62b0dc6c2642d60c672f1eed94bf6f836fb10859
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL             (1 << 0x2)
146 #define RING_EXECLIST1_VALID            (1 << 0x3)
147 #define RING_EXECLIST0_VALID            (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
158
159 #define CTX_LRI_HEADER_0                0x01
160 #define CTX_CONTEXT_CONTROL             0x02
161 #define CTX_RING_HEAD                   0x04
162 #define CTX_RING_TAIL                   0x06
163 #define CTX_RING_BUFFER_START           0x08
164 #define CTX_RING_BUFFER_CONTROL         0x0a
165 #define CTX_BB_HEAD_U                   0x0c
166 #define CTX_BB_HEAD_L                   0x0e
167 #define CTX_BB_STATE                    0x10
168 #define CTX_SECOND_BB_HEAD_U            0x12
169 #define CTX_SECOND_BB_HEAD_L            0x14
170 #define CTX_SECOND_BB_STATE             0x16
171 #define CTX_BB_PER_CTX_PTR              0x18
172 #define CTX_RCS_INDIRECT_CTX            0x1a
173 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
174 #define CTX_LRI_HEADER_1                0x21
175 #define CTX_CTX_TIMESTAMP               0x22
176 #define CTX_PDP3_UDW                    0x24
177 #define CTX_PDP3_LDW                    0x26
178 #define CTX_PDP2_UDW                    0x28
179 #define CTX_PDP2_LDW                    0x2a
180 #define CTX_PDP1_UDW                    0x2c
181 #define CTX_PDP1_LDW                    0x2e
182 #define CTX_PDP0_UDW                    0x30
183 #define CTX_PDP0_LDW                    0x32
184 #define CTX_LRI_HEADER_2                0x41
185 #define CTX_R_PWR_CLK_STATE             0x42
186 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
187
188 #define GEN8_CTX_VALID (1<<0)
189 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190 #define GEN8_CTX_FORCE_RESTORE (1<<2)
191 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
192 #define GEN8_CTX_PRIVILEGE (1<<8)
193
194 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195         (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196         (reg_state)[(pos)+1] = (val); \
197 } while (0)
198
199 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {                \
200         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
201         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203 } while (0)
204
205 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206         reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207         reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208 } while (0)
209
210 enum {
211         FAULT_AND_HANG = 0,
212         FAULT_AND_HALT, /* Debug only */
213         FAULT_AND_STREAM,
214         FAULT_AND_CONTINUE /* Unsupported */
215 };
216 #define GEN8_CTX_ID_SHIFT 32
217 #define GEN8_CTX_ID_WIDTH 21
218 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x17
219 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x26
220
221 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
222 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
223
224 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
225                                             struct intel_engine_cs *engine);
226 static int intel_lr_context_pin(struct i915_gem_context *ctx,
227                                 struct intel_engine_cs *engine);
228
229 /**
230  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
231  * @dev_priv: i915 device private
232  * @enable_execlists: value of i915.enable_execlists module parameter.
233  *
234  * Only certain platforms support Execlists (the prerequisites being
235  * support for Logical Ring Contexts and Aliasing PPGTT or better).
236  *
237  * Return: 1 if Execlists is supported and has to be enabled.
238  */
239 int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
240 {
241         /* On platforms with execlist available, vGPU will only
242          * support execlist mode, no ring buffer mode.
243          */
244         if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
245                 return 1;
246
247         if (INTEL_GEN(dev_priv) >= 9)
248                 return 1;
249
250         if (enable_execlists == 0)
251                 return 0;
252
253         if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
254             USES_PPGTT(dev_priv) &&
255             i915.use_mmio_flip >= 0)
256                 return 1;
257
258         return 0;
259 }
260
261 static void
262 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
263 {
264         struct drm_i915_private *dev_priv = engine->i915;
265
266         if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv))
267                 engine->idle_lite_restore_wa = ~0;
268
269         engine->disable_lite_restore_wa = (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
270                                         IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
271                                         (engine->id == VCS || engine->id == VCS2);
272
273         engine->ctx_desc_template = GEN8_CTX_VALID;
274         if (IS_GEN8(dev_priv))
275                 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
276         engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
277
278         /* TODO: WaDisableLiteRestore when we start using semaphore
279          * signalling between Command Streamers */
280         /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
281
282         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
283         /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
284         if (engine->disable_lite_restore_wa)
285                 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
286 }
287
288 /**
289  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
290  *                                        descriptor for a pinned context
291  *
292  * @ctx: Context to work on
293  * @engine: Engine the descriptor will be used with
294  *
295  * The context descriptor encodes various attributes of a context,
296  * including its GTT address and some flags. Because it's fairly
297  * expensive to calculate, we'll just do it once and cache the result,
298  * which remains valid until the context is unpinned.
299  *
300  * This is what a descriptor looks like, from LSB to MSB:
301  *    bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
302  *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
303  *    bits 32-52:    ctx ID, a globally unique tag
304  *    bits 53-54:    mbz, reserved for use by hardware
305  *    bits 55-63:    group ID, currently unused and set to 0
306  */
307 static void
308 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
309                                    struct intel_engine_cs *engine)
310 {
311         struct intel_context *ce = &ctx->engine[engine->id];
312         u64 desc;
313
314         BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
315
316         desc = ctx->desc_template;                              /* bits  3-4  */
317         desc |= engine->ctx_desc_template;                      /* bits  0-11 */
318         desc |= ce->lrc_vma->node.start + LRC_PPHWSP_PN * PAGE_SIZE;
319                                                                 /* bits 12-31 */
320         desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;           /* bits 32-52 */
321
322         ce->lrc_desc = desc;
323 }
324
325 uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
326                                      struct intel_engine_cs *engine)
327 {
328         return ctx->engine[engine->id].lrc_desc;
329 }
330
331 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
332                                  struct drm_i915_gem_request *rq1)
333 {
334
335         struct intel_engine_cs *engine = rq0->engine;
336         struct drm_i915_private *dev_priv = rq0->i915;
337         uint64_t desc[2];
338
339         if (rq1) {
340                 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
341                 rq1->elsp_submitted++;
342         } else {
343                 desc[1] = 0;
344         }
345
346         desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
347         rq0->elsp_submitted++;
348
349         /* You must always write both descriptors in the order below. */
350         I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
351         I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
352
353         I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
354         /* The context is automatically loaded after the following */
355         I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
356
357         /* ELSP is a wo register, use another nearby reg for posting */
358         POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
359 }
360
361 static void
362 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
363 {
364         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
365         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
366         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
367         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
368 }
369
370 static void execlists_update_context(struct drm_i915_gem_request *rq)
371 {
372         struct intel_engine_cs *engine = rq->engine;
373         struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
374         uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
375
376         reg_state[CTX_RING_TAIL+1] = rq->tail;
377
378         /* True 32b PPGTT with dynamic page allocation: update PDP
379          * registers and point the unallocated PDPs to scratch page.
380          * PML4 is allocated during ppgtt init, so this is not needed
381          * in 48-bit mode.
382          */
383         if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
384                 execlists_update_context_pdps(ppgtt, reg_state);
385 }
386
387 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
388                                       struct drm_i915_gem_request *rq1)
389 {
390         struct drm_i915_private *dev_priv = rq0->i915;
391         unsigned int fw_domains = rq0->engine->fw_domains;
392
393         execlists_update_context(rq0);
394
395         if (rq1)
396                 execlists_update_context(rq1);
397
398         spin_lock_irq(&dev_priv->uncore.lock);
399         intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
400
401         execlists_elsp_write(rq0, rq1);
402
403         intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
404         spin_unlock_irq(&dev_priv->uncore.lock);
405 }
406
407 static inline void execlists_context_status_change(
408                 struct drm_i915_gem_request *rq,
409                 unsigned long status)
410 {
411         /*
412          * Only used when GVT-g is enabled now. When GVT-g is disabled,
413          * The compiler should eliminate this function as dead-code.
414          */
415         if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
416                 return;
417
418         atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
419 }
420
421 static void execlists_context_unqueue(struct intel_engine_cs *engine)
422 {
423         struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
424         struct drm_i915_gem_request *cursor, *tmp;
425
426         assert_spin_locked(&engine->execlist_lock);
427
428         /*
429          * If irqs are not active generate a warning as batches that finish
430          * without the irqs may get lost and a GPU Hang may occur.
431          */
432         WARN_ON(!intel_irqs_enabled(engine->i915));
433
434         /* Try to read in pairs */
435         list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
436                                  execlist_link) {
437                 if (!req0) {
438                         req0 = cursor;
439                 } else if (req0->ctx == cursor->ctx) {
440                         /* Same ctx: ignore first request, as second request
441                          * will update tail past first request's workload */
442                         cursor->elsp_submitted = req0->elsp_submitted;
443                         list_del(&req0->execlist_link);
444                         i915_gem_request_unreference(req0);
445                         req0 = cursor;
446                 } else {
447                         if (IS_ENABLED(CONFIG_DRM_I915_GVT)) {
448                                 /*
449                                  * req0 (after merged) ctx requires single
450                                  * submission, stop picking
451                                  */
452                                 if (req0->ctx->execlists_force_single_submission)
453                                         break;
454                                 /*
455                                  * req0 ctx doesn't require single submission,
456                                  * but next req ctx requires, stop picking
457                                  */
458                                 if (cursor->ctx->execlists_force_single_submission)
459                                         break;
460                         }
461                         req1 = cursor;
462                         WARN_ON(req1->elsp_submitted);
463                         break;
464                 }
465         }
466
467         if (unlikely(!req0))
468                 return;
469
470         execlists_context_status_change(req0, INTEL_CONTEXT_SCHEDULE_IN);
471
472         if (req1)
473                 execlists_context_status_change(req1,
474                                                 INTEL_CONTEXT_SCHEDULE_IN);
475
476         if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
477                 /*
478                  * WaIdleLiteRestore: make sure we never cause a lite restore
479                  * with HEAD==TAIL.
480                  *
481                  * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
482                  * resubmit the request. See gen8_emit_request() for where we
483                  * prepare the padding after the end of the request.
484                  */
485                 struct intel_ringbuffer *ringbuf;
486
487                 ringbuf = req0->ctx->engine[engine->id].ringbuf;
488                 req0->tail += 8;
489                 req0->tail &= ringbuf->size - 1;
490         }
491
492         execlists_submit_requests(req0, req1);
493 }
494
495 static unsigned int
496 execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
497 {
498         struct drm_i915_gem_request *head_req;
499
500         assert_spin_locked(&engine->execlist_lock);
501
502         head_req = list_first_entry_or_null(&engine->execlist_queue,
503                                             struct drm_i915_gem_request,
504                                             execlist_link);
505
506         if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
507                return 0;
508
509         WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
510
511         if (--head_req->elsp_submitted > 0)
512                 return 0;
513
514         execlists_context_status_change(head_req, INTEL_CONTEXT_SCHEDULE_OUT);
515
516         list_del(&head_req->execlist_link);
517         i915_gem_request_unreference(head_req);
518
519         return 1;
520 }
521
522 static u32
523 get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
524                    u32 *context_id)
525 {
526         struct drm_i915_private *dev_priv = engine->i915;
527         u32 status;
528
529         read_pointer %= GEN8_CSB_ENTRIES;
530
531         status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
532
533         if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
534                 return 0;
535
536         *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
537                                                               read_pointer));
538
539         return status;
540 }
541
542 /**
543  * intel_lrc_irq_handler() - handle Context Switch interrupts
544  * @data: tasklet handler passed in unsigned long
545  *
546  * Check the unread Context Status Buffers and manage the submission of new
547  * contexts to the ELSP accordingly.
548  */
549 static void intel_lrc_irq_handler(unsigned long data)
550 {
551         struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
552         struct drm_i915_private *dev_priv = engine->i915;
553         u32 status_pointer;
554         unsigned int read_pointer, write_pointer;
555         u32 csb[GEN8_CSB_ENTRIES][2];
556         unsigned int csb_read = 0, i;
557         unsigned int submit_contexts = 0;
558
559         intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
560
561         status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
562
563         read_pointer = engine->next_context_status_buffer;
564         write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
565         if (read_pointer > write_pointer)
566                 write_pointer += GEN8_CSB_ENTRIES;
567
568         while (read_pointer < write_pointer) {
569                 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
570                         break;
571                 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
572                                                       &csb[csb_read][1]);
573                 csb_read++;
574         }
575
576         engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
577
578         /* Update the read pointer to the old write pointer. Manual ringbuffer
579          * management ftw </sarcasm> */
580         I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
581                       _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
582                                     engine->next_context_status_buffer << 8));
583
584         intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
585
586         spin_lock(&engine->execlist_lock);
587
588         for (i = 0; i < csb_read; i++) {
589                 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
590                         if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
591                                 if (execlists_check_remove_request(engine, csb[i][1]))
592                                         WARN(1, "Lite Restored request removed from queue\n");
593                         } else
594                                 WARN(1, "Preemption without Lite Restore\n");
595                 }
596
597                 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
598                     GEN8_CTX_STATUS_ELEMENT_SWITCH))
599                         submit_contexts +=
600                                 execlists_check_remove_request(engine, csb[i][1]);
601         }
602
603         if (submit_contexts) {
604                 if (!engine->disable_lite_restore_wa ||
605                     (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
606                         execlists_context_unqueue(engine);
607         }
608
609         spin_unlock(&engine->execlist_lock);
610
611         if (unlikely(submit_contexts > 2))
612                 DRM_ERROR("More than two context complete events?\n");
613 }
614
615 static void execlists_context_queue(struct drm_i915_gem_request *request)
616 {
617         struct intel_engine_cs *engine = request->engine;
618         struct drm_i915_gem_request *cursor;
619         int num_elements = 0;
620
621         spin_lock_bh(&engine->execlist_lock);
622
623         list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
624                 if (++num_elements > 2)
625                         break;
626
627         if (num_elements > 2) {
628                 struct drm_i915_gem_request *tail_req;
629
630                 tail_req = list_last_entry(&engine->execlist_queue,
631                                            struct drm_i915_gem_request,
632                                            execlist_link);
633
634                 if (request->ctx == tail_req->ctx) {
635                         WARN(tail_req->elsp_submitted != 0,
636                                 "More than 2 already-submitted reqs queued\n");
637                         list_del(&tail_req->execlist_link);
638                         i915_gem_request_unreference(tail_req);
639                 }
640         }
641
642         i915_gem_request_reference(request);
643         list_add_tail(&request->execlist_link, &engine->execlist_queue);
644         request->ctx_hw_id = request->ctx->hw_id;
645         if (num_elements == 0)
646                 execlists_context_unqueue(engine);
647
648         spin_unlock_bh(&engine->execlist_lock);
649 }
650
651 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
652 {
653         struct intel_engine_cs *engine = req->engine;
654         uint32_t flush_domains;
655         int ret;
656
657         flush_domains = 0;
658         if (engine->gpu_caches_dirty)
659                 flush_domains = I915_GEM_GPU_DOMAINS;
660
661         ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
662         if (ret)
663                 return ret;
664
665         engine->gpu_caches_dirty = false;
666         return 0;
667 }
668
669 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
670                                  struct list_head *vmas)
671 {
672         const unsigned other_rings = ~intel_engine_flag(req->engine);
673         struct i915_vma *vma;
674         uint32_t flush_domains = 0;
675         bool flush_chipset = false;
676         int ret;
677
678         list_for_each_entry(vma, vmas, exec_list) {
679                 struct drm_i915_gem_object *obj = vma->obj;
680
681                 if (obj->active & other_rings) {
682                         ret = i915_gem_object_sync(obj, req->engine, &req);
683                         if (ret)
684                                 return ret;
685                 }
686
687                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
688                         flush_chipset |= i915_gem_clflush_object(obj, false);
689
690                 flush_domains |= obj->base.write_domain;
691         }
692
693         if (flush_domains & I915_GEM_DOMAIN_GTT)
694                 wmb();
695
696         /* Unconditionally invalidate gpu caches and ensure that we do flush
697          * any residual writes from the previous batch.
698          */
699         return logical_ring_invalidate_all_caches(req);
700 }
701
702 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
703 {
704         struct intel_engine_cs *engine = request->engine;
705         struct intel_context *ce = &request->ctx->engine[engine->id];
706         int ret;
707
708         /* Flush enough space to reduce the likelihood of waiting after
709          * we start building the request - in which case we will just
710          * have to repeat work.
711          */
712         request->reserved_space += EXECLISTS_REQUEST_SIZE;
713
714         if (!ce->state) {
715                 ret = execlists_context_deferred_alloc(request->ctx, engine);
716                 if (ret)
717                         return ret;
718         }
719
720         request->ringbuf = ce->ringbuf;
721
722         if (i915.enable_guc_submission) {
723                 /*
724                  * Check that the GuC has space for the request before
725                  * going any further, as the i915_add_request() call
726                  * later on mustn't fail ...
727                  */
728                 ret = i915_guc_wq_check_space(request);
729                 if (ret)
730                         return ret;
731         }
732
733         ret = intel_lr_context_pin(request->ctx, engine);
734         if (ret)
735                 return ret;
736
737         ret = intel_ring_begin(request, 0);
738         if (ret)
739                 goto err_unpin;
740
741         if (!ce->initialised) {
742                 ret = engine->init_context(request);
743                 if (ret)
744                         goto err_unpin;
745
746                 ce->initialised = true;
747         }
748
749         /* Note that after this point, we have committed to using
750          * this request as it is being used to both track the
751          * state of engine initialisation and liveness of the
752          * golden renderstate above. Think twice before you try
753          * to cancel/unwind this request now.
754          */
755
756         request->reserved_space -= EXECLISTS_REQUEST_SIZE;
757         return 0;
758
759 err_unpin:
760         intel_lr_context_unpin(request->ctx, engine);
761         return ret;
762 }
763
764 /*
765  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
766  * @request: Request to advance the logical ringbuffer of.
767  *
768  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
769  * really happens during submission is that the context and current tail will be placed
770  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
771  * point, the tail *inside* the context is updated and the ELSP written to.
772  */
773 static int
774 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
775 {
776         struct intel_ringbuffer *ringbuf = request->ringbuf;
777         struct intel_engine_cs *engine = request->engine;
778
779         intel_logical_ring_advance(ringbuf);
780         request->tail = ringbuf->tail;
781
782         /*
783          * Here we add two extra NOOPs as padding to avoid
784          * lite restore of a context with HEAD==TAIL.
785          *
786          * Caller must reserve WA_TAIL_DWORDS for us!
787          */
788         intel_logical_ring_emit(ringbuf, MI_NOOP);
789         intel_logical_ring_emit(ringbuf, MI_NOOP);
790         intel_logical_ring_advance(ringbuf);
791
792         if (intel_engine_stopped(engine))
793                 return 0;
794
795         /* We keep the previous context alive until we retire the following
796          * request. This ensures that any the context object is still pinned
797          * for any residual writes the HW makes into it on the context switch
798          * into the next object following the breadcrumb. Otherwise, we may
799          * retire the context too early.
800          */
801         request->previous_context = engine->last_context;
802         engine->last_context = request->ctx;
803
804         if (i915.enable_guc_submission)
805                 i915_guc_submit(request);
806         else
807                 execlists_context_queue(request);
808
809         return 0;
810 }
811
812 /**
813  * execlists_submission() - submit a batchbuffer for execution, Execlists style
814  * @params: execbuffer call parameters.
815  * @args: execbuffer call arguments.
816  * @vmas: list of vmas.
817  *
818  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
819  * away the submission details of the execbuffer ioctl call.
820  *
821  * Return: non-zero if the submission fails.
822  */
823 int intel_execlists_submission(struct i915_execbuffer_params *params,
824                                struct drm_i915_gem_execbuffer2 *args,
825                                struct list_head *vmas)
826 {
827         struct drm_device       *dev = params->dev;
828         struct intel_engine_cs *engine = params->engine;
829         struct drm_i915_private *dev_priv = dev->dev_private;
830         struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
831         u64 exec_start;
832         int instp_mode;
833         u32 instp_mask;
834         int ret;
835
836         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
837         instp_mask = I915_EXEC_CONSTANTS_MASK;
838         switch (instp_mode) {
839         case I915_EXEC_CONSTANTS_REL_GENERAL:
840         case I915_EXEC_CONSTANTS_ABSOLUTE:
841         case I915_EXEC_CONSTANTS_REL_SURFACE:
842                 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
843                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
844                         return -EINVAL;
845                 }
846
847                 if (instp_mode != dev_priv->relative_constants_mode) {
848                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
849                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
850                                 return -EINVAL;
851                         }
852
853                         /* The HW changed the meaning on this bit on gen6 */
854                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
855                 }
856                 break;
857         default:
858                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
859                 return -EINVAL;
860         }
861
862         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
863                 DRM_DEBUG("sol reset is gen7 only\n");
864                 return -EINVAL;
865         }
866
867         ret = execlists_move_to_gpu(params->request, vmas);
868         if (ret)
869                 return ret;
870
871         if (engine == &dev_priv->engine[RCS] &&
872             instp_mode != dev_priv->relative_constants_mode) {
873                 ret = intel_ring_begin(params->request, 4);
874                 if (ret)
875                         return ret;
876
877                 intel_logical_ring_emit(ringbuf, MI_NOOP);
878                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
879                 intel_logical_ring_emit_reg(ringbuf, INSTPM);
880                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
881                 intel_logical_ring_advance(ringbuf);
882
883                 dev_priv->relative_constants_mode = instp_mode;
884         }
885
886         exec_start = params->batch_obj_vm_offset +
887                      args->batch_start_offset;
888
889         ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
890         if (ret)
891                 return ret;
892
893         trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
894
895         i915_gem_execbuffer_move_to_active(vmas, params->request);
896
897         return 0;
898 }
899
900 void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
901 {
902         struct drm_i915_gem_request *req, *tmp;
903         LIST_HEAD(cancel_list);
904
905         WARN_ON(!mutex_is_locked(&engine->i915->dev->struct_mutex));
906
907         spin_lock_bh(&engine->execlist_lock);
908         list_replace_init(&engine->execlist_queue, &cancel_list);
909         spin_unlock_bh(&engine->execlist_lock);
910
911         list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
912                 list_del(&req->execlist_link);
913                 i915_gem_request_unreference(req);
914         }
915 }
916
917 void intel_logical_ring_stop(struct intel_engine_cs *engine)
918 {
919         struct drm_i915_private *dev_priv = engine->i915;
920         int ret;
921
922         if (!intel_engine_initialized(engine))
923                 return;
924
925         ret = intel_engine_idle(engine);
926         if (ret)
927                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
928                           engine->name, ret);
929
930         /* TODO: Is this correct with Execlists enabled? */
931         I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
932         if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
933                 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
934                 return;
935         }
936         I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
937 }
938
939 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
940 {
941         struct intel_engine_cs *engine = req->engine;
942         int ret;
943
944         if (!engine->gpu_caches_dirty)
945                 return 0;
946
947         ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
948         if (ret)
949                 return ret;
950
951         engine->gpu_caches_dirty = false;
952         return 0;
953 }
954
955 static int intel_lr_context_pin(struct i915_gem_context *ctx,
956                                 struct intel_engine_cs *engine)
957 {
958         struct drm_i915_private *dev_priv = ctx->i915;
959         struct intel_context *ce = &ctx->engine[engine->id];
960         void *vaddr;
961         u32 *lrc_reg_state;
962         int ret;
963
964         lockdep_assert_held(&ctx->i915->dev->struct_mutex);
965
966         if (ce->pin_count++)
967                 return 0;
968
969         ret = i915_gem_obj_ggtt_pin(ce->state, GEN8_LR_CONTEXT_ALIGN,
970                                     PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
971         if (ret)
972                 goto err;
973
974         vaddr = i915_gem_object_pin_map(ce->state);
975         if (IS_ERR(vaddr)) {
976                 ret = PTR_ERR(vaddr);
977                 goto unpin_ctx_obj;
978         }
979
980         lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
981
982         ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ce->ringbuf);
983         if (ret)
984                 goto unpin_map;
985
986         i915_gem_context_reference(ctx);
987         ce->lrc_vma = i915_gem_obj_to_ggtt(ce->state);
988         intel_lr_context_descriptor_update(ctx, engine);
989
990         lrc_reg_state[CTX_RING_BUFFER_START+1] = ce->ringbuf->vma->node.start;
991         ce->lrc_reg_state = lrc_reg_state;
992         ce->state->dirty = true;
993
994         /* Invalidate GuC TLB. */
995         if (i915.enable_guc_submission)
996                 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
997
998         return 0;
999
1000 unpin_map:
1001         i915_gem_object_unpin_map(ce->state);
1002 unpin_ctx_obj:
1003         i915_gem_object_ggtt_unpin(ce->state);
1004 err:
1005         ce->pin_count = 0;
1006         return ret;
1007 }
1008
1009 void intel_lr_context_unpin(struct i915_gem_context *ctx,
1010                             struct intel_engine_cs *engine)
1011 {
1012         struct intel_context *ce = &ctx->engine[engine->id];
1013
1014         lockdep_assert_held(&ctx->i915->dev->struct_mutex);
1015         GEM_BUG_ON(ce->pin_count == 0);
1016
1017         if (--ce->pin_count)
1018                 return;
1019
1020         intel_unpin_ringbuffer_obj(ce->ringbuf);
1021
1022         i915_gem_object_unpin_map(ce->state);
1023         i915_gem_object_ggtt_unpin(ce->state);
1024
1025         ce->lrc_vma = NULL;
1026         ce->lrc_desc = 0;
1027         ce->lrc_reg_state = NULL;
1028
1029         i915_gem_context_unreference(ctx);
1030 }
1031
1032 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1033 {
1034         int ret, i;
1035         struct intel_engine_cs *engine = req->engine;
1036         struct intel_ringbuffer *ringbuf = req->ringbuf;
1037         struct i915_workarounds *w = &req->i915->workarounds;
1038
1039         if (w->count == 0)
1040                 return 0;
1041
1042         engine->gpu_caches_dirty = true;
1043         ret = logical_ring_flush_all_caches(req);
1044         if (ret)
1045                 return ret;
1046
1047         ret = intel_ring_begin(req, w->count * 2 + 2);
1048         if (ret)
1049                 return ret;
1050
1051         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1052         for (i = 0; i < w->count; i++) {
1053                 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1054                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1055         }
1056         intel_logical_ring_emit(ringbuf, MI_NOOP);
1057
1058         intel_logical_ring_advance(ringbuf);
1059
1060         engine->gpu_caches_dirty = true;
1061         ret = logical_ring_flush_all_caches(req);
1062         if (ret)
1063                 return ret;
1064
1065         return 0;
1066 }
1067
1068 #define wa_ctx_emit(batch, index, cmd)                                  \
1069         do {                                                            \
1070                 int __index = (index)++;                                \
1071                 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1072                         return -ENOSPC;                                 \
1073                 }                                                       \
1074                 batch[__index] = (cmd);                                 \
1075         } while (0)
1076
1077 #define wa_ctx_emit_reg(batch, index, reg) \
1078         wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1079
1080 /*
1081  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1082  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1083  * but there is a slight complication as this is applied in WA batch where the
1084  * values are only initialized once so we cannot take register value at the
1085  * beginning and reuse it further; hence we save its value to memory, upload a
1086  * constant value with bit21 set and then we restore it back with the saved value.
1087  * To simplify the WA, a constant value is formed by using the default value
1088  * of this register. This shouldn't be a problem because we are only modifying
1089  * it for a short period and this batch in non-premptible. We can ofcourse
1090  * use additional instructions that read the actual value of the register
1091  * at that time and set our bit of interest but it makes the WA complicated.
1092  *
1093  * This WA is also required for Gen9 so extracting as a function avoids
1094  * code duplication.
1095  */
1096 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1097                                                 uint32_t *const batch,
1098                                                 uint32_t index)
1099 {
1100         uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1101
1102         /*
1103          * WaDisableLSQCROPERFforOCL:skl,kbl
1104          * This WA is implemented in skl_init_clock_gating() but since
1105          * this batch updates GEN8_L3SQCREG4 with default value we need to
1106          * set this bit here to retain the WA during flush.
1107          */
1108         if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_E0) ||
1109             IS_KBL_REVID(engine->i915, 0, KBL_REVID_E0))
1110                 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1111
1112         wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1113                                    MI_SRM_LRM_GLOBAL_GTT));
1114         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1115         wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1116         wa_ctx_emit(batch, index, 0);
1117
1118         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1119         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1120         wa_ctx_emit(batch, index, l3sqc4_flush);
1121
1122         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1123         wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1124                                    PIPE_CONTROL_DC_FLUSH_ENABLE));
1125         wa_ctx_emit(batch, index, 0);
1126         wa_ctx_emit(batch, index, 0);
1127         wa_ctx_emit(batch, index, 0);
1128         wa_ctx_emit(batch, index, 0);
1129
1130         wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1131                                    MI_SRM_LRM_GLOBAL_GTT));
1132         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1133         wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1134         wa_ctx_emit(batch, index, 0);
1135
1136         return index;
1137 }
1138
1139 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1140                                     uint32_t offset,
1141                                     uint32_t start_alignment)
1142 {
1143         return wa_ctx->offset = ALIGN(offset, start_alignment);
1144 }
1145
1146 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1147                              uint32_t offset,
1148                              uint32_t size_alignment)
1149 {
1150         wa_ctx->size = offset - wa_ctx->offset;
1151
1152         WARN(wa_ctx->size % size_alignment,
1153              "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1154              wa_ctx->size, size_alignment);
1155         return 0;
1156 }
1157
1158 /**
1159  * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1160  *
1161  * @engine: only applicable for RCS
1162  * @wa_ctx: structure representing wa_ctx
1163  *  offset: specifies start of the batch, should be cache-aligned. This is updated
1164  *    with the offset value received as input.
1165  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1166  * @batch: page in which WA are loaded
1167  * @offset: This field specifies the start of the batch, it should be
1168  *  cache-aligned otherwise it is adjusted accordingly.
1169  *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
1170  *  initialized at the beginning and shared across all contexts but this field
1171  *  helps us to have multiple batches at different offsets and select them based
1172  *  on a criteria. At the moment this batch always start at the beginning of the page
1173  *  and at this point we don't have multiple wa_ctx batch buffers.
1174  *
1175  *  The number of WA applied are not known at the beginning; we use this field
1176  *  to return the no of DWORDS written.
1177  *
1178  *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1179  *  so it adds NOOPs as padding to make it cacheline aligned.
1180  *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1181  *  makes a complete batch buffer.
1182  *
1183  * Return: non-zero if we exceed the PAGE_SIZE limit.
1184  */
1185
1186 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1187                                     struct i915_wa_ctx_bb *wa_ctx,
1188                                     uint32_t *const batch,
1189                                     uint32_t *offset)
1190 {
1191         uint32_t scratch_addr;
1192         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1193
1194         /* WaDisableCtxRestoreArbitration:bdw,chv */
1195         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1196
1197         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1198         if (IS_BROADWELL(engine->i915)) {
1199                 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1200                 if (rc < 0)
1201                         return rc;
1202                 index = rc;
1203         }
1204
1205         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1206         /* Actual scratch location is at 128 bytes offset */
1207         scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1208
1209         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1210         wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1211                                    PIPE_CONTROL_GLOBAL_GTT_IVB |
1212                                    PIPE_CONTROL_CS_STALL |
1213                                    PIPE_CONTROL_QW_WRITE));
1214         wa_ctx_emit(batch, index, scratch_addr);
1215         wa_ctx_emit(batch, index, 0);
1216         wa_ctx_emit(batch, index, 0);
1217         wa_ctx_emit(batch, index, 0);
1218
1219         /* Pad to end of cacheline */
1220         while (index % CACHELINE_DWORDS)
1221                 wa_ctx_emit(batch, index, MI_NOOP);
1222
1223         /*
1224          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1225          * execution depends on the length specified in terms of cache lines
1226          * in the register CTX_RCS_INDIRECT_CTX
1227          */
1228
1229         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1230 }
1231
1232 /**
1233  * gen8_init_perctx_bb() - initialize per ctx batch with WA
1234  *
1235  * @engine: only applicable for RCS
1236  * @wa_ctx: structure representing wa_ctx
1237  *  offset: specifies start of the batch, should be cache-aligned.
1238  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1239  * @batch: page in which WA are loaded
1240  * @offset: This field specifies the start of this batch.
1241  *   This batch is started immediately after indirect_ctx batch. Since we ensure
1242  *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
1243  *
1244  *   The number of DWORDS written are returned using this field.
1245  *
1246  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1247  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1248  */
1249 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1250                                struct i915_wa_ctx_bb *wa_ctx,
1251                                uint32_t *const batch,
1252                                uint32_t *offset)
1253 {
1254         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1255
1256         /* WaDisableCtxRestoreArbitration:bdw,chv */
1257         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1258
1259         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1260
1261         return wa_ctx_end(wa_ctx, *offset = index, 1);
1262 }
1263
1264 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1265                                     struct i915_wa_ctx_bb *wa_ctx,
1266                                     uint32_t *const batch,
1267                                     uint32_t *offset)
1268 {
1269         int ret;
1270         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1271
1272         /* WaDisableCtxRestoreArbitration:skl,bxt */
1273         if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1274             IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1275                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1276
1277         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1278         ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1279         if (ret < 0)
1280                 return ret;
1281         index = ret;
1282
1283         /* WaClearSlmSpaceAtContextSwitch:kbl */
1284         /* Actual scratch location is at 128 bytes offset */
1285         if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1286                 uint32_t scratch_addr
1287                         = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1288
1289                 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1290                 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1291                                            PIPE_CONTROL_GLOBAL_GTT_IVB |
1292                                            PIPE_CONTROL_CS_STALL |
1293                                            PIPE_CONTROL_QW_WRITE));
1294                 wa_ctx_emit(batch, index, scratch_addr);
1295                 wa_ctx_emit(batch, index, 0);
1296                 wa_ctx_emit(batch, index, 0);
1297                 wa_ctx_emit(batch, index, 0);
1298         }
1299         /* Pad to end of cacheline */
1300         while (index % CACHELINE_DWORDS)
1301                 wa_ctx_emit(batch, index, MI_NOOP);
1302
1303         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1304 }
1305
1306 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1307                                struct i915_wa_ctx_bb *wa_ctx,
1308                                uint32_t *const batch,
1309                                uint32_t *offset)
1310 {
1311         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1312
1313         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1314         if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
1315             IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1316                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1317                 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1318                 wa_ctx_emit(batch, index,
1319                             _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1320                 wa_ctx_emit(batch, index, MI_NOOP);
1321         }
1322
1323         /* WaClearTdlStateAckDirtyBits:bxt */
1324         if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1325                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1326
1327                 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1328                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1329
1330                 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1331                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1332
1333                 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1334                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1335
1336                 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1337                 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1338                 wa_ctx_emit(batch, index, 0x0);
1339                 wa_ctx_emit(batch, index, MI_NOOP);
1340         }
1341
1342         /* WaDisableCtxRestoreArbitration:skl,bxt */
1343         if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1344             IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1345                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1346
1347         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1348
1349         return wa_ctx_end(wa_ctx, *offset = index, 1);
1350 }
1351
1352 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1353 {
1354         int ret;
1355
1356         engine->wa_ctx.obj = i915_gem_object_create(engine->i915->dev,
1357                                                    PAGE_ALIGN(size));
1358         if (IS_ERR(engine->wa_ctx.obj)) {
1359                 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1360                 ret = PTR_ERR(engine->wa_ctx.obj);
1361                 engine->wa_ctx.obj = NULL;
1362                 return ret;
1363         }
1364
1365         ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1366         if (ret) {
1367                 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1368                                  ret);
1369                 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1370                 return ret;
1371         }
1372
1373         return 0;
1374 }
1375
1376 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1377 {
1378         if (engine->wa_ctx.obj) {
1379                 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1380                 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1381                 engine->wa_ctx.obj = NULL;
1382         }
1383 }
1384
1385 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1386 {
1387         int ret;
1388         uint32_t *batch;
1389         uint32_t offset;
1390         struct page *page;
1391         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1392
1393         WARN_ON(engine->id != RCS);
1394
1395         /* update this when WA for higher Gen are added */
1396         if (INTEL_GEN(engine->i915) > 9) {
1397                 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1398                           INTEL_GEN(engine->i915));
1399                 return 0;
1400         }
1401
1402         /* some WA perform writes to scratch page, ensure it is valid */
1403         if (engine->scratch.obj == NULL) {
1404                 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1405                 return -EINVAL;
1406         }
1407
1408         ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1409         if (ret) {
1410                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1411                 return ret;
1412         }
1413
1414         page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1415         batch = kmap_atomic(page);
1416         offset = 0;
1417
1418         if (IS_GEN8(engine->i915)) {
1419                 ret = gen8_init_indirectctx_bb(engine,
1420                                                &wa_ctx->indirect_ctx,
1421                                                batch,
1422                                                &offset);
1423                 if (ret)
1424                         goto out;
1425
1426                 ret = gen8_init_perctx_bb(engine,
1427                                           &wa_ctx->per_ctx,
1428                                           batch,
1429                                           &offset);
1430                 if (ret)
1431                         goto out;
1432         } else if (IS_GEN9(engine->i915)) {
1433                 ret = gen9_init_indirectctx_bb(engine,
1434                                                &wa_ctx->indirect_ctx,
1435                                                batch,
1436                                                &offset);
1437                 if (ret)
1438                         goto out;
1439
1440                 ret = gen9_init_perctx_bb(engine,
1441                                           &wa_ctx->per_ctx,
1442                                           batch,
1443                                           &offset);
1444                 if (ret)
1445                         goto out;
1446         }
1447
1448 out:
1449         kunmap_atomic(batch);
1450         if (ret)
1451                 lrc_destroy_wa_ctx_obj(engine);
1452
1453         return ret;
1454 }
1455
1456 static void lrc_init_hws(struct intel_engine_cs *engine)
1457 {
1458         struct drm_i915_private *dev_priv = engine->i915;
1459
1460         I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1461                    (u32)engine->status_page.gfx_addr);
1462         POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1463 }
1464
1465 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1466 {
1467         struct drm_i915_private *dev_priv = engine->i915;
1468         unsigned int next_context_status_buffer_hw;
1469
1470         lrc_init_hws(engine);
1471
1472         I915_WRITE_IMR(engine,
1473                        ~(engine->irq_enable_mask | engine->irq_keep_mask));
1474         I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1475
1476         I915_WRITE(RING_MODE_GEN7(engine),
1477                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1478                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1479         POSTING_READ(RING_MODE_GEN7(engine));
1480
1481         /*
1482          * Instead of resetting the Context Status Buffer (CSB) read pointer to
1483          * zero, we need to read the write pointer from hardware and use its
1484          * value because "this register is power context save restored".
1485          * Effectively, these states have been observed:
1486          *
1487          *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1488          * BDW  | CSB regs not reset       | CSB regs reset       |
1489          * CHT  | CSB regs not reset       | CSB regs not reset   |
1490          * SKL  |         ?                |         ?            |
1491          * BXT  |         ?                |         ?            |
1492          */
1493         next_context_status_buffer_hw =
1494                 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1495
1496         /*
1497          * When the CSB registers are reset (also after power-up / gpu reset),
1498          * CSB write pointer is set to all 1's, which is not valid, use '5' in
1499          * this special case, so the first element read is CSB[0].
1500          */
1501         if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1502                 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1503
1504         engine->next_context_status_buffer = next_context_status_buffer_hw;
1505         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1506
1507         intel_engine_init_hangcheck(engine);
1508
1509         return intel_mocs_init_engine(engine);
1510 }
1511
1512 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1513 {
1514         struct drm_i915_private *dev_priv = engine->i915;
1515         int ret;
1516
1517         ret = gen8_init_common_ring(engine);
1518         if (ret)
1519                 return ret;
1520
1521         /* We need to disable the AsyncFlip performance optimisations in order
1522          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1523          * programmed to '1' on all products.
1524          *
1525          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1526          */
1527         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1528
1529         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1530
1531         return init_workarounds_ring(engine);
1532 }
1533
1534 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1535 {
1536         int ret;
1537
1538         ret = gen8_init_common_ring(engine);
1539         if (ret)
1540                 return ret;
1541
1542         return init_workarounds_ring(engine);
1543 }
1544
1545 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1546 {
1547         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1548         struct intel_engine_cs *engine = req->engine;
1549         struct intel_ringbuffer *ringbuf = req->ringbuf;
1550         const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1551         int i, ret;
1552
1553         ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1554         if (ret)
1555                 return ret;
1556
1557         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1558         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1559                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1560
1561                 intel_logical_ring_emit_reg(ringbuf,
1562                                             GEN8_RING_PDP_UDW(engine, i));
1563                 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1564                 intel_logical_ring_emit_reg(ringbuf,
1565                                             GEN8_RING_PDP_LDW(engine, i));
1566                 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1567         }
1568
1569         intel_logical_ring_emit(ringbuf, MI_NOOP);
1570         intel_logical_ring_advance(ringbuf);
1571
1572         return 0;
1573 }
1574
1575 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1576                               u64 offset, unsigned dispatch_flags)
1577 {
1578         struct intel_ringbuffer *ringbuf = req->ringbuf;
1579         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1580         int ret;
1581
1582         /* Don't rely in hw updating PDPs, specially in lite-restore.
1583          * Ideally, we should set Force PD Restore in ctx descriptor,
1584          * but we can't. Force Restore would be a second option, but
1585          * it is unsafe in case of lite-restore (because the ctx is
1586          * not idle). PML4 is allocated during ppgtt init so this is
1587          * not needed in 48-bit.*/
1588         if (req->ctx->ppgtt &&
1589             (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1590                 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1591                     !intel_vgpu_active(req->i915)) {
1592                         ret = intel_logical_ring_emit_pdps(req);
1593                         if (ret)
1594                                 return ret;
1595                 }
1596
1597                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1598         }
1599
1600         ret = intel_ring_begin(req, 4);
1601         if (ret)
1602                 return ret;
1603
1604         /* FIXME(BDW): Address space and security selectors. */
1605         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1606                                 (ppgtt<<8) |
1607                                 (dispatch_flags & I915_DISPATCH_RS ?
1608                                  MI_BATCH_RESOURCE_STREAMER : 0));
1609         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1610         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1611         intel_logical_ring_emit(ringbuf, MI_NOOP);
1612         intel_logical_ring_advance(ringbuf);
1613
1614         return 0;
1615 }
1616
1617 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1618 {
1619         struct drm_i915_private *dev_priv = engine->i915;
1620         unsigned long flags;
1621
1622         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1623                 return false;
1624
1625         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1626         if (engine->irq_refcount++ == 0) {
1627                 I915_WRITE_IMR(engine,
1628                                ~(engine->irq_enable_mask | engine->irq_keep_mask));
1629                 POSTING_READ(RING_IMR(engine->mmio_base));
1630         }
1631         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1632
1633         return true;
1634 }
1635
1636 static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1637 {
1638         struct drm_i915_private *dev_priv = engine->i915;
1639         unsigned long flags;
1640
1641         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1642         if (--engine->irq_refcount == 0) {
1643                 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1644                 POSTING_READ(RING_IMR(engine->mmio_base));
1645         }
1646         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1647 }
1648
1649 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1650                            u32 invalidate_domains,
1651                            u32 unused)
1652 {
1653         struct intel_ringbuffer *ringbuf = request->ringbuf;
1654         struct intel_engine_cs *engine = ringbuf->engine;
1655         struct drm_i915_private *dev_priv = request->i915;
1656         uint32_t cmd;
1657         int ret;
1658
1659         ret = intel_ring_begin(request, 4);
1660         if (ret)
1661                 return ret;
1662
1663         cmd = MI_FLUSH_DW + 1;
1664
1665         /* We always require a command barrier so that subsequent
1666          * commands, such as breadcrumb interrupts, are strictly ordered
1667          * wrt the contents of the write cache being flushed to memory
1668          * (and thus being coherent from the CPU).
1669          */
1670         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1671
1672         if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1673                 cmd |= MI_INVALIDATE_TLB;
1674                 if (engine == &dev_priv->engine[VCS])
1675                         cmd |= MI_INVALIDATE_BSD;
1676         }
1677
1678         intel_logical_ring_emit(ringbuf, cmd);
1679         intel_logical_ring_emit(ringbuf,
1680                                 I915_GEM_HWS_SCRATCH_ADDR |
1681                                 MI_FLUSH_DW_USE_GTT);
1682         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1683         intel_logical_ring_emit(ringbuf, 0); /* value */
1684         intel_logical_ring_advance(ringbuf);
1685
1686         return 0;
1687 }
1688
1689 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1690                                   u32 invalidate_domains,
1691                                   u32 flush_domains)
1692 {
1693         struct intel_ringbuffer *ringbuf = request->ringbuf;
1694         struct intel_engine_cs *engine = ringbuf->engine;
1695         u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1696         bool vf_flush_wa = false, dc_flush_wa = false;
1697         u32 flags = 0;
1698         int ret;
1699         int len;
1700
1701         flags |= PIPE_CONTROL_CS_STALL;
1702
1703         if (flush_domains) {
1704                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1705                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1706                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1707                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1708         }
1709
1710         if (invalidate_domains) {
1711                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1712                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1713                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1714                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1715                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1716                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1717                 flags |= PIPE_CONTROL_QW_WRITE;
1718                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1719
1720                 /*
1721                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1722                  * pipe control.
1723                  */
1724                 if (IS_GEN9(request->i915))
1725                         vf_flush_wa = true;
1726
1727                 /* WaForGAMHang:kbl */
1728                 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1729                         dc_flush_wa = true;
1730         }
1731
1732         len = 6;
1733
1734         if (vf_flush_wa)
1735                 len += 6;
1736
1737         if (dc_flush_wa)
1738                 len += 12;
1739
1740         ret = intel_ring_begin(request, len);
1741         if (ret)
1742                 return ret;
1743
1744         if (vf_flush_wa) {
1745                 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1746                 intel_logical_ring_emit(ringbuf, 0);
1747                 intel_logical_ring_emit(ringbuf, 0);
1748                 intel_logical_ring_emit(ringbuf, 0);
1749                 intel_logical_ring_emit(ringbuf, 0);
1750                 intel_logical_ring_emit(ringbuf, 0);
1751         }
1752
1753         if (dc_flush_wa) {
1754                 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1755                 intel_logical_ring_emit(ringbuf, PIPE_CONTROL_DC_FLUSH_ENABLE);
1756                 intel_logical_ring_emit(ringbuf, 0);
1757                 intel_logical_ring_emit(ringbuf, 0);
1758                 intel_logical_ring_emit(ringbuf, 0);
1759                 intel_logical_ring_emit(ringbuf, 0);
1760         }
1761
1762         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1763         intel_logical_ring_emit(ringbuf, flags);
1764         intel_logical_ring_emit(ringbuf, scratch_addr);
1765         intel_logical_ring_emit(ringbuf, 0);
1766         intel_logical_ring_emit(ringbuf, 0);
1767         intel_logical_ring_emit(ringbuf, 0);
1768
1769         if (dc_flush_wa) {
1770                 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1771                 intel_logical_ring_emit(ringbuf, PIPE_CONTROL_CS_STALL);
1772                 intel_logical_ring_emit(ringbuf, 0);
1773                 intel_logical_ring_emit(ringbuf, 0);
1774                 intel_logical_ring_emit(ringbuf, 0);
1775                 intel_logical_ring_emit(ringbuf, 0);
1776         }
1777
1778         intel_logical_ring_advance(ringbuf);
1779
1780         return 0;
1781 }
1782
1783 static u32 gen8_get_seqno(struct intel_engine_cs *engine)
1784 {
1785         return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1786 }
1787
1788 static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1789 {
1790         intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1791 }
1792
1793 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1794 {
1795         /*
1796          * On BXT A steppings there is a HW coherency issue whereby the
1797          * MI_STORE_DATA_IMM storing the completed request's seqno
1798          * occasionally doesn't invalidate the CPU cache. Work around this by
1799          * clflushing the corresponding cacheline whenever the caller wants
1800          * the coherency to be guaranteed. Note that this cacheline is known
1801          * to be clean at this point, since we only write it in
1802          * bxt_a_set_seqno(), where we also do a clflush after the write. So
1803          * this clflush in practice becomes an invalidate operation.
1804          */
1805         intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1806 }
1807
1808 static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1809 {
1810         intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1811
1812         /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1813         intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1814 }
1815
1816 /*
1817  * Reserve space for 2 NOOPs at the end of each request to be
1818  * used as a workaround for not being allowed to do lite
1819  * restore with HEAD==TAIL (WaIdleLiteRestore).
1820  */
1821 #define WA_TAIL_DWORDS 2
1822
1823 static int gen8_emit_request(struct drm_i915_gem_request *request)
1824 {
1825         struct intel_ringbuffer *ringbuf = request->ringbuf;
1826         int ret;
1827
1828         ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1829         if (ret)
1830                 return ret;
1831
1832         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1833         BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1834
1835         intel_logical_ring_emit(ringbuf,
1836                                 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1837         intel_logical_ring_emit(ringbuf,
1838                                 intel_hws_seqno_address(request->engine) |
1839                                 MI_FLUSH_DW_USE_GTT);
1840         intel_logical_ring_emit(ringbuf, 0);
1841         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1842         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1843         intel_logical_ring_emit(ringbuf, MI_NOOP);
1844         return intel_logical_ring_advance_and_submit(request);
1845 }
1846
1847 static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1848 {
1849         struct intel_ringbuffer *ringbuf = request->ringbuf;
1850         int ret;
1851
1852         ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1853         if (ret)
1854                 return ret;
1855
1856         /* We're using qword write, seqno should be aligned to 8 bytes. */
1857         BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1858
1859         /* w/a for post sync ops following a GPGPU operation we
1860          * need a prior CS_STALL, which is emitted by the flush
1861          * following the batch.
1862          */
1863         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1864         intel_logical_ring_emit(ringbuf,
1865                                 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1866                                  PIPE_CONTROL_CS_STALL |
1867                                  PIPE_CONTROL_QW_WRITE));
1868         intel_logical_ring_emit(ringbuf,
1869                                 intel_hws_seqno_address(request->engine));
1870         intel_logical_ring_emit(ringbuf, 0);
1871         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1872         /* We're thrashing one dword of HWS. */
1873         intel_logical_ring_emit(ringbuf, 0);
1874         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1875         intel_logical_ring_emit(ringbuf, MI_NOOP);
1876         return intel_logical_ring_advance_and_submit(request);
1877 }
1878
1879 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1880 {
1881         struct render_state so;
1882         int ret;
1883
1884         ret = i915_gem_render_state_prepare(req->engine, &so);
1885         if (ret)
1886                 return ret;
1887
1888         if (so.rodata == NULL)
1889                 return 0;
1890
1891         ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1892                                        I915_DISPATCH_SECURE);
1893         if (ret)
1894                 goto out;
1895
1896         ret = req->engine->emit_bb_start(req,
1897                                        (so.ggtt_offset + so.aux_batch_offset),
1898                                        I915_DISPATCH_SECURE);
1899         if (ret)
1900                 goto out;
1901
1902         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1903
1904 out:
1905         i915_gem_render_state_fini(&so);
1906         return ret;
1907 }
1908
1909 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1910 {
1911         int ret;
1912
1913         ret = intel_logical_ring_workarounds_emit(req);
1914         if (ret)
1915                 return ret;
1916
1917         ret = intel_rcs_context_init_mocs(req);
1918         /*
1919          * Failing to program the MOCS is non-fatal.The system will not
1920          * run at peak performance. So generate an error and carry on.
1921          */
1922         if (ret)
1923                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1924
1925         return intel_lr_context_render_state_init(req);
1926 }
1927
1928 /**
1929  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1930  *
1931  * @engine: Engine Command Streamer.
1932  *
1933  */
1934 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1935 {
1936         struct drm_i915_private *dev_priv;
1937
1938         if (!intel_engine_initialized(engine))
1939                 return;
1940
1941         /*
1942          * Tasklet cannot be active at this point due intel_mark_active/idle
1943          * so this is just for documentation.
1944          */
1945         if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1946                 tasklet_kill(&engine->irq_tasklet);
1947
1948         dev_priv = engine->i915;
1949
1950         if (engine->buffer) {
1951                 intel_logical_ring_stop(engine);
1952                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1953         }
1954
1955         if (engine->cleanup)
1956                 engine->cleanup(engine);
1957
1958         i915_cmd_parser_fini_ring(engine);
1959         i915_gem_batch_pool_fini(&engine->batch_pool);
1960
1961         if (engine->status_page.obj) {
1962                 i915_gem_object_unpin_map(engine->status_page.obj);
1963                 engine->status_page.obj = NULL;
1964         }
1965         intel_lr_context_unpin(dev_priv->kernel_context, engine);
1966
1967         engine->idle_lite_restore_wa = 0;
1968         engine->disable_lite_restore_wa = false;
1969         engine->ctx_desc_template = 0;
1970
1971         lrc_destroy_wa_ctx_obj(engine);
1972         engine->i915 = NULL;
1973 }
1974
1975 static void
1976 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1977 {
1978         /* Default vfuncs which can be overriden by each engine. */
1979         engine->init_hw = gen8_init_common_ring;
1980         engine->emit_request = gen8_emit_request;
1981         engine->emit_flush = gen8_emit_flush;
1982         engine->irq_get = gen8_logical_ring_get_irq;
1983         engine->irq_put = gen8_logical_ring_put_irq;
1984         engine->emit_bb_start = gen8_emit_bb_start;
1985         engine->get_seqno = gen8_get_seqno;
1986         engine->set_seqno = gen8_set_seqno;
1987         if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1988                 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1989                 engine->set_seqno = bxt_a_set_seqno;
1990         }
1991 }
1992
1993 static inline void
1994 logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
1995 {
1996         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1997         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1998         init_waitqueue_head(&engine->irq_queue);
1999 }
2000
2001 static int
2002 lrc_setup_hws(struct intel_engine_cs *engine,
2003               struct drm_i915_gem_object *dctx_obj)
2004 {
2005         void *hws;
2006
2007         /* The HWSP is part of the default context object in LRC mode. */
2008         engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
2009                                        LRC_PPHWSP_PN * PAGE_SIZE;
2010         hws = i915_gem_object_pin_map(dctx_obj);
2011         if (IS_ERR(hws))
2012                 return PTR_ERR(hws);
2013         engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
2014         engine->status_page.obj = dctx_obj;
2015
2016         return 0;
2017 }
2018
2019 static int
2020 logical_ring_init(struct intel_engine_cs *engine)
2021 {
2022         struct i915_gem_context *dctx = engine->i915->kernel_context;
2023         int ret;
2024
2025         ret = i915_cmd_parser_init_ring(engine);
2026         if (ret)
2027                 goto error;
2028
2029         ret = execlists_context_deferred_alloc(dctx, engine);
2030         if (ret)
2031                 goto error;
2032
2033         /* As this is the default context, always pin it */
2034         ret = intel_lr_context_pin(dctx, engine);
2035         if (ret) {
2036                 DRM_ERROR("Failed to pin context for %s: %d\n",
2037                           engine->name, ret);
2038                 goto error;
2039         }
2040
2041         /* And setup the hardware status page. */
2042         ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
2043         if (ret) {
2044                 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
2045                 goto error;
2046         }
2047
2048         return 0;
2049
2050 error:
2051         intel_logical_ring_cleanup(engine);
2052         return ret;
2053 }
2054
2055 static int logical_render_ring_init(struct intel_engine_cs *engine)
2056 {
2057         struct drm_i915_private *dev_priv = engine->i915;
2058         int ret;
2059
2060         if (HAS_L3_DPF(dev_priv))
2061                 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2062
2063         /* Override some for render ring. */
2064         if (INTEL_GEN(dev_priv) >= 9)
2065                 engine->init_hw = gen9_init_render_ring;
2066         else
2067                 engine->init_hw = gen8_init_render_ring;
2068         engine->init_context = gen8_init_rcs_context;
2069         engine->cleanup = intel_fini_pipe_control;
2070         engine->emit_flush = gen8_emit_flush_render;
2071         engine->emit_request = gen8_emit_request_render;
2072
2073         ret = intel_init_pipe_control(engine);
2074         if (ret)
2075                 return ret;
2076
2077         ret = intel_init_workaround_bb(engine);
2078         if (ret) {
2079                 /*
2080                  * We continue even if we fail to initialize WA batch
2081                  * because we only expect rare glitches but nothing
2082                  * critical to prevent us from using GPU
2083                  */
2084                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2085                           ret);
2086         }
2087
2088         ret = logical_ring_init(engine);
2089         if (ret) {
2090                 lrc_destroy_wa_ctx_obj(engine);
2091         }
2092
2093         return ret;
2094 }
2095
2096 static const struct logical_ring_info {
2097         const char *name;
2098         unsigned exec_id;
2099         unsigned guc_id;
2100         u32 mmio_base;
2101         unsigned irq_shift;
2102         int (*init)(struct intel_engine_cs *engine);
2103 } logical_rings[] = {
2104         [RCS] = {
2105                 .name = "render ring",
2106                 .exec_id = I915_EXEC_RENDER,
2107                 .guc_id = GUC_RENDER_ENGINE,
2108                 .mmio_base = RENDER_RING_BASE,
2109                 .irq_shift = GEN8_RCS_IRQ_SHIFT,
2110                 .init = logical_render_ring_init,
2111         },
2112         [BCS] = {
2113                 .name = "blitter ring",
2114                 .exec_id = I915_EXEC_BLT,
2115                 .guc_id = GUC_BLITTER_ENGINE,
2116                 .mmio_base = BLT_RING_BASE,
2117                 .irq_shift = GEN8_BCS_IRQ_SHIFT,
2118                 .init = logical_ring_init,
2119         },
2120         [VCS] = {
2121                 .name = "bsd ring",
2122                 .exec_id = I915_EXEC_BSD,
2123                 .guc_id = GUC_VIDEO_ENGINE,
2124                 .mmio_base = GEN6_BSD_RING_BASE,
2125                 .irq_shift = GEN8_VCS1_IRQ_SHIFT,
2126                 .init = logical_ring_init,
2127         },
2128         [VCS2] = {
2129                 .name = "bsd2 ring",
2130                 .exec_id = I915_EXEC_BSD,
2131                 .guc_id = GUC_VIDEO_ENGINE2,
2132                 .mmio_base = GEN8_BSD2_RING_BASE,
2133                 .irq_shift = GEN8_VCS2_IRQ_SHIFT,
2134                 .init = logical_ring_init,
2135         },
2136         [VECS] = {
2137                 .name = "video enhancement ring",
2138                 .exec_id = I915_EXEC_VEBOX,
2139                 .guc_id = GUC_VIDEOENHANCE_ENGINE,
2140                 .mmio_base = VEBOX_RING_BASE,
2141                 .irq_shift = GEN8_VECS_IRQ_SHIFT,
2142                 .init = logical_ring_init,
2143         },
2144 };
2145
2146 static struct intel_engine_cs *
2147 logical_ring_setup(struct drm_i915_private *dev_priv, enum intel_engine_id id)
2148 {
2149         const struct logical_ring_info *info = &logical_rings[id];
2150         struct intel_engine_cs *engine = &dev_priv->engine[id];
2151         enum forcewake_domains fw_domains;
2152
2153         engine->id = id;
2154         engine->name = info->name;
2155         engine->exec_id = info->exec_id;
2156         engine->guc_id = info->guc_id;
2157         engine->mmio_base = info->mmio_base;
2158
2159         engine->i915 = dev_priv;
2160
2161         /* Intentionally left blank. */
2162         engine->buffer = NULL;
2163
2164         fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2165                                                     RING_ELSP(engine),
2166                                                     FW_REG_WRITE);
2167
2168         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2169                                                      RING_CONTEXT_STATUS_PTR(engine),
2170                                                      FW_REG_READ | FW_REG_WRITE);
2171
2172         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2173                                                      RING_CONTEXT_STATUS_BUF_BASE(engine),
2174                                                      FW_REG_READ);
2175
2176         engine->fw_domains = fw_domains;
2177
2178         INIT_LIST_HEAD(&engine->active_list);
2179         INIT_LIST_HEAD(&engine->request_list);
2180         INIT_LIST_HEAD(&engine->buffers);
2181         INIT_LIST_HEAD(&engine->execlist_queue);
2182         spin_lock_init(&engine->execlist_lock);
2183
2184         tasklet_init(&engine->irq_tasklet,
2185                      intel_lrc_irq_handler, (unsigned long)engine);
2186
2187         logical_ring_init_platform_invariants(engine);
2188         logical_ring_default_vfuncs(engine);
2189         logical_ring_default_irqs(engine, info->irq_shift);
2190
2191         intel_engine_init_hangcheck(engine);
2192         i915_gem_batch_pool_init(dev_priv->dev, &engine->batch_pool);
2193
2194         return engine;
2195 }
2196
2197 /**
2198  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2199  * @dev: DRM device.
2200  *
2201  * This function inits the engines for an Execlists submission style (the
2202  * equivalent in the legacy ringbuffer submission world would be
2203  * i915_gem_init_engines). It does it only for those engines that are present in
2204  * the hardware.
2205  *
2206  * Return: non-zero if the initialization failed.
2207  */
2208 int intel_logical_rings_init(struct drm_device *dev)
2209 {
2210         struct drm_i915_private *dev_priv = dev->dev_private;
2211         unsigned int mask = 0;
2212         unsigned int i;
2213         int ret;
2214
2215         WARN_ON(INTEL_INFO(dev_priv)->ring_mask &
2216                 GENMASK(sizeof(mask) * BITS_PER_BYTE - 1, I915_NUM_ENGINES));
2217
2218         for (i = 0; i < ARRAY_SIZE(logical_rings); i++) {
2219                 if (!HAS_ENGINE(dev_priv, i))
2220                         continue;
2221
2222                 if (!logical_rings[i].init)
2223                         continue;
2224
2225                 ret = logical_rings[i].init(logical_ring_setup(dev_priv, i));
2226                 if (ret)
2227                         goto cleanup;
2228
2229                 mask |= ENGINE_MASK(i);
2230         }
2231
2232         /*
2233          * Catch failures to update logical_rings table when the new engines
2234          * are added to the driver by a warning and disabling the forgotten
2235          * engines.
2236          */
2237         if (WARN_ON(mask != INTEL_INFO(dev_priv)->ring_mask)) {
2238                 struct intel_device_info *info =
2239                         (struct intel_device_info *)&dev_priv->info;
2240                 info->ring_mask = mask;
2241         }
2242
2243         return 0;
2244
2245 cleanup:
2246         for (i = 0; i < I915_NUM_ENGINES; i++)
2247                 intel_logical_ring_cleanup(&dev_priv->engine[i]);
2248
2249         return ret;
2250 }
2251
2252 static u32
2253 make_rpcs(struct drm_i915_private *dev_priv)
2254 {
2255         u32 rpcs = 0;
2256
2257         /*
2258          * No explicit RPCS request is needed to ensure full
2259          * slice/subslice/EU enablement prior to Gen9.
2260         */
2261         if (INTEL_GEN(dev_priv) < 9)
2262                 return 0;
2263
2264         /*
2265          * Starting in Gen9, render power gating can leave
2266          * slice/subslice/EU in a partially enabled state. We
2267          * must make an explicit request through RPCS for full
2268          * enablement.
2269         */
2270         if (INTEL_INFO(dev_priv)->has_slice_pg) {
2271                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2272                 rpcs |= INTEL_INFO(dev_priv)->slice_total <<
2273                         GEN8_RPCS_S_CNT_SHIFT;
2274                 rpcs |= GEN8_RPCS_ENABLE;
2275         }
2276
2277         if (INTEL_INFO(dev_priv)->has_subslice_pg) {
2278                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2279                 rpcs |= INTEL_INFO(dev_priv)->subslice_per_slice <<
2280                         GEN8_RPCS_SS_CNT_SHIFT;
2281                 rpcs |= GEN8_RPCS_ENABLE;
2282         }
2283
2284         if (INTEL_INFO(dev_priv)->has_eu_pg) {
2285                 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2286                         GEN8_RPCS_EU_MIN_SHIFT;
2287                 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2288                         GEN8_RPCS_EU_MAX_SHIFT;
2289                 rpcs |= GEN8_RPCS_ENABLE;
2290         }
2291
2292         return rpcs;
2293 }
2294
2295 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2296 {
2297         u32 indirect_ctx_offset;
2298
2299         switch (INTEL_GEN(engine->i915)) {
2300         default:
2301                 MISSING_CASE(INTEL_GEN(engine->i915));
2302                 /* fall through */
2303         case 9:
2304                 indirect_ctx_offset =
2305                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2306                 break;
2307         case 8:
2308                 indirect_ctx_offset =
2309                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2310                 break;
2311         }
2312
2313         return indirect_ctx_offset;
2314 }
2315
2316 static int
2317 populate_lr_context(struct i915_gem_context *ctx,
2318                     struct drm_i915_gem_object *ctx_obj,
2319                     struct intel_engine_cs *engine,
2320                     struct intel_ringbuffer *ringbuf)
2321 {
2322         struct drm_i915_private *dev_priv = ctx->i915;
2323         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2324         void *vaddr;
2325         u32 *reg_state;
2326         int ret;
2327
2328         if (!ppgtt)
2329                 ppgtt = dev_priv->mm.aliasing_ppgtt;
2330
2331         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2332         if (ret) {
2333                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2334                 return ret;
2335         }
2336
2337         vaddr = i915_gem_object_pin_map(ctx_obj);
2338         if (IS_ERR(vaddr)) {
2339                 ret = PTR_ERR(vaddr);
2340                 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2341                 return ret;
2342         }
2343         ctx_obj->dirty = true;
2344
2345         /* The second page of the context object contains some fields which must
2346          * be set up prior to the first execution. */
2347         reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2348
2349         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2350          * commands followed by (reg, value) pairs. The values we are setting here are
2351          * only for the first context restore: on a subsequent save, the GPU will
2352          * recreate this batchbuffer with new values (including all the missing
2353          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2354         reg_state[CTX_LRI_HEADER_0] =
2355                 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2356         ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2357                        RING_CONTEXT_CONTROL(engine),
2358                        _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2359                                           CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2360                                           (HAS_RESOURCE_STREAMER(dev_priv) ?
2361                                             CTX_CTRL_RS_CTX_ENABLE : 0)));
2362         ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2363                        0);
2364         ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2365                        0);
2366         /* Ring buffer start address is not known until the buffer is pinned.
2367          * It is written to the context image in execlists_update_context()
2368          */
2369         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2370                        RING_START(engine->mmio_base), 0);
2371         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2372                        RING_CTL(engine->mmio_base),
2373                        ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2374         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2375                        RING_BBADDR_UDW(engine->mmio_base), 0);
2376         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2377                        RING_BBADDR(engine->mmio_base), 0);
2378         ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2379                        RING_BBSTATE(engine->mmio_base),
2380                        RING_BB_PPGTT);
2381         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2382                        RING_SBBADDR_UDW(engine->mmio_base), 0);
2383         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2384                        RING_SBBADDR(engine->mmio_base), 0);
2385         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2386                        RING_SBBSTATE(engine->mmio_base), 0);
2387         if (engine->id == RCS) {
2388                 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2389                                RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2390                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2391                                RING_INDIRECT_CTX(engine->mmio_base), 0);
2392                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2393                                RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2394                 if (engine->wa_ctx.obj) {
2395                         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2396                         uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2397
2398                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
2399                                 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2400                                 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2401
2402                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2403                                 intel_lr_indirect_ctx_offset(engine) << 6;
2404
2405                         reg_state[CTX_BB_PER_CTX_PTR+1] =
2406                                 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2407                                 0x01;
2408                 }
2409         }
2410         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2411         ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2412                        RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2413         /* PDP values well be assigned later if needed */
2414         ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2415                        0);
2416         ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2417                        0);
2418         ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2419                        0);
2420         ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2421                        0);
2422         ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2423                        0);
2424         ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2425                        0);
2426         ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2427                        0);
2428         ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2429                        0);
2430
2431         if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2432                 /* 64b PPGTT (48bit canonical)
2433                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2434                  * other PDP Descriptors are ignored.
2435                  */
2436                 ASSIGN_CTX_PML4(ppgtt, reg_state);
2437         } else {
2438                 /* 32b PPGTT
2439                  * PDP*_DESCRIPTOR contains the base address of space supported.
2440                  * With dynamic page allocation, PDPs may not be allocated at
2441                  * this point. Point the unallocated PDPs to the scratch page
2442                  */
2443                 execlists_update_context_pdps(ppgtt, reg_state);
2444         }
2445
2446         if (engine->id == RCS) {
2447                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2448                 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2449                                make_rpcs(dev_priv));
2450         }
2451
2452         i915_gem_object_unpin_map(ctx_obj);
2453
2454         return 0;
2455 }
2456
2457 /**
2458  * intel_lr_context_size() - return the size of the context for an engine
2459  * @engine: which engine to find the context size for
2460  *
2461  * Each engine may require a different amount of space for a context image,
2462  * so when allocating (or copying) an image, this function can be used to
2463  * find the right size for the specific engine.
2464  *
2465  * Return: size (in bytes) of an engine-specific context image
2466  *
2467  * Note: this size includes the HWSP, which is part of the context image
2468  * in LRC mode, but does not include the "shared data page" used with
2469  * GuC submission. The caller should account for this if using the GuC.
2470  */
2471 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2472 {
2473         int ret = 0;
2474
2475         WARN_ON(INTEL_GEN(engine->i915) < 8);
2476
2477         switch (engine->id) {
2478         case RCS:
2479                 if (INTEL_GEN(engine->i915) >= 9)
2480                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2481                 else
2482                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2483                 break;
2484         case VCS:
2485         case BCS:
2486         case VECS:
2487         case VCS2:
2488                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2489                 break;
2490         }
2491
2492         return ret;
2493 }
2494
2495 /**
2496  * execlists_context_deferred_alloc() - create the LRC specific bits of a context
2497  * @ctx: LR context to create.
2498  * @engine: engine to be used with the context.
2499  *
2500  * This function can be called more than once, with different engines, if we plan
2501  * to use the context with them. The context backing objects and the ringbuffers
2502  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2503  * the creation is a deferred call: it's better to make sure first that we need to use
2504  * a given ring with the context.
2505  *
2506  * Return: non-zero on error.
2507  */
2508 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2509                                             struct intel_engine_cs *engine)
2510 {
2511         struct drm_i915_gem_object *ctx_obj;
2512         struct intel_context *ce = &ctx->engine[engine->id];
2513         uint32_t context_size;
2514         struct intel_ringbuffer *ringbuf;
2515         int ret;
2516
2517         WARN_ON(ce->state);
2518
2519         context_size = round_up(intel_lr_context_size(engine), 4096);
2520
2521         /* One extra page as the sharing data between driver and GuC */
2522         context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2523
2524         ctx_obj = i915_gem_object_create(ctx->i915->dev, context_size);
2525         if (IS_ERR(ctx_obj)) {
2526                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2527                 return PTR_ERR(ctx_obj);
2528         }
2529
2530         ringbuf = intel_engine_create_ringbuffer(engine, ctx->ring_size);
2531         if (IS_ERR(ringbuf)) {
2532                 ret = PTR_ERR(ringbuf);
2533                 goto error_deref_obj;
2534         }
2535
2536         ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2537         if (ret) {
2538                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2539                 goto error_ringbuf;
2540         }
2541
2542         ce->ringbuf = ringbuf;
2543         ce->state = ctx_obj;
2544         ce->initialised = engine->init_context == NULL;
2545
2546         return 0;
2547
2548 error_ringbuf:
2549         intel_ringbuffer_free(ringbuf);
2550 error_deref_obj:
2551         drm_gem_object_unreference(&ctx_obj->base);
2552         ce->ringbuf = NULL;
2553         ce->state = NULL;
2554         return ret;
2555 }
2556
2557 void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2558                             struct i915_gem_context *ctx)
2559 {
2560         struct intel_engine_cs *engine;
2561
2562         for_each_engine(engine, dev_priv) {
2563                 struct intel_context *ce = &ctx->engine[engine->id];
2564                 struct drm_i915_gem_object *ctx_obj = ce->state;
2565                 void *vaddr;
2566                 uint32_t *reg_state;
2567
2568                 if (!ctx_obj)
2569                         continue;
2570
2571                 vaddr = i915_gem_object_pin_map(ctx_obj);
2572                 if (WARN_ON(IS_ERR(vaddr)))
2573                         continue;
2574
2575                 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2576                 ctx_obj->dirty = true;
2577
2578                 reg_state[CTX_RING_HEAD+1] = 0;
2579                 reg_state[CTX_RING_TAIL+1] = 0;
2580
2581                 i915_gem_object_unpin_map(ctx_obj);
2582
2583                 ce->ringbuf->head = 0;
2584                 ce->ringbuf->tail = 0;
2585         }
2586 }