drm/i915/skl+: calculate ddb minimum allocation (v6)
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 /**
35  * DOC: RC6
36  *
37  * RC6 is a special power stage which allows the GPU to enter an very
38  * low-voltage mode when idle, using down to 0V while at this stage.  This
39  * stage is entered automatically when the GPU is idle when RC6 support is
40  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
41  *
42  * There are different RC6 modes available in Intel GPU, which differentiate
43  * among each other with the latency required to enter and leave RC6 and
44  * voltage consumed by the GPU in different states.
45  *
46  * The combination of the following flags define which states GPU is allowed
47  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
48  * RC6pp is deepest RC6. Their support by hardware varies according to the
49  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
50  * which brings the most power savings; deeper states save more power, but
51  * require higher latency to switch to and wake up.
52  */
53 #define INTEL_RC6_ENABLE                        (1<<0)
54 #define INTEL_RC6p_ENABLE                       (1<<1)
55 #define INTEL_RC6pp_ENABLE                      (1<<2)
56
57 static void bxt_init_clock_gating(struct drm_device *dev)
58 {
59         struct drm_i915_private *dev_priv = dev->dev_private;
60
61         /* See Bspec note for PSR2_CTL bit 31, Wa#828:bxt */
62         I915_WRITE(CHICKEN_PAR1_1,
63                    I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
64
65         /* WaDisableSDEUnitClockGating:bxt */
66         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
67                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
68
69         /*
70          * FIXME:
71          * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
72          */
73         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
74                    GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
75
76         /*
77          * Wa: Backlight PWM may stop in the asserted state, causing backlight
78          * to stay fully on.
79          */
80         if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
81                 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
82                            PWM1_GATING_DIS | PWM2_GATING_DIS);
83 }
84
85 static void i915_pineview_get_mem_freq(struct drm_device *dev)
86 {
87         struct drm_i915_private *dev_priv = dev->dev_private;
88         u32 tmp;
89
90         tmp = I915_READ(CLKCFG);
91
92         switch (tmp & CLKCFG_FSB_MASK) {
93         case CLKCFG_FSB_533:
94                 dev_priv->fsb_freq = 533; /* 133*4 */
95                 break;
96         case CLKCFG_FSB_800:
97                 dev_priv->fsb_freq = 800; /* 200*4 */
98                 break;
99         case CLKCFG_FSB_667:
100                 dev_priv->fsb_freq =  667; /* 167*4 */
101                 break;
102         case CLKCFG_FSB_400:
103                 dev_priv->fsb_freq = 400; /* 100*4 */
104                 break;
105         }
106
107         switch (tmp & CLKCFG_MEM_MASK) {
108         case CLKCFG_MEM_533:
109                 dev_priv->mem_freq = 533;
110                 break;
111         case CLKCFG_MEM_667:
112                 dev_priv->mem_freq = 667;
113                 break;
114         case CLKCFG_MEM_800:
115                 dev_priv->mem_freq = 800;
116                 break;
117         }
118
119         /* detect pineview DDR3 setting */
120         tmp = I915_READ(CSHRDDR3CTL);
121         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
122 }
123
124 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
125 {
126         struct drm_i915_private *dev_priv = dev->dev_private;
127         u16 ddrpll, csipll;
128
129         ddrpll = I915_READ16(DDRMPLL1);
130         csipll = I915_READ16(CSIPLL0);
131
132         switch (ddrpll & 0xff) {
133         case 0xc:
134                 dev_priv->mem_freq = 800;
135                 break;
136         case 0x10:
137                 dev_priv->mem_freq = 1066;
138                 break;
139         case 0x14:
140                 dev_priv->mem_freq = 1333;
141                 break;
142         case 0x18:
143                 dev_priv->mem_freq = 1600;
144                 break;
145         default:
146                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
147                                  ddrpll & 0xff);
148                 dev_priv->mem_freq = 0;
149                 break;
150         }
151
152         dev_priv->ips.r_t = dev_priv->mem_freq;
153
154         switch (csipll & 0x3ff) {
155         case 0x00c:
156                 dev_priv->fsb_freq = 3200;
157                 break;
158         case 0x00e:
159                 dev_priv->fsb_freq = 3733;
160                 break;
161         case 0x010:
162                 dev_priv->fsb_freq = 4266;
163                 break;
164         case 0x012:
165                 dev_priv->fsb_freq = 4800;
166                 break;
167         case 0x014:
168                 dev_priv->fsb_freq = 5333;
169                 break;
170         case 0x016:
171                 dev_priv->fsb_freq = 5866;
172                 break;
173         case 0x018:
174                 dev_priv->fsb_freq = 6400;
175                 break;
176         default:
177                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
178                                  csipll & 0x3ff);
179                 dev_priv->fsb_freq = 0;
180                 break;
181         }
182
183         if (dev_priv->fsb_freq == 3200) {
184                 dev_priv->ips.c_m = 0;
185         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
186                 dev_priv->ips.c_m = 1;
187         } else {
188                 dev_priv->ips.c_m = 2;
189         }
190 }
191
192 static const struct cxsr_latency cxsr_latency_table[] = {
193         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
194         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
195         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
196         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
197         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
198
199         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
200         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
201         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
202         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
203         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
204
205         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
206         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
207         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
208         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
209         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
210
211         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
212         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
213         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
214         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
215         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
216
217         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
218         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
219         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
220         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
221         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
222
223         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
224         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
225         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
226         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
227         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
228 };
229
230 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
231                                                          int is_ddr3,
232                                                          int fsb,
233                                                          int mem)
234 {
235         const struct cxsr_latency *latency;
236         int i;
237
238         if (fsb == 0 || mem == 0)
239                 return NULL;
240
241         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
242                 latency = &cxsr_latency_table[i];
243                 if (is_desktop == latency->is_desktop &&
244                     is_ddr3 == latency->is_ddr3 &&
245                     fsb == latency->fsb_freq && mem == latency->mem_freq)
246                         return latency;
247         }
248
249         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
250
251         return NULL;
252 }
253
254 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
255 {
256         u32 val;
257
258         mutex_lock(&dev_priv->rps.hw_lock);
259
260         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
261         if (enable)
262                 val &= ~FORCE_DDR_HIGH_FREQ;
263         else
264                 val |= FORCE_DDR_HIGH_FREQ;
265         val &= ~FORCE_DDR_LOW_FREQ;
266         val |= FORCE_DDR_FREQ_REQ_ACK;
267         vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
268
269         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
270                       FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
271                 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
272
273         mutex_unlock(&dev_priv->rps.hw_lock);
274 }
275
276 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
277 {
278         u32 val;
279
280         mutex_lock(&dev_priv->rps.hw_lock);
281
282         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
283         if (enable)
284                 val |= DSP_MAXFIFO_PM5_ENABLE;
285         else
286                 val &= ~DSP_MAXFIFO_PM5_ENABLE;
287         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
288
289         mutex_unlock(&dev_priv->rps.hw_lock);
290 }
291
292 #define FW_WM(value, plane) \
293         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
294
295 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
296 {
297         struct drm_device *dev = dev_priv->dev;
298         u32 val;
299
300         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
301                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
302                 POSTING_READ(FW_BLC_SELF_VLV);
303                 dev_priv->wm.vlv.cxsr = enable;
304         } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
305                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
306                 POSTING_READ(FW_BLC_SELF);
307         } else if (IS_PINEVIEW(dev)) {
308                 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
309                 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
310                 I915_WRITE(DSPFW3, val);
311                 POSTING_READ(DSPFW3);
312         } else if (IS_I945G(dev) || IS_I945GM(dev)) {
313                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
314                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
315                 I915_WRITE(FW_BLC_SELF, val);
316                 POSTING_READ(FW_BLC_SELF);
317         } else if (IS_I915GM(dev)) {
318                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
319                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
320                 I915_WRITE(INSTPM, val);
321                 POSTING_READ(INSTPM);
322         } else {
323                 return;
324         }
325
326         DRM_DEBUG_KMS("memory self-refresh is %s\n",
327                       enable ? "enabled" : "disabled");
328 }
329
330
331 /*
332  * Latency for FIFO fetches is dependent on several factors:
333  *   - memory configuration (speed, channels)
334  *   - chipset
335  *   - current MCH state
336  * It can be fairly high in some situations, so here we assume a fairly
337  * pessimal value.  It's a tradeoff between extra memory fetches (if we
338  * set this value too high, the FIFO will fetch frequently to stay full)
339  * and power consumption (set it too low to save power and we might see
340  * FIFO underruns and display "flicker").
341  *
342  * A value of 5us seems to be a good balance; safe for very low end
343  * platforms but not overly aggressive on lower latency configs.
344  */
345 static const int pessimal_latency_ns = 5000;
346
347 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
348         ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
349
350 static int vlv_get_fifo_size(struct drm_device *dev,
351                               enum pipe pipe, int plane)
352 {
353         struct drm_i915_private *dev_priv = dev->dev_private;
354         int sprite0_start, sprite1_start, size;
355
356         switch (pipe) {
357                 uint32_t dsparb, dsparb2, dsparb3;
358         case PIPE_A:
359                 dsparb = I915_READ(DSPARB);
360                 dsparb2 = I915_READ(DSPARB2);
361                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
362                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
363                 break;
364         case PIPE_B:
365                 dsparb = I915_READ(DSPARB);
366                 dsparb2 = I915_READ(DSPARB2);
367                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
368                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
369                 break;
370         case PIPE_C:
371                 dsparb2 = I915_READ(DSPARB2);
372                 dsparb3 = I915_READ(DSPARB3);
373                 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
374                 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
375                 break;
376         default:
377                 return 0;
378         }
379
380         switch (plane) {
381         case 0:
382                 size = sprite0_start;
383                 break;
384         case 1:
385                 size = sprite1_start - sprite0_start;
386                 break;
387         case 2:
388                 size = 512 - 1 - sprite1_start;
389                 break;
390         default:
391                 return 0;
392         }
393
394         DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
395                       pipe_name(pipe), plane == 0 ? "primary" : "sprite",
396                       plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
397                       size);
398
399         return size;
400 }
401
402 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
403 {
404         struct drm_i915_private *dev_priv = dev->dev_private;
405         uint32_t dsparb = I915_READ(DSPARB);
406         int size;
407
408         size = dsparb & 0x7f;
409         if (plane)
410                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
411
412         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
413                       plane ? "B" : "A", size);
414
415         return size;
416 }
417
418 static int i830_get_fifo_size(struct drm_device *dev, int plane)
419 {
420         struct drm_i915_private *dev_priv = dev->dev_private;
421         uint32_t dsparb = I915_READ(DSPARB);
422         int size;
423
424         size = dsparb & 0x1ff;
425         if (plane)
426                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
427         size >>= 1; /* Convert to cachelines */
428
429         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
430                       plane ? "B" : "A", size);
431
432         return size;
433 }
434
435 static int i845_get_fifo_size(struct drm_device *dev, int plane)
436 {
437         struct drm_i915_private *dev_priv = dev->dev_private;
438         uint32_t dsparb = I915_READ(DSPARB);
439         int size;
440
441         size = dsparb & 0x7f;
442         size >>= 2; /* Convert to cachelines */
443
444         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
445                       plane ? "B" : "A",
446                       size);
447
448         return size;
449 }
450
451 /* Pineview has different values for various configs */
452 static const struct intel_watermark_params pineview_display_wm = {
453         .fifo_size = PINEVIEW_DISPLAY_FIFO,
454         .max_wm = PINEVIEW_MAX_WM,
455         .default_wm = PINEVIEW_DFT_WM,
456         .guard_size = PINEVIEW_GUARD_WM,
457         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
458 };
459 static const struct intel_watermark_params pineview_display_hplloff_wm = {
460         .fifo_size = PINEVIEW_DISPLAY_FIFO,
461         .max_wm = PINEVIEW_MAX_WM,
462         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
463         .guard_size = PINEVIEW_GUARD_WM,
464         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
465 };
466 static const struct intel_watermark_params pineview_cursor_wm = {
467         .fifo_size = PINEVIEW_CURSOR_FIFO,
468         .max_wm = PINEVIEW_CURSOR_MAX_WM,
469         .default_wm = PINEVIEW_CURSOR_DFT_WM,
470         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
471         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
472 };
473 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
474         .fifo_size = PINEVIEW_CURSOR_FIFO,
475         .max_wm = PINEVIEW_CURSOR_MAX_WM,
476         .default_wm = PINEVIEW_CURSOR_DFT_WM,
477         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
478         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
479 };
480 static const struct intel_watermark_params g4x_wm_info = {
481         .fifo_size = G4X_FIFO_SIZE,
482         .max_wm = G4X_MAX_WM,
483         .default_wm = G4X_MAX_WM,
484         .guard_size = 2,
485         .cacheline_size = G4X_FIFO_LINE_SIZE,
486 };
487 static const struct intel_watermark_params g4x_cursor_wm_info = {
488         .fifo_size = I965_CURSOR_FIFO,
489         .max_wm = I965_CURSOR_MAX_WM,
490         .default_wm = I965_CURSOR_DFT_WM,
491         .guard_size = 2,
492         .cacheline_size = G4X_FIFO_LINE_SIZE,
493 };
494 static const struct intel_watermark_params i965_cursor_wm_info = {
495         .fifo_size = I965_CURSOR_FIFO,
496         .max_wm = I965_CURSOR_MAX_WM,
497         .default_wm = I965_CURSOR_DFT_WM,
498         .guard_size = 2,
499         .cacheline_size = I915_FIFO_LINE_SIZE,
500 };
501 static const struct intel_watermark_params i945_wm_info = {
502         .fifo_size = I945_FIFO_SIZE,
503         .max_wm = I915_MAX_WM,
504         .default_wm = 1,
505         .guard_size = 2,
506         .cacheline_size = I915_FIFO_LINE_SIZE,
507 };
508 static const struct intel_watermark_params i915_wm_info = {
509         .fifo_size = I915_FIFO_SIZE,
510         .max_wm = I915_MAX_WM,
511         .default_wm = 1,
512         .guard_size = 2,
513         .cacheline_size = I915_FIFO_LINE_SIZE,
514 };
515 static const struct intel_watermark_params i830_a_wm_info = {
516         .fifo_size = I855GM_FIFO_SIZE,
517         .max_wm = I915_MAX_WM,
518         .default_wm = 1,
519         .guard_size = 2,
520         .cacheline_size = I830_FIFO_LINE_SIZE,
521 };
522 static const struct intel_watermark_params i830_bc_wm_info = {
523         .fifo_size = I855GM_FIFO_SIZE,
524         .max_wm = I915_MAX_WM/2,
525         .default_wm = 1,
526         .guard_size = 2,
527         .cacheline_size = I830_FIFO_LINE_SIZE,
528 };
529 static const struct intel_watermark_params i845_wm_info = {
530         .fifo_size = I830_FIFO_SIZE,
531         .max_wm = I915_MAX_WM,
532         .default_wm = 1,
533         .guard_size = 2,
534         .cacheline_size = I830_FIFO_LINE_SIZE,
535 };
536
537 /**
538  * intel_calculate_wm - calculate watermark level
539  * @clock_in_khz: pixel clock
540  * @wm: chip FIFO params
541  * @cpp: bytes per pixel
542  * @latency_ns: memory latency for the platform
543  *
544  * Calculate the watermark level (the level at which the display plane will
545  * start fetching from memory again).  Each chip has a different display
546  * FIFO size and allocation, so the caller needs to figure that out and pass
547  * in the correct intel_watermark_params structure.
548  *
549  * As the pixel clock runs, the FIFO will be drained at a rate that depends
550  * on the pixel size.  When it reaches the watermark level, it'll start
551  * fetching FIFO line sized based chunks from memory until the FIFO fills
552  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
553  * will occur, and a display engine hang could result.
554  */
555 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
556                                         const struct intel_watermark_params *wm,
557                                         int fifo_size, int cpp,
558                                         unsigned long latency_ns)
559 {
560         long entries_required, wm_size;
561
562         /*
563          * Note: we need to make sure we don't overflow for various clock &
564          * latency values.
565          * clocks go from a few thousand to several hundred thousand.
566          * latency is usually a few thousand
567          */
568         entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
569                 1000;
570         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
571
572         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
573
574         wm_size = fifo_size - (entries_required + wm->guard_size);
575
576         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
577
578         /* Don't promote wm_size to unsigned... */
579         if (wm_size > (long)wm->max_wm)
580                 wm_size = wm->max_wm;
581         if (wm_size <= 0)
582                 wm_size = wm->default_wm;
583
584         /*
585          * Bspec seems to indicate that the value shouldn't be lower than
586          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
587          * Lets go for 8 which is the burst size since certain platforms
588          * already use a hardcoded 8 (which is what the spec says should be
589          * done).
590          */
591         if (wm_size <= 8)
592                 wm_size = 8;
593
594         return wm_size;
595 }
596
597 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
598 {
599         struct drm_crtc *crtc, *enabled = NULL;
600
601         for_each_crtc(dev, crtc) {
602                 if (intel_crtc_active(crtc)) {
603                         if (enabled)
604                                 return NULL;
605                         enabled = crtc;
606                 }
607         }
608
609         return enabled;
610 }
611
612 static void pineview_update_wm(struct drm_crtc *unused_crtc)
613 {
614         struct drm_device *dev = unused_crtc->dev;
615         struct drm_i915_private *dev_priv = dev->dev_private;
616         struct drm_crtc *crtc;
617         const struct cxsr_latency *latency;
618         u32 reg;
619         unsigned long wm;
620
621         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
622                                          dev_priv->fsb_freq, dev_priv->mem_freq);
623         if (!latency) {
624                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
625                 intel_set_memory_cxsr(dev_priv, false);
626                 return;
627         }
628
629         crtc = single_enabled_crtc(dev);
630         if (crtc) {
631                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
632                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
633                 int clock = adjusted_mode->crtc_clock;
634
635                 /* Display SR */
636                 wm = intel_calculate_wm(clock, &pineview_display_wm,
637                                         pineview_display_wm.fifo_size,
638                                         cpp, latency->display_sr);
639                 reg = I915_READ(DSPFW1);
640                 reg &= ~DSPFW_SR_MASK;
641                 reg |= FW_WM(wm, SR);
642                 I915_WRITE(DSPFW1, reg);
643                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
644
645                 /* cursor SR */
646                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
647                                         pineview_display_wm.fifo_size,
648                                         cpp, latency->cursor_sr);
649                 reg = I915_READ(DSPFW3);
650                 reg &= ~DSPFW_CURSOR_SR_MASK;
651                 reg |= FW_WM(wm, CURSOR_SR);
652                 I915_WRITE(DSPFW3, reg);
653
654                 /* Display HPLL off SR */
655                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
656                                         pineview_display_hplloff_wm.fifo_size,
657                                         cpp, latency->display_hpll_disable);
658                 reg = I915_READ(DSPFW3);
659                 reg &= ~DSPFW_HPLL_SR_MASK;
660                 reg |= FW_WM(wm, HPLL_SR);
661                 I915_WRITE(DSPFW3, reg);
662
663                 /* cursor HPLL off SR */
664                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
665                                         pineview_display_hplloff_wm.fifo_size,
666                                         cpp, latency->cursor_hpll_disable);
667                 reg = I915_READ(DSPFW3);
668                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
669                 reg |= FW_WM(wm, HPLL_CURSOR);
670                 I915_WRITE(DSPFW3, reg);
671                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
672
673                 intel_set_memory_cxsr(dev_priv, true);
674         } else {
675                 intel_set_memory_cxsr(dev_priv, false);
676         }
677 }
678
679 static bool g4x_compute_wm0(struct drm_device *dev,
680                             int plane,
681                             const struct intel_watermark_params *display,
682                             int display_latency_ns,
683                             const struct intel_watermark_params *cursor,
684                             int cursor_latency_ns,
685                             int *plane_wm,
686                             int *cursor_wm)
687 {
688         struct drm_crtc *crtc;
689         const struct drm_display_mode *adjusted_mode;
690         int htotal, hdisplay, clock, cpp;
691         int line_time_us, line_count;
692         int entries, tlb_miss;
693
694         crtc = intel_get_crtc_for_plane(dev, plane);
695         if (!intel_crtc_active(crtc)) {
696                 *cursor_wm = cursor->guard_size;
697                 *plane_wm = display->guard_size;
698                 return false;
699         }
700
701         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
702         clock = adjusted_mode->crtc_clock;
703         htotal = adjusted_mode->crtc_htotal;
704         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
705         cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
706
707         /* Use the small buffer method to calculate plane watermark */
708         entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
709         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
710         if (tlb_miss > 0)
711                 entries += tlb_miss;
712         entries = DIV_ROUND_UP(entries, display->cacheline_size);
713         *plane_wm = entries + display->guard_size;
714         if (*plane_wm > (int)display->max_wm)
715                 *plane_wm = display->max_wm;
716
717         /* Use the large buffer method to calculate cursor watermark */
718         line_time_us = max(htotal * 1000 / clock, 1);
719         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
720         entries = line_count * crtc->cursor->state->crtc_w * cpp;
721         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
722         if (tlb_miss > 0)
723                 entries += tlb_miss;
724         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
725         *cursor_wm = entries + cursor->guard_size;
726         if (*cursor_wm > (int)cursor->max_wm)
727                 *cursor_wm = (int)cursor->max_wm;
728
729         return true;
730 }
731
732 /*
733  * Check the wm result.
734  *
735  * If any calculated watermark values is larger than the maximum value that
736  * can be programmed into the associated watermark register, that watermark
737  * must be disabled.
738  */
739 static bool g4x_check_srwm(struct drm_device *dev,
740                            int display_wm, int cursor_wm,
741                            const struct intel_watermark_params *display,
742                            const struct intel_watermark_params *cursor)
743 {
744         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
745                       display_wm, cursor_wm);
746
747         if (display_wm > display->max_wm) {
748                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
749                               display_wm, display->max_wm);
750                 return false;
751         }
752
753         if (cursor_wm > cursor->max_wm) {
754                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
755                               cursor_wm, cursor->max_wm);
756                 return false;
757         }
758
759         if (!(display_wm || cursor_wm)) {
760                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
761                 return false;
762         }
763
764         return true;
765 }
766
767 static bool g4x_compute_srwm(struct drm_device *dev,
768                              int plane,
769                              int latency_ns,
770                              const struct intel_watermark_params *display,
771                              const struct intel_watermark_params *cursor,
772                              int *display_wm, int *cursor_wm)
773 {
774         struct drm_crtc *crtc;
775         const struct drm_display_mode *adjusted_mode;
776         int hdisplay, htotal, cpp, clock;
777         unsigned long line_time_us;
778         int line_count, line_size;
779         int small, large;
780         int entries;
781
782         if (!latency_ns) {
783                 *display_wm = *cursor_wm = 0;
784                 return false;
785         }
786
787         crtc = intel_get_crtc_for_plane(dev, plane);
788         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
789         clock = adjusted_mode->crtc_clock;
790         htotal = adjusted_mode->crtc_htotal;
791         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
792         cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
793
794         line_time_us = max(htotal * 1000 / clock, 1);
795         line_count = (latency_ns / line_time_us + 1000) / 1000;
796         line_size = hdisplay * cpp;
797
798         /* Use the minimum of the small and large buffer method for primary */
799         small = ((clock * cpp / 1000) * latency_ns) / 1000;
800         large = line_count * line_size;
801
802         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
803         *display_wm = entries + display->guard_size;
804
805         /* calculate the self-refresh watermark for display cursor */
806         entries = line_count * cpp * crtc->cursor->state->crtc_w;
807         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
808         *cursor_wm = entries + cursor->guard_size;
809
810         return g4x_check_srwm(dev,
811                               *display_wm, *cursor_wm,
812                               display, cursor);
813 }
814
815 #define FW_WM_VLV(value, plane) \
816         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
817
818 static void vlv_write_wm_values(struct intel_crtc *crtc,
819                                 const struct vlv_wm_values *wm)
820 {
821         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
822         enum pipe pipe = crtc->pipe;
823
824         I915_WRITE(VLV_DDL(pipe),
825                    (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
826                    (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
827                    (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
828                    (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
829
830         I915_WRITE(DSPFW1,
831                    FW_WM(wm->sr.plane, SR) |
832                    FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
833                    FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
834                    FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
835         I915_WRITE(DSPFW2,
836                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
837                    FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
838                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
839         I915_WRITE(DSPFW3,
840                    FW_WM(wm->sr.cursor, CURSOR_SR));
841
842         if (IS_CHERRYVIEW(dev_priv)) {
843                 I915_WRITE(DSPFW7_CHV,
844                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
845                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
846                 I915_WRITE(DSPFW8_CHV,
847                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
848                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
849                 I915_WRITE(DSPFW9_CHV,
850                            FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
851                            FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
852                 I915_WRITE(DSPHOWM,
853                            FW_WM(wm->sr.plane >> 9, SR_HI) |
854                            FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
855                            FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
856                            FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
857                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
858                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
859                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
860                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
861                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
862                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
863         } else {
864                 I915_WRITE(DSPFW7,
865                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
866                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
867                 I915_WRITE(DSPHOWM,
868                            FW_WM(wm->sr.plane >> 9, SR_HI) |
869                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
870                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
871                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
872                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
873                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
874                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
875         }
876
877         /* zero (unused) WM1 watermarks */
878         I915_WRITE(DSPFW4, 0);
879         I915_WRITE(DSPFW5, 0);
880         I915_WRITE(DSPFW6, 0);
881         I915_WRITE(DSPHOWM1, 0);
882
883         POSTING_READ(DSPFW1);
884 }
885
886 #undef FW_WM_VLV
887
888 enum vlv_wm_level {
889         VLV_WM_LEVEL_PM2,
890         VLV_WM_LEVEL_PM5,
891         VLV_WM_LEVEL_DDR_DVFS,
892 };
893
894 /* latency must be in 0.1us units. */
895 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
896                                    unsigned int pipe_htotal,
897                                    unsigned int horiz_pixels,
898                                    unsigned int cpp,
899                                    unsigned int latency)
900 {
901         unsigned int ret;
902
903         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
904         ret = (ret + 1) * horiz_pixels * cpp;
905         ret = DIV_ROUND_UP(ret, 64);
906
907         return ret;
908 }
909
910 static void vlv_setup_wm_latency(struct drm_device *dev)
911 {
912         struct drm_i915_private *dev_priv = dev->dev_private;
913
914         /* all latencies in usec */
915         dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
916
917         dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
918
919         if (IS_CHERRYVIEW(dev_priv)) {
920                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
921                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
922
923                 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
924         }
925 }
926
927 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
928                                      struct intel_crtc *crtc,
929                                      const struct intel_plane_state *state,
930                                      int level)
931 {
932         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
933         int clock, htotal, cpp, width, wm;
934
935         if (dev_priv->wm.pri_latency[level] == 0)
936                 return USHRT_MAX;
937
938         if (!state->visible)
939                 return 0;
940
941         cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
942         clock = crtc->config->base.adjusted_mode.crtc_clock;
943         htotal = crtc->config->base.adjusted_mode.crtc_htotal;
944         width = crtc->config->pipe_src_w;
945         if (WARN_ON(htotal == 0))
946                 htotal = 1;
947
948         if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
949                 /*
950                  * FIXME the formula gives values that are
951                  * too big for the cursor FIFO, and hence we
952                  * would never be able to use cursors. For
953                  * now just hardcode the watermark.
954                  */
955                 wm = 63;
956         } else {
957                 wm = vlv_wm_method2(clock, htotal, width, cpp,
958                                     dev_priv->wm.pri_latency[level] * 10);
959         }
960
961         return min_t(int, wm, USHRT_MAX);
962 }
963
964 static void vlv_compute_fifo(struct intel_crtc *crtc)
965 {
966         struct drm_device *dev = crtc->base.dev;
967         struct vlv_wm_state *wm_state = &crtc->wm_state;
968         struct intel_plane *plane;
969         unsigned int total_rate = 0;
970         const int fifo_size = 512 - 1;
971         int fifo_extra, fifo_left = fifo_size;
972
973         for_each_intel_plane_on_crtc(dev, crtc, plane) {
974                 struct intel_plane_state *state =
975                         to_intel_plane_state(plane->base.state);
976
977                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
978                         continue;
979
980                 if (state->visible) {
981                         wm_state->num_active_planes++;
982                         total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
983                 }
984         }
985
986         for_each_intel_plane_on_crtc(dev, crtc, plane) {
987                 struct intel_plane_state *state =
988                         to_intel_plane_state(plane->base.state);
989                 unsigned int rate;
990
991                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
992                         plane->wm.fifo_size = 63;
993                         continue;
994                 }
995
996                 if (!state->visible) {
997                         plane->wm.fifo_size = 0;
998                         continue;
999                 }
1000
1001                 rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1002                 plane->wm.fifo_size = fifo_size * rate / total_rate;
1003                 fifo_left -= plane->wm.fifo_size;
1004         }
1005
1006         fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1007
1008         /* spread the remainder evenly */
1009         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1010                 int plane_extra;
1011
1012                 if (fifo_left == 0)
1013                         break;
1014
1015                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1016                         continue;
1017
1018                 /* give it all to the first plane if none are active */
1019                 if (plane->wm.fifo_size == 0 &&
1020                     wm_state->num_active_planes)
1021                         continue;
1022
1023                 plane_extra = min(fifo_extra, fifo_left);
1024                 plane->wm.fifo_size += plane_extra;
1025                 fifo_left -= plane_extra;
1026         }
1027
1028         WARN_ON(fifo_left != 0);
1029 }
1030
1031 static void vlv_invert_wms(struct intel_crtc *crtc)
1032 {
1033         struct vlv_wm_state *wm_state = &crtc->wm_state;
1034         int level;
1035
1036         for (level = 0; level < wm_state->num_levels; level++) {
1037                 struct drm_device *dev = crtc->base.dev;
1038                 const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1039                 struct intel_plane *plane;
1040
1041                 wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1042                 wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1043
1044                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1045                         switch (plane->base.type) {
1046                                 int sprite;
1047                         case DRM_PLANE_TYPE_CURSOR:
1048                                 wm_state->wm[level].cursor = plane->wm.fifo_size -
1049                                         wm_state->wm[level].cursor;
1050                                 break;
1051                         case DRM_PLANE_TYPE_PRIMARY:
1052                                 wm_state->wm[level].primary = plane->wm.fifo_size -
1053                                         wm_state->wm[level].primary;
1054                                 break;
1055                         case DRM_PLANE_TYPE_OVERLAY:
1056                                 sprite = plane->plane;
1057                                 wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1058                                         wm_state->wm[level].sprite[sprite];
1059                                 break;
1060                         }
1061                 }
1062         }
1063 }
1064
1065 static void vlv_compute_wm(struct intel_crtc *crtc)
1066 {
1067         struct drm_device *dev = crtc->base.dev;
1068         struct vlv_wm_state *wm_state = &crtc->wm_state;
1069         struct intel_plane *plane;
1070         int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1071         int level;
1072
1073         memset(wm_state, 0, sizeof(*wm_state));
1074
1075         wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1076         wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1077
1078         wm_state->num_active_planes = 0;
1079
1080         vlv_compute_fifo(crtc);
1081
1082         if (wm_state->num_active_planes != 1)
1083                 wm_state->cxsr = false;
1084
1085         if (wm_state->cxsr) {
1086                 for (level = 0; level < wm_state->num_levels; level++) {
1087                         wm_state->sr[level].plane = sr_fifo_size;
1088                         wm_state->sr[level].cursor = 63;
1089                 }
1090         }
1091
1092         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1093                 struct intel_plane_state *state =
1094                         to_intel_plane_state(plane->base.state);
1095
1096                 if (!state->visible)
1097                         continue;
1098
1099                 /* normal watermarks */
1100                 for (level = 0; level < wm_state->num_levels; level++) {
1101                         int wm = vlv_compute_wm_level(plane, crtc, state, level);
1102                         int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1103
1104                         /* hack */
1105                         if (WARN_ON(level == 0 && wm > max_wm))
1106                                 wm = max_wm;
1107
1108                         if (wm > plane->wm.fifo_size)
1109                                 break;
1110
1111                         switch (plane->base.type) {
1112                                 int sprite;
1113                         case DRM_PLANE_TYPE_CURSOR:
1114                                 wm_state->wm[level].cursor = wm;
1115                                 break;
1116                         case DRM_PLANE_TYPE_PRIMARY:
1117                                 wm_state->wm[level].primary = wm;
1118                                 break;
1119                         case DRM_PLANE_TYPE_OVERLAY:
1120                                 sprite = plane->plane;
1121                                 wm_state->wm[level].sprite[sprite] = wm;
1122                                 break;
1123                         }
1124                 }
1125
1126                 wm_state->num_levels = level;
1127
1128                 if (!wm_state->cxsr)
1129                         continue;
1130
1131                 /* maxfifo watermarks */
1132                 switch (plane->base.type) {
1133                         int sprite, level;
1134                 case DRM_PLANE_TYPE_CURSOR:
1135                         for (level = 0; level < wm_state->num_levels; level++)
1136                                 wm_state->sr[level].cursor =
1137                                         wm_state->wm[level].cursor;
1138                         break;
1139                 case DRM_PLANE_TYPE_PRIMARY:
1140                         for (level = 0; level < wm_state->num_levels; level++)
1141                                 wm_state->sr[level].plane =
1142                                         min(wm_state->sr[level].plane,
1143                                             wm_state->wm[level].primary);
1144                         break;
1145                 case DRM_PLANE_TYPE_OVERLAY:
1146                         sprite = plane->plane;
1147                         for (level = 0; level < wm_state->num_levels; level++)
1148                                 wm_state->sr[level].plane =
1149                                         min(wm_state->sr[level].plane,
1150                                             wm_state->wm[level].sprite[sprite]);
1151                         break;
1152                 }
1153         }
1154
1155         /* clear any (partially) filled invalid levels */
1156         for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1157                 memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1158                 memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1159         }
1160
1161         vlv_invert_wms(crtc);
1162 }
1163
1164 #define VLV_FIFO(plane, value) \
1165         (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1166
1167 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1168 {
1169         struct drm_device *dev = crtc->base.dev;
1170         struct drm_i915_private *dev_priv = to_i915(dev);
1171         struct intel_plane *plane;
1172         int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1173
1174         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1175                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1176                         WARN_ON(plane->wm.fifo_size != 63);
1177                         continue;
1178                 }
1179
1180                 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1181                         sprite0_start = plane->wm.fifo_size;
1182                 else if (plane->plane == 0)
1183                         sprite1_start = sprite0_start + plane->wm.fifo_size;
1184                 else
1185                         fifo_size = sprite1_start + plane->wm.fifo_size;
1186         }
1187
1188         WARN_ON(fifo_size != 512 - 1);
1189
1190         DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1191                       pipe_name(crtc->pipe), sprite0_start,
1192                       sprite1_start, fifo_size);
1193
1194         switch (crtc->pipe) {
1195                 uint32_t dsparb, dsparb2, dsparb3;
1196         case PIPE_A:
1197                 dsparb = I915_READ(DSPARB);
1198                 dsparb2 = I915_READ(DSPARB2);
1199
1200                 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1201                             VLV_FIFO(SPRITEB, 0xff));
1202                 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1203                            VLV_FIFO(SPRITEB, sprite1_start));
1204
1205                 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1206                              VLV_FIFO(SPRITEB_HI, 0x1));
1207                 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1208                            VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1209
1210                 I915_WRITE(DSPARB, dsparb);
1211                 I915_WRITE(DSPARB2, dsparb2);
1212                 break;
1213         case PIPE_B:
1214                 dsparb = I915_READ(DSPARB);
1215                 dsparb2 = I915_READ(DSPARB2);
1216
1217                 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1218                             VLV_FIFO(SPRITED, 0xff));
1219                 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1220                            VLV_FIFO(SPRITED, sprite1_start));
1221
1222                 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1223                              VLV_FIFO(SPRITED_HI, 0xff));
1224                 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1225                            VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1226
1227                 I915_WRITE(DSPARB, dsparb);
1228                 I915_WRITE(DSPARB2, dsparb2);
1229                 break;
1230         case PIPE_C:
1231                 dsparb3 = I915_READ(DSPARB3);
1232                 dsparb2 = I915_READ(DSPARB2);
1233
1234                 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1235                              VLV_FIFO(SPRITEF, 0xff));
1236                 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1237                             VLV_FIFO(SPRITEF, sprite1_start));
1238
1239                 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1240                              VLV_FIFO(SPRITEF_HI, 0xff));
1241                 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1242                            VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1243
1244                 I915_WRITE(DSPARB3, dsparb3);
1245                 I915_WRITE(DSPARB2, dsparb2);
1246                 break;
1247         default:
1248                 break;
1249         }
1250 }
1251
1252 #undef VLV_FIFO
1253
1254 static void vlv_merge_wm(struct drm_device *dev,
1255                          struct vlv_wm_values *wm)
1256 {
1257         struct intel_crtc *crtc;
1258         int num_active_crtcs = 0;
1259
1260         wm->level = to_i915(dev)->wm.max_level;
1261         wm->cxsr = true;
1262
1263         for_each_intel_crtc(dev, crtc) {
1264                 const struct vlv_wm_state *wm_state = &crtc->wm_state;
1265
1266                 if (!crtc->active)
1267                         continue;
1268
1269                 if (!wm_state->cxsr)
1270                         wm->cxsr = false;
1271
1272                 num_active_crtcs++;
1273                 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1274         }
1275
1276         if (num_active_crtcs != 1)
1277                 wm->cxsr = false;
1278
1279         if (num_active_crtcs > 1)
1280                 wm->level = VLV_WM_LEVEL_PM2;
1281
1282         for_each_intel_crtc(dev, crtc) {
1283                 struct vlv_wm_state *wm_state = &crtc->wm_state;
1284                 enum pipe pipe = crtc->pipe;
1285
1286                 if (!crtc->active)
1287                         continue;
1288
1289                 wm->pipe[pipe] = wm_state->wm[wm->level];
1290                 if (wm->cxsr)
1291                         wm->sr = wm_state->sr[wm->level];
1292
1293                 wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1294                 wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1295                 wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1296                 wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1297         }
1298 }
1299
1300 static void vlv_update_wm(struct drm_crtc *crtc)
1301 {
1302         struct drm_device *dev = crtc->dev;
1303         struct drm_i915_private *dev_priv = dev->dev_private;
1304         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1305         enum pipe pipe = intel_crtc->pipe;
1306         struct vlv_wm_values wm = {};
1307
1308         vlv_compute_wm(intel_crtc);
1309         vlv_merge_wm(dev, &wm);
1310
1311         if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1312                 /* FIXME should be part of crtc atomic commit */
1313                 vlv_pipe_set_fifo_size(intel_crtc);
1314                 return;
1315         }
1316
1317         if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1318             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1319                 chv_set_memory_dvfs(dev_priv, false);
1320
1321         if (wm.level < VLV_WM_LEVEL_PM5 &&
1322             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1323                 chv_set_memory_pm5(dev_priv, false);
1324
1325         if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1326                 intel_set_memory_cxsr(dev_priv, false);
1327
1328         /* FIXME should be part of crtc atomic commit */
1329         vlv_pipe_set_fifo_size(intel_crtc);
1330
1331         vlv_write_wm_values(intel_crtc, &wm);
1332
1333         DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1334                       "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1335                       pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1336                       wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1337                       wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1338
1339         if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1340                 intel_set_memory_cxsr(dev_priv, true);
1341
1342         if (wm.level >= VLV_WM_LEVEL_PM5 &&
1343             dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1344                 chv_set_memory_pm5(dev_priv, true);
1345
1346         if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1347             dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1348                 chv_set_memory_dvfs(dev_priv, true);
1349
1350         dev_priv->wm.vlv = wm;
1351 }
1352
1353 #define single_plane_enabled(mask) is_power_of_2(mask)
1354
1355 static void g4x_update_wm(struct drm_crtc *crtc)
1356 {
1357         struct drm_device *dev = crtc->dev;
1358         static const int sr_latency_ns = 12000;
1359         struct drm_i915_private *dev_priv = dev->dev_private;
1360         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1361         int plane_sr, cursor_sr;
1362         unsigned int enabled = 0;
1363         bool cxsr_enabled;
1364
1365         if (g4x_compute_wm0(dev, PIPE_A,
1366                             &g4x_wm_info, pessimal_latency_ns,
1367                             &g4x_cursor_wm_info, pessimal_latency_ns,
1368                             &planea_wm, &cursora_wm))
1369                 enabled |= 1 << PIPE_A;
1370
1371         if (g4x_compute_wm0(dev, PIPE_B,
1372                             &g4x_wm_info, pessimal_latency_ns,
1373                             &g4x_cursor_wm_info, pessimal_latency_ns,
1374                             &planeb_wm, &cursorb_wm))
1375                 enabled |= 1 << PIPE_B;
1376
1377         if (single_plane_enabled(enabled) &&
1378             g4x_compute_srwm(dev, ffs(enabled) - 1,
1379                              sr_latency_ns,
1380                              &g4x_wm_info,
1381                              &g4x_cursor_wm_info,
1382                              &plane_sr, &cursor_sr)) {
1383                 cxsr_enabled = true;
1384         } else {
1385                 cxsr_enabled = false;
1386                 intel_set_memory_cxsr(dev_priv, false);
1387                 plane_sr = cursor_sr = 0;
1388         }
1389
1390         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1391                       "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1392                       planea_wm, cursora_wm,
1393                       planeb_wm, cursorb_wm,
1394                       plane_sr, cursor_sr);
1395
1396         I915_WRITE(DSPFW1,
1397                    FW_WM(plane_sr, SR) |
1398                    FW_WM(cursorb_wm, CURSORB) |
1399                    FW_WM(planeb_wm, PLANEB) |
1400                    FW_WM(planea_wm, PLANEA));
1401         I915_WRITE(DSPFW2,
1402                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1403                    FW_WM(cursora_wm, CURSORA));
1404         /* HPLL off in SR has some issues on G4x... disable it */
1405         I915_WRITE(DSPFW3,
1406                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1407                    FW_WM(cursor_sr, CURSOR_SR));
1408
1409         if (cxsr_enabled)
1410                 intel_set_memory_cxsr(dev_priv, true);
1411 }
1412
1413 static void i965_update_wm(struct drm_crtc *unused_crtc)
1414 {
1415         struct drm_device *dev = unused_crtc->dev;
1416         struct drm_i915_private *dev_priv = dev->dev_private;
1417         struct drm_crtc *crtc;
1418         int srwm = 1;
1419         int cursor_sr = 16;
1420         bool cxsr_enabled;
1421
1422         /* Calc sr entries for one plane configs */
1423         crtc = single_enabled_crtc(dev);
1424         if (crtc) {
1425                 /* self-refresh has much higher latency */
1426                 static const int sr_latency_ns = 12000;
1427                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1428                 int clock = adjusted_mode->crtc_clock;
1429                 int htotal = adjusted_mode->crtc_htotal;
1430                 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1431                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1432                 unsigned long line_time_us;
1433                 int entries;
1434
1435                 line_time_us = max(htotal * 1000 / clock, 1);
1436
1437                 /* Use ns/us then divide to preserve precision */
1438                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1439                         cpp * hdisplay;
1440                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1441                 srwm = I965_FIFO_SIZE - entries;
1442                 if (srwm < 0)
1443                         srwm = 1;
1444                 srwm &= 0x1ff;
1445                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1446                               entries, srwm);
1447
1448                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1449                         cpp * crtc->cursor->state->crtc_w;
1450                 entries = DIV_ROUND_UP(entries,
1451                                           i965_cursor_wm_info.cacheline_size);
1452                 cursor_sr = i965_cursor_wm_info.fifo_size -
1453                         (entries + i965_cursor_wm_info.guard_size);
1454
1455                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1456                         cursor_sr = i965_cursor_wm_info.max_wm;
1457
1458                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1459                               "cursor %d\n", srwm, cursor_sr);
1460
1461                 cxsr_enabled = true;
1462         } else {
1463                 cxsr_enabled = false;
1464                 /* Turn off self refresh if both pipes are enabled */
1465                 intel_set_memory_cxsr(dev_priv, false);
1466         }
1467
1468         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1469                       srwm);
1470
1471         /* 965 has limitations... */
1472         I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1473                    FW_WM(8, CURSORB) |
1474                    FW_WM(8, PLANEB) |
1475                    FW_WM(8, PLANEA));
1476         I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1477                    FW_WM(8, PLANEC_OLD));
1478         /* update cursor SR watermark */
1479         I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1480
1481         if (cxsr_enabled)
1482                 intel_set_memory_cxsr(dev_priv, true);
1483 }
1484
1485 #undef FW_WM
1486
1487 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1488 {
1489         struct drm_device *dev = unused_crtc->dev;
1490         struct drm_i915_private *dev_priv = dev->dev_private;
1491         const struct intel_watermark_params *wm_info;
1492         uint32_t fwater_lo;
1493         uint32_t fwater_hi;
1494         int cwm, srwm = 1;
1495         int fifo_size;
1496         int planea_wm, planeb_wm;
1497         struct drm_crtc *crtc, *enabled = NULL;
1498
1499         if (IS_I945GM(dev))
1500                 wm_info = &i945_wm_info;
1501         else if (!IS_GEN2(dev))
1502                 wm_info = &i915_wm_info;
1503         else
1504                 wm_info = &i830_a_wm_info;
1505
1506         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1507         crtc = intel_get_crtc_for_plane(dev, 0);
1508         if (intel_crtc_active(crtc)) {
1509                 const struct drm_display_mode *adjusted_mode;
1510                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1511                 if (IS_GEN2(dev))
1512                         cpp = 4;
1513
1514                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1515                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1516                                                wm_info, fifo_size, cpp,
1517                                                pessimal_latency_ns);
1518                 enabled = crtc;
1519         } else {
1520                 planea_wm = fifo_size - wm_info->guard_size;
1521                 if (planea_wm > (long)wm_info->max_wm)
1522                         planea_wm = wm_info->max_wm;
1523         }
1524
1525         if (IS_GEN2(dev))
1526                 wm_info = &i830_bc_wm_info;
1527
1528         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1529         crtc = intel_get_crtc_for_plane(dev, 1);
1530         if (intel_crtc_active(crtc)) {
1531                 const struct drm_display_mode *adjusted_mode;
1532                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1533                 if (IS_GEN2(dev))
1534                         cpp = 4;
1535
1536                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1537                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1538                                                wm_info, fifo_size, cpp,
1539                                                pessimal_latency_ns);
1540                 if (enabled == NULL)
1541                         enabled = crtc;
1542                 else
1543                         enabled = NULL;
1544         } else {
1545                 planeb_wm = fifo_size - wm_info->guard_size;
1546                 if (planeb_wm > (long)wm_info->max_wm)
1547                         planeb_wm = wm_info->max_wm;
1548         }
1549
1550         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1551
1552         if (IS_I915GM(dev) && enabled) {
1553                 struct drm_i915_gem_object *obj;
1554
1555                 obj = intel_fb_obj(enabled->primary->state->fb);
1556
1557                 /* self-refresh seems busted with untiled */
1558                 if (obj->tiling_mode == I915_TILING_NONE)
1559                         enabled = NULL;
1560         }
1561
1562         /*
1563          * Overlay gets an aggressive default since video jitter is bad.
1564          */
1565         cwm = 2;
1566
1567         /* Play safe and disable self-refresh before adjusting watermarks. */
1568         intel_set_memory_cxsr(dev_priv, false);
1569
1570         /* Calc sr entries for one plane configs */
1571         if (HAS_FW_BLC(dev) && enabled) {
1572                 /* self-refresh has much higher latency */
1573                 static const int sr_latency_ns = 6000;
1574                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1575                 int clock = adjusted_mode->crtc_clock;
1576                 int htotal = adjusted_mode->crtc_htotal;
1577                 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1578                 int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1579                 unsigned long line_time_us;
1580                 int entries;
1581
1582                 line_time_us = max(htotal * 1000 / clock, 1);
1583
1584                 /* Use ns/us then divide to preserve precision */
1585                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1586                         cpp * hdisplay;
1587                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1588                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1589                 srwm = wm_info->fifo_size - entries;
1590                 if (srwm < 0)
1591                         srwm = 1;
1592
1593                 if (IS_I945G(dev) || IS_I945GM(dev))
1594                         I915_WRITE(FW_BLC_SELF,
1595                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1596                 else if (IS_I915GM(dev))
1597                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1598         }
1599
1600         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1601                       planea_wm, planeb_wm, cwm, srwm);
1602
1603         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1604         fwater_hi = (cwm & 0x1f);
1605
1606         /* Set request length to 8 cachelines per fetch */
1607         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1608         fwater_hi = fwater_hi | (1 << 8);
1609
1610         I915_WRITE(FW_BLC, fwater_lo);
1611         I915_WRITE(FW_BLC2, fwater_hi);
1612
1613         if (enabled)
1614                 intel_set_memory_cxsr(dev_priv, true);
1615 }
1616
1617 static void i845_update_wm(struct drm_crtc *unused_crtc)
1618 {
1619         struct drm_device *dev = unused_crtc->dev;
1620         struct drm_i915_private *dev_priv = dev->dev_private;
1621         struct drm_crtc *crtc;
1622         const struct drm_display_mode *adjusted_mode;
1623         uint32_t fwater_lo;
1624         int planea_wm;
1625
1626         crtc = single_enabled_crtc(dev);
1627         if (crtc == NULL)
1628                 return;
1629
1630         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1631         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1632                                        &i845_wm_info,
1633                                        dev_priv->display.get_fifo_size(dev, 0),
1634                                        4, pessimal_latency_ns);
1635         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1636         fwater_lo |= (3<<8) | planea_wm;
1637
1638         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1639
1640         I915_WRITE(FW_BLC, fwater_lo);
1641 }
1642
1643 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1644 {
1645         uint32_t pixel_rate;
1646
1647         pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1648
1649         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1650          * adjust the pixel_rate here. */
1651
1652         if (pipe_config->pch_pfit.enabled) {
1653                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1654                 uint32_t pfit_size = pipe_config->pch_pfit.size;
1655
1656                 pipe_w = pipe_config->pipe_src_w;
1657                 pipe_h = pipe_config->pipe_src_h;
1658
1659                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1660                 pfit_h = pfit_size & 0xFFFF;
1661                 if (pipe_w < pfit_w)
1662                         pipe_w = pfit_w;
1663                 if (pipe_h < pfit_h)
1664                         pipe_h = pfit_h;
1665
1666                 if (WARN_ON(!pfit_w || !pfit_h))
1667                         return pixel_rate;
1668
1669                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1670                                      pfit_w * pfit_h);
1671         }
1672
1673         return pixel_rate;
1674 }
1675
1676 /* latency must be in 0.1us units. */
1677 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1678 {
1679         uint64_t ret;
1680
1681         if (WARN(latency == 0, "Latency value missing\n"))
1682                 return UINT_MAX;
1683
1684         ret = (uint64_t) pixel_rate * cpp * latency;
1685         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1686
1687         return ret;
1688 }
1689
1690 /* latency must be in 0.1us units. */
1691 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1692                                uint32_t horiz_pixels, uint8_t cpp,
1693                                uint32_t latency)
1694 {
1695         uint32_t ret;
1696
1697         if (WARN(latency == 0, "Latency value missing\n"))
1698                 return UINT_MAX;
1699         if (WARN_ON(!pipe_htotal))
1700                 return UINT_MAX;
1701
1702         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1703         ret = (ret + 1) * horiz_pixels * cpp;
1704         ret = DIV_ROUND_UP(ret, 64) + 2;
1705         return ret;
1706 }
1707
1708 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1709                            uint8_t cpp)
1710 {
1711         /*
1712          * Neither of these should be possible since this function shouldn't be
1713          * called if the CRTC is off or the plane is invisible.  But let's be
1714          * extra paranoid to avoid a potential divide-by-zero if we screw up
1715          * elsewhere in the driver.
1716          */
1717         if (WARN_ON(!cpp))
1718                 return 0;
1719         if (WARN_ON(!horiz_pixels))
1720                 return 0;
1721
1722         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1723 }
1724
1725 struct ilk_wm_maximums {
1726         uint16_t pri;
1727         uint16_t spr;
1728         uint16_t cur;
1729         uint16_t fbc;
1730 };
1731
1732 /*
1733  * For both WM_PIPE and WM_LP.
1734  * mem_value must be in 0.1us units.
1735  */
1736 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1737                                    const struct intel_plane_state *pstate,
1738                                    uint32_t mem_value,
1739                                    bool is_lp)
1740 {
1741         int cpp = pstate->base.fb ?
1742                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1743         uint32_t method1, method2;
1744
1745         if (!cstate->base.active || !pstate->visible)
1746                 return 0;
1747
1748         method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1749
1750         if (!is_lp)
1751                 return method1;
1752
1753         method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1754                                  cstate->base.adjusted_mode.crtc_htotal,
1755                                  drm_rect_width(&pstate->dst),
1756                                  cpp, mem_value);
1757
1758         return min(method1, method2);
1759 }
1760
1761 /*
1762  * For both WM_PIPE and WM_LP.
1763  * mem_value must be in 0.1us units.
1764  */
1765 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1766                                    const struct intel_plane_state *pstate,
1767                                    uint32_t mem_value)
1768 {
1769         int cpp = pstate->base.fb ?
1770                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1771         uint32_t method1, method2;
1772
1773         if (!cstate->base.active || !pstate->visible)
1774                 return 0;
1775
1776         method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1777         method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1778                                  cstate->base.adjusted_mode.crtc_htotal,
1779                                  drm_rect_width(&pstate->dst),
1780                                  cpp, mem_value);
1781         return min(method1, method2);
1782 }
1783
1784 /*
1785  * For both WM_PIPE and WM_LP.
1786  * mem_value must be in 0.1us units.
1787  */
1788 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1789                                    const struct intel_plane_state *pstate,
1790                                    uint32_t mem_value)
1791 {
1792         /*
1793          * We treat the cursor plane as always-on for the purposes of watermark
1794          * calculation.  Until we have two-stage watermark programming merged,
1795          * this is necessary to avoid flickering.
1796          */
1797         int cpp = 4;
1798         int width = pstate->visible ? pstate->base.crtc_w : 64;
1799
1800         if (!cstate->base.active)
1801                 return 0;
1802
1803         return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1804                               cstate->base.adjusted_mode.crtc_htotal,
1805                               width, cpp, mem_value);
1806 }
1807
1808 /* Only for WM_LP. */
1809 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1810                                    const struct intel_plane_state *pstate,
1811                                    uint32_t pri_val)
1812 {
1813         int cpp = pstate->base.fb ?
1814                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1815
1816         if (!cstate->base.active || !pstate->visible)
1817                 return 0;
1818
1819         return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), cpp);
1820 }
1821
1822 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1823 {
1824         if (INTEL_INFO(dev)->gen >= 8)
1825                 return 3072;
1826         else if (INTEL_INFO(dev)->gen >= 7)
1827                 return 768;
1828         else
1829                 return 512;
1830 }
1831
1832 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1833                                          int level, bool is_sprite)
1834 {
1835         if (INTEL_INFO(dev)->gen >= 8)
1836                 /* BDW primary/sprite plane watermarks */
1837                 return level == 0 ? 255 : 2047;
1838         else if (INTEL_INFO(dev)->gen >= 7)
1839                 /* IVB/HSW primary/sprite plane watermarks */
1840                 return level == 0 ? 127 : 1023;
1841         else if (!is_sprite)
1842                 /* ILK/SNB primary plane watermarks */
1843                 return level == 0 ? 127 : 511;
1844         else
1845                 /* ILK/SNB sprite plane watermarks */
1846                 return level == 0 ? 63 : 255;
1847 }
1848
1849 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1850                                           int level)
1851 {
1852         if (INTEL_INFO(dev)->gen >= 7)
1853                 return level == 0 ? 63 : 255;
1854         else
1855                 return level == 0 ? 31 : 63;
1856 }
1857
1858 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1859 {
1860         if (INTEL_INFO(dev)->gen >= 8)
1861                 return 31;
1862         else
1863                 return 15;
1864 }
1865
1866 /* Calculate the maximum primary/sprite plane watermark */
1867 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1868                                      int level,
1869                                      const struct intel_wm_config *config,
1870                                      enum intel_ddb_partitioning ddb_partitioning,
1871                                      bool is_sprite)
1872 {
1873         unsigned int fifo_size = ilk_display_fifo_size(dev);
1874
1875         /* if sprites aren't enabled, sprites get nothing */
1876         if (is_sprite && !config->sprites_enabled)
1877                 return 0;
1878
1879         /* HSW allows LP1+ watermarks even with multiple pipes */
1880         if (level == 0 || config->num_pipes_active > 1) {
1881                 fifo_size /= INTEL_INFO(dev)->num_pipes;
1882
1883                 /*
1884                  * For some reason the non self refresh
1885                  * FIFO size is only half of the self
1886                  * refresh FIFO size on ILK/SNB.
1887                  */
1888                 if (INTEL_INFO(dev)->gen <= 6)
1889                         fifo_size /= 2;
1890         }
1891
1892         if (config->sprites_enabled) {
1893                 /* level 0 is always calculated with 1:1 split */
1894                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1895                         if (is_sprite)
1896                                 fifo_size *= 5;
1897                         fifo_size /= 6;
1898                 } else {
1899                         fifo_size /= 2;
1900                 }
1901         }
1902
1903         /* clamp to max that the registers can hold */
1904         return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1905 }
1906
1907 /* Calculate the maximum cursor plane watermark */
1908 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1909                                       int level,
1910                                       const struct intel_wm_config *config)
1911 {
1912         /* HSW LP1+ watermarks w/ multiple pipes */
1913         if (level > 0 && config->num_pipes_active > 1)
1914                 return 64;
1915
1916         /* otherwise just report max that registers can hold */
1917         return ilk_cursor_wm_reg_max(dev, level);
1918 }
1919
1920 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1921                                     int level,
1922                                     const struct intel_wm_config *config,
1923                                     enum intel_ddb_partitioning ddb_partitioning,
1924                                     struct ilk_wm_maximums *max)
1925 {
1926         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1927         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1928         max->cur = ilk_cursor_wm_max(dev, level, config);
1929         max->fbc = ilk_fbc_wm_reg_max(dev);
1930 }
1931
1932 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1933                                         int level,
1934                                         struct ilk_wm_maximums *max)
1935 {
1936         max->pri = ilk_plane_wm_reg_max(dev, level, false);
1937         max->spr = ilk_plane_wm_reg_max(dev, level, true);
1938         max->cur = ilk_cursor_wm_reg_max(dev, level);
1939         max->fbc = ilk_fbc_wm_reg_max(dev);
1940 }
1941
1942 static bool ilk_validate_wm_level(int level,
1943                                   const struct ilk_wm_maximums *max,
1944                                   struct intel_wm_level *result)
1945 {
1946         bool ret;
1947
1948         /* already determined to be invalid? */
1949         if (!result->enable)
1950                 return false;
1951
1952         result->enable = result->pri_val <= max->pri &&
1953                          result->spr_val <= max->spr &&
1954                          result->cur_val <= max->cur;
1955
1956         ret = result->enable;
1957
1958         /*
1959          * HACK until we can pre-compute everything,
1960          * and thus fail gracefully if LP0 watermarks
1961          * are exceeded...
1962          */
1963         if (level == 0 && !result->enable) {
1964                 if (result->pri_val > max->pri)
1965                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1966                                       level, result->pri_val, max->pri);
1967                 if (result->spr_val > max->spr)
1968                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1969                                       level, result->spr_val, max->spr);
1970                 if (result->cur_val > max->cur)
1971                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1972                                       level, result->cur_val, max->cur);
1973
1974                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1975                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1976                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1977                 result->enable = true;
1978         }
1979
1980         return ret;
1981 }
1982
1983 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1984                                  const struct intel_crtc *intel_crtc,
1985                                  int level,
1986                                  struct intel_crtc_state *cstate,
1987                                  struct intel_plane_state *pristate,
1988                                  struct intel_plane_state *sprstate,
1989                                  struct intel_plane_state *curstate,
1990                                  struct intel_wm_level *result)
1991 {
1992         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1993         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1994         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1995
1996         /* WM1+ latency values stored in 0.5us units */
1997         if (level > 0) {
1998                 pri_latency *= 5;
1999                 spr_latency *= 5;
2000                 cur_latency *= 5;
2001         }
2002
2003         if (pristate) {
2004                 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2005                                                      pri_latency, level);
2006                 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2007         }
2008
2009         if (sprstate)
2010                 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2011
2012         if (curstate)
2013                 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2014
2015         result->enable = true;
2016 }
2017
2018 static uint32_t
2019 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2020 {
2021         const struct intel_atomic_state *intel_state =
2022                 to_intel_atomic_state(cstate->base.state);
2023         const struct drm_display_mode *adjusted_mode =
2024                 &cstate->base.adjusted_mode;
2025         u32 linetime, ips_linetime;
2026
2027         if (!cstate->base.active)
2028                 return 0;
2029         if (WARN_ON(adjusted_mode->crtc_clock == 0))
2030                 return 0;
2031         if (WARN_ON(intel_state->cdclk == 0))
2032                 return 0;
2033
2034         /* The WM are computed with base on how long it takes to fill a single
2035          * row at the given clock rate, multiplied by 8.
2036          * */
2037         linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2038                                      adjusted_mode->crtc_clock);
2039         ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2040                                          intel_state->cdclk);
2041
2042         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2043                PIPE_WM_LINETIME_TIME(linetime);
2044 }
2045
2046 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2047 {
2048         struct drm_i915_private *dev_priv = dev->dev_private;
2049
2050         if (IS_GEN9(dev)) {
2051                 uint32_t val;
2052                 int ret, i;
2053                 int level, max_level = ilk_wm_max_level(dev);
2054
2055                 /* read the first set of memory latencies[0:3] */
2056                 val = 0; /* data0 to be programmed to 0 for first set */
2057                 mutex_lock(&dev_priv->rps.hw_lock);
2058                 ret = sandybridge_pcode_read(dev_priv,
2059                                              GEN9_PCODE_READ_MEM_LATENCY,
2060                                              &val);
2061                 mutex_unlock(&dev_priv->rps.hw_lock);
2062
2063                 if (ret) {
2064                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2065                         return;
2066                 }
2067
2068                 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2069                 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2070                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2071                 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2072                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2073                 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2074                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2075
2076                 /* read the second set of memory latencies[4:7] */
2077                 val = 1; /* data0 to be programmed to 1 for second set */
2078                 mutex_lock(&dev_priv->rps.hw_lock);
2079                 ret = sandybridge_pcode_read(dev_priv,
2080                                              GEN9_PCODE_READ_MEM_LATENCY,
2081                                              &val);
2082                 mutex_unlock(&dev_priv->rps.hw_lock);
2083                 if (ret) {
2084                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2085                         return;
2086                 }
2087
2088                 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2089                 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2090                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2091                 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2092                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2093                 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2094                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2095
2096                 /*
2097                  * WaWmMemoryReadLatency:skl
2098                  *
2099                  * punit doesn't take into account the read latency so we need
2100                  * to add 2us to the various latency levels we retrieve from
2101                  * the punit.
2102                  *   - W0 is a bit special in that it's the only level that
2103                  *   can't be disabled if we want to have display working, so
2104                  *   we always add 2us there.
2105                  *   - For levels >=1, punit returns 0us latency when they are
2106                  *   disabled, so we respect that and don't add 2us then
2107                  *
2108                  * Additionally, if a level n (n > 1) has a 0us latency, all
2109                  * levels m (m >= n) need to be disabled. We make sure to
2110                  * sanitize the values out of the punit to satisfy this
2111                  * requirement.
2112                  */
2113                 wm[0] += 2;
2114                 for (level = 1; level <= max_level; level++)
2115                         if (wm[level] != 0)
2116                                 wm[level] += 2;
2117                         else {
2118                                 for (i = level + 1; i <= max_level; i++)
2119                                         wm[i] = 0;
2120
2121                                 break;
2122                         }
2123         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2124                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2125
2126                 wm[0] = (sskpd >> 56) & 0xFF;
2127                 if (wm[0] == 0)
2128                         wm[0] = sskpd & 0xF;
2129                 wm[1] = (sskpd >> 4) & 0xFF;
2130                 wm[2] = (sskpd >> 12) & 0xFF;
2131                 wm[3] = (sskpd >> 20) & 0x1FF;
2132                 wm[4] = (sskpd >> 32) & 0x1FF;
2133         } else if (INTEL_INFO(dev)->gen >= 6) {
2134                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2135
2136                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2137                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2138                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2139                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2140         } else if (INTEL_INFO(dev)->gen >= 5) {
2141                 uint32_t mltr = I915_READ(MLTR_ILK);
2142
2143                 /* ILK primary LP0 latency is 700 ns */
2144                 wm[0] = 7;
2145                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2146                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2147         }
2148 }
2149
2150 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2151 {
2152         /* ILK sprite LP0 latency is 1300 ns */
2153         if (IS_GEN5(dev))
2154                 wm[0] = 13;
2155 }
2156
2157 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2158 {
2159         /* ILK cursor LP0 latency is 1300 ns */
2160         if (IS_GEN5(dev))
2161                 wm[0] = 13;
2162
2163         /* WaDoubleCursorLP3Latency:ivb */
2164         if (IS_IVYBRIDGE(dev))
2165                 wm[3] *= 2;
2166 }
2167
2168 int ilk_wm_max_level(const struct drm_device *dev)
2169 {
2170         /* how many WM levels are we expecting */
2171         if (INTEL_INFO(dev)->gen >= 9)
2172                 return 7;
2173         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2174                 return 4;
2175         else if (INTEL_INFO(dev)->gen >= 6)
2176                 return 3;
2177         else
2178                 return 2;
2179 }
2180
2181 static void intel_print_wm_latency(struct drm_device *dev,
2182                                    const char *name,
2183                                    const uint16_t wm[8])
2184 {
2185         int level, max_level = ilk_wm_max_level(dev);
2186
2187         for (level = 0; level <= max_level; level++) {
2188                 unsigned int latency = wm[level];
2189
2190                 if (latency == 0) {
2191                         DRM_ERROR("%s WM%d latency not provided\n",
2192                                   name, level);
2193                         continue;
2194                 }
2195
2196                 /*
2197                  * - latencies are in us on gen9.
2198                  * - before then, WM1+ latency values are in 0.5us units
2199                  */
2200                 if (IS_GEN9(dev))
2201                         latency *= 10;
2202                 else if (level > 0)
2203                         latency *= 5;
2204
2205                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2206                               name, level, wm[level],
2207                               latency / 10, latency % 10);
2208         }
2209 }
2210
2211 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2212                                     uint16_t wm[5], uint16_t min)
2213 {
2214         int level, max_level = ilk_wm_max_level(dev_priv->dev);
2215
2216         if (wm[0] >= min)
2217                 return false;
2218
2219         wm[0] = max(wm[0], min);
2220         for (level = 1; level <= max_level; level++)
2221                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2222
2223         return true;
2224 }
2225
2226 static void snb_wm_latency_quirk(struct drm_device *dev)
2227 {
2228         struct drm_i915_private *dev_priv = dev->dev_private;
2229         bool changed;
2230
2231         /*
2232          * The BIOS provided WM memory latency values are often
2233          * inadequate for high resolution displays. Adjust them.
2234          */
2235         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2236                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2237                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2238
2239         if (!changed)
2240                 return;
2241
2242         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2243         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2244         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2245         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2246 }
2247
2248 static void ilk_setup_wm_latency(struct drm_device *dev)
2249 {
2250         struct drm_i915_private *dev_priv = dev->dev_private;
2251
2252         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2253
2254         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2255                sizeof(dev_priv->wm.pri_latency));
2256         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2257                sizeof(dev_priv->wm.pri_latency));
2258
2259         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2260         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2261
2262         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2263         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2264         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2265
2266         if (IS_GEN6(dev))
2267                 snb_wm_latency_quirk(dev);
2268 }
2269
2270 static void skl_setup_wm_latency(struct drm_device *dev)
2271 {
2272         struct drm_i915_private *dev_priv = dev->dev_private;
2273
2274         intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2275         intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2276 }
2277
2278 static bool ilk_validate_pipe_wm(struct drm_device *dev,
2279                                  struct intel_pipe_wm *pipe_wm)
2280 {
2281         /* LP0 watermark maximums depend on this pipe alone */
2282         const struct intel_wm_config config = {
2283                 .num_pipes_active = 1,
2284                 .sprites_enabled = pipe_wm->sprites_enabled,
2285                 .sprites_scaled = pipe_wm->sprites_scaled,
2286         };
2287         struct ilk_wm_maximums max;
2288
2289         /* LP0 watermarks always use 1/2 DDB partitioning */
2290         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2291
2292         /* At least LP0 must be valid */
2293         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
2294                 DRM_DEBUG_KMS("LP0 watermark invalid\n");
2295                 return false;
2296         }
2297
2298         return true;
2299 }
2300
2301 /* Compute new watermarks for the pipe */
2302 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2303 {
2304         struct drm_atomic_state *state = cstate->base.state;
2305         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2306         struct intel_pipe_wm *pipe_wm;
2307         struct drm_device *dev = state->dev;
2308         const struct drm_i915_private *dev_priv = dev->dev_private;
2309         struct intel_plane *intel_plane;
2310         struct intel_plane_state *pristate = NULL;
2311         struct intel_plane_state *sprstate = NULL;
2312         struct intel_plane_state *curstate = NULL;
2313         int level, max_level = ilk_wm_max_level(dev), usable_level;
2314         struct ilk_wm_maximums max;
2315
2316         pipe_wm = &cstate->wm.ilk.optimal;
2317
2318         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2319                 struct intel_plane_state *ps;
2320
2321                 ps = intel_atomic_get_existing_plane_state(state,
2322                                                            intel_plane);
2323                 if (!ps)
2324                         continue;
2325
2326                 if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2327                         pristate = ps;
2328                 else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2329                         sprstate = ps;
2330                 else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2331                         curstate = ps;
2332         }
2333
2334         pipe_wm->pipe_enabled = cstate->base.active;
2335         if (sprstate) {
2336                 pipe_wm->sprites_enabled = sprstate->visible;
2337                 pipe_wm->sprites_scaled = sprstate->visible &&
2338                         (drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2339                          drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2340         }
2341
2342         usable_level = max_level;
2343
2344         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2345         if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2346                 usable_level = 1;
2347
2348         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2349         if (pipe_wm->sprites_scaled)
2350                 usable_level = 0;
2351
2352         ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2353                              pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);
2354
2355         memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
2356         pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2357
2358         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2359                 pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2360
2361         if (!ilk_validate_pipe_wm(dev, pipe_wm))
2362                 return -EINVAL;
2363
2364         ilk_compute_wm_reg_maximums(dev, 1, &max);
2365
2366         for (level = 1; level <= max_level; level++) {
2367                 struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2368
2369                 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2370                                      pristate, sprstate, curstate, wm);
2371
2372                 /*
2373                  * Disable any watermark level that exceeds the
2374                  * register maximums since such watermarks are
2375                  * always invalid.
2376                  */
2377                 if (level > usable_level)
2378                         continue;
2379
2380                 if (ilk_validate_wm_level(level, &max, wm))
2381                         pipe_wm->wm[level] = *wm;
2382                 else
2383                         usable_level = level;
2384         }
2385
2386         return 0;
2387 }
2388
2389 /*
2390  * Build a set of 'intermediate' watermark values that satisfy both the old
2391  * state and the new state.  These can be programmed to the hardware
2392  * immediately.
2393  */
2394 static int ilk_compute_intermediate_wm(struct drm_device *dev,
2395                                        struct intel_crtc *intel_crtc,
2396                                        struct intel_crtc_state *newstate)
2397 {
2398         struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2399         struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2400         int level, max_level = ilk_wm_max_level(dev);
2401
2402         /*
2403          * Start with the final, target watermarks, then combine with the
2404          * currently active watermarks to get values that are safe both before
2405          * and after the vblank.
2406          */
2407         *a = newstate->wm.ilk.optimal;
2408         a->pipe_enabled |= b->pipe_enabled;
2409         a->sprites_enabled |= b->sprites_enabled;
2410         a->sprites_scaled |= b->sprites_scaled;
2411
2412         for (level = 0; level <= max_level; level++) {
2413                 struct intel_wm_level *a_wm = &a->wm[level];
2414                 const struct intel_wm_level *b_wm = &b->wm[level];
2415
2416                 a_wm->enable &= b_wm->enable;
2417                 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
2418                 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
2419                 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
2420                 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
2421         }
2422
2423         /*
2424          * We need to make sure that these merged watermark values are
2425          * actually a valid configuration themselves.  If they're not,
2426          * there's no safe way to transition from the old state to
2427          * the new state, so we need to fail the atomic transaction.
2428          */
2429         if (!ilk_validate_pipe_wm(dev, a))
2430                 return -EINVAL;
2431
2432         /*
2433          * If our intermediate WM are identical to the final WM, then we can
2434          * omit the post-vblank programming; only update if it's different.
2435          */
2436         if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2437                 newstate->wm.need_postvbl_update = false;
2438
2439         return 0;
2440 }
2441
2442 /*
2443  * Merge the watermarks from all active pipes for a specific level.
2444  */
2445 static void ilk_merge_wm_level(struct drm_device *dev,
2446                                int level,
2447                                struct intel_wm_level *ret_wm)
2448 {
2449         const struct intel_crtc *intel_crtc;
2450
2451         ret_wm->enable = true;
2452
2453         for_each_intel_crtc(dev, intel_crtc) {
2454                 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2455                 const struct intel_wm_level *wm = &active->wm[level];
2456
2457                 if (!active->pipe_enabled)
2458                         continue;
2459
2460                 /*
2461                  * The watermark values may have been used in the past,
2462                  * so we must maintain them in the registers for some
2463                  * time even if the level is now disabled.
2464                  */
2465                 if (!wm->enable)
2466                         ret_wm->enable = false;
2467
2468                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2469                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2470                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2471                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2472         }
2473 }
2474
2475 /*
2476  * Merge all low power watermarks for all active pipes.
2477  */
2478 static void ilk_wm_merge(struct drm_device *dev,
2479                          const struct intel_wm_config *config,
2480                          const struct ilk_wm_maximums *max,
2481                          struct intel_pipe_wm *merged)
2482 {
2483         struct drm_i915_private *dev_priv = dev->dev_private;
2484         int level, max_level = ilk_wm_max_level(dev);
2485         int last_enabled_level = max_level;
2486
2487         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2488         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2489             config->num_pipes_active > 1)
2490                 last_enabled_level = 0;
2491
2492         /* ILK: FBC WM must be disabled always */
2493         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2494
2495         /* merge each WM1+ level */
2496         for (level = 1; level <= max_level; level++) {
2497                 struct intel_wm_level *wm = &merged->wm[level];
2498
2499                 ilk_merge_wm_level(dev, level, wm);
2500
2501                 if (level > last_enabled_level)
2502                         wm->enable = false;
2503                 else if (!ilk_validate_wm_level(level, max, wm))
2504                         /* make sure all following levels get disabled */
2505                         last_enabled_level = level - 1;
2506
2507                 /*
2508                  * The spec says it is preferred to disable
2509                  * FBC WMs instead of disabling a WM level.
2510                  */
2511                 if (wm->fbc_val > max->fbc) {
2512                         if (wm->enable)
2513                                 merged->fbc_wm_enabled = false;
2514                         wm->fbc_val = 0;
2515                 }
2516         }
2517
2518         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2519         /*
2520          * FIXME this is racy. FBC might get enabled later.
2521          * What we should check here is whether FBC can be
2522          * enabled sometime later.
2523          */
2524         if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2525             intel_fbc_is_active(dev_priv)) {
2526                 for (level = 2; level <= max_level; level++) {
2527                         struct intel_wm_level *wm = &merged->wm[level];
2528
2529                         wm->enable = false;
2530                 }
2531         }
2532 }
2533
2534 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2535 {
2536         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2537         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2538 }
2539
2540 /* The value we need to program into the WM_LPx latency field */
2541 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2542 {
2543         struct drm_i915_private *dev_priv = dev->dev_private;
2544
2545         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2546                 return 2 * level;
2547         else
2548                 return dev_priv->wm.pri_latency[level];
2549 }
2550
2551 static void ilk_compute_wm_results(struct drm_device *dev,
2552                                    const struct intel_pipe_wm *merged,
2553                                    enum intel_ddb_partitioning partitioning,
2554                                    struct ilk_wm_values *results)
2555 {
2556         struct intel_crtc *intel_crtc;
2557         int level, wm_lp;
2558
2559         results->enable_fbc_wm = merged->fbc_wm_enabled;
2560         results->partitioning = partitioning;
2561
2562         /* LP1+ register values */
2563         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2564                 const struct intel_wm_level *r;
2565
2566                 level = ilk_wm_lp_to_level(wm_lp, merged);
2567
2568                 r = &merged->wm[level];
2569
2570                 /*
2571                  * Maintain the watermark values even if the level is
2572                  * disabled. Doing otherwise could cause underruns.
2573                  */
2574                 results->wm_lp[wm_lp - 1] =
2575                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2576                         (r->pri_val << WM1_LP_SR_SHIFT) |
2577                         r->cur_val;
2578
2579                 if (r->enable)
2580                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2581
2582                 if (INTEL_INFO(dev)->gen >= 8)
2583                         results->wm_lp[wm_lp - 1] |=
2584                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2585                 else
2586                         results->wm_lp[wm_lp - 1] |=
2587                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2588
2589                 /*
2590                  * Always set WM1S_LP_EN when spr_val != 0, even if the
2591                  * level is disabled. Doing otherwise could cause underruns.
2592                  */
2593                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2594                         WARN_ON(wm_lp != 1);
2595                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2596                 } else
2597                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2598         }
2599
2600         /* LP0 register values */
2601         for_each_intel_crtc(dev, intel_crtc) {
2602                 enum pipe pipe = intel_crtc->pipe;
2603                 const struct intel_wm_level *r =
2604                         &intel_crtc->wm.active.ilk.wm[0];
2605
2606                 if (WARN_ON(!r->enable))
2607                         continue;
2608
2609                 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2610
2611                 results->wm_pipe[pipe] =
2612                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2613                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2614                         r->cur_val;
2615         }
2616 }
2617
2618 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2619  * case both are at the same level. Prefer r1 in case they're the same. */
2620 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2621                                                   struct intel_pipe_wm *r1,
2622                                                   struct intel_pipe_wm *r2)
2623 {
2624         int level, max_level = ilk_wm_max_level(dev);
2625         int level1 = 0, level2 = 0;
2626
2627         for (level = 1; level <= max_level; level++) {
2628                 if (r1->wm[level].enable)
2629                         level1 = level;
2630                 if (r2->wm[level].enable)
2631                         level2 = level;
2632         }
2633
2634         if (level1 == level2) {
2635                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2636                         return r2;
2637                 else
2638                         return r1;
2639         } else if (level1 > level2) {
2640                 return r1;
2641         } else {
2642                 return r2;
2643         }
2644 }
2645
2646 /* dirty bits used to track which watermarks need changes */
2647 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2648 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2649 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2650 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2651 #define WM_DIRTY_FBC (1 << 24)
2652 #define WM_DIRTY_DDB (1 << 25)
2653
2654 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2655                                          const struct ilk_wm_values *old,
2656                                          const struct ilk_wm_values *new)
2657 {
2658         unsigned int dirty = 0;
2659         enum pipe pipe;
2660         int wm_lp;
2661
2662         for_each_pipe(dev_priv, pipe) {
2663                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2664                         dirty |= WM_DIRTY_LINETIME(pipe);
2665                         /* Must disable LP1+ watermarks too */
2666                         dirty |= WM_DIRTY_LP_ALL;
2667                 }
2668
2669                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2670                         dirty |= WM_DIRTY_PIPE(pipe);
2671                         /* Must disable LP1+ watermarks too */
2672                         dirty |= WM_DIRTY_LP_ALL;
2673                 }
2674         }
2675
2676         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2677                 dirty |= WM_DIRTY_FBC;
2678                 /* Must disable LP1+ watermarks too */
2679                 dirty |= WM_DIRTY_LP_ALL;
2680         }
2681
2682         if (old->partitioning != new->partitioning) {
2683                 dirty |= WM_DIRTY_DDB;
2684                 /* Must disable LP1+ watermarks too */
2685                 dirty |= WM_DIRTY_LP_ALL;
2686         }
2687
2688         /* LP1+ watermarks already deemed dirty, no need to continue */
2689         if (dirty & WM_DIRTY_LP_ALL)
2690                 return dirty;
2691
2692         /* Find the lowest numbered LP1+ watermark in need of an update... */
2693         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2694                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2695                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2696                         break;
2697         }
2698
2699         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2700         for (; wm_lp <= 3; wm_lp++)
2701                 dirty |= WM_DIRTY_LP(wm_lp);
2702
2703         return dirty;
2704 }
2705
2706 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2707                                unsigned int dirty)
2708 {
2709         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2710         bool changed = false;
2711
2712         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2713                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2714                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2715                 changed = true;
2716         }
2717         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2718                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2719                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2720                 changed = true;
2721         }
2722         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2723                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2724                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2725                 changed = true;
2726         }
2727
2728         /*
2729          * Don't touch WM1S_LP_EN here.
2730          * Doing so could cause underruns.
2731          */
2732
2733         return changed;
2734 }
2735
2736 /*
2737  * The spec says we shouldn't write when we don't need, because every write
2738  * causes WMs to be re-evaluated, expending some power.
2739  */
2740 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2741                                 struct ilk_wm_values *results)
2742 {
2743         struct drm_device *dev = dev_priv->dev;
2744         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2745         unsigned int dirty;
2746         uint32_t val;
2747
2748         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2749         if (!dirty)
2750                 return;
2751
2752         _ilk_disable_lp_wm(dev_priv, dirty);
2753
2754         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2755                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2756         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2757                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2758         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2759                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2760
2761         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2762                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2763         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2764                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2765         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2766                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2767
2768         if (dirty & WM_DIRTY_DDB) {
2769                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2770                         val = I915_READ(WM_MISC);
2771                         if (results->partitioning == INTEL_DDB_PART_1_2)
2772                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2773                         else
2774                                 val |= WM_MISC_DATA_PARTITION_5_6;
2775                         I915_WRITE(WM_MISC, val);
2776                 } else {
2777                         val = I915_READ(DISP_ARB_CTL2);
2778                         if (results->partitioning == INTEL_DDB_PART_1_2)
2779                                 val &= ~DISP_DATA_PARTITION_5_6;
2780                         else
2781                                 val |= DISP_DATA_PARTITION_5_6;
2782                         I915_WRITE(DISP_ARB_CTL2, val);
2783                 }
2784         }
2785
2786         if (dirty & WM_DIRTY_FBC) {
2787                 val = I915_READ(DISP_ARB_CTL);
2788                 if (results->enable_fbc_wm)
2789                         val &= ~DISP_FBC_WM_DIS;
2790                 else
2791                         val |= DISP_FBC_WM_DIS;
2792                 I915_WRITE(DISP_ARB_CTL, val);
2793         }
2794
2795         if (dirty & WM_DIRTY_LP(1) &&
2796             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2797                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2798
2799         if (INTEL_INFO(dev)->gen >= 7) {
2800                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2801                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2802                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2803                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2804         }
2805
2806         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2807                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2808         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2809                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2810         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2811                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2812
2813         dev_priv->wm.hw = *results;
2814 }
2815
2816 bool ilk_disable_lp_wm(struct drm_device *dev)
2817 {
2818         struct drm_i915_private *dev_priv = dev->dev_private;
2819
2820         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2821 }
2822
2823 /*
2824  * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2825  * different active planes.
2826  */
2827
2828 #define SKL_DDB_SIZE            896     /* in blocks */
2829 #define BXT_DDB_SIZE            512
2830
2831 /*
2832  * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
2833  * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
2834  * other universal planes are in indices 1..n.  Note that this may leave unused
2835  * indices between the top "sprite" plane and the cursor.
2836  */
2837 static int
2838 skl_wm_plane_id(const struct intel_plane *plane)
2839 {
2840         switch (plane->base.type) {
2841         case DRM_PLANE_TYPE_PRIMARY:
2842                 return 0;
2843         case DRM_PLANE_TYPE_CURSOR:
2844                 return PLANE_CURSOR;
2845         case DRM_PLANE_TYPE_OVERLAY:
2846                 return plane->plane + 1;
2847         default:
2848                 MISSING_CASE(plane->base.type);
2849                 return plane->plane;
2850         }
2851 }
2852
2853 static void
2854 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2855                                    const struct intel_crtc_state *cstate,
2856                                    struct skl_ddb_entry *alloc, /* out */
2857                                    int *num_active /* out */)
2858 {
2859         struct drm_atomic_state *state = cstate->base.state;
2860         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
2861         struct drm_i915_private *dev_priv = to_i915(dev);
2862         struct drm_crtc *for_crtc = cstate->base.crtc;
2863         unsigned int pipe_size, ddb_size;
2864         int nth_active_pipe;
2865         int pipe = to_intel_crtc(for_crtc)->pipe;
2866
2867         if (WARN_ON(!state) || !cstate->base.active) {
2868                 alloc->start = 0;
2869                 alloc->end = 0;
2870                 *num_active = hweight32(dev_priv->active_crtcs);
2871                 return;
2872         }
2873
2874         if (intel_state->active_pipe_changes)
2875                 *num_active = hweight32(intel_state->active_crtcs);
2876         else
2877                 *num_active = hweight32(dev_priv->active_crtcs);
2878
2879         if (IS_BROXTON(dev))
2880                 ddb_size = BXT_DDB_SIZE;
2881         else
2882                 ddb_size = SKL_DDB_SIZE;
2883
2884         ddb_size -= 4; /* 4 blocks for bypass path allocation */
2885
2886         /*
2887          * If the state doesn't change the active CRTC's, then there's
2888          * no need to recalculate; the existing pipe allocation limits
2889          * should remain unchanged.  Note that we're safe from racing
2890          * commits since any racing commit that changes the active CRTC
2891          * list would need to grab _all_ crtc locks, including the one
2892          * we currently hold.
2893          */
2894         if (!intel_state->active_pipe_changes) {
2895                 *alloc = dev_priv->wm.skl_hw.ddb.pipe[pipe];
2896                 return;
2897         }
2898
2899         nth_active_pipe = hweight32(intel_state->active_crtcs &
2900                                     (drm_crtc_mask(for_crtc) - 1));
2901         pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
2902         alloc->start = nth_active_pipe * ddb_size / *num_active;
2903         alloc->end = alloc->start + pipe_size;
2904 }
2905
2906 static unsigned int skl_cursor_allocation(int num_active)
2907 {
2908         if (num_active == 1)
2909                 return 32;
2910
2911         return 8;
2912 }
2913
2914 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2915 {
2916         entry->start = reg & 0x3ff;
2917         entry->end = (reg >> 16) & 0x3ff;
2918         if (entry->end)
2919                 entry->end += 1;
2920 }
2921
2922 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2923                           struct skl_ddb_allocation *ddb /* out */)
2924 {
2925         enum pipe pipe;
2926         int plane;
2927         u32 val;
2928
2929         memset(ddb, 0, sizeof(*ddb));
2930
2931         for_each_pipe(dev_priv, pipe) {
2932                 enum intel_display_power_domain power_domain;
2933
2934                 power_domain = POWER_DOMAIN_PIPE(pipe);
2935                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2936                         continue;
2937
2938                 for_each_plane(dev_priv, pipe, plane) {
2939                         val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2940                         skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2941                                                    val);
2942                 }
2943
2944                 val = I915_READ(CUR_BUF_CFG(pipe));
2945                 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
2946                                            val);
2947
2948                 intel_display_power_put(dev_priv, power_domain);
2949         }
2950 }
2951
2952 static unsigned int
2953 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
2954                              const struct drm_plane_state *pstate,
2955                              int y)
2956 {
2957         struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
2958         struct drm_framebuffer *fb = pstate->fb;
2959         uint32_t width = 0, height = 0;
2960         unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;
2961
2962         if (!intel_pstate->visible)
2963                 return 0;
2964         if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
2965                 return 0;
2966         if (y && format != DRM_FORMAT_NV12)
2967                 return 0;
2968
2969         width = drm_rect_width(&intel_pstate->src) >> 16;
2970         height = drm_rect_height(&intel_pstate->src) >> 16;
2971
2972         if (intel_rotation_90_or_270(pstate->rotation))
2973                 swap(width, height);
2974
2975         /* for planar format */
2976         if (format == DRM_FORMAT_NV12) {
2977                 if (y)  /* y-plane data rate */
2978                         return width * height *
2979                                 drm_format_plane_cpp(format, 0);
2980                 else    /* uv-plane data rate */
2981                         return (width / 2) * (height / 2) *
2982                                 drm_format_plane_cpp(format, 1);
2983         }
2984
2985         /* for packed formats */
2986         return width * height * drm_format_plane_cpp(format, 0);
2987 }
2988
2989 /*
2990  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2991  * a 8192x4096@32bpp framebuffer:
2992  *   3 * 4096 * 8192  * 4 < 2^32
2993  */
2994 static unsigned int
2995 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate)
2996 {
2997         struct drm_crtc_state *cstate = &intel_cstate->base;
2998         struct drm_atomic_state *state = cstate->state;
2999         struct drm_crtc *crtc = cstate->crtc;
3000         struct drm_device *dev = crtc->dev;
3001         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3002         const struct drm_plane *plane;
3003         const struct intel_plane *intel_plane;
3004         struct drm_plane_state *pstate;
3005         unsigned int rate, total_data_rate = 0;
3006         int id;
3007         int i;
3008
3009         if (WARN_ON(!state))
3010                 return 0;
3011
3012         /* Calculate and cache data rate for each plane */
3013         for_each_plane_in_state(state, plane, pstate, i) {
3014                 id = skl_wm_plane_id(to_intel_plane(plane));
3015                 intel_plane = to_intel_plane(plane);
3016
3017                 if (intel_plane->pipe != intel_crtc->pipe)
3018                         continue;
3019
3020                 /* packed/uv */
3021                 rate = skl_plane_relative_data_rate(intel_cstate,
3022                                                     pstate, 0);
3023                 intel_cstate->wm.skl.plane_data_rate[id] = rate;
3024
3025                 /* y-plane */
3026                 rate = skl_plane_relative_data_rate(intel_cstate,
3027                                                     pstate, 1);
3028                 intel_cstate->wm.skl.plane_y_data_rate[id] = rate;
3029         }
3030
3031         /* Calculate CRTC's total data rate from cached values */
3032         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3033                 int id = skl_wm_plane_id(intel_plane);
3034
3035                 /* packed/uv */
3036                 total_data_rate += intel_cstate->wm.skl.plane_data_rate[id];
3037                 total_data_rate += intel_cstate->wm.skl.plane_y_data_rate[id];
3038         }
3039
3040         WARN_ON(cstate->plane_mask && total_data_rate == 0);
3041
3042         return total_data_rate;
3043 }
3044
3045 static uint16_t
3046 skl_ddb_min_alloc(const struct drm_plane_state *pstate,
3047                   const int y)
3048 {
3049         struct drm_framebuffer *fb = pstate->fb;
3050         struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3051         uint32_t src_w, src_h;
3052         uint32_t min_scanlines = 8;
3053         uint8_t plane_bpp;
3054
3055         if (WARN_ON(!fb))
3056                 return 0;
3057
3058         /* For packed formats, no y-plane, return 0 */
3059         if (y && fb->pixel_format != DRM_FORMAT_NV12)
3060                 return 0;
3061
3062         /* For Non Y-tile return 8-blocks */
3063         if (fb->modifier[0] != I915_FORMAT_MOD_Y_TILED &&
3064             fb->modifier[0] != I915_FORMAT_MOD_Yf_TILED)
3065                 return 8;
3066
3067         src_w = drm_rect_width(&intel_pstate->src) >> 16;
3068         src_h = drm_rect_height(&intel_pstate->src) >> 16;
3069
3070         if (intel_rotation_90_or_270(pstate->rotation))
3071                 swap(src_w, src_h);
3072
3073         /* Halve UV plane width and height for NV12 */
3074         if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
3075                 src_w /= 2;
3076                 src_h /= 2;
3077         }
3078
3079         if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
3080                 plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
3081         else
3082                 plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);
3083
3084         if (intel_rotation_90_or_270(pstate->rotation)) {
3085                 switch (plane_bpp) {
3086                 case 1:
3087                         min_scanlines = 32;
3088                         break;
3089                 case 2:
3090                         min_scanlines = 16;
3091                         break;
3092                 case 4:
3093                         min_scanlines = 8;
3094                         break;
3095                 case 8:
3096                         min_scanlines = 4;
3097                         break;
3098                 default:
3099                         WARN(1, "Unsupported pixel depth %u for rotation",
3100                              plane_bpp);
3101                         min_scanlines = 32;
3102                 }
3103         }
3104
3105         return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
3106 }
3107
3108 static int
3109 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3110                       struct skl_ddb_allocation *ddb /* out */)
3111 {
3112         struct drm_atomic_state *state = cstate->base.state;
3113         struct drm_crtc *crtc = cstate->base.crtc;
3114         struct drm_device *dev = crtc->dev;
3115         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3116         struct intel_plane *intel_plane;
3117         struct drm_plane *plane;
3118         struct drm_plane_state *pstate;
3119         enum pipe pipe = intel_crtc->pipe;
3120         struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
3121         uint16_t alloc_size, start, cursor_blocks;
3122         uint16_t *minimum = cstate->wm.skl.minimum_blocks;
3123         uint16_t *y_minimum = cstate->wm.skl.minimum_y_blocks;
3124         unsigned int total_data_rate;
3125         int num_active;
3126         int id, i;
3127
3128         if (WARN_ON(!state))
3129                 return 0;
3130
3131         if (!cstate->base.active) {
3132                 ddb->pipe[pipe].start = ddb->pipe[pipe].end = 0;
3133                 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3134                 memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
3135                 return 0;
3136         }
3137
3138         skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3139         alloc_size = skl_ddb_entry_size(alloc);
3140         if (alloc_size == 0) {
3141                 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3142                 return 0;
3143         }
3144
3145         cursor_blocks = skl_cursor_allocation(num_active);
3146         ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
3147         ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3148
3149         alloc_size -= cursor_blocks;
3150
3151         /* 1. Allocate the mininum required blocks for each active plane */
3152         for_each_plane_in_state(state, plane, pstate, i) {
3153                 intel_plane = to_intel_plane(plane);
3154                 id = skl_wm_plane_id(intel_plane);
3155
3156                 if (intel_plane->pipe != pipe)
3157                         continue;
3158
3159                 if (!to_intel_plane_state(pstate)->visible) {
3160                         minimum[id] = 0;
3161                         y_minimum[id] = 0;
3162                         continue;
3163                 }
3164                 if (plane->type == DRM_PLANE_TYPE_CURSOR) {
3165                         minimum[id] = 0;
3166                         y_minimum[id] = 0;
3167                         continue;
3168                 }
3169
3170                 minimum[id] = skl_ddb_min_alloc(pstate, 0);
3171                 y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
3172         }
3173
3174         for (i = 0; i < PLANE_CURSOR; i++) {
3175                 alloc_size -= minimum[i];
3176                 alloc_size -= y_minimum[i];
3177         }
3178
3179         /*
3180          * 2. Distribute the remaining space in proportion to the amount of
3181          * data each plane needs to fetch from memory.
3182          *
3183          * FIXME: we may not allocate every single block here.
3184          */
3185         total_data_rate = skl_get_total_relative_data_rate(cstate);
3186         if (total_data_rate == 0)
3187                 return 0;
3188
3189         start = alloc->start;
3190         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3191                 unsigned int data_rate, y_data_rate;
3192                 uint16_t plane_blocks, y_plane_blocks = 0;
3193                 int id = skl_wm_plane_id(intel_plane);
3194
3195                 data_rate = cstate->wm.skl.plane_data_rate[id];
3196
3197                 /*
3198                  * allocation for (packed formats) or (uv-plane part of planar format):
3199                  * promote the expression to 64 bits to avoid overflowing, the
3200                  * result is < available as data_rate / total_data_rate < 1
3201                  */
3202                 plane_blocks = minimum[id];
3203                 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3204                                         total_data_rate);
3205
3206                 /* Leave disabled planes at (0,0) */
3207                 if (data_rate) {
3208                         ddb->plane[pipe][id].start = start;
3209                         ddb->plane[pipe][id].end = start + plane_blocks;
3210                 }
3211
3212                 start += plane_blocks;
3213
3214                 /*
3215                  * allocation for y_plane part of planar format:
3216                  */
3217                 y_data_rate = cstate->wm.skl.plane_y_data_rate[id];
3218
3219                 y_plane_blocks = y_minimum[id];
3220                 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3221                                         total_data_rate);
3222
3223                 if (y_data_rate) {
3224                         ddb->y_plane[pipe][id].start = start;
3225                         ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3226                 }
3227
3228                 start += y_plane_blocks;
3229         }
3230
3231         return 0;
3232 }
3233
3234 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3235 {
3236         /* TODO: Take into account the scalers once we support them */
3237         return config->base.adjusted_mode.crtc_clock;
3238 }
3239
3240 /*
3241  * The max latency should be 257 (max the punit can code is 255 and we add 2us
3242  * for the read latency) and cpp should always be <= 8, so that
3243  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3244  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3245 */
3246 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3247 {
3248         uint32_t wm_intermediate_val, ret;
3249
3250         if (latency == 0)
3251                 return UINT_MAX;
3252
3253         wm_intermediate_val = latency * pixel_rate * cpp / 512;
3254         ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3255
3256         return ret;
3257 }
3258
3259 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3260                                uint32_t horiz_pixels, uint8_t cpp,
3261                                uint64_t tiling, uint32_t latency)
3262 {
3263         uint32_t ret;
3264         uint32_t plane_bytes_per_line, plane_blocks_per_line;
3265         uint32_t wm_intermediate_val;
3266
3267         if (latency == 0)
3268                 return UINT_MAX;
3269
3270         plane_bytes_per_line = horiz_pixels * cpp;
3271
3272         if (tiling == I915_FORMAT_MOD_Y_TILED ||
3273             tiling == I915_FORMAT_MOD_Yf_TILED) {
3274                 plane_bytes_per_line *= 4;
3275                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3276                 plane_blocks_per_line /= 4;
3277         } else {
3278                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3279         }
3280
3281         wm_intermediate_val = latency * pixel_rate;
3282         ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3283                                 plane_blocks_per_line;
3284
3285         return ret;
3286 }
3287
3288 static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3289                                 struct intel_crtc_state *cstate,
3290                                 struct intel_plane_state *intel_pstate,
3291                                 uint16_t ddb_allocation,
3292                                 int level,
3293                                 uint16_t *out_blocks, /* out */
3294                                 uint8_t *out_lines, /* out */
3295                                 bool *enabled /* out */)
3296 {
3297         struct drm_plane_state *pstate = &intel_pstate->base;
3298         struct drm_framebuffer *fb = pstate->fb;
3299         uint32_t latency = dev_priv->wm.skl_latency[level];
3300         uint32_t method1, method2;
3301         uint32_t plane_bytes_per_line, plane_blocks_per_line;
3302         uint32_t res_blocks, res_lines;
3303         uint32_t selected_result;
3304         uint8_t cpp;
3305         uint32_t width = 0, height = 0;
3306
3307         if (latency == 0 || !cstate->base.active || !intel_pstate->visible) {
3308                 *enabled = false;
3309                 return 0;
3310         }
3311
3312         width = drm_rect_width(&intel_pstate->src) >> 16;
3313         height = drm_rect_height(&intel_pstate->src) >> 16;
3314
3315         if (intel_rotation_90_or_270(pstate->rotation))
3316                 swap(width, height);
3317
3318         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3319         method1 = skl_wm_method1(skl_pipe_pixel_rate(cstate),
3320                                  cpp, latency);
3321         method2 = skl_wm_method2(skl_pipe_pixel_rate(cstate),
3322                                  cstate->base.adjusted_mode.crtc_htotal,
3323                                  width,
3324                                  cpp,
3325                                  fb->modifier[0],
3326                                  latency);
3327
3328         plane_bytes_per_line = width * cpp;
3329         plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3330
3331         if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3332             fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3333                 uint32_t min_scanlines = 4;
3334                 uint32_t y_tile_minimum;
3335                 if (intel_rotation_90_or_270(pstate->rotation)) {
3336                         int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3337                                 drm_format_plane_cpp(fb->pixel_format, 1) :
3338                                 drm_format_plane_cpp(fb->pixel_format, 0);
3339
3340                         switch (cpp) {
3341                         case 1:
3342                                 min_scanlines = 16;
3343                                 break;
3344                         case 2:
3345                                 min_scanlines = 8;
3346                                 break;
3347                         case 8:
3348                                 WARN(1, "Unsupported pixel depth for rotation");
3349                         }
3350                 }
3351                 y_tile_minimum = plane_blocks_per_line * min_scanlines;
3352                 selected_result = max(method2, y_tile_minimum);
3353         } else {
3354                 if ((ddb_allocation / plane_blocks_per_line) >= 1)
3355                         selected_result = min(method1, method2);
3356                 else
3357                         selected_result = method1;
3358         }
3359
3360         res_blocks = selected_result + 1;
3361         res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3362
3363         if (level >= 1 && level <= 7) {
3364                 if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3365                     fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3366                         res_lines += 4;
3367                 else
3368                         res_blocks++;
3369         }
3370
3371         if (res_blocks >= ddb_allocation || res_lines > 31) {
3372                 *enabled = false;
3373
3374                 /*
3375                  * If there are no valid level 0 watermarks, then we can't
3376                  * support this display configuration.
3377                  */
3378                 if (level) {
3379                         return 0;
3380                 } else {
3381                         DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
3382                         DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
3383                                       to_intel_crtc(cstate->base.crtc)->pipe,
3384                                       skl_wm_plane_id(to_intel_plane(pstate->plane)),
3385                                       res_blocks, ddb_allocation, res_lines);
3386
3387                         return -EINVAL;
3388                 }
3389         }
3390
3391         *out_blocks = res_blocks;
3392         *out_lines = res_lines;
3393         *enabled = true;
3394
3395         return 0;
3396 }
3397
3398 static int
3399 skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3400                      struct skl_ddb_allocation *ddb,
3401                      struct intel_crtc_state *cstate,
3402                      int level,
3403                      struct skl_wm_level *result)
3404 {
3405         struct drm_device *dev = dev_priv->dev;
3406         struct drm_atomic_state *state = cstate->base.state;
3407         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3408         struct drm_plane *plane;
3409         struct intel_plane *intel_plane;
3410         struct intel_plane_state *intel_pstate;
3411         uint16_t ddb_blocks;
3412         enum pipe pipe = intel_crtc->pipe;
3413         int ret;
3414
3415         /*
3416          * We'll only calculate watermarks for planes that are actually
3417          * enabled, so make sure all other planes are set as disabled.
3418          */
3419         memset(result, 0, sizeof(*result));
3420
3421         for_each_intel_plane_mask(dev, intel_plane, cstate->base.plane_mask) {
3422                 int i = skl_wm_plane_id(intel_plane);
3423
3424                 plane = &intel_plane->base;
3425                 intel_pstate = NULL;
3426                 if (state)
3427                         intel_pstate =
3428                                 intel_atomic_get_existing_plane_state(state,
3429                                                                       intel_plane);
3430
3431                 /*
3432                  * Note: If we start supporting multiple pending atomic commits
3433                  * against the same planes/CRTC's in the future, plane->state
3434                  * will no longer be the correct pre-state to use for the
3435                  * calculations here and we'll need to change where we get the
3436                  * 'unchanged' plane data from.
3437                  *
3438                  * For now this is fine because we only allow one queued commit
3439                  * against a CRTC.  Even if the plane isn't modified by this
3440                  * transaction and we don't have a plane lock, we still have
3441                  * the CRTC's lock, so we know that no other transactions are
3442                  * racing with us to update it.
3443                  */
3444                 if (!intel_pstate)
3445                         intel_pstate = to_intel_plane_state(plane->state);
3446
3447                 WARN_ON(!intel_pstate->base.fb);
3448
3449                 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3450
3451                 ret = skl_compute_plane_wm(dev_priv,
3452                                            cstate,
3453                                            intel_pstate,
3454                                            ddb_blocks,
3455                                            level,
3456                                            &result->plane_res_b[i],
3457                                            &result->plane_res_l[i],
3458                                            &result->plane_en[i]);
3459                 if (ret)
3460                         return ret;
3461         }
3462
3463         return 0;
3464 }
3465
3466 static uint32_t
3467 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3468 {
3469         if (!cstate->base.active)
3470                 return 0;
3471
3472         if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3473                 return 0;
3474
3475         return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3476                             skl_pipe_pixel_rate(cstate));
3477 }
3478
3479 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3480                                       struct skl_wm_level *trans_wm /* out */)
3481 {
3482         struct drm_crtc *crtc = cstate->base.crtc;
3483         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3484         struct intel_plane *intel_plane;
3485
3486         if (!cstate->base.active)
3487                 return;
3488
3489         /* Until we know more, just disable transition WMs */
3490         for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
3491                 int i = skl_wm_plane_id(intel_plane);
3492
3493                 trans_wm->plane_en[i] = false;
3494         }
3495 }
3496
3497 static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
3498                              struct skl_ddb_allocation *ddb,
3499                              struct skl_pipe_wm *pipe_wm)
3500 {
3501         struct drm_device *dev = cstate->base.crtc->dev;
3502         const struct drm_i915_private *dev_priv = dev->dev_private;
3503         int level, max_level = ilk_wm_max_level(dev);
3504         int ret;
3505
3506         for (level = 0; level <= max_level; level++) {
3507                 ret = skl_compute_wm_level(dev_priv, ddb, cstate,
3508                                            level, &pipe_wm->wm[level]);
3509                 if (ret)
3510                         return ret;
3511         }
3512         pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3513
3514         skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3515
3516         return 0;
3517 }
3518
3519 static void skl_compute_wm_results(struct drm_device *dev,
3520                                    struct skl_pipe_wm *p_wm,
3521                                    struct skl_wm_values *r,
3522                                    struct intel_crtc *intel_crtc)
3523 {
3524         int level, max_level = ilk_wm_max_level(dev);
3525         enum pipe pipe = intel_crtc->pipe;
3526         uint32_t temp;
3527         int i;
3528
3529         for (level = 0; level <= max_level; level++) {
3530                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3531                         temp = 0;
3532
3533                         temp |= p_wm->wm[level].plane_res_l[i] <<
3534                                         PLANE_WM_LINES_SHIFT;
3535                         temp |= p_wm->wm[level].plane_res_b[i];
3536                         if (p_wm->wm[level].plane_en[i])
3537                                 temp |= PLANE_WM_EN;
3538
3539                         r->plane[pipe][i][level] = temp;
3540                 }
3541
3542                 temp = 0;
3543
3544                 temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3545                 temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3546
3547                 if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3548                         temp |= PLANE_WM_EN;
3549
3550                 r->plane[pipe][PLANE_CURSOR][level] = temp;
3551
3552         }
3553
3554         /* transition WMs */
3555         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3556                 temp = 0;
3557                 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3558                 temp |= p_wm->trans_wm.plane_res_b[i];
3559                 if (p_wm->trans_wm.plane_en[i])
3560                         temp |= PLANE_WM_EN;
3561
3562                 r->plane_trans[pipe][i] = temp;
3563         }
3564
3565         temp = 0;
3566         temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3567         temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3568         if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3569                 temp |= PLANE_WM_EN;
3570
3571         r->plane_trans[pipe][PLANE_CURSOR] = temp;
3572
3573         r->wm_linetime[pipe] = p_wm->linetime;
3574 }
3575
3576 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
3577                                 i915_reg_t reg,
3578                                 const struct skl_ddb_entry *entry)
3579 {
3580         if (entry->end)
3581                 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3582         else
3583                 I915_WRITE(reg, 0);
3584 }
3585
3586 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3587                                 const struct skl_wm_values *new)
3588 {
3589         struct drm_device *dev = dev_priv->dev;
3590         struct intel_crtc *crtc;
3591
3592         for_each_intel_crtc(dev, crtc) {
3593                 int i, level, max_level = ilk_wm_max_level(dev);
3594                 enum pipe pipe = crtc->pipe;
3595
3596                 if ((new->dirty_pipes & drm_crtc_mask(&crtc->base)) == 0)
3597                         continue;
3598                 if (!crtc->active)
3599                         continue;
3600
3601                 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3602
3603                 for (level = 0; level <= max_level; level++) {
3604                         for (i = 0; i < intel_num_planes(crtc); i++)
3605                                 I915_WRITE(PLANE_WM(pipe, i, level),
3606                                            new->plane[pipe][i][level]);
3607                         I915_WRITE(CUR_WM(pipe, level),
3608                                    new->plane[pipe][PLANE_CURSOR][level]);
3609                 }
3610                 for (i = 0; i < intel_num_planes(crtc); i++)
3611                         I915_WRITE(PLANE_WM_TRANS(pipe, i),
3612                                    new->plane_trans[pipe][i]);
3613                 I915_WRITE(CUR_WM_TRANS(pipe),
3614                            new->plane_trans[pipe][PLANE_CURSOR]);
3615
3616                 for (i = 0; i < intel_num_planes(crtc); i++) {
3617                         skl_ddb_entry_write(dev_priv,
3618                                             PLANE_BUF_CFG(pipe, i),
3619                                             &new->ddb.plane[pipe][i]);
3620                         skl_ddb_entry_write(dev_priv,
3621                                             PLANE_NV12_BUF_CFG(pipe, i),
3622                                             &new->ddb.y_plane[pipe][i]);
3623                 }
3624
3625                 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3626                                     &new->ddb.plane[pipe][PLANE_CURSOR]);
3627         }
3628 }
3629
3630 /*
3631  * When setting up a new DDB allocation arrangement, we need to correctly
3632  * sequence the times at which the new allocations for the pipes are taken into
3633  * account or we'll have pipes fetching from space previously allocated to
3634  * another pipe.
3635  *
3636  * Roughly the sequence looks like:
3637  *  1. re-allocate the pipe(s) with the allocation being reduced and not
3638  *     overlapping with a previous light-up pipe (another way to put it is:
3639  *     pipes with their new allocation strickly included into their old ones).
3640  *  2. re-allocate the other pipes that get their allocation reduced
3641  *  3. allocate the pipes having their allocation increased
3642  *
3643  * Steps 1. and 2. are here to take care of the following case:
3644  * - Initially DDB looks like this:
3645  *     |   B    |   C    |
3646  * - enable pipe A.
3647  * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3648  *   allocation
3649  *     |  A  |  B  |  C  |
3650  *
3651  * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3652  */
3653
3654 static void
3655 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3656 {
3657         int plane;
3658
3659         DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3660
3661         for_each_plane(dev_priv, pipe, plane) {
3662                 I915_WRITE(PLANE_SURF(pipe, plane),
3663                            I915_READ(PLANE_SURF(pipe, plane)));
3664         }
3665         I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3666 }
3667
3668 static bool
3669 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3670                             const struct skl_ddb_allocation *new,
3671                             enum pipe pipe)
3672 {
3673         uint16_t old_size, new_size;
3674
3675         old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3676         new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3677
3678         return old_size != new_size &&
3679                new->pipe[pipe].start >= old->pipe[pipe].start &&
3680                new->pipe[pipe].end <= old->pipe[pipe].end;
3681 }
3682
3683 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3684                                 struct skl_wm_values *new_values)
3685 {
3686         struct drm_device *dev = dev_priv->dev;
3687         struct skl_ddb_allocation *cur_ddb, *new_ddb;
3688         bool reallocated[I915_MAX_PIPES] = {};
3689         struct intel_crtc *crtc;
3690         enum pipe pipe;
3691
3692         new_ddb = &new_values->ddb;
3693         cur_ddb = &dev_priv->wm.skl_hw.ddb;
3694
3695         /*
3696          * First pass: flush the pipes with the new allocation contained into
3697          * the old space.
3698          *
3699          * We'll wait for the vblank on those pipes to ensure we can safely
3700          * re-allocate the freed space without this pipe fetching from it.
3701          */
3702         for_each_intel_crtc(dev, crtc) {
3703                 if (!crtc->active)
3704                         continue;
3705
3706                 pipe = crtc->pipe;
3707
3708                 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3709                         continue;
3710
3711                 skl_wm_flush_pipe(dev_priv, pipe, 1);
3712                 intel_wait_for_vblank(dev, pipe);
3713
3714                 reallocated[pipe] = true;
3715         }
3716
3717
3718         /*
3719          * Second pass: flush the pipes that are having their allocation
3720          * reduced, but overlapping with a previous allocation.
3721          *
3722          * Here as well we need to wait for the vblank to make sure the freed
3723          * space is not used anymore.
3724          */
3725         for_each_intel_crtc(dev, crtc) {
3726                 if (!crtc->active)
3727                         continue;
3728
3729                 pipe = crtc->pipe;
3730
3731                 if (reallocated[pipe])
3732                         continue;
3733
3734                 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3735                     skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3736                         skl_wm_flush_pipe(dev_priv, pipe, 2);
3737                         intel_wait_for_vblank(dev, pipe);
3738                         reallocated[pipe] = true;
3739                 }
3740         }
3741
3742         /*
3743          * Third pass: flush the pipes that got more space allocated.
3744          *
3745          * We don't need to actively wait for the update here, next vblank
3746          * will just get more DDB space with the correct WM values.
3747          */
3748         for_each_intel_crtc(dev, crtc) {
3749                 if (!crtc->active)
3750                         continue;
3751
3752                 pipe = crtc->pipe;
3753
3754                 /*
3755                  * At this point, only the pipes more space than before are
3756                  * left to re-allocate.
3757                  */
3758                 if (reallocated[pipe])
3759                         continue;
3760
3761                 skl_wm_flush_pipe(dev_priv, pipe, 3);
3762         }
3763 }
3764
3765 static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
3766                               struct skl_ddb_allocation *ddb, /* out */
3767                               struct skl_pipe_wm *pipe_wm, /* out */
3768                               bool *changed /* out */)
3769 {
3770         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->crtc);
3771         struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3772         int ret;
3773
3774         ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
3775         if (ret)
3776                 return ret;
3777
3778         if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3779                 *changed = false;
3780         else
3781                 *changed = true;
3782
3783         return 0;
3784 }
3785
3786 static int
3787 skl_compute_ddb(struct drm_atomic_state *state)
3788 {
3789         struct drm_device *dev = state->dev;
3790         struct drm_i915_private *dev_priv = to_i915(dev);
3791         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3792         struct intel_crtc *intel_crtc;
3793         struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
3794         unsigned realloc_pipes = dev_priv->active_crtcs;
3795         int ret;
3796
3797         /*
3798          * If this is our first atomic update following hardware readout,
3799          * we can't trust the DDB that the BIOS programmed for us.  Let's
3800          * pretend that all pipes switched active status so that we'll
3801          * ensure a full DDB recompute.
3802          */
3803         if (dev_priv->wm.distrust_bios_wm)
3804                 intel_state->active_pipe_changes = ~0;
3805
3806         /*
3807          * If the modeset changes which CRTC's are active, we need to
3808          * recompute the DDB allocation for *all* active pipes, even
3809          * those that weren't otherwise being modified in any way by this
3810          * atomic commit.  Due to the shrinking of the per-pipe allocations
3811          * when new active CRTC's are added, it's possible for a pipe that
3812          * we were already using and aren't changing at all here to suddenly
3813          * become invalid if its DDB needs exceeds its new allocation.
3814          *
3815          * Note that if we wind up doing a full DDB recompute, we can't let
3816          * any other display updates race with this transaction, so we need
3817          * to grab the lock on *all* CRTC's.
3818          */
3819         if (intel_state->active_pipe_changes) {
3820                 realloc_pipes = ~0;
3821                 intel_state->wm_results.dirty_pipes = ~0;
3822         }
3823
3824         for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
3825                 struct intel_crtc_state *cstate;
3826
3827                 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
3828                 if (IS_ERR(cstate))
3829                         return PTR_ERR(cstate);
3830
3831                 ret = skl_allocate_pipe_ddb(cstate, ddb);
3832                 if (ret)
3833                         return ret;
3834         }
3835
3836         return 0;
3837 }
3838
3839 static int
3840 skl_compute_wm(struct drm_atomic_state *state)
3841 {
3842         struct drm_crtc *crtc;
3843         struct drm_crtc_state *cstate;
3844         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3845         struct skl_wm_values *results = &intel_state->wm_results;
3846         struct skl_pipe_wm *pipe_wm;
3847         bool changed = false;
3848         int ret, i;
3849
3850         /*
3851          * If this transaction isn't actually touching any CRTC's, don't
3852          * bother with watermark calculation.  Note that if we pass this
3853          * test, we're guaranteed to hold at least one CRTC state mutex,
3854          * which means we can safely use values like dev_priv->active_crtcs
3855          * since any racing commits that want to update them would need to
3856          * hold _all_ CRTC state mutexes.
3857          */
3858         for_each_crtc_in_state(state, crtc, cstate, i)
3859                 changed = true;
3860         if (!changed)
3861                 return 0;
3862
3863         /* Clear all dirty flags */
3864         results->dirty_pipes = 0;
3865
3866         ret = skl_compute_ddb(state);
3867         if (ret)
3868                 return ret;
3869
3870         /*
3871          * Calculate WM's for all pipes that are part of this transaction.
3872          * Note that the DDB allocation above may have added more CRTC's that
3873          * weren't otherwise being modified (and set bits in dirty_pipes) if
3874          * pipe allocations had to change.
3875          *
3876          * FIXME:  Now that we're doing this in the atomic check phase, we
3877          * should allow skl_update_pipe_wm() to return failure in cases where
3878          * no suitable watermark values can be found.
3879          */
3880         for_each_crtc_in_state(state, crtc, cstate, i) {
3881                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3882                 struct intel_crtc_state *intel_cstate =
3883                         to_intel_crtc_state(cstate);
3884
3885                 pipe_wm = &intel_cstate->wm.skl.optimal;
3886                 ret = skl_update_pipe_wm(cstate, &results->ddb, pipe_wm,
3887                                          &changed);
3888                 if (ret)
3889                         return ret;
3890
3891                 if (changed)
3892                         results->dirty_pipes |= drm_crtc_mask(crtc);
3893
3894                 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
3895                         /* This pipe's WM's did not change */
3896                         continue;
3897
3898                 intel_cstate->update_wm_pre = true;
3899                 skl_compute_wm_results(crtc->dev, pipe_wm, results, intel_crtc);
3900         }
3901
3902         return 0;
3903 }
3904
3905 static void skl_update_wm(struct drm_crtc *crtc)
3906 {
3907         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3908         struct drm_device *dev = crtc->dev;
3909         struct drm_i915_private *dev_priv = dev->dev_private;
3910         struct skl_wm_values *results = &dev_priv->wm.skl_results;
3911         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3912         struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
3913
3914         if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
3915                 return;
3916
3917         intel_crtc->wm.active.skl = *pipe_wm;
3918
3919         mutex_lock(&dev_priv->wm.wm_mutex);
3920
3921         skl_write_wm_values(dev_priv, results);
3922         skl_flush_wm_values(dev_priv, results);
3923
3924         /* store the new configuration */
3925         dev_priv->wm.skl_hw = *results;
3926
3927         mutex_unlock(&dev_priv->wm.wm_mutex);
3928 }
3929
3930 static void ilk_compute_wm_config(struct drm_device *dev,
3931                                   struct intel_wm_config *config)
3932 {
3933         struct intel_crtc *crtc;
3934
3935         /* Compute the currently _active_ config */
3936         for_each_intel_crtc(dev, crtc) {
3937                 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
3938
3939                 if (!wm->pipe_enabled)
3940                         continue;
3941
3942                 config->sprites_enabled |= wm->sprites_enabled;
3943                 config->sprites_scaled |= wm->sprites_scaled;
3944                 config->num_pipes_active++;
3945         }
3946 }
3947
3948 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
3949 {
3950         struct drm_device *dev = dev_priv->dev;
3951         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3952         struct ilk_wm_maximums max;
3953         struct intel_wm_config config = {};
3954         struct ilk_wm_values results = {};
3955         enum intel_ddb_partitioning partitioning;
3956
3957         ilk_compute_wm_config(dev, &config);
3958
3959         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3960         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3961
3962         /* 5/6 split only in single pipe config on IVB+ */
3963         if (INTEL_INFO(dev)->gen >= 7 &&
3964             config.num_pipes_active == 1 && config.sprites_enabled) {
3965                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3966                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3967
3968                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3969         } else {
3970                 best_lp_wm = &lp_wm_1_2;
3971         }
3972
3973         partitioning = (best_lp_wm == &lp_wm_1_2) ?
3974                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3975
3976         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3977
3978         ilk_write_wm_values(dev_priv, &results);
3979 }
3980
3981 static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
3982 {
3983         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
3984         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3985
3986         mutex_lock(&dev_priv->wm.wm_mutex);
3987         intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
3988         ilk_program_watermarks(dev_priv);
3989         mutex_unlock(&dev_priv->wm.wm_mutex);
3990 }
3991
3992 static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
3993 {
3994         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
3995         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3996
3997         mutex_lock(&dev_priv->wm.wm_mutex);
3998         if (cstate->wm.need_postvbl_update) {
3999                 intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4000                 ilk_program_watermarks(dev_priv);
4001         }
4002         mutex_unlock(&dev_priv->wm.wm_mutex);
4003 }
4004
4005 static void skl_pipe_wm_active_state(uint32_t val,
4006                                      struct skl_pipe_wm *active,
4007                                      bool is_transwm,
4008                                      bool is_cursor,
4009                                      int i,
4010                                      int level)
4011 {
4012         bool is_enabled = (val & PLANE_WM_EN) != 0;
4013
4014         if (!is_transwm) {
4015                 if (!is_cursor) {
4016                         active->wm[level].plane_en[i] = is_enabled;
4017                         active->wm[level].plane_res_b[i] =
4018                                         val & PLANE_WM_BLOCKS_MASK;
4019                         active->wm[level].plane_res_l[i] =
4020                                         (val >> PLANE_WM_LINES_SHIFT) &
4021                                                 PLANE_WM_LINES_MASK;
4022                 } else {
4023                         active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
4024                         active->wm[level].plane_res_b[PLANE_CURSOR] =
4025                                         val & PLANE_WM_BLOCKS_MASK;
4026                         active->wm[level].plane_res_l[PLANE_CURSOR] =
4027                                         (val >> PLANE_WM_LINES_SHIFT) &
4028                                                 PLANE_WM_LINES_MASK;
4029                 }
4030         } else {
4031                 if (!is_cursor) {
4032                         active->trans_wm.plane_en[i] = is_enabled;
4033                         active->trans_wm.plane_res_b[i] =
4034                                         val & PLANE_WM_BLOCKS_MASK;
4035                         active->trans_wm.plane_res_l[i] =
4036                                         (val >> PLANE_WM_LINES_SHIFT) &
4037                                                 PLANE_WM_LINES_MASK;
4038                 } else {
4039                         active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
4040                         active->trans_wm.plane_res_b[PLANE_CURSOR] =
4041                                         val & PLANE_WM_BLOCKS_MASK;
4042                         active->trans_wm.plane_res_l[PLANE_CURSOR] =
4043                                         (val >> PLANE_WM_LINES_SHIFT) &
4044                                                 PLANE_WM_LINES_MASK;
4045                 }
4046         }
4047 }
4048
4049 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
4050 {
4051         struct drm_device *dev = crtc->dev;
4052         struct drm_i915_private *dev_priv = dev->dev_private;
4053         struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4054         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4055         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4056         struct skl_pipe_wm *active = &cstate->wm.skl.optimal;
4057         enum pipe pipe = intel_crtc->pipe;
4058         int level, i, max_level;
4059         uint32_t temp;
4060
4061         max_level = ilk_wm_max_level(dev);
4062
4063         hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4064
4065         for (level = 0; level <= max_level; level++) {
4066                 for (i = 0; i < intel_num_planes(intel_crtc); i++)
4067                         hw->plane[pipe][i][level] =
4068                                         I915_READ(PLANE_WM(pipe, i, level));
4069                 hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
4070         }
4071
4072         for (i = 0; i < intel_num_planes(intel_crtc); i++)
4073                 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
4074         hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
4075
4076         if (!intel_crtc->active)
4077                 return;
4078
4079         hw->dirty_pipes |= drm_crtc_mask(crtc);
4080
4081         active->linetime = hw->wm_linetime[pipe];
4082
4083         for (level = 0; level <= max_level; level++) {
4084                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
4085                         temp = hw->plane[pipe][i][level];
4086                         skl_pipe_wm_active_state(temp, active, false,
4087                                                 false, i, level);
4088                 }
4089                 temp = hw->plane[pipe][PLANE_CURSOR][level];
4090                 skl_pipe_wm_active_state(temp, active, false, true, i, level);
4091         }
4092
4093         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
4094                 temp = hw->plane_trans[pipe][i];
4095                 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
4096         }
4097
4098         temp = hw->plane_trans[pipe][PLANE_CURSOR];
4099         skl_pipe_wm_active_state(temp, active, true, true, i, 0);
4100
4101         intel_crtc->wm.active.skl = *active;
4102 }
4103
4104 void skl_wm_get_hw_state(struct drm_device *dev)
4105 {
4106         struct drm_i915_private *dev_priv = dev->dev_private;
4107         struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4108         struct drm_crtc *crtc;
4109
4110         skl_ddb_get_hw_state(dev_priv, ddb);
4111         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
4112                 skl_pipe_wm_get_hw_state(crtc);
4113
4114         if (dev_priv->active_crtcs) {
4115                 /* Fully recompute DDB on first atomic commit */
4116                 dev_priv->wm.distrust_bios_wm = true;
4117         } else {
4118                 /* Easy/common case; just sanitize DDB now if everything off */
4119                 memset(ddb, 0, sizeof(*ddb));
4120         }
4121 }
4122
4123 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
4124 {
4125         struct drm_device *dev = crtc->dev;
4126         struct drm_i915_private *dev_priv = dev->dev_private;
4127         struct ilk_wm_values *hw = &dev_priv->wm.hw;
4128         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4129         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4130         struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4131         enum pipe pipe = intel_crtc->pipe;
4132         static const i915_reg_t wm0_pipe_reg[] = {
4133                 [PIPE_A] = WM0_PIPEA_ILK,
4134                 [PIPE_B] = WM0_PIPEB_ILK,
4135                 [PIPE_C] = WM0_PIPEC_IVB,
4136         };
4137
4138         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4139         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4140                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4141
4142         memset(active, 0, sizeof(*active));
4143
4144         active->pipe_enabled = intel_crtc->active;
4145
4146         if (active->pipe_enabled) {
4147                 u32 tmp = hw->wm_pipe[pipe];
4148
4149                 /*
4150                  * For active pipes LP0 watermark is marked as
4151                  * enabled, and LP1+ watermaks as disabled since
4152                  * we can't really reverse compute them in case
4153                  * multiple pipes are active.
4154                  */
4155                 active->wm[0].enable = true;
4156                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
4157                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
4158                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
4159                 active->linetime = hw->wm_linetime[pipe];
4160         } else {
4161                 int level, max_level = ilk_wm_max_level(dev);
4162
4163                 /*
4164                  * For inactive pipes, all watermark levels
4165                  * should be marked as enabled but zeroed,
4166                  * which is what we'd compute them to.
4167                  */
4168                 for (level = 0; level <= max_level; level++)
4169                         active->wm[level].enable = true;
4170         }
4171
4172         intel_crtc->wm.active.ilk = *active;
4173 }
4174
4175 #define _FW_WM(value, plane) \
4176         (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
4177 #define _FW_WM_VLV(value, plane) \
4178         (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
4179
4180 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
4181                                struct vlv_wm_values *wm)
4182 {
4183         enum pipe pipe;
4184         uint32_t tmp;
4185
4186         for_each_pipe(dev_priv, pipe) {
4187                 tmp = I915_READ(VLV_DDL(pipe));
4188
4189                 wm->ddl[pipe].primary =
4190                         (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4191                 wm->ddl[pipe].cursor =
4192                         (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4193                 wm->ddl[pipe].sprite[0] =
4194                         (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4195                 wm->ddl[pipe].sprite[1] =
4196                         (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4197         }
4198
4199         tmp = I915_READ(DSPFW1);
4200         wm->sr.plane = _FW_WM(tmp, SR);
4201         wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
4202         wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
4203         wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
4204
4205         tmp = I915_READ(DSPFW2);
4206         wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
4207         wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
4208         wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
4209
4210         tmp = I915_READ(DSPFW3);
4211         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
4212
4213         if (IS_CHERRYVIEW(dev_priv)) {
4214                 tmp = I915_READ(DSPFW7_CHV);
4215                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4216                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4217
4218                 tmp = I915_READ(DSPFW8_CHV);
4219                 wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
4220                 wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
4221
4222                 tmp = I915_READ(DSPFW9_CHV);
4223                 wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
4224                 wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
4225
4226                 tmp = I915_READ(DSPHOWM);
4227                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4228                 wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
4229                 wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
4230                 wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
4231                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4232                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4233                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4234                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4235                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4236                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4237         } else {
4238                 tmp = I915_READ(DSPFW7);
4239                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4240                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4241
4242                 tmp = I915_READ(DSPHOWM);
4243                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4244                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4245                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4246                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4247                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4248                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4249                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4250         }
4251 }
4252
4253 #undef _FW_WM
4254 #undef _FW_WM_VLV
4255
4256 void vlv_wm_get_hw_state(struct drm_device *dev)
4257 {
4258         struct drm_i915_private *dev_priv = to_i915(dev);
4259         struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4260         struct intel_plane *plane;
4261         enum pipe pipe;
4262         u32 val;
4263
4264         vlv_read_wm_values(dev_priv, wm);
4265
4266         for_each_intel_plane(dev, plane) {
4267                 switch (plane->base.type) {
4268                         int sprite;
4269                 case DRM_PLANE_TYPE_CURSOR:
4270                         plane->wm.fifo_size = 63;
4271                         break;
4272                 case DRM_PLANE_TYPE_PRIMARY:
4273                         plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
4274                         break;
4275                 case DRM_PLANE_TYPE_OVERLAY:
4276                         sprite = plane->plane;
4277                         plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
4278                         break;
4279                 }
4280         }
4281
4282         wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4283         wm->level = VLV_WM_LEVEL_PM2;
4284
4285         if (IS_CHERRYVIEW(dev_priv)) {
4286                 mutex_lock(&dev_priv->rps.hw_lock);
4287
4288                 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4289                 if (val & DSP_MAXFIFO_PM5_ENABLE)
4290                         wm->level = VLV_WM_LEVEL_PM5;
4291
4292                 /*
4293                  * If DDR DVFS is disabled in the BIOS, Punit
4294                  * will never ack the request. So if that happens
4295                  * assume we don't have to enable/disable DDR DVFS
4296                  * dynamically. To test that just set the REQ_ACK
4297                  * bit to poke the Punit, but don't change the
4298                  * HIGH/LOW bits so that we don't actually change
4299                  * the current state.
4300                  */
4301                 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4302                 val |= FORCE_DDR_FREQ_REQ_ACK;
4303                 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4304
4305                 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4306                               FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4307                         DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4308                                       "assuming DDR DVFS is disabled\n");
4309                         dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4310                 } else {
4311                         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4312                         if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4313                                 wm->level = VLV_WM_LEVEL_DDR_DVFS;
4314                 }
4315
4316                 mutex_unlock(&dev_priv->rps.hw_lock);
4317         }
4318
4319         for_each_pipe(dev_priv, pipe)
4320                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4321                               pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4322                               wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4323
4324         DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4325                       wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4326 }
4327
4328 void ilk_wm_get_hw_state(struct drm_device *dev)
4329 {
4330         struct drm_i915_private *dev_priv = dev->dev_private;
4331         struct ilk_wm_values *hw = &dev_priv->wm.hw;
4332         struct drm_crtc *crtc;
4333
4334         for_each_crtc(dev, crtc)
4335                 ilk_pipe_wm_get_hw_state(crtc);
4336
4337         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4338         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4339         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4340
4341         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4342         if (INTEL_INFO(dev)->gen >= 7) {
4343                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4344                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4345         }
4346
4347         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4348                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4349                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4350         else if (IS_IVYBRIDGE(dev))
4351                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4352                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4353
4354         hw->enable_fbc_wm =
4355                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4356 }
4357
4358 /**
4359  * intel_update_watermarks - update FIFO watermark values based on current modes
4360  *
4361  * Calculate watermark values for the various WM regs based on current mode
4362  * and plane configuration.
4363  *
4364  * There are several cases to deal with here:
4365  *   - normal (i.e. non-self-refresh)
4366  *   - self-refresh (SR) mode
4367  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4368  *   - lines are small relative to FIFO size (buffer can hold more than 2
4369  *     lines), so need to account for TLB latency
4370  *
4371  *   The normal calculation is:
4372  *     watermark = dotclock * bytes per pixel * latency
4373  *   where latency is platform & configuration dependent (we assume pessimal
4374  *   values here).
4375  *
4376  *   The SR calculation is:
4377  *     watermark = (trunc(latency/line time)+1) * surface width *
4378  *       bytes per pixel
4379  *   where
4380  *     line time = htotal / dotclock
4381  *     surface width = hdisplay for normal plane and 64 for cursor
4382  *   and latency is assumed to be high, as above.
4383  *
4384  * The final value programmed to the register should always be rounded up,
4385  * and include an extra 2 entries to account for clock crossings.
4386  *
4387  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4388  * to set the non-SR watermarks to 8.
4389  */
4390 void intel_update_watermarks(struct drm_crtc *crtc)
4391 {
4392         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4393
4394         if (dev_priv->display.update_wm)
4395                 dev_priv->display.update_wm(crtc);
4396 }
4397
4398 /*
4399  * Lock protecting IPS related data structures
4400  */
4401 DEFINE_SPINLOCK(mchdev_lock);
4402
4403 /* Global for IPS driver to get at the current i915 device. Protected by
4404  * mchdev_lock. */
4405 static struct drm_i915_private *i915_mch_dev;
4406
4407 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4408 {
4409         u16 rgvswctl;
4410
4411         assert_spin_locked(&mchdev_lock);
4412
4413         rgvswctl = I915_READ16(MEMSWCTL);
4414         if (rgvswctl & MEMCTL_CMD_STS) {
4415                 DRM_DEBUG("gpu busy, RCS change rejected\n");
4416                 return false; /* still busy with another command */
4417         }
4418
4419         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4420                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4421         I915_WRITE16(MEMSWCTL, rgvswctl);
4422         POSTING_READ16(MEMSWCTL);
4423
4424         rgvswctl |= MEMCTL_CMD_STS;
4425         I915_WRITE16(MEMSWCTL, rgvswctl);
4426
4427         return true;
4428 }
4429
4430 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4431 {
4432         u32 rgvmodectl;
4433         u8 fmax, fmin, fstart, vstart;
4434
4435         spin_lock_irq(&mchdev_lock);
4436
4437         rgvmodectl = I915_READ(MEMMODECTL);
4438
4439         /* Enable temp reporting */
4440         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4441         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4442
4443         /* 100ms RC evaluation intervals */
4444         I915_WRITE(RCUPEI, 100000);
4445         I915_WRITE(RCDNEI, 100000);
4446
4447         /* Set max/min thresholds to 90ms and 80ms respectively */
4448         I915_WRITE(RCBMAXAVG, 90000);
4449         I915_WRITE(RCBMINAVG, 80000);
4450
4451         I915_WRITE(MEMIHYST, 1);
4452
4453         /* Set up min, max, and cur for interrupt handling */
4454         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4455         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4456         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4457                 MEMMODE_FSTART_SHIFT;
4458
4459         vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4460                 PXVFREQ_PX_SHIFT;
4461
4462         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4463         dev_priv->ips.fstart = fstart;
4464
4465         dev_priv->ips.max_delay = fstart;
4466         dev_priv->ips.min_delay = fmin;
4467         dev_priv->ips.cur_delay = fstart;
4468
4469         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4470                          fmax, fmin, fstart);
4471
4472         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4473
4474         /*
4475          * Interrupts will be enabled in ironlake_irq_postinstall
4476          */
4477
4478         I915_WRITE(VIDSTART, vstart);
4479         POSTING_READ(VIDSTART);
4480
4481         rgvmodectl |= MEMMODE_SWMODE_EN;
4482         I915_WRITE(MEMMODECTL, rgvmodectl);
4483
4484         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4485                 DRM_ERROR("stuck trying to change perf mode\n");
4486         mdelay(1);
4487
4488         ironlake_set_drps(dev_priv, fstart);
4489
4490         dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4491                 I915_READ(DDREC) + I915_READ(CSIEC);
4492         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4493         dev_priv->ips.last_count2 = I915_READ(GFXEC);
4494         dev_priv->ips.last_time2 = ktime_get_raw_ns();
4495
4496         spin_unlock_irq(&mchdev_lock);
4497 }
4498
4499 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4500 {
4501         u16 rgvswctl;
4502
4503         spin_lock_irq(&mchdev_lock);
4504
4505         rgvswctl = I915_READ16(MEMSWCTL);
4506
4507         /* Ack interrupts, disable EFC interrupt */
4508         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4509         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4510         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4511         I915_WRITE(DEIIR, DE_PCU_EVENT);
4512         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4513
4514         /* Go back to the starting frequency */
4515         ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4516         mdelay(1);
4517         rgvswctl |= MEMCTL_CMD_STS;
4518         I915_WRITE(MEMSWCTL, rgvswctl);
4519         mdelay(1);
4520
4521         spin_unlock_irq(&mchdev_lock);
4522 }
4523
4524 /* There's a funny hw issue where the hw returns all 0 when reading from
4525  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4526  * ourselves, instead of doing a rmw cycle (which might result in us clearing
4527  * all limits and the gpu stuck at whatever frequency it is at atm).
4528  */
4529 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4530 {
4531         u32 limits;
4532
4533         /* Only set the down limit when we've reached the lowest level to avoid
4534          * getting more interrupts, otherwise leave this clear. This prevents a
4535          * race in the hw when coming out of rc6: There's a tiny window where
4536          * the hw runs at the minimal clock before selecting the desired
4537          * frequency, if the down threshold expires in that window we will not
4538          * receive a down interrupt. */
4539         if (IS_GEN9(dev_priv)) {
4540                 limits = (dev_priv->rps.max_freq_softlimit) << 23;
4541                 if (val <= dev_priv->rps.min_freq_softlimit)
4542                         limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4543         } else {
4544                 limits = dev_priv->rps.max_freq_softlimit << 24;
4545                 if (val <= dev_priv->rps.min_freq_softlimit)
4546                         limits |= dev_priv->rps.min_freq_softlimit << 16;
4547         }
4548
4549         return limits;
4550 }
4551
4552 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4553 {
4554         int new_power;
4555         u32 threshold_up = 0, threshold_down = 0; /* in % */
4556         u32 ei_up = 0, ei_down = 0;
4557
4558         new_power = dev_priv->rps.power;
4559         switch (dev_priv->rps.power) {
4560         case LOW_POWER:
4561                 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4562                         new_power = BETWEEN;
4563                 break;
4564
4565         case BETWEEN:
4566                 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4567                         new_power = LOW_POWER;
4568                 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4569                         new_power = HIGH_POWER;
4570                 break;
4571
4572         case HIGH_POWER:
4573                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4574                         new_power = BETWEEN;
4575                 break;
4576         }
4577         /* Max/min bins are special */
4578         if (val <= dev_priv->rps.min_freq_softlimit)
4579                 new_power = LOW_POWER;
4580         if (val >= dev_priv->rps.max_freq_softlimit)
4581                 new_power = HIGH_POWER;
4582         if (new_power == dev_priv->rps.power)
4583                 return;
4584
4585         /* Note the units here are not exactly 1us, but 1280ns. */
4586         switch (new_power) {
4587         case LOW_POWER:
4588                 /* Upclock if more than 95% busy over 16ms */
4589                 ei_up = 16000;
4590                 threshold_up = 95;
4591
4592                 /* Downclock if less than 85% busy over 32ms */
4593                 ei_down = 32000;
4594                 threshold_down = 85;
4595                 break;
4596
4597         case BETWEEN:
4598                 /* Upclock if more than 90% busy over 13ms */
4599                 ei_up = 13000;
4600                 threshold_up = 90;
4601
4602                 /* Downclock if less than 75% busy over 32ms */
4603                 ei_down = 32000;
4604                 threshold_down = 75;
4605                 break;
4606
4607         case HIGH_POWER:
4608                 /* Upclock if more than 85% busy over 10ms */
4609                 ei_up = 10000;
4610                 threshold_up = 85;
4611
4612                 /* Downclock if less than 60% busy over 32ms */
4613                 ei_down = 32000;
4614                 threshold_down = 60;
4615                 break;
4616         }
4617
4618         I915_WRITE(GEN6_RP_UP_EI,
4619                 GT_INTERVAL_FROM_US(dev_priv, ei_up));
4620         I915_WRITE(GEN6_RP_UP_THRESHOLD,
4621                 GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4622
4623         I915_WRITE(GEN6_RP_DOWN_EI,
4624                 GT_INTERVAL_FROM_US(dev_priv, ei_down));
4625         I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4626                 GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4627
4628          I915_WRITE(GEN6_RP_CONTROL,
4629                     GEN6_RP_MEDIA_TURBO |
4630                     GEN6_RP_MEDIA_HW_NORMAL_MODE |
4631                     GEN6_RP_MEDIA_IS_GFX |
4632                     GEN6_RP_ENABLE |
4633                     GEN6_RP_UP_BUSY_AVG |
4634                     GEN6_RP_DOWN_IDLE_AVG);
4635
4636         dev_priv->rps.power = new_power;
4637         dev_priv->rps.up_threshold = threshold_up;
4638         dev_priv->rps.down_threshold = threshold_down;
4639         dev_priv->rps.last_adj = 0;
4640 }
4641
4642 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4643 {
4644         u32 mask = 0;
4645
4646         if (val > dev_priv->rps.min_freq_softlimit)
4647                 mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4648         if (val < dev_priv->rps.max_freq_softlimit)
4649                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4650
4651         mask &= dev_priv->pm_rps_events;
4652
4653         return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4654 }
4655
4656 /* gen6_set_rps is called to update the frequency request, but should also be
4657  * called when the range (min_delay and max_delay) is modified so that we can
4658  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4659 static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4660 {
4661         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4662         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4663                 return;
4664
4665         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4666         WARN_ON(val > dev_priv->rps.max_freq);
4667         WARN_ON(val < dev_priv->rps.min_freq);
4668
4669         /* min/max delay may still have been modified so be sure to
4670          * write the limits value.
4671          */
4672         if (val != dev_priv->rps.cur_freq) {
4673                 gen6_set_rps_thresholds(dev_priv, val);
4674
4675                 if (IS_GEN9(dev_priv))
4676                         I915_WRITE(GEN6_RPNSWREQ,
4677                                    GEN9_FREQUENCY(val));
4678                 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4679                         I915_WRITE(GEN6_RPNSWREQ,
4680                                    HSW_FREQUENCY(val));
4681                 else
4682                         I915_WRITE(GEN6_RPNSWREQ,
4683                                    GEN6_FREQUENCY(val) |
4684                                    GEN6_OFFSET(0) |
4685                                    GEN6_AGGRESSIVE_TURBO);
4686         }
4687
4688         /* Make sure we continue to get interrupts
4689          * until we hit the minimum or maximum frequencies.
4690          */
4691         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4692         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4693
4694         POSTING_READ(GEN6_RPNSWREQ);
4695
4696         dev_priv->rps.cur_freq = val;
4697         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4698 }
4699
4700 static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4701 {
4702         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4703         WARN_ON(val > dev_priv->rps.max_freq);
4704         WARN_ON(val < dev_priv->rps.min_freq);
4705
4706         if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4707                       "Odd GPU freq value\n"))
4708                 val &= ~1;
4709
4710         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4711
4712         if (val != dev_priv->rps.cur_freq) {
4713                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4714                 if (!IS_CHERRYVIEW(dev_priv))
4715                         gen6_set_rps_thresholds(dev_priv, val);
4716         }
4717
4718         dev_priv->rps.cur_freq = val;
4719         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4720 }
4721
4722 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4723  *
4724  * * If Gfx is Idle, then
4725  * 1. Forcewake Media well.
4726  * 2. Request idle freq.
4727  * 3. Release Forcewake of Media well.
4728 */
4729 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4730 {
4731         u32 val = dev_priv->rps.idle_freq;
4732
4733         if (dev_priv->rps.cur_freq <= val)
4734                 return;
4735
4736         /* Wake up the media well, as that takes a lot less
4737          * power than the Render well. */
4738         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4739         valleyview_set_rps(dev_priv, val);
4740         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4741 }
4742
4743 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4744 {
4745         mutex_lock(&dev_priv->rps.hw_lock);
4746         if (dev_priv->rps.enabled) {
4747                 if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4748                         gen6_rps_reset_ei(dev_priv);
4749                 I915_WRITE(GEN6_PMINTRMSK,
4750                            gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4751         }
4752         mutex_unlock(&dev_priv->rps.hw_lock);
4753 }
4754
4755 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4756 {
4757         mutex_lock(&dev_priv->rps.hw_lock);
4758         if (dev_priv->rps.enabled) {
4759                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4760                         vlv_set_rps_idle(dev_priv);
4761                 else
4762                         gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
4763                 dev_priv->rps.last_adj = 0;
4764                 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4765         }
4766         mutex_unlock(&dev_priv->rps.hw_lock);
4767
4768         spin_lock(&dev_priv->rps.client_lock);
4769         while (!list_empty(&dev_priv->rps.clients))
4770                 list_del_init(dev_priv->rps.clients.next);
4771         spin_unlock(&dev_priv->rps.client_lock);
4772 }
4773
4774 void gen6_rps_boost(struct drm_i915_private *dev_priv,
4775                     struct intel_rps_client *rps,
4776                     unsigned long submitted)
4777 {
4778         /* This is intentionally racy! We peek at the state here, then
4779          * validate inside the RPS worker.
4780          */
4781         if (!(dev_priv->mm.busy &&
4782               dev_priv->rps.enabled &&
4783               dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4784                 return;
4785
4786         /* Force a RPS boost (and don't count it against the client) if
4787          * the GPU is severely congested.
4788          */
4789         if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4790                 rps = NULL;
4791
4792         spin_lock(&dev_priv->rps.client_lock);
4793         if (rps == NULL || list_empty(&rps->link)) {
4794                 spin_lock_irq(&dev_priv->irq_lock);
4795                 if (dev_priv->rps.interrupts_enabled) {
4796                         dev_priv->rps.client_boost = true;
4797                         queue_work(dev_priv->wq, &dev_priv->rps.work);
4798                 }
4799                 spin_unlock_irq(&dev_priv->irq_lock);
4800
4801                 if (rps != NULL) {
4802                         list_add(&rps->link, &dev_priv->rps.clients);
4803                         rps->boosts++;
4804                 } else
4805                         dev_priv->rps.boosts++;
4806         }
4807         spin_unlock(&dev_priv->rps.client_lock);
4808 }
4809
4810 void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
4811 {
4812         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4813                 valleyview_set_rps(dev_priv, val);
4814         else
4815                 gen6_set_rps(dev_priv, val);
4816 }
4817
4818 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
4819 {
4820         I915_WRITE(GEN6_RC_CONTROL, 0);
4821         I915_WRITE(GEN9_PG_ENABLE, 0);
4822 }
4823
4824 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
4825 {
4826         I915_WRITE(GEN6_RP_CONTROL, 0);
4827 }
4828
4829 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
4830 {
4831         I915_WRITE(GEN6_RC_CONTROL, 0);
4832         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4833         I915_WRITE(GEN6_RP_CONTROL, 0);
4834 }
4835
4836 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
4837 {
4838         I915_WRITE(GEN6_RC_CONTROL, 0);
4839 }
4840
4841 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
4842 {
4843         /* we're doing forcewake before Disabling RC6,
4844          * This what the BIOS expects when going into suspend */
4845         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4846
4847         I915_WRITE(GEN6_RC_CONTROL, 0);
4848
4849         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4850 }
4851
4852 static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
4853 {
4854         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4855                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4856                         mode = GEN6_RC_CTL_RC6_ENABLE;
4857                 else
4858                         mode = 0;
4859         }
4860         if (HAS_RC6p(dev_priv))
4861                 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4862                               onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
4863                               onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
4864                               onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
4865
4866         else
4867                 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4868                               onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
4869 }
4870
4871 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
4872 {
4873         struct i915_ggtt *ggtt = &dev_priv->ggtt;
4874         bool enable_rc6 = true;
4875         unsigned long rc6_ctx_base;
4876
4877         if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
4878                 DRM_DEBUG_KMS("RC6 Base location not set properly.\n");
4879                 enable_rc6 = false;
4880         }
4881
4882         /*
4883          * The exact context size is not known for BXT, so assume a page size
4884          * for this check.
4885          */
4886         rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
4887         if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
4888               (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
4889                                         ggtt->stolen_reserved_size))) {
4890                 DRM_DEBUG_KMS("RC6 Base address not as expected.\n");
4891                 enable_rc6 = false;
4892         }
4893
4894         if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
4895               ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
4896               ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
4897               ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
4898                 DRM_DEBUG_KMS("Engine Idle wait time not set properly.\n");
4899                 enable_rc6 = false;
4900         }
4901
4902         if (!(I915_READ(GEN6_RC_CONTROL) & (GEN6_RC_CTL_RC6_ENABLE |
4903                                             GEN6_RC_CTL_HW_ENABLE)) &&
4904             ((I915_READ(GEN6_RC_CONTROL) & GEN6_RC_CTL_HW_ENABLE) ||
4905              !(I915_READ(GEN6_RC_STATE) & RC6_STATE))) {
4906                 DRM_DEBUG_KMS("HW/SW RC6 is not enabled by BIOS.\n");
4907                 enable_rc6 = false;
4908         }
4909
4910         return enable_rc6;
4911 }
4912
4913 int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
4914 {
4915         /* No RC6 before Ironlake and code is gone for ilk. */
4916         if (INTEL_INFO(dev_priv)->gen < 6)
4917                 return 0;
4918
4919         if (!enable_rc6)
4920                 return 0;
4921
4922         if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
4923                 DRM_INFO("RC6 disabled by BIOS\n");
4924                 return 0;
4925         }
4926
4927         /* Respect the kernel parameter if it is set */
4928         if (enable_rc6 >= 0) {
4929                 int mask;
4930
4931                 if (HAS_RC6p(dev_priv))
4932                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4933                                INTEL_RC6pp_ENABLE;
4934                 else
4935                         mask = INTEL_RC6_ENABLE;
4936
4937                 if ((enable_rc6 & mask) != enable_rc6)
4938                         DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4939                                       enable_rc6 & mask, enable_rc6, mask);
4940
4941                 return enable_rc6 & mask;
4942         }
4943
4944         if (IS_IVYBRIDGE(dev_priv))
4945                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4946
4947         return INTEL_RC6_ENABLE;
4948 }
4949
4950 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
4951 {
4952         uint32_t rp_state_cap;
4953         u32 ddcc_status = 0;
4954         int ret;
4955
4956         /* All of these values are in units of 50MHz */
4957         dev_priv->rps.cur_freq          = 0;
4958         /* static values from HW: RP0 > RP1 > RPn (min_freq) */
4959         if (IS_BROXTON(dev_priv)) {
4960                 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
4961                 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
4962                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4963                 dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
4964         } else {
4965                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4966                 dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
4967                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4968                 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4969         }
4970
4971         /* hw_max = RP0 until we check for overclocking */
4972         dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
4973
4974         dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4975         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
4976             IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
4977                 ret = sandybridge_pcode_read(dev_priv,
4978                                         HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4979                                         &ddcc_status);
4980                 if (0 == ret)
4981                         dev_priv->rps.efficient_freq =
4982                                 clamp_t(u8,
4983                                         ((ddcc_status >> 8) & 0xff),
4984                                         dev_priv->rps.min_freq,
4985                                         dev_priv->rps.max_freq);
4986         }
4987
4988         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
4989                 /* Store the frequency values in 16.66 MHZ units, which is
4990                    the natural hardware unit for SKL */
4991                 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4992                 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4993                 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4994                 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
4995                 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
4996         }
4997
4998         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4999
5000         /* Preserve min/max settings in case of re-init */
5001         if (dev_priv->rps.max_freq_softlimit == 0)
5002                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5003
5004         if (dev_priv->rps.min_freq_softlimit == 0) {
5005                 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5006                         dev_priv->rps.min_freq_softlimit =
5007                                 max_t(int, dev_priv->rps.efficient_freq,
5008                                       intel_freq_opcode(dev_priv, 450));
5009                 else
5010                         dev_priv->rps.min_freq_softlimit =
5011                                 dev_priv->rps.min_freq;
5012         }
5013 }
5014
5015 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
5016 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
5017 {
5018         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5019
5020         gen6_init_rps_frequencies(dev_priv);
5021
5022         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5023         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5024                 /*
5025                  * BIOS could leave the Hw Turbo enabled, so need to explicitly
5026                  * clear out the Control register just to avoid inconsitency
5027                  * with debugfs interface, which will show  Turbo as enabled
5028                  * only and that is not expected by the User after adding the
5029                  * WaGsvDisableTurbo. Apart from this there is no problem even
5030                  * if the Turbo is left enabled in the Control register, as the
5031                  * Up/Down interrupts would remain masked.
5032                  */
5033                 gen9_disable_rps(dev_priv);
5034                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5035                 return;
5036         }
5037
5038         /* Program defaults and thresholds for RPS*/
5039         I915_WRITE(GEN6_RC_VIDEO_FREQ,
5040                 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
5041
5042         /* 1 second timeout*/
5043         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
5044                 GT_INTERVAL_FROM_US(dev_priv, 1000000));
5045
5046         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
5047
5048         /* Leaning on the below call to gen6_set_rps to program/setup the
5049          * Up/Down EI & threshold registers, as well as the RP_CONTROL,
5050          * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5051         dev_priv->rps.power = HIGH_POWER; /* force a reset */
5052         gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5053
5054         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5055 }
5056
5057 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
5058 {
5059         struct intel_engine_cs *engine;
5060         uint32_t rc6_mask = 0;
5061
5062         /* 1a: Software RC state - RC0 */
5063         I915_WRITE(GEN6_RC_STATE, 0);
5064
5065         /* 1b: Get forcewake during program sequence. Although the driver
5066          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5067         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5068
5069         /* 2a: Disable RC states. */
5070         I915_WRITE(GEN6_RC_CONTROL, 0);
5071
5072         /* 2b: Program RC6 thresholds.*/
5073
5074         /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5075         if (IS_SKYLAKE(dev_priv))
5076                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
5077         else
5078                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
5079         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5080         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5081         for_each_engine(engine, dev_priv)
5082                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5083
5084         if (HAS_GUC(dev_priv))
5085                 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
5086
5087         I915_WRITE(GEN6_RC_SLEEP, 0);
5088
5089         /* 2c: Program Coarse Power Gating Policies. */
5090         I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
5091         I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
5092
5093         /* 3a: Enable RC6 */
5094         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5095                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5096         DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5097         /* WaRsUseTimeoutMode */
5098         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
5099             IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5100                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
5101                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5102                            GEN7_RC_CTL_TO_MODE |
5103                            rc6_mask);
5104         } else {
5105                 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
5106                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5107                            GEN6_RC_CTL_EI_MODE(1) |
5108                            rc6_mask);
5109         }
5110
5111         /*
5112          * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5113          * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5114          */
5115         if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5116                 I915_WRITE(GEN9_PG_ENABLE, 0);
5117         else
5118                 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
5119                                 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5120
5121         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5122 }
5123
5124 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5125 {
5126         struct intel_engine_cs *engine;
5127         uint32_t rc6_mask = 0;
5128
5129         /* 1a: Software RC state - RC0 */
5130         I915_WRITE(GEN6_RC_STATE, 0);
5131
5132         /* 1c & 1d: Get forcewake during program sequence. Although the driver
5133          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5134         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5135
5136         /* 2a: Disable RC states. */
5137         I915_WRITE(GEN6_RC_CONTROL, 0);
5138
5139         /* Initialize rps frequencies */
5140         gen6_init_rps_frequencies(dev_priv);
5141
5142         /* 2b: Program RC6 thresholds.*/
5143         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5144         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5145         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5146         for_each_engine(engine, dev_priv)
5147                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5148         I915_WRITE(GEN6_RC_SLEEP, 0);
5149         if (IS_BROADWELL(dev_priv))
5150                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
5151         else
5152                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5153
5154         /* 3: Enable RC6 */
5155         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5156                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5157         intel_print_rc6_info(dev_priv, rc6_mask);
5158         if (IS_BROADWELL(dev_priv))
5159                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5160                                 GEN7_RC_CTL_TO_MODE |
5161                                 rc6_mask);
5162         else
5163                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5164                                 GEN6_RC_CTL_EI_MODE(1) |
5165                                 rc6_mask);
5166
5167         /* 4 Program defaults and thresholds for RPS*/
5168         I915_WRITE(GEN6_RPNSWREQ,
5169                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5170         I915_WRITE(GEN6_RC_VIDEO_FREQ,
5171                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5172         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
5173         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
5174
5175         /* Docs recommend 900MHz, and 300 MHz respectively */
5176         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
5177                    dev_priv->rps.max_freq_softlimit << 24 |
5178                    dev_priv->rps.min_freq_softlimit << 16);
5179
5180         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
5181         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
5182         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
5183         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
5184
5185         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5186
5187         /* 5: Enable RPS */
5188         I915_WRITE(GEN6_RP_CONTROL,
5189                    GEN6_RP_MEDIA_TURBO |
5190                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5191                    GEN6_RP_MEDIA_IS_GFX |
5192                    GEN6_RP_ENABLE |
5193                    GEN6_RP_UP_BUSY_AVG |
5194                    GEN6_RP_DOWN_IDLE_AVG);
5195
5196         /* 6: Ring frequency + overclocking (our driver does this later */
5197
5198         dev_priv->rps.power = HIGH_POWER; /* force a reset */
5199         gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5200
5201         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5202 }
5203
5204 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5205 {
5206         struct intel_engine_cs *engine;
5207         u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
5208         u32 gtfifodbg;
5209         int rc6_mode;
5210         int ret;
5211
5212         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5213
5214         /* Here begins a magic sequence of register writes to enable
5215          * auto-downclocking.
5216          *
5217          * Perhaps there might be some value in exposing these to
5218          * userspace...
5219          */
5220         I915_WRITE(GEN6_RC_STATE, 0);
5221
5222         /* Clear the DBG now so we don't confuse earlier errors */
5223         gtfifodbg = I915_READ(GTFIFODBG);
5224         if (gtfifodbg) {
5225                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
5226                 I915_WRITE(GTFIFODBG, gtfifodbg);
5227         }
5228
5229         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5230
5231         /* Initialize rps frequencies */
5232         gen6_init_rps_frequencies(dev_priv);
5233
5234         /* disable the counters and set deterministic thresholds */
5235         I915_WRITE(GEN6_RC_CONTROL, 0);
5236
5237         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
5238         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
5239         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
5240         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5241         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5242
5243         for_each_engine(engine, dev_priv)
5244                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5245
5246         I915_WRITE(GEN6_RC_SLEEP, 0);
5247         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5248         if (IS_IVYBRIDGE(dev_priv))
5249                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
5250         else
5251                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5252         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5253         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
5254
5255         /* Check if we are enabling RC6 */
5256         rc6_mode = intel_enable_rc6();
5257         if (rc6_mode & INTEL_RC6_ENABLE)
5258                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
5259
5260         /* We don't use those on Haswell */
5261         if (!IS_HASWELL(dev_priv)) {
5262                 if (rc6_mode & INTEL_RC6p_ENABLE)
5263                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5264
5265                 if (rc6_mode & INTEL_RC6pp_ENABLE)
5266                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
5267         }
5268
5269         intel_print_rc6_info(dev_priv, rc6_mask);
5270
5271         I915_WRITE(GEN6_RC_CONTROL,
5272                    rc6_mask |
5273                    GEN6_RC_CTL_EI_MODE(1) |
5274                    GEN6_RC_CTL_HW_ENABLE);
5275
5276         /* Power down if completely idle for over 50ms */
5277         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5278         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5279
5280         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5281         if (ret)
5282                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5283
5284         ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
5285         if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
5286                 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5287                                  (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5288                                  (pcu_mbox & 0xff) * 50);
5289                 dev_priv->rps.max_freq = pcu_mbox & 0xff;
5290         }
5291
5292         dev_priv->rps.power = HIGH_POWER; /* force a reset */
5293         gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5294
5295         rc6vids = 0;
5296         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5297         if (IS_GEN6(dev_priv) && ret) {
5298                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5299         } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5300                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5301                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5302                 rc6vids &= 0xffff00;
5303                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
5304                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5305                 if (ret)
5306                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5307         }
5308
5309         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5310 }
5311
5312 static void __gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5313 {
5314         int min_freq = 15;
5315         unsigned int gpu_freq;
5316         unsigned int max_ia_freq, min_ring_freq;
5317         unsigned int max_gpu_freq, min_gpu_freq;
5318         int scaling_factor = 180;
5319         struct cpufreq_policy *policy;
5320
5321         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5322
5323         policy = cpufreq_cpu_get(0);
5324         if (policy) {
5325                 max_ia_freq = policy->cpuinfo.max_freq;
5326                 cpufreq_cpu_put(policy);
5327         } else {
5328                 /*
5329                  * Default to measured freq if none found, PCU will ensure we
5330                  * don't go over
5331                  */
5332                 max_ia_freq = tsc_khz;
5333         }
5334
5335         /* Convert from kHz to MHz */
5336         max_ia_freq /= 1000;
5337
5338         min_ring_freq = I915_READ(DCLK) & 0xf;
5339         /* convert DDR frequency from units of 266.6MHz to bandwidth */
5340         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5341
5342         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5343                 /* Convert GT frequency to 50 HZ units */
5344                 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5345                 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5346         } else {
5347                 min_gpu_freq = dev_priv->rps.min_freq;
5348                 max_gpu_freq = dev_priv->rps.max_freq;
5349         }
5350
5351         /*
5352          * For each potential GPU frequency, load a ring frequency we'd like
5353          * to use for memory access.  We do this by specifying the IA frequency
5354          * the PCU should use as a reference to determine the ring frequency.
5355          */
5356         for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5357                 int diff = max_gpu_freq - gpu_freq;
5358                 unsigned int ia_freq = 0, ring_freq = 0;
5359
5360                 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5361                         /*
5362                          * ring_freq = 2 * GT. ring_freq is in 100MHz units
5363                          * No floor required for ring frequency on SKL.
5364                          */
5365                         ring_freq = gpu_freq;
5366                 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
5367                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
5368                         ring_freq = max(min_ring_freq, gpu_freq);
5369                 } else if (IS_HASWELL(dev_priv)) {
5370                         ring_freq = mult_frac(gpu_freq, 5, 4);
5371                         ring_freq = max(min_ring_freq, ring_freq);
5372                         /* leave ia_freq as the default, chosen by cpufreq */
5373                 } else {
5374                         /* On older processors, there is no separate ring
5375                          * clock domain, so in order to boost the bandwidth
5376                          * of the ring, we need to upclock the CPU (ia_freq).
5377                          *
5378                          * For GPU frequencies less than 750MHz,
5379                          * just use the lowest ring freq.
5380                          */
5381                         if (gpu_freq < min_freq)
5382                                 ia_freq = 800;
5383                         else
5384                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5385                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5386                 }
5387
5388                 sandybridge_pcode_write(dev_priv,
5389                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5390                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5391                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5392                                         gpu_freq);
5393         }
5394 }
5395
5396 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5397 {
5398         if (!HAS_CORE_RING_FREQ(dev_priv))
5399                 return;
5400
5401         mutex_lock(&dev_priv->rps.hw_lock);
5402         __gen6_update_ring_freq(dev_priv);
5403         mutex_unlock(&dev_priv->rps.hw_lock);
5404 }
5405
5406 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5407 {
5408         u32 val, rp0;
5409
5410         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5411
5412         switch (INTEL_INFO(dev_priv)->eu_total) {
5413         case 8:
5414                 /* (2 * 4) config */
5415                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5416                 break;
5417         case 12:
5418                 /* (2 * 6) config */
5419                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5420                 break;
5421         case 16:
5422                 /* (2 * 8) config */
5423         default:
5424                 /* Setting (2 * 8) Min RP0 for any other combination */
5425                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5426                 break;
5427         }
5428
5429         rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5430
5431         return rp0;
5432 }
5433
5434 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5435 {
5436         u32 val, rpe;
5437
5438         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5439         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5440
5441         return rpe;
5442 }
5443
5444 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5445 {
5446         u32 val, rp1;
5447
5448         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5449         rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5450
5451         return rp1;
5452 }
5453
5454 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5455 {
5456         u32 val, rp1;
5457
5458         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5459
5460         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5461
5462         return rp1;
5463 }
5464
5465 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5466 {
5467         u32 val, rp0;
5468
5469         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5470
5471         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5472         /* Clamp to max */
5473         rp0 = min_t(u32, rp0, 0xea);
5474
5475         return rp0;
5476 }
5477
5478 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5479 {
5480         u32 val, rpe;
5481
5482         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5483         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5484         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5485         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5486
5487         return rpe;
5488 }
5489
5490 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5491 {
5492         u32 val;
5493
5494         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5495         /*
5496          * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
5497          * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
5498          * a BYT-M B0 the above register contains 0xbf. Moreover when setting
5499          * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
5500          * to make sure it matches what Punit accepts.
5501          */
5502         return max_t(u32, val, 0xc0);
5503 }
5504
5505 /* Check that the pctx buffer wasn't move under us. */
5506 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5507 {
5508         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5509
5510         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5511                              dev_priv->vlv_pctx->stolen->start);
5512 }
5513
5514
5515 /* Check that the pcbr address is not empty. */
5516 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5517 {
5518         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5519
5520         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5521 }
5522
5523 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5524 {
5525         struct i915_ggtt *ggtt = &dev_priv->ggtt;
5526         unsigned long pctx_paddr, paddr;
5527         u32 pcbr;
5528         int pctx_size = 32*1024;
5529
5530         pcbr = I915_READ(VLV_PCBR);
5531         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5532                 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5533                 paddr = (dev_priv->mm.stolen_base +
5534                          (ggtt->stolen_size - pctx_size));
5535
5536                 pctx_paddr = (paddr & (~4095));
5537                 I915_WRITE(VLV_PCBR, pctx_paddr);
5538         }
5539
5540         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5541 }
5542
5543 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5544 {
5545         struct drm_i915_gem_object *pctx;
5546         unsigned long pctx_paddr;
5547         u32 pcbr;
5548         int pctx_size = 24*1024;
5549
5550         mutex_lock(&dev_priv->dev->struct_mutex);
5551
5552         pcbr = I915_READ(VLV_PCBR);
5553         if (pcbr) {
5554                 /* BIOS set it up already, grab the pre-alloc'd space */
5555                 int pcbr_offset;
5556
5557                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5558                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5559                                                                       pcbr_offset,
5560                                                                       I915_GTT_OFFSET_NONE,
5561                                                                       pctx_size);
5562                 goto out;
5563         }
5564
5565         DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5566
5567         /*
5568          * From the Gunit register HAS:
5569          * The Gfx driver is expected to program this register and ensure
5570          * proper allocation within Gfx stolen memory.  For example, this
5571          * register should be programmed such than the PCBR range does not
5572          * overlap with other ranges, such as the frame buffer, protected
5573          * memory, or any other relevant ranges.
5574          */
5575         pctx = i915_gem_object_create_stolen(dev_priv->dev, pctx_size);
5576         if (!pctx) {
5577                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5578                 goto out;
5579         }
5580
5581         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5582         I915_WRITE(VLV_PCBR, pctx_paddr);
5583
5584 out:
5585         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5586         dev_priv->vlv_pctx = pctx;
5587         mutex_unlock(&dev_priv->dev->struct_mutex);
5588 }
5589
5590 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5591 {
5592         if (WARN_ON(!dev_priv->vlv_pctx))
5593                 return;
5594
5595         drm_gem_object_unreference_unlocked(&dev_priv->vlv_pctx->base);
5596         dev_priv->vlv_pctx = NULL;
5597 }
5598
5599 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
5600 {
5601         dev_priv->rps.gpll_ref_freq =
5602                 vlv_get_cck_clock(dev_priv, "GPLL ref",
5603                                   CCK_GPLL_CLOCK_CONTROL,
5604                                   dev_priv->czclk_freq);
5605
5606         DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
5607                          dev_priv->rps.gpll_ref_freq);
5608 }
5609
5610 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5611 {
5612         u32 val;
5613
5614         valleyview_setup_pctx(dev_priv);
5615
5616         vlv_init_gpll_ref_freq(dev_priv);
5617
5618         mutex_lock(&dev_priv->rps.hw_lock);
5619
5620         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5621         switch ((val >> 6) & 3) {
5622         case 0:
5623         case 1:
5624                 dev_priv->mem_freq = 800;
5625                 break;
5626         case 2:
5627                 dev_priv->mem_freq = 1066;
5628                 break;
5629         case 3:
5630                 dev_priv->mem_freq = 1333;
5631                 break;
5632         }
5633         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5634
5635         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5636         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5637         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5638                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5639                          dev_priv->rps.max_freq);
5640
5641         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5642         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5643                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5644                          dev_priv->rps.efficient_freq);
5645
5646         dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5647         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5648                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5649                          dev_priv->rps.rp1_freq);
5650
5651         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5652         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5653                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5654                          dev_priv->rps.min_freq);
5655
5656         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5657
5658         /* Preserve min/max settings in case of re-init */
5659         if (dev_priv->rps.max_freq_softlimit == 0)
5660                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5661
5662         if (dev_priv->rps.min_freq_softlimit == 0)
5663                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5664
5665         mutex_unlock(&dev_priv->rps.hw_lock);
5666 }
5667
5668 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5669 {
5670         u32 val;
5671
5672         cherryview_setup_pctx(dev_priv);
5673
5674         vlv_init_gpll_ref_freq(dev_priv);
5675
5676         mutex_lock(&dev_priv->rps.hw_lock);
5677
5678         mutex_lock(&dev_priv->sb_lock);
5679         val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5680         mutex_unlock(&dev_priv->sb_lock);
5681
5682         switch ((val >> 2) & 0x7) {
5683         case 3:
5684                 dev_priv->mem_freq = 2000;
5685                 break;
5686         default:
5687                 dev_priv->mem_freq = 1600;
5688                 break;
5689         }
5690         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5691
5692         dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5693         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5694         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5695                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5696                          dev_priv->rps.max_freq);
5697
5698         dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5699         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5700                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5701                          dev_priv->rps.efficient_freq);
5702
5703         dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5704         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5705                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5706                          dev_priv->rps.rp1_freq);
5707
5708         /* PUnit validated range is only [RPe, RP0] */
5709         dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5710         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5711                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5712                          dev_priv->rps.min_freq);
5713
5714         WARN_ONCE((dev_priv->rps.max_freq |
5715                    dev_priv->rps.efficient_freq |
5716                    dev_priv->rps.rp1_freq |
5717                    dev_priv->rps.min_freq) & 1,
5718                   "Odd GPU freq values\n");
5719
5720         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5721
5722         /* Preserve min/max settings in case of re-init */
5723         if (dev_priv->rps.max_freq_softlimit == 0)
5724                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5725
5726         if (dev_priv->rps.min_freq_softlimit == 0)
5727                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5728
5729         mutex_unlock(&dev_priv->rps.hw_lock);
5730 }
5731
5732 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5733 {
5734         valleyview_cleanup_pctx(dev_priv);
5735 }
5736
5737 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5738 {
5739         struct intel_engine_cs *engine;
5740         u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5741
5742         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5743
5744         gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
5745                                              GT_FIFO_FREE_ENTRIES_CHV);
5746         if (gtfifodbg) {
5747                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5748                                  gtfifodbg);
5749                 I915_WRITE(GTFIFODBG, gtfifodbg);
5750         }
5751
5752         cherryview_check_pctx(dev_priv);
5753
5754         /* 1a & 1b: Get forcewake during program sequence. Although the driver
5755          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5756         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5757
5758         /*  Disable RC states. */
5759         I915_WRITE(GEN6_RC_CONTROL, 0);
5760
5761         /* 2a: Program RC6 thresholds.*/
5762         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5763         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5764         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5765
5766         for_each_engine(engine, dev_priv)
5767                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5768         I915_WRITE(GEN6_RC_SLEEP, 0);
5769
5770         /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5771         I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5772
5773         /* allows RC6 residency counter to work */
5774         I915_WRITE(VLV_COUNTER_CONTROL,
5775                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5776                                       VLV_MEDIA_RC6_COUNT_EN |
5777                                       VLV_RENDER_RC6_COUNT_EN));
5778
5779         /* For now we assume BIOS is allocating and populating the PCBR  */
5780         pcbr = I915_READ(VLV_PCBR);
5781
5782         /* 3: Enable RC6 */
5783         if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
5784             (pcbr >> VLV_PCBR_ADDR_SHIFT))
5785                 rc6_mode = GEN7_RC_CTL_TO_MODE;
5786
5787         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5788
5789         /* 4 Program defaults and thresholds for RPS*/
5790         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5791         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5792         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5793         I915_WRITE(GEN6_RP_UP_EI, 66000);
5794         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5795
5796         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5797
5798         /* 5: Enable RPS */
5799         I915_WRITE(GEN6_RP_CONTROL,
5800                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5801                    GEN6_RP_MEDIA_IS_GFX |
5802                    GEN6_RP_ENABLE |
5803                    GEN6_RP_UP_BUSY_AVG |
5804                    GEN6_RP_DOWN_IDLE_AVG);
5805
5806         /* Setting Fixed Bias */
5807         val = VLV_OVERRIDE_EN |
5808                   VLV_SOC_TDP_EN |
5809                   CHV_BIAS_CPU_50_SOC_50;
5810         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5811
5812         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5813
5814         /* RPS code assumes GPLL is used */
5815         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5816
5817         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5818         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5819
5820         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5821         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5822                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5823                          dev_priv->rps.cur_freq);
5824
5825         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5826                          intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
5827                          dev_priv->rps.idle_freq);
5828
5829         valleyview_set_rps(dev_priv, dev_priv->rps.idle_freq);
5830
5831         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5832 }
5833
5834 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
5835 {
5836         struct intel_engine_cs *engine;
5837         u32 gtfifodbg, val, rc6_mode = 0;
5838
5839         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5840
5841         valleyview_check_pctx(dev_priv);
5842
5843         gtfifodbg = I915_READ(GTFIFODBG);
5844         if (gtfifodbg) {
5845                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5846                                  gtfifodbg);
5847                 I915_WRITE(GTFIFODBG, gtfifodbg);
5848         }
5849
5850         /* If VLV, Forcewake all wells, else re-direct to regular path */
5851         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5852
5853         /*  Disable RC states. */
5854         I915_WRITE(GEN6_RC_CONTROL, 0);
5855
5856         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5857         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5858         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5859         I915_WRITE(GEN6_RP_UP_EI, 66000);
5860         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5861
5862         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5863
5864         I915_WRITE(GEN6_RP_CONTROL,
5865                    GEN6_RP_MEDIA_TURBO |
5866                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5867                    GEN6_RP_MEDIA_IS_GFX |
5868                    GEN6_RP_ENABLE |
5869                    GEN6_RP_UP_BUSY_AVG |
5870                    GEN6_RP_DOWN_IDLE_CONT);
5871
5872         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5873         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5874         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5875
5876         for_each_engine(engine, dev_priv)
5877                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5878
5879         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5880
5881         /* allows RC6 residency counter to work */
5882         I915_WRITE(VLV_COUNTER_CONTROL,
5883                    _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5884                                       VLV_RENDER_RC0_COUNT_EN |
5885                                       VLV_MEDIA_RC6_COUNT_EN |
5886                                       VLV_RENDER_RC6_COUNT_EN));
5887
5888         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5889                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5890
5891         intel_print_rc6_info(dev_priv, rc6_mode);
5892
5893         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5894
5895         /* Setting Fixed Bias */
5896         val = VLV_OVERRIDE_EN |
5897                   VLV_SOC_TDP_EN |
5898                   VLV_BIAS_CPU_125_SOC_875;
5899         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5900
5901         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5902
5903         /* RPS code assumes GPLL is used */
5904         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5905
5906         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5907         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5908
5909         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5910         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5911                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5912                          dev_priv->rps.cur_freq);
5913
5914         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5915                          intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
5916                          dev_priv->rps.idle_freq);
5917
5918         valleyview_set_rps(dev_priv, dev_priv->rps.idle_freq);
5919
5920         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5921 }
5922
5923 static unsigned long intel_pxfreq(u32 vidfreq)
5924 {
5925         unsigned long freq;
5926         int div = (vidfreq & 0x3f0000) >> 16;
5927         int post = (vidfreq & 0x3000) >> 12;
5928         int pre = (vidfreq & 0x7);
5929
5930         if (!pre)
5931                 return 0;
5932
5933         freq = ((div * 133333) / ((1<<post) * pre));
5934
5935         return freq;
5936 }
5937
5938 static const struct cparams {
5939         u16 i;
5940         u16 t;
5941         u16 m;
5942         u16 c;
5943 } cparams[] = {
5944         { 1, 1333, 301, 28664 },
5945         { 1, 1066, 294, 24460 },
5946         { 1, 800, 294, 25192 },
5947         { 0, 1333, 276, 27605 },
5948         { 0, 1066, 276, 27605 },
5949         { 0, 800, 231, 23784 },
5950 };
5951
5952 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5953 {
5954         u64 total_count, diff, ret;
5955         u32 count1, count2, count3, m = 0, c = 0;
5956         unsigned long now = jiffies_to_msecs(jiffies), diff1;
5957         int i;
5958
5959         assert_spin_locked(&mchdev_lock);
5960
5961         diff1 = now - dev_priv->ips.last_time1;
5962
5963         /* Prevent division-by-zero if we are asking too fast.
5964          * Also, we don't get interesting results if we are polling
5965          * faster than once in 10ms, so just return the saved value
5966          * in such cases.
5967          */
5968         if (diff1 <= 10)
5969                 return dev_priv->ips.chipset_power;
5970
5971         count1 = I915_READ(DMIEC);
5972         count2 = I915_READ(DDREC);
5973         count3 = I915_READ(CSIEC);
5974
5975         total_count = count1 + count2 + count3;
5976
5977         /* FIXME: handle per-counter overflow */
5978         if (total_count < dev_priv->ips.last_count1) {
5979                 diff = ~0UL - dev_priv->ips.last_count1;
5980                 diff += total_count;
5981         } else {
5982                 diff = total_count - dev_priv->ips.last_count1;
5983         }
5984
5985         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5986                 if (cparams[i].i == dev_priv->ips.c_m &&
5987                     cparams[i].t == dev_priv->ips.r_t) {
5988                         m = cparams[i].m;
5989                         c = cparams[i].c;
5990                         break;
5991                 }
5992         }
5993
5994         diff = div_u64(diff, diff1);
5995         ret = ((m * diff) + c);
5996         ret = div_u64(ret, 10);
5997
5998         dev_priv->ips.last_count1 = total_count;
5999         dev_priv->ips.last_time1 = now;
6000
6001         dev_priv->ips.chipset_power = ret;
6002
6003         return ret;
6004 }
6005
6006 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
6007 {
6008         unsigned long val;
6009
6010         if (INTEL_INFO(dev_priv)->gen != 5)
6011                 return 0;
6012
6013         spin_lock_irq(&mchdev_lock);
6014
6015         val = __i915_chipset_val(dev_priv);
6016
6017         spin_unlock_irq(&mchdev_lock);
6018
6019         return val;
6020 }
6021
6022 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
6023 {
6024         unsigned long m, x, b;
6025         u32 tsfs;
6026
6027         tsfs = I915_READ(TSFS);
6028
6029         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
6030         x = I915_READ8(TR1);
6031
6032         b = tsfs & TSFS_INTR_MASK;
6033
6034         return ((m * x) / 127) - b;
6035 }
6036
6037 static int _pxvid_to_vd(u8 pxvid)
6038 {
6039         if (pxvid == 0)
6040                 return 0;
6041
6042         if (pxvid >= 8 && pxvid < 31)
6043                 pxvid = 31;
6044
6045         return (pxvid + 2) * 125;
6046 }
6047
6048 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6049 {
6050         const int vd = _pxvid_to_vd(pxvid);
6051         const int vm = vd - 1125;
6052
6053         if (INTEL_INFO(dev_priv)->is_mobile)
6054                 return vm > 0 ? vm : 0;
6055
6056         return vd;
6057 }
6058
6059 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6060 {
6061         u64 now, diff, diffms;
6062         u32 count;
6063
6064         assert_spin_locked(&mchdev_lock);
6065
6066         now = ktime_get_raw_ns();
6067         diffms = now - dev_priv->ips.last_time2;
6068         do_div(diffms, NSEC_PER_MSEC);
6069
6070         /* Don't divide by 0 */
6071         if (!diffms)
6072                 return;
6073
6074         count = I915_READ(GFXEC);
6075
6076         if (count < dev_priv->ips.last_count2) {
6077                 diff = ~0UL - dev_priv->ips.last_count2;
6078                 diff += count;
6079         } else {
6080                 diff = count - dev_priv->ips.last_count2;
6081         }
6082
6083         dev_priv->ips.last_count2 = count;
6084         dev_priv->ips.last_time2 = now;
6085
6086         /* More magic constants... */
6087         diff = diff * 1181;
6088         diff = div_u64(diff, diffms * 10);
6089         dev_priv->ips.gfx_power = diff;
6090 }
6091
6092 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
6093 {
6094         if (INTEL_INFO(dev_priv)->gen != 5)
6095                 return;
6096
6097         spin_lock_irq(&mchdev_lock);
6098
6099         __i915_update_gfx_val(dev_priv);
6100
6101         spin_unlock_irq(&mchdev_lock);
6102 }
6103
6104 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6105 {
6106         unsigned long t, corr, state1, corr2, state2;
6107         u32 pxvid, ext_v;
6108
6109         assert_spin_locked(&mchdev_lock);
6110
6111         pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6112         pxvid = (pxvid >> 24) & 0x7f;
6113         ext_v = pvid_to_extvid(dev_priv, pxvid);
6114
6115         state1 = ext_v;
6116
6117         t = i915_mch_val(dev_priv);
6118
6119         /* Revel in the empirically derived constants */
6120
6121         /* Correction factor in 1/100000 units */
6122         if (t > 80)
6123                 corr = ((t * 2349) + 135940);
6124         else if (t >= 50)
6125                 corr = ((t * 964) + 29317);
6126         else /* < 50 */
6127                 corr = ((t * 301) + 1004);
6128
6129         corr = corr * ((150142 * state1) / 10000 - 78642);
6130         corr /= 100000;
6131         corr2 = (corr * dev_priv->ips.corr);
6132
6133         state2 = (corr2 * state1) / 10000;
6134         state2 /= 100; /* convert to mW */
6135
6136         __i915_update_gfx_val(dev_priv);
6137
6138         return dev_priv->ips.gfx_power + state2;
6139 }
6140
6141 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
6142 {
6143         unsigned long val;
6144
6145         if (INTEL_INFO(dev_priv)->gen != 5)
6146                 return 0;
6147
6148         spin_lock_irq(&mchdev_lock);
6149
6150         val = __i915_gfx_val(dev_priv);
6151
6152         spin_unlock_irq(&mchdev_lock);
6153
6154         return val;
6155 }
6156
6157 /**
6158  * i915_read_mch_val - return value for IPS use
6159  *
6160  * Calculate and return a value for the IPS driver to use when deciding whether
6161  * we have thermal and power headroom to increase CPU or GPU power budget.
6162  */
6163 unsigned long i915_read_mch_val(void)
6164 {
6165         struct drm_i915_private *dev_priv;
6166         unsigned long chipset_val, graphics_val, ret = 0;
6167
6168         spin_lock_irq(&mchdev_lock);
6169         if (!i915_mch_dev)
6170                 goto out_unlock;
6171         dev_priv = i915_mch_dev;
6172
6173         chipset_val = __i915_chipset_val(dev_priv);
6174         graphics_val = __i915_gfx_val(dev_priv);
6175
6176         ret = chipset_val + graphics_val;
6177
6178 out_unlock:
6179         spin_unlock_irq(&mchdev_lock);
6180
6181         return ret;
6182 }
6183 EXPORT_SYMBOL_GPL(i915_read_mch_val);
6184
6185 /**
6186  * i915_gpu_raise - raise GPU frequency limit
6187  *
6188  * Raise the limit; IPS indicates we have thermal headroom.
6189  */
6190 bool i915_gpu_raise(void)
6191 {
6192         struct drm_i915_private *dev_priv;
6193         bool ret = true;
6194
6195         spin_lock_irq(&mchdev_lock);
6196         if (!i915_mch_dev) {
6197                 ret = false;
6198                 goto out_unlock;
6199         }
6200         dev_priv = i915_mch_dev;
6201
6202         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
6203                 dev_priv->ips.max_delay--;
6204
6205 out_unlock:
6206         spin_unlock_irq(&mchdev_lock);
6207
6208         return ret;
6209 }
6210 EXPORT_SYMBOL_GPL(i915_gpu_raise);
6211
6212 /**
6213  * i915_gpu_lower - lower GPU frequency limit
6214  *
6215  * IPS indicates we're close to a thermal limit, so throttle back the GPU
6216  * frequency maximum.
6217  */
6218 bool i915_gpu_lower(void)
6219 {
6220         struct drm_i915_private *dev_priv;
6221         bool ret = true;
6222
6223         spin_lock_irq(&mchdev_lock);
6224         if (!i915_mch_dev) {
6225                 ret = false;
6226                 goto out_unlock;
6227         }
6228         dev_priv = i915_mch_dev;
6229
6230         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
6231                 dev_priv->ips.max_delay++;
6232
6233 out_unlock:
6234         spin_unlock_irq(&mchdev_lock);
6235
6236         return ret;
6237 }
6238 EXPORT_SYMBOL_GPL(i915_gpu_lower);
6239
6240 /**
6241  * i915_gpu_busy - indicate GPU business to IPS
6242  *
6243  * Tell the IPS driver whether or not the GPU is busy.
6244  */
6245 bool i915_gpu_busy(void)
6246 {
6247         struct drm_i915_private *dev_priv;
6248         struct intel_engine_cs *engine;
6249         bool ret = false;
6250
6251         spin_lock_irq(&mchdev_lock);
6252         if (!i915_mch_dev)
6253                 goto out_unlock;
6254         dev_priv = i915_mch_dev;
6255
6256         for_each_engine(engine, dev_priv)
6257                 ret |= !list_empty(&engine->request_list);
6258
6259 out_unlock:
6260         spin_unlock_irq(&mchdev_lock);
6261
6262         return ret;
6263 }
6264 EXPORT_SYMBOL_GPL(i915_gpu_busy);
6265
6266 /**
6267  * i915_gpu_turbo_disable - disable graphics turbo
6268  *
6269  * Disable graphics turbo by resetting the max frequency and setting the
6270  * current frequency to the default.
6271  */
6272 bool i915_gpu_turbo_disable(void)
6273 {
6274         struct drm_i915_private *dev_priv;
6275         bool ret = true;
6276
6277         spin_lock_irq(&mchdev_lock);
6278         if (!i915_mch_dev) {
6279                 ret = false;
6280                 goto out_unlock;
6281         }
6282         dev_priv = i915_mch_dev;
6283
6284         dev_priv->ips.max_delay = dev_priv->ips.fstart;
6285
6286         if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6287                 ret = false;
6288
6289 out_unlock:
6290         spin_unlock_irq(&mchdev_lock);
6291
6292         return ret;
6293 }
6294 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6295
6296 /**
6297  * Tells the intel_ips driver that the i915 driver is now loaded, if
6298  * IPS got loaded first.
6299  *
6300  * This awkward dance is so that neither module has to depend on the
6301  * other in order for IPS to do the appropriate communication of
6302  * GPU turbo limits to i915.
6303  */
6304 static void
6305 ips_ping_for_i915_load(void)
6306 {
6307         void (*link)(void);
6308
6309         link = symbol_get(ips_link_to_i915_driver);
6310         if (link) {
6311                 link();
6312                 symbol_put(ips_link_to_i915_driver);
6313         }
6314 }
6315
6316 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6317 {
6318         /* We only register the i915 ips part with intel-ips once everything is
6319          * set up, to avoid intel-ips sneaking in and reading bogus values. */
6320         spin_lock_irq(&mchdev_lock);
6321         i915_mch_dev = dev_priv;
6322         spin_unlock_irq(&mchdev_lock);
6323
6324         ips_ping_for_i915_load();
6325 }
6326
6327 void intel_gpu_ips_teardown(void)
6328 {
6329         spin_lock_irq(&mchdev_lock);
6330         i915_mch_dev = NULL;
6331         spin_unlock_irq(&mchdev_lock);
6332 }
6333
6334 static void intel_init_emon(struct drm_i915_private *dev_priv)
6335 {
6336         u32 lcfuse;
6337         u8 pxw[16];
6338         int i;
6339
6340         /* Disable to program */
6341         I915_WRITE(ECR, 0);
6342         POSTING_READ(ECR);
6343
6344         /* Program energy weights for various events */
6345         I915_WRITE(SDEW, 0x15040d00);
6346         I915_WRITE(CSIEW0, 0x007f0000);
6347         I915_WRITE(CSIEW1, 0x1e220004);
6348         I915_WRITE(CSIEW2, 0x04000004);
6349
6350         for (i = 0; i < 5; i++)
6351                 I915_WRITE(PEW(i), 0);
6352         for (i = 0; i < 3; i++)
6353                 I915_WRITE(DEW(i), 0);
6354
6355         /* Program P-state weights to account for frequency power adjustment */
6356         for (i = 0; i < 16; i++) {
6357                 u32 pxvidfreq = I915_READ(PXVFREQ(i));
6358                 unsigned long freq = intel_pxfreq(pxvidfreq);
6359                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6360                         PXVFREQ_PX_SHIFT;
6361                 unsigned long val;
6362
6363                 val = vid * vid;
6364                 val *= (freq / 1000);
6365                 val *= 255;
6366                 val /= (127*127*900);
6367                 if (val > 0xff)
6368                         DRM_ERROR("bad pxval: %ld\n", val);
6369                 pxw[i] = val;
6370         }
6371         /* Render standby states get 0 weight */
6372         pxw[14] = 0;
6373         pxw[15] = 0;
6374
6375         for (i = 0; i < 4; i++) {
6376                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6377                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6378                 I915_WRITE(PXW(i), val);
6379         }
6380
6381         /* Adjust magic regs to magic values (more experimental results) */
6382         I915_WRITE(OGW0, 0);
6383         I915_WRITE(OGW1, 0);
6384         I915_WRITE(EG0, 0x00007f00);
6385         I915_WRITE(EG1, 0x0000000e);
6386         I915_WRITE(EG2, 0x000e0000);
6387         I915_WRITE(EG3, 0x68000300);
6388         I915_WRITE(EG4, 0x42000000);
6389         I915_WRITE(EG5, 0x00140031);
6390         I915_WRITE(EG6, 0);
6391         I915_WRITE(EG7, 0);
6392
6393         for (i = 0; i < 8; i++)
6394                 I915_WRITE(PXWL(i), 0);
6395
6396         /* Enable PMON + select events */
6397         I915_WRITE(ECR, 0x80000019);
6398
6399         lcfuse = I915_READ(LCFUSE02);
6400
6401         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6402 }
6403
6404 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6405 {
6406         /*
6407          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6408          * requirement.
6409          */
6410         if (!i915.enable_rc6) {
6411                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6412                 intel_runtime_pm_get(dev_priv);
6413         }
6414
6415         if (IS_CHERRYVIEW(dev_priv))
6416                 cherryview_init_gt_powersave(dev_priv);
6417         else if (IS_VALLEYVIEW(dev_priv))
6418                 valleyview_init_gt_powersave(dev_priv);
6419 }
6420
6421 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6422 {
6423         if (IS_CHERRYVIEW(dev_priv))
6424                 return;
6425         else if (IS_VALLEYVIEW(dev_priv))
6426                 valleyview_cleanup_gt_powersave(dev_priv);
6427
6428         if (!i915.enable_rc6)
6429                 intel_runtime_pm_put(dev_priv);
6430 }
6431
6432 static void gen6_suspend_rps(struct drm_i915_private *dev_priv)
6433 {
6434         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6435
6436         gen6_disable_rps_interrupts(dev_priv);
6437 }
6438
6439 /**
6440  * intel_suspend_gt_powersave - suspend PM work and helper threads
6441  * @dev_priv: i915 device
6442  *
6443  * We don't want to disable RC6 or other features here, we just want
6444  * to make sure any work we've queued has finished and won't bother
6445  * us while we're suspended.
6446  */
6447 void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
6448 {
6449         if (INTEL_GEN(dev_priv) < 6)
6450                 return;
6451
6452         gen6_suspend_rps(dev_priv);
6453
6454         /* Force GPU to min freq during suspend */
6455         gen6_rps_idle(dev_priv);
6456 }
6457
6458 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6459 {
6460         if (IS_IRONLAKE_M(dev_priv)) {
6461                 ironlake_disable_drps(dev_priv);
6462         } else if (INTEL_INFO(dev_priv)->gen >= 6) {
6463                 intel_suspend_gt_powersave(dev_priv);
6464
6465                 mutex_lock(&dev_priv->rps.hw_lock);
6466                 if (INTEL_INFO(dev_priv)->gen >= 9) {
6467                         gen9_disable_rc6(dev_priv);
6468                         gen9_disable_rps(dev_priv);
6469                 } else if (IS_CHERRYVIEW(dev_priv))
6470                         cherryview_disable_rps(dev_priv);
6471                 else if (IS_VALLEYVIEW(dev_priv))
6472                         valleyview_disable_rps(dev_priv);
6473                 else
6474                         gen6_disable_rps(dev_priv);
6475
6476                 dev_priv->rps.enabled = false;
6477                 mutex_unlock(&dev_priv->rps.hw_lock);
6478         }
6479 }
6480
6481 static void intel_gen6_powersave_work(struct work_struct *work)
6482 {
6483         struct drm_i915_private *dev_priv =
6484                 container_of(work, struct drm_i915_private,
6485                              rps.delayed_resume_work.work);
6486
6487         mutex_lock(&dev_priv->rps.hw_lock);
6488
6489         gen6_reset_rps_interrupts(dev_priv);
6490
6491         if (IS_CHERRYVIEW(dev_priv)) {
6492                 cherryview_enable_rps(dev_priv);
6493         } else if (IS_VALLEYVIEW(dev_priv)) {
6494                 valleyview_enable_rps(dev_priv);
6495         } else if (INTEL_INFO(dev_priv)->gen >= 9) {
6496                 gen9_enable_rc6(dev_priv);
6497                 gen9_enable_rps(dev_priv);
6498                 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6499                         __gen6_update_ring_freq(dev_priv);
6500         } else if (IS_BROADWELL(dev_priv)) {
6501                 gen8_enable_rps(dev_priv);
6502                 __gen6_update_ring_freq(dev_priv);
6503         } else {
6504                 gen6_enable_rps(dev_priv);
6505                 __gen6_update_ring_freq(dev_priv);
6506         }
6507
6508         WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6509         WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6510
6511         WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6512         WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6513
6514         dev_priv->rps.enabled = true;
6515
6516         gen6_enable_rps_interrupts(dev_priv);
6517
6518         mutex_unlock(&dev_priv->rps.hw_lock);
6519
6520         intel_runtime_pm_put(dev_priv);
6521 }
6522
6523 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6524 {
6525         /* Powersaving is controlled by the host when inside a VM */
6526         if (intel_vgpu_active(dev_priv))
6527                 return;
6528
6529         if (IS_IRONLAKE_M(dev_priv)) {
6530                 ironlake_enable_drps(dev_priv);
6531                 mutex_lock(&dev_priv->dev->struct_mutex);
6532                 intel_init_emon(dev_priv);
6533                 mutex_unlock(&dev_priv->dev->struct_mutex);
6534         } else if (INTEL_INFO(dev_priv)->gen >= 6) {
6535                 /*
6536                  * PCU communication is slow and this doesn't need to be
6537                  * done at any specific time, so do this out of our fast path
6538                  * to make resume and init faster.
6539                  *
6540                  * We depend on the HW RC6 power context save/restore
6541                  * mechanism when entering D3 through runtime PM suspend. So
6542                  * disable RPM until RPS/RC6 is properly setup. We can only
6543                  * get here via the driver load/system resume/runtime resume
6544                  * paths, so the _noresume version is enough (and in case of
6545                  * runtime resume it's necessary).
6546                  */
6547                 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6548                                            round_jiffies_up_relative(HZ)))
6549                         intel_runtime_pm_get_noresume(dev_priv);
6550         }
6551 }
6552
6553 void intel_reset_gt_powersave(struct drm_i915_private *dev_priv)
6554 {
6555         if (INTEL_INFO(dev_priv)->gen < 6)
6556                 return;
6557
6558         gen6_suspend_rps(dev_priv);
6559         dev_priv->rps.enabled = false;
6560 }
6561
6562 static void ibx_init_clock_gating(struct drm_device *dev)
6563 {
6564         struct drm_i915_private *dev_priv = dev->dev_private;
6565
6566         /*
6567          * On Ibex Peak and Cougar Point, we need to disable clock
6568          * gating for the panel power sequencer or it will fail to
6569          * start up when no ports are active.
6570          */
6571         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6572 }
6573
6574 static void g4x_disable_trickle_feed(struct drm_device *dev)
6575 {
6576         struct drm_i915_private *dev_priv = dev->dev_private;
6577         enum pipe pipe;
6578
6579         for_each_pipe(dev_priv, pipe) {
6580                 I915_WRITE(DSPCNTR(pipe),
6581                            I915_READ(DSPCNTR(pipe)) |
6582                            DISPPLANE_TRICKLE_FEED_DISABLE);
6583
6584                 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6585                 POSTING_READ(DSPSURF(pipe));
6586         }
6587 }
6588
6589 static void ilk_init_lp_watermarks(struct drm_device *dev)
6590 {
6591         struct drm_i915_private *dev_priv = dev->dev_private;
6592
6593         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6594         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6595         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6596
6597         /*
6598          * Don't touch WM1S_LP_EN here.
6599          * Doing so could cause underruns.
6600          */
6601 }
6602
6603 static void ironlake_init_clock_gating(struct drm_device *dev)
6604 {
6605         struct drm_i915_private *dev_priv = dev->dev_private;
6606         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6607
6608         /*
6609          * Required for FBC
6610          * WaFbcDisableDpfcClockGating:ilk
6611          */
6612         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6613                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6614                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6615
6616         I915_WRITE(PCH_3DCGDIS0,
6617                    MARIUNIT_CLOCK_GATE_DISABLE |
6618                    SVSMUNIT_CLOCK_GATE_DISABLE);
6619         I915_WRITE(PCH_3DCGDIS1,
6620                    VFMUNIT_CLOCK_GATE_DISABLE);
6621
6622         /*
6623          * According to the spec the following bits should be set in
6624          * order to enable memory self-refresh
6625          * The bit 22/21 of 0x42004
6626          * The bit 5 of 0x42020
6627          * The bit 15 of 0x45000
6628          */
6629         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6630                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
6631                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6632         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6633         I915_WRITE(DISP_ARB_CTL,
6634                    (I915_READ(DISP_ARB_CTL) |
6635                     DISP_FBC_WM_DIS));
6636
6637         ilk_init_lp_watermarks(dev);
6638
6639         /*
6640          * Based on the document from hardware guys the following bits
6641          * should be set unconditionally in order to enable FBC.
6642          * The bit 22 of 0x42000
6643          * The bit 22 of 0x42004
6644          * The bit 7,8,9 of 0x42020.
6645          */
6646         if (IS_IRONLAKE_M(dev)) {
6647                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6648                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6649                            I915_READ(ILK_DISPLAY_CHICKEN1) |
6650                            ILK_FBCQ_DIS);
6651                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6652                            I915_READ(ILK_DISPLAY_CHICKEN2) |
6653                            ILK_DPARB_GATE);
6654         }
6655
6656         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6657
6658         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6659                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6660                    ILK_ELPIN_409_SELECT);
6661         I915_WRITE(_3D_CHICKEN2,
6662                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6663                    _3D_CHICKEN2_WM_READ_PIPELINED);
6664
6665         /* WaDisableRenderCachePipelinedFlush:ilk */
6666         I915_WRITE(CACHE_MODE_0,
6667                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6668
6669         /* WaDisable_RenderCache_OperationalFlush:ilk */
6670         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6671
6672         g4x_disable_trickle_feed(dev);
6673
6674         ibx_init_clock_gating(dev);
6675 }
6676
6677 static void cpt_init_clock_gating(struct drm_device *dev)
6678 {
6679         struct drm_i915_private *dev_priv = dev->dev_private;
6680         int pipe;
6681         uint32_t val;
6682
6683         /*
6684          * On Ibex Peak and Cougar Point, we need to disable clock
6685          * gating for the panel power sequencer or it will fail to
6686          * start up when no ports are active.
6687          */
6688         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6689                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6690                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
6691         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6692                    DPLS_EDP_PPS_FIX_DIS);
6693         /* The below fixes the weird display corruption, a few pixels shifted
6694          * downward, on (only) LVDS of some HP laptops with IVY.
6695          */
6696         for_each_pipe(dev_priv, pipe) {
6697                 val = I915_READ(TRANS_CHICKEN2(pipe));
6698                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6699                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6700                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6701                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6702                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6703                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6704                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6705                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6706         }
6707         /* WADP0ClockGatingDisable */
6708         for_each_pipe(dev_priv, pipe) {
6709                 I915_WRITE(TRANS_CHICKEN1(pipe),
6710                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6711         }
6712 }
6713
6714 static void gen6_check_mch_setup(struct drm_device *dev)
6715 {
6716         struct drm_i915_private *dev_priv = dev->dev_private;
6717         uint32_t tmp;
6718
6719         tmp = I915_READ(MCH_SSKPD);
6720         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6721                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6722                               tmp);
6723 }
6724
6725 static void gen6_init_clock_gating(struct drm_device *dev)
6726 {
6727         struct drm_i915_private *dev_priv = dev->dev_private;
6728         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6729
6730         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6731
6732         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6733                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6734                    ILK_ELPIN_409_SELECT);
6735
6736         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6737         I915_WRITE(_3D_CHICKEN,
6738                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6739
6740         /* WaDisable_RenderCache_OperationalFlush:snb */
6741         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6742
6743         /*
6744          * BSpec recoomends 8x4 when MSAA is used,
6745          * however in practice 16x4 seems fastest.
6746          *
6747          * Note that PS/WM thread counts depend on the WIZ hashing
6748          * disable bit, which we don't touch here, but it's good
6749          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6750          */
6751         I915_WRITE(GEN6_GT_MODE,
6752                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6753
6754         ilk_init_lp_watermarks(dev);
6755
6756         I915_WRITE(CACHE_MODE_0,
6757                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6758
6759         I915_WRITE(GEN6_UCGCTL1,
6760                    I915_READ(GEN6_UCGCTL1) |
6761                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6762                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6763
6764         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6765          * gating disable must be set.  Failure to set it results in
6766          * flickering pixels due to Z write ordering failures after
6767          * some amount of runtime in the Mesa "fire" demo, and Unigine
6768          * Sanctuary and Tropics, and apparently anything else with
6769          * alpha test or pixel discard.
6770          *
6771          * According to the spec, bit 11 (RCCUNIT) must also be set,
6772          * but we didn't debug actual testcases to find it out.
6773          *
6774          * WaDisableRCCUnitClockGating:snb
6775          * WaDisableRCPBUnitClockGating:snb
6776          */
6777         I915_WRITE(GEN6_UCGCTL2,
6778                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6779                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6780
6781         /* WaStripsFansDisableFastClipPerformanceFix:snb */
6782         I915_WRITE(_3D_CHICKEN3,
6783                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6784
6785         /*
6786          * Bspec says:
6787          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6788          * 3DSTATE_SF number of SF output attributes is more than 16."
6789          */
6790         I915_WRITE(_3D_CHICKEN3,
6791                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6792
6793         /*
6794          * According to the spec the following bits should be
6795          * set in order to enable memory self-refresh and fbc:
6796          * The bit21 and bit22 of 0x42000
6797          * The bit21 and bit22 of 0x42004
6798          * The bit5 and bit7 of 0x42020
6799          * The bit14 of 0x70180
6800          * The bit14 of 0x71180
6801          *
6802          * WaFbcAsynchFlipDisableFbcQueue:snb
6803          */
6804         I915_WRITE(ILK_DISPLAY_CHICKEN1,
6805                    I915_READ(ILK_DISPLAY_CHICKEN1) |
6806                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6807         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6808                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6809                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6810         I915_WRITE(ILK_DSPCLK_GATE_D,
6811                    I915_READ(ILK_DSPCLK_GATE_D) |
6812                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6813                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6814
6815         g4x_disable_trickle_feed(dev);
6816
6817         cpt_init_clock_gating(dev);
6818
6819         gen6_check_mch_setup(dev);
6820 }
6821
6822 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6823 {
6824         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6825
6826         /*
6827          * WaVSThreadDispatchOverride:ivb,vlv
6828          *
6829          * This actually overrides the dispatch
6830          * mode for all thread types.
6831          */
6832         reg &= ~GEN7_FF_SCHED_MASK;
6833         reg |= GEN7_FF_TS_SCHED_HW;
6834         reg |= GEN7_FF_VS_SCHED_HW;
6835         reg |= GEN7_FF_DS_SCHED_HW;
6836
6837         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6838 }
6839
6840 static void lpt_init_clock_gating(struct drm_device *dev)
6841 {
6842         struct drm_i915_private *dev_priv = dev->dev_private;
6843
6844         /*
6845          * TODO: this bit should only be enabled when really needed, then
6846          * disabled when not needed anymore in order to save power.
6847          */
6848         if (HAS_PCH_LPT_LP(dev))
6849                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6850                            I915_READ(SOUTH_DSPCLK_GATE_D) |
6851                            PCH_LP_PARTITION_LEVEL_DISABLE);
6852
6853         /* WADPOClockGatingDisable:hsw */
6854         I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6855                    I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6856                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6857 }
6858
6859 static void lpt_suspend_hw(struct drm_device *dev)
6860 {
6861         struct drm_i915_private *dev_priv = dev->dev_private;
6862
6863         if (HAS_PCH_LPT_LP(dev)) {
6864                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6865
6866                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6867                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6868         }
6869 }
6870
6871 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
6872                                    int general_prio_credits,
6873                                    int high_prio_credits)
6874 {
6875         u32 misccpctl;
6876
6877         /* WaTempDisableDOPClkGating:bdw */
6878         misccpctl = I915_READ(GEN7_MISCCPCTL);
6879         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6880
6881         I915_WRITE(GEN8_L3SQCREG1,
6882                    L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
6883                    L3_HIGH_PRIO_CREDITS(high_prio_credits));
6884
6885         /*
6886          * Wait at least 100 clocks before re-enabling clock gating.
6887          * See the definition of L3SQCREG1 in BSpec.
6888          */
6889         POSTING_READ(GEN8_L3SQCREG1);
6890         udelay(1);
6891         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6892 }
6893
6894 static void skylake_init_clock_gating(struct drm_device *dev)
6895 {
6896         struct drm_i915_private *dev_priv = dev->dev_private;
6897
6898         /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,kbl */
6899         I915_WRITE(CHICKEN_PAR1_1,
6900                    I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
6901 }
6902
6903 static void broadwell_init_clock_gating(struct drm_device *dev)
6904 {
6905         struct drm_i915_private *dev_priv = dev->dev_private;
6906         enum pipe pipe;
6907
6908         ilk_init_lp_watermarks(dev);
6909
6910         /* WaSwitchSolVfFArbitrationPriority:bdw */
6911         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6912
6913         /* WaPsrDPAMaskVBlankInSRD:bdw */
6914         I915_WRITE(CHICKEN_PAR1_1,
6915                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6916
6917         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6918         for_each_pipe(dev_priv, pipe) {
6919                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
6920                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
6921                            BDW_DPRS_MASK_VBLANK_SRD);
6922         }
6923
6924         /* WaVSRefCountFullforceMissDisable:bdw */
6925         /* WaDSRefCountFullforceMissDisable:bdw */
6926         I915_WRITE(GEN7_FF_THREAD_MODE,
6927                    I915_READ(GEN7_FF_THREAD_MODE) &
6928                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6929
6930         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6931                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6932
6933         /* WaDisableSDEUnitClockGating:bdw */
6934         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6935                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6936
6937         /* WaProgramL3SqcReg1Default:bdw */
6938         gen8_set_l3sqc_credits(dev_priv, 30, 2);
6939
6940         /*
6941          * WaGttCachingOffByDefault:bdw
6942          * GTT cache may not work with big pages, so if those
6943          * are ever enabled GTT cache may need to be disabled.
6944          */
6945         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6946
6947         lpt_init_clock_gating(dev);
6948 }
6949
6950 static void haswell_init_clock_gating(struct drm_device *dev)
6951 {
6952         struct drm_i915_private *dev_priv = dev->dev_private;
6953
6954         ilk_init_lp_watermarks(dev);
6955
6956         /* L3 caching of data atomics doesn't work -- disable it. */
6957         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6958         I915_WRITE(HSW_ROW_CHICKEN3,
6959                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6960
6961         /* This is required by WaCatErrorRejectionIssue:hsw */
6962         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6963                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6964                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6965
6966         /* WaVSRefCountFullforceMissDisable:hsw */
6967         I915_WRITE(GEN7_FF_THREAD_MODE,
6968                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6969
6970         /* WaDisable_RenderCache_OperationalFlush:hsw */
6971         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6972
6973         /* enable HiZ Raw Stall Optimization */
6974         I915_WRITE(CACHE_MODE_0_GEN7,
6975                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6976
6977         /* WaDisable4x2SubspanOptimization:hsw */
6978         I915_WRITE(CACHE_MODE_1,
6979                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6980
6981         /*
6982          * BSpec recommends 8x4 when MSAA is used,
6983          * however in practice 16x4 seems fastest.
6984          *
6985          * Note that PS/WM thread counts depend on the WIZ hashing
6986          * disable bit, which we don't touch here, but it's good
6987          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6988          */
6989         I915_WRITE(GEN7_GT_MODE,
6990                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6991
6992         /* WaSampleCChickenBitEnable:hsw */
6993         I915_WRITE(HALF_SLICE_CHICKEN3,
6994                    _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6995
6996         /* WaSwitchSolVfFArbitrationPriority:hsw */
6997         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6998
6999         /* WaRsPkgCStateDisplayPMReq:hsw */
7000         I915_WRITE(CHICKEN_PAR1_1,
7001                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7002
7003         lpt_init_clock_gating(dev);
7004 }
7005
7006 static void ivybridge_init_clock_gating(struct drm_device *dev)
7007 {
7008         struct drm_i915_private *dev_priv = dev->dev_private;
7009         uint32_t snpcr;
7010
7011         ilk_init_lp_watermarks(dev);
7012
7013         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7014
7015         /* WaDisableEarlyCull:ivb */
7016         I915_WRITE(_3D_CHICKEN3,
7017                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7018
7019         /* WaDisableBackToBackFlipFix:ivb */
7020         I915_WRITE(IVB_CHICKEN3,
7021                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7022                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
7023
7024         /* WaDisablePSDDualDispatchEnable:ivb */
7025         if (IS_IVB_GT1(dev))
7026                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7027                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7028
7029         /* WaDisable_RenderCache_OperationalFlush:ivb */
7030         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7031
7032         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7033         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
7034                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
7035
7036         /* WaApplyL3ControlAndL3ChickenMode:ivb */
7037         I915_WRITE(GEN7_L3CNTLREG1,
7038                         GEN7_WA_FOR_GEN7_L3_CONTROL);
7039         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7040                    GEN7_WA_L3_CHICKEN_MODE);
7041         if (IS_IVB_GT1(dev))
7042                 I915_WRITE(GEN7_ROW_CHICKEN2,
7043                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7044         else {
7045                 /* must write both registers */
7046                 I915_WRITE(GEN7_ROW_CHICKEN2,
7047                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7048                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
7049                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7050         }
7051
7052         /* WaForceL3Serialization:ivb */
7053         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7054                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7055
7056         /*
7057          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7058          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7059          */
7060         I915_WRITE(GEN6_UCGCTL2,
7061                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7062
7063         /* This is required by WaCatErrorRejectionIssue:ivb */
7064         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7065                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7066                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7067
7068         g4x_disable_trickle_feed(dev);
7069
7070         gen7_setup_fixed_func_scheduler(dev_priv);
7071
7072         if (0) { /* causes HiZ corruption on ivb:gt1 */
7073                 /* enable HiZ Raw Stall Optimization */
7074                 I915_WRITE(CACHE_MODE_0_GEN7,
7075                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7076         }
7077
7078         /* WaDisable4x2SubspanOptimization:ivb */
7079         I915_WRITE(CACHE_MODE_1,
7080                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7081
7082         /*
7083          * BSpec recommends 8x4 when MSAA is used,
7084          * however in practice 16x4 seems fastest.
7085          *
7086          * Note that PS/WM thread counts depend on the WIZ hashing
7087          * disable bit, which we don't touch here, but it's good
7088          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7089          */
7090         I915_WRITE(GEN7_GT_MODE,
7091                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7092
7093         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
7094         snpcr &= ~GEN6_MBC_SNPCR_MASK;
7095         snpcr |= GEN6_MBC_SNPCR_MED;
7096         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7097
7098         if (!HAS_PCH_NOP(dev))
7099                 cpt_init_clock_gating(dev);
7100
7101         gen6_check_mch_setup(dev);
7102 }
7103
7104 static void valleyview_init_clock_gating(struct drm_device *dev)
7105 {
7106         struct drm_i915_private *dev_priv = dev->dev_private;
7107
7108         /* WaDisableEarlyCull:vlv */
7109         I915_WRITE(_3D_CHICKEN3,
7110                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7111
7112         /* WaDisableBackToBackFlipFix:vlv */
7113         I915_WRITE(IVB_CHICKEN3,
7114                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7115                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
7116
7117         /* WaPsdDispatchEnable:vlv */
7118         /* WaDisablePSDDualDispatchEnable:vlv */
7119         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7120                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
7121                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7122
7123         /* WaDisable_RenderCache_OperationalFlush:vlv */
7124         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7125
7126         /* WaForceL3Serialization:vlv */
7127         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7128                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7129
7130         /* WaDisableDopClockGating:vlv */
7131         I915_WRITE(GEN7_ROW_CHICKEN2,
7132                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7133
7134         /* This is required by WaCatErrorRejectionIssue:vlv */
7135         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7136                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7137                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7138
7139         gen7_setup_fixed_func_scheduler(dev_priv);
7140
7141         /*
7142          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7143          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7144          */
7145         I915_WRITE(GEN6_UCGCTL2,
7146                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7147
7148         /* WaDisableL3Bank2xClockGate:vlv
7149          * Disabling L3 clock gating- MMIO 940c[25] = 1
7150          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7151         I915_WRITE(GEN7_UCGCTL4,
7152                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7153
7154         /*
7155          * BSpec says this must be set, even though
7156          * WaDisable4x2SubspanOptimization isn't listed for VLV.
7157          */
7158         I915_WRITE(CACHE_MODE_1,
7159                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7160
7161         /*
7162          * BSpec recommends 8x4 when MSAA is used,
7163          * however in practice 16x4 seems fastest.
7164          *
7165          * Note that PS/WM thread counts depend on the WIZ hashing
7166          * disable bit, which we don't touch here, but it's good
7167          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7168          */
7169         I915_WRITE(GEN7_GT_MODE,
7170                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7171
7172         /*
7173          * WaIncreaseL3CreditsForVLVB0:vlv
7174          * This is the hardware default actually.
7175          */
7176         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
7177
7178         /*
7179          * WaDisableVLVClockGating_VBIIssue:vlv
7180          * Disable clock gating on th GCFG unit to prevent a delay
7181          * in the reporting of vblank events.
7182          */
7183         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7184 }
7185
7186 static void cherryview_init_clock_gating(struct drm_device *dev)
7187 {
7188         struct drm_i915_private *dev_priv = dev->dev_private;
7189
7190         /* WaVSRefCountFullforceMissDisable:chv */
7191         /* WaDSRefCountFullforceMissDisable:chv */
7192         I915_WRITE(GEN7_FF_THREAD_MODE,
7193                    I915_READ(GEN7_FF_THREAD_MODE) &
7194                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7195
7196         /* WaDisableSemaphoreAndSyncFlipWait:chv */
7197         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7198                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7199
7200         /* WaDisableCSUnitClockGating:chv */
7201         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7202                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7203
7204         /* WaDisableSDEUnitClockGating:chv */
7205         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7206                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7207
7208         /*
7209          * WaProgramL3SqcReg1Default:chv
7210          * See gfxspecs/Related Documents/Performance Guide/
7211          * LSQC Setting Recommendations.
7212          */
7213         gen8_set_l3sqc_credits(dev_priv, 38, 2);
7214
7215         /*
7216          * GTT cache may not work with big pages, so if those
7217          * are ever enabled GTT cache may need to be disabled.
7218          */
7219         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7220 }
7221
7222 static void g4x_init_clock_gating(struct drm_device *dev)
7223 {
7224         struct drm_i915_private *dev_priv = dev->dev_private;
7225         uint32_t dspclk_gate;
7226
7227         I915_WRITE(RENCLK_GATE_D1, 0);
7228         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7229                    GS_UNIT_CLOCK_GATE_DISABLE |
7230                    CL_UNIT_CLOCK_GATE_DISABLE);
7231         I915_WRITE(RAMCLK_GATE_D, 0);
7232         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7233                 OVRUNIT_CLOCK_GATE_DISABLE |
7234                 OVCUNIT_CLOCK_GATE_DISABLE;
7235         if (IS_GM45(dev))
7236                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7237         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7238
7239         /* WaDisableRenderCachePipelinedFlush */
7240         I915_WRITE(CACHE_MODE_0,
7241                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7242
7243         /* WaDisable_RenderCache_OperationalFlush:g4x */
7244         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7245
7246         g4x_disable_trickle_feed(dev);
7247 }
7248
7249 static void crestline_init_clock_gating(struct drm_device *dev)
7250 {
7251         struct drm_i915_private *dev_priv = dev->dev_private;
7252
7253         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7254         I915_WRITE(RENCLK_GATE_D2, 0);
7255         I915_WRITE(DSPCLK_GATE_D, 0);
7256         I915_WRITE(RAMCLK_GATE_D, 0);
7257         I915_WRITE16(DEUC, 0);
7258         I915_WRITE(MI_ARB_STATE,
7259                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7260
7261         /* WaDisable_RenderCache_OperationalFlush:gen4 */
7262         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7263 }
7264
7265 static void broadwater_init_clock_gating(struct drm_device *dev)
7266 {
7267         struct drm_i915_private *dev_priv = dev->dev_private;
7268
7269         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7270                    I965_RCC_CLOCK_GATE_DISABLE |
7271                    I965_RCPB_CLOCK_GATE_DISABLE |
7272                    I965_ISC_CLOCK_GATE_DISABLE |
7273                    I965_FBC_CLOCK_GATE_DISABLE);
7274         I915_WRITE(RENCLK_GATE_D2, 0);
7275         I915_WRITE(MI_ARB_STATE,
7276                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7277
7278         /* WaDisable_RenderCache_OperationalFlush:gen4 */
7279         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7280 }
7281
7282 static void gen3_init_clock_gating(struct drm_device *dev)
7283 {
7284         struct drm_i915_private *dev_priv = dev->dev_private;
7285         u32 dstate = I915_READ(D_STATE);
7286
7287         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7288                 DSTATE_DOT_CLOCK_GATING;
7289         I915_WRITE(D_STATE, dstate);
7290
7291         if (IS_PINEVIEW(dev))
7292                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7293
7294         /* IIR "flip pending" means done if this bit is set */
7295         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7296
7297         /* interrupts should cause a wake up from C3 */
7298         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7299
7300         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7301         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7302
7303         I915_WRITE(MI_ARB_STATE,
7304                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7305 }
7306
7307 static void i85x_init_clock_gating(struct drm_device *dev)
7308 {
7309         struct drm_i915_private *dev_priv = dev->dev_private;
7310
7311         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7312
7313         /* interrupts should cause a wake up from C3 */
7314         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7315                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7316
7317         I915_WRITE(MEM_MODE,
7318                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7319 }
7320
7321 static void i830_init_clock_gating(struct drm_device *dev)
7322 {
7323         struct drm_i915_private *dev_priv = dev->dev_private;
7324
7325         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7326
7327         I915_WRITE(MEM_MODE,
7328                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7329                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7330 }
7331
7332 void intel_init_clock_gating(struct drm_device *dev)
7333 {
7334         struct drm_i915_private *dev_priv = dev->dev_private;
7335
7336         dev_priv->display.init_clock_gating(dev);
7337 }
7338
7339 void intel_suspend_hw(struct drm_device *dev)
7340 {
7341         if (HAS_PCH_LPT(dev))
7342                 lpt_suspend_hw(dev);
7343 }
7344
7345 static void nop_init_clock_gating(struct drm_device *dev)
7346 {
7347         DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
7348 }
7349
7350 /**
7351  * intel_init_clock_gating_hooks - setup the clock gating hooks
7352  * @dev_priv: device private
7353  *
7354  * Setup the hooks that configure which clocks of a given platform can be
7355  * gated and also apply various GT and display specific workarounds for these
7356  * platforms. Note that some GT specific workarounds are applied separately
7357  * when GPU contexts or batchbuffers start their execution.
7358  */
7359 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
7360 {
7361         if (IS_SKYLAKE(dev_priv))
7362                 dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7363         else if (IS_KABYLAKE(dev_priv))
7364                 dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7365         else if (IS_BROXTON(dev_priv))
7366                 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7367         else if (IS_BROADWELL(dev_priv))
7368                 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7369         else if (IS_CHERRYVIEW(dev_priv))
7370                 dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
7371         else if (IS_HASWELL(dev_priv))
7372                 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7373         else if (IS_IVYBRIDGE(dev_priv))
7374                 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7375         else if (IS_VALLEYVIEW(dev_priv))
7376                 dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
7377         else if (IS_GEN6(dev_priv))
7378                 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7379         else if (IS_GEN5(dev_priv))
7380                 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7381         else if (IS_G4X(dev_priv))
7382                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7383         else if (IS_CRESTLINE(dev_priv))
7384                 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7385         else if (IS_BROADWATER(dev_priv))
7386                 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7387         else if (IS_GEN3(dev_priv))
7388                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7389         else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
7390                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7391         else if (IS_GEN2(dev_priv))
7392                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7393         else {
7394                 MISSING_CASE(INTEL_DEVID(dev_priv));
7395                 dev_priv->display.init_clock_gating = nop_init_clock_gating;
7396         }
7397 }
7398
7399 /* Set up chip specific power management-related functions */
7400 void intel_init_pm(struct drm_device *dev)
7401 {
7402         struct drm_i915_private *dev_priv = dev->dev_private;
7403
7404         intel_fbc_init(dev_priv);
7405
7406         /* For cxsr */
7407         if (IS_PINEVIEW(dev))
7408                 i915_pineview_get_mem_freq(dev);
7409         else if (IS_GEN5(dev))
7410                 i915_ironlake_get_mem_freq(dev);
7411
7412         /* For FIFO watermark updates */
7413         if (INTEL_INFO(dev)->gen >= 9) {
7414                 skl_setup_wm_latency(dev);
7415                 dev_priv->display.update_wm = skl_update_wm;
7416                 dev_priv->display.compute_global_watermarks = skl_compute_wm;
7417         } else if (HAS_PCH_SPLIT(dev)) {
7418                 ilk_setup_wm_latency(dev);
7419
7420                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7421                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7422                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7423                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7424                         dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7425                         dev_priv->display.compute_intermediate_wm =
7426                                 ilk_compute_intermediate_wm;
7427                         dev_priv->display.initial_watermarks =
7428                                 ilk_initial_watermarks;
7429                         dev_priv->display.optimize_watermarks =
7430                                 ilk_optimize_watermarks;
7431                 } else {
7432                         DRM_DEBUG_KMS("Failed to read display plane latency. "
7433                                       "Disable CxSR\n");
7434                 }
7435         } else if (IS_CHERRYVIEW(dev)) {
7436                 vlv_setup_wm_latency(dev);
7437                 dev_priv->display.update_wm = vlv_update_wm;
7438         } else if (IS_VALLEYVIEW(dev)) {
7439                 vlv_setup_wm_latency(dev);
7440                 dev_priv->display.update_wm = vlv_update_wm;
7441         } else if (IS_PINEVIEW(dev)) {
7442                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7443                                             dev_priv->is_ddr3,
7444                                             dev_priv->fsb_freq,
7445                                             dev_priv->mem_freq)) {
7446                         DRM_INFO("failed to find known CxSR latency "
7447                                  "(found ddr%s fsb freq %d, mem freq %d), "
7448                                  "disabling CxSR\n",
7449                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
7450                                  dev_priv->fsb_freq, dev_priv->mem_freq);
7451                         /* Disable CxSR and never update its watermark again */
7452                         intel_set_memory_cxsr(dev_priv, false);
7453                         dev_priv->display.update_wm = NULL;
7454                 } else
7455                         dev_priv->display.update_wm = pineview_update_wm;
7456         } else if (IS_G4X(dev)) {
7457                 dev_priv->display.update_wm = g4x_update_wm;
7458         } else if (IS_GEN4(dev)) {
7459                 dev_priv->display.update_wm = i965_update_wm;
7460         } else if (IS_GEN3(dev)) {
7461                 dev_priv->display.update_wm = i9xx_update_wm;
7462                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7463         } else if (IS_GEN2(dev)) {
7464                 if (INTEL_INFO(dev)->num_pipes == 1) {
7465                         dev_priv->display.update_wm = i845_update_wm;
7466                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
7467                 } else {
7468                         dev_priv->display.update_wm = i9xx_update_wm;
7469                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
7470                 }
7471         } else {
7472                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7473         }
7474 }
7475
7476 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7477 {
7478         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7479
7480         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7481                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7482                 return -EAGAIN;
7483         }
7484
7485         I915_WRITE(GEN6_PCODE_DATA, *val);
7486         I915_WRITE(GEN6_PCODE_DATA1, 0);
7487         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7488
7489         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7490                      500)) {
7491                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7492                 return -ETIMEDOUT;
7493         }
7494
7495         *val = I915_READ(GEN6_PCODE_DATA);
7496         I915_WRITE(GEN6_PCODE_DATA, 0);
7497
7498         return 0;
7499 }
7500
7501 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
7502 {
7503         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7504
7505         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7506                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7507                 return -EAGAIN;
7508         }
7509
7510         I915_WRITE(GEN6_PCODE_DATA, val);
7511         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7512
7513         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7514                      500)) {
7515                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7516                 return -ETIMEDOUT;
7517         }
7518
7519         I915_WRITE(GEN6_PCODE_DATA, 0);
7520
7521         return 0;
7522 }
7523
7524 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7525 {
7526         /*
7527          * N = val - 0xb7
7528          * Slow = Fast = GPLL ref * N
7529          */
7530         return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7531 }
7532
7533 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7534 {
7535         return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7536 }
7537
7538 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7539 {
7540         /*
7541          * N = val / 2
7542          * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
7543          */
7544         return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7545 }
7546
7547 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7548 {
7549         /* CHV needs even values */
7550         return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7551 }
7552
7553 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7554 {
7555         if (IS_GEN9(dev_priv))
7556                 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7557                                          GEN9_FREQ_SCALER);
7558         else if (IS_CHERRYVIEW(dev_priv))
7559                 return chv_gpu_freq(dev_priv, val);
7560         else if (IS_VALLEYVIEW(dev_priv))
7561                 return byt_gpu_freq(dev_priv, val);
7562         else
7563                 return val * GT_FREQUENCY_MULTIPLIER;
7564 }
7565
7566 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7567 {
7568         if (IS_GEN9(dev_priv))
7569                 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7570                                          GT_FREQUENCY_MULTIPLIER);
7571         else if (IS_CHERRYVIEW(dev_priv))
7572                 return chv_freq_opcode(dev_priv, val);
7573         else if (IS_VALLEYVIEW(dev_priv))
7574                 return byt_freq_opcode(dev_priv, val);
7575         else
7576                 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7577 }
7578
7579 struct request_boost {
7580         struct work_struct work;
7581         struct drm_i915_gem_request *req;
7582 };
7583
7584 static void __intel_rps_boost_work(struct work_struct *work)
7585 {
7586         struct request_boost *boost = container_of(work, struct request_boost, work);
7587         struct drm_i915_gem_request *req = boost->req;
7588
7589         if (!i915_gem_request_completed(req, true))
7590                 gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
7591
7592         i915_gem_request_unreference(req);
7593         kfree(boost);
7594 }
7595
7596 void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
7597 {
7598         struct request_boost *boost;
7599
7600         if (req == NULL || INTEL_GEN(req->i915) < 6)
7601                 return;
7602
7603         if (i915_gem_request_completed(req, true))
7604                 return;
7605
7606         boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7607         if (boost == NULL)
7608                 return;
7609
7610         i915_gem_request_reference(req);
7611         boost->req = req;
7612
7613         INIT_WORK(&boost->work, __intel_rps_boost_work);
7614         queue_work(req->i915->wq, &boost->work);
7615 }
7616
7617 void intel_pm_setup(struct drm_device *dev)
7618 {
7619         struct drm_i915_private *dev_priv = dev->dev_private;
7620
7621         mutex_init(&dev_priv->rps.hw_lock);
7622         spin_lock_init(&dev_priv->rps.client_lock);
7623
7624         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7625                           intel_gen6_powersave_work);
7626         INIT_LIST_HEAD(&dev_priv->rps.clients);
7627         INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7628         INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7629
7630         dev_priv->pm.suspended = false;
7631         atomic_set(&dev_priv->pm.wakeref_count, 0);
7632         atomic_set(&dev_priv->pm.atomic_seq, 0);
7633 }