378          * commands followed by (reg, value) pairs. The values we are setting here are
2379          * only for the first context restore: on a subsequent save, the GPU will
2380          * recreate this batchbuffer with new values (including all the missing
2381          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2382         reg_state[CTX_LRI_HEADER_0] =
2383                 MI_LOAD_REGISTER_IMM(ring->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2384         ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(ring),
2385                        _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2386                                           CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2387                                           (HAS_RESOURCE_STREAMER(dev) ?
2388                                             CTX_CTRL_RS_CTX_ENABLE : 0)));
2389         ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(ring->mmio_base), 0);
2390         ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(ring->mmio_base), 0);
2391         /* Ring buffer start address is not known until the buffer is pinned.
2392          * It is written to the context image in execlists_update_context()
2393          */
2394         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START, RING_START(ring->mmio_base), 0);
2395         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL, RING_CTL(ring->mmio_base),
2396                        ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2397         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U, RING_BBADDR_UDW(ring->mmio_base), 0);
2398         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L, RING_BBADDR(ring->mmio_base), 0);
2399         ASSIGN_CTX_REG(reg_state, CTX_BB_STATE, RING_BBSTATE(ring->mmio_base),
2400                        RING_BB_PPGTT);
2401         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(ring->mmio_base), 0);
2402         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(ring->mmio_base), 0);
2403         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE, RING_SBBSTATE(ring->mmio_base), 0);
2404         if (ring->id == RCS) {
2405                 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(ring->mmio_base), 0);
2406                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(ring->mmio_base), 0);
2407                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET, RING_INDIRECT_CTX_OFFSET(ring->mmio_base), 0);
2408                 if (ring->wa_ctx.obj) {
2409                         struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2410                         uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2411
2412                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
2413                                 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2414                                 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2415
2416                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2417                                 intel_lr_indirect_ctx_offset(ring) << 6;
2418
2419                         reg_state[CTX_BB_PER_CTX_PTR+1] =
2420                                 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2421                                 0x01;
2422                 }
2423         }
2424         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2425         ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(ring->mmio_base), 0);
2426         /* PDP values well be assigned later if needed */
2427         ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(ring, 3), 0);
2428         ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(ring, 3), 0);
2429         ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(ring, 2), 0);
2430         ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(ring, 2), 0);
2431         ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(ring, 1), 0);
2432         ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(ring, 1), 0);
2433         ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(ring, 0), 0);
2434         ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(ring, 0), 0);
2435
2436         if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2437                 /* 64b PPGTT (48bit canonical)
2438                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2439                  * other PDP Descriptors are ignored.
2440                  */
2441                 ASSIGN_CTX_PML4(ppgtt, reg_state);
2442         } else {
2443                 /* 32b PPGTT
2444                  * PDP*_DESCRIPTOR contains the base address of space supported.
2445                  * With dynamic page allocation, PDPs may not be allocated at
2446                  * this point. Point the unallocated PDPs to the scratch page
2447                  */
2448                 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2449                 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2450                 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2451                 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2452         }
2453
2454         if (ring->id == RCS) {
2455                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2456                 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2457                                make_rpcs(dev));
2458         }
2459
2460         kunmap_atomic(reg_state);
2461         i915_gem_object_unpin_pages(ctx_obj);
2462
2463         return 0;
2464 }
2465
2466 /**
2467  * intel_lr_context_free() - free the LRC specific bits of a context
2468  * @ctx: the LR context to free.
2469  *
2470  * The real context freeing is done in i915_gem_context_free: this only
2471  * takes care of the bits that are LRC related: the per-engine backing
2472  * objects and the logical ringbuffer.
2473  */
2474 void intel_lr_context_free(struct intel_context *ctx)
2475 {
2476         int i;
2477
2478         for (i = I915_NUM_RINGS; --i >= 0; ) {
2479                 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
2480                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2481
2482                 if (!ctx_obj)
2483                         continue;
2484
2485                 if (ctx == ctx->i915->kernel_context) {
2486                         intel_unpin_ringbuffer_obj(ringbuf);
2487                         i915_gem_object_ggtt_unpin(ctx_obj);
2488                 }
2489
2490                 WARN_ON(ctx->engine[i].pin_count);
2491                 intel_ringbuffer_free(ringbuf);
2492                 drm_gem_object_unreference(&ctx_obj->base);
2493         }
2494 }
2495
2496 /**
2497  * intel_lr_context_size() - return the size of the context for an engine
2498  * @ring: which engine to find the context size for
2499  *
2500  * Each engine may require a different amount of space for a context image,
2501  * so when allocating (or copying) an image, this function can be used to
2502  * find the right size for the specific engine.
2503  *
2504  * Return: size (in bytes) of an engine-specific context image
2505  *
2506  * Note: this size includes the HWSP, which is part of the context image
2507  * in LRC mode, but does not include the "shared data page" used with
2508  * GuC submission. The caller should account for this if using the GuC.
2509  */
2510 uint32_t intel_lr_context_size(struct intel_engine_cs *ring)
2511 {
2512         int ret = 0;
2513
2514         WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2515
2516         switch (ring->id) {
2517         case RCS:
2518                 if (INTEL_INFO(ring->dev)->gen >= 9)
2519                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2520                 else
2521                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2522                 break;
2523         case VCS:
2524         case BCS:
2525         case VECS:
2526         case VCS2:
2527                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2528                 break;
2529         }
2530
2531         return ret;
2532 }
2533
2534 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2535                 struct drm_i915_gem_object *default_ctx_obj)
2536 {
2537         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2538         struct page *page;
2539
2540         /* The HWSP is part of the default context object in LRC mode. */
2541         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2542                         + LRC_PPHWSP_PN * PAGE_SIZE;
2543         page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2544         ring->status_page.page_addr = kmap(page);
2545         ring->status_page.obj = default_ctx_obj;
2546
2547         I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2548                         (u32)ring->status_page.gfx_addr);
2549         POSTING_READ(RING_HWS_PGA(ring->mmio_base));
2550 }
2551
2552 /**
2553  * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2554  * @ctx: LR context to create.
2555  * @ring: engine to be used with the context.
2556  *
2557  * This function can be called more than once, with different engines, if we plan
2558  * to use the context with them. The context backing objects and the ringbuffers
2559  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2560  * the creation is a deferred call: it's better to make sure first that we need to use
2561  * a given ring with the context.
2562  *
2563  * Return: non-zero on error.
2564  */
2565
2566 int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2567                                     struct intel_engine_cs *ring)
2568 {
2569         struct drm_device *dev = ring->dev;
2570         struct drm_i915_gem_object *ctx_obj;
2571         uint32_t context_size;
2572         struct intel_ringbuffer *ringbuf;
2573         int ret;
2574
2575         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2576         WARN_ON(ctx->engine[ring->id].state);
2577
2578         context_size = round_up(intel_lr_context_size(ring), 4096);
2579
2580         /* One extra page as the sharing data between driver and GuC */
2581         context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2582
2583         ctx_obj = i915_gem_alloc_object(dev, context_size);
2584         if (!ctx_obj) {
2585                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2586                 return -ENOMEM;
2587         }
2588
2589         ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
2590         if (IS_ERR(ringbuf)) {
2591                 ret = PTR_ERR(ringbuf);
2592                 goto error_deref_obj;
2593         }
2594
2595         ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2596         if (ret) {
2597                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2598                 goto error_ringbuf;
2599         }
2600
2601         ctx->engine[ring->id].ringbuf = ringbuf;
2602         ctx->engine[ring->id].state = ctx_obj;
2603
2604         if (ctx != ctx->i915->kernel_context && ring->init_context) {
2605                 struct drm_i915_gem_request *req;
2606
2607                 req = i915_gem_request_alloc(ring, ctx);
2608                 if (IS_ERR(req)) {
2609                         ret = PTR_ERR(req);
2610                         DRM_ERROR("ring create req: %d\n", ret);
2611                         goto error_ringbuf;
2612                 }
2613
2614                 ret = ring->init_context(req);
2615                 if (ret) {
2616                         DRM_ERROR("ring init context: %d\n",
2617                                 ret);
2618                         i915_gem_request_cancel(req);
2619                         goto error_ringbuf;
2620                 }
2621                 i915_add_request_no_flush(req);
2622         }
2623         return 0;
2624
2625 error_ringbuf:
2626         intel_ringbuffer_free(ringbuf);
2627 error_deref_obj:
2628         drm_gem_object_unreference(&ctx_obj->base);
2629         ctx->engine[ring->id].ringbuf = NULL;
2630         ctx->engine[ring->id].state = NULL;
2631         return ret;
2632 }
2633
2634 void intel_lr_context_reset(struct drm_device *dev,
2635                         struct intel_context *ctx)
2636 {
2637         struct drm_i915_private *dev_priv = dev->dev_private;
2638         struct intel_engine_cs *ring;
2639         int i;
2640
2641         for_each_ring(ring, dev_priv, i) {
2642                 struct drm_i915_gem_object *ctx_obj =
2643                                 ctx->engine[ring->id].state;
2644                 struct intel_ringbuffer *ringbuf =
2645                                 ctx->engine[ring->id].ringbuf;
2646                 uint32_t *reg_state;
2647                 struct page *page;
2648
2649                 if (!ctx_obj)
2650                         continue;
2651
2652                 if (i915_gem_object_get_pages(ctx_obj)) {
2653                         WARN(1, "Failed get_pages for context obj\n");
2654                         continue;
2655                 }
2656                 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2657                 reg_state = kmap_atomic(page);
2658
2659                 reg_state[CTX_RING_HEAD+1] = 0;
2660                 reg_state[CTX_RING_TAIL+1] = 0;
2661
2662                 kunmap_atomic(reg_state);
2663
2664                 ringbuf->head = 0;
2665                 ringbuf->tail = 0;
2666         }
2667 }