Merge branch 'work.iov_iter' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL             (1 << 0x2)
146 #define RING_EXECLIST1_VALID            (1 << 0x3)
147 #define RING_EXECLIST0_VALID            (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
158
159 #define CTX_LRI_HEADER_0                0x01
160 #define CTX_CONTEXT_CONTROL             0x02
161 #define CTX_RING_HEAD                   0x04
162 #define CTX_RING_TAIL                   0x06
163 #define CTX_RING_BUFFER_START           0x08
164 #define CTX_RING_BUFFER_CONTROL         0x0a
165 #define CTX_BB_HEAD_U                   0x0c
166 #define CTX_BB_HEAD_L                   0x0e
167 #define CTX_BB_STATE                    0x10
168 #define CTX_SECOND_BB_HEAD_U            0x12
169 #define CTX_SECOND_BB_HEAD_L            0x14
170 #define CTX_SECOND_BB_STATE             0x16
171 #define CTX_BB_PER_CTX_PTR              0x18
172 #define CTX_RCS_INDIRECT_CTX            0x1a
173 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
174 #define CTX_LRI_HEADER_1                0x21
175 #define CTX_CTX_TIMESTAMP               0x22
176 #define CTX_PDP3_UDW                    0x24
177 #define CTX_PDP3_LDW                    0x26
178 #define CTX_PDP2_UDW                    0x28
179 #define CTX_PDP2_LDW                    0x2a
180 #define CTX_PDP1_UDW                    0x2c
181 #define CTX_PDP1_LDW                    0x2e
182 #define CTX_PDP0_UDW                    0x30
183 #define CTX_PDP0_LDW                    0x32
184 #define CTX_LRI_HEADER_2                0x41
185 #define CTX_R_PWR_CLK_STATE             0x42
186 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
187
188 #define GEN8_CTX_VALID (1<<0)
189 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190 #define GEN8_CTX_FORCE_RESTORE (1<<2)
191 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
192 #define GEN8_CTX_PRIVILEGE (1<<8)
193
194 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195         (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196         (reg_state)[(pos)+1] = (val); \
197 } while (0)
198
199 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {                \
200         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
201         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203 } while (0)
204
205 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206         reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207         reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208 } while (0)
209
210 enum {
211         ADVANCED_CONTEXT = 0,
212         LEGACY_32B_CONTEXT,
213         ADVANCED_AD_CONTEXT,
214         LEGACY_64B_CONTEXT
215 };
216 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
217 #define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
218                 LEGACY_64B_CONTEXT :\
219                 LEGACY_32B_CONTEXT)
220 enum {
221         FAULT_AND_HANG = 0,
222         FAULT_AND_HALT, /* Debug only */
223         FAULT_AND_STREAM,
224         FAULT_AND_CONTINUE /* Unsupported */
225 };
226 #define GEN8_CTX_ID_SHIFT 32
227 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x17
228 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x26
229
230 static int intel_lr_context_pin(struct intel_context *ctx,
231                                 struct intel_engine_cs *engine);
232
233 /**
234  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
235  * @dev: DRM device.
236  * @enable_execlists: value of i915.enable_execlists module parameter.
237  *
238  * Only certain platforms support Execlists (the prerequisites being
239  * support for Logical Ring Contexts and Aliasing PPGTT or better).
240  *
241  * Return: 1 if Execlists is supported and has to be enabled.
242  */
243 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
244 {
245         WARN_ON(i915.enable_ppgtt == -1);
246
247         /* On platforms with execlist available, vGPU will only
248          * support execlist mode, no ring buffer mode.
249          */
250         if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
251                 return 1;
252
253         if (INTEL_INFO(dev)->gen >= 9)
254                 return 1;
255
256         if (enable_execlists == 0)
257                 return 0;
258
259         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
260             i915.use_mmio_flip >= 0)
261                 return 1;
262
263         return 0;
264 }
265
266 static void
267 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
268 {
269         struct drm_device *dev = engine->dev;
270
271         if (IS_GEN8(dev) || IS_GEN9(dev))
272                 engine->idle_lite_restore_wa = ~0;
273
274         engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
275                                         IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
276                                         (engine->id == VCS || engine->id == VCS2);
277
278         engine->ctx_desc_template = GEN8_CTX_VALID;
279         engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
280                                    GEN8_CTX_ADDRESSING_MODE_SHIFT;
281         if (IS_GEN8(dev))
282                 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
283         engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
284
285         /* TODO: WaDisableLiteRestore when we start using semaphore
286          * signalling between Command Streamers */
287         /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
288
289         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
290         /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
291         if (engine->disable_lite_restore_wa)
292                 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
293 }
294
295 /**
296  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
297  *                                        descriptor for a pinned context
298  *
299  * @ctx: Context to work on
300  * @ring: Engine the descriptor will be used with
301  *
302  * The context descriptor encodes various attributes of a context,
303  * including its GTT address and some flags. Because it's fairly
304  * expensive to calculate, we'll just do it once and cache the result,
305  * which remains valid until the context is unpinned.
306  *
307  * This is what a descriptor looks like, from LSB to MSB:
308  *    bits 0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
309  *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
310  *    bits 32-51:    ctx ID, a globally unique tag (the LRCA again!)
311  *    bits 52-63:    reserved, may encode the engine ID (for GuC)
312  */
313 static void
314 intel_lr_context_descriptor_update(struct intel_context *ctx,
315                                    struct intel_engine_cs *engine)
316 {
317         uint64_t lrca, desc;
318
319         lrca = ctx->engine[engine->id].lrc_vma->node.start +
320                LRC_PPHWSP_PN * PAGE_SIZE;
321
322         desc = engine->ctx_desc_template;                          /* bits  0-11 */
323         desc |= lrca;                                      /* bits 12-31 */
324         desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */
325
326         ctx->engine[engine->id].lrc_desc = desc;
327 }
328
329 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
330                                      struct intel_engine_cs *engine)
331 {
332         return ctx->engine[engine->id].lrc_desc;
333 }
334
335 /**
336  * intel_execlists_ctx_id() - get the Execlists Context ID
337  * @ctx: Context to get the ID for
338  * @ring: Engine to get the ID for
339  *
340  * Do not confuse with ctx->id! Unfortunately we have a name overload
341  * here: the old context ID we pass to userspace as a handler so that
342  * they can refer to a context, and the new context ID we pass to the
343  * ELSP so that the GPU can inform us of the context status via
344  * interrupts.
345  *
346  * The context ID is a portion of the context descriptor, so we can
347  * just extract the required part from the cached descriptor.
348  *
349  * Return: 20-bits globally unique context ID.
350  */
351 u32 intel_execlists_ctx_id(struct intel_context *ctx,
352                            struct intel_engine_cs *engine)
353 {
354         return intel_lr_context_descriptor(ctx, engine) >> GEN8_CTX_ID_SHIFT;
355 }
356
357 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
358                                  struct drm_i915_gem_request *rq1)
359 {
360
361         struct intel_engine_cs *engine = rq0->engine;
362         struct drm_device *dev = engine->dev;
363         struct drm_i915_private *dev_priv = dev->dev_private;
364         uint64_t desc[2];
365
366         if (rq1) {
367                 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
368                 rq1->elsp_submitted++;
369         } else {
370                 desc[1] = 0;
371         }
372
373         desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
374         rq0->elsp_submitted++;
375
376         /* You must always write both descriptors in the order below. */
377         I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
378         I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
379
380         I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
381         /* The context is automatically loaded after the following */
382         I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
383
384         /* ELSP is a wo register, use another nearby reg for posting */
385         POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
386 }
387
388 static void
389 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
390 {
391         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
392         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
393         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
394         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
395 }
396
397 static void execlists_update_context(struct drm_i915_gem_request *rq)
398 {
399         struct intel_engine_cs *engine = rq->engine;
400         struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
401         uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
402
403         reg_state[CTX_RING_TAIL+1] = rq->tail;
404
405         /* True 32b PPGTT with dynamic page allocation: update PDP
406          * registers and point the unallocated PDPs to scratch page.
407          * PML4 is allocated during ppgtt init, so this is not needed
408          * in 48-bit mode.
409          */
410         if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
411                 execlists_update_context_pdps(ppgtt, reg_state);
412 }
413
414 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
415                                       struct drm_i915_gem_request *rq1)
416 {
417         struct drm_i915_private *dev_priv = rq0->i915;
418         unsigned int fw_domains = rq0->engine->fw_domains;
419
420         execlists_update_context(rq0);
421
422         if (rq1)
423                 execlists_update_context(rq1);
424
425         spin_lock_irq(&dev_priv->uncore.lock);
426         intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
427
428         execlists_elsp_write(rq0, rq1);
429
430         intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
431         spin_unlock_irq(&dev_priv->uncore.lock);
432 }
433
434 static void execlists_context_unqueue(struct intel_engine_cs *engine)
435 {
436         struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
437         struct drm_i915_gem_request *cursor, *tmp;
438
439         assert_spin_locked(&engine->execlist_lock);
440
441         /*
442          * If irqs are not active generate a warning as batches that finish
443          * without the irqs may get lost and a GPU Hang may occur.
444          */
445         WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
446
447         /* Try to read in pairs */
448         list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
449                                  execlist_link) {
450                 if (!req0) {
451                         req0 = cursor;
452                 } else if (req0->ctx == cursor->ctx) {
453                         /* Same ctx: ignore first request, as second request
454                          * will update tail past first request's workload */
455                         cursor->elsp_submitted = req0->elsp_submitted;
456                         list_move_tail(&req0->execlist_link,
457                                        &engine->execlist_retired_req_list);
458                         req0 = cursor;
459                 } else {
460                         req1 = cursor;
461                         WARN_ON(req1->elsp_submitted);
462                         break;
463                 }
464         }
465
466         if (unlikely(!req0))
467                 return;
468
469         if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
470                 /*
471                  * WaIdleLiteRestore: make sure we never cause a lite restore
472                  * with HEAD==TAIL.
473                  *
474                  * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
475                  * resubmit the request. See gen8_emit_request() for where we
476                  * prepare the padding after the end of the request.
477                  */
478                 struct intel_ringbuffer *ringbuf;
479
480                 ringbuf = req0->ctx->engine[engine->id].ringbuf;
481                 req0->tail += 8;
482                 req0->tail &= ringbuf->size - 1;
483         }
484
485         execlists_submit_requests(req0, req1);
486 }
487
488 static unsigned int
489 execlists_check_remove_request(struct intel_engine_cs *engine, u32 request_id)
490 {
491         struct drm_i915_gem_request *head_req;
492
493         assert_spin_locked(&engine->execlist_lock);
494
495         head_req = list_first_entry_or_null(&engine->execlist_queue,
496                                             struct drm_i915_gem_request,
497                                             execlist_link);
498
499         if (!head_req)
500                 return 0;
501
502         if (unlikely(intel_execlists_ctx_id(head_req->ctx, engine) != request_id))
503                 return 0;
504
505         WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
506
507         if (--head_req->elsp_submitted > 0)
508                 return 0;
509
510         list_move_tail(&head_req->execlist_link,
511                        &engine->execlist_retired_req_list);
512
513         return 1;
514 }
515
516 static u32
517 get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
518                    u32 *context_id)
519 {
520         struct drm_i915_private *dev_priv = engine->dev->dev_private;
521         u32 status;
522
523         read_pointer %= GEN8_CSB_ENTRIES;
524
525         status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
526
527         if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
528                 return 0;
529
530         *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
531                                                               read_pointer));
532
533         return status;
534 }
535
536 /**
537  * intel_lrc_irq_handler() - handle Context Switch interrupts
538  * @engine: Engine Command Streamer to handle.
539  *
540  * Check the unread Context Status Buffers and manage the submission of new
541  * contexts to the ELSP accordingly.
542  */
543 static void intel_lrc_irq_handler(unsigned long data)
544 {
545         struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
546         struct drm_i915_private *dev_priv = engine->dev->dev_private;
547         u32 status_pointer;
548         unsigned int read_pointer, write_pointer;
549         u32 csb[GEN8_CSB_ENTRIES][2];
550         unsigned int csb_read = 0, i;
551         unsigned int submit_contexts = 0;
552
553         intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
554
555         status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
556
557         read_pointer = engine->next_context_status_buffer;
558         write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
559         if (read_pointer > write_pointer)
560                 write_pointer += GEN8_CSB_ENTRIES;
561
562         while (read_pointer < write_pointer) {
563                 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
564                         break;
565                 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
566                                                       &csb[csb_read][1]);
567                 csb_read++;
568         }
569
570         engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
571
572         /* Update the read pointer to the old write pointer. Manual ringbuffer
573          * management ftw </sarcasm> */
574         I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
575                       _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
576                                     engine->next_context_status_buffer << 8));
577
578         intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
579
580         spin_lock(&engine->execlist_lock);
581
582         for (i = 0; i < csb_read; i++) {
583                 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
584                         if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
585                                 if (execlists_check_remove_request(engine, csb[i][1]))
586                                         WARN(1, "Lite Restored request removed from queue\n");
587                         } else
588                                 WARN(1, "Preemption without Lite Restore\n");
589                 }
590
591                 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
592                     GEN8_CTX_STATUS_ELEMENT_SWITCH))
593                         submit_contexts +=
594                                 execlists_check_remove_request(engine, csb[i][1]);
595         }
596
597         if (submit_contexts) {
598                 if (!engine->disable_lite_restore_wa ||
599                     (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
600                         execlists_context_unqueue(engine);
601         }
602
603         spin_unlock(&engine->execlist_lock);
604
605         if (unlikely(submit_contexts > 2))
606                 DRM_ERROR("More than two context complete events?\n");
607 }
608
609 static void execlists_context_queue(struct drm_i915_gem_request *request)
610 {
611         struct intel_engine_cs *engine = request->engine;
612         struct drm_i915_gem_request *cursor;
613         int num_elements = 0;
614
615         if (request->ctx != request->i915->kernel_context)
616                 intel_lr_context_pin(request->ctx, engine);
617
618         i915_gem_request_reference(request);
619
620         spin_lock_bh(&engine->execlist_lock);
621
622         list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
623                 if (++num_elements > 2)
624                         break;
625
626         if (num_elements > 2) {
627                 struct drm_i915_gem_request *tail_req;
628
629                 tail_req = list_last_entry(&engine->execlist_queue,
630                                            struct drm_i915_gem_request,
631                                            execlist_link);
632
633                 if (request->ctx == tail_req->ctx) {
634                         WARN(tail_req->elsp_submitted != 0,
635                                 "More than 2 already-submitted reqs queued\n");
636                         list_move_tail(&tail_req->execlist_link,
637                                        &engine->execlist_retired_req_list);
638                 }
639         }
640
641         list_add_tail(&request->execlist_link, &engine->execlist_queue);
642         if (num_elements == 0)
643                 execlists_context_unqueue(engine);
644
645         spin_unlock_bh(&engine->execlist_lock);
646 }
647
648 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
649 {
650         struct intel_engine_cs *engine = req->engine;
651         uint32_t flush_domains;
652         int ret;
653
654         flush_domains = 0;
655         if (engine->gpu_caches_dirty)
656                 flush_domains = I915_GEM_GPU_DOMAINS;
657
658         ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
659         if (ret)
660                 return ret;
661
662         engine->gpu_caches_dirty = false;
663         return 0;
664 }
665
666 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
667                                  struct list_head *vmas)
668 {
669         const unsigned other_rings = ~intel_engine_flag(req->engine);
670         struct i915_vma *vma;
671         uint32_t flush_domains = 0;
672         bool flush_chipset = false;
673         int ret;
674
675         list_for_each_entry(vma, vmas, exec_list) {
676                 struct drm_i915_gem_object *obj = vma->obj;
677
678                 if (obj->active & other_rings) {
679                         ret = i915_gem_object_sync(obj, req->engine, &req);
680                         if (ret)
681                                 return ret;
682                 }
683
684                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
685                         flush_chipset |= i915_gem_clflush_object(obj, false);
686
687                 flush_domains |= obj->base.write_domain;
688         }
689
690         if (flush_domains & I915_GEM_DOMAIN_GTT)
691                 wmb();
692
693         /* Unconditionally invalidate gpu caches and ensure that we do flush
694          * any residual writes from the previous batch.
695          */
696         return logical_ring_invalidate_all_caches(req);
697 }
698
699 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
700 {
701         int ret = 0;
702
703         request->ringbuf = request->ctx->engine[request->engine->id].ringbuf;
704
705         if (i915.enable_guc_submission) {
706                 /*
707                  * Check that the GuC has space for the request before
708                  * going any further, as the i915_add_request() call
709                  * later on mustn't fail ...
710                  */
711                 struct intel_guc *guc = &request->i915->guc;
712
713                 ret = i915_guc_wq_check_space(guc->execbuf_client);
714                 if (ret)
715                         return ret;
716         }
717
718         if (request->ctx != request->i915->kernel_context)
719                 ret = intel_lr_context_pin(request->ctx, request->engine);
720
721         return ret;
722 }
723
724 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
725                                        int bytes)
726 {
727         struct intel_ringbuffer *ringbuf = req->ringbuf;
728         struct intel_engine_cs *engine = req->engine;
729         struct drm_i915_gem_request *target;
730         unsigned space;
731         int ret;
732
733         if (intel_ring_space(ringbuf) >= bytes)
734                 return 0;
735
736         /* The whole point of reserving space is to not wait! */
737         WARN_ON(ringbuf->reserved_in_use);
738
739         list_for_each_entry(target, &engine->request_list, list) {
740                 /*
741                  * The request queue is per-engine, so can contain requests
742                  * from multiple ringbuffers. Here, we must ignore any that
743                  * aren't from the ringbuffer we're considering.
744                  */
745                 if (target->ringbuf != ringbuf)
746                         continue;
747
748                 /* Would completion of this request free enough space? */
749                 space = __intel_ring_space(target->postfix, ringbuf->tail,
750                                            ringbuf->size);
751                 if (space >= bytes)
752                         break;
753         }
754
755         if (WARN_ON(&target->list == &engine->request_list))
756                 return -ENOSPC;
757
758         ret = i915_wait_request(target);
759         if (ret)
760                 return ret;
761
762         ringbuf->space = space;
763         return 0;
764 }
765
766 /*
767  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
768  * @request: Request to advance the logical ringbuffer of.
769  *
770  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
771  * really happens during submission is that the context and current tail will be placed
772  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
773  * point, the tail *inside* the context is updated and the ELSP written to.
774  */
775 static int
776 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
777 {
778         struct intel_ringbuffer *ringbuf = request->ringbuf;
779         struct drm_i915_private *dev_priv = request->i915;
780         struct intel_engine_cs *engine = request->engine;
781
782         intel_logical_ring_advance(ringbuf);
783         request->tail = ringbuf->tail;
784
785         /*
786          * Here we add two extra NOOPs as padding to avoid
787          * lite restore of a context with HEAD==TAIL.
788          *
789          * Caller must reserve WA_TAIL_DWORDS for us!
790          */
791         intel_logical_ring_emit(ringbuf, MI_NOOP);
792         intel_logical_ring_emit(ringbuf, MI_NOOP);
793         intel_logical_ring_advance(ringbuf);
794
795         if (intel_engine_stopped(engine))
796                 return 0;
797
798         if (engine->last_context != request->ctx) {
799                 if (engine->last_context)
800                         intel_lr_context_unpin(engine->last_context, engine);
801                 if (request->ctx != request->i915->kernel_context) {
802                         intel_lr_context_pin(request->ctx, engine);
803                         engine->last_context = request->ctx;
804                 } else {
805                         engine->last_context = NULL;
806                 }
807         }
808
809         if (dev_priv->guc.execbuf_client)
810                 i915_guc_submit(dev_priv->guc.execbuf_client, request);
811         else
812                 execlists_context_queue(request);
813
814         return 0;
815 }
816
817 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
818 {
819         uint32_t __iomem *virt;
820         int rem = ringbuf->size - ringbuf->tail;
821
822         virt = ringbuf->virtual_start + ringbuf->tail;
823         rem /= 4;
824         while (rem--)
825                 iowrite32(MI_NOOP, virt++);
826
827         ringbuf->tail = 0;
828         intel_ring_update_space(ringbuf);
829 }
830
831 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
832 {
833         struct intel_ringbuffer *ringbuf = req->ringbuf;
834         int remain_usable = ringbuf->effective_size - ringbuf->tail;
835         int remain_actual = ringbuf->size - ringbuf->tail;
836         int ret, total_bytes, wait_bytes = 0;
837         bool need_wrap = false;
838
839         if (ringbuf->reserved_in_use)
840                 total_bytes = bytes;
841         else
842                 total_bytes = bytes + ringbuf->reserved_size;
843
844         if (unlikely(bytes > remain_usable)) {
845                 /*
846                  * Not enough space for the basic request. So need to flush
847                  * out the remainder and then wait for base + reserved.
848                  */
849                 wait_bytes = remain_actual + total_bytes;
850                 need_wrap = true;
851         } else {
852                 if (unlikely(total_bytes > remain_usable)) {
853                         /*
854                          * The base request will fit but the reserved space
855                          * falls off the end. So don't need an immediate wrap
856                          * and only need to effectively wait for the reserved
857                          * size space from the start of ringbuffer.
858                          */
859                         wait_bytes = remain_actual + ringbuf->reserved_size;
860                 } else if (total_bytes > ringbuf->space) {
861                         /* No wrapping required, just waiting. */
862                         wait_bytes = total_bytes;
863                 }
864         }
865
866         if (wait_bytes) {
867                 ret = logical_ring_wait_for_space(req, wait_bytes);
868                 if (unlikely(ret))
869                         return ret;
870
871                 if (need_wrap)
872                         __wrap_ring_buffer(ringbuf);
873         }
874
875         return 0;
876 }
877
878 /**
879  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
880  *
881  * @req: The request to start some new work for
882  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
883  *
884  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
885  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
886  * and also preallocates a request (every workload submission is still mediated through
887  * requests, same as it did with legacy ringbuffer submission).
888  *
889  * Return: non-zero if the ringbuffer is not ready to be written to.
890  */
891 int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
892 {
893         int ret;
894
895         ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
896         if (ret)
897                 return ret;
898
899         req->ringbuf->space -= num_dwords * sizeof(uint32_t);
900         return 0;
901 }
902
903 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
904 {
905         /*
906          * The first call merely notes the reserve request and is common for
907          * all back ends. The subsequent localised _begin() call actually
908          * ensures that the reservation is available. Without the begin, if
909          * the request creator immediately submitted the request without
910          * adding any commands to it then there might not actually be
911          * sufficient room for the submission commands.
912          */
913         intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
914
915         return intel_logical_ring_begin(request, 0);
916 }
917
918 /**
919  * execlists_submission() - submit a batchbuffer for execution, Execlists style
920  * @dev: DRM device.
921  * @file: DRM file.
922  * @ring: Engine Command Streamer to submit to.
923  * @ctx: Context to employ for this submission.
924  * @args: execbuffer call arguments.
925  * @vmas: list of vmas.
926  * @batch_obj: the batchbuffer to submit.
927  * @exec_start: batchbuffer start virtual address pointer.
928  * @dispatch_flags: translated execbuffer call flags.
929  *
930  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
931  * away the submission details of the execbuffer ioctl call.
932  *
933  * Return: non-zero if the submission fails.
934  */
935 int intel_execlists_submission(struct i915_execbuffer_params *params,
936                                struct drm_i915_gem_execbuffer2 *args,
937                                struct list_head *vmas)
938 {
939         struct drm_device       *dev = params->dev;
940         struct intel_engine_cs *engine = params->engine;
941         struct drm_i915_private *dev_priv = dev->dev_private;
942         struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
943         u64 exec_start;
944         int instp_mode;
945         u32 instp_mask;
946         int ret;
947
948         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
949         instp_mask = I915_EXEC_CONSTANTS_MASK;
950         switch (instp_mode) {
951         case I915_EXEC_CONSTANTS_REL_GENERAL:
952         case I915_EXEC_CONSTANTS_ABSOLUTE:
953         case I915_EXEC_CONSTANTS_REL_SURFACE:
954                 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
955                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
956                         return -EINVAL;
957                 }
958
959                 if (instp_mode != dev_priv->relative_constants_mode) {
960                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
961                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
962                                 return -EINVAL;
963                         }
964
965                         /* The HW changed the meaning on this bit on gen6 */
966                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
967                 }
968                 break;
969         default:
970                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
971                 return -EINVAL;
972         }
973
974         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
975                 DRM_DEBUG("sol reset is gen7 only\n");
976                 return -EINVAL;
977         }
978
979         ret = execlists_move_to_gpu(params->request, vmas);
980         if (ret)
981                 return ret;
982
983         if (engine == &dev_priv->engine[RCS] &&
984             instp_mode != dev_priv->relative_constants_mode) {
985                 ret = intel_logical_ring_begin(params->request, 4);
986                 if (ret)
987                         return ret;
988
989                 intel_logical_ring_emit(ringbuf, MI_NOOP);
990                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
991                 intel_logical_ring_emit_reg(ringbuf, INSTPM);
992                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
993                 intel_logical_ring_advance(ringbuf);
994
995                 dev_priv->relative_constants_mode = instp_mode;
996         }
997
998         exec_start = params->batch_obj_vm_offset +
999                      args->batch_start_offset;
1000
1001         ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
1002         if (ret)
1003                 return ret;
1004
1005         trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
1006
1007         i915_gem_execbuffer_move_to_active(vmas, params->request);
1008
1009         return 0;
1010 }
1011
1012 void intel_execlists_retire_requests(struct intel_engine_cs *engine)
1013 {
1014         struct drm_i915_gem_request *req, *tmp;
1015         struct list_head retired_list;
1016
1017         WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
1018         if (list_empty(&engine->execlist_retired_req_list))
1019                 return;
1020
1021         INIT_LIST_HEAD(&retired_list);
1022         spin_lock_bh(&engine->execlist_lock);
1023         list_replace_init(&engine->execlist_retired_req_list, &retired_list);
1024         spin_unlock_bh(&engine->execlist_lock);
1025
1026         list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
1027                 struct intel_context *ctx = req->ctx;
1028                 struct drm_i915_gem_object *ctx_obj =
1029                                 ctx->engine[engine->id].state;
1030
1031                 if (ctx_obj && (ctx != req->i915->kernel_context))
1032                         intel_lr_context_unpin(ctx, engine);
1033
1034                 list_del(&req->execlist_link);
1035                 i915_gem_request_unreference(req);
1036         }
1037 }
1038
1039 void intel_logical_ring_stop(struct intel_engine_cs *engine)
1040 {
1041         struct drm_i915_private *dev_priv = engine->dev->dev_private;
1042         int ret;
1043
1044         if (!intel_engine_initialized(engine))
1045                 return;
1046
1047         ret = intel_engine_idle(engine);
1048         if (ret)
1049                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1050                           engine->name, ret);
1051
1052         /* TODO: Is this correct with Execlists enabled? */
1053         I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
1054         if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
1055                 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
1056                 return;
1057         }
1058         I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
1059 }
1060
1061 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
1062 {
1063         struct intel_engine_cs *engine = req->engine;
1064         int ret;
1065
1066         if (!engine->gpu_caches_dirty)
1067                 return 0;
1068
1069         ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1070         if (ret)
1071                 return ret;
1072
1073         engine->gpu_caches_dirty = false;
1074         return 0;
1075 }
1076
1077 static int intel_lr_context_do_pin(struct intel_context *ctx,
1078                                    struct intel_engine_cs *engine)
1079 {
1080         struct drm_device *dev = engine->dev;
1081         struct drm_i915_private *dev_priv = dev->dev_private;
1082         struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1083         struct intel_ringbuffer *ringbuf = ctx->engine[engine->id].ringbuf;
1084         void *vaddr;
1085         u32 *lrc_reg_state;
1086         int ret;
1087
1088         WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
1089
1090         ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1091                         PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1092         if (ret)
1093                 return ret;
1094
1095         vaddr = i915_gem_object_pin_map(ctx_obj);
1096         if (IS_ERR(vaddr)) {
1097                 ret = PTR_ERR(vaddr);
1098                 goto unpin_ctx_obj;
1099         }
1100
1101         lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1102
1103         ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
1104         if (ret)
1105                 goto unpin_map;
1106
1107         ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
1108         intel_lr_context_descriptor_update(ctx, engine);
1109         lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
1110         ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
1111         ctx_obj->dirty = true;
1112
1113         /* Invalidate GuC TLB. */
1114         if (i915.enable_guc_submission)
1115                 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1116
1117         return ret;
1118
1119 unpin_map:
1120         i915_gem_object_unpin_map(ctx_obj);
1121 unpin_ctx_obj:
1122         i915_gem_object_ggtt_unpin(ctx_obj);
1123
1124         return ret;
1125 }
1126
1127 static int intel_lr_context_pin(struct intel_context *ctx,
1128                                 struct intel_engine_cs *engine)
1129 {
1130         int ret = 0;
1131
1132         if (ctx->engine[engine->id].pin_count++ == 0) {
1133                 ret = intel_lr_context_do_pin(ctx, engine);
1134                 if (ret)
1135                         goto reset_pin_count;
1136
1137                 i915_gem_context_reference(ctx);
1138         }
1139         return ret;
1140
1141 reset_pin_count:
1142         ctx->engine[engine->id].pin_count = 0;
1143         return ret;
1144 }
1145
1146 void intel_lr_context_unpin(struct intel_context *ctx,
1147                             struct intel_engine_cs *engine)
1148 {
1149         struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1150
1151         WARN_ON(!mutex_is_locked(&ctx->i915->dev->struct_mutex));
1152         if (--ctx->engine[engine->id].pin_count == 0) {
1153                 i915_gem_object_unpin_map(ctx_obj);
1154                 intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
1155                 i915_gem_object_ggtt_unpin(ctx_obj);
1156                 ctx->engine[engine->id].lrc_vma = NULL;
1157                 ctx->engine[engine->id].lrc_desc = 0;
1158                 ctx->engine[engine->id].lrc_reg_state = NULL;
1159
1160                 i915_gem_context_unreference(ctx);
1161         }
1162 }
1163
1164 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1165 {
1166         int ret, i;
1167         struct intel_engine_cs *engine = req->engine;
1168         struct intel_ringbuffer *ringbuf = req->ringbuf;
1169         struct drm_device *dev = engine->dev;
1170         struct drm_i915_private *dev_priv = dev->dev_private;
1171         struct i915_workarounds *w = &dev_priv->workarounds;
1172
1173         if (w->count == 0)
1174                 return 0;
1175
1176         engine->gpu_caches_dirty = true;
1177         ret = logical_ring_flush_all_caches(req);
1178         if (ret)
1179                 return ret;
1180
1181         ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1182         if (ret)
1183                 return ret;
1184
1185         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1186         for (i = 0; i < w->count; i++) {
1187                 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1188                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1189         }
1190         intel_logical_ring_emit(ringbuf, MI_NOOP);
1191
1192         intel_logical_ring_advance(ringbuf);
1193
1194         engine->gpu_caches_dirty = true;
1195         ret = logical_ring_flush_all_caches(req);
1196         if (ret)
1197                 return ret;
1198
1199         return 0;
1200 }
1201
1202 #define wa_ctx_emit(batch, index, cmd)                                  \
1203         do {                                                            \
1204                 int __index = (index)++;                                \
1205                 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1206                         return -ENOSPC;                                 \
1207                 }                                                       \
1208                 batch[__index] = (cmd);                                 \
1209         } while (0)
1210
1211 #define wa_ctx_emit_reg(batch, index, reg) \
1212         wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1213
1214 /*
1215  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1216  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1217  * but there is a slight complication as this is applied in WA batch where the
1218  * values are only initialized once so we cannot take register value at the
1219  * beginning and reuse it further; hence we save its value to memory, upload a
1220  * constant value with bit21 set and then we restore it back with the saved value.
1221  * To simplify the WA, a constant value is formed by using the default value
1222  * of this register. This shouldn't be a problem because we are only modifying
1223  * it for a short period and this batch in non-premptible. We can ofcourse
1224  * use additional instructions that read the actual value of the register
1225  * at that time and set our bit of interest but it makes the WA complicated.
1226  *
1227  * This WA is also required for Gen9 so extracting as a function avoids
1228  * code duplication.
1229  */
1230 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1231                                                 uint32_t *const batch,
1232                                                 uint32_t index)
1233 {
1234         uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1235
1236         /*
1237          * WaDisableLSQCROPERFforOCL:skl
1238          * This WA is implemented in skl_init_clock_gating() but since
1239          * this batch updates GEN8_L3SQCREG4 with default value we need to
1240          * set this bit here to retain the WA during flush.
1241          */
1242         if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0))
1243                 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1244
1245         wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1246                                    MI_SRM_LRM_GLOBAL_GTT));
1247         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1248         wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1249         wa_ctx_emit(batch, index, 0);
1250
1251         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1252         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1253         wa_ctx_emit(batch, index, l3sqc4_flush);
1254
1255         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1256         wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1257                                    PIPE_CONTROL_DC_FLUSH_ENABLE));
1258         wa_ctx_emit(batch, index, 0);
1259         wa_ctx_emit(batch, index, 0);
1260         wa_ctx_emit(batch, index, 0);
1261         wa_ctx_emit(batch, index, 0);
1262
1263         wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1264                                    MI_SRM_LRM_GLOBAL_GTT));
1265         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1266         wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1267         wa_ctx_emit(batch, index, 0);
1268
1269         return index;
1270 }
1271
1272 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1273                                     uint32_t offset,
1274                                     uint32_t start_alignment)
1275 {
1276         return wa_ctx->offset = ALIGN(offset, start_alignment);
1277 }
1278
1279 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1280                              uint32_t offset,
1281                              uint32_t size_alignment)
1282 {
1283         wa_ctx->size = offset - wa_ctx->offset;
1284
1285         WARN(wa_ctx->size % size_alignment,
1286              "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1287              wa_ctx->size, size_alignment);
1288         return 0;
1289 }
1290
1291 /**
1292  * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1293  *
1294  * @ring: only applicable for RCS
1295  * @wa_ctx: structure representing wa_ctx
1296  *  offset: specifies start of the batch, should be cache-aligned. This is updated
1297  *    with the offset value received as input.
1298  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1299  * @batch: page in which WA are loaded
1300  * @offset: This field specifies the start of the batch, it should be
1301  *  cache-aligned otherwise it is adjusted accordingly.
1302  *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
1303  *  initialized at the beginning and shared across all contexts but this field
1304  *  helps us to have multiple batches at different offsets and select them based
1305  *  on a criteria. At the moment this batch always start at the beginning of the page
1306  *  and at this point we don't have multiple wa_ctx batch buffers.
1307  *
1308  *  The number of WA applied are not known at the beginning; we use this field
1309  *  to return the no of DWORDS written.
1310  *
1311  *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1312  *  so it adds NOOPs as padding to make it cacheline aligned.
1313  *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1314  *  makes a complete batch buffer.
1315  *
1316  * Return: non-zero if we exceed the PAGE_SIZE limit.
1317  */
1318
1319 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1320                                     struct i915_wa_ctx_bb *wa_ctx,
1321                                     uint32_t *const batch,
1322                                     uint32_t *offset)
1323 {
1324         uint32_t scratch_addr;
1325         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1326
1327         /* WaDisableCtxRestoreArbitration:bdw,chv */
1328         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1329
1330         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1331         if (IS_BROADWELL(engine->dev)) {
1332                 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1333                 if (rc < 0)
1334                         return rc;
1335                 index = rc;
1336         }
1337
1338         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1339         /* Actual scratch location is at 128 bytes offset */
1340         scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1341
1342         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1343         wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1344                                    PIPE_CONTROL_GLOBAL_GTT_IVB |
1345                                    PIPE_CONTROL_CS_STALL |
1346                                    PIPE_CONTROL_QW_WRITE));
1347         wa_ctx_emit(batch, index, scratch_addr);
1348         wa_ctx_emit(batch, index, 0);
1349         wa_ctx_emit(batch, index, 0);
1350         wa_ctx_emit(batch, index, 0);
1351
1352         /* Pad to end of cacheline */
1353         while (index % CACHELINE_DWORDS)
1354                 wa_ctx_emit(batch, index, MI_NOOP);
1355
1356         /*
1357          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1358          * execution depends on the length specified in terms of cache lines
1359          * in the register CTX_RCS_INDIRECT_CTX
1360          */
1361
1362         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1363 }
1364
1365 /**
1366  * gen8_init_perctx_bb() - initialize per ctx batch with WA
1367  *
1368  * @ring: only applicable for RCS
1369  * @wa_ctx: structure representing wa_ctx
1370  *  offset: specifies start of the batch, should be cache-aligned.
1371  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1372  * @batch: page in which WA are loaded
1373  * @offset: This field specifies the start of this batch.
1374  *   This batch is started immediately after indirect_ctx batch. Since we ensure
1375  *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
1376  *
1377  *   The number of DWORDS written are returned using this field.
1378  *
1379  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1380  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1381  */
1382 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1383                                struct i915_wa_ctx_bb *wa_ctx,
1384                                uint32_t *const batch,
1385                                uint32_t *offset)
1386 {
1387         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1388
1389         /* WaDisableCtxRestoreArbitration:bdw,chv */
1390         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1391
1392         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1393
1394         return wa_ctx_end(wa_ctx, *offset = index, 1);
1395 }
1396
1397 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1398                                     struct i915_wa_ctx_bb *wa_ctx,
1399                                     uint32_t *const batch,
1400                                     uint32_t *offset)
1401 {
1402         int ret;
1403         struct drm_device *dev = engine->dev;
1404         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1405
1406         /* WaDisableCtxRestoreArbitration:skl,bxt */
1407         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1408             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1409                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1410
1411         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1412         ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1413         if (ret < 0)
1414                 return ret;
1415         index = ret;
1416
1417         /* Pad to end of cacheline */
1418         while (index % CACHELINE_DWORDS)
1419                 wa_ctx_emit(batch, index, MI_NOOP);
1420
1421         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1422 }
1423
1424 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1425                                struct i915_wa_ctx_bb *wa_ctx,
1426                                uint32_t *const batch,
1427                                uint32_t *offset)
1428 {
1429         struct drm_device *dev = engine->dev;
1430         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1431
1432         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1433         if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
1434             IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1435                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1436                 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1437                 wa_ctx_emit(batch, index,
1438                             _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1439                 wa_ctx_emit(batch, index, MI_NOOP);
1440         }
1441
1442         /* WaClearTdlStateAckDirtyBits:bxt */
1443         if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1444                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1445
1446                 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1447                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1448
1449                 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1450                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1451
1452                 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1453                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1454
1455                 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1456                 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1457                 wa_ctx_emit(batch, index, 0x0);
1458                 wa_ctx_emit(batch, index, MI_NOOP);
1459         }
1460
1461         /* WaDisableCtxRestoreArbitration:skl,bxt */
1462         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1463             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1464                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1465
1466         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1467
1468         return wa_ctx_end(wa_ctx, *offset = index, 1);
1469 }
1470
1471 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1472 {
1473         int ret;
1474
1475         engine->wa_ctx.obj = i915_gem_alloc_object(engine->dev,
1476                                                    PAGE_ALIGN(size));
1477         if (!engine->wa_ctx.obj) {
1478                 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1479                 return -ENOMEM;
1480         }
1481
1482         ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1483         if (ret) {
1484                 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1485                                  ret);
1486                 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1487                 return ret;
1488         }
1489
1490         return 0;
1491 }
1492
1493 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1494 {
1495         if (engine->wa_ctx.obj) {
1496                 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1497                 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1498                 engine->wa_ctx.obj = NULL;
1499         }
1500 }
1501
1502 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1503 {
1504         int ret;
1505         uint32_t *batch;
1506         uint32_t offset;
1507         struct page *page;
1508         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1509
1510         WARN_ON(engine->id != RCS);
1511
1512         /* update this when WA for higher Gen are added */
1513         if (INTEL_INFO(engine->dev)->gen > 9) {
1514                 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1515                           INTEL_INFO(engine->dev)->gen);
1516                 return 0;
1517         }
1518
1519         /* some WA perform writes to scratch page, ensure it is valid */
1520         if (engine->scratch.obj == NULL) {
1521                 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1522                 return -EINVAL;
1523         }
1524
1525         ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1526         if (ret) {
1527                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1528                 return ret;
1529         }
1530
1531         page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1532         batch = kmap_atomic(page);
1533         offset = 0;
1534
1535         if (INTEL_INFO(engine->dev)->gen == 8) {
1536                 ret = gen8_init_indirectctx_bb(engine,
1537                                                &wa_ctx->indirect_ctx,
1538                                                batch,
1539                                                &offset);
1540                 if (ret)
1541                         goto out;
1542
1543                 ret = gen8_init_perctx_bb(engine,
1544                                           &wa_ctx->per_ctx,
1545                                           batch,
1546                                           &offset);
1547                 if (ret)
1548                         goto out;
1549         } else if (INTEL_INFO(engine->dev)->gen == 9) {
1550                 ret = gen9_init_indirectctx_bb(engine,
1551                                                &wa_ctx->indirect_ctx,
1552                                                batch,
1553                                                &offset);
1554                 if (ret)
1555                         goto out;
1556
1557                 ret = gen9_init_perctx_bb(engine,
1558                                           &wa_ctx->per_ctx,
1559                                           batch,
1560                                           &offset);
1561                 if (ret)
1562                         goto out;
1563         }
1564
1565 out:
1566         kunmap_atomic(batch);
1567         if (ret)
1568                 lrc_destroy_wa_ctx_obj(engine);
1569
1570         return ret;
1571 }
1572
1573 static void lrc_init_hws(struct intel_engine_cs *engine)
1574 {
1575         struct drm_i915_private *dev_priv = engine->dev->dev_private;
1576
1577         I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1578                    (u32)engine->status_page.gfx_addr);
1579         POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1580 }
1581
1582 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1583 {
1584         struct drm_device *dev = engine->dev;
1585         struct drm_i915_private *dev_priv = dev->dev_private;
1586         unsigned int next_context_status_buffer_hw;
1587
1588         lrc_init_hws(engine);
1589
1590         I915_WRITE_IMR(engine,
1591                        ~(engine->irq_enable_mask | engine->irq_keep_mask));
1592         I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1593
1594         I915_WRITE(RING_MODE_GEN7(engine),
1595                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1596                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1597         POSTING_READ(RING_MODE_GEN7(engine));
1598
1599         /*
1600          * Instead of resetting the Context Status Buffer (CSB) read pointer to
1601          * zero, we need to read the write pointer from hardware and use its
1602          * value because "this register is power context save restored".
1603          * Effectively, these states have been observed:
1604          *
1605          *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1606          * BDW  | CSB regs not reset       | CSB regs reset       |
1607          * CHT  | CSB regs not reset       | CSB regs not reset   |
1608          * SKL  |         ?                |         ?            |
1609          * BXT  |         ?                |         ?            |
1610          */
1611         next_context_status_buffer_hw =
1612                 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1613
1614         /*
1615          * When the CSB registers are reset (also after power-up / gpu reset),
1616          * CSB write pointer is set to all 1's, which is not valid, use '5' in
1617          * this special case, so the first element read is CSB[0].
1618          */
1619         if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1620                 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1621
1622         engine->next_context_status_buffer = next_context_status_buffer_hw;
1623         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1624
1625         intel_engine_init_hangcheck(engine);
1626
1627         return intel_mocs_init_engine(engine);
1628 }
1629
1630 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1631 {
1632         struct drm_device *dev = engine->dev;
1633         struct drm_i915_private *dev_priv = dev->dev_private;
1634         int ret;
1635
1636         ret = gen8_init_common_ring(engine);
1637         if (ret)
1638                 return ret;
1639
1640         /* We need to disable the AsyncFlip performance optimisations in order
1641          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1642          * programmed to '1' on all products.
1643          *
1644          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1645          */
1646         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1647
1648         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1649
1650         return init_workarounds_ring(engine);
1651 }
1652
1653 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1654 {
1655         int ret;
1656
1657         ret = gen8_init_common_ring(engine);
1658         if (ret)
1659                 return ret;
1660
1661         return init_workarounds_ring(engine);
1662 }
1663
1664 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1665 {
1666         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1667         struct intel_engine_cs *engine = req->engine;
1668         struct intel_ringbuffer *ringbuf = req->ringbuf;
1669         const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1670         int i, ret;
1671
1672         ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1673         if (ret)
1674                 return ret;
1675
1676         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1677         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1678                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1679
1680                 intel_logical_ring_emit_reg(ringbuf,
1681                                             GEN8_RING_PDP_UDW(engine, i));
1682                 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1683                 intel_logical_ring_emit_reg(ringbuf,
1684                                             GEN8_RING_PDP_LDW(engine, i));
1685                 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1686         }
1687
1688         intel_logical_ring_emit(ringbuf, MI_NOOP);
1689         intel_logical_ring_advance(ringbuf);
1690
1691         return 0;
1692 }
1693
1694 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1695                               u64 offset, unsigned dispatch_flags)
1696 {
1697         struct intel_ringbuffer *ringbuf = req->ringbuf;
1698         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1699         int ret;
1700
1701         /* Don't rely in hw updating PDPs, specially in lite-restore.
1702          * Ideally, we should set Force PD Restore in ctx descriptor,
1703          * but we can't. Force Restore would be a second option, but
1704          * it is unsafe in case of lite-restore (because the ctx is
1705          * not idle). PML4 is allocated during ppgtt init so this is
1706          * not needed in 48-bit.*/
1707         if (req->ctx->ppgtt &&
1708             (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1709                 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1710                     !intel_vgpu_active(req->i915->dev)) {
1711                         ret = intel_logical_ring_emit_pdps(req);
1712                         if (ret)
1713                                 return ret;
1714                 }
1715
1716                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1717         }
1718
1719         ret = intel_logical_ring_begin(req, 4);
1720         if (ret)
1721                 return ret;
1722
1723         /* FIXME(BDW): Address space and security selectors. */
1724         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1725                                 (ppgtt<<8) |
1726                                 (dispatch_flags & I915_DISPATCH_RS ?
1727                                  MI_BATCH_RESOURCE_STREAMER : 0));
1728         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1729         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1730         intel_logical_ring_emit(ringbuf, MI_NOOP);
1731         intel_logical_ring_advance(ringbuf);
1732
1733         return 0;
1734 }
1735
1736 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1737 {
1738         struct drm_device *dev = engine->dev;
1739         struct drm_i915_private *dev_priv = dev->dev_private;
1740         unsigned long flags;
1741
1742         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1743                 return false;
1744
1745         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1746         if (engine->irq_refcount++ == 0) {
1747                 I915_WRITE_IMR(engine,
1748                                ~(engine->irq_enable_mask | engine->irq_keep_mask));
1749                 POSTING_READ(RING_IMR(engine->mmio_base));
1750         }
1751         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1752
1753         return true;
1754 }
1755
1756 static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1757 {
1758         struct drm_device *dev = engine->dev;
1759         struct drm_i915_private *dev_priv = dev->dev_private;
1760         unsigned long flags;
1761
1762         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1763         if (--engine->irq_refcount == 0) {
1764                 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1765                 POSTING_READ(RING_IMR(engine->mmio_base));
1766         }
1767         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1768 }
1769
1770 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1771                            u32 invalidate_domains,
1772                            u32 unused)
1773 {
1774         struct intel_ringbuffer *ringbuf = request->ringbuf;
1775         struct intel_engine_cs *engine = ringbuf->engine;
1776         struct drm_device *dev = engine->dev;
1777         struct drm_i915_private *dev_priv = dev->dev_private;
1778         uint32_t cmd;
1779         int ret;
1780
1781         ret = intel_logical_ring_begin(request, 4);
1782         if (ret)
1783                 return ret;
1784
1785         cmd = MI_FLUSH_DW + 1;
1786
1787         /* We always require a command barrier so that subsequent
1788          * commands, such as breadcrumb interrupts, are strictly ordered
1789          * wrt the contents of the write cache being flushed to memory
1790          * (and thus being coherent from the CPU).
1791          */
1792         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1793
1794         if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1795                 cmd |= MI_INVALIDATE_TLB;
1796                 if (engine == &dev_priv->engine[VCS])
1797                         cmd |= MI_INVALIDATE_BSD;
1798         }
1799
1800         intel_logical_ring_emit(ringbuf, cmd);
1801         intel_logical_ring_emit(ringbuf,
1802                                 I915_GEM_HWS_SCRATCH_ADDR |
1803                                 MI_FLUSH_DW_USE_GTT);
1804         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1805         intel_logical_ring_emit(ringbuf, 0); /* value */
1806         intel_logical_ring_advance(ringbuf);
1807
1808         return 0;
1809 }
1810
1811 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1812                                   u32 invalidate_domains,
1813                                   u32 flush_domains)
1814 {
1815         struct intel_ringbuffer *ringbuf = request->ringbuf;
1816         struct intel_engine_cs *engine = ringbuf->engine;
1817         u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1818         bool vf_flush_wa = false;
1819         u32 flags = 0;
1820         int ret;
1821
1822         flags |= PIPE_CONTROL_CS_STALL;
1823
1824         if (flush_domains) {
1825                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1826                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1827                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1828                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1829         }
1830
1831         if (invalidate_domains) {
1832                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1833                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1834                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1835                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1836                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1837                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1838                 flags |= PIPE_CONTROL_QW_WRITE;
1839                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1840
1841                 /*
1842                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1843                  * pipe control.
1844                  */
1845                 if (IS_GEN9(engine->dev))
1846                         vf_flush_wa = true;
1847         }
1848
1849         ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1850         if (ret)
1851                 return ret;
1852
1853         if (vf_flush_wa) {
1854                 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1855                 intel_logical_ring_emit(ringbuf, 0);
1856                 intel_logical_ring_emit(ringbuf, 0);
1857                 intel_logical_ring_emit(ringbuf, 0);
1858                 intel_logical_ring_emit(ringbuf, 0);
1859                 intel_logical_ring_emit(ringbuf, 0);
1860         }
1861
1862         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1863         intel_logical_ring_emit(ringbuf, flags);
1864         intel_logical_ring_emit(ringbuf, scratch_addr);
1865         intel_logical_ring_emit(ringbuf, 0);
1866         intel_logical_ring_emit(ringbuf, 0);
1867         intel_logical_ring_emit(ringbuf, 0);
1868         intel_logical_ring_advance(ringbuf);
1869
1870         return 0;
1871 }
1872
1873 static u32 gen8_get_seqno(struct intel_engine_cs *engine)
1874 {
1875         return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1876 }
1877
1878 static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1879 {
1880         intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1881 }
1882
1883 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1884 {
1885         /*
1886          * On BXT A steppings there is a HW coherency issue whereby the
1887          * MI_STORE_DATA_IMM storing the completed request's seqno
1888          * occasionally doesn't invalidate the CPU cache. Work around this by
1889          * clflushing the corresponding cacheline whenever the caller wants
1890          * the coherency to be guaranteed. Note that this cacheline is known
1891          * to be clean at this point, since we only write it in
1892          * bxt_a_set_seqno(), where we also do a clflush after the write. So
1893          * this clflush in practice becomes an invalidate operation.
1894          */
1895         intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1896 }
1897
1898 static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1899 {
1900         intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1901
1902         /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1903         intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1904 }
1905
1906 /*
1907  * Reserve space for 2 NOOPs at the end of each request to be
1908  * used as a workaround for not being allowed to do lite
1909  * restore with HEAD==TAIL (WaIdleLiteRestore).
1910  */
1911 #define WA_TAIL_DWORDS 2
1912
1913 static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
1914 {
1915         return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
1916 }
1917
1918 static int gen8_emit_request(struct drm_i915_gem_request *request)
1919 {
1920         struct intel_ringbuffer *ringbuf = request->ringbuf;
1921         int ret;
1922
1923         ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
1924         if (ret)
1925                 return ret;
1926
1927         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1928         BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1929
1930         intel_logical_ring_emit(ringbuf,
1931                                 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1932         intel_logical_ring_emit(ringbuf,
1933                                 hws_seqno_address(request->engine) |
1934                                 MI_FLUSH_DW_USE_GTT);
1935         intel_logical_ring_emit(ringbuf, 0);
1936         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1937         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1938         intel_logical_ring_emit(ringbuf, MI_NOOP);
1939         return intel_logical_ring_advance_and_submit(request);
1940 }
1941
1942 static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1943 {
1944         struct intel_ringbuffer *ringbuf = request->ringbuf;
1945         int ret;
1946
1947         ret = intel_logical_ring_begin(request, 8 + WA_TAIL_DWORDS);
1948         if (ret)
1949                 return ret;
1950
1951         /* We're using qword write, seqno should be aligned to 8 bytes. */
1952         BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1953
1954         /* w/a for post sync ops following a GPGPU operation we
1955          * need a prior CS_STALL, which is emitted by the flush
1956          * following the batch.
1957          */
1958         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1959         intel_logical_ring_emit(ringbuf,
1960                                 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1961                                  PIPE_CONTROL_CS_STALL |
1962                                  PIPE_CONTROL_QW_WRITE));
1963         intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine));
1964         intel_logical_ring_emit(ringbuf, 0);
1965         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1966         /* We're thrashing one dword of HWS. */
1967         intel_logical_ring_emit(ringbuf, 0);
1968         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1969         intel_logical_ring_emit(ringbuf, MI_NOOP);
1970         return intel_logical_ring_advance_and_submit(request);
1971 }
1972
1973 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1974 {
1975         struct render_state so;
1976         int ret;
1977
1978         ret = i915_gem_render_state_prepare(req->engine, &so);
1979         if (ret)
1980                 return ret;
1981
1982         if (so.rodata == NULL)
1983                 return 0;
1984
1985         ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1986                                        I915_DISPATCH_SECURE);
1987         if (ret)
1988                 goto out;
1989
1990         ret = req->engine->emit_bb_start(req,
1991                                        (so.ggtt_offset + so.aux_batch_offset),
1992                                        I915_DISPATCH_SECURE);
1993         if (ret)
1994                 goto out;
1995
1996         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1997
1998 out:
1999         i915_gem_render_state_fini(&so);
2000         return ret;
2001 }
2002
2003 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
2004 {
2005         int ret;
2006
2007         ret = intel_logical_ring_workarounds_emit(req);
2008         if (ret)
2009                 return ret;
2010
2011         ret = intel_rcs_context_init_mocs(req);
2012         /*
2013          * Failing to program the MOCS is non-fatal.The system will not
2014          * run at peak performance. So generate an error and carry on.
2015          */
2016         if (ret)
2017                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2018
2019         return intel_lr_context_render_state_init(req);
2020 }
2021
2022 /**
2023  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2024  *
2025  * @ring: Engine Command Streamer.
2026  *
2027  */
2028 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2029 {
2030         struct drm_i915_private *dev_priv;
2031
2032         if (!intel_engine_initialized(engine))
2033                 return;
2034
2035         /*
2036          * Tasklet cannot be active at this point due intel_mark_active/idle
2037          * so this is just for documentation.
2038          */
2039         if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
2040                 tasklet_kill(&engine->irq_tasklet);
2041
2042         dev_priv = engine->dev->dev_private;
2043
2044         if (engine->buffer) {
2045                 intel_logical_ring_stop(engine);
2046                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2047         }
2048
2049         if (engine->cleanup)
2050                 engine->cleanup(engine);
2051
2052         i915_cmd_parser_fini_ring(engine);
2053         i915_gem_batch_pool_fini(&engine->batch_pool);
2054
2055         if (engine->status_page.obj) {
2056                 i915_gem_object_unpin_map(engine->status_page.obj);
2057                 engine->status_page.obj = NULL;
2058         }
2059
2060         engine->idle_lite_restore_wa = 0;
2061         engine->disable_lite_restore_wa = false;
2062         engine->ctx_desc_template = 0;
2063
2064         lrc_destroy_wa_ctx_obj(engine);
2065         engine->dev = NULL;
2066 }
2067
2068 static void
2069 logical_ring_default_vfuncs(struct drm_device *dev,
2070                             struct intel_engine_cs *engine)
2071 {
2072         /* Default vfuncs which can be overriden by each engine. */
2073         engine->init_hw = gen8_init_common_ring;
2074         engine->emit_request = gen8_emit_request;
2075         engine->emit_flush = gen8_emit_flush;
2076         engine->irq_get = gen8_logical_ring_get_irq;
2077         engine->irq_put = gen8_logical_ring_put_irq;
2078         engine->emit_bb_start = gen8_emit_bb_start;
2079         engine->get_seqno = gen8_get_seqno;
2080         engine->set_seqno = gen8_set_seqno;
2081         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2082                 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
2083                 engine->set_seqno = bxt_a_set_seqno;
2084         }
2085 }
2086
2087 static inline void
2088 logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
2089 {
2090         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2091         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2092 }
2093
2094 static int
2095 lrc_setup_hws(struct intel_engine_cs *engine,
2096               struct drm_i915_gem_object *dctx_obj)
2097 {
2098         void *hws;
2099
2100         /* The HWSP is part of the default context object in LRC mode. */
2101         engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
2102                                        LRC_PPHWSP_PN * PAGE_SIZE;
2103         hws = i915_gem_object_pin_map(dctx_obj);
2104         if (IS_ERR(hws))
2105                 return PTR_ERR(hws);
2106         engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
2107         engine->status_page.obj = dctx_obj;
2108
2109         return 0;
2110 }
2111
2112 static int
2113 logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
2114 {
2115         struct drm_i915_private *dev_priv = to_i915(dev);
2116         struct intel_context *dctx = dev_priv->kernel_context;
2117         enum forcewake_domains fw_domains;
2118         int ret;
2119
2120         /* Intentionally left blank. */
2121         engine->buffer = NULL;
2122
2123         engine->dev = dev;
2124         INIT_LIST_HEAD(&engine->active_list);
2125         INIT_LIST_HEAD(&engine->request_list);
2126         i915_gem_batch_pool_init(dev, &engine->batch_pool);
2127         init_waitqueue_head(&engine->irq_queue);
2128
2129         INIT_LIST_HEAD(&engine->buffers);
2130         INIT_LIST_HEAD(&engine->execlist_queue);
2131         INIT_LIST_HEAD(&engine->execlist_retired_req_list);
2132         spin_lock_init(&engine->execlist_lock);
2133
2134         tasklet_init(&engine->irq_tasklet,
2135                      intel_lrc_irq_handler, (unsigned long)engine);
2136
2137         logical_ring_init_platform_invariants(engine);
2138
2139         fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2140                                                     RING_ELSP(engine),
2141                                                     FW_REG_WRITE);
2142
2143         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2144                                                      RING_CONTEXT_STATUS_PTR(engine),
2145                                                      FW_REG_READ | FW_REG_WRITE);
2146
2147         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2148                                                      RING_CONTEXT_STATUS_BUF_BASE(engine),
2149                                                      FW_REG_READ);
2150
2151         engine->fw_domains = fw_domains;
2152
2153         ret = i915_cmd_parser_init_ring(engine);
2154         if (ret)
2155                 goto error;
2156
2157         ret = intel_lr_context_deferred_alloc(dctx, engine);
2158         if (ret)
2159                 goto error;
2160
2161         /* As this is the default context, always pin it */
2162         ret = intel_lr_context_do_pin(dctx, engine);
2163         if (ret) {
2164                 DRM_ERROR(
2165                         "Failed to pin and map ringbuffer %s: %d\n",
2166                         engine->name, ret);
2167                 goto error;
2168         }
2169
2170         /* And setup the hardware status page. */
2171         ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
2172         if (ret) {
2173                 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
2174                 goto error;
2175         }
2176
2177         return 0;
2178
2179 error:
2180         intel_logical_ring_cleanup(engine);
2181         return ret;
2182 }
2183
2184 static int logical_render_ring_init(struct drm_device *dev)
2185 {
2186         struct drm_i915_private *dev_priv = dev->dev_private;
2187         struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2188         int ret;
2189
2190         engine->name = "render ring";
2191         engine->id = RCS;
2192         engine->exec_id = I915_EXEC_RENDER;
2193         engine->guc_id = GUC_RENDER_ENGINE;
2194         engine->mmio_base = RENDER_RING_BASE;
2195
2196         logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
2197         if (HAS_L3_DPF(dev))
2198                 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2199
2200         logical_ring_default_vfuncs(dev, engine);
2201
2202         /* Override some for render ring. */
2203         if (INTEL_INFO(dev)->gen >= 9)
2204                 engine->init_hw = gen9_init_render_ring;
2205         else
2206                 engine->init_hw = gen8_init_render_ring;
2207         engine->init_context = gen8_init_rcs_context;
2208         engine->cleanup = intel_fini_pipe_control;
2209         engine->emit_flush = gen8_emit_flush_render;
2210         engine->emit_request = gen8_emit_request_render;
2211
2212         engine->dev = dev;
2213
2214         ret = intel_init_pipe_control(engine);
2215         if (ret)
2216                 return ret;
2217
2218         ret = intel_init_workaround_bb(engine);
2219         if (ret) {
2220                 /*
2221                  * We continue even if we fail to initialize WA batch
2222                  * because we only expect rare glitches but nothing
2223                  * critical to prevent us from using GPU
2224                  */
2225                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2226                           ret);
2227         }
2228
2229         ret = logical_ring_init(dev, engine);
2230         if (ret) {
2231                 lrc_destroy_wa_ctx_obj(engine);
2232         }
2233
2234         return ret;
2235 }
2236
2237 static int logical_bsd_ring_init(struct drm_device *dev)
2238 {
2239         struct drm_i915_private *dev_priv = dev->dev_private;
2240         struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2241
2242         engine->name = "bsd ring";
2243         engine->id = VCS;
2244         engine->exec_id = I915_EXEC_BSD;
2245         engine->guc_id = GUC_VIDEO_ENGINE;
2246         engine->mmio_base = GEN6_BSD_RING_BASE;
2247
2248         logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
2249         logical_ring_default_vfuncs(dev, engine);
2250
2251         return logical_ring_init(dev, engine);
2252 }
2253
2254 static int logical_bsd2_ring_init(struct drm_device *dev)
2255 {
2256         struct drm_i915_private *dev_priv = dev->dev_private;
2257         struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
2258
2259         engine->name = "bsd2 ring";
2260         engine->id = VCS2;
2261         engine->exec_id = I915_EXEC_BSD;
2262         engine->guc_id = GUC_VIDEO_ENGINE2;
2263         engine->mmio_base = GEN8_BSD2_RING_BASE;
2264
2265         logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
2266         logical_ring_default_vfuncs(dev, engine);
2267
2268         return logical_ring_init(dev, engine);
2269 }
2270
2271 static int logical_blt_ring_init(struct drm_device *dev)
2272 {
2273         struct drm_i915_private *dev_priv = dev->dev_private;
2274         struct intel_engine_cs *engine = &dev_priv->engine[BCS];
2275
2276         engine->name = "blitter ring";
2277         engine->id = BCS;
2278         engine->exec_id = I915_EXEC_BLT;
2279         engine->guc_id = GUC_BLITTER_ENGINE;
2280         engine->mmio_base = BLT_RING_BASE;
2281
2282         logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
2283         logical_ring_default_vfuncs(dev, engine);
2284
2285         return logical_ring_init(dev, engine);
2286 }
2287
2288 static int logical_vebox_ring_init(struct drm_device *dev)
2289 {
2290         struct drm_i915_private *dev_priv = dev->dev_private;
2291         struct intel_engine_cs *engine = &dev_priv->engine[VECS];
2292
2293         engine->name = "video enhancement ring";
2294         engine->id = VECS;
2295         engine->exec_id = I915_EXEC_VEBOX;
2296         engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
2297         engine->mmio_base = VEBOX_RING_BASE;
2298
2299         logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
2300         logical_ring_default_vfuncs(dev, engine);
2301
2302         return logical_ring_init(dev, engine);
2303 }
2304
2305 /**
2306  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2307  * @dev: DRM device.
2308  *
2309  * This function inits the engines for an Execlists submission style (the equivalent in the
2310  * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2311  * those engines that are present in the hardware.
2312  *
2313  * Return: non-zero if the initialization failed.
2314  */
2315 int intel_logical_rings_init(struct drm_device *dev)
2316 {
2317         struct drm_i915_private *dev_priv = dev->dev_private;
2318         int ret;
2319
2320         ret = logical_render_ring_init(dev);
2321         if (ret)
2322                 return ret;
2323
2324         if (HAS_BSD(dev)) {
2325                 ret = logical_bsd_ring_init(dev);
2326                 if (ret)
2327                         goto cleanup_render_ring;
2328         }
2329
2330         if (HAS_BLT(dev)) {
2331                 ret = logical_blt_ring_init(dev);
2332                 if (ret)
2333                         goto cleanup_bsd_ring;
2334         }
2335
2336         if (HAS_VEBOX(dev)) {
2337                 ret = logical_vebox_ring_init(dev);
2338                 if (ret)
2339                         goto cleanup_blt_ring;
2340         }
2341
2342         if (HAS_BSD2(dev)) {
2343                 ret = logical_bsd2_ring_init(dev);
2344                 if (ret)
2345                         goto cleanup_vebox_ring;
2346         }
2347
2348         return 0;
2349
2350 cleanup_vebox_ring:
2351         intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2352 cleanup_blt_ring:
2353         intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2354 cleanup_bsd_ring:
2355         intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2356 cleanup_render_ring:
2357         intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2358
2359         return ret;
2360 }
2361
2362 static u32
2363 make_rpcs(struct drm_device *dev)
2364 {
2365         u32 rpcs = 0;
2366
2367         /*
2368          * No explicit RPCS request is needed to ensure full
2369          * slice/subslice/EU enablement prior to Gen9.
2370         */
2371         if (INTEL_INFO(dev)->gen < 9)
2372                 return 0;
2373
2374         /*
2375          * Starting in Gen9, render power gating can leave
2376          * slice/subslice/EU in a partially enabled state. We
2377          * must make an explicit request through RPCS for full
2378          * enablement.
2379         */
2380         if (INTEL_INFO(dev)->has_slice_pg) {
2381                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2382                 rpcs |= INTEL_INFO(dev)->slice_total <<
2383                         GEN8_RPCS_S_CNT_SHIFT;
2384                 rpcs |= GEN8_RPCS_ENABLE;
2385         }
2386
2387         if (INTEL_INFO(dev)->has_subslice_pg) {
2388                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2389                 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2390                         GEN8_RPCS_SS_CNT_SHIFT;
2391                 rpcs |= GEN8_RPCS_ENABLE;
2392         }
2393
2394         if (INTEL_INFO(dev)->has_eu_pg) {
2395                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2396                         GEN8_RPCS_EU_MIN_SHIFT;
2397                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2398                         GEN8_RPCS_EU_MAX_SHIFT;
2399                 rpcs |= GEN8_RPCS_ENABLE;
2400         }
2401
2402         return rpcs;
2403 }
2404
2405 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2406 {
2407         u32 indirect_ctx_offset;
2408
2409         switch (INTEL_INFO(engine->dev)->gen) {
2410         default:
2411                 MISSING_CASE(INTEL_INFO(engine->dev)->gen);
2412                 /* fall through */
2413         case 9:
2414                 indirect_ctx_offset =
2415                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2416                 break;
2417         case 8:
2418                 indirect_ctx_offset =
2419                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2420                 break;
2421         }
2422
2423         return indirect_ctx_offset;
2424 }
2425
2426 static int
2427 populate_lr_context(struct intel_context *ctx,
2428                     struct drm_i915_gem_object *ctx_obj,
2429                     struct intel_engine_cs *engine,
2430                     struct intel_ringbuffer *ringbuf)
2431 {
2432         struct drm_device *dev = engine->dev;
2433         struct drm_i915_private *dev_priv = dev->dev_private;
2434         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2435         void *vaddr;
2436         u32 *reg_state;
2437         int ret;
2438
2439         if (!ppgtt)
2440                 ppgtt = dev_priv->mm.aliasing_ppgtt;
2441
2442         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2443         if (ret) {
2444                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2445                 return ret;
2446         }
2447
2448         vaddr = i915_gem_object_pin_map(ctx_obj);
2449         if (IS_ERR(vaddr)) {
2450                 ret = PTR_ERR(vaddr);
2451                 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2452                 return ret;
2453         }
2454         ctx_obj->dirty = true;
2455
2456         /* The second page of the context object contains some fields which must
2457          * be set up prior to the first execution. */
2458         reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2459
2460         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2461          * commands followed by (reg, value) pairs. The values we are setting here are
2462          * only for the first context restore: on a subsequent save, the GPU will
2463          * recreate this batchbuffer with new values (including all the missing
2464          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2465         reg_state[CTX_LRI_HEADER_0] =
2466                 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2467         ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2468                        RING_CONTEXT_CONTROL(engine),
2469                        _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2470                                           CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2471                                           (HAS_RESOURCE_STREAMER(dev) ?
2472                                             CTX_CTRL_RS_CTX_ENABLE : 0)));
2473         ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2474                        0);
2475         ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2476                        0);
2477         /* Ring buffer start address is not known until the buffer is pinned.
2478          * It is written to the context image in execlists_update_context()
2479          */
2480         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2481                        RING_START(engine->mmio_base), 0);
2482         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2483                        RING_CTL(engine->mmio_base),
2484                        ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2485         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2486                        RING_BBADDR_UDW(engine->mmio_base), 0);
2487         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2488                        RING_BBADDR(engine->mmio_base), 0);
2489         ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2490                        RING_BBSTATE(engine->mmio_base),
2491                        RING_BB_PPGTT);
2492         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2493                        RING_SBBADDR_UDW(engine->mmio_base), 0);
2494         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2495                        RING_SBBADDR(engine->mmio_base), 0);
2496         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2497                        RING_SBBSTATE(engine->mmio_base), 0);
2498         if (engine->id == RCS) {
2499                 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2500                                RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2501                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2502                                RING_INDIRECT_CTX(engine->mmio_base), 0);
2503                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2504                                RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2505                 if (engine->wa_ctx.obj) {
2506                         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2507                         uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2508
2509                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
2510                                 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2511                                 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2512
2513                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2514                                 intel_lr_indirect_ctx_offset(engine) << 6;
2515
2516                         reg_state[CTX_BB_PER_CTX_PTR+1] =
2517                                 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2518                                 0x01;
2519                 }
2520         }
2521         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2522         ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2523                        RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2524         /* PDP values well be assigned later if needed */
2525         ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2526                        0);
2527         ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2528                        0);
2529         ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2530                        0);
2531         ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2532                        0);
2533         ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2534                        0);
2535         ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2536                        0);
2537         ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2538                        0);
2539         ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2540                        0);
2541
2542         if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2543                 /* 64b PPGTT (48bit canonical)
2544                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2545                  * other PDP Descriptors are ignored.
2546                  */
2547                 ASSIGN_CTX_PML4(ppgtt, reg_state);
2548         } else {
2549                 /* 32b PPGTT
2550                  * PDP*_DESCRIPTOR contains the base address of space supported.
2551                  * With dynamic page allocation, PDPs may not be allocated at
2552                  * this point. Point the unallocated PDPs to the scratch page
2553                  */
2554                 execlists_update_context_pdps(ppgtt, reg_state);
2555         }
2556
2557         if (engine->id == RCS) {
2558                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2559                 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2560                                make_rpcs(dev));
2561         }
2562
2563         i915_gem_object_unpin_map(ctx_obj);
2564
2565         return 0;
2566 }
2567
2568 /**
2569  * intel_lr_context_free() - free the LRC specific bits of a context
2570  * @ctx: the LR context to free.
2571  *
2572  * The real context freeing is done in i915_gem_context_free: this only
2573  * takes care of the bits that are LRC related: the per-engine backing
2574  * objects and the logical ringbuffer.
2575  */
2576 void intel_lr_context_free(struct intel_context *ctx)
2577 {
2578         int i;
2579
2580         for (i = I915_NUM_ENGINES; --i >= 0; ) {
2581                 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
2582                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2583
2584                 if (!ctx_obj)
2585                         continue;
2586
2587                 if (ctx == ctx->i915->kernel_context) {
2588                         intel_unpin_ringbuffer_obj(ringbuf);
2589                         i915_gem_object_ggtt_unpin(ctx_obj);
2590                         i915_gem_object_unpin_map(ctx_obj);
2591                 }
2592
2593                 WARN_ON(ctx->engine[i].pin_count);
2594                 intel_ringbuffer_free(ringbuf);
2595                 drm_gem_object_unreference(&ctx_obj->base);
2596         }
2597 }
2598
2599 /**
2600  * intel_lr_context_size() - return the size of the context for an engine
2601  * @ring: which engine to find the context size for
2602  *
2603  * Each engine may require a different amount of space for a context image,
2604  * so when allocating (or copying) an image, this function can be used to
2605  * find the right size for the specific engine.
2606  *
2607  * Return: size (in bytes) of an engine-specific context image
2608  *
2609  * Note: this size includes the HWSP, which is part of the context image
2610  * in LRC mode, but does not include the "shared data page" used with
2611  * GuC submission. The caller should account for this if using the GuC.
2612  */
2613 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2614 {
2615         int ret = 0;
2616
2617         WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
2618
2619         switch (engine->id) {
2620         case RCS:
2621                 if (INTEL_INFO(engine->dev)->gen >= 9)
2622                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2623                 else
2624                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2625                 break;
2626         case VCS:
2627         case BCS:
2628         case VECS:
2629         case VCS2:
2630                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2631                 break;
2632         }
2633
2634         return ret;
2635 }
2636
2637 /**
2638  * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2639  * @ctx: LR context to create.
2640  * @ring: engine to be used with the context.
2641  *
2642  * This function can be called more than once, with different engines, if we plan
2643  * to use the context with them. The context backing objects and the ringbuffers
2644  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2645  * the creation is a deferred call: it's better to make sure first that we need to use
2646  * a given ring with the context.
2647  *
2648  * Return: non-zero on error.
2649  */
2650
2651 int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2652                                     struct intel_engine_cs *engine)
2653 {
2654         struct drm_device *dev = engine->dev;
2655         struct drm_i915_gem_object *ctx_obj;
2656         uint32_t context_size;
2657         struct intel_ringbuffer *ringbuf;
2658         int ret;
2659
2660         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2661         WARN_ON(ctx->engine[engine->id].state);
2662
2663         context_size = round_up(intel_lr_context_size(engine), 4096);
2664
2665         /* One extra page as the sharing data between driver and GuC */
2666         context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2667
2668         ctx_obj = i915_gem_alloc_object(dev, context_size);
2669         if (!ctx_obj) {
2670                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2671                 return -ENOMEM;
2672         }
2673
2674         ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
2675         if (IS_ERR(ringbuf)) {
2676                 ret = PTR_ERR(ringbuf);
2677                 goto error_deref_obj;
2678         }
2679
2680         ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2681         if (ret) {
2682                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2683                 goto error_ringbuf;
2684         }
2685
2686         ctx->engine[engine->id].ringbuf = ringbuf;
2687         ctx->engine[engine->id].state = ctx_obj;
2688
2689         if (ctx != ctx->i915->kernel_context && engine->init_context) {
2690                 struct drm_i915_gem_request *req;
2691
2692                 req = i915_gem_request_alloc(engine, ctx);
2693                 if (IS_ERR(req)) {
2694                         ret = PTR_ERR(req);
2695                         DRM_ERROR("ring create req: %d\n", ret);
2696                         goto error_ringbuf;
2697                 }
2698
2699                 ret = engine->init_context(req);
2700                 i915_add_request_no_flush(req);
2701                 if (ret) {
2702                         DRM_ERROR("ring init context: %d\n",
2703                                 ret);
2704                         goto error_ringbuf;
2705                 }
2706         }
2707         return 0;
2708
2709 error_ringbuf:
2710         intel_ringbuffer_free(ringbuf);
2711 error_deref_obj:
2712         drm_gem_object_unreference(&ctx_obj->base);
2713         ctx->engine[engine->id].ringbuf = NULL;
2714         ctx->engine[engine->id].state = NULL;
2715         return ret;
2716 }
2717
2718 void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2719                             struct intel_context *ctx)
2720 {
2721         struct intel_engine_cs *engine;
2722
2723         for_each_engine(engine, dev_priv) {
2724                 struct drm_i915_gem_object *ctx_obj =
2725                                 ctx->engine[engine->id].state;
2726                 struct intel_ringbuffer *ringbuf =
2727                                 ctx->engine[engine->id].ringbuf;
2728                 void *vaddr;
2729                 uint32_t *reg_state;
2730
2731                 if (!ctx_obj)
2732                         continue;
2733
2734                 vaddr = i915_gem_object_pin_map(ctx_obj);
2735                 if (WARN_ON(IS_ERR(vaddr)))
2736                         continue;
2737
2738                 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2739                 ctx_obj->dirty = true;
2740
2741                 reg_state[CTX_RING_HEAD+1] = 0;
2742                 reg_state[CTX_RING_TAIL+1] = 0;
2743
2744                 i915_gem_object_unpin_map(ctx_obj);
2745
2746                 ringbuf->head = 0;
2747                 ringbuf->tail = 0;
2748         }
2749 }