82c2efdcdd898a29d2928ef4b8fcd395671a2fdc
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include <drm/drm_plane_helper.h>
30 #include "i915_drv.h"
31 #include "intel_drv.h"
32 #include "../../../platform/x86/intel_ips.h"
33 #include <linux/module.h>
34
35 /**
36  * DOC: RC6
37  *
38  * RC6 is a special power stage which allows the GPU to enter an very
39  * low-voltage mode when idle, using down to 0V while at this stage.  This
40  * stage is entered automatically when the GPU is idle when RC6 support is
41  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
42  *
43  * There are different RC6 modes available in Intel GPU, which differentiate
44  * among each other with the latency required to enter and leave RC6 and
45  * voltage consumed by the GPU in different states.
46  *
47  * The combination of the following flags define which states GPU is allowed
48  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49  * RC6pp is deepest RC6. Their support by hardware varies according to the
50  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51  * which brings the most power savings; deeper states save more power, but
52  * require higher latency to switch to and wake up.
53  */
54 #define INTEL_RC6_ENABLE                        (1<<0)
55 #define INTEL_RC6p_ENABLE                       (1<<1)
56 #define INTEL_RC6pp_ENABLE                      (1<<2)
57
58 static void gen9_init_clock_gating(struct drm_device *dev)
59 {
60         struct drm_i915_private *dev_priv = dev->dev_private;
61
62         /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
63         I915_WRITE(CHICKEN_PAR1_1,
64                    I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
65
66         I915_WRITE(GEN8_CONFIG0,
67                    I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
68
69         /* WaEnableChickenDCPR:skl,bxt,kbl */
70         I915_WRITE(GEN8_CHICKEN_DCPR_1,
71                    I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
72
73         /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
74         /* WaFbcWakeMemOn:skl,bxt,kbl */
75         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
76                    DISP_FBC_WM_DIS |
77                    DISP_FBC_MEMORY_WAKE);
78
79         /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
80         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
81                    ILK_DPFC_DISABLE_DUMMY0);
82 }
83
84 static void bxt_init_clock_gating(struct drm_device *dev)
85 {
86         struct drm_i915_private *dev_priv = dev->dev_private;
87
88         gen9_init_clock_gating(dev);
89
90         /* WaDisableSDEUnitClockGating:bxt */
91         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
92                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
93
94         /*
95          * FIXME:
96          * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
97          */
98         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
99                    GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
100
101         /*
102          * Wa: Backlight PWM may stop in the asserted state, causing backlight
103          * to stay fully on.
104          */
105         if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
106                 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
107                            PWM1_GATING_DIS | PWM2_GATING_DIS);
108 }
109
110 static void i915_pineview_get_mem_freq(struct drm_device *dev)
111 {
112         struct drm_i915_private *dev_priv = dev->dev_private;
113         u32 tmp;
114
115         tmp = I915_READ(CLKCFG);
116
117         switch (tmp & CLKCFG_FSB_MASK) {
118         case CLKCFG_FSB_533:
119                 dev_priv->fsb_freq = 533; /* 133*4 */
120                 break;
121         case CLKCFG_FSB_800:
122                 dev_priv->fsb_freq = 800; /* 200*4 */
123                 break;
124         case CLKCFG_FSB_667:
125                 dev_priv->fsb_freq =  667; /* 167*4 */
126                 break;
127         case CLKCFG_FSB_400:
128                 dev_priv->fsb_freq = 400; /* 100*4 */
129                 break;
130         }
131
132         switch (tmp & CLKCFG_MEM_MASK) {
133         case CLKCFG_MEM_533:
134                 dev_priv->mem_freq = 533;
135                 break;
136         case CLKCFG_MEM_667:
137                 dev_priv->mem_freq = 667;
138                 break;
139         case CLKCFG_MEM_800:
140                 dev_priv->mem_freq = 800;
141                 break;
142         }
143
144         /* detect pineview DDR3 setting */
145         tmp = I915_READ(CSHRDDR3CTL);
146         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
147 }
148
149 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
150 {
151         struct drm_i915_private *dev_priv = dev->dev_private;
152         u16 ddrpll, csipll;
153
154         ddrpll = I915_READ16(DDRMPLL1);
155         csipll = I915_READ16(CSIPLL0);
156
157         switch (ddrpll & 0xff) {
158         case 0xc:
159                 dev_priv->mem_freq = 800;
160                 break;
161         case 0x10:
162                 dev_priv->mem_freq = 1066;
163                 break;
164         case 0x14:
165                 dev_priv->mem_freq = 1333;
166                 break;
167         case 0x18:
168                 dev_priv->mem_freq = 1600;
169                 break;
170         default:
171                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
172                                  ddrpll & 0xff);
173                 dev_priv->mem_freq = 0;
174                 break;
175         }
176
177         dev_priv->ips.r_t = dev_priv->mem_freq;
178
179         switch (csipll & 0x3ff) {
180         case 0x00c:
181                 dev_priv->fsb_freq = 3200;
182                 break;
183         case 0x00e:
184                 dev_priv->fsb_freq = 3733;
185                 break;
186         case 0x010:
187                 dev_priv->fsb_freq = 4266;
188                 break;
189         case 0x012:
190                 dev_priv->fsb_freq = 4800;
191                 break;
192         case 0x014:
193                 dev_priv->fsb_freq = 5333;
194                 break;
195         case 0x016:
196                 dev_priv->fsb_freq = 5866;
197                 break;
198         case 0x018:
199                 dev_priv->fsb_freq = 6400;
200                 break;
201         default:
202                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
203                                  csipll & 0x3ff);
204                 dev_priv->fsb_freq = 0;
205                 break;
206         }
207
208         if (dev_priv->fsb_freq == 3200) {
209                 dev_priv->ips.c_m = 0;
210         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
211                 dev_priv->ips.c_m = 1;
212         } else {
213                 dev_priv->ips.c_m = 2;
214         }
215 }
216
217 static const struct cxsr_latency cxsr_latency_table[] = {
218         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
219         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
220         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
221         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
222         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
223
224         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
225         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
226         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
227         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
228         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
229
230         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
231         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
232         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
233         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
234         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
235
236         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
237         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
238         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
239         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
240         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
241
242         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
243         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
244         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
245         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
246         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
247
248         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
249         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
250         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
251         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
252         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
253 };
254
255 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
256                                                          int is_ddr3,
257                                                          int fsb,
258                                                          int mem)
259 {
260         const struct cxsr_latency *latency;
261         int i;
262
263         if (fsb == 0 || mem == 0)
264                 return NULL;
265
266         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
267                 latency = &cxsr_latency_table[i];
268                 if (is_desktop == latency->is_desktop &&
269                     is_ddr3 == latency->is_ddr3 &&
270                     fsb == latency->fsb_freq && mem == latency->mem_freq)
271                         return latency;
272         }
273
274         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
275
276         return NULL;
277 }
278
279 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
280 {
281         u32 val;
282
283         mutex_lock(&dev_priv->rps.hw_lock);
284
285         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
286         if (enable)
287                 val &= ~FORCE_DDR_HIGH_FREQ;
288         else
289                 val |= FORCE_DDR_HIGH_FREQ;
290         val &= ~FORCE_DDR_LOW_FREQ;
291         val |= FORCE_DDR_FREQ_REQ_ACK;
292         vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
293
294         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
295                       FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
296                 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
297
298         mutex_unlock(&dev_priv->rps.hw_lock);
299 }
300
301 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
302 {
303         u32 val;
304
305         mutex_lock(&dev_priv->rps.hw_lock);
306
307         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
308         if (enable)
309                 val |= DSP_MAXFIFO_PM5_ENABLE;
310         else
311                 val &= ~DSP_MAXFIFO_PM5_ENABLE;
312         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
313
314         mutex_unlock(&dev_priv->rps.hw_lock);
315 }
316
317 #define FW_WM(value, plane) \
318         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
319
320 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
321 {
322         struct drm_device *dev = dev_priv->dev;
323         u32 val;
324
325         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
326                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
327                 POSTING_READ(FW_BLC_SELF_VLV);
328                 dev_priv->wm.vlv.cxsr = enable;
329         } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
330                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
331                 POSTING_READ(FW_BLC_SELF);
332         } else if (IS_PINEVIEW(dev)) {
333                 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
334                 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
335                 I915_WRITE(DSPFW3, val);
336                 POSTING_READ(DSPFW3);
337         } else if (IS_I945G(dev) || IS_I945GM(dev)) {
338                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
339                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
340                 I915_WRITE(FW_BLC_SELF, val);
341                 POSTING_READ(FW_BLC_SELF);
342         } else if (IS_I915GM(dev)) {
343                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
344                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
345                 I915_WRITE(INSTPM, val);
346                 POSTING_READ(INSTPM);
347         } else {
348                 return;
349         }
350
351         DRM_DEBUG_KMS("memory self-refresh is %s\n",
352                       enable ? "enabled" : "disabled");
353 }
354
355
356 /*
357  * Latency for FIFO fetches is dependent on several factors:
358  *   - memory configuration (speed, channels)
359  *   - chipset
360  *   - current MCH state
361  * It can be fairly high in some situations, so here we assume a fairly
362  * pessimal value.  It's a tradeoff between extra memory fetches (if we
363  * set this value too high, the FIFO will fetch frequently to stay full)
364  * and power consumption (set it too low to save power and we might see
365  * FIFO underruns and display "flicker").
366  *
367  * A value of 5us seems to be a good balance; safe for very low end
368  * platforms but not overly aggressive on lower latency configs.
369  */
370 static const int pessimal_latency_ns = 5000;
371
372 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
373         ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
374
375 static int vlv_get_fifo_size(struct drm_device *dev,
376                               enum pipe pipe, int plane)
377 {
378         struct drm_i915_private *dev_priv = dev->dev_private;
379         int sprite0_start, sprite1_start, size;
380
381         switch (pipe) {
382                 uint32_t dsparb, dsparb2, dsparb3;
383         case PIPE_A:
384                 dsparb = I915_READ(DSPARB);
385                 dsparb2 = I915_READ(DSPARB2);
386                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
387                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
388                 break;
389         case PIPE_B:
390                 dsparb = I915_READ(DSPARB);
391                 dsparb2 = I915_READ(DSPARB2);
392                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
393                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
394                 break;
395         case PIPE_C:
396                 dsparb2 = I915_READ(DSPARB2);
397                 dsparb3 = I915_READ(DSPARB3);
398                 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
399                 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
400                 break;
401         default:
402                 return 0;
403         }
404
405         switch (plane) {
406         case 0:
407                 size = sprite0_start;
408                 break;
409         case 1:
410                 size = sprite1_start - sprite0_start;
411                 break;
412         case 2:
413                 size = 512 - 1 - sprite1_start;
414                 break;
415         default:
416                 return 0;
417         }
418
419         DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
420                       pipe_name(pipe), plane == 0 ? "primary" : "sprite",
421                       plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
422                       size);
423
424         return size;
425 }
426
427 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
428 {
429         struct drm_i915_private *dev_priv = dev->dev_private;
430         uint32_t dsparb = I915_READ(DSPARB);
431         int size;
432
433         size = dsparb & 0x7f;
434         if (plane)
435                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
436
437         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
438                       plane ? "B" : "A", size);
439
440         return size;
441 }
442
443 static int i830_get_fifo_size(struct drm_device *dev, int plane)
444 {
445         struct drm_i915_private *dev_priv = dev->dev_private;
446         uint32_t dsparb = I915_READ(DSPARB);
447         int size;
448
449         size = dsparb & 0x1ff;
450         if (plane)
451                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
452         size >>= 1; /* Convert to cachelines */
453
454         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
455                       plane ? "B" : "A", size);
456
457         return size;
458 }
459
460 static int i845_get_fifo_size(struct drm_device *dev, int plane)
461 {
462         struct drm_i915_private *dev_priv = dev->dev_private;
463         uint32_t dsparb = I915_READ(DSPARB);
464         int size;
465
466         size = dsparb & 0x7f;
467         size >>= 2; /* Convert to cachelines */
468
469         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
470                       plane ? "B" : "A",
471                       size);
472
473         return size;
474 }
475
476 /* Pineview has different values for various configs */
477 static const struct intel_watermark_params pineview_display_wm = {
478         .fifo_size = PINEVIEW_DISPLAY_FIFO,
479         .max_wm = PINEVIEW_MAX_WM,
480         .default_wm = PINEVIEW_DFT_WM,
481         .guard_size = PINEVIEW_GUARD_WM,
482         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
483 };
484 static const struct intel_watermark_params pineview_display_hplloff_wm = {
485         .fifo_size = PINEVIEW_DISPLAY_FIFO,
486         .max_wm = PINEVIEW_MAX_WM,
487         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
488         .guard_size = PINEVIEW_GUARD_WM,
489         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
490 };
491 static const struct intel_watermark_params pineview_cursor_wm = {
492         .fifo_size = PINEVIEW_CURSOR_FIFO,
493         .max_wm = PINEVIEW_CURSOR_MAX_WM,
494         .default_wm = PINEVIEW_CURSOR_DFT_WM,
495         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
496         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
497 };
498 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
499         .fifo_size = PINEVIEW_CURSOR_FIFO,
500         .max_wm = PINEVIEW_CURSOR_MAX_WM,
501         .default_wm = PINEVIEW_CURSOR_DFT_WM,
502         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
503         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
504 };
505 static const struct intel_watermark_params g4x_wm_info = {
506         .fifo_size = G4X_FIFO_SIZE,
507         .max_wm = G4X_MAX_WM,
508         .default_wm = G4X_MAX_WM,
509         .guard_size = 2,
510         .cacheline_size = G4X_FIFO_LINE_SIZE,
511 };
512 static const struct intel_watermark_params g4x_cursor_wm_info = {
513         .fifo_size = I965_CURSOR_FIFO,
514         .max_wm = I965_CURSOR_MAX_WM,
515         .default_wm = I965_CURSOR_DFT_WM,
516         .guard_size = 2,
517         .cacheline_size = G4X_FIFO_LINE_SIZE,
518 };
519 static const struct intel_watermark_params i965_cursor_wm_info = {
520         .fifo_size = I965_CURSOR_FIFO,
521         .max_wm = I965_CURSOR_MAX_WM,
522         .default_wm = I965_CURSOR_DFT_WM,
523         .guard_size = 2,
524         .cacheline_size = I915_FIFO_LINE_SIZE,
525 };
526 static const struct intel_watermark_params i945_wm_info = {
527         .fifo_size = I945_FIFO_SIZE,
528         .max_wm = I915_MAX_WM,
529         .default_wm = 1,
530         .guard_size = 2,
531         .cacheline_size = I915_FIFO_LINE_SIZE,
532 };
533 static const struct intel_watermark_params i915_wm_info = {
534         .fifo_size = I915_FIFO_SIZE,
535         .max_wm = I915_MAX_WM,
536         .default_wm = 1,
537         .guard_size = 2,
538         .cacheline_size = I915_FIFO_LINE_SIZE,
539 };
540 static const struct intel_watermark_params i830_a_wm_info = {
541         .fifo_size = I855GM_FIFO_SIZE,
542         .max_wm = I915_MAX_WM,
543         .default_wm = 1,
544         .guard_size = 2,
545         .cacheline_size = I830_FIFO_LINE_SIZE,
546 };
547 static const struct intel_watermark_params i830_bc_wm_info = {
548         .fifo_size = I855GM_FIFO_SIZE,
549         .max_wm = I915_MAX_WM/2,
550         .default_wm = 1,
551         .guard_size = 2,
552         .cacheline_size = I830_FIFO_LINE_SIZE,
553 };
554 static const struct intel_watermark_params i845_wm_info = {
555         .fifo_size = I830_FIFO_SIZE,
556         .max_wm = I915_MAX_WM,
557         .default_wm = 1,
558         .guard_size = 2,
559         .cacheline_size = I830_FIFO_LINE_SIZE,
560 };
561
562 /**
563  * intel_calculate_wm - calculate watermark level
564  * @clock_in_khz: pixel clock
565  * @wm: chip FIFO params
566  * @cpp: bytes per pixel
567  * @latency_ns: memory latency for the platform
568  *
569  * Calculate the watermark level (the level at which the display plane will
570  * start fetching from memory again).  Each chip has a different display
571  * FIFO size and allocation, so the caller needs to figure that out and pass
572  * in the correct intel_watermark_params structure.
573  *
574  * As the pixel clock runs, the FIFO will be drained at a rate that depends
575  * on the pixel size.  When it reaches the watermark level, it'll start
576  * fetching FIFO line sized based chunks from memory until the FIFO fills
577  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
578  * will occur, and a display engine hang could result.
579  */
580 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
581                                         const struct intel_watermark_params *wm,
582                                         int fifo_size, int cpp,
583                                         unsigned long latency_ns)
584 {
585         long entries_required, wm_size;
586
587         /*
588          * Note: we need to make sure we don't overflow for various clock &
589          * latency values.
590          * clocks go from a few thousand to several hundred thousand.
591          * latency is usually a few thousand
592          */
593         entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
594                 1000;
595         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
596
597         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
598
599         wm_size = fifo_size - (entries_required + wm->guard_size);
600
601         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
602
603         /* Don't promote wm_size to unsigned... */
604         if (wm_size > (long)wm->max_wm)
605                 wm_size = wm->max_wm;
606         if (wm_size <= 0)
607                 wm_size = wm->default_wm;
608
609         /*
610          * Bspec seems to indicate that the value shouldn't be lower than
611          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
612          * Lets go for 8 which is the burst size since certain platforms
613          * already use a hardcoded 8 (which is what the spec says should be
614          * done).
615          */
616         if (wm_size <= 8)
617                 wm_size = 8;
618
619         return wm_size;
620 }
621
622 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
623 {
624         struct drm_crtc *crtc, *enabled = NULL;
625
626         for_each_crtc(dev, crtc) {
627                 if (intel_crtc_active(crtc)) {
628                         if (enabled)
629                                 return NULL;
630                         enabled = crtc;
631                 }
632         }
633
634         return enabled;
635 }
636
637 static void pineview_update_wm(struct drm_crtc *unused_crtc)
638 {
639         struct drm_device *dev = unused_crtc->dev;
640         struct drm_i915_private *dev_priv = dev->dev_private;
641         struct drm_crtc *crtc;
642         const struct cxsr_latency *latency;
643         u32 reg;
644         unsigned long wm;
645
646         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
647                                          dev_priv->fsb_freq, dev_priv->mem_freq);
648         if (!latency) {
649                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
650                 intel_set_memory_cxsr(dev_priv, false);
651                 return;
652         }
653
654         crtc = single_enabled_crtc(dev);
655         if (crtc) {
656                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
657                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
658                 int clock = adjusted_mode->crtc_clock;
659
660                 /* Display SR */
661                 wm = intel_calculate_wm(clock, &pineview_display_wm,
662                                         pineview_display_wm.fifo_size,
663                                         cpp, latency->display_sr);
664                 reg = I915_READ(DSPFW1);
665                 reg &= ~DSPFW_SR_MASK;
666                 reg |= FW_WM(wm, SR);
667                 I915_WRITE(DSPFW1, reg);
668                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
669
670                 /* cursor SR */
671                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
672                                         pineview_display_wm.fifo_size,
673                                         cpp, latency->cursor_sr);
674                 reg = I915_READ(DSPFW3);
675                 reg &= ~DSPFW_CURSOR_SR_MASK;
676                 reg |= FW_WM(wm, CURSOR_SR);
677                 I915_WRITE(DSPFW3, reg);
678
679                 /* Display HPLL off SR */
680                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
681                                         pineview_display_hplloff_wm.fifo_size,
682                                         cpp, latency->display_hpll_disable);
683                 reg = I915_READ(DSPFW3);
684                 reg &= ~DSPFW_HPLL_SR_MASK;
685                 reg |= FW_WM(wm, HPLL_SR);
686                 I915_WRITE(DSPFW3, reg);
687
688                 /* cursor HPLL off SR */
689                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
690                                         pineview_display_hplloff_wm.fifo_size,
691                                         cpp, latency->cursor_hpll_disable);
692                 reg = I915_READ(DSPFW3);
693                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
694                 reg |= FW_WM(wm, HPLL_CURSOR);
695                 I915_WRITE(DSPFW3, reg);
696                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
697
698                 intel_set_memory_cxsr(dev_priv, true);
699         } else {
700                 intel_set_memory_cxsr(dev_priv, false);
701         }
702 }
703
704 static bool g4x_compute_wm0(struct drm_device *dev,
705                             int plane,
706                             const struct intel_watermark_params *display,
707                             int display_latency_ns,
708                             const struct intel_watermark_params *cursor,
709                             int cursor_latency_ns,
710                             int *plane_wm,
711                             int *cursor_wm)
712 {
713         struct drm_crtc *crtc;
714         const struct drm_display_mode *adjusted_mode;
715         int htotal, hdisplay, clock, cpp;
716         int line_time_us, line_count;
717         int entries, tlb_miss;
718
719         crtc = intel_get_crtc_for_plane(dev, plane);
720         if (!intel_crtc_active(crtc)) {
721                 *cursor_wm = cursor->guard_size;
722                 *plane_wm = display->guard_size;
723                 return false;
724         }
725
726         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
727         clock = adjusted_mode->crtc_clock;
728         htotal = adjusted_mode->crtc_htotal;
729         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
730         cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
731
732         /* Use the small buffer method to calculate plane watermark */
733         entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
734         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
735         if (tlb_miss > 0)
736                 entries += tlb_miss;
737         entries = DIV_ROUND_UP(entries, display->cacheline_size);
738         *plane_wm = entries + display->guard_size;
739         if (*plane_wm > (int)display->max_wm)
740                 *plane_wm = display->max_wm;
741
742         /* Use the large buffer method to calculate cursor watermark */
743         line_time_us = max(htotal * 1000 / clock, 1);
744         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
745         entries = line_count * crtc->cursor->state->crtc_w * cpp;
746         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
747         if (tlb_miss > 0)
748                 entries += tlb_miss;
749         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
750         *cursor_wm = entries + cursor->guard_size;
751         if (*cursor_wm > (int)cursor->max_wm)
752                 *cursor_wm = (int)cursor->max_wm;
753
754         return true;
755 }
756
757 /*
758  * Check the wm result.
759  *
760  * If any calculated watermark values is larger than the maximum value that
761  * can be programmed into the associated watermark register, that watermark
762  * must be disabled.
763  */
764 static bool g4x_check_srwm(struct drm_device *dev,
765                            int display_wm, int cursor_wm,
766                            const struct intel_watermark_params *display,
767                            const struct intel_watermark_params *cursor)
768 {
769         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
770                       display_wm, cursor_wm);
771
772         if (display_wm > display->max_wm) {
773                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
774                               display_wm, display->max_wm);
775                 return false;
776         }
777
778         if (cursor_wm > cursor->max_wm) {
779                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
780                               cursor_wm, cursor->max_wm);
781                 return false;
782         }
783
784         if (!(display_wm || cursor_wm)) {
785                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
786                 return false;
787         }
788
789         return true;
790 }
791
792 static bool g4x_compute_srwm(struct drm_device *dev,
793                              int plane,
794                              int latency_ns,
795                              const struct intel_watermark_params *display,
796                              const struct intel_watermark_params *cursor,
797                              int *display_wm, int *cursor_wm)
798 {
799         struct drm_crtc *crtc;
800         const struct drm_display_mode *adjusted_mode;
801         int hdisplay, htotal, cpp, clock;
802         unsigned long line_time_us;
803         int line_count, line_size;
804         int small, large;
805         int entries;
806
807         if (!latency_ns) {
808                 *display_wm = *cursor_wm = 0;
809                 return false;
810         }
811
812         crtc = intel_get_crtc_for_plane(dev, plane);
813         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
814         clock = adjusted_mode->crtc_clock;
815         htotal = adjusted_mode->crtc_htotal;
816         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
817         cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
818
819         line_time_us = max(htotal * 1000 / clock, 1);
820         line_count = (latency_ns / line_time_us + 1000) / 1000;
821         line_size = hdisplay * cpp;
822
823         /* Use the minimum of the small and large buffer method for primary */
824         small = ((clock * cpp / 1000) * latency_ns) / 1000;
825         large = line_count * line_size;
826
827         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
828         *display_wm = entries + display->guard_size;
829
830         /* calculate the self-refresh watermark for display cursor */
831         entries = line_count * cpp * crtc->cursor->state->crtc_w;
832         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
833         *cursor_wm = entries + cursor->guard_size;
834
835         return g4x_check_srwm(dev,
836                               *display_wm, *cursor_wm,
837                               display, cursor);
838 }
839
840 #define FW_WM_VLV(value, plane) \
841         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
842
843 static void vlv_write_wm_values(struct intel_crtc *crtc,
844                                 const struct vlv_wm_values *wm)
845 {
846         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
847         enum pipe pipe = crtc->pipe;
848
849         I915_WRITE(VLV_DDL(pipe),
850                    (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
851                    (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
852                    (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
853                    (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
854
855         I915_WRITE(DSPFW1,
856                    FW_WM(wm->sr.plane, SR) |
857                    FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
858                    FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
859                    FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
860         I915_WRITE(DSPFW2,
861                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
862                    FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
863                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
864         I915_WRITE(DSPFW3,
865                    FW_WM(wm->sr.cursor, CURSOR_SR));
866
867         if (IS_CHERRYVIEW(dev_priv)) {
868                 I915_WRITE(DSPFW7_CHV,
869                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
870                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
871                 I915_WRITE(DSPFW8_CHV,
872                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
873                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
874                 I915_WRITE(DSPFW9_CHV,
875                            FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
876                            FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
877                 I915_WRITE(DSPHOWM,
878                            FW_WM(wm->sr.plane >> 9, SR_HI) |
879                            FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
880                            FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
881                            FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
882                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
883                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
884                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
885                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
886                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
887                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
888         } else {
889                 I915_WRITE(DSPFW7,
890                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
891                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
892                 I915_WRITE(DSPHOWM,
893                            FW_WM(wm->sr.plane >> 9, SR_HI) |
894                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
895                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
896                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
897                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
898                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
899                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
900         }
901
902         /* zero (unused) WM1 watermarks */
903         I915_WRITE(DSPFW4, 0);
904         I915_WRITE(DSPFW5, 0);
905         I915_WRITE(DSPFW6, 0);
906         I915_WRITE(DSPHOWM1, 0);
907
908         POSTING_READ(DSPFW1);
909 }
910
911 #undef FW_WM_VLV
912
913 enum vlv_wm_level {
914         VLV_WM_LEVEL_PM2,
915         VLV_WM_LEVEL_PM5,
916         VLV_WM_LEVEL_DDR_DVFS,
917 };
918
919 /* latency must be in 0.1us units. */
920 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
921                                    unsigned int pipe_htotal,
922                                    unsigned int horiz_pixels,
923                                    unsigned int cpp,
924                                    unsigned int latency)
925 {
926         unsigned int ret;
927
928         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
929         ret = (ret + 1) * horiz_pixels * cpp;
930         ret = DIV_ROUND_UP(ret, 64);
931
932         return ret;
933 }
934
935 static void vlv_setup_wm_latency(struct drm_device *dev)
936 {
937         struct drm_i915_private *dev_priv = dev->dev_private;
938
939         /* all latencies in usec */
940         dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
941
942         dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
943
944         if (IS_CHERRYVIEW(dev_priv)) {
945                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
946                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
947
948                 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
949         }
950 }
951
952 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
953                                      struct intel_crtc *crtc,
954                                      const struct intel_plane_state *state,
955                                      int level)
956 {
957         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
958         int clock, htotal, cpp, width, wm;
959
960         if (dev_priv->wm.pri_latency[level] == 0)
961                 return USHRT_MAX;
962
963         if (!state->visible)
964                 return 0;
965
966         cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
967         clock = crtc->config->base.adjusted_mode.crtc_clock;
968         htotal = crtc->config->base.adjusted_mode.crtc_htotal;
969         width = crtc->config->pipe_src_w;
970         if (WARN_ON(htotal == 0))
971                 htotal = 1;
972
973         if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
974                 /*
975                  * FIXME the formula gives values that are
976                  * too big for the cursor FIFO, and hence we
977                  * would never be able to use cursors. For
978                  * now just hardcode the watermark.
979                  */
980                 wm = 63;
981         } else {
982                 wm = vlv_wm_method2(clock, htotal, width, cpp,
983                                     dev_priv->wm.pri_latency[level] * 10);
984         }
985
986         return min_t(int, wm, USHRT_MAX);
987 }
988
989 static void vlv_compute_fifo(struct intel_crtc *crtc)
990 {
991         struct drm_device *dev = crtc->base.dev;
992         struct vlv_wm_state *wm_state = &crtc->wm_state;
993         struct intel_plane *plane;
994         unsigned int total_rate = 0;
995         const int fifo_size = 512 - 1;
996         int fifo_extra, fifo_left = fifo_size;
997
998         for_each_intel_plane_on_crtc(dev, crtc, plane) {
999                 struct intel_plane_state *state =
1000                         to_intel_plane_state(plane->base.state);
1001
1002                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1003                         continue;
1004
1005                 if (state->visible) {
1006                         wm_state->num_active_planes++;
1007                         total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1008                 }
1009         }
1010
1011         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1012                 struct intel_plane_state *state =
1013                         to_intel_plane_state(plane->base.state);
1014                 unsigned int rate;
1015
1016                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1017                         plane->wm.fifo_size = 63;
1018                         continue;
1019                 }
1020
1021                 if (!state->visible) {
1022                         plane->wm.fifo_size = 0;
1023                         continue;
1024                 }
1025
1026                 rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1027                 plane->wm.fifo_size = fifo_size * rate / total_rate;
1028                 fifo_left -= plane->wm.fifo_size;
1029         }
1030
1031         fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1032
1033         /* spread the remainder evenly */
1034         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1035                 int plane_extra;
1036
1037                 if (fifo_left == 0)
1038                         break;
1039
1040                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1041                         continue;
1042
1043                 /* give it all to the first plane if none are active */
1044                 if (plane->wm.fifo_size == 0 &&
1045                     wm_state->num_active_planes)
1046                         continue;
1047
1048                 plane_extra = min(fifo_extra, fifo_left);
1049                 plane->wm.fifo_size += plane_extra;
1050                 fifo_left -= plane_extra;
1051         }
1052
1053         WARN_ON(fifo_left != 0);
1054 }
1055
1056 static void vlv_invert_wms(struct intel_crtc *crtc)
1057 {
1058         struct vlv_wm_state *wm_state = &crtc->wm_state;
1059         int level;
1060
1061         for (level = 0; level < wm_state->num_levels; level++) {
1062                 struct drm_device *dev = crtc->base.dev;
1063                 const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1064                 struct intel_plane *plane;
1065
1066                 wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1067                 wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1068
1069                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1070                         switch (plane->base.type) {
1071                                 int sprite;
1072                         case DRM_PLANE_TYPE_CURSOR:
1073                                 wm_state->wm[level].cursor = plane->wm.fifo_size -
1074                                         wm_state->wm[level].cursor;
1075                                 break;
1076                         case DRM_PLANE_TYPE_PRIMARY:
1077                                 wm_state->wm[level].primary = plane->wm.fifo_size -
1078                                         wm_state->wm[level].primary;
1079                                 break;
1080                         case DRM_PLANE_TYPE_OVERLAY:
1081                                 sprite = plane->plane;
1082                                 wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1083                                         wm_state->wm[level].sprite[sprite];
1084                                 break;
1085                         }
1086                 }
1087         }
1088 }
1089
1090 static void vlv_compute_wm(struct intel_crtc *crtc)
1091 {
1092         struct drm_device *dev = crtc->base.dev;
1093         struct vlv_wm_state *wm_state = &crtc->wm_state;
1094         struct intel_plane *plane;
1095         int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1096         int level;
1097
1098         memset(wm_state, 0, sizeof(*wm_state));
1099
1100         wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1101         wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1102
1103         wm_state->num_active_planes = 0;
1104
1105         vlv_compute_fifo(crtc);
1106
1107         if (wm_state->num_active_planes != 1)
1108                 wm_state->cxsr = false;
1109
1110         if (wm_state->cxsr) {
1111                 for (level = 0; level < wm_state->num_levels; level++) {
1112                         wm_state->sr[level].plane = sr_fifo_size;
1113                         wm_state->sr[level].cursor = 63;
1114                 }
1115         }
1116
1117         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1118                 struct intel_plane_state *state =
1119                         to_intel_plane_state(plane->base.state);
1120
1121                 if (!state->visible)
1122                         continue;
1123
1124                 /* normal watermarks */
1125                 for (level = 0; level < wm_state->num_levels; level++) {
1126                         int wm = vlv_compute_wm_level(plane, crtc, state, level);
1127                         int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1128
1129                         /* hack */
1130                         if (WARN_ON(level == 0 && wm > max_wm))
1131                                 wm = max_wm;
1132
1133                         if (wm > plane->wm.fifo_size)
1134                                 break;
1135
1136                         switch (plane->base.type) {
1137                                 int sprite;
1138                         case DRM_PLANE_TYPE_CURSOR:
1139                                 wm_state->wm[level].cursor = wm;
1140                                 break;
1141                         case DRM_PLANE_TYPE_PRIMARY:
1142                                 wm_state->wm[level].primary = wm;
1143                                 break;
1144                         case DRM_PLANE_TYPE_OVERLAY:
1145                                 sprite = plane->plane;
1146                                 wm_state->wm[level].sprite[sprite] = wm;
1147                                 break;
1148                         }
1149                 }
1150
1151                 wm_state->num_levels = level;
1152
1153                 if (!wm_state->cxsr)
1154                         continue;
1155
1156                 /* maxfifo watermarks */
1157                 switch (plane->base.type) {
1158                         int sprite, level;
1159                 case DRM_PLANE_TYPE_CURSOR:
1160                         for (level = 0; level < wm_state->num_levels; level++)
1161                                 wm_state->sr[level].cursor =
1162                                         wm_state->wm[level].cursor;
1163                         break;
1164                 case DRM_PLANE_TYPE_PRIMARY:
1165                         for (level = 0; level < wm_state->num_levels; level++)
1166                                 wm_state->sr[level].plane =
1167                                         min(wm_state->sr[level].plane,
1168                                             wm_state->wm[level].primary);
1169                         break;
1170                 case DRM_PLANE_TYPE_OVERLAY:
1171                         sprite = plane->plane;
1172                         for (level = 0; level < wm_state->num_levels; level++)
1173                                 wm_state->sr[level].plane =
1174                                         min(wm_state->sr[level].plane,
1175                                             wm_state->wm[level].sprite[sprite]);
1176                         break;
1177                 }
1178         }
1179
1180         /* clear any (partially) filled invalid levels */
1181         for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1182                 memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1183                 memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1184         }
1185
1186         vlv_invert_wms(crtc);
1187 }
1188
1189 #define VLV_FIFO(plane, value) \
1190         (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1191
1192 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1193 {
1194         struct drm_device *dev = crtc->base.dev;
1195         struct drm_i915_private *dev_priv = to_i915(dev);
1196         struct intel_plane *plane;
1197         int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1198
1199         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1200                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1201                         WARN_ON(plane->wm.fifo_size != 63);
1202                         continue;
1203                 }
1204
1205                 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1206                         sprite0_start = plane->wm.fifo_size;
1207                 else if (plane->plane == 0)
1208                         sprite1_start = sprite0_start + plane->wm.fifo_size;
1209                 else
1210                         fifo_size = sprite1_start + plane->wm.fifo_size;
1211         }
1212
1213         WARN_ON(fifo_size != 512 - 1);
1214
1215         DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1216                       pipe_name(crtc->pipe), sprite0_start,
1217                       sprite1_start, fifo_size);
1218
1219         switch (crtc->pipe) {
1220                 uint32_t dsparb, dsparb2, dsparb3;
1221         case PIPE_A:
1222                 dsparb = I915_READ(DSPARB);
1223                 dsparb2 = I915_READ(DSPARB2);
1224
1225                 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1226                             VLV_FIFO(SPRITEB, 0xff));
1227                 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1228                            VLV_FIFO(SPRITEB, sprite1_start));
1229
1230                 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1231                              VLV_FIFO(SPRITEB_HI, 0x1));
1232                 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1233                            VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1234
1235                 I915_WRITE(DSPARB, dsparb);
1236                 I915_WRITE(DSPARB2, dsparb2);
1237                 break;
1238         case PIPE_B:
1239                 dsparb = I915_READ(DSPARB);
1240                 dsparb2 = I915_READ(DSPARB2);
1241
1242                 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1243                             VLV_FIFO(SPRITED, 0xff));
1244                 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1245                            VLV_FIFO(SPRITED, sprite1_start));
1246
1247                 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1248                              VLV_FIFO(SPRITED_HI, 0xff));
1249                 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1250                            VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1251
1252                 I915_WRITE(DSPARB, dsparb);
1253                 I915_WRITE(DSPARB2, dsparb2);
1254                 break;
1255         case PIPE_C:
1256                 dsparb3 = I915_READ(DSPARB3);
1257                 dsparb2 = I915_READ(DSPARB2);
1258
1259                 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1260                              VLV_FIFO(SPRITEF, 0xff));
1261                 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1262                             VLV_FIFO(SPRITEF, sprite1_start));
1263
1264                 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1265                              VLV_FIFO(SPRITEF_HI, 0xff));
1266                 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1267                            VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1268
1269                 I915_WRITE(DSPARB3, dsparb3);
1270                 I915_WRITE(DSPARB2, dsparb2);
1271                 break;
1272         default:
1273                 break;
1274         }
1275 }
1276
1277 #undef VLV_FIFO
1278
1279 static void vlv_merge_wm(struct drm_device *dev,
1280                          struct vlv_wm_values *wm)
1281 {
1282         struct intel_crtc *crtc;
1283         int num_active_crtcs = 0;
1284
1285         wm->level = to_i915(dev)->wm.max_level;
1286         wm->cxsr = true;
1287
1288         for_each_intel_crtc(dev, crtc) {
1289                 const struct vlv_wm_state *wm_state = &crtc->wm_state;
1290
1291                 if (!crtc->active)
1292                         continue;
1293
1294                 if (!wm_state->cxsr)
1295                         wm->cxsr = false;
1296
1297                 num_active_crtcs++;
1298                 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1299         }
1300
1301         if (num_active_crtcs != 1)
1302                 wm->cxsr = false;
1303
1304         if (num_active_crtcs > 1)
1305                 wm->level = VLV_WM_LEVEL_PM2;
1306
1307         for_each_intel_crtc(dev, crtc) {
1308                 struct vlv_wm_state *wm_state = &crtc->wm_state;
1309                 enum pipe pipe = crtc->pipe;
1310
1311                 if (!crtc->active)
1312                         continue;
1313
1314                 wm->pipe[pipe] = wm_state->wm[wm->level];
1315                 if (wm->cxsr)
1316                         wm->sr = wm_state->sr[wm->level];
1317
1318                 wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1319                 wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1320                 wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1321                 wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1322         }
1323 }
1324
1325 static void vlv_update_wm(struct drm_crtc *crtc)
1326 {
1327         struct drm_device *dev = crtc->dev;
1328         struct drm_i915_private *dev_priv = dev->dev_private;
1329         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1330         enum pipe pipe = intel_crtc->pipe;
1331         struct vlv_wm_values wm = {};
1332
1333         vlv_compute_wm(intel_crtc);
1334         vlv_merge_wm(dev, &wm);
1335
1336         if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1337                 /* FIXME should be part of crtc atomic commit */
1338                 vlv_pipe_set_fifo_size(intel_crtc);
1339                 return;
1340         }
1341
1342         if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1343             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1344                 chv_set_memory_dvfs(dev_priv, false);
1345
1346         if (wm.level < VLV_WM_LEVEL_PM5 &&
1347             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1348                 chv_set_memory_pm5(dev_priv, false);
1349
1350         if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1351                 intel_set_memory_cxsr(dev_priv, false);
1352
1353         /* FIXME should be part of crtc atomic commit */
1354         vlv_pipe_set_fifo_size(intel_crtc);
1355
1356         vlv_write_wm_values(intel_crtc, &wm);
1357
1358         DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1359                       "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1360                       pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1361                       wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1362                       wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1363
1364         if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1365                 intel_set_memory_cxsr(dev_priv, true);
1366
1367         if (wm.level >= VLV_WM_LEVEL_PM5 &&
1368             dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1369                 chv_set_memory_pm5(dev_priv, true);
1370
1371         if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1372             dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1373                 chv_set_memory_dvfs(dev_priv, true);
1374
1375         dev_priv->wm.vlv = wm;
1376 }
1377
1378 #define single_plane_enabled(mask) is_power_of_2(mask)
1379
1380 static void g4x_update_wm(struct drm_crtc *crtc)
1381 {
1382         struct drm_device *dev = crtc->dev;
1383         static const int sr_latency_ns = 12000;
1384         struct drm_i915_private *dev_priv = dev->dev_private;
1385         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1386         int plane_sr, cursor_sr;
1387         unsigned int enabled = 0;
1388         bool cxsr_enabled;
1389
1390         if (g4x_compute_wm0(dev, PIPE_A,
1391                             &g4x_wm_info, pessimal_latency_ns,
1392                             &g4x_cursor_wm_info, pessimal_latency_ns,
1393                             &planea_wm, &cursora_wm))
1394                 enabled |= 1 << PIPE_A;
1395
1396         if (g4x_compute_wm0(dev, PIPE_B,
1397                             &g4x_wm_info, pessimal_latency_ns,
1398                             &g4x_cursor_wm_info, pessimal_latency_ns,
1399                             &planeb_wm, &cursorb_wm))
1400                 enabled |= 1 << PIPE_B;
1401
1402         if (single_plane_enabled(enabled) &&
1403             g4x_compute_srwm(dev, ffs(enabled) - 1,
1404                              sr_latency_ns,
1405                              &g4x_wm_info,
1406                              &g4x_cursor_wm_info,
1407                              &plane_sr, &cursor_sr)) {
1408                 cxsr_enabled = true;
1409         } else {
1410                 cxsr_enabled = false;
1411                 intel_set_memory_cxsr(dev_priv, false);
1412                 plane_sr = cursor_sr = 0;
1413         }
1414
1415         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1416                       "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1417                       planea_wm, cursora_wm,
1418                       planeb_wm, cursorb_wm,
1419                       plane_sr, cursor_sr);
1420
1421         I915_WRITE(DSPFW1,
1422                    FW_WM(plane_sr, SR) |
1423                    FW_WM(cursorb_wm, CURSORB) |
1424                    FW_WM(planeb_wm, PLANEB) |
1425                    FW_WM(planea_wm, PLANEA));
1426         I915_WRITE(DSPFW2,
1427                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1428                    FW_WM(cursora_wm, CURSORA));
1429         /* HPLL off in SR has some issues on G4x... disable it */
1430         I915_WRITE(DSPFW3,
1431                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1432                    FW_WM(cursor_sr, CURSOR_SR));
1433
1434         if (cxsr_enabled)
1435                 intel_set_memory_cxsr(dev_priv, true);
1436 }
1437
1438 static void i965_update_wm(struct drm_crtc *unused_crtc)
1439 {
1440         struct drm_device *dev = unused_crtc->dev;
1441         struct drm_i915_private *dev_priv = dev->dev_private;
1442         struct drm_crtc *crtc;
1443         int srwm = 1;
1444         int cursor_sr = 16;
1445         bool cxsr_enabled;
1446
1447         /* Calc sr entries for one plane configs */
1448         crtc = single_enabled_crtc(dev);
1449         if (crtc) {
1450                 /* self-refresh has much higher latency */
1451                 static const int sr_latency_ns = 12000;
1452                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1453                 int clock = adjusted_mode->crtc_clock;
1454                 int htotal = adjusted_mode->crtc_htotal;
1455                 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1456                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1457                 unsigned long line_time_us;
1458                 int entries;
1459
1460                 line_time_us = max(htotal * 1000 / clock, 1);
1461
1462                 /* Use ns/us then divide to preserve precision */
1463                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1464                         cpp * hdisplay;
1465                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1466                 srwm = I965_FIFO_SIZE - entries;
1467                 if (srwm < 0)
1468                         srwm = 1;
1469                 srwm &= 0x1ff;
1470                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1471                               entries, srwm);
1472
1473                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1474                         cpp * crtc->cursor->state->crtc_w;
1475                 entries = DIV_ROUND_UP(entries,
1476                                           i965_cursor_wm_info.cacheline_size);
1477                 cursor_sr = i965_cursor_wm_info.fifo_size -
1478                         (entries + i965_cursor_wm_info.guard_size);
1479
1480                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1481                         cursor_sr = i965_cursor_wm_info.max_wm;
1482
1483                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1484                               "cursor %d\n", srwm, cursor_sr);
1485
1486                 cxsr_enabled = true;
1487         } else {
1488                 cxsr_enabled = false;
1489                 /* Turn off self refresh if both pipes are enabled */
1490                 intel_set_memory_cxsr(dev_priv, false);
1491         }
1492
1493         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1494                       srwm);
1495
1496         /* 965 has limitations... */
1497         I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1498                    FW_WM(8, CURSORB) |
1499                    FW_WM(8, PLANEB) |
1500                    FW_WM(8, PLANEA));
1501         I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1502                    FW_WM(8, PLANEC_OLD));
1503         /* update cursor SR watermark */
1504         I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1505
1506         if (cxsr_enabled)
1507                 intel_set_memory_cxsr(dev_priv, true);
1508 }
1509
1510 #undef FW_WM
1511
1512 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1513 {
1514         struct drm_device *dev = unused_crtc->dev;
1515         struct drm_i915_private *dev_priv = dev->dev_private;
1516         const struct intel_watermark_params *wm_info;
1517         uint32_t fwater_lo;
1518         uint32_t fwater_hi;
1519         int cwm, srwm = 1;
1520         int fifo_size;
1521         int planea_wm, planeb_wm;
1522         struct drm_crtc *crtc, *enabled = NULL;
1523
1524         if (IS_I945GM(dev))
1525                 wm_info = &i945_wm_info;
1526         else if (!IS_GEN2(dev))
1527                 wm_info = &i915_wm_info;
1528         else
1529                 wm_info = &i830_a_wm_info;
1530
1531         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1532         crtc = intel_get_crtc_for_plane(dev, 0);
1533         if (intel_crtc_active(crtc)) {
1534                 const struct drm_display_mode *adjusted_mode;
1535                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1536                 if (IS_GEN2(dev))
1537                         cpp = 4;
1538
1539                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1540                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1541                                                wm_info, fifo_size, cpp,
1542                                                pessimal_latency_ns);
1543                 enabled = crtc;
1544         } else {
1545                 planea_wm = fifo_size - wm_info->guard_size;
1546                 if (planea_wm > (long)wm_info->max_wm)
1547                         planea_wm = wm_info->max_wm;
1548         }
1549
1550         if (IS_GEN2(dev))
1551                 wm_info = &i830_bc_wm_info;
1552
1553         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1554         crtc = intel_get_crtc_for_plane(dev, 1);
1555         if (intel_crtc_active(crtc)) {
1556                 const struct drm_display_mode *adjusted_mode;
1557                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1558                 if (IS_GEN2(dev))
1559                         cpp = 4;
1560
1561                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1562                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1563                                                wm_info, fifo_size, cpp,
1564                                                pessimal_latency_ns);
1565                 if (enabled == NULL)
1566                         enabled = crtc;
1567                 else
1568                         enabled = NULL;
1569         } else {
1570                 planeb_wm = fifo_size - wm_info->guard_size;
1571                 if (planeb_wm > (long)wm_info->max_wm)
1572                         planeb_wm = wm_info->max_wm;
1573         }
1574
1575         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1576
1577         if (IS_I915GM(dev) && enabled) {
1578                 struct drm_i915_gem_object *obj;
1579
1580                 obj = intel_fb_obj(enabled->primary->state->fb);
1581
1582                 /* self-refresh seems busted with untiled */
1583                 if (obj->tiling_mode == I915_TILING_NONE)
1584                         enabled = NULL;
1585         }
1586
1587         /*
1588          * Overlay gets an aggressive default since video jitter is bad.
1589          */
1590         cwm = 2;
1591
1592         /* Play safe and disable self-refresh before adjusting watermarks. */
1593         intel_set_memory_cxsr(dev_priv, false);
1594
1595         /* Calc sr entries for one plane configs */
1596         if (HAS_FW_BLC(dev) && enabled) {
1597                 /* self-refresh has much higher latency */
1598                 static const int sr_latency_ns = 6000;
1599                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1600                 int clock = adjusted_mode->crtc_clock;
1601                 int htotal = adjusted_mode->crtc_htotal;
1602                 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1603                 int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1604                 unsigned long line_time_us;
1605                 int entries;
1606
1607                 line_time_us = max(htotal * 1000 / clock, 1);
1608
1609                 /* Use ns/us then divide to preserve precision */
1610                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1611                         cpp * hdisplay;
1612                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1613                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1614                 srwm = wm_info->fifo_size - entries;
1615                 if (srwm < 0)
1616                         srwm = 1;
1617
1618                 if (IS_I945G(dev) || IS_I945GM(dev))
1619                         I915_WRITE(FW_BLC_SELF,
1620                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1621                 else if (IS_I915GM(dev))
1622                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1623         }
1624
1625         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1626                       planea_wm, planeb_wm, cwm, srwm);
1627
1628         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1629         fwater_hi = (cwm & 0x1f);
1630
1631         /* Set request length to 8 cachelines per fetch */
1632         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1633         fwater_hi = fwater_hi | (1 << 8);
1634
1635         I915_WRITE(FW_BLC, fwater_lo);
1636         I915_WRITE(FW_BLC2, fwater_hi);
1637
1638         if (enabled)
1639                 intel_set_memory_cxsr(dev_priv, true);
1640 }
1641
1642 static void i845_update_wm(struct drm_crtc *unused_crtc)
1643 {
1644         struct drm_device *dev = unused_crtc->dev;
1645         struct drm_i915_private *dev_priv = dev->dev_private;
1646         struct drm_crtc *crtc;
1647         const struct drm_display_mode *adjusted_mode;
1648         uint32_t fwater_lo;
1649         int planea_wm;
1650
1651         crtc = single_enabled_crtc(dev);
1652         if (crtc == NULL)
1653                 return;
1654
1655         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1656         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1657                                        &i845_wm_info,
1658                                        dev_priv->display.get_fifo_size(dev, 0),
1659                                        4, pessimal_latency_ns);
1660         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1661         fwater_lo |= (3<<8) | planea_wm;
1662
1663         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1664
1665         I915_WRITE(FW_BLC, fwater_lo);
1666 }
1667
1668 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1669 {
1670         uint32_t pixel_rate;
1671
1672         pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1673
1674         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1675          * adjust the pixel_rate here. */
1676
1677         if (pipe_config->pch_pfit.enabled) {
1678                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1679                 uint32_t pfit_size = pipe_config->pch_pfit.size;
1680
1681                 pipe_w = pipe_config->pipe_src_w;
1682                 pipe_h = pipe_config->pipe_src_h;
1683
1684                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1685                 pfit_h = pfit_size & 0xFFFF;
1686                 if (pipe_w < pfit_w)
1687                         pipe_w = pfit_w;
1688                 if (pipe_h < pfit_h)
1689                         pipe_h = pfit_h;
1690
1691                 if (WARN_ON(!pfit_w || !pfit_h))
1692                         return pixel_rate;
1693
1694                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1695                                      pfit_w * pfit_h);
1696         }
1697
1698         return pixel_rate;
1699 }
1700
1701 /* latency must be in 0.1us units. */
1702 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1703 {
1704         uint64_t ret;
1705
1706         if (WARN(latency == 0, "Latency value missing\n"))
1707                 return UINT_MAX;
1708
1709         ret = (uint64_t) pixel_rate * cpp * latency;
1710         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1711
1712         return ret;
1713 }
1714
1715 /* latency must be in 0.1us units. */
1716 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1717                                uint32_t horiz_pixels, uint8_t cpp,
1718                                uint32_t latency)
1719 {
1720         uint32_t ret;
1721
1722         if (WARN(latency == 0, "Latency value missing\n"))
1723                 return UINT_MAX;
1724         if (WARN_ON(!pipe_htotal))
1725                 return UINT_MAX;
1726
1727         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1728         ret = (ret + 1) * horiz_pixels * cpp;
1729         ret = DIV_ROUND_UP(ret, 64) + 2;
1730         return ret;
1731 }
1732
1733 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1734                            uint8_t cpp)
1735 {
1736         /*
1737          * Neither of these should be possible since this function shouldn't be
1738          * called if the CRTC is off or the plane is invisible.  But let's be
1739          * extra paranoid to avoid a potential divide-by-zero if we screw up
1740          * elsewhere in the driver.
1741          */
1742         if (WARN_ON(!cpp))
1743                 return 0;
1744         if (WARN_ON(!horiz_pixels))
1745                 return 0;
1746
1747         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1748 }
1749
1750 struct ilk_wm_maximums {
1751         uint16_t pri;
1752         uint16_t spr;
1753         uint16_t cur;
1754         uint16_t fbc;
1755 };
1756
1757 /*
1758  * For both WM_PIPE and WM_LP.
1759  * mem_value must be in 0.1us units.
1760  */
1761 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1762                                    const struct intel_plane_state *pstate,
1763                                    uint32_t mem_value,
1764                                    bool is_lp)
1765 {
1766         int cpp = pstate->base.fb ?
1767                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1768         uint32_t method1, method2;
1769
1770         if (!cstate->base.active || !pstate->visible)
1771                 return 0;
1772
1773         method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1774
1775         if (!is_lp)
1776                 return method1;
1777
1778         method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1779                                  cstate->base.adjusted_mode.crtc_htotal,
1780                                  drm_rect_width(&pstate->dst),
1781                                  cpp, mem_value);
1782
1783         return min(method1, method2);
1784 }
1785
1786 /*
1787  * For both WM_PIPE and WM_LP.
1788  * mem_value must be in 0.1us units.
1789  */
1790 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1791                                    const struct intel_plane_state *pstate,
1792                                    uint32_t mem_value)
1793 {
1794         int cpp = pstate->base.fb ?
1795                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1796         uint32_t method1, method2;
1797
1798         if (!cstate->base.active || !pstate->visible)
1799                 return 0;
1800
1801         method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1802         method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1803                                  cstate->base.adjusted_mode.crtc_htotal,
1804                                  drm_rect_width(&pstate->dst),
1805                                  cpp, mem_value);
1806         return min(method1, method2);
1807 }
1808
1809 /*
1810  * For both WM_PIPE and WM_LP.
1811  * mem_value must be in 0.1us units.
1812  */
1813 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1814                                    const struct intel_plane_state *pstate,
1815                                    uint32_t mem_value)
1816 {
1817         /*
1818          * We treat the cursor plane as always-on for the purposes of watermark
1819          * calculation.  Until we have two-stage watermark programming merged,
1820          * this is necessary to avoid flickering.
1821          */
1822         int cpp = 4;
1823         int width = pstate->visible ? pstate->base.crtc_w : 64;
1824
1825         if (!cstate->base.active)
1826                 return 0;
1827
1828         return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1829                               cstate->base.adjusted_mode.crtc_htotal,
1830                               width, cpp, mem_value);
1831 }
1832
1833 /* Only for WM_LP. */
1834 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1835                                    const struct intel_plane_state *pstate,
1836                                    uint32_t pri_val)
1837 {
1838         int cpp = pstate->base.fb ?
1839                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1840
1841         if (!cstate->base.active || !pstate->visible)
1842                 return 0;
1843
1844         return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), cpp);
1845 }
1846
1847 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1848 {
1849         if (INTEL_INFO(dev)->gen >= 8)
1850                 return 3072;
1851         else if (INTEL_INFO(dev)->gen >= 7)
1852                 return 768;
1853         else
1854                 return 512;
1855 }
1856
1857 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1858                                          int level, bool is_sprite)
1859 {
1860         if (INTEL_INFO(dev)->gen >= 8)
1861                 /* BDW primary/sprite plane watermarks */
1862                 return level == 0 ? 255 : 2047;
1863         else if (INTEL_INFO(dev)->gen >= 7)
1864                 /* IVB/HSW primary/sprite plane watermarks */
1865                 return level == 0 ? 127 : 1023;
1866         else if (!is_sprite)
1867                 /* ILK/SNB primary plane watermarks */
1868                 return level == 0 ? 127 : 511;
1869         else
1870                 /* ILK/SNB sprite plane watermarks */
1871                 return level == 0 ? 63 : 255;
1872 }
1873
1874 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1875                                           int level)
1876 {
1877         if (INTEL_INFO(dev)->gen >= 7)
1878                 return level == 0 ? 63 : 255;
1879         else
1880                 return level == 0 ? 31 : 63;
1881 }
1882
1883 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1884 {
1885         if (INTEL_INFO(dev)->gen >= 8)
1886                 return 31;
1887         else
1888                 return 15;
1889 }
1890
1891 /* Calculate the maximum primary/sprite plane watermark */
1892 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1893                                      int level,
1894                                      const struct intel_wm_config *config,
1895                                      enum intel_ddb_partitioning ddb_partitioning,
1896                                      bool is_sprite)
1897 {
1898         unsigned int fifo_size = ilk_display_fifo_size(dev);
1899
1900         /* if sprites aren't enabled, sprites get nothing */
1901         if (is_sprite && !config->sprites_enabled)
1902                 return 0;
1903
1904         /* HSW allows LP1+ watermarks even with multiple pipes */
1905         if (level == 0 || config->num_pipes_active > 1) {
1906                 fifo_size /= INTEL_INFO(dev)->num_pipes;
1907
1908                 /*
1909                  * For some reason the non self refresh
1910                  * FIFO size is only half of the self
1911                  * refresh FIFO size on ILK/SNB.
1912                  */
1913                 if (INTEL_INFO(dev)->gen <= 6)
1914                         fifo_size /= 2;
1915         }
1916
1917         if (config->sprites_enabled) {
1918                 /* level 0 is always calculated with 1:1 split */
1919                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1920                         if (is_sprite)
1921                                 fifo_size *= 5;
1922                         fifo_size /= 6;
1923                 } else {
1924                         fifo_size /= 2;
1925                 }
1926         }
1927
1928         /* clamp to max that the registers can hold */
1929         return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1930 }
1931
1932 /* Calculate the maximum cursor plane watermark */
1933 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1934                                       int level,
1935                                       const struct intel_wm_config *config)
1936 {
1937         /* HSW LP1+ watermarks w/ multiple pipes */
1938         if (level > 0 && config->num_pipes_active > 1)
1939                 return 64;
1940
1941         /* otherwise just report max that registers can hold */
1942         return ilk_cursor_wm_reg_max(dev, level);
1943 }
1944
1945 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1946                                     int level,
1947                                     const struct intel_wm_config *config,
1948                                     enum intel_ddb_partitioning ddb_partitioning,
1949                                     struct ilk_wm_maximums *max)
1950 {
1951         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1952         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1953         max->cur = ilk_cursor_wm_max(dev, level, config);
1954         max->fbc = ilk_fbc_wm_reg_max(dev);
1955 }
1956
1957 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1958                                         int level,
1959                                         struct ilk_wm_maximums *max)
1960 {
1961         max->pri = ilk_plane_wm_reg_max(dev, level, false);
1962         max->spr = ilk_plane_wm_reg_max(dev, level, true);
1963         max->cur = ilk_cursor_wm_reg_max(dev, level);
1964         max->fbc = ilk_fbc_wm_reg_max(dev);
1965 }
1966
1967 static bool ilk_validate_wm_level(int level,
1968                                   const struct ilk_wm_maximums *max,
1969                                   struct intel_wm_level *result)
1970 {
1971         bool ret;
1972
1973         /* already determined to be invalid? */
1974         if (!result->enable)
1975                 return false;
1976
1977         result->enable = result->pri_val <= max->pri &&
1978                          result->spr_val <= max->spr &&
1979                          result->cur_val <= max->cur;
1980
1981         ret = result->enable;
1982
1983         /*
1984          * HACK until we can pre-compute everything,
1985          * and thus fail gracefully if LP0 watermarks
1986          * are exceeded...
1987          */
1988         if (level == 0 && !result->enable) {
1989                 if (result->pri_val > max->pri)
1990                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1991                                       level, result->pri_val, max->pri);
1992                 if (result->spr_val > max->spr)
1993                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1994                                       level, result->spr_val, max->spr);
1995                 if (result->cur_val > max->cur)
1996                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1997                                       level, result->cur_val, max->cur);
1998
1999                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2000                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2001                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2002                 result->enable = true;
2003         }
2004
2005         return ret;
2006 }
2007
2008 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2009                                  const struct intel_crtc *intel_crtc,
2010                                  int level,
2011                                  struct intel_crtc_state *cstate,
2012                                  struct intel_plane_state *pristate,
2013                                  struct intel_plane_state *sprstate,
2014                                  struct intel_plane_state *curstate,
2015                                  struct intel_wm_level *result)
2016 {
2017         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2018         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2019         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2020
2021         /* WM1+ latency values stored in 0.5us units */
2022         if (level > 0) {
2023                 pri_latency *= 5;
2024                 spr_latency *= 5;
2025                 cur_latency *= 5;
2026         }
2027
2028         if (pristate) {
2029                 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2030                                                      pri_latency, level);
2031                 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2032         }
2033
2034         if (sprstate)
2035                 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2036
2037         if (curstate)
2038                 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2039
2040         result->enable = true;
2041 }
2042
2043 static uint32_t
2044 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2045 {
2046         const struct intel_atomic_state *intel_state =
2047                 to_intel_atomic_state(cstate->base.state);
2048         const struct drm_display_mode *adjusted_mode =
2049                 &cstate->base.adjusted_mode;
2050         u32 linetime, ips_linetime;
2051
2052         if (!cstate->base.active)
2053                 return 0;
2054         if (WARN_ON(adjusted_mode->crtc_clock == 0))
2055                 return 0;
2056         if (WARN_ON(intel_state->cdclk == 0))
2057                 return 0;
2058
2059         /* The WM are computed with base on how long it takes to fill a single
2060          * row at the given clock rate, multiplied by 8.
2061          * */
2062         linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2063                                      adjusted_mode->crtc_clock);
2064         ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2065                                          intel_state->cdclk);
2066
2067         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2068                PIPE_WM_LINETIME_TIME(linetime);
2069 }
2070
2071 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2072 {
2073         struct drm_i915_private *dev_priv = dev->dev_private;
2074
2075         if (IS_GEN9(dev)) {
2076                 uint32_t val;
2077                 int ret, i;
2078                 int level, max_level = ilk_wm_max_level(dev);
2079
2080                 /* read the first set of memory latencies[0:3] */
2081                 val = 0; /* data0 to be programmed to 0 for first set */
2082                 mutex_lock(&dev_priv->rps.hw_lock);
2083                 ret = sandybridge_pcode_read(dev_priv,
2084                                              GEN9_PCODE_READ_MEM_LATENCY,
2085                                              &val);
2086                 mutex_unlock(&dev_priv->rps.hw_lock);
2087
2088                 if (ret) {
2089                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2090                         return;
2091                 }
2092
2093                 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2094                 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2095                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2096                 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2097                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2098                 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2099                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2100
2101                 /* read the second set of memory latencies[4:7] */
2102                 val = 1; /* data0 to be programmed to 1 for second set */
2103                 mutex_lock(&dev_priv->rps.hw_lock);
2104                 ret = sandybridge_pcode_read(dev_priv,
2105                                              GEN9_PCODE_READ_MEM_LATENCY,
2106                                              &val);
2107                 mutex_unlock(&dev_priv->rps.hw_lock);
2108                 if (ret) {
2109                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2110                         return;
2111                 }
2112
2113                 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2114                 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2115                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2116                 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2117                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2118                 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2119                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2120
2121                 /*
2122                  * WaWmMemoryReadLatency:skl
2123                  *
2124                  * punit doesn't take into account the read latency so we need
2125                  * to add 2us to the various latency levels we retrieve from
2126                  * the punit.
2127                  *   - W0 is a bit special in that it's the only level that
2128                  *   can't be disabled if we want to have display working, so
2129                  *   we always add 2us there.
2130                  *   - For levels >=1, punit returns 0us latency when they are
2131                  *   disabled, so we respect that and don't add 2us then
2132                  *
2133                  * Additionally, if a level n (n > 1) has a 0us latency, all
2134                  * levels m (m >= n) need to be disabled. We make sure to
2135                  * sanitize the values out of the punit to satisfy this
2136                  * requirement.
2137                  */
2138                 wm[0] += 2;
2139                 for (level = 1; level <= max_level; level++)
2140                         if (wm[level] != 0)
2141                                 wm[level] += 2;
2142                         else {
2143                                 for (i = level + 1; i <= max_level; i++)
2144                                         wm[i] = 0;
2145
2146                                 break;
2147                         }
2148         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2149                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2150
2151                 wm[0] = (sskpd >> 56) & 0xFF;
2152                 if (wm[0] == 0)
2153                         wm[0] = sskpd & 0xF;
2154                 wm[1] = (sskpd >> 4) & 0xFF;
2155                 wm[2] = (sskpd >> 12) & 0xFF;
2156                 wm[3] = (sskpd >> 20) & 0x1FF;
2157                 wm[4] = (sskpd >> 32) & 0x1FF;
2158         } else if (INTEL_INFO(dev)->gen >= 6) {
2159                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2160
2161                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2162                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2163                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2164                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2165         } else if (INTEL_INFO(dev)->gen >= 5) {
2166                 uint32_t mltr = I915_READ(MLTR_ILK);
2167
2168                 /* ILK primary LP0 latency is 700 ns */
2169                 wm[0] = 7;
2170                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2171                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2172         }
2173 }
2174
2175 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2176 {
2177         /* ILK sprite LP0 latency is 1300 ns */
2178         if (IS_GEN5(dev))
2179                 wm[0] = 13;
2180 }
2181
2182 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2183 {
2184         /* ILK cursor LP0 latency is 1300 ns */
2185         if (IS_GEN5(dev))
2186                 wm[0] = 13;
2187
2188         /* WaDoubleCursorLP3Latency:ivb */
2189         if (IS_IVYBRIDGE(dev))
2190                 wm[3] *= 2;
2191 }
2192
2193 int ilk_wm_max_level(const struct drm_device *dev)
2194 {
2195         /* how many WM levels are we expecting */
2196         if (INTEL_INFO(dev)->gen >= 9)
2197                 return 7;
2198         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2199                 return 4;
2200         else if (INTEL_INFO(dev)->gen >= 6)
2201                 return 3;
2202         else
2203                 return 2;
2204 }
2205
2206 static void intel_print_wm_latency(struct drm_device *dev,
2207                                    const char *name,
2208                                    const uint16_t wm[8])
2209 {
2210         int level, max_level = ilk_wm_max_level(dev);
2211
2212         for (level = 0; level <= max_level; level++) {
2213                 unsigned int latency = wm[level];
2214
2215                 if (latency == 0) {
2216                         DRM_ERROR("%s WM%d latency not provided\n",
2217                                   name, level);
2218                         continue;
2219                 }
2220
2221                 /*
2222                  * - latencies are in us on gen9.
2223                  * - before then, WM1+ latency values are in 0.5us units
2224                  */
2225                 if (IS_GEN9(dev))
2226                         latency *= 10;
2227                 else if (level > 0)
2228                         latency *= 5;
2229
2230                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2231                               name, level, wm[level],
2232                               latency / 10, latency % 10);
2233         }
2234 }
2235
2236 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2237                                     uint16_t wm[5], uint16_t min)
2238 {
2239         int level, max_level = ilk_wm_max_level(dev_priv->dev);
2240
2241         if (wm[0] >= min)
2242                 return false;
2243
2244         wm[0] = max(wm[0], min);
2245         for (level = 1; level <= max_level; level++)
2246                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2247
2248         return true;
2249 }
2250
2251 static void snb_wm_latency_quirk(struct drm_device *dev)
2252 {
2253         struct drm_i915_private *dev_priv = dev->dev_private;
2254         bool changed;
2255
2256         /*
2257          * The BIOS provided WM memory latency values are often
2258          * inadequate for high resolution displays. Adjust them.
2259          */
2260         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2261                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2262                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2263
2264         if (!changed)
2265                 return;
2266
2267         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2268         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2269         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2270         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2271 }
2272
2273 static void ilk_setup_wm_latency(struct drm_device *dev)
2274 {
2275         struct drm_i915_private *dev_priv = dev->dev_private;
2276
2277         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2278
2279         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2280                sizeof(dev_priv->wm.pri_latency));
2281         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2282                sizeof(dev_priv->wm.pri_latency));
2283
2284         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2285         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2286
2287         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2288         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2289         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2290
2291         if (IS_GEN6(dev))
2292                 snb_wm_latency_quirk(dev);
2293 }
2294
2295 static void skl_setup_wm_latency(struct drm_device *dev)
2296 {
2297         struct drm_i915_private *dev_priv = dev->dev_private;
2298
2299         intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2300         intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2301 }
2302
2303 static bool ilk_validate_pipe_wm(struct drm_device *dev,
2304                                  struct intel_pipe_wm *pipe_wm)
2305 {
2306         /* LP0 watermark maximums depend on this pipe alone */
2307         const struct intel_wm_config config = {
2308                 .num_pipes_active = 1,
2309                 .sprites_enabled = pipe_wm->sprites_enabled,
2310                 .sprites_scaled = pipe_wm->sprites_scaled,
2311         };
2312         struct ilk_wm_maximums max;
2313
2314         /* LP0 watermarks always use 1/2 DDB partitioning */
2315         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2316
2317         /* At least LP0 must be valid */
2318         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
2319                 DRM_DEBUG_KMS("LP0 watermark invalid\n");
2320                 return false;
2321         }
2322
2323         return true;
2324 }
2325
2326 /* Compute new watermarks for the pipe */
2327 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2328 {
2329         struct drm_atomic_state *state = cstate->base.state;
2330         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2331         struct intel_pipe_wm *pipe_wm;
2332         struct drm_device *dev = state->dev;
2333         const struct drm_i915_private *dev_priv = dev->dev_private;
2334         struct intel_plane *intel_plane;
2335         struct intel_plane_state *pristate = NULL;
2336         struct intel_plane_state *sprstate = NULL;
2337         struct intel_plane_state *curstate = NULL;
2338         int level, max_level = ilk_wm_max_level(dev), usable_level;
2339         struct ilk_wm_maximums max;
2340
2341         pipe_wm = &cstate->wm.ilk.optimal;
2342
2343         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2344                 struct intel_plane_state *ps;
2345
2346                 ps = intel_atomic_get_existing_plane_state(state,
2347                                                            intel_plane);
2348                 if (!ps)
2349                         continue;
2350
2351                 if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2352                         pristate = ps;
2353                 else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2354                         sprstate = ps;
2355                 else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2356                         curstate = ps;
2357         }
2358
2359         pipe_wm->pipe_enabled = cstate->base.active;
2360         if (sprstate) {
2361                 pipe_wm->sprites_enabled = sprstate->visible;
2362                 pipe_wm->sprites_scaled = sprstate->visible &&
2363                         (drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2364                          drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2365         }
2366
2367         usable_level = max_level;
2368
2369         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2370         if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2371                 usable_level = 1;
2372
2373         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2374         if (pipe_wm->sprites_scaled)
2375                 usable_level = 0;
2376
2377         ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2378                              pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);
2379
2380         memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
2381         pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2382
2383         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2384                 pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2385
2386         if (!ilk_validate_pipe_wm(dev, pipe_wm))
2387                 return -EINVAL;
2388
2389         ilk_compute_wm_reg_maximums(dev, 1, &max);
2390
2391         for (level = 1; level <= max_level; level++) {
2392                 struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2393
2394                 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2395                                      pristate, sprstate, curstate, wm);
2396
2397                 /*
2398                  * Disable any watermark level that exceeds the
2399                  * register maximums since such watermarks are
2400                  * always invalid.
2401                  */
2402                 if (level > usable_level)
2403                         continue;
2404
2405                 if (ilk_validate_wm_level(level, &max, wm))
2406                         pipe_wm->wm[level] = *wm;
2407                 else
2408                         usable_level = level;
2409         }
2410
2411         return 0;
2412 }
2413
2414 /*
2415  * Build a set of 'intermediate' watermark values that satisfy both the old
2416  * state and the new state.  These can be programmed to the hardware
2417  * immediately.
2418  */
2419 static int ilk_compute_intermediate_wm(struct drm_device *dev,
2420                                        struct intel_crtc *intel_crtc,
2421                                        struct intel_crtc_state *newstate)
2422 {
2423         struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2424         struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2425         int level, max_level = ilk_wm_max_level(dev);
2426
2427         /*
2428          * Start with the final, target watermarks, then combine with the
2429          * currently active watermarks to get values that are safe both before
2430          * and after the vblank.
2431          */
2432         *a = newstate->wm.ilk.optimal;
2433         a->pipe_enabled |= b->pipe_enabled;
2434         a->sprites_enabled |= b->sprites_enabled;
2435         a->sprites_scaled |= b->sprites_scaled;
2436
2437         for (level = 0; level <= max_level; level++) {
2438                 struct intel_wm_level *a_wm = &a->wm[level];
2439                 const struct intel_wm_level *b_wm = &b->wm[level];
2440
2441                 a_wm->enable &= b_wm->enable;
2442                 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
2443                 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
2444                 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
2445                 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
2446         }
2447
2448         /*
2449          * We need to make sure that these merged watermark values are
2450          * actually a valid configuration themselves.  If they're not,
2451          * there's no safe way to transition from the old state to
2452          * the new state, so we need to fail the atomic transaction.
2453          */
2454         if (!ilk_validate_pipe_wm(dev, a))
2455                 return -EINVAL;
2456
2457         /*
2458          * If our intermediate WM are identical to the final WM, then we can
2459          * omit the post-vblank programming; only update if it's different.
2460          */
2461         if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2462                 newstate->wm.need_postvbl_update = false;
2463
2464         return 0;
2465 }
2466
2467 /*
2468  * Merge the watermarks from all active pipes for a specific level.
2469  */
2470 static void ilk_merge_wm_level(struct drm_device *dev,
2471                                int level,
2472                                struct intel_wm_level *ret_wm)
2473 {
2474         const struct intel_crtc *intel_crtc;
2475
2476         ret_wm->enable = true;
2477
2478         for_each_intel_crtc(dev, intel_crtc) {
2479                 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2480                 const struct intel_wm_level *wm = &active->wm[level];
2481
2482                 if (!active->pipe_enabled)
2483                         continue;
2484
2485                 /*
2486                  * The watermark values may have been used in the past,
2487                  * so we must maintain them in the registers for some
2488                  * time even if the level is now disabled.
2489                  */
2490                 if (!wm->enable)
2491                         ret_wm->enable = false;
2492
2493                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2494                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2495                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2496                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2497         }
2498 }
2499
2500 /*
2501  * Merge all low power watermarks for all active pipes.
2502  */
2503 static void ilk_wm_merge(struct drm_device *dev,
2504                          const struct intel_wm_config *config,
2505                          const struct ilk_wm_maximums *max,
2506                          struct intel_pipe_wm *merged)
2507 {
2508         struct drm_i915_private *dev_priv = dev->dev_private;
2509         int level, max_level = ilk_wm_max_level(dev);
2510         int last_enabled_level = max_level;
2511
2512         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2513         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2514             config->num_pipes_active > 1)
2515                 last_enabled_level = 0;
2516
2517         /* ILK: FBC WM must be disabled always */
2518         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2519
2520         /* merge each WM1+ level */
2521         for (level = 1; level <= max_level; level++) {
2522                 struct intel_wm_level *wm = &merged->wm[level];
2523
2524                 ilk_merge_wm_level(dev, level, wm);
2525
2526                 if (level > last_enabled_level)
2527                         wm->enable = false;
2528                 else if (!ilk_validate_wm_level(level, max, wm))
2529                         /* make sure all following levels get disabled */
2530                         last_enabled_level = level - 1;
2531
2532                 /*
2533                  * The spec says it is preferred to disable
2534                  * FBC WMs instead of disabling a WM level.
2535                  */
2536                 if (wm->fbc_val > max->fbc) {
2537                         if (wm->enable)
2538                                 merged->fbc_wm_enabled = false;
2539                         wm->fbc_val = 0;
2540                 }
2541         }
2542
2543         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2544         /*
2545          * FIXME this is racy. FBC might get enabled later.
2546          * What we should check here is whether FBC can be
2547          * enabled sometime later.
2548          */
2549         if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2550             intel_fbc_is_active(dev_priv)) {
2551                 for (level = 2; level <= max_level; level++) {
2552                         struct intel_wm_level *wm = &merged->wm[level];
2553
2554                         wm->enable = false;
2555                 }
2556         }
2557 }
2558
2559 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2560 {
2561         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2562         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2563 }
2564
2565 /* The value we need to program into the WM_LPx latency field */
2566 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2567 {
2568         struct drm_i915_private *dev_priv = dev->dev_private;
2569
2570         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2571                 return 2 * level;
2572         else
2573                 return dev_priv->wm.pri_latency[level];
2574 }
2575
2576 static void ilk_compute_wm_results(struct drm_device *dev,
2577                                    const struct intel_pipe_wm *merged,
2578                                    enum intel_ddb_partitioning partitioning,
2579                                    struct ilk_wm_values *results)
2580 {
2581         struct intel_crtc *intel_crtc;
2582         int level, wm_lp;
2583
2584         results->enable_fbc_wm = merged->fbc_wm_enabled;
2585         results->partitioning = partitioning;
2586
2587         /* LP1+ register values */
2588         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2589                 const struct intel_wm_level *r;
2590
2591                 level = ilk_wm_lp_to_level(wm_lp, merged);
2592
2593                 r = &merged->wm[level];
2594
2595                 /*
2596                  * Maintain the watermark values even if the level is
2597                  * disabled. Doing otherwise could cause underruns.
2598                  */
2599                 results->wm_lp[wm_lp - 1] =
2600                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2601                         (r->pri_val << WM1_LP_SR_SHIFT) |
2602                         r->cur_val;
2603
2604                 if (r->enable)
2605                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2606
2607                 if (INTEL_INFO(dev)->gen >= 8)
2608                         results->wm_lp[wm_lp - 1] |=
2609                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2610                 else
2611                         results->wm_lp[wm_lp - 1] |=
2612                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2613
2614                 /*
2615                  * Always set WM1S_LP_EN when spr_val != 0, even if the
2616                  * level is disabled. Doing otherwise could cause underruns.
2617                  */
2618                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2619                         WARN_ON(wm_lp != 1);
2620                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2621                 } else
2622                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2623         }
2624
2625         /* LP0 register values */
2626         for_each_intel_crtc(dev, intel_crtc) {
2627                 enum pipe pipe = intel_crtc->pipe;
2628                 const struct intel_wm_level *r =
2629                         &intel_crtc->wm.active.ilk.wm[0];
2630
2631                 if (WARN_ON(!r->enable))
2632                         continue;
2633
2634                 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2635
2636                 results->wm_pipe[pipe] =
2637                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2638                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2639                         r->cur_val;
2640         }
2641 }
2642
2643 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2644  * case both are at the same level. Prefer r1 in case they're the same. */
2645 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2646                                                   struct intel_pipe_wm *r1,
2647                                                   struct intel_pipe_wm *r2)
2648 {
2649         int level, max_level = ilk_wm_max_level(dev);
2650         int level1 = 0, level2 = 0;
2651
2652         for (level = 1; level <= max_level; level++) {
2653                 if (r1->wm[level].enable)
2654                         level1 = level;
2655                 if (r2->wm[level].enable)
2656                         level2 = level;
2657         }
2658
2659         if (level1 == level2) {
2660                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2661                         return r2;
2662                 else
2663                         return r1;
2664         } else if (level1 > level2) {
2665                 return r1;
2666         } else {
2667                 return r2;
2668         }
2669 }
2670
2671 /* dirty bits used to track which watermarks need changes */
2672 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2673 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2674 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2675 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2676 #define WM_DIRTY_FBC (1 << 24)
2677 #define WM_DIRTY_DDB (1 << 25)
2678
2679 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2680                                          const struct ilk_wm_values *old,
2681                                          const struct ilk_wm_values *new)
2682 {
2683         unsigned int dirty = 0;
2684         enum pipe pipe;
2685         int wm_lp;
2686
2687         for_each_pipe(dev_priv, pipe) {
2688                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2689                         dirty |= WM_DIRTY_LINETIME(pipe);
2690                         /* Must disable LP1+ watermarks too */
2691                         dirty |= WM_DIRTY_LP_ALL;
2692                 }
2693
2694                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2695                         dirty |= WM_DIRTY_PIPE(pipe);
2696                         /* Must disable LP1+ watermarks too */
2697                         dirty |= WM_DIRTY_LP_ALL;
2698                 }
2699         }
2700
2701         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2702                 dirty |= WM_DIRTY_FBC;
2703                 /* Must disable LP1+ watermarks too */
2704                 dirty |= WM_DIRTY_LP_ALL;
2705         }
2706
2707         if (old->partitioning != new->partitioning) {
2708                 dirty |= WM_DIRTY_DDB;
2709                 /* Must disable LP1+ watermarks too */
2710                 dirty |= WM_DIRTY_LP_ALL;
2711         }
2712
2713         /* LP1+ watermarks already deemed dirty, no need to continue */
2714         if (dirty & WM_DIRTY_LP_ALL)
2715                 return dirty;
2716
2717         /* Find the lowest numbered LP1+ watermark in need of an update... */
2718         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2719                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2720                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2721                         break;
2722         }
2723
2724         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2725         for (; wm_lp <= 3; wm_lp++)
2726                 dirty |= WM_DIRTY_LP(wm_lp);
2727
2728         return dirty;
2729 }
2730
2731 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2732                                unsigned int dirty)
2733 {
2734         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2735         bool changed = false;
2736
2737         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2738                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2739                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2740                 changed = true;
2741         }
2742         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2743                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2744                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2745                 changed = true;
2746         }
2747         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2748                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2749                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2750                 changed = true;
2751         }
2752
2753         /*
2754          * Don't touch WM1S_LP_EN here.
2755          * Doing so could cause underruns.
2756          */
2757
2758         return changed;
2759 }
2760
2761 /*
2762  * The spec says we shouldn't write when we don't need, because every write
2763  * causes WMs to be re-evaluated, expending some power.
2764  */
2765 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2766                                 struct ilk_wm_values *results)
2767 {
2768         struct drm_device *dev = dev_priv->dev;
2769         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2770         unsigned int dirty;
2771         uint32_t val;
2772
2773         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2774         if (!dirty)
2775                 return;
2776
2777         _ilk_disable_lp_wm(dev_priv, dirty);
2778
2779         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2780                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2781         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2782                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2783         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2784                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2785
2786         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2787                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2788         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2789                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2790         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2791                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2792
2793         if (dirty & WM_DIRTY_DDB) {
2794                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2795                         val = I915_READ(WM_MISC);
2796                         if (results->partitioning == INTEL_DDB_PART_1_2)
2797                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2798                         else
2799                                 val |= WM_MISC_DATA_PARTITION_5_6;
2800                         I915_WRITE(WM_MISC, val);
2801                 } else {
2802                         val = I915_READ(DISP_ARB_CTL2);
2803                         if (results->partitioning == INTEL_DDB_PART_1_2)
2804                                 val &= ~DISP_DATA_PARTITION_5_6;
2805                         else
2806                                 val |= DISP_DATA_PARTITION_5_6;
2807                         I915_WRITE(DISP_ARB_CTL2, val);
2808                 }
2809         }
2810
2811         if (dirty & WM_DIRTY_FBC) {
2812                 val = I915_READ(DISP_ARB_CTL);
2813                 if (results->enable_fbc_wm)
2814                         val &= ~DISP_FBC_WM_DIS;
2815                 else
2816                         val |= DISP_FBC_WM_DIS;
2817                 I915_WRITE(DISP_ARB_CTL, val);
2818         }
2819
2820         if (dirty & WM_DIRTY_LP(1) &&
2821             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2822                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2823
2824         if (INTEL_INFO(dev)->gen >= 7) {
2825                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2826                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2827                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2828                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2829         }
2830
2831         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2832                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2833         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2834                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2835         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2836                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2837
2838         dev_priv->wm.hw = *results;
2839 }
2840
2841 bool ilk_disable_lp_wm(struct drm_device *dev)
2842 {
2843         struct drm_i915_private *dev_priv = dev->dev_private;
2844
2845         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2846 }
2847
2848 /*
2849  * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2850  * different active planes.
2851  */
2852
2853 #define SKL_DDB_SIZE            896     /* in blocks */
2854 #define BXT_DDB_SIZE            512
2855
2856 /*
2857  * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
2858  * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
2859  * other universal planes are in indices 1..n.  Note that this may leave unused
2860  * indices between the top "sprite" plane and the cursor.
2861  */
2862 static int
2863 skl_wm_plane_id(const struct intel_plane *plane)
2864 {
2865         switch (plane->base.type) {
2866         case DRM_PLANE_TYPE_PRIMARY:
2867                 return 0;
2868         case DRM_PLANE_TYPE_CURSOR:
2869                 return PLANE_CURSOR;
2870         case DRM_PLANE_TYPE_OVERLAY:
2871                 return plane->plane + 1;
2872         default:
2873                 MISSING_CASE(plane->base.type);
2874                 return plane->plane;
2875         }
2876 }
2877
2878 static void
2879 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2880                                    const struct intel_crtc_state *cstate,
2881                                    struct skl_ddb_entry *alloc, /* out */
2882                                    int *num_active /* out */)
2883 {
2884         struct drm_atomic_state *state = cstate->base.state;
2885         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
2886         struct drm_i915_private *dev_priv = to_i915(dev);
2887         struct drm_crtc *for_crtc = cstate->base.crtc;
2888         unsigned int pipe_size, ddb_size;
2889         int nth_active_pipe;
2890         int pipe = to_intel_crtc(for_crtc)->pipe;
2891
2892         if (WARN_ON(!state) || !cstate->base.active) {
2893                 alloc->start = 0;
2894                 alloc->end = 0;
2895                 *num_active = hweight32(dev_priv->active_crtcs);
2896                 return;
2897         }
2898
2899         if (intel_state->active_pipe_changes)
2900                 *num_active = hweight32(intel_state->active_crtcs);
2901         else
2902                 *num_active = hweight32(dev_priv->active_crtcs);
2903
2904         if (IS_BROXTON(dev))
2905                 ddb_size = BXT_DDB_SIZE;
2906         else
2907                 ddb_size = SKL_DDB_SIZE;
2908
2909         ddb_size -= 4; /* 4 blocks for bypass path allocation */
2910
2911         /*
2912          * If the state doesn't change the active CRTC's, then there's
2913          * no need to recalculate; the existing pipe allocation limits
2914          * should remain unchanged.  Note that we're safe from racing
2915          * commits since any racing commit that changes the active CRTC
2916          * list would need to grab _all_ crtc locks, including the one
2917          * we currently hold.
2918          */
2919         if (!intel_state->active_pipe_changes) {
2920                 *alloc = dev_priv->wm.skl_hw.ddb.pipe[pipe];
2921                 return;
2922         }
2923
2924         nth_active_pipe = hweight32(intel_state->active_crtcs &
2925                                     (drm_crtc_mask(for_crtc) - 1));
2926         pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
2927         alloc->start = nth_active_pipe * ddb_size / *num_active;
2928         alloc->end = alloc->start + pipe_size;
2929 }
2930
2931 static unsigned int skl_cursor_allocation(int num_active)
2932 {
2933         if (num_active == 1)
2934                 return 32;
2935
2936         return 8;
2937 }
2938
2939 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2940 {
2941         entry->start = reg & 0x3ff;
2942         entry->end = (reg >> 16) & 0x3ff;
2943         if (entry->end)
2944                 entry->end += 1;
2945 }
2946
2947 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2948                           struct skl_ddb_allocation *ddb /* out */)
2949 {
2950         enum pipe pipe;
2951         int plane;
2952         u32 val;
2953
2954         memset(ddb, 0, sizeof(*ddb));
2955
2956         for_each_pipe(dev_priv, pipe) {
2957                 enum intel_display_power_domain power_domain;
2958
2959                 power_domain = POWER_DOMAIN_PIPE(pipe);
2960                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2961                         continue;
2962
2963                 for_each_plane(dev_priv, pipe, plane) {
2964                         val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2965                         skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2966                                                    val);
2967                 }
2968
2969                 val = I915_READ(CUR_BUF_CFG(pipe));
2970                 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
2971                                            val);
2972
2973                 intel_display_power_put(dev_priv, power_domain);
2974         }
2975 }
2976
2977 /*
2978  * Determines the downscale amount of a plane for the purposes of watermark calculations.
2979  * The bspec defines downscale amount as:
2980  *
2981  * """
2982  * Horizontal down scale amount = maximum[1, Horizontal source size /
2983  *                                           Horizontal destination size]
2984  * Vertical down scale amount = maximum[1, Vertical source size /
2985  *                                         Vertical destination size]
2986  * Total down scale amount = Horizontal down scale amount *
2987  *                           Vertical down scale amount
2988  * """
2989  *
2990  * Return value is provided in 16.16 fixed point form to retain fractional part.
2991  * Caller should take care of dividing & rounding off the value.
2992  */
2993 static uint32_t
2994 skl_plane_downscale_amount(const struct intel_plane_state *pstate)
2995 {
2996         uint32_t downscale_h, downscale_w;
2997         uint32_t src_w, src_h, dst_w, dst_h;
2998
2999         if (WARN_ON(!pstate->visible))
3000                 return DRM_PLANE_HELPER_NO_SCALING;
3001
3002         /* n.b., src is 16.16 fixed point, dst is whole integer */
3003         src_w = drm_rect_width(&pstate->src);
3004         src_h = drm_rect_height(&pstate->src);
3005         dst_w = drm_rect_width(&pstate->dst);
3006         dst_h = drm_rect_height(&pstate->dst);
3007         if (intel_rotation_90_or_270(pstate->base.rotation))
3008                 swap(dst_w, dst_h);
3009
3010         downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3011         downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3012
3013         /* Provide result in 16.16 fixed point */
3014         return (uint64_t)downscale_w * downscale_h >> 16;
3015 }
3016
3017 static unsigned int
3018 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
3019                              const struct drm_plane_state *pstate,
3020                              int y)
3021 {
3022         struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3023         struct drm_framebuffer *fb = pstate->fb;
3024         uint32_t down_scale_amount, data_rate;
3025         uint32_t width = 0, height = 0;
3026         unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;
3027
3028         if (!intel_pstate->visible)
3029                 return 0;
3030         if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
3031                 return 0;
3032         if (y && format != DRM_FORMAT_NV12)
3033                 return 0;
3034
3035         width = drm_rect_width(&intel_pstate->src) >> 16;
3036         height = drm_rect_height(&intel_pstate->src) >> 16;
3037
3038         if (intel_rotation_90_or_270(pstate->rotation))
3039                 swap(width, height);
3040
3041         /* for planar format */
3042         if (format == DRM_FORMAT_NV12) {
3043                 if (y)  /* y-plane data rate */
3044                         data_rate = width * height *
3045                                 drm_format_plane_cpp(format, 0);
3046                 else    /* uv-plane data rate */
3047                         data_rate = (width / 2) * (height / 2) *
3048                                 drm_format_plane_cpp(format, 1);
3049         } else {
3050                 /* for packed formats */
3051                 data_rate = width * height * drm_format_plane_cpp(format, 0);
3052         }
3053
3054         down_scale_amount = skl_plane_downscale_amount(intel_pstate);
3055
3056         return (uint64_t)data_rate * down_scale_amount >> 16;
3057 }
3058
3059 /*
3060  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
3061  * a 8192x4096@32bpp framebuffer:
3062  *   3 * 4096 * 8192  * 4 < 2^32
3063  */
3064 static unsigned int
3065 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate)
3066 {
3067         struct drm_crtc_state *cstate = &intel_cstate->base;
3068         struct drm_atomic_state *state = cstate->state;
3069         struct drm_crtc *crtc = cstate->crtc;
3070         struct drm_device *dev = crtc->dev;
3071         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3072         const struct drm_plane *plane;
3073         const struct intel_plane *intel_plane;
3074         struct drm_plane_state *pstate;
3075         unsigned int rate, total_data_rate = 0;
3076         int id;
3077         int i;
3078
3079         if (WARN_ON(!state))
3080                 return 0;
3081
3082         /* Calculate and cache data rate for each plane */
3083         for_each_plane_in_state(state, plane, pstate, i) {
3084                 id = skl_wm_plane_id(to_intel_plane(plane));
3085                 intel_plane = to_intel_plane(plane);
3086
3087                 if (intel_plane->pipe != intel_crtc->pipe)
3088                         continue;
3089
3090                 /* packed/uv */
3091                 rate = skl_plane_relative_data_rate(intel_cstate,
3092                                                     pstate, 0);
3093                 intel_cstate->wm.skl.plane_data_rate[id] = rate;
3094
3095                 /* y-plane */
3096                 rate = skl_plane_relative_data_rate(intel_cstate,
3097                                                     pstate, 1);
3098                 intel_cstate->wm.skl.plane_y_data_rate[id] = rate;
3099         }
3100
3101         /* Calculate CRTC's total data rate from cached values */
3102         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3103                 int id = skl_wm_plane_id(intel_plane);
3104
3105                 /* packed/uv */
3106                 total_data_rate += intel_cstate->wm.skl.plane_data_rate[id];
3107                 total_data_rate += intel_cstate->wm.skl.plane_y_data_rate[id];
3108         }
3109
3110         WARN_ON(cstate->plane_mask && total_data_rate == 0);
3111
3112         return total_data_rate;
3113 }
3114
3115 static uint16_t
3116 skl_ddb_min_alloc(const struct drm_plane_state *pstate,
3117                   const int y)
3118 {
3119         struct drm_framebuffer *fb = pstate->fb;
3120         struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3121         uint32_t src_w, src_h;
3122         uint32_t min_scanlines = 8;
3123         uint8_t plane_bpp;
3124
3125         if (WARN_ON(!fb))
3126                 return 0;
3127
3128         /* For packed formats, no y-plane, return 0 */
3129         if (y && fb->pixel_format != DRM_FORMAT_NV12)
3130                 return 0;
3131
3132         /* For Non Y-tile return 8-blocks */
3133         if (fb->modifier[0] != I915_FORMAT_MOD_Y_TILED &&
3134             fb->modifier[0] != I915_FORMAT_MOD_Yf_TILED)
3135                 return 8;
3136
3137         src_w = drm_rect_width(&intel_pstate->src) >> 16;
3138         src_h = drm_rect_height(&intel_pstate->src) >> 16;
3139
3140         if (intel_rotation_90_or_270(pstate->rotation))
3141                 swap(src_w, src_h);
3142
3143         /* Halve UV plane width and height for NV12 */
3144         if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
3145                 src_w /= 2;
3146                 src_h /= 2;
3147         }
3148
3149         if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
3150                 plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
3151         else
3152                 plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);
3153
3154         if (intel_rotation_90_or_270(pstate->rotation)) {
3155                 switch (plane_bpp) {
3156                 case 1:
3157                         min_scanlines = 32;
3158                         break;
3159                 case 2:
3160                         min_scanlines = 16;
3161                         break;
3162                 case 4:
3163                         min_scanlines = 8;
3164                         break;
3165                 case 8:
3166                         min_scanlines = 4;
3167                         break;
3168                 default:
3169                         WARN(1, "Unsupported pixel depth %u for rotation",
3170                              plane_bpp);
3171                         min_scanlines = 32;
3172                 }
3173         }
3174
3175         return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
3176 }
3177
3178 static int
3179 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3180                       struct skl_ddb_allocation *ddb /* out */)
3181 {
3182         struct drm_atomic_state *state = cstate->base.state;
3183         struct drm_crtc *crtc = cstate->base.crtc;
3184         struct drm_device *dev = crtc->dev;
3185         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3186         struct intel_plane *intel_plane;
3187         struct drm_plane *plane;
3188         struct drm_plane_state *pstate;
3189         enum pipe pipe = intel_crtc->pipe;
3190         struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
3191         uint16_t alloc_size, start, cursor_blocks;
3192         uint16_t *minimum = cstate->wm.skl.minimum_blocks;
3193         uint16_t *y_minimum = cstate->wm.skl.minimum_y_blocks;
3194         unsigned int total_data_rate;
3195         int num_active;
3196         int id, i;
3197
3198         if (WARN_ON(!state))
3199                 return 0;
3200
3201         if (!cstate->base.active) {
3202                 ddb->pipe[pipe].start = ddb->pipe[pipe].end = 0;
3203                 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3204                 memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
3205                 return 0;
3206         }
3207
3208         skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3209         alloc_size = skl_ddb_entry_size(alloc);
3210         if (alloc_size == 0) {
3211                 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3212                 return 0;
3213         }
3214
3215         cursor_blocks = skl_cursor_allocation(num_active);
3216         ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
3217         ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3218
3219         alloc_size -= cursor_blocks;
3220
3221         /* 1. Allocate the mininum required blocks for each active plane */
3222         for_each_plane_in_state(state, plane, pstate, i) {
3223                 intel_plane = to_intel_plane(plane);
3224                 id = skl_wm_plane_id(intel_plane);
3225
3226                 if (intel_plane->pipe != pipe)
3227                         continue;
3228
3229                 if (!to_intel_plane_state(pstate)->visible) {
3230                         minimum[id] = 0;
3231                         y_minimum[id] = 0;
3232                         continue;
3233                 }
3234                 if (plane->type == DRM_PLANE_TYPE_CURSOR) {
3235                         minimum[id] = 0;
3236                         y_minimum[id] = 0;
3237                         continue;
3238                 }
3239
3240                 minimum[id] = skl_ddb_min_alloc(pstate, 0);
3241                 y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
3242         }
3243
3244         for (i = 0; i < PLANE_CURSOR; i++) {
3245                 alloc_size -= minimum[i];
3246                 alloc_size -= y_minimum[i];
3247         }
3248
3249         /*
3250          * 2. Distribute the remaining space in proportion to the amount of
3251          * data each plane needs to fetch from memory.
3252          *
3253          * FIXME: we may not allocate every single block here.
3254          */
3255         total_data_rate = skl_get_total_relative_data_rate(cstate);
3256         if (total_data_rate == 0)
3257                 return 0;
3258
3259         start = alloc->start;
3260         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3261                 unsigned int data_rate, y_data_rate;
3262                 uint16_t plane_blocks, y_plane_blocks = 0;
3263                 int id = skl_wm_plane_id(intel_plane);
3264
3265                 data_rate = cstate->wm.skl.plane_data_rate[id];
3266
3267                 /*
3268                  * allocation for (packed formats) or (uv-plane part of planar format):
3269                  * promote the expression to 64 bits to avoid overflowing, the
3270                  * result is < available as data_rate / total_data_rate < 1
3271                  */
3272                 plane_blocks = minimum[id];
3273                 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3274                                         total_data_rate);
3275
3276                 /* Leave disabled planes at (0,0) */
3277                 if (data_rate) {
3278                         ddb->plane[pipe][id].start = start;
3279                         ddb->plane[pipe][id].end = start + plane_blocks;
3280                 }
3281
3282                 start += plane_blocks;
3283
3284                 /*
3285                  * allocation for y_plane part of planar format:
3286                  */
3287                 y_data_rate = cstate->wm.skl.plane_y_data_rate[id];
3288
3289                 y_plane_blocks = y_minimum[id];
3290                 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3291                                         total_data_rate);
3292
3293                 if (y_data_rate) {
3294                         ddb->y_plane[pipe][id].start = start;
3295                         ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3296                 }
3297
3298                 start += y_plane_blocks;
3299         }
3300
3301         return 0;
3302 }
3303
3304 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3305 {
3306         /* TODO: Take into account the scalers once we support them */
3307         return config->base.adjusted_mode.crtc_clock;
3308 }
3309
3310 /*
3311  * The max latency should be 257 (max the punit can code is 255 and we add 2us
3312  * for the read latency) and cpp should always be <= 8, so that
3313  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3314  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3315 */
3316 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3317 {
3318         uint32_t wm_intermediate_val, ret;
3319
3320         if (latency == 0)
3321                 return UINT_MAX;
3322
3323         wm_intermediate_val = latency * pixel_rate * cpp / 512;
3324         ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3325
3326         return ret;
3327 }
3328
3329 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3330                                uint32_t horiz_pixels, uint8_t cpp,
3331                                uint64_t tiling, uint32_t latency)
3332 {
3333         uint32_t ret;
3334         uint32_t plane_bytes_per_line, plane_blocks_per_line;
3335         uint32_t wm_intermediate_val;
3336
3337         if (latency == 0)
3338                 return UINT_MAX;
3339
3340         plane_bytes_per_line = horiz_pixels * cpp;
3341
3342         if (tiling == I915_FORMAT_MOD_Y_TILED ||
3343             tiling == I915_FORMAT_MOD_Yf_TILED) {
3344                 plane_bytes_per_line *= 4;
3345                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3346                 plane_blocks_per_line /= 4;
3347         } else {
3348                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3349         }
3350
3351         wm_intermediate_val = latency * pixel_rate;
3352         ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3353                                 plane_blocks_per_line;
3354
3355         return ret;
3356 }
3357
3358 static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
3359                                               struct intel_plane_state *pstate)
3360 {
3361         uint64_t adjusted_pixel_rate;
3362         uint64_t downscale_amount;
3363         uint64_t pixel_rate;
3364
3365         /* Shouldn't reach here on disabled planes... */
3366         if (WARN_ON(!pstate->visible))
3367                 return 0;
3368
3369         /*
3370          * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
3371          * with additional adjustments for plane-specific scaling.
3372          */
3373         adjusted_pixel_rate = skl_pipe_pixel_rate(cstate);
3374         downscale_amount = skl_plane_downscale_amount(pstate);
3375
3376         pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
3377         WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));
3378
3379         return pixel_rate;
3380 }
3381
3382 static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3383                                 struct intel_crtc_state *cstate,
3384                                 struct intel_plane_state *intel_pstate,
3385                                 uint16_t ddb_allocation,
3386                                 int level,
3387                                 uint16_t *out_blocks, /* out */
3388                                 uint8_t *out_lines, /* out */
3389                                 bool *enabled /* out */)
3390 {
3391         struct drm_plane_state *pstate = &intel_pstate->base;
3392         struct drm_framebuffer *fb = pstate->fb;
3393         uint32_t latency = dev_priv->wm.skl_latency[level];
3394         uint32_t method1, method2;
3395         uint32_t plane_bytes_per_line, plane_blocks_per_line;
3396         uint32_t res_blocks, res_lines;
3397         uint32_t selected_result;
3398         uint8_t cpp;
3399         uint32_t width = 0, height = 0;
3400         uint32_t plane_pixel_rate;
3401
3402         if (latency == 0 || !cstate->base.active || !intel_pstate->visible) {
3403                 *enabled = false;
3404                 return 0;
3405         }
3406
3407         width = drm_rect_width(&intel_pstate->src) >> 16;
3408         height = drm_rect_height(&intel_pstate->src) >> 16;
3409
3410         if (intel_rotation_90_or_270(pstate->rotation))
3411                 swap(width, height);
3412
3413         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3414         plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);
3415
3416         method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
3417         method2 = skl_wm_method2(plane_pixel_rate,
3418                                  cstate->base.adjusted_mode.crtc_htotal,
3419                                  width,
3420                                  cpp,
3421                                  fb->modifier[0],
3422                                  latency);
3423
3424         plane_bytes_per_line = width * cpp;
3425         plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3426
3427         if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3428             fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3429                 uint32_t min_scanlines = 4;
3430                 uint32_t y_tile_minimum;
3431                 if (intel_rotation_90_or_270(pstate->rotation)) {
3432                         int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3433                                 drm_format_plane_cpp(fb->pixel_format, 1) :
3434                                 drm_format_plane_cpp(fb->pixel_format, 0);
3435
3436                         switch (cpp) {
3437                         case 1:
3438                                 min_scanlines = 16;
3439                                 break;
3440                         case 2:
3441                                 min_scanlines = 8;
3442                                 break;
3443                         case 8:
3444                                 WARN(1, "Unsupported pixel depth for rotation");
3445                         }
3446                 }
3447                 y_tile_minimum = plane_blocks_per_line * min_scanlines;
3448                 selected_result = max(method2, y_tile_minimum);
3449         } else {
3450                 if ((ddb_allocation / plane_blocks_per_line) >= 1)
3451                         selected_result = min(method1, method2);
3452                 else
3453                         selected_result = method1;
3454         }
3455
3456         res_blocks = selected_result + 1;
3457         res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3458
3459         if (level >= 1 && level <= 7) {
3460                 if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3461                     fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3462                         res_lines += 4;
3463                 else
3464                         res_blocks++;
3465         }
3466
3467         if (res_blocks >= ddb_allocation || res_lines > 31) {
3468                 *enabled = false;
3469
3470                 /*
3471                  * If there are no valid level 0 watermarks, then we can't
3472                  * support this display configuration.
3473                  */
3474                 if (level) {
3475                         return 0;
3476                 } else {
3477                         DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
3478                         DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
3479                                       to_intel_crtc(cstate->base.crtc)->pipe,
3480                                       skl_wm_plane_id(to_intel_plane(pstate->plane)),
3481                                       res_blocks, ddb_allocation, res_lines);
3482
3483                         return -EINVAL;
3484                 }
3485         }
3486
3487         *out_blocks = res_blocks;
3488         *out_lines = res_lines;
3489         *enabled = true;
3490
3491         return 0;
3492 }
3493
3494 static int
3495 skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3496                      struct skl_ddb_allocation *ddb,
3497                      struct intel_crtc_state *cstate,
3498                      int level,
3499                      struct skl_wm_level *result)
3500 {
3501         struct drm_device *dev = dev_priv->dev;
3502         struct drm_atomic_state *state = cstate->base.state;
3503         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3504         struct drm_plane *plane;
3505         struct intel_plane *intel_plane;
3506         struct intel_plane_state *intel_pstate;
3507         uint16_t ddb_blocks;
3508         enum pipe pipe = intel_crtc->pipe;
3509         int ret;
3510
3511         /*
3512          * We'll only calculate watermarks for planes that are actually
3513          * enabled, so make sure all other planes are set as disabled.
3514          */
3515         memset(result, 0, sizeof(*result));
3516
3517         for_each_intel_plane_mask(dev, intel_plane, cstate->base.plane_mask) {
3518                 int i = skl_wm_plane_id(intel_plane);
3519
3520                 plane = &intel_plane->base;
3521                 intel_pstate = NULL;
3522                 if (state)
3523                         intel_pstate =
3524                                 intel_atomic_get_existing_plane_state(state,
3525                                                                       intel_plane);
3526
3527                 /*
3528                  * Note: If we start supporting multiple pending atomic commits
3529                  * against the same planes/CRTC's in the future, plane->state
3530                  * will no longer be the correct pre-state to use for the
3531                  * calculations here and we'll need to change where we get the
3532                  * 'unchanged' plane data from.
3533                  *
3534                  * For now this is fine because we only allow one queued commit
3535                  * against a CRTC.  Even if the plane isn't modified by this
3536                  * transaction and we don't have a plane lock, we still have
3537                  * the CRTC's lock, so we know that no other transactions are
3538                  * racing with us to update it.
3539                  */
3540                 if (!intel_pstate)
3541                         intel_pstate = to_intel_plane_state(plane->state);
3542
3543                 WARN_ON(!intel_pstate->base.fb);
3544
3545                 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3546
3547                 ret = skl_compute_plane_wm(dev_priv,
3548                                            cstate,
3549                                            intel_pstate,
3550                                            ddb_blocks,
3551                                            level,
3552                                            &result->plane_res_b[i],
3553                                            &result->plane_res_l[i],
3554                                            &result->plane_en[i]);
3555                 if (ret)
3556                         return ret;
3557         }
3558
3559         return 0;
3560 }
3561
3562 static uint32_t
3563 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3564 {
3565         if (!cstate->base.active)
3566                 return 0;
3567
3568         if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3569                 return 0;
3570
3571         return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3572                             skl_pipe_pixel_rate(cstate));
3573 }
3574
3575 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3576                                       struct skl_wm_level *trans_wm /* out */)
3577 {
3578         struct drm_crtc *crtc = cstate->base.crtc;
3579         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3580         struct intel_plane *intel_plane;
3581
3582         if (!cstate->base.active)
3583                 return;
3584
3585         /* Until we know more, just disable transition WMs */
3586         for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
3587                 int i = skl_wm_plane_id(intel_plane);
3588
3589                 trans_wm->plane_en[i] = false;
3590         }
3591 }
3592
3593 static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
3594                              struct skl_ddb_allocation *ddb,
3595                              struct skl_pipe_wm *pipe_wm)
3596 {
3597         struct drm_device *dev = cstate->base.crtc->dev;
3598         const struct drm_i915_private *dev_priv = dev->dev_private;
3599         int level, max_level = ilk_wm_max_level(dev);
3600         int ret;
3601
3602         for (level = 0; level <= max_level; level++) {
3603                 ret = skl_compute_wm_level(dev_priv, ddb, cstate,
3604                                            level, &pipe_wm->wm[level]);
3605                 if (ret)
3606                         return ret;
3607         }
3608         pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3609
3610         skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3611
3612         return 0;
3613 }
3614
3615 static void skl_compute_wm_results(struct drm_device *dev,
3616                                    struct skl_pipe_wm *p_wm,
3617                                    struct skl_wm_values *r,
3618                                    struct intel_crtc *intel_crtc)
3619 {
3620         int level, max_level = ilk_wm_max_level(dev);
3621         enum pipe pipe = intel_crtc->pipe;
3622         uint32_t temp;
3623         int i;
3624
3625         for (level = 0; level <= max_level; level++) {
3626                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3627                         temp = 0;
3628
3629                         temp |= p_wm->wm[level].plane_res_l[i] <<
3630                                         PLANE_WM_LINES_SHIFT;
3631                         temp |= p_wm->wm[level].plane_res_b[i];
3632                         if (p_wm->wm[level].plane_en[i])
3633                                 temp |= PLANE_WM_EN;
3634
3635                         r->plane[pipe][i][level] = temp;
3636                 }
3637
3638                 temp = 0;
3639
3640                 temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3641                 temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3642
3643                 if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3644                         temp |= PLANE_WM_EN;
3645
3646                 r->plane[pipe][PLANE_CURSOR][level] = temp;
3647
3648         }
3649
3650         /* transition WMs */
3651         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3652                 temp = 0;
3653                 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3654                 temp |= p_wm->trans_wm.plane_res_b[i];
3655                 if (p_wm->trans_wm.plane_en[i])
3656                         temp |= PLANE_WM_EN;
3657
3658                 r->plane_trans[pipe][i] = temp;
3659         }
3660
3661         temp = 0;
3662         temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3663         temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3664         if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3665                 temp |= PLANE_WM_EN;
3666
3667         r->plane_trans[pipe][PLANE_CURSOR] = temp;
3668
3669         r->wm_linetime[pipe] = p_wm->linetime;
3670 }
3671
3672 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
3673                                 i915_reg_t reg,
3674                                 const struct skl_ddb_entry *entry)
3675 {
3676         if (entry->end)
3677                 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3678         else
3679                 I915_WRITE(reg, 0);
3680 }
3681
3682 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3683                                 const struct skl_wm_values *new)
3684 {
3685         struct drm_device *dev = dev_priv->dev;
3686         struct intel_crtc *crtc;
3687
3688         for_each_intel_crtc(dev, crtc) {
3689                 int i, level, max_level = ilk_wm_max_level(dev);
3690                 enum pipe pipe = crtc->pipe;
3691
3692                 if ((new->dirty_pipes & drm_crtc_mask(&crtc->base)) == 0)
3693                         continue;
3694                 if (!crtc->active)
3695                         continue;
3696
3697                 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3698
3699                 for (level = 0; level <= max_level; level++) {
3700                         for (i = 0; i < intel_num_planes(crtc); i++)
3701                                 I915_WRITE(PLANE_WM(pipe, i, level),
3702                                            new->plane[pipe][i][level]);
3703                         I915_WRITE(CUR_WM(pipe, level),
3704                                    new->plane[pipe][PLANE_CURSOR][level]);
3705                 }
3706                 for (i = 0; i < intel_num_planes(crtc); i++)
3707                         I915_WRITE(PLANE_WM_TRANS(pipe, i),
3708                                    new->plane_trans[pipe][i]);
3709                 I915_WRITE(CUR_WM_TRANS(pipe),
3710                            new->plane_trans[pipe][PLANE_CURSOR]);
3711
3712                 for (i = 0; i < intel_num_planes(crtc); i++) {
3713                         skl_ddb_entry_write(dev_priv,
3714                                             PLANE_BUF_CFG(pipe, i),
3715                                             &new->ddb.plane[pipe][i]);
3716                         skl_ddb_entry_write(dev_priv,
3717                                             PLANE_NV12_BUF_CFG(pipe, i),
3718                                             &new->ddb.y_plane[pipe][i]);
3719                 }
3720
3721                 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3722                                     &new->ddb.plane[pipe][PLANE_CURSOR]);
3723         }
3724 }
3725
3726 /*
3727  * When setting up a new DDB allocation arrangement, we need to correctly
3728  * sequence the times at which the new allocations for the pipes are taken into
3729  * account or we'll have pipes fetching from space previously allocated to
3730  * another pipe.
3731  *
3732  * Roughly the sequence looks like:
3733  *  1. re-allocate the pipe(s) with the allocation being reduced and not
3734  *     overlapping with a previous light-up pipe (another way to put it is:
3735  *     pipes with their new allocation strickly included into their old ones).
3736  *  2. re-allocate the other pipes that get their allocation reduced
3737  *  3. allocate the pipes having their allocation increased
3738  *
3739  * Steps 1. and 2. are here to take care of the following case:
3740  * - Initially DDB looks like this:
3741  *     |   B    |   C    |
3742  * - enable pipe A.
3743  * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3744  *   allocation
3745  *     |  A  |  B  |  C  |
3746  *
3747  * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3748  */
3749
3750 static void
3751 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3752 {
3753         int plane;
3754
3755         DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3756
3757         for_each_plane(dev_priv, pipe, plane) {
3758                 I915_WRITE(PLANE_SURF(pipe, plane),
3759                            I915_READ(PLANE_SURF(pipe, plane)));
3760         }
3761         I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3762 }
3763
3764 static bool
3765 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3766                             const struct skl_ddb_allocation *new,
3767                             enum pipe pipe)
3768 {
3769         uint16_t old_size, new_size;
3770
3771         old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3772         new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3773
3774         return old_size != new_size &&
3775                new->pipe[pipe].start >= old->pipe[pipe].start &&
3776                new->pipe[pipe].end <= old->pipe[pipe].end;
3777 }
3778
3779 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3780                                 struct skl_wm_values *new_values)
3781 {
3782         struct drm_device *dev = dev_priv->dev;
3783         struct skl_ddb_allocation *cur_ddb, *new_ddb;
3784         bool reallocated[I915_MAX_PIPES] = {};
3785         struct intel_crtc *crtc;
3786         enum pipe pipe;
3787
3788         new_ddb = &new_values->ddb;
3789         cur_ddb = &dev_priv->wm.skl_hw.ddb;
3790
3791         /*
3792          * First pass: flush the pipes with the new allocation contained into
3793          * the old space.
3794          *
3795          * We'll wait for the vblank on those pipes to ensure we can safely
3796          * re-allocate the freed space without this pipe fetching from it.
3797          */
3798         for_each_intel_crtc(dev, crtc) {
3799                 if (!crtc->active)
3800                         continue;
3801
3802                 pipe = crtc->pipe;
3803
3804                 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3805                         continue;
3806
3807                 skl_wm_flush_pipe(dev_priv, pipe, 1);
3808                 intel_wait_for_vblank(dev, pipe);
3809
3810                 reallocated[pipe] = true;
3811         }
3812
3813
3814         /*
3815          * Second pass: flush the pipes that are having their allocation
3816          * reduced, but overlapping with a previous allocation.
3817          *
3818          * Here as well we need to wait for the vblank to make sure the freed
3819          * space is not used anymore.
3820          */
3821         for_each_intel_crtc(dev, crtc) {
3822                 if (!crtc->active)
3823                         continue;
3824
3825                 pipe = crtc->pipe;
3826
3827                 if (reallocated[pipe])
3828                         continue;
3829
3830                 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3831                     skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3832                         skl_wm_flush_pipe(dev_priv, pipe, 2);
3833                         intel_wait_for_vblank(dev, pipe);
3834                         reallocated[pipe] = true;
3835                 }
3836         }
3837
3838         /*
3839          * Third pass: flush the pipes that got more space allocated.
3840          *
3841          * We don't need to actively wait for the update here, next vblank
3842          * will just get more DDB space with the correct WM values.
3843          */
3844         for_each_intel_crtc(dev, crtc) {
3845                 if (!crtc->active)
3846                         continue;
3847
3848                 pipe = crtc->pipe;
3849
3850                 /*
3851                  * At this point, only the pipes more space than before are
3852                  * left to re-allocate.
3853                  */
3854                 if (reallocated[pipe])
3855                         continue;
3856
3857                 skl_wm_flush_pipe(dev_priv, pipe, 3);
3858         }
3859 }
3860
3861 static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
3862                               struct skl_ddb_allocation *ddb, /* out */
3863                               struct skl_pipe_wm *pipe_wm, /* out */
3864                               bool *changed /* out */)
3865 {
3866         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->crtc);
3867         struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3868         int ret;
3869
3870         ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
3871         if (ret)
3872                 return ret;
3873
3874         if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3875                 *changed = false;
3876         else
3877                 *changed = true;
3878
3879         return 0;
3880 }
3881
3882 static uint32_t
3883 pipes_modified(struct drm_atomic_state *state)
3884 {
3885         struct drm_crtc *crtc;
3886         struct drm_crtc_state *cstate;
3887         uint32_t i, ret = 0;
3888
3889         for_each_crtc_in_state(state, crtc, cstate, i)
3890                 ret |= drm_crtc_mask(crtc);
3891
3892         return ret;
3893 }
3894
3895 static int
3896 skl_compute_ddb(struct drm_atomic_state *state)
3897 {
3898         struct drm_device *dev = state->dev;
3899         struct drm_i915_private *dev_priv = to_i915(dev);
3900         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3901         struct intel_crtc *intel_crtc;
3902         struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
3903         uint32_t realloc_pipes = pipes_modified(state);
3904         int ret;
3905
3906         /*
3907          * If this is our first atomic update following hardware readout,
3908          * we can't trust the DDB that the BIOS programmed for us.  Let's
3909          * pretend that all pipes switched active status so that we'll
3910          * ensure a full DDB recompute.
3911          */
3912         if (dev_priv->wm.distrust_bios_wm)
3913                 intel_state->active_pipe_changes = ~0;
3914
3915         /*
3916          * If the modeset changes which CRTC's are active, we need to
3917          * recompute the DDB allocation for *all* active pipes, even
3918          * those that weren't otherwise being modified in any way by this
3919          * atomic commit.  Due to the shrinking of the per-pipe allocations
3920          * when new active CRTC's are added, it's possible for a pipe that
3921          * we were already using and aren't changing at all here to suddenly
3922          * become invalid if its DDB needs exceeds its new allocation.
3923          *
3924          * Note that if we wind up doing a full DDB recompute, we can't let
3925          * any other display updates race with this transaction, so we need
3926          * to grab the lock on *all* CRTC's.
3927          */
3928         if (intel_state->active_pipe_changes) {
3929                 realloc_pipes = ~0;
3930                 intel_state->wm_results.dirty_pipes = ~0;
3931         }
3932
3933         for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
3934                 struct intel_crtc_state *cstate;
3935
3936                 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
3937                 if (IS_ERR(cstate))
3938                         return PTR_ERR(cstate);
3939
3940                 ret = skl_allocate_pipe_ddb(cstate, ddb);
3941                 if (ret)
3942                         return ret;
3943         }
3944
3945         return 0;
3946 }
3947
3948 static int
3949 skl_compute_wm(struct drm_atomic_state *state)
3950 {
3951         struct drm_crtc *crtc;
3952         struct drm_crtc_state *cstate;
3953         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3954         struct skl_wm_values *results = &intel_state->wm_results;
3955         struct skl_pipe_wm *pipe_wm;
3956         bool changed = false;
3957         int ret, i;
3958
3959         /*
3960          * If this transaction isn't actually touching any CRTC's, don't
3961          * bother with watermark calculation.  Note that if we pass this
3962          * test, we're guaranteed to hold at least one CRTC state mutex,
3963          * which means we can safely use values like dev_priv->active_crtcs
3964          * since any racing commits that want to update them would need to
3965          * hold _all_ CRTC state mutexes.
3966          */
3967         for_each_crtc_in_state(state, crtc, cstate, i)
3968                 changed = true;
3969         if (!changed)
3970                 return 0;
3971
3972         /* Clear all dirty flags */
3973         results->dirty_pipes = 0;
3974
3975         ret = skl_compute_ddb(state);
3976         if (ret)
3977                 return ret;
3978
3979         /*
3980          * Calculate WM's for all pipes that are part of this transaction.
3981          * Note that the DDB allocation above may have added more CRTC's that
3982          * weren't otherwise being modified (and set bits in dirty_pipes) if
3983          * pipe allocations had to change.
3984          *
3985          * FIXME:  Now that we're doing this in the atomic check phase, we
3986          * should allow skl_update_pipe_wm() to return failure in cases where
3987          * no suitable watermark values can be found.
3988          */
3989         for_each_crtc_in_state(state, crtc, cstate, i) {
3990                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3991                 struct intel_crtc_state *intel_cstate =
3992                         to_intel_crtc_state(cstate);
3993
3994                 pipe_wm = &intel_cstate->wm.skl.optimal;
3995                 ret = skl_update_pipe_wm(cstate, &results->ddb, pipe_wm,
3996                                          &changed);
3997                 if (ret)
3998                         return ret;
3999
4000                 if (changed)
4001                         results->dirty_pipes |= drm_crtc_mask(crtc);
4002
4003                 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4004                         /* This pipe's WM's did not change */
4005                         continue;
4006
4007                 intel_cstate->update_wm_pre = true;
4008                 skl_compute_wm_results(crtc->dev, pipe_wm, results, intel_crtc);
4009         }
4010
4011         return 0;
4012 }
4013
4014 static void skl_update_wm(struct drm_crtc *crtc)
4015 {
4016         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4017         struct drm_device *dev = crtc->dev;
4018         struct drm_i915_private *dev_priv = dev->dev_private;
4019         struct skl_wm_values *results = &dev_priv->wm.skl_results;
4020         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4021         struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4022
4023         if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4024                 return;
4025
4026         intel_crtc->wm.active.skl = *pipe_wm;
4027
4028         mutex_lock(&dev_priv->wm.wm_mutex);
4029
4030         skl_write_wm_values(dev_priv, results);
4031         skl_flush_wm_values(dev_priv, results);
4032
4033         /* store the new configuration */
4034         dev_priv->wm.skl_hw = *results;
4035
4036         mutex_unlock(&dev_priv->wm.wm_mutex);
4037 }
4038
4039 static void ilk_compute_wm_config(struct drm_device *dev,
4040                                   struct intel_wm_config *config)
4041 {
4042         struct intel_crtc *crtc;
4043
4044         /* Compute the currently _active_ config */
4045         for_each_intel_crtc(dev, crtc) {
4046                 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
4047
4048                 if (!wm->pipe_enabled)
4049                         continue;
4050
4051                 config->sprites_enabled |= wm->sprites_enabled;
4052                 config->sprites_scaled |= wm->sprites_scaled;
4053                 config->num_pipes_active++;
4054         }
4055 }
4056
4057 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4058 {
4059         struct drm_device *dev = dev_priv->dev;
4060         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4061         struct ilk_wm_maximums max;
4062         struct intel_wm_config config = {};
4063         struct ilk_wm_values results = {};
4064         enum intel_ddb_partitioning partitioning;
4065
4066         ilk_compute_wm_config(dev, &config);
4067
4068         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
4069         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4070
4071         /* 5/6 split only in single pipe config on IVB+ */
4072         if (INTEL_INFO(dev)->gen >= 7 &&
4073             config.num_pipes_active == 1 && config.sprites_enabled) {
4074                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
4075                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4076
4077                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4078         } else {
4079                 best_lp_wm = &lp_wm_1_2;
4080         }
4081
4082         partitioning = (best_lp_wm == &lp_wm_1_2) ?
4083                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4084
4085         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4086
4087         ilk_write_wm_values(dev_priv, &results);
4088 }
4089
4090 static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
4091 {
4092         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4093         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4094
4095         mutex_lock(&dev_priv->wm.wm_mutex);
4096         intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4097         ilk_program_watermarks(dev_priv);
4098         mutex_unlock(&dev_priv->wm.wm_mutex);
4099 }
4100
4101 static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
4102 {
4103         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4104         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4105
4106         mutex_lock(&dev_priv->wm.wm_mutex);
4107         if (cstate->wm.need_postvbl_update) {
4108                 intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4109                 ilk_program_watermarks(dev_priv);
4110         }
4111         mutex_unlock(&dev_priv->wm.wm_mutex);
4112 }
4113
4114 static void skl_pipe_wm_active_state(uint32_t val,
4115                                      struct skl_pipe_wm *active,
4116                                      bool is_transwm,
4117                                      bool is_cursor,
4118                                      int i,
4119                                      int level)
4120 {
4121         bool is_enabled = (val & PLANE_WM_EN) != 0;
4122
4123         if (!is_transwm) {
4124                 if (!is_cursor) {
4125                         active->wm[level].plane_en[i] = is_enabled;
4126                         active->wm[level].plane_res_b[i] =
4127                                         val & PLANE_WM_BLOCKS_MASK;
4128                         active->wm[level].plane_res_l[i] =
4129                                         (val >> PLANE_WM_LINES_SHIFT) &
4130                                                 PLANE_WM_LINES_MASK;
4131                 } else {
4132                         active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
4133                         active->wm[level].plane_res_b[PLANE_CURSOR] =
4134                                         val & PLANE_WM_BLOCKS_MASK;
4135                         active->wm[level].plane_res_l[PLANE_CURSOR] =
4136                                         (val >> PLANE_WM_LINES_SHIFT) &
4137                                                 PLANE_WM_LINES_MASK;
4138                 }
4139         } else {
4140                 if (!is_cursor) {
4141                         active->trans_wm.plane_en[i] = is_enabled;
4142                         active->trans_wm.plane_res_b[i] =
4143                                         val & PLANE_WM_BLOCKS_MASK;
4144                         active->trans_wm.plane_res_l[i] =
4145                                         (val >> PLANE_WM_LINES_SHIFT) &
4146                                                 PLANE_WM_LINES_MASK;
4147                 } else {
4148                         active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
4149                         active->trans_wm.plane_res_b[PLANE_CURSOR] =
4150                                         val & PLANE_WM_BLOCKS_MASK;
4151                         active->trans_wm.plane_res_l[PLANE_CURSOR] =
4152                                         (val >> PLANE_WM_LINES_SHIFT) &
4153                                                 PLANE_WM_LINES_MASK;
4154                 }
4155         }
4156 }
4157
4158 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
4159 {
4160         struct drm_device *dev = crtc->dev;
4161         struct drm_i915_private *dev_priv = dev->dev_private;
4162         struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4163         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4164         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4165         struct skl_pipe_wm *active = &cstate->wm.skl.optimal;
4166         enum pipe pipe = intel_crtc->pipe;
4167         int level, i, max_level;
4168         uint32_t temp;
4169
4170         max_level = ilk_wm_max_level(dev);
4171
4172         hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4173
4174         for (level = 0; level <= max_level; level++) {
4175                 for (i = 0; i < intel_num_planes(intel_crtc); i++)
4176                         hw->plane[pipe][i][level] =
4177                                         I915_READ(PLANE_WM(pipe, i, level));
4178                 hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
4179         }
4180
4181         for (i = 0; i < intel_num_planes(intel_crtc); i++)
4182                 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
4183         hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
4184
4185         if (!intel_crtc->active)
4186                 return;
4187
4188         hw->dirty_pipes |= drm_crtc_mask(crtc);
4189
4190         active->linetime = hw->wm_linetime[pipe];
4191
4192         for (level = 0; level <= max_level; level++) {
4193                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
4194                         temp = hw->plane[pipe][i][level];
4195                         skl_pipe_wm_active_state(temp, active, false,
4196                                                 false, i, level);
4197                 }
4198                 temp = hw->plane[pipe][PLANE_CURSOR][level];
4199                 skl_pipe_wm_active_state(temp, active, false, true, i, level);
4200         }
4201
4202         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
4203                 temp = hw->plane_trans[pipe][i];
4204                 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
4205         }
4206
4207         temp = hw->plane_trans[pipe][PLANE_CURSOR];
4208         skl_pipe_wm_active_state(temp, active, true, true, i, 0);
4209
4210         intel_crtc->wm.active.skl = *active;
4211 }
4212
4213 void skl_wm_get_hw_state(struct drm_device *dev)
4214 {
4215         struct drm_i915_private *dev_priv = dev->dev_private;
4216         struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4217         struct drm_crtc *crtc;
4218
4219         skl_ddb_get_hw_state(dev_priv, ddb);
4220         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
4221                 skl_pipe_wm_get_hw_state(crtc);
4222
4223         if (dev_priv->active_crtcs) {
4224                 /* Fully recompute DDB on first atomic commit */
4225                 dev_priv->wm.distrust_bios_wm = true;
4226         } else {
4227                 /* Easy/common case; just sanitize DDB now if everything off */
4228                 memset(ddb, 0, sizeof(*ddb));
4229         }
4230 }
4231
4232 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
4233 {
4234         struct drm_device *dev = crtc->dev;
4235         struct drm_i915_private *dev_priv = dev->dev_private;
4236         struct ilk_wm_values *hw = &dev_priv->wm.hw;
4237         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4238         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4239         struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4240         enum pipe pipe = intel_crtc->pipe;
4241         static const i915_reg_t wm0_pipe_reg[] = {
4242                 [PIPE_A] = WM0_PIPEA_ILK,
4243                 [PIPE_B] = WM0_PIPEB_ILK,
4244                 [PIPE_C] = WM0_PIPEC_IVB,
4245         };
4246
4247         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4248         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4249                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4250
4251         memset(active, 0, sizeof(*active));
4252
4253         active->pipe_enabled = intel_crtc->active;
4254
4255         if (active->pipe_enabled) {
4256                 u32 tmp = hw->wm_pipe[pipe];
4257
4258                 /*
4259                  * For active pipes LP0 watermark is marked as
4260                  * enabled, and LP1+ watermaks as disabled since
4261                  * we can't really reverse compute them in case
4262                  * multiple pipes are active.
4263                  */
4264                 active->wm[0].enable = true;
4265                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
4266                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
4267                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
4268                 active->linetime = hw->wm_linetime[pipe];
4269         } else {
4270                 int level, max_level = ilk_wm_max_level(dev);
4271
4272                 /*
4273                  * For inactive pipes, all watermark levels
4274                  * should be marked as enabled but zeroed,
4275                  * which is what we'd compute them to.
4276                  */
4277                 for (level = 0; level <= max_level; level++)
4278                         active->wm[level].enable = true;
4279         }
4280
4281         intel_crtc->wm.active.ilk = *active;
4282 }
4283
4284 #define _FW_WM(value, plane) \
4285         (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
4286 #define _FW_WM_VLV(value, plane) \
4287         (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
4288
4289 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
4290                                struct vlv_wm_values *wm)
4291 {
4292         enum pipe pipe;
4293         uint32_t tmp;
4294
4295         for_each_pipe(dev_priv, pipe) {
4296                 tmp = I915_READ(VLV_DDL(pipe));
4297
4298                 wm->ddl[pipe].primary =
4299                         (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4300                 wm->ddl[pipe].cursor =
4301                         (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4302                 wm->ddl[pipe].sprite[0] =
4303                         (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4304                 wm->ddl[pipe].sprite[1] =
4305                         (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4306         }
4307
4308         tmp = I915_READ(DSPFW1);
4309         wm->sr.plane = _FW_WM(tmp, SR);
4310         wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
4311         wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
4312         wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
4313
4314         tmp = I915_READ(DSPFW2);
4315         wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
4316         wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
4317         wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
4318
4319         tmp = I915_READ(DSPFW3);
4320         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
4321
4322         if (IS_CHERRYVIEW(dev_priv)) {
4323                 tmp = I915_READ(DSPFW7_CHV);
4324                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4325                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4326
4327                 tmp = I915_READ(DSPFW8_CHV);
4328                 wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
4329                 wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
4330
4331                 tmp = I915_READ(DSPFW9_CHV);
4332                 wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
4333                 wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
4334
4335                 tmp = I915_READ(DSPHOWM);
4336                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4337                 wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
4338                 wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
4339                 wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
4340                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4341                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4342                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4343                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4344                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4345                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4346         } else {
4347                 tmp = I915_READ(DSPFW7);
4348                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4349                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4350
4351                 tmp = I915_READ(DSPHOWM);
4352                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4353                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4354                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4355                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4356                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4357                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4358                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4359         }
4360 }
4361
4362 #undef _FW_WM
4363 #undef _FW_WM_VLV
4364
4365 void vlv_wm_get_hw_state(struct drm_device *dev)
4366 {
4367         struct drm_i915_private *dev_priv = to_i915(dev);
4368         struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4369         struct intel_plane *plane;
4370         enum pipe pipe;
4371         u32 val;
4372
4373         vlv_read_wm_values(dev_priv, wm);
4374
4375         for_each_intel_plane(dev, plane) {
4376                 switch (plane->base.type) {
4377                         int sprite;
4378                 case DRM_PLANE_TYPE_CURSOR:
4379                         plane->wm.fifo_size = 63;
4380                         break;
4381                 case DRM_PLANE_TYPE_PRIMARY:
4382                         plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
4383                         break;
4384                 case DRM_PLANE_TYPE_OVERLAY:
4385                         sprite = plane->plane;
4386                         plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
4387                         break;
4388                 }
4389         }
4390
4391         wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4392         wm->level = VLV_WM_LEVEL_PM2;
4393
4394         if (IS_CHERRYVIEW(dev_priv)) {
4395                 mutex_lock(&dev_priv->rps.hw_lock);
4396
4397                 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4398                 if (val & DSP_MAXFIFO_PM5_ENABLE)
4399                         wm->level = VLV_WM_LEVEL_PM5;
4400
4401                 /*
4402                  * If DDR DVFS is disabled in the BIOS, Punit
4403                  * will never ack the request. So if that happens
4404                  * assume we don't have to enable/disable DDR DVFS
4405                  * dynamically. To test that just set the REQ_ACK
4406                  * bit to poke the Punit, but don't change the
4407                  * HIGH/LOW bits so that we don't actually change
4408                  * the current state.
4409                  */
4410                 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4411                 val |= FORCE_DDR_FREQ_REQ_ACK;
4412                 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4413
4414                 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4415                               FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4416                         DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4417                                       "assuming DDR DVFS is disabled\n");
4418                         dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4419                 } else {
4420                         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4421                         if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4422                                 wm->level = VLV_WM_LEVEL_DDR_DVFS;
4423                 }
4424
4425                 mutex_unlock(&dev_priv->rps.hw_lock);
4426         }
4427
4428         for_each_pipe(dev_priv, pipe)
4429                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4430                               pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4431                               wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4432
4433         DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4434                       wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4435 }
4436
4437 void ilk_wm_get_hw_state(struct drm_device *dev)
4438 {
4439         struct drm_i915_private *dev_priv = dev->dev_private;
4440         struct ilk_wm_values *hw = &dev_priv->wm.hw;
4441         struct drm_crtc *crtc;
4442
4443         for_each_crtc(dev, crtc)
4444                 ilk_pipe_wm_get_hw_state(crtc);
4445
4446         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4447         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4448         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4449
4450         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4451         if (INTEL_INFO(dev)->gen >= 7) {
4452                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4453                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4454         }
4455
4456         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4457                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4458                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4459         else if (IS_IVYBRIDGE(dev))
4460                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4461                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4462
4463         hw->enable_fbc_wm =
4464                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4465 }
4466
4467 /**
4468  * intel_update_watermarks - update FIFO watermark values based on current modes
4469  *
4470  * Calculate watermark values for the various WM regs based on current mode
4471  * and plane configuration.
4472  *
4473  * There are several cases to deal with here:
4474  *   - normal (i.e. non-self-refresh)
4475  *   - self-refresh (SR) mode
4476  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4477  *   - lines are small relative to FIFO size (buffer can hold more than 2
4478  *     lines), so need to account for TLB latency
4479  *
4480  *   The normal calculation is:
4481  *     watermark = dotclock * bytes per pixel * latency
4482  *   where latency is platform & configuration dependent (we assume pessimal
4483  *   values here).
4484  *
4485  *   The SR calculation is:
4486  *     watermark = (trunc(latency/line time)+1) * surface width *
4487  *       bytes per pixel
4488  *   where
4489  *     line time = htotal / dotclock
4490  *     surface width = hdisplay for normal plane and 64 for cursor
4491  *   and latency is assumed to be high, as above.
4492  *
4493  * The final value programmed to the register should always be rounded up,
4494  * and include an extra 2 entries to account for clock crossings.
4495  *
4496  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4497  * to set the non-SR watermarks to 8.
4498  */
4499 void intel_update_watermarks(struct drm_crtc *crtc)
4500 {
4501         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4502
4503         if (dev_priv->display.update_wm)
4504                 dev_priv->display.update_wm(crtc);
4505 }
4506
4507 /*
4508  * Lock protecting IPS related data structures
4509  */
4510 DEFINE_SPINLOCK(mchdev_lock);
4511
4512 /* Global for IPS driver to get at the current i915 device. Protected by
4513  * mchdev_lock. */
4514 static struct drm_i915_private *i915_mch_dev;
4515
4516 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4517 {
4518         u16 rgvswctl;
4519
4520         assert_spin_locked(&mchdev_lock);
4521
4522         rgvswctl = I915_READ16(MEMSWCTL);
4523         if (rgvswctl & MEMCTL_CMD_STS) {
4524                 DRM_DEBUG("gpu busy, RCS change rejected\n");
4525                 return false; /* still busy with another command */
4526         }
4527
4528         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4529                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4530         I915_WRITE16(MEMSWCTL, rgvswctl);
4531         POSTING_READ16(MEMSWCTL);
4532
4533         rgvswctl |= MEMCTL_CMD_STS;
4534         I915_WRITE16(MEMSWCTL, rgvswctl);
4535
4536         return true;
4537 }
4538
4539 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4540 {
4541         u32 rgvmodectl;
4542         u8 fmax, fmin, fstart, vstart;
4543
4544         spin_lock_irq(&mchdev_lock);
4545
4546         rgvmodectl = I915_READ(MEMMODECTL);
4547
4548         /* Enable temp reporting */
4549         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4550         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4551
4552         /* 100ms RC evaluation intervals */
4553         I915_WRITE(RCUPEI, 100000);
4554         I915_WRITE(RCDNEI, 100000);
4555
4556         /* Set max/min thresholds to 90ms and 80ms respectively */
4557         I915_WRITE(RCBMAXAVG, 90000);
4558         I915_WRITE(RCBMINAVG, 80000);
4559
4560         I915_WRITE(MEMIHYST, 1);
4561
4562         /* Set up min, max, and cur for interrupt handling */
4563         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4564         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4565         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4566                 MEMMODE_FSTART_SHIFT;
4567
4568         vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4569                 PXVFREQ_PX_SHIFT;
4570
4571         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4572         dev_priv->ips.fstart = fstart;
4573
4574         dev_priv->ips.max_delay = fstart;
4575         dev_priv->ips.min_delay = fmin;
4576         dev_priv->ips.cur_delay = fstart;
4577
4578         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4579                          fmax, fmin, fstart);
4580
4581         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4582
4583         /*
4584          * Interrupts will be enabled in ironlake_irq_postinstall
4585          */
4586
4587         I915_WRITE(VIDSTART, vstart);
4588         POSTING_READ(VIDSTART);
4589
4590         rgvmodectl |= MEMMODE_SWMODE_EN;
4591         I915_WRITE(MEMMODECTL, rgvmodectl);
4592
4593         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4594                 DRM_ERROR("stuck trying to change perf mode\n");
4595         mdelay(1);
4596
4597         ironlake_set_drps(dev_priv, fstart);
4598
4599         dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4600                 I915_READ(DDREC) + I915_READ(CSIEC);
4601         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4602         dev_priv->ips.last_count2 = I915_READ(GFXEC);
4603         dev_priv->ips.last_time2 = ktime_get_raw_ns();
4604
4605         spin_unlock_irq(&mchdev_lock);
4606 }
4607
4608 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4609 {
4610         u16 rgvswctl;
4611
4612         spin_lock_irq(&mchdev_lock);
4613
4614         rgvswctl = I915_READ16(MEMSWCTL);
4615
4616         /* Ack interrupts, disable EFC interrupt */
4617         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4618         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4619         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4620         I915_WRITE(DEIIR, DE_PCU_EVENT);
4621         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4622
4623         /* Go back to the starting frequency */
4624         ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4625         mdelay(1);
4626         rgvswctl |= MEMCTL_CMD_STS;
4627         I915_WRITE(MEMSWCTL, rgvswctl);
4628         mdelay(1);
4629
4630         spin_unlock_irq(&mchdev_lock);
4631 }
4632
4633 /* There's a funny hw issue where the hw returns all 0 when reading from
4634  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4635  * ourselves, instead of doing a rmw cycle (which might result in us clearing
4636  * all limits and the gpu stuck at whatever frequency it is at atm).
4637  */
4638 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4639 {
4640         u32 limits;
4641
4642         /* Only set the down limit when we've reached the lowest level to avoid
4643          * getting more interrupts, otherwise leave this clear. This prevents a
4644          * race in the hw when coming out of rc6: There's a tiny window where
4645          * the hw runs at the minimal clock before selecting the desired
4646          * frequency, if the down threshold expires in that window we will not
4647          * receive a down interrupt. */
4648         if (IS_GEN9(dev_priv)) {
4649                 limits = (dev_priv->rps.max_freq_softlimit) << 23;
4650                 if (val <= dev_priv->rps.min_freq_softlimit)
4651                         limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4652         } else {
4653                 limits = dev_priv->rps.max_freq_softlimit << 24;
4654                 if (val <= dev_priv->rps.min_freq_softlimit)
4655                         limits |= dev_priv->rps.min_freq_softlimit << 16;
4656         }
4657
4658         return limits;
4659 }
4660
4661 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4662 {
4663         int new_power;
4664         u32 threshold_up = 0, threshold_down = 0; /* in % */
4665         u32 ei_up = 0, ei_down = 0;
4666
4667         new_power = dev_priv->rps.power;
4668         switch (dev_priv->rps.power) {
4669         case LOW_POWER:
4670                 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4671                         new_power = BETWEEN;
4672                 break;
4673
4674         case BETWEEN:
4675                 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4676                         new_power = LOW_POWER;
4677                 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4678                         new_power = HIGH_POWER;
4679                 break;
4680
4681         case HIGH_POWER:
4682                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4683                         new_power = BETWEEN;
4684                 break;
4685         }
4686         /* Max/min bins are special */
4687         if (val <= dev_priv->rps.min_freq_softlimit)
4688                 new_power = LOW_POWER;
4689         if (val >= dev_priv->rps.max_freq_softlimit)
4690                 new_power = HIGH_POWER;
4691         if (new_power == dev_priv->rps.power)
4692                 return;
4693
4694         /* Note the units here are not exactly 1us, but 1280ns. */
4695         switch (new_power) {
4696         case LOW_POWER:
4697                 /* Upclock if more than 95% busy over 16ms */
4698                 ei_up = 16000;
4699                 threshold_up = 95;
4700
4701                 /* Downclock if less than 85% busy over 32ms */
4702                 ei_down = 32000;
4703                 threshold_down = 85;
4704                 break;
4705
4706         case BETWEEN:
4707                 /* Upclock if more than 90% busy over 13ms */
4708                 ei_up = 13000;
4709                 threshold_up = 90;
4710
4711                 /* Downclock if less than 75% busy over 32ms */
4712                 ei_down = 32000;
4713                 threshold_down = 75;
4714                 break;
4715
4716         case HIGH_POWER:
4717                 /* Upclock if more than 85% busy over 10ms */
4718                 ei_up = 10000;
4719                 threshold_up = 85;
4720
4721                 /* Downclock if less than 60% busy over 32ms */
4722                 ei_down = 32000;
4723                 threshold_down = 60;
4724                 break;
4725         }
4726
4727         I915_WRITE(GEN6_RP_UP_EI,
4728                 GT_INTERVAL_FROM_US(dev_priv, ei_up));
4729         I915_WRITE(GEN6_RP_UP_THRESHOLD,
4730                 GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4731
4732         I915_WRITE(GEN6_RP_DOWN_EI,
4733                 GT_INTERVAL_FROM_US(dev_priv, ei_down));
4734         I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4735                 GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4736
4737          I915_WRITE(GEN6_RP_CONTROL,
4738                     GEN6_RP_MEDIA_TURBO |
4739                     GEN6_RP_MEDIA_HW_NORMAL_MODE |
4740                     GEN6_RP_MEDIA_IS_GFX |
4741                     GEN6_RP_ENABLE |
4742                     GEN6_RP_UP_BUSY_AVG |
4743                     GEN6_RP_DOWN_IDLE_AVG);
4744
4745         dev_priv->rps.power = new_power;
4746         dev_priv->rps.up_threshold = threshold_up;
4747         dev_priv->rps.down_threshold = threshold_down;
4748         dev_priv->rps.last_adj = 0;
4749 }
4750
4751 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4752 {
4753         u32 mask = 0;
4754
4755         if (val > dev_priv->rps.min_freq_softlimit)
4756                 mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4757         if (val < dev_priv->rps.max_freq_softlimit)
4758                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4759
4760         mask &= dev_priv->pm_rps_events;
4761
4762         return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4763 }
4764
4765 /* gen6_set_rps is called to update the frequency request, but should also be
4766  * called when the range (min_delay and max_delay) is modified so that we can
4767  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4768 static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4769 {
4770         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4771         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4772                 return;
4773
4774         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4775         WARN_ON(val > dev_priv->rps.max_freq);
4776         WARN_ON(val < dev_priv->rps.min_freq);
4777
4778         /* min/max delay may still have been modified so be sure to
4779          * write the limits value.
4780          */
4781         if (val != dev_priv->rps.cur_freq) {
4782                 gen6_set_rps_thresholds(dev_priv, val);
4783
4784                 if (IS_GEN9(dev_priv))
4785                         I915_WRITE(GEN6_RPNSWREQ,
4786                                    GEN9_FREQUENCY(val));
4787                 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4788                         I915_WRITE(GEN6_RPNSWREQ,
4789                                    HSW_FREQUENCY(val));
4790                 else
4791                         I915_WRITE(GEN6_RPNSWREQ,
4792                                    GEN6_FREQUENCY(val) |
4793                                    GEN6_OFFSET(0) |
4794                                    GEN6_AGGRESSIVE_TURBO);
4795         }
4796
4797         /* Make sure we continue to get interrupts
4798          * until we hit the minimum or maximum frequencies.
4799          */
4800         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4801         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4802
4803         POSTING_READ(GEN6_RPNSWREQ);
4804
4805         dev_priv->rps.cur_freq = val;
4806         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4807 }
4808
4809 static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4810 {
4811         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4812         WARN_ON(val > dev_priv->rps.max_freq);
4813         WARN_ON(val < dev_priv->rps.min_freq);
4814
4815         if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4816                       "Odd GPU freq value\n"))
4817                 val &= ~1;
4818
4819         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4820
4821         if (val != dev_priv->rps.cur_freq) {
4822                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4823                 if (!IS_CHERRYVIEW(dev_priv))
4824                         gen6_set_rps_thresholds(dev_priv, val);
4825         }
4826
4827         dev_priv->rps.cur_freq = val;
4828         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4829 }
4830
4831 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4832  *
4833  * * If Gfx is Idle, then
4834  * 1. Forcewake Media well.
4835  * 2. Request idle freq.
4836  * 3. Release Forcewake of Media well.
4837 */
4838 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4839 {
4840         u32 val = dev_priv->rps.idle_freq;
4841
4842         if (dev_priv->rps.cur_freq <= val)
4843                 return;
4844
4845         /* Wake up the media well, as that takes a lot less
4846          * power than the Render well. */
4847         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4848         valleyview_set_rps(dev_priv, val);
4849         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4850 }
4851
4852 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4853 {
4854         mutex_lock(&dev_priv->rps.hw_lock);
4855         if (dev_priv->rps.enabled) {
4856                 if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4857                         gen6_rps_reset_ei(dev_priv);
4858                 I915_WRITE(GEN6_PMINTRMSK,
4859                            gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4860
4861                 /* Ensure we start at the user's desired frequency */
4862                 intel_set_rps(dev_priv,
4863                               clamp(dev_priv->rps.cur_freq,
4864                                     dev_priv->rps.min_freq_softlimit,
4865                                     dev_priv->rps.max_freq_softlimit));
4866         }
4867         mutex_unlock(&dev_priv->rps.hw_lock);
4868 }
4869
4870 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4871 {
4872         mutex_lock(&dev_priv->rps.hw_lock);
4873         if (dev_priv->rps.enabled) {
4874                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4875                         vlv_set_rps_idle(dev_priv);
4876                 else
4877                         gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
4878                 dev_priv->rps.last_adj = 0;
4879                 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4880         }
4881         mutex_unlock(&dev_priv->rps.hw_lock);
4882
4883         spin_lock(&dev_priv->rps.client_lock);
4884         while (!list_empty(&dev_priv->rps.clients))
4885                 list_del_init(dev_priv->rps.clients.next);
4886         spin_unlock(&dev_priv->rps.client_lock);
4887 }
4888
4889 void gen6_rps_boost(struct drm_i915_private *dev_priv,
4890                     struct intel_rps_client *rps,
4891                     unsigned long submitted)
4892 {
4893         /* This is intentionally racy! We peek at the state here, then
4894          * validate inside the RPS worker.
4895          */
4896         if (!(dev_priv->mm.busy &&
4897               dev_priv->rps.enabled &&
4898               dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4899                 return;
4900
4901         /* Force a RPS boost (and don't count it against the client) if
4902          * the GPU is severely congested.
4903          */
4904         if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4905                 rps = NULL;
4906
4907         spin_lock(&dev_priv->rps.client_lock);
4908         if (rps == NULL || list_empty(&rps->link)) {
4909                 spin_lock_irq(&dev_priv->irq_lock);
4910                 if (dev_priv->rps.interrupts_enabled) {
4911                         dev_priv->rps.client_boost = true;
4912                         queue_work(dev_priv->wq, &dev_priv->rps.work);
4913                 }
4914                 spin_unlock_irq(&dev_priv->irq_lock);
4915
4916                 if (rps != NULL) {
4917                         list_add(&rps->link, &dev_priv->rps.clients);
4918                         rps->boosts++;
4919                 } else
4920                         dev_priv->rps.boosts++;
4921         }
4922         spin_unlock(&dev_priv->rps.client_lock);
4923 }
4924
4925 void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
4926 {
4927         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4928                 valleyview_set_rps(dev_priv, val);
4929         else
4930                 gen6_set_rps(dev_priv, val);
4931 }
4932
4933 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
4934 {
4935         I915_WRITE(GEN6_RC_CONTROL, 0);
4936         I915_WRITE(GEN9_PG_ENABLE, 0);
4937 }
4938
4939 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
4940 {
4941         I915_WRITE(GEN6_RP_CONTROL, 0);
4942 }
4943
4944 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
4945 {
4946         I915_WRITE(GEN6_RC_CONTROL, 0);
4947         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4948         I915_WRITE(GEN6_RP_CONTROL, 0);
4949 }
4950
4951 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
4952 {
4953         I915_WRITE(GEN6_RC_CONTROL, 0);
4954 }
4955
4956 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
4957 {
4958         /* we're doing forcewake before Disabling RC6,
4959          * This what the BIOS expects when going into suspend */
4960         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4961
4962         I915_WRITE(GEN6_RC_CONTROL, 0);
4963
4964         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4965 }
4966
4967 static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
4968 {
4969         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4970                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4971                         mode = GEN6_RC_CTL_RC6_ENABLE;
4972                 else
4973                         mode = 0;
4974         }
4975         if (HAS_RC6p(dev_priv))
4976                 DRM_DEBUG_DRIVER("Enabling RC6 states: "
4977                                  "RC6 %s RC6p %s RC6pp %s\n",
4978                                  onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
4979                                  onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
4980                                  onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
4981
4982         else
4983                 DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
4984                                  onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
4985 }
4986
4987 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
4988 {
4989         struct i915_ggtt *ggtt = &dev_priv->ggtt;
4990         bool enable_rc6 = true;
4991         unsigned long rc6_ctx_base;
4992         u32 rc_ctl;
4993         int rc_sw_target;
4994
4995         rc_ctl = I915_READ(GEN6_RC_CONTROL);
4996         rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
4997                        RC_SW_TARGET_STATE_SHIFT;
4998         DRM_DEBUG_DRIVER("BIOS enabled RC states: "
4999                          "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
5000                          onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
5001                          onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
5002                          rc_sw_target);
5003
5004         if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5005                 DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5006                 enable_rc6 = false;
5007         }
5008
5009         /*
5010          * The exact context size is not known for BXT, so assume a page size
5011          * for this check.
5012          */
5013         rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5014         if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
5015               (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
5016                                         ggtt->stolen_reserved_size))) {
5017                 DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5018                 enable_rc6 = false;
5019         }
5020
5021         if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
5022               ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
5023               ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
5024               ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5025                 DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5026                 enable_rc6 = false;
5027         }
5028
5029         if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
5030             !I915_READ(GEN8_PUSHBUS_ENABLE) ||
5031             !I915_READ(GEN8_PUSHBUS_SHIFT)) {
5032                 DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
5033                 enable_rc6 = false;
5034         }
5035
5036         if (!I915_READ(GEN6_GFXPAUSE)) {
5037                 DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
5038                 enable_rc6 = false;
5039         }
5040
5041         if (!I915_READ(GEN8_MISC_CTRL0)) {
5042                 DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5043                 enable_rc6 = false;
5044         }
5045
5046         return enable_rc6;
5047 }
5048
5049 int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5050 {
5051         /* No RC6 before Ironlake and code is gone for ilk. */
5052         if (INTEL_INFO(dev_priv)->gen < 6)
5053                 return 0;
5054
5055         if (!enable_rc6)
5056                 return 0;
5057
5058         if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5059                 DRM_INFO("RC6 disabled by BIOS\n");
5060                 return 0;
5061         }
5062
5063         /* Respect the kernel parameter if it is set */
5064         if (enable_rc6 >= 0) {
5065                 int mask;
5066
5067                 if (HAS_RC6p(dev_priv))
5068                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
5069                                INTEL_RC6pp_ENABLE;
5070                 else
5071                         mask = INTEL_RC6_ENABLE;
5072
5073                 if ((enable_rc6 & mask) != enable_rc6)
5074                         DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
5075                                          "(requested %d, valid %d)\n",
5076                                          enable_rc6 & mask, enable_rc6, mask);
5077
5078                 return enable_rc6 & mask;
5079         }
5080
5081         if (IS_IVYBRIDGE(dev_priv))
5082                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5083
5084         return INTEL_RC6_ENABLE;
5085 }
5086
5087 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5088 {
5089         uint32_t rp_state_cap;
5090         u32 ddcc_status = 0;
5091         int ret;
5092
5093         /* All of these values are in units of 50MHz */
5094         dev_priv->rps.cur_freq          = 0;
5095         /* static values from HW: RP0 > RP1 > RPn (min_freq) */
5096         if (IS_BROXTON(dev_priv)) {
5097                 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5098                 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
5099                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
5100                 dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
5101         } else {
5102                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5103                 dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
5104                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
5105                 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
5106         }
5107
5108         /* hw_max = RP0 until we check for overclocking */
5109         dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
5110
5111         dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5112         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
5113             IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5114                 ret = sandybridge_pcode_read(dev_priv,
5115                                         HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
5116                                         &ddcc_status);
5117                 if (0 == ret)
5118                         dev_priv->rps.efficient_freq =
5119                                 clamp_t(u8,
5120                                         ((ddcc_status >> 8) & 0xff),
5121                                         dev_priv->rps.min_freq,
5122                                         dev_priv->rps.max_freq);
5123         }
5124
5125         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5126                 /* Store the frequency values in 16.66 MHZ units, which is
5127                    the natural hardware unit for SKL */
5128                 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
5129                 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
5130                 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
5131                 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
5132                 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
5133         }
5134
5135         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5136
5137         /* Preserve min/max settings in case of re-init */
5138         if (dev_priv->rps.max_freq_softlimit == 0)
5139                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5140
5141         if (dev_priv->rps.min_freq_softlimit == 0) {
5142                 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5143                         dev_priv->rps.min_freq_softlimit =
5144                                 max_t(int, dev_priv->rps.efficient_freq,
5145                                       intel_freq_opcode(dev_priv, 450));
5146                 else
5147                         dev_priv->rps.min_freq_softlimit =
5148                                 dev_priv->rps.min_freq;
5149         }
5150 }
5151
5152 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
5153 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
5154 {
5155         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5156
5157         gen6_init_rps_frequencies(dev_priv);
5158
5159         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5160         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5161                 /*
5162                  * BIOS could leave the Hw Turbo enabled, so need to explicitly
5163                  * clear out the Control register just to avoid inconsitency
5164                  * with debugfs interface, which will show  Turbo as enabled
5165                  * only and that is not expected by the User after adding the
5166                  * WaGsvDisableTurbo. Apart from this there is no problem even
5167                  * if the Turbo is left enabled in the Control register, as the
5168                  * Up/Down interrupts would remain masked.
5169                  */
5170                 gen9_disable_rps(dev_priv);
5171                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5172                 return;
5173         }
5174
5175         /* Program defaults and thresholds for RPS*/
5176         I915_WRITE(GEN6_RC_VIDEO_FREQ,
5177                 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
5178
5179         /* 1 second timeout*/
5180         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
5181                 GT_INTERVAL_FROM_US(dev_priv, 1000000));
5182
5183         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
5184
5185         /* Leaning on the below call to gen6_set_rps to program/setup the
5186          * Up/Down EI & threshold registers, as well as the RP_CONTROL,
5187          * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5188         dev_priv->rps.power = HIGH_POWER; /* force a reset */
5189         gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5190
5191         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5192 }
5193
5194 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
5195 {
5196         struct intel_engine_cs *engine;
5197         uint32_t rc6_mask = 0;
5198
5199         /* 1a: Software RC state - RC0 */
5200         I915_WRITE(GEN6_RC_STATE, 0);
5201
5202         /* 1b: Get forcewake during program sequence. Although the driver
5203          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5204         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5205
5206         /* 2a: Disable RC states. */
5207         I915_WRITE(GEN6_RC_CONTROL, 0);
5208
5209         /* 2b: Program RC6 thresholds.*/
5210
5211         /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5212         if (IS_SKYLAKE(dev_priv))
5213                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
5214         else
5215                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
5216         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5217         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5218         for_each_engine(engine, dev_priv)
5219                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5220
5221         if (HAS_GUC(dev_priv))
5222                 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
5223
5224         I915_WRITE(GEN6_RC_SLEEP, 0);
5225
5226         /* 2c: Program Coarse Power Gating Policies. */
5227         I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
5228         I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
5229
5230         /* 3a: Enable RC6 */
5231         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5232                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5233         DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5234         /* WaRsUseTimeoutMode */
5235         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
5236             IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5237                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
5238                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5239                            GEN7_RC_CTL_TO_MODE |
5240                            rc6_mask);
5241         } else {
5242                 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
5243                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5244                            GEN6_RC_CTL_EI_MODE(1) |
5245                            rc6_mask);
5246         }
5247
5248         /*
5249          * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5250          * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5251          */
5252         if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5253                 I915_WRITE(GEN9_PG_ENABLE, 0);
5254         else
5255                 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
5256                                 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5257
5258         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5259 }
5260
5261 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5262 {
5263         struct intel_engine_cs *engine;
5264         uint32_t rc6_mask = 0;
5265
5266         /* 1a: Software RC state - RC0 */
5267         I915_WRITE(GEN6_RC_STATE, 0);
5268
5269         /* 1c & 1d: Get forcewake during program sequence. Although the driver
5270          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5271         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5272
5273         /* 2a: Disable RC states. */
5274         I915_WRITE(GEN6_RC_CONTROL, 0);
5275
5276         /* Initialize rps frequencies */
5277         gen6_init_rps_frequencies(dev_priv);
5278
5279         /* 2b: Program RC6 thresholds.*/
5280         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5281         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5282         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5283         for_each_engine(engine, dev_priv)
5284                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5285         I915_WRITE(GEN6_RC_SLEEP, 0);
5286         if (IS_BROADWELL(dev_priv))
5287                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
5288         else
5289                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5290
5291         /* 3: Enable RC6 */
5292         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5293                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5294         intel_print_rc6_info(dev_priv, rc6_mask);
5295         if (IS_BROADWELL(dev_priv))
5296                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5297                                 GEN7_RC_CTL_TO_MODE |
5298                                 rc6_mask);
5299         else
5300                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5301                                 GEN6_RC_CTL_EI_MODE(1) |
5302                                 rc6_mask);
5303
5304         /* 4 Program defaults and thresholds for RPS*/
5305         I915_WRITE(GEN6_RPNSWREQ,
5306                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5307         I915_WRITE(GEN6_RC_VIDEO_FREQ,
5308                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5309         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
5310         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
5311
5312         /* Docs recommend 900MHz, and 300 MHz respectively */
5313         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
5314                    dev_priv->rps.max_freq_softlimit << 24 |
5315                    dev_priv->rps.min_freq_softlimit << 16);
5316
5317         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
5318         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
5319         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
5320         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
5321
5322         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5323
5324         /* 5: Enable RPS */
5325         I915_WRITE(GEN6_RP_CONTROL,
5326                    GEN6_RP_MEDIA_TURBO |
5327                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5328                    GEN6_RP_MEDIA_IS_GFX |
5329                    GEN6_RP_ENABLE |
5330                    GEN6_RP_UP_BUSY_AVG |
5331                    GEN6_RP_DOWN_IDLE_AVG);
5332
5333         /* 6: Ring frequency + overclocking (our driver does this later */
5334
5335         dev_priv->rps.power = HIGH_POWER; /* force a reset */
5336         gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5337
5338         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5339 }
5340
5341 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5342 {
5343         struct intel_engine_cs *engine;
5344         u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
5345         u32 gtfifodbg;
5346         int rc6_mode;
5347         int ret;
5348
5349         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5350
5351         /* Here begins a magic sequence of register writes to enable
5352          * auto-downclocking.
5353          *
5354          * Perhaps there might be some value in exposing these to
5355          * userspace...
5356          */
5357         I915_WRITE(GEN6_RC_STATE, 0);
5358
5359         /* Clear the DBG now so we don't confuse earlier errors */
5360         gtfifodbg = I915_READ(GTFIFODBG);
5361         if (gtfifodbg) {
5362                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
5363                 I915_WRITE(GTFIFODBG, gtfifodbg);
5364         }
5365
5366         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5367
5368         /* Initialize rps frequencies */
5369         gen6_init_rps_frequencies(dev_priv);
5370
5371         /* disable the counters and set deterministic thresholds */
5372         I915_WRITE(GEN6_RC_CONTROL, 0);
5373
5374         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
5375         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
5376         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
5377         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5378         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5379
5380         for_each_engine(engine, dev_priv)
5381                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5382
5383         I915_WRITE(GEN6_RC_SLEEP, 0);
5384         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5385         if (IS_IVYBRIDGE(dev_priv))
5386                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
5387         else
5388                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5389         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5390         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
5391
5392         /* Check if we are enabling RC6 */
5393         rc6_mode = intel_enable_rc6();
5394         if (rc6_mode & INTEL_RC6_ENABLE)
5395                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
5396
5397         /* We don't use those on Haswell */
5398         if (!IS_HASWELL(dev_priv)) {
5399                 if (rc6_mode & INTEL_RC6p_ENABLE)
5400                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5401
5402                 if (rc6_mode & INTEL_RC6pp_ENABLE)
5403                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
5404         }
5405
5406         intel_print_rc6_info(dev_priv, rc6_mask);
5407
5408         I915_WRITE(GEN6_RC_CONTROL,
5409                    rc6_mask |
5410                    GEN6_RC_CTL_EI_MODE(1) |
5411                    GEN6_RC_CTL_HW_ENABLE);
5412
5413         /* Power down if completely idle for over 50ms */
5414         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5415         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5416
5417         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5418         if (ret)
5419                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5420
5421         ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
5422         if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
5423                 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5424                                  (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5425                                  (pcu_mbox & 0xff) * 50);
5426                 dev_priv->rps.max_freq = pcu_mbox & 0xff;
5427         }
5428
5429         dev_priv->rps.power = HIGH_POWER; /* force a reset */
5430         gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5431
5432         rc6vids = 0;
5433         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5434         if (IS_GEN6(dev_priv) && ret) {
5435                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5436         } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5437                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5438                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5439                 rc6vids &= 0xffff00;
5440                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
5441                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5442                 if (ret)
5443                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5444         }
5445
5446         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5447 }
5448
5449 static void __gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5450 {
5451         int min_freq = 15;
5452         unsigned int gpu_freq;
5453         unsigned int max_ia_freq, min_ring_freq;
5454         unsigned int max_gpu_freq, min_gpu_freq;
5455         int scaling_factor = 180;
5456         struct cpufreq_policy *policy;
5457
5458         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5459
5460         policy = cpufreq_cpu_get(0);
5461         if (policy) {
5462                 max_ia_freq = policy->cpuinfo.max_freq;
5463                 cpufreq_cpu_put(policy);
5464         } else {
5465                 /*
5466                  * Default to measured freq if none found, PCU will ensure we
5467                  * don't go over
5468                  */
5469                 max_ia_freq = tsc_khz;
5470         }
5471
5472         /* Convert from kHz to MHz */
5473         max_ia_freq /= 1000;
5474
5475         min_ring_freq = I915_READ(DCLK) & 0xf;
5476         /* convert DDR frequency from units of 266.6MHz to bandwidth */
5477         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5478
5479         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5480                 /* Convert GT frequency to 50 HZ units */
5481                 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5482                 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5483         } else {
5484                 min_gpu_freq = dev_priv->rps.min_freq;
5485                 max_gpu_freq = dev_priv->rps.max_freq;
5486         }
5487
5488         /*
5489          * For each potential GPU frequency, load a ring frequency we'd like
5490          * to use for memory access.  We do this by specifying the IA frequency
5491          * the PCU should use as a reference to determine the ring frequency.
5492          */
5493         for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5494                 int diff = max_gpu_freq - gpu_freq;
5495                 unsigned int ia_freq = 0, ring_freq = 0;
5496
5497                 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5498                         /*
5499                          * ring_freq = 2 * GT. ring_freq is in 100MHz units
5500                          * No floor required for ring frequency on SKL.
5501                          */
5502                         ring_freq = gpu_freq;
5503                 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
5504                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
5505                         ring_freq = max(min_ring_freq, gpu_freq);
5506                 } else if (IS_HASWELL(dev_priv)) {
5507                         ring_freq = mult_frac(gpu_freq, 5, 4);
5508                         ring_freq = max(min_ring_freq, ring_freq);
5509                         /* leave ia_freq as the default, chosen by cpufreq */
5510                 } else {
5511                         /* On older processors, there is no separate ring
5512                          * clock domain, so in order to boost the bandwidth
5513                          * of the ring, we need to upclock the CPU (ia_freq).
5514                          *
5515                          * For GPU frequencies less than 750MHz,
5516                          * just use the lowest ring freq.
5517                          */
5518                         if (gpu_freq < min_freq)
5519                                 ia_freq = 800;
5520                         else
5521                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5522                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5523                 }
5524
5525                 sandybridge_pcode_write(dev_priv,
5526                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5527                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5528                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5529                                         gpu_freq);
5530         }
5531 }
5532
5533 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5534 {
5535         if (!HAS_CORE_RING_FREQ(dev_priv))
5536                 return;
5537
5538         mutex_lock(&dev_priv->rps.hw_lock);
5539         __gen6_update_ring_freq(dev_priv);
5540         mutex_unlock(&dev_priv->rps.hw_lock);
5541 }
5542
5543 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5544 {
5545         u32 val, rp0;
5546
5547         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5548
5549         switch (INTEL_INFO(dev_priv)->eu_total) {
5550         case 8:
5551                 /* (2 * 4) config */
5552                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5553                 break;
5554         case 12:
5555                 /* (2 * 6) config */
5556                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5557                 break;
5558         case 16:
5559                 /* (2 * 8) config */
5560         default:
5561                 /* Setting (2 * 8) Min RP0 for any other combination */
5562                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5563                 break;
5564         }
5565
5566         rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5567
5568         return rp0;
5569 }
5570
5571 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5572 {
5573         u32 val, rpe;
5574
5575         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5576         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5577
5578         return rpe;
5579 }
5580
5581 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5582 {
5583         u32 val, rp1;
5584
5585         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5586         rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5587
5588         return rp1;
5589 }
5590
5591 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5592 {
5593         u32 val, rp1;
5594
5595         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5596
5597         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5598
5599         return rp1;
5600 }
5601
5602 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5603 {
5604         u32 val, rp0;
5605
5606         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5607
5608         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5609         /* Clamp to max */
5610         rp0 = min_t(u32, rp0, 0xea);
5611
5612         return rp0;
5613 }
5614
5615 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5616 {
5617         u32 val, rpe;
5618
5619         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5620         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5621         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5622         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5623
5624         return rpe;
5625 }
5626
5627 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5628 {
5629         u32 val;
5630
5631         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5632         /*
5633          * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
5634          * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
5635          * a BYT-M B0 the above register contains 0xbf. Moreover when setting
5636          * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
5637          * to make sure it matches what Punit accepts.
5638          */
5639         return max_t(u32, val, 0xc0);
5640 }
5641
5642 /* Check that the pctx buffer wasn't move under us. */
5643 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5644 {
5645         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5646
5647         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5648                              dev_priv->vlv_pctx->stolen->start);
5649 }
5650
5651
5652 /* Check that the pcbr address is not empty. */
5653 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5654 {
5655         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5656
5657         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5658 }
5659
5660 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5661 {
5662         struct i915_ggtt *ggtt = &dev_priv->ggtt;
5663         unsigned long pctx_paddr, paddr;
5664         u32 pcbr;
5665         int pctx_size = 32*1024;
5666
5667         pcbr = I915_READ(VLV_PCBR);
5668         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5669                 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5670                 paddr = (dev_priv->mm.stolen_base +
5671                          (ggtt->stolen_size - pctx_size));
5672
5673                 pctx_paddr = (paddr & (~4095));
5674                 I915_WRITE(VLV_PCBR, pctx_paddr);
5675         }
5676
5677         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5678 }
5679
5680 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5681 {
5682         struct drm_i915_gem_object *pctx;
5683         unsigned long pctx_paddr;
5684         u32 pcbr;
5685         int pctx_size = 24*1024;
5686
5687         mutex_lock(&dev_priv->dev->struct_mutex);
5688
5689         pcbr = I915_READ(VLV_PCBR);
5690         if (pcbr) {
5691                 /* BIOS set it up already, grab the pre-alloc'd space */
5692                 int pcbr_offset;
5693
5694                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5695                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5696                                                                       pcbr_offset,
5697                                                                       I915_GTT_OFFSET_NONE,
5698                                                                       pctx_size);
5699                 goto out;
5700         }
5701
5702         DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5703
5704         /*
5705          * From the Gunit register HAS:
5706          * The Gfx driver is expected to program this register and ensure
5707          * proper allocation within Gfx stolen memory.  For example, this
5708          * register should be programmed such than the PCBR range does not
5709          * overlap with other ranges, such as the frame buffer, protected
5710          * memory, or any other relevant ranges.
5711          */
5712         pctx = i915_gem_object_create_stolen(dev_priv->dev, pctx_size);
5713         if (!pctx) {
5714                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5715                 goto out;
5716         }
5717
5718         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5719         I915_WRITE(VLV_PCBR, pctx_paddr);
5720
5721 out:
5722         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5723         dev_priv->vlv_pctx = pctx;
5724         mutex_unlock(&dev_priv->dev->struct_mutex);
5725 }
5726
5727 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5728 {
5729         if (WARN_ON(!dev_priv->vlv_pctx))
5730                 return;
5731
5732         drm_gem_object_unreference_unlocked(&dev_priv->vlv_pctx->base);
5733         dev_priv->vlv_pctx = NULL;
5734 }
5735
5736 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
5737 {
5738         dev_priv->rps.gpll_ref_freq =
5739                 vlv_get_cck_clock(dev_priv, "GPLL ref",
5740                                   CCK_GPLL_CLOCK_CONTROL,
5741                                   dev_priv->czclk_freq);
5742
5743         DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
5744                          dev_priv->rps.gpll_ref_freq);
5745 }
5746
5747 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5748 {
5749         u32 val;
5750
5751         valleyview_setup_pctx(dev_priv);
5752
5753         vlv_init_gpll_ref_freq(dev_priv);
5754
5755         mutex_lock(&dev_priv->rps.hw_lock);
5756
5757         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5758         switch ((val >> 6) & 3) {
5759         case 0:
5760         case 1:
5761                 dev_priv->mem_freq = 800;
5762                 break;
5763         case 2:
5764                 dev_priv->mem_freq = 1066;
5765                 break;
5766         case 3:
5767                 dev_priv->mem_freq = 1333;
5768                 break;
5769         }
5770         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5771
5772         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5773         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5774         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5775                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5776                          dev_priv->rps.max_freq);
5777
5778         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5779         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5780                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5781                          dev_priv->rps.efficient_freq);
5782
5783         dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5784         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5785                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5786                          dev_priv->rps.rp1_freq);
5787
5788         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5789         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5790                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5791                          dev_priv->rps.min_freq);
5792
5793         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5794
5795         /* Preserve min/max settings in case of re-init */
5796         if (dev_priv->rps.max_freq_softlimit == 0)
5797                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5798
5799         if (dev_priv->rps.min_freq_softlimit == 0)
5800                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5801
5802         mutex_unlock(&dev_priv->rps.hw_lock);
5803 }
5804
5805 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5806 {
5807         u32 val;
5808
5809         cherryview_setup_pctx(dev_priv);
5810
5811         vlv_init_gpll_ref_freq(dev_priv);
5812
5813         mutex_lock(&dev_priv->rps.hw_lock);
5814
5815         mutex_lock(&dev_priv->sb_lock);
5816         val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5817         mutex_unlock(&dev_priv->sb_lock);
5818
5819         switch ((val >> 2) & 0x7) {
5820         case 3:
5821                 dev_priv->mem_freq = 2000;
5822                 break;
5823         default:
5824                 dev_priv->mem_freq = 1600;
5825                 break;
5826         }
5827         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5828
5829         dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5830         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5831         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5832                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5833                          dev_priv->rps.max_freq);
5834
5835         dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5836         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5837                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5838                          dev_priv->rps.efficient_freq);
5839
5840         dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5841         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5842                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5843                          dev_priv->rps.rp1_freq);
5844
5845         /* PUnit validated range is only [RPe, RP0] */
5846         dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5847         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5848                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5849                          dev_priv->rps.min_freq);
5850
5851         WARN_ONCE((dev_priv->rps.max_freq |
5852                    dev_priv->rps.efficient_freq |
5853                    dev_priv->rps.rp1_freq |
5854                    dev_priv->rps.min_freq) & 1,
5855                   "Odd GPU freq values\n");
5856
5857         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5858
5859         /* Preserve min/max settings in case of re-init */
5860         if (dev_priv->rps.max_freq_softlimit == 0)
5861                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5862
5863         if (dev_priv->rps.min_freq_softlimit == 0)
5864                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5865
5866         mutex_unlock(&dev_priv->rps.hw_lock);
5867 }
5868
5869 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5870 {
5871         valleyview_cleanup_pctx(dev_priv);
5872 }
5873
5874 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5875 {
5876         struct intel_engine_cs *engine;
5877         u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5878
5879         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5880
5881         gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
5882                                              GT_FIFO_FREE_ENTRIES_CHV);
5883         if (gtfifodbg) {
5884                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5885                                  gtfifodbg);
5886                 I915_WRITE(GTFIFODBG, gtfifodbg);
5887         }
5888
5889         cherryview_check_pctx(dev_priv);
5890
5891         /* 1a & 1b: Get forcewake during program sequence. Although the driver
5892          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5893         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5894
5895         /*  Disable RC states. */
5896         I915_WRITE(GEN6_RC_CONTROL, 0);
5897
5898         /* 2a: Program RC6 thresholds.*/
5899         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5900         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5901         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5902
5903         for_each_engine(engine, dev_priv)
5904                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5905         I915_WRITE(GEN6_RC_SLEEP, 0);
5906
5907         /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5908         I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5909
5910         /* allows RC6 residency counter to work */
5911         I915_WRITE(VLV_COUNTER_CONTROL,
5912                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5913                                       VLV_MEDIA_RC6_COUNT_EN |
5914                                       VLV_RENDER_RC6_COUNT_EN));
5915
5916         /* For now we assume BIOS is allocating and populating the PCBR  */
5917         pcbr = I915_READ(VLV_PCBR);
5918
5919         /* 3: Enable RC6 */
5920         if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
5921             (pcbr >> VLV_PCBR_ADDR_SHIFT))
5922                 rc6_mode = GEN7_RC_CTL_TO_MODE;
5923
5924         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5925
5926         /* 4 Program defaults and thresholds for RPS*/
5927         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5928         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5929         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5930         I915_WRITE(GEN6_RP_UP_EI, 66000);
5931         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5932
5933         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5934
5935         /* 5: Enable RPS */
5936         I915_WRITE(GEN6_RP_CONTROL,
5937                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5938                    GEN6_RP_MEDIA_IS_GFX |
5939                    GEN6_RP_ENABLE |
5940                    GEN6_RP_UP_BUSY_AVG |
5941                    GEN6_RP_DOWN_IDLE_AVG);
5942
5943         /* Setting Fixed Bias */
5944         val = VLV_OVERRIDE_EN |
5945                   VLV_SOC_TDP_EN |
5946                   CHV_BIAS_CPU_50_SOC_50;
5947         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5948
5949         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5950
5951         /* RPS code assumes GPLL is used */
5952         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5953
5954         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5955         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5956
5957         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5958         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5959                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5960                          dev_priv->rps.cur_freq);
5961
5962         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5963                          intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
5964                          dev_priv->rps.idle_freq);
5965
5966         valleyview_set_rps(dev_priv, dev_priv->rps.idle_freq);
5967
5968         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5969 }
5970
5971 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
5972 {
5973         struct intel_engine_cs *engine;
5974         u32 gtfifodbg, val, rc6_mode = 0;
5975
5976         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5977
5978         valleyview_check_pctx(dev_priv);
5979
5980         gtfifodbg = I915_READ(GTFIFODBG);
5981         if (gtfifodbg) {
5982                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5983                                  gtfifodbg);
5984                 I915_WRITE(GTFIFODBG, gtfifodbg);
5985         }
5986
5987         /* If VLV, Forcewake all wells, else re-direct to regular path */
5988         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5989
5990         /*  Disable RC states. */
5991         I915_WRITE(GEN6_RC_CONTROL, 0);
5992
5993         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5994         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5995         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5996         I915_WRITE(GEN6_RP_UP_EI, 66000);
5997         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5998
5999         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6000
6001         I915_WRITE(GEN6_RP_CONTROL,
6002                    GEN6_RP_MEDIA_TURBO |
6003                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
6004                    GEN6_RP_MEDIA_IS_GFX |
6005                    GEN6_RP_ENABLE |
6006                    GEN6_RP_UP_BUSY_AVG |
6007                    GEN6_RP_DOWN_IDLE_CONT);
6008
6009         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
6010         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
6011         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
6012
6013         for_each_engine(engine, dev_priv)
6014                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6015
6016         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6017
6018         /* allows RC6 residency counter to work */
6019         I915_WRITE(VLV_COUNTER_CONTROL,
6020                    _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
6021                                       VLV_RENDER_RC0_COUNT_EN |
6022                                       VLV_MEDIA_RC6_COUNT_EN |
6023                                       VLV_RENDER_RC6_COUNT_EN));
6024
6025         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6026                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
6027
6028         intel_print_rc6_info(dev_priv, rc6_mode);
6029
6030         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6031
6032         /* Setting Fixed Bias */
6033         val = VLV_OVERRIDE_EN |
6034                   VLV_SOC_TDP_EN |
6035                   VLV_BIAS_CPU_125_SOC_875;
6036         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
6037
6038         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6039
6040         /* RPS code assumes GPLL is used */
6041         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
6042
6043         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6044         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
6045
6046         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
6047         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
6048                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
6049                          dev_priv->rps.cur_freq);
6050
6051         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
6052                          intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
6053                          dev_priv->rps.idle_freq);
6054
6055         valleyview_set_rps(dev_priv, dev_priv->rps.idle_freq);
6056
6057         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6058 }
6059
6060 static unsigned long intel_pxfreq(u32 vidfreq)
6061 {
6062         unsigned long freq;
6063         int div = (vidfreq & 0x3f0000) >> 16;
6064         int post = (vidfreq & 0x3000) >> 12;
6065         int pre = (vidfreq & 0x7);
6066
6067         if (!pre)
6068                 return 0;
6069
6070         freq = ((div * 133333) / ((1<<post) * pre));
6071
6072         return freq;
6073 }
6074
6075 static const struct cparams {
6076         u16 i;
6077         u16 t;
6078         u16 m;
6079         u16 c;
6080 } cparams[] = {
6081         { 1, 1333, 301, 28664 },
6082         { 1, 1066, 294, 24460 },
6083         { 1, 800, 294, 25192 },
6084         { 0, 1333, 276, 27605 },
6085         { 0, 1066, 276, 27605 },
6086         { 0, 800, 231, 23784 },
6087 };
6088
6089 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6090 {
6091         u64 total_count, diff, ret;
6092         u32 count1, count2, count3, m = 0, c = 0;
6093         unsigned long now = jiffies_to_msecs(jiffies), diff1;
6094         int i;
6095
6096         assert_spin_locked(&mchdev_lock);
6097
6098         diff1 = now - dev_priv->ips.last_time1;
6099
6100         /* Prevent division-by-zero if we are asking too fast.
6101          * Also, we don't get interesting results if we are polling
6102          * faster than once in 10ms, so just return the saved value
6103          * in such cases.
6104          */
6105         if (diff1 <= 10)
6106                 return dev_priv->ips.chipset_power;
6107
6108         count1 = I915_READ(DMIEC);
6109         count2 = I915_READ(DDREC);
6110         count3 = I915_READ(CSIEC);
6111
6112         total_count = count1 + count2 + count3;
6113
6114         /* FIXME: handle per-counter overflow */
6115         if (total_count < dev_priv->ips.last_count1) {
6116                 diff = ~0UL - dev_priv->ips.last_count1;
6117                 diff += total_count;
6118         } else {
6119                 diff = total_count - dev_priv->ips.last_count1;
6120         }
6121
6122         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6123                 if (cparams[i].i == dev_priv->ips.c_m &&
6124                     cparams[i].t == dev_priv->ips.r_t) {
6125                         m = cparams[i].m;
6126                         c = cparams[i].c;
6127                         break;
6128                 }
6129         }
6130
6131         diff = div_u64(diff, diff1);
6132         ret = ((m * diff) + c);
6133         ret = div_u64(ret, 10);
6134
6135         dev_priv->ips.last_count1 = total_count;
6136         dev_priv->ips.last_time1 = now;
6137
6138         dev_priv->ips.chipset_power = ret;
6139
6140         return ret;
6141 }
6142
6143 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
6144 {
6145         unsigned long val;
6146
6147         if (INTEL_INFO(dev_priv)->gen != 5)
6148                 return 0;
6149
6150         spin_lock_irq(&mchdev_lock);
6151
6152         val = __i915_chipset_val(dev_priv);
6153
6154         spin_unlock_irq(&mchdev_lock);
6155
6156         return val;
6157 }
6158
6159 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
6160 {
6161         unsigned long m, x, b;
6162         u32 tsfs;
6163
6164         tsfs = I915_READ(TSFS);
6165
6166         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
6167         x = I915_READ8(TR1);
6168
6169         b = tsfs & TSFS_INTR_MASK;
6170
6171         return ((m * x) / 127) - b;
6172 }
6173
6174 static int _pxvid_to_vd(u8 pxvid)
6175 {
6176         if (pxvid == 0)
6177                 return 0;
6178
6179         if (pxvid >= 8 && pxvid < 31)
6180                 pxvid = 31;
6181
6182         return (pxvid + 2) * 125;
6183 }
6184
6185 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6186 {
6187         const int vd = _pxvid_to_vd(pxvid);
6188         const int vm = vd - 1125;
6189
6190         if (INTEL_INFO(dev_priv)->is_mobile)
6191                 return vm > 0 ? vm : 0;
6192
6193         return vd;
6194 }
6195
6196 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6197 {
6198         u64 now, diff, diffms;
6199         u32 count;
6200
6201         assert_spin_locked(&mchdev_lock);
6202
6203         now = ktime_get_raw_ns();
6204         diffms = now - dev_priv->ips.last_time2;
6205         do_div(diffms, NSEC_PER_MSEC);
6206
6207         /* Don't divide by 0 */
6208         if (!diffms)
6209                 return;
6210
6211         count = I915_READ(GFXEC);
6212
6213         if (count < dev_priv->ips.last_count2) {
6214                 diff = ~0UL - dev_priv->ips.last_count2;
6215                 diff += count;
6216         } else {
6217                 diff = count - dev_priv->ips.last_count2;
6218         }
6219
6220         dev_priv->ips.last_count2 = count;
6221         dev_priv->ips.last_time2 = now;
6222
6223         /* More magic constants... */
6224         diff = diff * 1181;
6225         diff = div_u64(diff, diffms * 10);
6226         dev_priv->ips.gfx_power = diff;
6227 }
6228
6229 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
6230 {
6231         if (INTEL_INFO(dev_priv)->gen != 5)
6232                 return;
6233
6234         spin_lock_irq(&mchdev_lock);
6235
6236         __i915_update_gfx_val(dev_priv);
6237
6238         spin_unlock_irq(&mchdev_lock);
6239 }
6240
6241 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6242 {
6243         unsigned long t, corr, state1, corr2, state2;
6244         u32 pxvid, ext_v;
6245
6246         assert_spin_locked(&mchdev_lock);
6247
6248         pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6249         pxvid = (pxvid >> 24) & 0x7f;
6250         ext_v = pvid_to_extvid(dev_priv, pxvid);
6251
6252         state1 = ext_v;
6253
6254         t = i915_mch_val(dev_priv);
6255
6256         /* Revel in the empirically derived constants */
6257
6258         /* Correction factor in 1/100000 units */
6259         if (t > 80)
6260                 corr = ((t * 2349) + 135940);
6261         else if (t >= 50)
6262                 corr = ((t * 964) + 29317);
6263         else /* < 50 */
6264                 corr = ((t * 301) + 1004);
6265
6266         corr = corr * ((150142 * state1) / 10000 - 78642);
6267         corr /= 100000;
6268         corr2 = (corr * dev_priv->ips.corr);
6269
6270         state2 = (corr2 * state1) / 10000;
6271         state2 /= 100; /* convert to mW */
6272
6273         __i915_update_gfx_val(dev_priv);
6274
6275         return dev_priv->ips.gfx_power + state2;
6276 }
6277
6278 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
6279 {
6280         unsigned long val;
6281
6282         if (INTEL_INFO(dev_priv)->gen != 5)
6283                 return 0;
6284
6285         spin_lock_irq(&mchdev_lock);
6286
6287         val = __i915_gfx_val(dev_priv);
6288
6289         spin_unlock_irq(&mchdev_lock);
6290
6291         return val;
6292 }
6293
6294 /**
6295  * i915_read_mch_val - return value for IPS use
6296  *
6297  * Calculate and return a value for the IPS driver to use when deciding whether
6298  * we have thermal and power headroom to increase CPU or GPU power budget.
6299  */
6300 unsigned long i915_read_mch_val(void)
6301 {
6302         struct drm_i915_private *dev_priv;
6303         unsigned long chipset_val, graphics_val, ret = 0;
6304
6305         spin_lock_irq(&mchdev_lock);
6306         if (!i915_mch_dev)
6307                 goto out_unlock;
6308         dev_priv = i915_mch_dev;
6309
6310         chipset_val = __i915_chipset_val(dev_priv);
6311         graphics_val = __i915_gfx_val(dev_priv);
6312
6313         ret = chipset_val + graphics_val;
6314
6315 out_unlock:
6316         spin_unlock_irq(&mchdev_lock);
6317
6318         return ret;
6319 }
6320 EXPORT_SYMBOL_GPL(i915_read_mch_val);
6321
6322 /**
6323  * i915_gpu_raise - raise GPU frequency limit
6324  *
6325  * Raise the limit; IPS indicates we have thermal headroom.
6326  */
6327 bool i915_gpu_raise(void)
6328 {
6329         struct drm_i915_private *dev_priv;
6330         bool ret = true;
6331
6332         spin_lock_irq(&mchdev_lock);
6333         if (!i915_mch_dev) {
6334                 ret = false;
6335                 goto out_unlock;
6336         }
6337         dev_priv = i915_mch_dev;
6338
6339         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
6340                 dev_priv->ips.max_delay--;
6341
6342 out_unlock:
6343         spin_unlock_irq(&mchdev_lock);
6344
6345         return ret;
6346 }
6347 EXPORT_SYMBOL_GPL(i915_gpu_raise);
6348
6349 /**
6350  * i915_gpu_lower - lower GPU frequency limit
6351  *
6352  * IPS indicates we're close to a thermal limit, so throttle back the GPU
6353  * frequency maximum.
6354  */
6355 bool i915_gpu_lower(void)
6356 {
6357         struct drm_i915_private *dev_priv;
6358         bool ret = true;
6359
6360         spin_lock_irq(&mchdev_lock);
6361         if (!i915_mch_dev) {
6362                 ret = false;
6363                 goto out_unlock;
6364         }
6365         dev_priv = i915_mch_dev;
6366
6367         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
6368                 dev_priv->ips.max_delay++;
6369
6370 out_unlock:
6371         spin_unlock_irq(&mchdev_lock);
6372
6373         return ret;
6374 }
6375 EXPORT_SYMBOL_GPL(i915_gpu_lower);
6376
6377 /**
6378  * i915_gpu_busy - indicate GPU business to IPS
6379  *
6380  * Tell the IPS driver whether or not the GPU is busy.
6381  */
6382 bool i915_gpu_busy(void)
6383 {
6384         struct drm_i915_private *dev_priv;
6385         struct intel_engine_cs *engine;
6386         bool ret = false;
6387
6388         spin_lock_irq(&mchdev_lock);
6389         if (!i915_mch_dev)
6390                 goto out_unlock;
6391         dev_priv = i915_mch_dev;
6392
6393         for_each_engine(engine, dev_priv)
6394                 ret |= !list_empty(&engine->request_list);
6395
6396 out_unlock:
6397         spin_unlock_irq(&mchdev_lock);
6398
6399         return ret;
6400 }
6401 EXPORT_SYMBOL_GPL(i915_gpu_busy);
6402
6403 /**
6404  * i915_gpu_turbo_disable - disable graphics turbo
6405  *
6406  * Disable graphics turbo by resetting the max frequency and setting the
6407  * current frequency to the default.
6408  */
6409 bool i915_gpu_turbo_disable(void)
6410 {
6411         struct drm_i915_private *dev_priv;
6412         bool ret = true;
6413
6414         spin_lock_irq(&mchdev_lock);
6415         if (!i915_mch_dev) {
6416                 ret = false;
6417                 goto out_unlock;
6418         }
6419         dev_priv = i915_mch_dev;
6420
6421         dev_priv->ips.max_delay = dev_priv->ips.fstart;
6422
6423         if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6424                 ret = false;
6425
6426 out_unlock:
6427         spin_unlock_irq(&mchdev_lock);
6428
6429         return ret;
6430 }
6431 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6432
6433 /**
6434  * Tells the intel_ips driver that the i915 driver is now loaded, if
6435  * IPS got loaded first.
6436  *
6437  * This awkward dance is so that neither module has to depend on the
6438  * other in order for IPS to do the appropriate communication of
6439  * GPU turbo limits to i915.
6440  */
6441 static void
6442 ips_ping_for_i915_load(void)
6443 {
6444         void (*link)(void);
6445
6446         link = symbol_get(ips_link_to_i915_driver);
6447         if (link) {
6448                 link();
6449                 symbol_put(ips_link_to_i915_driver);
6450         }
6451 }
6452
6453 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6454 {
6455         /* We only register the i915 ips part with intel-ips once everything is
6456          * set up, to avoid intel-ips sneaking in and reading bogus values. */
6457         spin_lock_irq(&mchdev_lock);
6458         i915_mch_dev = dev_priv;
6459         spin_unlock_irq(&mchdev_lock);
6460
6461         ips_ping_for_i915_load();
6462 }
6463
6464 void intel_gpu_ips_teardown(void)
6465 {
6466         spin_lock_irq(&mchdev_lock);
6467         i915_mch_dev = NULL;
6468         spin_unlock_irq(&mchdev_lock);
6469 }
6470
6471 static void intel_init_emon(struct drm_i915_private *dev_priv)
6472 {
6473         u32 lcfuse;
6474         u8 pxw[16];
6475         int i;
6476
6477         /* Disable to program */
6478         I915_WRITE(ECR, 0);
6479         POSTING_READ(ECR);
6480
6481         /* Program energy weights for various events */
6482         I915_WRITE(SDEW, 0x15040d00);
6483         I915_WRITE(CSIEW0, 0x007f0000);
6484         I915_WRITE(CSIEW1, 0x1e220004);
6485         I915_WRITE(CSIEW2, 0x04000004);
6486
6487         for (i = 0; i < 5; i++)
6488                 I915_WRITE(PEW(i), 0);
6489         for (i = 0; i < 3; i++)
6490                 I915_WRITE(DEW(i), 0);
6491
6492         /* Program P-state weights to account for frequency power adjustment */
6493         for (i = 0; i < 16; i++) {
6494                 u32 pxvidfreq = I915_READ(PXVFREQ(i));
6495                 unsigned long freq = intel_pxfreq(pxvidfreq);
6496                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6497                         PXVFREQ_PX_SHIFT;
6498                 unsigned long val;
6499
6500                 val = vid * vid;
6501                 val *= (freq / 1000);
6502                 val *= 255;
6503                 val /= (127*127*900);
6504                 if (val > 0xff)
6505                         DRM_ERROR("bad pxval: %ld\n", val);
6506                 pxw[i] = val;
6507         }
6508         /* Render standby states get 0 weight */
6509         pxw[14] = 0;
6510         pxw[15] = 0;
6511
6512         for (i = 0; i < 4; i++) {
6513                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6514                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6515                 I915_WRITE(PXW(i), val);
6516         }
6517
6518         /* Adjust magic regs to magic values (more experimental results) */
6519         I915_WRITE(OGW0, 0);
6520         I915_WRITE(OGW1, 0);
6521         I915_WRITE(EG0, 0x00007f00);
6522         I915_WRITE(EG1, 0x0000000e);
6523         I915_WRITE(EG2, 0x000e0000);
6524         I915_WRITE(EG3, 0x68000300);
6525         I915_WRITE(EG4, 0x42000000);
6526         I915_WRITE(EG5, 0x00140031);
6527         I915_WRITE(EG6, 0);
6528         I915_WRITE(EG7, 0);
6529
6530         for (i = 0; i < 8; i++)
6531                 I915_WRITE(PXWL(i), 0);
6532
6533         /* Enable PMON + select events */
6534         I915_WRITE(ECR, 0x80000019);
6535
6536         lcfuse = I915_READ(LCFUSE02);
6537
6538         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6539 }
6540
6541 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6542 {
6543         /*
6544          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6545          * requirement.
6546          */
6547         if (!i915.enable_rc6) {
6548                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6549                 intel_runtime_pm_get(dev_priv);
6550         }
6551
6552         if (IS_CHERRYVIEW(dev_priv))
6553                 cherryview_init_gt_powersave(dev_priv);
6554         else if (IS_VALLEYVIEW(dev_priv))
6555                 valleyview_init_gt_powersave(dev_priv);
6556 }
6557
6558 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6559 {
6560         if (IS_CHERRYVIEW(dev_priv))
6561                 return;
6562         else if (IS_VALLEYVIEW(dev_priv))
6563                 valleyview_cleanup_gt_powersave(dev_priv);
6564
6565         if (!i915.enable_rc6)
6566                 intel_runtime_pm_put(dev_priv);
6567 }
6568
6569 static void gen6_suspend_rps(struct drm_i915_private *dev_priv)
6570 {
6571         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6572
6573         gen6_disable_rps_interrupts(dev_priv);
6574 }
6575
6576 /**
6577  * intel_suspend_gt_powersave - suspend PM work and helper threads
6578  * @dev_priv: i915 device
6579  *
6580  * We don't want to disable RC6 or other features here, we just want
6581  * to make sure any work we've queued has finished and won't bother
6582  * us while we're suspended.
6583  */
6584 void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
6585 {
6586         if (INTEL_GEN(dev_priv) < 6)
6587                 return;
6588
6589         gen6_suspend_rps(dev_priv);
6590
6591         /* Force GPU to min freq during suspend */
6592         gen6_rps_idle(dev_priv);
6593 }
6594
6595 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6596 {
6597         if (IS_IRONLAKE_M(dev_priv)) {
6598                 ironlake_disable_drps(dev_priv);
6599         } else if (INTEL_INFO(dev_priv)->gen >= 6) {
6600                 intel_suspend_gt_powersave(dev_priv);
6601
6602                 mutex_lock(&dev_priv->rps.hw_lock);
6603                 if (INTEL_INFO(dev_priv)->gen >= 9) {
6604                         gen9_disable_rc6(dev_priv);
6605                         gen9_disable_rps(dev_priv);
6606                 } else if (IS_CHERRYVIEW(dev_priv))
6607                         cherryview_disable_rps(dev_priv);
6608                 else if (IS_VALLEYVIEW(dev_priv))
6609                         valleyview_disable_rps(dev_priv);
6610                 else
6611                         gen6_disable_rps(dev_priv);
6612
6613                 dev_priv->rps.enabled = false;
6614                 mutex_unlock(&dev_priv->rps.hw_lock);
6615         }
6616 }
6617
6618 static void intel_gen6_powersave_work(struct work_struct *work)
6619 {
6620         struct drm_i915_private *dev_priv =
6621                 container_of(work, struct drm_i915_private,
6622                              rps.delayed_resume_work.work);
6623
6624         mutex_lock(&dev_priv->rps.hw_lock);
6625
6626         gen6_reset_rps_interrupts(dev_priv);
6627
6628         if (IS_CHERRYVIEW(dev_priv)) {
6629                 cherryview_enable_rps(dev_priv);
6630         } else if (IS_VALLEYVIEW(dev_priv)) {
6631                 valleyview_enable_rps(dev_priv);
6632         } else if (INTEL_INFO(dev_priv)->gen >= 9) {
6633                 gen9_enable_rc6(dev_priv);
6634                 gen9_enable_rps(dev_priv);
6635                 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6636                         __gen6_update_ring_freq(dev_priv);
6637         } else if (IS_BROADWELL(dev_priv)) {
6638                 gen8_enable_rps(dev_priv);
6639                 __gen6_update_ring_freq(dev_priv);
6640         } else {
6641                 gen6_enable_rps(dev_priv);
6642                 __gen6_update_ring_freq(dev_priv);
6643         }
6644
6645         WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6646         WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6647
6648         WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6649         WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6650
6651         dev_priv->rps.enabled = true;
6652
6653         gen6_enable_rps_interrupts(dev_priv);
6654
6655         mutex_unlock(&dev_priv->rps.hw_lock);
6656
6657         intel_runtime_pm_put(dev_priv);
6658 }
6659
6660 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6661 {
6662         /* Powersaving is controlled by the host when inside a VM */
6663         if (intel_vgpu_active(dev_priv))
6664                 return;
6665
6666         if (IS_IRONLAKE_M(dev_priv)) {
6667                 ironlake_enable_drps(dev_priv);
6668                 mutex_lock(&dev_priv->dev->struct_mutex);
6669                 intel_init_emon(dev_priv);
6670                 mutex_unlock(&dev_priv->dev->struct_mutex);
6671         } else if (INTEL_INFO(dev_priv)->gen >= 6) {
6672                 /*
6673                  * PCU communication is slow and this doesn't need to be
6674                  * done at any specific time, so do this out of our fast path
6675                  * to make resume and init faster.
6676                  *
6677                  * We depend on the HW RC6 power context save/restore
6678                  * mechanism when entering D3 through runtime PM suspend. So
6679                  * disable RPM until RPS/RC6 is properly setup. We can only
6680                  * get here via the driver load/system resume/runtime resume
6681                  * paths, so the _noresume version is enough (and in case of
6682                  * runtime resume it's necessary).
6683                  */
6684                 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6685                                            round_jiffies_up_relative(HZ)))
6686                         intel_runtime_pm_get_noresume(dev_priv);
6687         }
6688 }
6689
6690 void intel_reset_gt_powersave(struct drm_i915_private *dev_priv)
6691 {
6692         if (INTEL_INFO(dev_priv)->gen < 6)
6693                 return;
6694
6695         gen6_suspend_rps(dev_priv);
6696         dev_priv->rps.enabled = false;
6697 }
6698
6699 static void ibx_init_clock_gating(struct drm_device *dev)
6700 {
6701         struct drm_i915_private *dev_priv = dev->dev_private;
6702
6703         /*
6704          * On Ibex Peak and Cougar Point, we need to disable clock
6705          * gating for the panel power sequencer or it will fail to
6706          * start up when no ports are active.
6707          */
6708         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6709 }
6710
6711 static void g4x_disable_trickle_feed(struct drm_device *dev)
6712 {
6713         struct drm_i915_private *dev_priv = dev->dev_private;
6714         enum pipe pipe;
6715
6716         for_each_pipe(dev_priv, pipe) {
6717                 I915_WRITE(DSPCNTR(pipe),
6718                            I915_READ(DSPCNTR(pipe)) |
6719                            DISPPLANE_TRICKLE_FEED_DISABLE);
6720
6721                 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6722                 POSTING_READ(DSPSURF(pipe));
6723         }
6724 }
6725
6726 static void ilk_init_lp_watermarks(struct drm_device *dev)
6727 {
6728         struct drm_i915_private *dev_priv = dev->dev_private;
6729
6730         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6731         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6732         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6733
6734         /*
6735          * Don't touch WM1S_LP_EN here.
6736          * Doing so could cause underruns.
6737          */
6738 }
6739
6740 static void ironlake_init_clock_gating(struct drm_device *dev)
6741 {
6742         struct drm_i915_private *dev_priv = dev->dev_private;
6743         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6744
6745         /*
6746          * Required for FBC
6747          * WaFbcDisableDpfcClockGating:ilk
6748          */
6749         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6750                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6751                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6752
6753         I915_WRITE(PCH_3DCGDIS0,
6754                    MARIUNIT_CLOCK_GATE_DISABLE |
6755                    SVSMUNIT_CLOCK_GATE_DISABLE);
6756         I915_WRITE(PCH_3DCGDIS1,
6757                    VFMUNIT_CLOCK_GATE_DISABLE);
6758
6759         /*
6760          * According to the spec the following bits should be set in
6761          * order to enable memory self-refresh
6762          * The bit 22/21 of 0x42004
6763          * The bit 5 of 0x42020
6764          * The bit 15 of 0x45000
6765          */
6766         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6767                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
6768                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6769         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6770         I915_WRITE(DISP_ARB_CTL,
6771                    (I915_READ(DISP_ARB_CTL) |
6772                     DISP_FBC_WM_DIS));
6773
6774         ilk_init_lp_watermarks(dev);
6775
6776         /*
6777          * Based on the document from hardware guys the following bits
6778          * should be set unconditionally in order to enable FBC.
6779          * The bit 22 of 0x42000
6780          * The bit 22 of 0x42004
6781          * The bit 7,8,9 of 0x42020.
6782          */
6783         if (IS_IRONLAKE_M(dev)) {
6784                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6785                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6786                            I915_READ(ILK_DISPLAY_CHICKEN1) |
6787                            ILK_FBCQ_DIS);
6788                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6789                            I915_READ(ILK_DISPLAY_CHICKEN2) |
6790                            ILK_DPARB_GATE);
6791         }
6792
6793         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6794
6795         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6796                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6797                    ILK_ELPIN_409_SELECT);
6798         I915_WRITE(_3D_CHICKEN2,
6799                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6800                    _3D_CHICKEN2_WM_READ_PIPELINED);
6801
6802         /* WaDisableRenderCachePipelinedFlush:ilk */
6803         I915_WRITE(CACHE_MODE_0,
6804                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6805
6806         /* WaDisable_RenderCache_OperationalFlush:ilk */
6807         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6808
6809         g4x_disable_trickle_feed(dev);
6810
6811         ibx_init_clock_gating(dev);
6812 }
6813
6814 static void cpt_init_clock_gating(struct drm_device *dev)
6815 {
6816         struct drm_i915_private *dev_priv = dev->dev_private;
6817         int pipe;
6818         uint32_t val;
6819
6820         /*
6821          * On Ibex Peak and Cougar Point, we need to disable clock
6822          * gating for the panel power sequencer or it will fail to
6823          * start up when no ports are active.
6824          */
6825         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6826                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6827                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
6828         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6829                    DPLS_EDP_PPS_FIX_DIS);
6830         /* The below fixes the weird display corruption, a few pixels shifted
6831          * downward, on (only) LVDS of some HP laptops with IVY.
6832          */
6833         for_each_pipe(dev_priv, pipe) {
6834                 val = I915_READ(TRANS_CHICKEN2(pipe));
6835                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6836                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6837                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6838                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6839                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6840                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6841                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6842                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6843         }
6844         /* WADP0ClockGatingDisable */
6845         for_each_pipe(dev_priv, pipe) {
6846                 I915_WRITE(TRANS_CHICKEN1(pipe),
6847                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6848         }
6849 }
6850
6851 static void gen6_check_mch_setup(struct drm_device *dev)
6852 {
6853         struct drm_i915_private *dev_priv = dev->dev_private;
6854         uint32_t tmp;
6855
6856         tmp = I915_READ(MCH_SSKPD);
6857         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6858                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6859                               tmp);
6860 }
6861
6862 static void gen6_init_clock_gating(struct drm_device *dev)
6863 {
6864         struct drm_i915_private *dev_priv = dev->dev_private;
6865         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6866
6867         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6868
6869         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6870                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6871                    ILK_ELPIN_409_SELECT);
6872
6873         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6874         I915_WRITE(_3D_CHICKEN,
6875                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6876
6877         /* WaDisable_RenderCache_OperationalFlush:snb */
6878         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6879
6880         /*
6881          * BSpec recoomends 8x4 when MSAA is used,
6882          * however in practice 16x4 seems fastest.
6883          *
6884          * Note that PS/WM thread counts depend on the WIZ hashing
6885          * disable bit, which we don't touch here, but it's good
6886          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6887          */
6888         I915_WRITE(GEN6_GT_MODE,
6889                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6890
6891         ilk_init_lp_watermarks(dev);
6892
6893         I915_WRITE(CACHE_MODE_0,
6894                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6895
6896         I915_WRITE(GEN6_UCGCTL1,
6897                    I915_READ(GEN6_UCGCTL1) |
6898                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6899                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6900
6901         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6902          * gating disable must be set.  Failure to set it results in
6903          * flickering pixels due to Z write ordering failures after
6904          * some amount of runtime in the Mesa "fire" demo, and Unigine
6905          * Sanctuary and Tropics, and apparently anything else with
6906          * alpha test or pixel discard.
6907          *
6908          * According to the spec, bit 11 (RCCUNIT) must also be set,
6909          * but we didn't debug actual testcases to find it out.
6910          *
6911          * WaDisableRCCUnitClockGating:snb
6912          * WaDisableRCPBUnitClockGating:snb
6913          */
6914         I915_WRITE(GEN6_UCGCTL2,
6915                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6916                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6917
6918         /* WaStripsFansDisableFastClipPerformanceFix:snb */
6919         I915_WRITE(_3D_CHICKEN3,
6920                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6921
6922         /*
6923          * Bspec says:
6924          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6925          * 3DSTATE_SF number of SF output attributes is more than 16."
6926          */
6927         I915_WRITE(_3D_CHICKEN3,
6928                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6929
6930         /*
6931          * According to the spec the following bits should be
6932          * set in order to enable memory self-refresh and fbc:
6933          * The bit21 and bit22 of 0x42000
6934          * The bit21 and bit22 of 0x42004
6935          * The bit5 and bit7 of 0x42020
6936          * The bit14 of 0x70180
6937          * The bit14 of 0x71180
6938          *
6939          * WaFbcAsynchFlipDisableFbcQueue:snb
6940          */
6941         I915_WRITE(ILK_DISPLAY_CHICKEN1,
6942                    I915_READ(ILK_DISPLAY_CHICKEN1) |
6943                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6944         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6945                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6946                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6947         I915_WRITE(ILK_DSPCLK_GATE_D,
6948                    I915_READ(ILK_DSPCLK_GATE_D) |
6949                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6950                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6951
6952         g4x_disable_trickle_feed(dev);
6953
6954         cpt_init_clock_gating(dev);
6955
6956         gen6_check_mch_setup(dev);
6957 }
6958
6959 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6960 {
6961         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6962
6963         /*
6964          * WaVSThreadDispatchOverride:ivb,vlv
6965          *
6966          * This actually overrides the dispatch
6967          * mode for all thread types.
6968          */
6969         reg &= ~GEN7_FF_SCHED_MASK;
6970         reg |= GEN7_FF_TS_SCHED_HW;
6971         reg |= GEN7_FF_VS_SCHED_HW;
6972         reg |= GEN7_FF_DS_SCHED_HW;
6973
6974         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6975 }
6976
6977 static void lpt_init_clock_gating(struct drm_device *dev)
6978 {
6979         struct drm_i915_private *dev_priv = dev->dev_private;
6980
6981         /*
6982          * TODO: this bit should only be enabled when really needed, then
6983          * disabled when not needed anymore in order to save power.
6984          */
6985         if (HAS_PCH_LPT_LP(dev))
6986                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6987                            I915_READ(SOUTH_DSPCLK_GATE_D) |
6988                            PCH_LP_PARTITION_LEVEL_DISABLE);
6989
6990         /* WADPOClockGatingDisable:hsw */
6991         I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6992                    I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6993                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6994 }
6995
6996 static void lpt_suspend_hw(struct drm_device *dev)
6997 {
6998         struct drm_i915_private *dev_priv = dev->dev_private;
6999
7000         if (HAS_PCH_LPT_LP(dev)) {
7001                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
7002
7003                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7004                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7005         }
7006 }
7007
7008 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
7009                                    int general_prio_credits,
7010                                    int high_prio_credits)
7011 {
7012         u32 misccpctl;
7013
7014         /* WaTempDisableDOPClkGating:bdw */
7015         misccpctl = I915_READ(GEN7_MISCCPCTL);
7016         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
7017
7018         I915_WRITE(GEN8_L3SQCREG1,
7019                    L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
7020                    L3_HIGH_PRIO_CREDITS(high_prio_credits));
7021
7022         /*
7023          * Wait at least 100 clocks before re-enabling clock gating.
7024          * See the definition of L3SQCREG1 in BSpec.
7025          */
7026         POSTING_READ(GEN8_L3SQCREG1);
7027         udelay(1);
7028         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
7029 }
7030
7031 static void kabylake_init_clock_gating(struct drm_device *dev)
7032 {
7033         struct drm_i915_private *dev_priv = dev->dev_private;
7034
7035         gen9_init_clock_gating(dev);
7036
7037         /* WaDisableSDEUnitClockGating:kbl */
7038         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7039                 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7040                            GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7041
7042         /* WaDisableGamClockGating:kbl */
7043         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7044                 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7045                            GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7046
7047         /* WaFbcNukeOnHostModify:kbl */
7048         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7049                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7050 }
7051
7052 static void skylake_init_clock_gating(struct drm_device *dev)
7053 {
7054         struct drm_i915_private *dev_priv = dev->dev_private;
7055
7056         gen9_init_clock_gating(dev);
7057
7058         /* WAC6entrylatency:skl */
7059         I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
7060                    FBC_LLC_FULLY_OPEN);
7061
7062         /* WaFbcNukeOnHostModify:skl */
7063         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7064                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7065 }
7066
7067 static void broadwell_init_clock_gating(struct drm_device *dev)
7068 {
7069         struct drm_i915_private *dev_priv = dev->dev_private;
7070         enum pipe pipe;
7071
7072         ilk_init_lp_watermarks(dev);
7073
7074         /* WaSwitchSolVfFArbitrationPriority:bdw */
7075         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7076
7077         /* WaPsrDPAMaskVBlankInSRD:bdw */
7078         I915_WRITE(CHICKEN_PAR1_1,
7079                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
7080
7081         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7082         for_each_pipe(dev_priv, pipe) {
7083                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
7084                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
7085                            BDW_DPRS_MASK_VBLANK_SRD);
7086         }
7087
7088         /* WaVSRefCountFullforceMissDisable:bdw */
7089         /* WaDSRefCountFullforceMissDisable:bdw */
7090         I915_WRITE(GEN7_FF_THREAD_MODE,
7091                    I915_READ(GEN7_FF_THREAD_MODE) &
7092                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7093
7094         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7095                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7096
7097         /* WaDisableSDEUnitClockGating:bdw */
7098         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7099                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7100
7101         /* WaProgramL3SqcReg1Default:bdw */
7102         gen8_set_l3sqc_credits(dev_priv, 30, 2);
7103
7104         /*
7105          * WaGttCachingOffByDefault:bdw
7106          * GTT cache may not work with big pages, so if those
7107          * are ever enabled GTT cache may need to be disabled.
7108          */
7109         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7110
7111         /* WaKVMNotificationOnConfigChange:bdw */
7112         I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
7113                    | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
7114
7115         lpt_init_clock_gating(dev);
7116 }
7117
7118 static void haswell_init_clock_gating(struct drm_device *dev)
7119 {
7120         struct drm_i915_private *dev_priv = dev->dev_private;
7121
7122         ilk_init_lp_watermarks(dev);
7123
7124         /* L3 caching of data atomics doesn't work -- disable it. */
7125         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
7126         I915_WRITE(HSW_ROW_CHICKEN3,
7127                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
7128
7129         /* This is required by WaCatErrorRejectionIssue:hsw */
7130         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7131                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7132                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7133
7134         /* WaVSRefCountFullforceMissDisable:hsw */
7135         I915_WRITE(GEN7_FF_THREAD_MODE,
7136                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7137
7138         /* WaDisable_RenderCache_OperationalFlush:hsw */
7139         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7140
7141         /* enable HiZ Raw Stall Optimization */
7142         I915_WRITE(CACHE_MODE_0_GEN7,
7143                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7144
7145         /* WaDisable4x2SubspanOptimization:hsw */
7146         I915_WRITE(CACHE_MODE_1,
7147                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7148
7149         /*
7150          * BSpec recommends 8x4 when MSAA is used,
7151          * however in practice 16x4 seems fastest.
7152          *
7153          * Note that PS/WM thread counts depend on the WIZ hashing
7154          * disable bit, which we don't touch here, but it's good
7155          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7156          */
7157         I915_WRITE(GEN7_GT_MODE,
7158                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7159
7160         /* WaSampleCChickenBitEnable:hsw */
7161         I915_WRITE(HALF_SLICE_CHICKEN3,
7162                    _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
7163
7164         /* WaSwitchSolVfFArbitrationPriority:hsw */
7165         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7166
7167         /* WaRsPkgCStateDisplayPMReq:hsw */
7168         I915_WRITE(CHICKEN_PAR1_1,
7169                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7170
7171         lpt_init_clock_gating(dev);
7172 }
7173
7174 static void ivybridge_init_clock_gating(struct drm_device *dev)
7175 {
7176         struct drm_i915_private *dev_priv = dev->dev_private;
7177         uint32_t snpcr;
7178
7179         ilk_init_lp_watermarks(dev);
7180
7181         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7182
7183         /* WaDisableEarlyCull:ivb */
7184         I915_WRITE(_3D_CHICKEN3,
7185                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7186
7187         /* WaDisableBackToBackFlipFix:ivb */
7188         I915_WRITE(IVB_CHICKEN3,
7189                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7190                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
7191
7192         /* WaDisablePSDDualDispatchEnable:ivb */
7193         if (IS_IVB_GT1(dev))
7194                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7195                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7196
7197         /* WaDisable_RenderCache_OperationalFlush:ivb */
7198         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7199
7200         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7201         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
7202                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
7203
7204         /* WaApplyL3ControlAndL3ChickenMode:ivb */
7205         I915_WRITE(GEN7_L3CNTLREG1,
7206                         GEN7_WA_FOR_GEN7_L3_CONTROL);
7207         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7208                    GEN7_WA_L3_CHICKEN_MODE);
7209         if (IS_IVB_GT1(dev))
7210                 I915_WRITE(GEN7_ROW_CHICKEN2,
7211                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7212         else {
7213                 /* must write both registers */
7214                 I915_WRITE(GEN7_ROW_CHICKEN2,
7215                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7216                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
7217                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7218         }
7219
7220         /* WaForceL3Serialization:ivb */
7221         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7222                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7223
7224         /*
7225          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7226          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7227          */
7228         I915_WRITE(GEN6_UCGCTL2,
7229                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7230
7231         /* This is required by WaCatErrorRejectionIssue:ivb */
7232         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7233                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7234                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7235
7236         g4x_disable_trickle_feed(dev);
7237
7238         gen7_setup_fixed_func_scheduler(dev_priv);
7239
7240         if (0) { /* causes HiZ corruption on ivb:gt1 */
7241                 /* enable HiZ Raw Stall Optimization */
7242                 I915_WRITE(CACHE_MODE_0_GEN7,
7243                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7244         }
7245
7246         /* WaDisable4x2SubspanOptimization:ivb */
7247         I915_WRITE(CACHE_MODE_1,
7248                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7249
7250         /*
7251          * BSpec recommends 8x4 when MSAA is used,
7252          * however in practice 16x4 seems fastest.
7253          *
7254          * Note that PS/WM thread counts depend on the WIZ hashing
7255          * disable bit, which we don't touch here, but it's good
7256          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7257          */
7258         I915_WRITE(GEN7_GT_MODE,
7259                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7260
7261         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
7262         snpcr &= ~GEN6_MBC_SNPCR_MASK;
7263         snpcr |= GEN6_MBC_SNPCR_MED;
7264         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7265
7266         if (!HAS_PCH_NOP(dev))
7267                 cpt_init_clock_gating(dev);
7268
7269         gen6_check_mch_setup(dev);
7270 }
7271
7272 static void valleyview_init_clock_gating(struct drm_device *dev)
7273 {
7274         struct drm_i915_private *dev_priv = dev->dev_private;
7275
7276         /* WaDisableEarlyCull:vlv */
7277         I915_WRITE(_3D_CHICKEN3,
7278                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7279
7280         /* WaDisableBackToBackFlipFix:vlv */
7281         I915_WRITE(IVB_CHICKEN3,
7282                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7283                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
7284
7285         /* WaPsdDispatchEnable:vlv */
7286         /* WaDisablePSDDualDispatchEnable:vlv */
7287         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7288                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
7289                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7290
7291         /* WaDisable_RenderCache_OperationalFlush:vlv */
7292         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7293
7294         /* WaForceL3Serialization:vlv */
7295         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7296                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7297
7298         /* WaDisableDopClockGating:vlv */
7299         I915_WRITE(GEN7_ROW_CHICKEN2,
7300                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7301
7302         /* This is required by WaCatErrorRejectionIssue:vlv */
7303         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7304                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7305                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7306
7307         gen7_setup_fixed_func_scheduler(dev_priv);
7308
7309         /*
7310          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7311          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7312          */
7313         I915_WRITE(GEN6_UCGCTL2,
7314                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7315
7316         /* WaDisableL3Bank2xClockGate:vlv
7317          * Disabling L3 clock gating- MMIO 940c[25] = 1
7318          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7319         I915_WRITE(GEN7_UCGCTL4,
7320                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7321
7322         /*
7323          * BSpec says this must be set, even though
7324          * WaDisable4x2SubspanOptimization isn't listed for VLV.
7325          */
7326         I915_WRITE(CACHE_MODE_1,
7327                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7328
7329         /*
7330          * BSpec recommends 8x4 when MSAA is used,
7331          * however in practice 16x4 seems fastest.
7332          *
7333          * Note that PS/WM thread counts depend on the WIZ hashing
7334          * disable bit, which we don't touch here, but it's good
7335          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7336          */
7337         I915_WRITE(GEN7_GT_MODE,
7338                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7339
7340         /*
7341          * WaIncreaseL3CreditsForVLVB0:vlv
7342          * This is the hardware default actually.
7343          */
7344         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
7345
7346         /*
7347          * WaDisableVLVClockGating_VBIIssue:vlv
7348          * Disable clock gating on th GCFG unit to prevent a delay
7349          * in the reporting of vblank events.
7350          */
7351         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7352 }
7353
7354 static void cherryview_init_clock_gating(struct drm_device *dev)
7355 {
7356         struct drm_i915_private *dev_priv = dev->dev_private;
7357
7358         /* WaVSRefCountFullforceMissDisable:chv */
7359         /* WaDSRefCountFullforceMissDisable:chv */
7360         I915_WRITE(GEN7_FF_THREAD_MODE,
7361                    I915_READ(GEN7_FF_THREAD_MODE) &
7362                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7363
7364         /* WaDisableSemaphoreAndSyncFlipWait:chv */
7365         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7366                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7367
7368         /* WaDisableCSUnitClockGating:chv */
7369         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7370                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7371
7372         /* WaDisableSDEUnitClockGating:chv */
7373         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7374                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7375
7376         /*
7377          * WaProgramL3SqcReg1Default:chv
7378          * See gfxspecs/Related Documents/Performance Guide/
7379          * LSQC Setting Recommendations.
7380          */
7381         gen8_set_l3sqc_credits(dev_priv, 38, 2);
7382
7383         /*
7384          * GTT cache may not work with big pages, so if those
7385          * are ever enabled GTT cache may need to be disabled.
7386          */
7387         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7388 }
7389
7390 static void g4x_init_clock_gating(struct drm_device *dev)
7391 {
7392         struct drm_i915_private *dev_priv = dev->dev_private;
7393         uint32_t dspclk_gate;
7394
7395         I915_WRITE(RENCLK_GATE_D1, 0);
7396         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7397                    GS_UNIT_CLOCK_GATE_DISABLE |
7398                    CL_UNIT_CLOCK_GATE_DISABLE);
7399         I915_WRITE(RAMCLK_GATE_D, 0);
7400         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7401                 OVRUNIT_CLOCK_GATE_DISABLE |
7402                 OVCUNIT_CLOCK_GATE_DISABLE;
7403         if (IS_GM45(dev))
7404                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7405         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7406
7407         /* WaDisableRenderCachePipelinedFlush */
7408         I915_WRITE(CACHE_MODE_0,
7409                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7410
7411         /* WaDisable_RenderCache_OperationalFlush:g4x */
7412         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7413
7414         g4x_disable_trickle_feed(dev);
7415 }
7416
7417 static void crestline_init_clock_gating(struct drm_device *dev)
7418 {
7419         struct drm_i915_private *dev_priv = dev->dev_private;
7420
7421         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7422         I915_WRITE(RENCLK_GATE_D2, 0);
7423         I915_WRITE(DSPCLK_GATE_D, 0);
7424         I915_WRITE(RAMCLK_GATE_D, 0);
7425         I915_WRITE16(DEUC, 0);
7426         I915_WRITE(MI_ARB_STATE,
7427                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7428
7429         /* WaDisable_RenderCache_OperationalFlush:gen4 */
7430         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7431 }
7432
7433 static void broadwater_init_clock_gating(struct drm_device *dev)
7434 {
7435         struct drm_i915_private *dev_priv = dev->dev_private;
7436
7437         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7438                    I965_RCC_CLOCK_GATE_DISABLE |
7439                    I965_RCPB_CLOCK_GATE_DISABLE |
7440                    I965_ISC_CLOCK_GATE_DISABLE |
7441                    I965_FBC_CLOCK_GATE_DISABLE);
7442         I915_WRITE(RENCLK_GATE_D2, 0);
7443         I915_WRITE(MI_ARB_STATE,
7444                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7445
7446         /* WaDisable_RenderCache_OperationalFlush:gen4 */
7447         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7448 }
7449
7450 static void gen3_init_clock_gating(struct drm_device *dev)
7451 {
7452         struct drm_i915_private *dev_priv = dev->dev_private;
7453         u32 dstate = I915_READ(D_STATE);
7454
7455         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7456                 DSTATE_DOT_CLOCK_GATING;
7457         I915_WRITE(D_STATE, dstate);
7458
7459         if (IS_PINEVIEW(dev))
7460                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7461
7462         /* IIR "flip pending" means done if this bit is set */
7463         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7464
7465         /* interrupts should cause a wake up from C3 */
7466         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7467
7468         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7469         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7470
7471         I915_WRITE(MI_ARB_STATE,
7472                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7473 }
7474
7475 static void i85x_init_clock_gating(struct drm_device *dev)
7476 {
7477         struct drm_i915_private *dev_priv = dev->dev_private;
7478
7479         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7480
7481         /* interrupts should cause a wake up from C3 */
7482         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7483                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7484
7485         I915_WRITE(MEM_MODE,
7486                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7487 }
7488
7489 static void i830_init_clock_gating(struct drm_device *dev)
7490 {
7491         struct drm_i915_private *dev_priv = dev->dev_private;
7492
7493         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7494
7495         I915_WRITE(MEM_MODE,
7496                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7497                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7498 }
7499
7500 void intel_init_clock_gating(struct drm_device *dev)
7501 {
7502         struct drm_i915_private *dev_priv = dev->dev_private;
7503
7504         dev_priv->display.init_clock_gating(dev);
7505 }
7506
7507 void intel_suspend_hw(struct drm_device *dev)
7508 {
7509         if (HAS_PCH_LPT(dev))
7510                 lpt_suspend_hw(dev);
7511 }
7512
7513 static void nop_init_clock_gating(struct drm_device *dev)
7514 {
7515         DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
7516 }
7517
7518 /**
7519  * intel_init_clock_gating_hooks - setup the clock gating hooks
7520  * @dev_priv: device private
7521  *
7522  * Setup the hooks that configure which clocks of a given platform can be
7523  * gated and also apply various GT and display specific workarounds for these
7524  * platforms. Note that some GT specific workarounds are applied separately
7525  * when GPU contexts or batchbuffers start their execution.
7526  */
7527 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
7528 {
7529         if (IS_SKYLAKE(dev_priv))
7530                 dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7531         else if (IS_KABYLAKE(dev_priv))
7532                 dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7533         else if (IS_BROXTON(dev_priv))
7534                 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7535         else if (IS_BROADWELL(dev_priv))
7536                 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7537         else if (IS_CHERRYVIEW(dev_priv))
7538                 dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
7539         else if (IS_HASWELL(dev_priv))
7540                 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7541         else if (IS_IVYBRIDGE(dev_priv))
7542                 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7543         else if (IS_VALLEYVIEW(dev_priv))
7544                 dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
7545         else if (IS_GEN6(dev_priv))
7546                 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7547         else if (IS_GEN5(dev_priv))
7548                 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7549         else if (IS_G4X(dev_priv))
7550                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7551         else if (IS_CRESTLINE(dev_priv))
7552                 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7553         else if (IS_BROADWATER(dev_priv))
7554                 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7555         else if (IS_GEN3(dev_priv))
7556                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7557         else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
7558                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7559         else if (IS_GEN2(dev_priv))
7560                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7561         else {
7562                 MISSING_CASE(INTEL_DEVID(dev_priv));
7563                 dev_priv->display.init_clock_gating = nop_init_clock_gating;
7564         }
7565 }
7566
7567 /* Set up chip specific power management-related functions */
7568 void intel_init_pm(struct drm_device *dev)
7569 {
7570         struct drm_i915_private *dev_priv = dev->dev_private;
7571
7572         intel_fbc_init(dev_priv);
7573
7574         /* For cxsr */
7575         if (IS_PINEVIEW(dev))
7576                 i915_pineview_get_mem_freq(dev);
7577         else if (IS_GEN5(dev))
7578                 i915_ironlake_get_mem_freq(dev);
7579
7580         /* For FIFO watermark updates */
7581         if (INTEL_INFO(dev)->gen >= 9) {
7582                 skl_setup_wm_latency(dev);
7583                 dev_priv->display.update_wm = skl_update_wm;
7584                 dev_priv->display.compute_global_watermarks = skl_compute_wm;
7585         } else if (HAS_PCH_SPLIT(dev)) {
7586                 ilk_setup_wm_latency(dev);
7587
7588                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7589                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7590                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7591                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7592                         dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7593                         dev_priv->display.compute_intermediate_wm =
7594                                 ilk_compute_intermediate_wm;
7595                         dev_priv->display.initial_watermarks =
7596                                 ilk_initial_watermarks;
7597                         dev_priv->display.optimize_watermarks =
7598                                 ilk_optimize_watermarks;
7599                 } else {
7600                         DRM_DEBUG_KMS("Failed to read display plane latency. "
7601                                       "Disable CxSR\n");
7602                 }
7603         } else if (IS_CHERRYVIEW(dev)) {
7604                 vlv_setup_wm_latency(dev);
7605                 dev_priv->display.update_wm = vlv_update_wm;
7606         } else if (IS_VALLEYVIEW(dev)) {
7607                 vlv_setup_wm_latency(dev);
7608                 dev_priv->display.update_wm = vlv_update_wm;
7609         } else if (IS_PINEVIEW(dev)) {
7610                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7611                                             dev_priv->is_ddr3,
7612                                             dev_priv->fsb_freq,
7613                                             dev_priv->mem_freq)) {
7614                         DRM_INFO("failed to find known CxSR latency "
7615                                  "(found ddr%s fsb freq %d, mem freq %d), "
7616                                  "disabling CxSR\n",
7617                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
7618                                  dev_priv->fsb_freq, dev_priv->mem_freq);
7619                         /* Disable CxSR and never update its watermark again */
7620                         intel_set_memory_cxsr(dev_priv, false);
7621                         dev_priv->display.update_wm = NULL;
7622                 } else
7623                         dev_priv->display.update_wm = pineview_update_wm;
7624         } else if (IS_G4X(dev)) {
7625                 dev_priv->display.update_wm = g4x_update_wm;
7626         } else if (IS_GEN4(dev)) {
7627                 dev_priv->display.update_wm = i965_update_wm;
7628         } else if (IS_GEN3(dev)) {
7629                 dev_priv->display.update_wm = i9xx_update_wm;
7630                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7631         } else if (IS_GEN2(dev)) {
7632                 if (INTEL_INFO(dev)->num_pipes == 1) {
7633                         dev_priv->display.update_wm = i845_update_wm;
7634                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
7635                 } else {
7636                         dev_priv->display.update_wm = i9xx_update_wm;
7637                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
7638                 }
7639         } else {
7640                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7641         }
7642 }
7643
7644 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7645 {
7646         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7647
7648         /* GEN6_PCODE_* are outside of the forcewake domain, we can
7649          * use te fw I915_READ variants to reduce the amount of work
7650          * required when reading/writing.
7651          */
7652
7653         if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7654                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7655                 return -EAGAIN;
7656         }
7657
7658         I915_WRITE_FW(GEN6_PCODE_DATA, *val);
7659         I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
7660         I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7661
7662         if (intel_wait_for_register_fw(dev_priv,
7663                                        GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
7664                                        500)) {
7665                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7666                 return -ETIMEDOUT;
7667         }
7668
7669         *val = I915_READ_FW(GEN6_PCODE_DATA);
7670         I915_WRITE_FW(GEN6_PCODE_DATA, 0);
7671
7672         return 0;
7673 }
7674
7675 int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
7676                                u32 mbox, u32 val)
7677 {
7678         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7679
7680         /* GEN6_PCODE_* are outside of the forcewake domain, we can
7681          * use te fw I915_READ variants to reduce the amount of work
7682          * required when reading/writing.
7683          */
7684
7685         if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7686                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7687                 return -EAGAIN;
7688         }
7689
7690         I915_WRITE_FW(GEN6_PCODE_DATA, val);
7691         I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7692
7693         if (intel_wait_for_register_fw(dev_priv,
7694                                        GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
7695                                        500)) {
7696                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7697                 return -ETIMEDOUT;
7698         }
7699
7700         I915_WRITE_FW(GEN6_PCODE_DATA, 0);
7701
7702         return 0;
7703 }
7704
7705 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7706 {
7707         /*
7708          * N = val - 0xb7
7709          * Slow = Fast = GPLL ref * N
7710          */
7711         return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7712 }
7713
7714 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7715 {
7716         return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7717 }
7718
7719 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7720 {
7721         /*
7722          * N = val / 2
7723          * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
7724          */
7725         return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7726 }
7727
7728 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7729 {
7730         /* CHV needs even values */
7731         return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7732 }
7733
7734 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7735 {
7736         if (IS_GEN9(dev_priv))
7737                 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7738                                          GEN9_FREQ_SCALER);
7739         else if (IS_CHERRYVIEW(dev_priv))
7740                 return chv_gpu_freq(dev_priv, val);
7741         else if (IS_VALLEYVIEW(dev_priv))
7742                 return byt_gpu_freq(dev_priv, val);
7743         else
7744                 return val * GT_FREQUENCY_MULTIPLIER;
7745 }
7746
7747 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7748 {
7749         if (IS_GEN9(dev_priv))
7750                 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7751                                          GT_FREQUENCY_MULTIPLIER);
7752         else if (IS_CHERRYVIEW(dev_priv))
7753                 return chv_freq_opcode(dev_priv, val);
7754         else if (IS_VALLEYVIEW(dev_priv))
7755                 return byt_freq_opcode(dev_priv, val);
7756         else
7757                 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7758 }
7759
7760 struct request_boost {
7761         struct work_struct work;
7762         struct drm_i915_gem_request *req;
7763 };
7764
7765 static void __intel_rps_boost_work(struct work_struct *work)
7766 {
7767         struct request_boost *boost = container_of(work, struct request_boost, work);
7768         struct drm_i915_gem_request *req = boost->req;
7769
7770         if (!i915_gem_request_completed(req))
7771                 gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
7772
7773         i915_gem_request_unreference(req);
7774         kfree(boost);
7775 }
7776
7777 void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
7778 {
7779         struct request_boost *boost;
7780
7781         if (req == NULL || INTEL_GEN(req->i915) < 6)
7782                 return;
7783
7784         if (i915_gem_request_completed(req))
7785                 return;
7786
7787         boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7788         if (boost == NULL)
7789                 return;
7790
7791         i915_gem_request_reference(req);
7792         boost->req = req;
7793
7794         INIT_WORK(&boost->work, __intel_rps_boost_work);
7795         queue_work(req->i915->wq, &boost->work);
7796 }
7797
7798 void intel_pm_setup(struct drm_device *dev)
7799 {
7800         struct drm_i915_private *dev_priv = dev->dev_private;
7801
7802         mutex_init(&dev_priv->rps.hw_lock);
7803         spin_lock_init(&dev_priv->rps.client_lock);
7804
7805         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7806                           intel_gen6_powersave_work);
7807         INIT_LIST_HEAD(&dev_priv->rps.clients);
7808         INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7809         INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7810
7811         dev_priv->pm.suspended = false;
7812         atomic_set(&dev_priv->pm.wakeref_count, 0);
7813         atomic_set(&dev_priv->pm.atomic_seq, 0);
7814 }