Backmerge tag 'v4.7-rc2' into drm-next
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 /**
35  * DOC: RC6
36  *
37  * RC6 is a special power stage which allows the GPU to enter an very
38  * low-voltage mode when idle, using down to 0V while at this stage.  This
39  * stage is entered automatically when the GPU is idle when RC6 support is
40  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
41  *
42  * There are different RC6 modes available in Intel GPU, which differentiate
43  * among each other with the latency required to enter and leave RC6 and
44  * voltage consumed by the GPU in different states.
45  *
46  * The combination of the following flags define which states GPU is allowed
47  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
48  * RC6pp is deepest RC6. Their support by hardware varies according to the
49  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
50  * which brings the most power savings; deeper states save more power, but
51  * require higher latency to switch to and wake up.
52  */
53 #define INTEL_RC6_ENABLE                        (1<<0)
54 #define INTEL_RC6p_ENABLE                       (1<<1)
55 #define INTEL_RC6pp_ENABLE                      (1<<2)
56
57 static void bxt_init_clock_gating(struct drm_device *dev)
58 {
59         struct drm_i915_private *dev_priv = dev->dev_private;
60
61         /* See Bspec note for PSR2_CTL bit 31, Wa#828:bxt */
62         I915_WRITE(CHICKEN_PAR1_1,
63                    I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
64
65         /* WaDisableSDEUnitClockGating:bxt */
66         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
67                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
68
69         /*
70          * FIXME:
71          * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
72          */
73         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
74                    GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
75
76         /*
77          * Wa: Backlight PWM may stop in the asserted state, causing backlight
78          * to stay fully on.
79          */
80         if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
81                 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
82                            PWM1_GATING_DIS | PWM2_GATING_DIS);
83 }
84
85 static void i915_pineview_get_mem_freq(struct drm_device *dev)
86 {
87         struct drm_i915_private *dev_priv = dev->dev_private;
88         u32 tmp;
89
90         tmp = I915_READ(CLKCFG);
91
92         switch (tmp & CLKCFG_FSB_MASK) {
93         case CLKCFG_FSB_533:
94                 dev_priv->fsb_freq = 533; /* 133*4 */
95                 break;
96         case CLKCFG_FSB_800:
97                 dev_priv->fsb_freq = 800; /* 200*4 */
98                 break;
99         case CLKCFG_FSB_667:
100                 dev_priv->fsb_freq =  667; /* 167*4 */
101                 break;
102         case CLKCFG_FSB_400:
103                 dev_priv->fsb_freq = 400; /* 100*4 */
104                 break;
105         }
106
107         switch (tmp & CLKCFG_MEM_MASK) {
108         case CLKCFG_MEM_533:
109                 dev_priv->mem_freq = 533;
110                 break;
111         case CLKCFG_MEM_667:
112                 dev_priv->mem_freq = 667;
113                 break;
114         case CLKCFG_MEM_800:
115                 dev_priv->mem_freq = 800;
116                 break;
117         }
118
119         /* detect pineview DDR3 setting */
120         tmp = I915_READ(CSHRDDR3CTL);
121         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
122 }
123
124 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
125 {
126         struct drm_i915_private *dev_priv = dev->dev_private;
127         u16 ddrpll, csipll;
128
129         ddrpll = I915_READ16(DDRMPLL1);
130         csipll = I915_READ16(CSIPLL0);
131
132         switch (ddrpll & 0xff) {
133         case 0xc:
134                 dev_priv->mem_freq = 800;
135                 break;
136         case 0x10:
137                 dev_priv->mem_freq = 1066;
138                 break;
139         case 0x14:
140                 dev_priv->mem_freq = 1333;
141                 break;
142         case 0x18:
143                 dev_priv->mem_freq = 1600;
144                 break;
145         default:
146                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
147                                  ddrpll & 0xff);
148                 dev_priv->mem_freq = 0;
149                 break;
150         }
151
152         dev_priv->ips.r_t = dev_priv->mem_freq;
153
154         switch (csipll & 0x3ff) {
155         case 0x00c:
156                 dev_priv->fsb_freq = 3200;
157                 break;
158         case 0x00e:
159                 dev_priv->fsb_freq = 3733;
160                 break;
161         case 0x010:
162                 dev_priv->fsb_freq = 4266;
163                 break;
164         case 0x012:
165                 dev_priv->fsb_freq = 4800;
166                 break;
167         case 0x014:
168                 dev_priv->fsb_freq = 5333;
169                 break;
170         case 0x016:
171                 dev_priv->fsb_freq = 5866;
172                 break;
173         case 0x018:
174                 dev_priv->fsb_freq = 6400;
175                 break;
176         default:
177                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
178                                  csipll & 0x3ff);
179                 dev_priv->fsb_freq = 0;
180                 break;
181         }
182
183         if (dev_priv->fsb_freq == 3200) {
184                 dev_priv->ips.c_m = 0;
185         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
186                 dev_priv->ips.c_m = 1;
187         } else {
188                 dev_priv->ips.c_m = 2;
189         }
190 }
191
192 static const struct cxsr_latency cxsr_latency_table[] = {
193         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
194         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
195         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
196         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
197         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
198
199         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
200         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
201         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
202         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
203         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
204
205         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
206         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
207         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
208         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
209         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
210
211         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
212         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
213         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
214         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
215         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
216
217         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
218         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
219         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
220         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
221         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
222
223         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
224         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
225         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
226         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
227         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
228 };
229
230 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
231                                                          int is_ddr3,
232                                                          int fsb,
233                                                          int mem)
234 {
235         const struct cxsr_latency *latency;
236         int i;
237
238         if (fsb == 0 || mem == 0)
239                 return NULL;
240
241         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
242                 latency = &cxsr_latency_table[i];
243                 if (is_desktop == latency->is_desktop &&
244                     is_ddr3 == latency->is_ddr3 &&
245                     fsb == latency->fsb_freq && mem == latency->mem_freq)
246                         return latency;
247         }
248
249         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
250
251         return NULL;
252 }
253
254 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
255 {
256         u32 val;
257
258         mutex_lock(&dev_priv->rps.hw_lock);
259
260         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
261         if (enable)
262                 val &= ~FORCE_DDR_HIGH_FREQ;
263         else
264                 val |= FORCE_DDR_HIGH_FREQ;
265         val &= ~FORCE_DDR_LOW_FREQ;
266         val |= FORCE_DDR_FREQ_REQ_ACK;
267         vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
268
269         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
270                       FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
271                 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
272
273         mutex_unlock(&dev_priv->rps.hw_lock);
274 }
275
276 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
277 {
278         u32 val;
279
280         mutex_lock(&dev_priv->rps.hw_lock);
281
282         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
283         if (enable)
284                 val |= DSP_MAXFIFO_PM5_ENABLE;
285         else
286                 val &= ~DSP_MAXFIFO_PM5_ENABLE;
287         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
288
289         mutex_unlock(&dev_priv->rps.hw_lock);
290 }
291
292 #define FW_WM(value, plane) \
293         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
294
295 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
296 {
297         struct drm_device *dev = dev_priv->dev;
298         u32 val;
299
300         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
301                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
302                 POSTING_READ(FW_BLC_SELF_VLV);
303                 dev_priv->wm.vlv.cxsr = enable;
304         } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
305                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
306                 POSTING_READ(FW_BLC_SELF);
307         } else if (IS_PINEVIEW(dev)) {
308                 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
309                 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
310                 I915_WRITE(DSPFW3, val);
311                 POSTING_READ(DSPFW3);
312         } else if (IS_I945G(dev) || IS_I945GM(dev)) {
313                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
314                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
315                 I915_WRITE(FW_BLC_SELF, val);
316                 POSTING_READ(FW_BLC_SELF);
317         } else if (IS_I915GM(dev)) {
318                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
319                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
320                 I915_WRITE(INSTPM, val);
321                 POSTING_READ(INSTPM);
322         } else {
323                 return;
324         }
325
326         DRM_DEBUG_KMS("memory self-refresh is %s\n",
327                       enable ? "enabled" : "disabled");
328 }
329
330
331 /*
332  * Latency for FIFO fetches is dependent on several factors:
333  *   - memory configuration (speed, channels)
334  *   - chipset
335  *   - current MCH state
336  * It can be fairly high in some situations, so here we assume a fairly
337  * pessimal value.  It's a tradeoff between extra memory fetches (if we
338  * set this value too high, the FIFO will fetch frequently to stay full)
339  * and power consumption (set it too low to save power and we might see
340  * FIFO underruns and display "flicker").
341  *
342  * A value of 5us seems to be a good balance; safe for very low end
343  * platforms but not overly aggressive on lower latency configs.
344  */
345 static const int pessimal_latency_ns = 5000;
346
347 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
348         ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
349
350 static int vlv_get_fifo_size(struct drm_device *dev,
351                               enum pipe pipe, int plane)
352 {
353         struct drm_i915_private *dev_priv = dev->dev_private;
354         int sprite0_start, sprite1_start, size;
355
356         switch (pipe) {
357                 uint32_t dsparb, dsparb2, dsparb3;
358         case PIPE_A:
359                 dsparb = I915_READ(DSPARB);
360                 dsparb2 = I915_READ(DSPARB2);
361                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
362                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
363                 break;
364         case PIPE_B:
365                 dsparb = I915_READ(DSPARB);
366                 dsparb2 = I915_READ(DSPARB2);
367                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
368                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
369                 break;
370         case PIPE_C:
371                 dsparb2 = I915_READ(DSPARB2);
372                 dsparb3 = I915_READ(DSPARB3);
373                 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
374                 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
375                 break;
376         default:
377                 return 0;
378         }
379
380         switch (plane) {
381         case 0:
382                 size = sprite0_start;
383                 break;
384         case 1:
385                 size = sprite1_start - sprite0_start;
386                 break;
387         case 2:
388                 size = 512 - 1 - sprite1_start;
389                 break;
390         default:
391                 return 0;
392         }
393
394         DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
395                       pipe_name(pipe), plane == 0 ? "primary" : "sprite",
396                       plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
397                       size);
398
399         return size;
400 }
401
402 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
403 {
404         struct drm_i915_private *dev_priv = dev->dev_private;
405         uint32_t dsparb = I915_READ(DSPARB);
406         int size;
407
408         size = dsparb & 0x7f;
409         if (plane)
410                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
411
412         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
413                       plane ? "B" : "A", size);
414
415         return size;
416 }
417
418 static int i830_get_fifo_size(struct drm_device *dev, int plane)
419 {
420         struct drm_i915_private *dev_priv = dev->dev_private;
421         uint32_t dsparb = I915_READ(DSPARB);
422         int size;
423
424         size = dsparb & 0x1ff;
425         if (plane)
426                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
427         size >>= 1; /* Convert to cachelines */
428
429         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
430                       plane ? "B" : "A", size);
431
432         return size;
433 }
434
435 static int i845_get_fifo_size(struct drm_device *dev, int plane)
436 {
437         struct drm_i915_private *dev_priv = dev->dev_private;
438         uint32_t dsparb = I915_READ(DSPARB);
439         int size;
440
441         size = dsparb & 0x7f;
442         size >>= 2; /* Convert to cachelines */
443
444         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
445                       plane ? "B" : "A",
446                       size);
447
448         return size;
449 }
450
451 /* Pineview has different values for various configs */
452 static const struct intel_watermark_params pineview_display_wm = {
453         .fifo_size = PINEVIEW_DISPLAY_FIFO,
454         .max_wm = PINEVIEW_MAX_WM,
455         .default_wm = PINEVIEW_DFT_WM,
456         .guard_size = PINEVIEW_GUARD_WM,
457         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
458 };
459 static const struct intel_watermark_params pineview_display_hplloff_wm = {
460         .fifo_size = PINEVIEW_DISPLAY_FIFO,
461         .max_wm = PINEVIEW_MAX_WM,
462         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
463         .guard_size = PINEVIEW_GUARD_WM,
464         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
465 };
466 static const struct intel_watermark_params pineview_cursor_wm = {
467         .fifo_size = PINEVIEW_CURSOR_FIFO,
468         .max_wm = PINEVIEW_CURSOR_MAX_WM,
469         .default_wm = PINEVIEW_CURSOR_DFT_WM,
470         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
471         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
472 };
473 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
474         .fifo_size = PINEVIEW_CURSOR_FIFO,
475         .max_wm = PINEVIEW_CURSOR_MAX_WM,
476         .default_wm = PINEVIEW_CURSOR_DFT_WM,
477         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
478         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
479 };
480 static const struct intel_watermark_params g4x_wm_info = {
481         .fifo_size = G4X_FIFO_SIZE,
482         .max_wm = G4X_MAX_WM,
483         .default_wm = G4X_MAX_WM,
484         .guard_size = 2,
485         .cacheline_size = G4X_FIFO_LINE_SIZE,
486 };
487 static const struct intel_watermark_params g4x_cursor_wm_info = {
488         .fifo_size = I965_CURSOR_FIFO,
489         .max_wm = I965_CURSOR_MAX_WM,
490         .default_wm = I965_CURSOR_DFT_WM,
491         .guard_size = 2,
492         .cacheline_size = G4X_FIFO_LINE_SIZE,
493 };
494 static const struct intel_watermark_params i965_cursor_wm_info = {
495         .fifo_size = I965_CURSOR_FIFO,
496         .max_wm = I965_CURSOR_MAX_WM,
497         .default_wm = I965_CURSOR_DFT_WM,
498         .guard_size = 2,
499         .cacheline_size = I915_FIFO_LINE_SIZE,
500 };
501 static const struct intel_watermark_params i945_wm_info = {
502         .fifo_size = I945_FIFO_SIZE,
503         .max_wm = I915_MAX_WM,
504         .default_wm = 1,
505         .guard_size = 2,
506         .cacheline_size = I915_FIFO_LINE_SIZE,
507 };
508 static const struct intel_watermark_params i915_wm_info = {
509         .fifo_size = I915_FIFO_SIZE,
510         .max_wm = I915_MAX_WM,
511         .default_wm = 1,
512         .guard_size = 2,
513         .cacheline_size = I915_FIFO_LINE_SIZE,
514 };
515 static const struct intel_watermark_params i830_a_wm_info = {
516         .fifo_size = I855GM_FIFO_SIZE,
517         .max_wm = I915_MAX_WM,
518         .default_wm = 1,
519         .guard_size = 2,
520         .cacheline_size = I830_FIFO_LINE_SIZE,
521 };
522 static const struct intel_watermark_params i830_bc_wm_info = {
523         .fifo_size = I855GM_FIFO_SIZE,
524         .max_wm = I915_MAX_WM/2,
525         .default_wm = 1,
526         .guard_size = 2,
527         .cacheline_size = I830_FIFO_LINE_SIZE,
528 };
529 static const struct intel_watermark_params i845_wm_info = {
530         .fifo_size = I830_FIFO_SIZE,
531         .max_wm = I915_MAX_WM,
532         .default_wm = 1,
533         .guard_size = 2,
534         .cacheline_size = I830_FIFO_LINE_SIZE,
535 };
536
537 /**
538  * intel_calculate_wm - calculate watermark level
539  * @clock_in_khz: pixel clock
540  * @wm: chip FIFO params
541  * @cpp: bytes per pixel
542  * @latency_ns: memory latency for the platform
543  *
544  * Calculate the watermark level (the level at which the display plane will
545  * start fetching from memory again).  Each chip has a different display
546  * FIFO size and allocation, so the caller needs to figure that out and pass
547  * in the correct intel_watermark_params structure.
548  *
549  * As the pixel clock runs, the FIFO will be drained at a rate that depends
550  * on the pixel size.  When it reaches the watermark level, it'll start
551  * fetching FIFO line sized based chunks from memory until the FIFO fills
552  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
553  * will occur, and a display engine hang could result.
554  */
555 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
556                                         const struct intel_watermark_params *wm,
557                                         int fifo_size, int cpp,
558                                         unsigned long latency_ns)
559 {
560         long entries_required, wm_size;
561
562         /*
563          * Note: we need to make sure we don't overflow for various clock &
564          * latency values.
565          * clocks go from a few thousand to several hundred thousand.
566          * latency is usually a few thousand
567          */
568         entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
569                 1000;
570         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
571
572         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
573
574         wm_size = fifo_size - (entries_required + wm->guard_size);
575
576         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
577
578         /* Don't promote wm_size to unsigned... */
579         if (wm_size > (long)wm->max_wm)
580                 wm_size = wm->max_wm;
581         if (wm_size <= 0)
582                 wm_size = wm->default_wm;
583
584         /*
585          * Bspec seems to indicate that the value shouldn't be lower than
586          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
587          * Lets go for 8 which is the burst size since certain platforms
588          * already use a hardcoded 8 (which is what the spec says should be
589          * done).
590          */
591         if (wm_size <= 8)
592                 wm_size = 8;
593
594         return wm_size;
595 }
596
597 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
598 {
599         struct drm_crtc *crtc, *enabled = NULL;
600
601         for_each_crtc(dev, crtc) {
602                 if (intel_crtc_active(crtc)) {
603                         if (enabled)
604                                 return NULL;
605                         enabled = crtc;
606                 }
607         }
608
609         return enabled;
610 }
611
612 static void pineview_update_wm(struct drm_crtc *unused_crtc)
613 {
614         struct drm_device *dev = unused_crtc->dev;
615         struct drm_i915_private *dev_priv = dev->dev_private;
616         struct drm_crtc *crtc;
617         const struct cxsr_latency *latency;
618         u32 reg;
619         unsigned long wm;
620
621         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
622                                          dev_priv->fsb_freq, dev_priv->mem_freq);
623         if (!latency) {
624                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
625                 intel_set_memory_cxsr(dev_priv, false);
626                 return;
627         }
628
629         crtc = single_enabled_crtc(dev);
630         if (crtc) {
631                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
632                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
633                 int clock = adjusted_mode->crtc_clock;
634
635                 /* Display SR */
636                 wm = intel_calculate_wm(clock, &pineview_display_wm,
637                                         pineview_display_wm.fifo_size,
638                                         cpp, latency->display_sr);
639                 reg = I915_READ(DSPFW1);
640                 reg &= ~DSPFW_SR_MASK;
641                 reg |= FW_WM(wm, SR);
642                 I915_WRITE(DSPFW1, reg);
643                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
644
645                 /* cursor SR */
646                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
647                                         pineview_display_wm.fifo_size,
648                                         cpp, latency->cursor_sr);
649                 reg = I915_READ(DSPFW3);
650                 reg &= ~DSPFW_CURSOR_SR_MASK;
651                 reg |= FW_WM(wm, CURSOR_SR);
652                 I915_WRITE(DSPFW3, reg);
653
654                 /* Display HPLL off SR */
655                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
656                                         pineview_display_hplloff_wm.fifo_size,
657                                         cpp, latency->display_hpll_disable);
658                 reg = I915_READ(DSPFW3);
659                 reg &= ~DSPFW_HPLL_SR_MASK;
660                 reg |= FW_WM(wm, HPLL_SR);
661                 I915_WRITE(DSPFW3, reg);
662
663                 /* cursor HPLL off SR */
664                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
665                                         pineview_display_hplloff_wm.fifo_size,
666                                         cpp, latency->cursor_hpll_disable);
667                 reg = I915_READ(DSPFW3);
668                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
669                 reg |= FW_WM(wm, HPLL_CURSOR);
670                 I915_WRITE(DSPFW3, reg);
671                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
672
673                 intel_set_memory_cxsr(dev_priv, true);
674         } else {
675                 intel_set_memory_cxsr(dev_priv, false);
676         }
677 }
678
679 static bool g4x_compute_wm0(struct drm_device *dev,
680                             int plane,
681                             const struct intel_watermark_params *display,
682                             int display_latency_ns,
683                             const struct intel_watermark_params *cursor,
684                             int cursor_latency_ns,
685                             int *plane_wm,
686                             int *cursor_wm)
687 {
688         struct drm_crtc *crtc;
689         const struct drm_display_mode *adjusted_mode;
690         int htotal, hdisplay, clock, cpp;
691         int line_time_us, line_count;
692         int entries, tlb_miss;
693
694         crtc = intel_get_crtc_for_plane(dev, plane);
695         if (!intel_crtc_active(crtc)) {
696                 *cursor_wm = cursor->guard_size;
697                 *plane_wm = display->guard_size;
698                 return false;
699         }
700
701         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
702         clock = adjusted_mode->crtc_clock;
703         htotal = adjusted_mode->crtc_htotal;
704         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
705         cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
706
707         /* Use the small buffer method to calculate plane watermark */
708         entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
709         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
710         if (tlb_miss > 0)
711                 entries += tlb_miss;
712         entries = DIV_ROUND_UP(entries, display->cacheline_size);
713         *plane_wm = entries + display->guard_size;
714         if (*plane_wm > (int)display->max_wm)
715                 *plane_wm = display->max_wm;
716
717         /* Use the large buffer method to calculate cursor watermark */
718         line_time_us = max(htotal * 1000 / clock, 1);
719         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
720         entries = line_count * crtc->cursor->state->crtc_w * cpp;
721         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
722         if (tlb_miss > 0)
723                 entries += tlb_miss;
724         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
725         *cursor_wm = entries + cursor->guard_size;
726         if (*cursor_wm > (int)cursor->max_wm)
727                 *cursor_wm = (int)cursor->max_wm;
728
729         return true;
730 }
731
732 /*
733  * Check the wm result.
734  *
735  * If any calculated watermark values is larger than the maximum value that
736  * can be programmed into the associated watermark register, that watermark
737  * must be disabled.
738  */
739 static bool g4x_check_srwm(struct drm_device *dev,
740                            int display_wm, int cursor_wm,
741                            const struct intel_watermark_params *display,
742                            const struct intel_watermark_params *cursor)
743 {
744         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
745                       display_wm, cursor_wm);
746
747         if (display_wm > display->max_wm) {
748                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
749                               display_wm, display->max_wm);
750                 return false;
751         }
752
753         if (cursor_wm > cursor->max_wm) {
754                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
755                               cursor_wm, cursor->max_wm);
756                 return false;
757         }
758
759         if (!(display_wm || cursor_wm)) {
760                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
761                 return false;
762         }
763
764         return true;
765 }
766
767 static bool g4x_compute_srwm(struct drm_device *dev,
768                              int plane,
769                              int latency_ns,
770                              const struct intel_watermark_params *display,
771                              const struct intel_watermark_params *cursor,
772                              int *display_wm, int *cursor_wm)
773 {
774         struct drm_crtc *crtc;
775         const struct drm_display_mode *adjusted_mode;
776         int hdisplay, htotal, cpp, clock;
777         unsigned long line_time_us;
778         int line_count, line_size;
779         int small, large;
780         int entries;
781
782         if (!latency_ns) {
783                 *display_wm = *cursor_wm = 0;
784                 return false;
785         }
786
787         crtc = intel_get_crtc_for_plane(dev, plane);
788         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
789         clock = adjusted_mode->crtc_clock;
790         htotal = adjusted_mode->crtc_htotal;
791         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
792         cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
793
794         line_time_us = max(htotal * 1000 / clock, 1);
795         line_count = (latency_ns / line_time_us + 1000) / 1000;
796         line_size = hdisplay * cpp;
797
798         /* Use the minimum of the small and large buffer method for primary */
799         small = ((clock * cpp / 1000) * latency_ns) / 1000;
800         large = line_count * line_size;
801
802         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
803         *display_wm = entries + display->guard_size;
804
805         /* calculate the self-refresh watermark for display cursor */
806         entries = line_count * cpp * crtc->cursor->state->crtc_w;
807         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
808         *cursor_wm = entries + cursor->guard_size;
809
810         return g4x_check_srwm(dev,
811                               *display_wm, *cursor_wm,
812                               display, cursor);
813 }
814
815 #define FW_WM_VLV(value, plane) \
816         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
817
818 static void vlv_write_wm_values(struct intel_crtc *crtc,
819                                 const struct vlv_wm_values *wm)
820 {
821         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
822         enum pipe pipe = crtc->pipe;
823
824         I915_WRITE(VLV_DDL(pipe),
825                    (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
826                    (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
827                    (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
828                    (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
829
830         I915_WRITE(DSPFW1,
831                    FW_WM(wm->sr.plane, SR) |
832                    FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
833                    FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
834                    FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
835         I915_WRITE(DSPFW2,
836                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
837                    FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
838                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
839         I915_WRITE(DSPFW3,
840                    FW_WM(wm->sr.cursor, CURSOR_SR));
841
842         if (IS_CHERRYVIEW(dev_priv)) {
843                 I915_WRITE(DSPFW7_CHV,
844                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
845                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
846                 I915_WRITE(DSPFW8_CHV,
847                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
848                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
849                 I915_WRITE(DSPFW9_CHV,
850                            FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
851                            FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
852                 I915_WRITE(DSPHOWM,
853                            FW_WM(wm->sr.plane >> 9, SR_HI) |
854                            FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
855                            FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
856                            FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
857                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
858                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
859                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
860                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
861                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
862                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
863         } else {
864                 I915_WRITE(DSPFW7,
865                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
866                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
867                 I915_WRITE(DSPHOWM,
868                            FW_WM(wm->sr.plane >> 9, SR_HI) |
869                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
870                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
871                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
872                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
873                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
874                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
875         }
876
877         /* zero (unused) WM1 watermarks */
878         I915_WRITE(DSPFW4, 0);
879         I915_WRITE(DSPFW5, 0);
880         I915_WRITE(DSPFW6, 0);
881         I915_WRITE(DSPHOWM1, 0);
882
883         POSTING_READ(DSPFW1);
884 }
885
886 #undef FW_WM_VLV
887
888 enum vlv_wm_level {
889         VLV_WM_LEVEL_PM2,
890         VLV_WM_LEVEL_PM5,
891         VLV_WM_LEVEL_DDR_DVFS,
892 };
893
894 /* latency must be in 0.1us units. */
895 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
896                                    unsigned int pipe_htotal,
897                                    unsigned int horiz_pixels,
898                                    unsigned int cpp,
899                                    unsigned int latency)
900 {
901         unsigned int ret;
902
903         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
904         ret = (ret + 1) * horiz_pixels * cpp;
905         ret = DIV_ROUND_UP(ret, 64);
906
907         return ret;
908 }
909
910 static void vlv_setup_wm_latency(struct drm_device *dev)
911 {
912         struct drm_i915_private *dev_priv = dev->dev_private;
913
914         /* all latencies in usec */
915         dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
916
917         dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
918
919         if (IS_CHERRYVIEW(dev_priv)) {
920                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
921                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
922
923                 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
924         }
925 }
926
927 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
928                                      struct intel_crtc *crtc,
929                                      const struct intel_plane_state *state,
930                                      int level)
931 {
932         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
933         int clock, htotal, cpp, width, wm;
934
935         if (dev_priv->wm.pri_latency[level] == 0)
936                 return USHRT_MAX;
937
938         if (!state->visible)
939                 return 0;
940
941         cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
942         clock = crtc->config->base.adjusted_mode.crtc_clock;
943         htotal = crtc->config->base.adjusted_mode.crtc_htotal;
944         width = crtc->config->pipe_src_w;
945         if (WARN_ON(htotal == 0))
946                 htotal = 1;
947
948         if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
949                 /*
950                  * FIXME the formula gives values that are
951                  * too big for the cursor FIFO, and hence we
952                  * would never be able to use cursors. For
953                  * now just hardcode the watermark.
954                  */
955                 wm = 63;
956         } else {
957                 wm = vlv_wm_method2(clock, htotal, width, cpp,
958                                     dev_priv->wm.pri_latency[level] * 10);
959         }
960
961         return min_t(int, wm, USHRT_MAX);
962 }
963
964 static void vlv_compute_fifo(struct intel_crtc *crtc)
965 {
966         struct drm_device *dev = crtc->base.dev;
967         struct vlv_wm_state *wm_state = &crtc->wm_state;
968         struct intel_plane *plane;
969         unsigned int total_rate = 0;
970         const int fifo_size = 512 - 1;
971         int fifo_extra, fifo_left = fifo_size;
972
973         for_each_intel_plane_on_crtc(dev, crtc, plane) {
974                 struct intel_plane_state *state =
975                         to_intel_plane_state(plane->base.state);
976
977                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
978                         continue;
979
980                 if (state->visible) {
981                         wm_state->num_active_planes++;
982                         total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
983                 }
984         }
985
986         for_each_intel_plane_on_crtc(dev, crtc, plane) {
987                 struct intel_plane_state *state =
988                         to_intel_plane_state(plane->base.state);
989                 unsigned int rate;
990
991                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
992                         plane->wm.fifo_size = 63;
993                         continue;
994                 }
995
996                 if (!state->visible) {
997                         plane->wm.fifo_size = 0;
998                         continue;
999                 }
1000
1001                 rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1002                 plane->wm.fifo_size = fifo_size * rate / total_rate;
1003                 fifo_left -= plane->wm.fifo_size;
1004         }
1005
1006         fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1007
1008         /* spread the remainder evenly */
1009         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1010                 int plane_extra;
1011
1012                 if (fifo_left == 0)
1013                         break;
1014
1015                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1016                         continue;
1017
1018                 /* give it all to the first plane if none are active */
1019                 if (plane->wm.fifo_size == 0 &&
1020                     wm_state->num_active_planes)
1021                         continue;
1022
1023                 plane_extra = min(fifo_extra, fifo_left);
1024                 plane->wm.fifo_size += plane_extra;
1025                 fifo_left -= plane_extra;
1026         }
1027
1028         WARN_ON(fifo_left != 0);
1029 }
1030
1031 static void vlv_invert_wms(struct intel_crtc *crtc)
1032 {
1033         struct vlv_wm_state *wm_state = &crtc->wm_state;
1034         int level;
1035
1036         for (level = 0; level < wm_state->num_levels; level++) {
1037                 struct drm_device *dev = crtc->base.dev;
1038                 const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1039                 struct intel_plane *plane;
1040
1041                 wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1042                 wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1043
1044                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1045                         switch (plane->base.type) {
1046                                 int sprite;
1047                         case DRM_PLANE_TYPE_CURSOR:
1048                                 wm_state->wm[level].cursor = plane->wm.fifo_size -
1049                                         wm_state->wm[level].cursor;
1050                                 break;
1051                         case DRM_PLANE_TYPE_PRIMARY:
1052                                 wm_state->wm[level].primary = plane->wm.fifo_size -
1053                                         wm_state->wm[level].primary;
1054                                 break;
1055                         case DRM_PLANE_TYPE_OVERLAY:
1056                                 sprite = plane->plane;
1057                                 wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1058                                         wm_state->wm[level].sprite[sprite];
1059                                 break;
1060                         }
1061                 }
1062         }
1063 }
1064
1065 static void vlv_compute_wm(struct intel_crtc *crtc)
1066 {
1067         struct drm_device *dev = crtc->base.dev;
1068         struct vlv_wm_state *wm_state = &crtc->wm_state;
1069         struct intel_plane *plane;
1070         int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1071         int level;
1072
1073         memset(wm_state, 0, sizeof(*wm_state));
1074
1075         wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1076         wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1077
1078         wm_state->num_active_planes = 0;
1079
1080         vlv_compute_fifo(crtc);
1081
1082         if (wm_state->num_active_planes != 1)
1083                 wm_state->cxsr = false;
1084
1085         if (wm_state->cxsr) {
1086                 for (level = 0; level < wm_state->num_levels; level++) {
1087                         wm_state->sr[level].plane = sr_fifo_size;
1088                         wm_state->sr[level].cursor = 63;
1089                 }
1090         }
1091
1092         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1093                 struct intel_plane_state *state =
1094                         to_intel_plane_state(plane->base.state);
1095
1096                 if (!state->visible)
1097                         continue;
1098
1099                 /* normal watermarks */
1100                 for (level = 0; level < wm_state->num_levels; level++) {
1101                         int wm = vlv_compute_wm_level(plane, crtc, state, level);
1102                         int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1103
1104                         /* hack */
1105                         if (WARN_ON(level == 0 && wm > max_wm))
1106                                 wm = max_wm;
1107
1108                         if (wm > plane->wm.fifo_size)
1109                                 break;
1110
1111                         switch (plane->base.type) {
1112                                 int sprite;
1113                         case DRM_PLANE_TYPE_CURSOR:
1114                                 wm_state->wm[level].cursor = wm;
1115                                 break;
1116                         case DRM_PLANE_TYPE_PRIMARY:
1117                                 wm_state->wm[level].primary = wm;
1118                                 break;
1119                         case DRM_PLANE_TYPE_OVERLAY:
1120                                 sprite = plane->plane;
1121                                 wm_state->wm[level].sprite[sprite] = wm;
1122                                 break;
1123                         }
1124                 }
1125
1126                 wm_state->num_levels = level;
1127
1128                 if (!wm_state->cxsr)
1129                         continue;
1130
1131                 /* maxfifo watermarks */
1132                 switch (plane->base.type) {
1133                         int sprite, level;
1134                 case DRM_PLANE_TYPE_CURSOR:
1135                         for (level = 0; level < wm_state->num_levels; level++)
1136                                 wm_state->sr[level].cursor =
1137                                         wm_state->wm[level].cursor;
1138                         break;
1139                 case DRM_PLANE_TYPE_PRIMARY:
1140                         for (level = 0; level < wm_state->num_levels; level++)
1141                                 wm_state->sr[level].plane =
1142                                         min(wm_state->sr[level].plane,
1143                                             wm_state->wm[level].primary);
1144                         break;
1145                 case DRM_PLANE_TYPE_OVERLAY:
1146                         sprite = plane->plane;
1147                         for (level = 0; level < wm_state->num_levels; level++)
1148                                 wm_state->sr[level].plane =
1149                                         min(wm_state->sr[level].plane,
1150                                             wm_state->wm[level].sprite[sprite]);
1151                         break;
1152                 }
1153         }
1154
1155         /* clear any (partially) filled invalid levels */
1156         for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1157                 memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1158                 memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1159         }
1160
1161         vlv_invert_wms(crtc);
1162 }
1163
1164 #define VLV_FIFO(plane, value) \
1165         (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1166
1167 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1168 {
1169         struct drm_device *dev = crtc->base.dev;
1170         struct drm_i915_private *dev_priv = to_i915(dev);
1171         struct intel_plane *plane;
1172         int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1173
1174         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1175                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1176                         WARN_ON(plane->wm.fifo_size != 63);
1177                         continue;
1178                 }
1179
1180                 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1181                         sprite0_start = plane->wm.fifo_size;
1182                 else if (plane->plane == 0)
1183                         sprite1_start = sprite0_start + plane->wm.fifo_size;
1184                 else
1185                         fifo_size = sprite1_start + plane->wm.fifo_size;
1186         }
1187
1188         WARN_ON(fifo_size != 512 - 1);
1189
1190         DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1191                       pipe_name(crtc->pipe), sprite0_start,
1192                       sprite1_start, fifo_size);
1193
1194         switch (crtc->pipe) {
1195                 uint32_t dsparb, dsparb2, dsparb3;
1196         case PIPE_A:
1197                 dsparb = I915_READ(DSPARB);
1198                 dsparb2 = I915_READ(DSPARB2);
1199
1200                 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1201                             VLV_FIFO(SPRITEB, 0xff));
1202                 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1203                            VLV_FIFO(SPRITEB, sprite1_start));
1204
1205                 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1206                              VLV_FIFO(SPRITEB_HI, 0x1));
1207                 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1208                            VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1209
1210                 I915_WRITE(DSPARB, dsparb);
1211                 I915_WRITE(DSPARB2, dsparb2);
1212                 break;
1213         case PIPE_B:
1214                 dsparb = I915_READ(DSPARB);
1215                 dsparb2 = I915_READ(DSPARB2);
1216
1217                 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1218                             VLV_FIFO(SPRITED, 0xff));
1219                 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1220                            VLV_FIFO(SPRITED, sprite1_start));
1221
1222                 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1223                              VLV_FIFO(SPRITED_HI, 0xff));
1224                 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1225                            VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1226
1227                 I915_WRITE(DSPARB, dsparb);
1228                 I915_WRITE(DSPARB2, dsparb2);
1229                 break;
1230         case PIPE_C:
1231                 dsparb3 = I915_READ(DSPARB3);
1232                 dsparb2 = I915_READ(DSPARB2);
1233
1234                 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1235                              VLV_FIFO(SPRITEF, 0xff));
1236                 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1237                             VLV_FIFO(SPRITEF, sprite1_start));
1238
1239                 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1240                              VLV_FIFO(SPRITEF_HI, 0xff));
1241                 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1242                            VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1243
1244                 I915_WRITE(DSPARB3, dsparb3);
1245                 I915_WRITE(DSPARB2, dsparb2);
1246                 break;
1247         default:
1248                 break;
1249         }
1250 }
1251
1252 #undef VLV_FIFO
1253
1254 static void vlv_merge_wm(struct drm_device *dev,
1255                          struct vlv_wm_values *wm)
1256 {
1257         struct intel_crtc *crtc;
1258         int num_active_crtcs = 0;
1259
1260         wm->level = to_i915(dev)->wm.max_level;
1261         wm->cxsr = true;
1262
1263         for_each_intel_crtc(dev, crtc) {
1264                 const struct vlv_wm_state *wm_state = &crtc->wm_state;
1265
1266                 if (!crtc->active)
1267                         continue;
1268
1269                 if (!wm_state->cxsr)
1270                         wm->cxsr = false;
1271
1272                 num_active_crtcs++;
1273                 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1274         }
1275
1276         if (num_active_crtcs != 1)
1277                 wm->cxsr = false;
1278
1279         if (num_active_crtcs > 1)
1280                 wm->level = VLV_WM_LEVEL_PM2;
1281
1282         for_each_intel_crtc(dev, crtc) {
1283                 struct vlv_wm_state *wm_state = &crtc->wm_state;
1284                 enum pipe pipe = crtc->pipe;
1285
1286                 if (!crtc->active)
1287                         continue;
1288
1289                 wm->pipe[pipe] = wm_state->wm[wm->level];
1290                 if (wm->cxsr)
1291                         wm->sr = wm_state->sr[wm->level];
1292
1293                 wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1294                 wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1295                 wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1296                 wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1297         }
1298 }
1299
1300 static void vlv_update_wm(struct drm_crtc *crtc)
1301 {
1302         struct drm_device *dev = crtc->dev;
1303         struct drm_i915_private *dev_priv = dev->dev_private;
1304         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1305         enum pipe pipe = intel_crtc->pipe;
1306         struct vlv_wm_values wm = {};
1307
1308         vlv_compute_wm(intel_crtc);
1309         vlv_merge_wm(dev, &wm);
1310
1311         if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1312                 /* FIXME should be part of crtc atomic commit */
1313                 vlv_pipe_set_fifo_size(intel_crtc);
1314                 return;
1315         }
1316
1317         if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1318             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1319                 chv_set_memory_dvfs(dev_priv, false);
1320
1321         if (wm.level < VLV_WM_LEVEL_PM5 &&
1322             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1323                 chv_set_memory_pm5(dev_priv, false);
1324
1325         if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1326                 intel_set_memory_cxsr(dev_priv, false);
1327
1328         /* FIXME should be part of crtc atomic commit */
1329         vlv_pipe_set_fifo_size(intel_crtc);
1330
1331         vlv_write_wm_values(intel_crtc, &wm);
1332
1333         DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1334                       "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1335                       pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1336                       wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1337                       wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1338
1339         if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1340                 intel_set_memory_cxsr(dev_priv, true);
1341
1342         if (wm.level >= VLV_WM_LEVEL_PM5 &&
1343             dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1344                 chv_set_memory_pm5(dev_priv, true);
1345
1346         if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1347             dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1348                 chv_set_memory_dvfs(dev_priv, true);
1349
1350         dev_priv->wm.vlv = wm;
1351 }
1352
1353 #define single_plane_enabled(mask) is_power_of_2(mask)
1354
1355 static void g4x_update_wm(struct drm_crtc *crtc)
1356 {
1357         struct drm_device *dev = crtc->dev;
1358         static const int sr_latency_ns = 12000;
1359         struct drm_i915_private *dev_priv = dev->dev_private;
1360         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1361         int plane_sr, cursor_sr;
1362         unsigned int enabled = 0;
1363         bool cxsr_enabled;
1364
1365         if (g4x_compute_wm0(dev, PIPE_A,
1366                             &g4x_wm_info, pessimal_latency_ns,
1367                             &g4x_cursor_wm_info, pessimal_latency_ns,
1368                             &planea_wm, &cursora_wm))
1369                 enabled |= 1 << PIPE_A;
1370
1371         if (g4x_compute_wm0(dev, PIPE_B,
1372                             &g4x_wm_info, pessimal_latency_ns,
1373                             &g4x_cursor_wm_info, pessimal_latency_ns,
1374                             &planeb_wm, &cursorb_wm))
1375                 enabled |= 1 << PIPE_B;
1376
1377         if (single_plane_enabled(enabled) &&
1378             g4x_compute_srwm(dev, ffs(enabled) - 1,
1379                              sr_latency_ns,
1380                              &g4x_wm_info,
1381                              &g4x_cursor_wm_info,
1382                              &plane_sr, &cursor_sr)) {
1383                 cxsr_enabled = true;
1384         } else {
1385                 cxsr_enabled = false;
1386                 intel_set_memory_cxsr(dev_priv, false);
1387                 plane_sr = cursor_sr = 0;
1388         }
1389
1390         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1391                       "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1392                       planea_wm, cursora_wm,
1393                       planeb_wm, cursorb_wm,
1394                       plane_sr, cursor_sr);
1395
1396         I915_WRITE(DSPFW1,
1397                    FW_WM(plane_sr, SR) |
1398                    FW_WM(cursorb_wm, CURSORB) |
1399                    FW_WM(planeb_wm, PLANEB) |
1400                    FW_WM(planea_wm, PLANEA));
1401         I915_WRITE(DSPFW2,
1402                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1403                    FW_WM(cursora_wm, CURSORA));
1404         /* HPLL off in SR has some issues on G4x... disable it */
1405         I915_WRITE(DSPFW3,
1406                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1407                    FW_WM(cursor_sr, CURSOR_SR));
1408
1409         if (cxsr_enabled)
1410                 intel_set_memory_cxsr(dev_priv, true);
1411 }
1412
1413 static void i965_update_wm(struct drm_crtc *unused_crtc)
1414 {
1415         struct drm_device *dev = unused_crtc->dev;
1416         struct drm_i915_private *dev_priv = dev->dev_private;
1417         struct drm_crtc *crtc;
1418         int srwm = 1;
1419         int cursor_sr = 16;
1420         bool cxsr_enabled;
1421
1422         /* Calc sr entries for one plane configs */
1423         crtc = single_enabled_crtc(dev);
1424         if (crtc) {
1425                 /* self-refresh has much higher latency */
1426                 static const int sr_latency_ns = 12000;
1427                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1428                 int clock = adjusted_mode->crtc_clock;
1429                 int htotal = adjusted_mode->crtc_htotal;
1430                 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1431                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1432                 unsigned long line_time_us;
1433                 int entries;
1434
1435                 line_time_us = max(htotal * 1000 / clock, 1);
1436
1437                 /* Use ns/us then divide to preserve precision */
1438                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1439                         cpp * hdisplay;
1440                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1441                 srwm = I965_FIFO_SIZE - entries;
1442                 if (srwm < 0)
1443                         srwm = 1;
1444                 srwm &= 0x1ff;
1445                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1446                               entries, srwm);
1447
1448                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1449                         cpp * crtc->cursor->state->crtc_w;
1450                 entries = DIV_ROUND_UP(entries,
1451                                           i965_cursor_wm_info.cacheline_size);
1452                 cursor_sr = i965_cursor_wm_info.fifo_size -
1453                         (entries + i965_cursor_wm_info.guard_size);
1454
1455                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1456                         cursor_sr = i965_cursor_wm_info.max_wm;
1457
1458                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1459                               "cursor %d\n", srwm, cursor_sr);
1460
1461                 cxsr_enabled = true;
1462         } else {
1463                 cxsr_enabled = false;
1464                 /* Turn off self refresh if both pipes are enabled */
1465                 intel_set_memory_cxsr(dev_priv, false);
1466         }
1467
1468         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1469                       srwm);
1470
1471         /* 965 has limitations... */
1472         I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1473                    FW_WM(8, CURSORB) |
1474                    FW_WM(8, PLANEB) |
1475                    FW_WM(8, PLANEA));
1476         I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1477                    FW_WM(8, PLANEC_OLD));
1478         /* update cursor SR watermark */
1479         I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1480
1481         if (cxsr_enabled)
1482                 intel_set_memory_cxsr(dev_priv, true);
1483 }
1484
1485 #undef FW_WM
1486
1487 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1488 {
1489         struct drm_device *dev = unused_crtc->dev;
1490         struct drm_i915_private *dev_priv = dev->dev_private;
1491         const struct intel_watermark_params *wm_info;
1492         uint32_t fwater_lo;
1493         uint32_t fwater_hi;
1494         int cwm, srwm = 1;
1495         int fifo_size;
1496         int planea_wm, planeb_wm;
1497         struct drm_crtc *crtc, *enabled = NULL;
1498
1499         if (IS_I945GM(dev))
1500                 wm_info = &i945_wm_info;
1501         else if (!IS_GEN2(dev))
1502                 wm_info = &i915_wm_info;
1503         else
1504                 wm_info = &i830_a_wm_info;
1505
1506         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1507         crtc = intel_get_crtc_for_plane(dev, 0);
1508         if (intel_crtc_active(crtc)) {
1509                 const struct drm_display_mode *adjusted_mode;
1510                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1511                 if (IS_GEN2(dev))
1512                         cpp = 4;
1513
1514                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1515                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1516                                                wm_info, fifo_size, cpp,
1517                                                pessimal_latency_ns);
1518                 enabled = crtc;
1519         } else {
1520                 planea_wm = fifo_size - wm_info->guard_size;
1521                 if (planea_wm > (long)wm_info->max_wm)
1522                         planea_wm = wm_info->max_wm;
1523         }
1524
1525         if (IS_GEN2(dev))
1526                 wm_info = &i830_bc_wm_info;
1527
1528         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1529         crtc = intel_get_crtc_for_plane(dev, 1);
1530         if (intel_crtc_active(crtc)) {
1531                 const struct drm_display_mode *adjusted_mode;
1532                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1533                 if (IS_GEN2(dev))
1534                         cpp = 4;
1535
1536                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1537                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1538                                                wm_info, fifo_size, cpp,
1539                                                pessimal_latency_ns);
1540                 if (enabled == NULL)
1541                         enabled = crtc;
1542                 else
1543                         enabled = NULL;
1544         } else {
1545                 planeb_wm = fifo_size - wm_info->guard_size;
1546                 if (planeb_wm > (long)wm_info->max_wm)
1547                         planeb_wm = wm_info->max_wm;
1548         }
1549
1550         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1551
1552         if (IS_I915GM(dev) && enabled) {
1553                 struct drm_i915_gem_object *obj;
1554
1555                 obj = intel_fb_obj(enabled->primary->state->fb);
1556
1557                 /* self-refresh seems busted with untiled */
1558                 if (obj->tiling_mode == I915_TILING_NONE)
1559                         enabled = NULL;
1560         }
1561
1562         /*
1563          * Overlay gets an aggressive default since video jitter is bad.
1564          */
1565         cwm = 2;
1566
1567         /* Play safe and disable self-refresh before adjusting watermarks. */
1568         intel_set_memory_cxsr(dev_priv, false);
1569
1570         /* Calc sr entries for one plane configs */
1571         if (HAS_FW_BLC(dev) && enabled) {
1572                 /* self-refresh has much higher latency */
1573                 static const int sr_latency_ns = 6000;
1574                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1575                 int clock = adjusted_mode->crtc_clock;
1576                 int htotal = adjusted_mode->crtc_htotal;
1577                 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1578                 int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1579                 unsigned long line_time_us;
1580                 int entries;
1581
1582                 line_time_us = max(htotal * 1000 / clock, 1);
1583
1584                 /* Use ns/us then divide to preserve precision */
1585                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1586                         cpp * hdisplay;
1587                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1588                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1589                 srwm = wm_info->fifo_size - entries;
1590                 if (srwm < 0)
1591                         srwm = 1;
1592
1593                 if (IS_I945G(dev) || IS_I945GM(dev))
1594                         I915_WRITE(FW_BLC_SELF,
1595                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1596                 else if (IS_I915GM(dev))
1597                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1598         }
1599
1600         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1601                       planea_wm, planeb_wm, cwm, srwm);
1602
1603         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1604         fwater_hi = (cwm & 0x1f);
1605
1606         /* Set request length to 8 cachelines per fetch */
1607         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1608         fwater_hi = fwater_hi | (1 << 8);
1609
1610         I915_WRITE(FW_BLC, fwater_lo);
1611         I915_WRITE(FW_BLC2, fwater_hi);
1612
1613         if (enabled)
1614                 intel_set_memory_cxsr(dev_priv, true);
1615 }
1616
1617 static void i845_update_wm(struct drm_crtc *unused_crtc)
1618 {
1619         struct drm_device *dev = unused_crtc->dev;
1620         struct drm_i915_private *dev_priv = dev->dev_private;
1621         struct drm_crtc *crtc;
1622         const struct drm_display_mode *adjusted_mode;
1623         uint32_t fwater_lo;
1624         int planea_wm;
1625
1626         crtc = single_enabled_crtc(dev);
1627         if (crtc == NULL)
1628                 return;
1629
1630         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1631         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1632                                        &i845_wm_info,
1633                                        dev_priv->display.get_fifo_size(dev, 0),
1634                                        4, pessimal_latency_ns);
1635         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1636         fwater_lo |= (3<<8) | planea_wm;
1637
1638         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1639
1640         I915_WRITE(FW_BLC, fwater_lo);
1641 }
1642
1643 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1644 {
1645         uint32_t pixel_rate;
1646
1647         pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1648
1649         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1650          * adjust the pixel_rate here. */
1651
1652         if (pipe_config->pch_pfit.enabled) {
1653                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1654                 uint32_t pfit_size = pipe_config->pch_pfit.size;
1655
1656                 pipe_w = pipe_config->pipe_src_w;
1657                 pipe_h = pipe_config->pipe_src_h;
1658
1659                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1660                 pfit_h = pfit_size & 0xFFFF;
1661                 if (pipe_w < pfit_w)
1662                         pipe_w = pfit_w;
1663                 if (pipe_h < pfit_h)
1664                         pipe_h = pfit_h;
1665
1666                 if (WARN_ON(!pfit_w || !pfit_h))
1667                         return pixel_rate;
1668
1669                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1670                                      pfit_w * pfit_h);
1671         }
1672
1673         return pixel_rate;
1674 }
1675
1676 /* latency must be in 0.1us units. */
1677 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1678 {
1679         uint64_t ret;
1680
1681         if (WARN(latency == 0, "Latency value missing\n"))
1682                 return UINT_MAX;
1683
1684         ret = (uint64_t) pixel_rate * cpp * latency;
1685         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1686
1687         return ret;
1688 }
1689
1690 /* latency must be in 0.1us units. */
1691 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1692                                uint32_t horiz_pixels, uint8_t cpp,
1693                                uint32_t latency)
1694 {
1695         uint32_t ret;
1696
1697         if (WARN(latency == 0, "Latency value missing\n"))
1698                 return UINT_MAX;
1699         if (WARN_ON(!pipe_htotal))
1700                 return UINT_MAX;
1701
1702         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1703         ret = (ret + 1) * horiz_pixels * cpp;
1704         ret = DIV_ROUND_UP(ret, 64) + 2;
1705         return ret;
1706 }
1707
1708 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1709                            uint8_t cpp)
1710 {
1711         /*
1712          * Neither of these should be possible since this function shouldn't be
1713          * called if the CRTC is off or the plane is invisible.  But let's be
1714          * extra paranoid to avoid a potential divide-by-zero if we screw up
1715          * elsewhere in the driver.
1716          */
1717         if (WARN_ON(!cpp))
1718                 return 0;
1719         if (WARN_ON(!horiz_pixels))
1720                 return 0;
1721
1722         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1723 }
1724
1725 struct ilk_wm_maximums {
1726         uint16_t pri;
1727         uint16_t spr;
1728         uint16_t cur;
1729         uint16_t fbc;
1730 };
1731
1732 /*
1733  * For both WM_PIPE and WM_LP.
1734  * mem_value must be in 0.1us units.
1735  */
1736 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1737                                    const struct intel_plane_state *pstate,
1738                                    uint32_t mem_value,
1739                                    bool is_lp)
1740 {
1741         int cpp = pstate->base.fb ?
1742                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1743         uint32_t method1, method2;
1744
1745         if (!cstate->base.active || !pstate->visible)
1746                 return 0;
1747
1748         method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1749
1750         if (!is_lp)
1751                 return method1;
1752
1753         method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1754                                  cstate->base.adjusted_mode.crtc_htotal,
1755                                  drm_rect_width(&pstate->dst),
1756                                  cpp, mem_value);
1757
1758         return min(method1, method2);
1759 }
1760
1761 /*
1762  * For both WM_PIPE and WM_LP.
1763  * mem_value must be in 0.1us units.
1764  */
1765 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1766                                    const struct intel_plane_state *pstate,
1767                                    uint32_t mem_value)
1768 {
1769         int cpp = pstate->base.fb ?
1770                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1771         uint32_t method1, method2;
1772
1773         if (!cstate->base.active || !pstate->visible)
1774                 return 0;
1775
1776         method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1777         method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1778                                  cstate->base.adjusted_mode.crtc_htotal,
1779                                  drm_rect_width(&pstate->dst),
1780                                  cpp, mem_value);
1781         return min(method1, method2);
1782 }
1783
1784 /*
1785  * For both WM_PIPE and WM_LP.
1786  * mem_value must be in 0.1us units.
1787  */
1788 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1789                                    const struct intel_plane_state *pstate,
1790                                    uint32_t mem_value)
1791 {
1792         /*
1793          * We treat the cursor plane as always-on for the purposes of watermark
1794          * calculation.  Until we have two-stage watermark programming merged,
1795          * this is necessary to avoid flickering.
1796          */
1797         int cpp = 4;
1798         int width = pstate->visible ? pstate->base.crtc_w : 64;
1799
1800         if (!cstate->base.active)
1801                 return 0;
1802
1803         return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1804                               cstate->base.adjusted_mode.crtc_htotal,
1805                               width, cpp, mem_value);
1806 }
1807
1808 /* Only for WM_LP. */
1809 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1810                                    const struct intel_plane_state *pstate,
1811                                    uint32_t pri_val)
1812 {
1813         int cpp = pstate->base.fb ?
1814                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1815
1816         if (!cstate->base.active || !pstate->visible)
1817                 return 0;
1818
1819         return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), cpp);
1820 }
1821
1822 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1823 {
1824         if (INTEL_INFO(dev)->gen >= 8)
1825                 return 3072;
1826         else if (INTEL_INFO(dev)->gen >= 7)
1827                 return 768;
1828         else
1829                 return 512;
1830 }
1831
1832 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1833                                          int level, bool is_sprite)
1834 {
1835         if (INTEL_INFO(dev)->gen >= 8)
1836                 /* BDW primary/sprite plane watermarks */
1837                 return level == 0 ? 255 : 2047;
1838         else if (INTEL_INFO(dev)->gen >= 7)
1839                 /* IVB/HSW primary/sprite plane watermarks */
1840                 return level == 0 ? 127 : 1023;
1841         else if (!is_sprite)
1842                 /* ILK/SNB primary plane watermarks */
1843                 return level == 0 ? 127 : 511;
1844         else
1845                 /* ILK/SNB sprite plane watermarks */
1846                 return level == 0 ? 63 : 255;
1847 }
1848
1849 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1850                                           int level)
1851 {
1852         if (INTEL_INFO(dev)->gen >= 7)
1853                 return level == 0 ? 63 : 255;
1854         else
1855                 return level == 0 ? 31 : 63;
1856 }
1857
1858 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1859 {
1860         if (INTEL_INFO(dev)->gen >= 8)
1861                 return 31;
1862         else
1863                 return 15;
1864 }
1865
1866 /* Calculate the maximum primary/sprite plane watermark */
1867 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1868                                      int level,
1869                                      const struct intel_wm_config *config,
1870                                      enum intel_ddb_partitioning ddb_partitioning,
1871                                      bool is_sprite)
1872 {
1873         unsigned int fifo_size = ilk_display_fifo_size(dev);
1874
1875         /* if sprites aren't enabled, sprites get nothing */
1876         if (is_sprite && !config->sprites_enabled)
1877                 return 0;
1878
1879         /* HSW allows LP1+ watermarks even with multiple pipes */
1880         if (level == 0 || config->num_pipes_active > 1) {
1881                 fifo_size /= INTEL_INFO(dev)->num_pipes;
1882
1883                 /*
1884                  * For some reason the non self refresh
1885                  * FIFO size is only half of the self
1886                  * refresh FIFO size on ILK/SNB.
1887                  */
1888                 if (INTEL_INFO(dev)->gen <= 6)
1889                         fifo_size /= 2;
1890         }
1891
1892         if (config->sprites_enabled) {
1893                 /* level 0 is always calculated with 1:1 split */
1894                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1895                         if (is_sprite)
1896                                 fifo_size *= 5;
1897                         fifo_size /= 6;
1898                 } else {
1899                         fifo_size /= 2;
1900                 }
1901         }
1902
1903         /* clamp to max that the registers can hold */
1904         return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1905 }
1906
1907 /* Calculate the maximum cursor plane watermark */
1908 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1909                                       int level,
1910                                       const struct intel_wm_config *config)
1911 {
1912         /* HSW LP1+ watermarks w/ multiple pipes */
1913         if (level > 0 && config->num_pipes_active > 1)
1914                 return 64;
1915
1916         /* otherwise just report max that registers can hold */
1917         return ilk_cursor_wm_reg_max(dev, level);
1918 }
1919
1920 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1921                                     int level,
1922                                     const struct intel_wm_config *config,
1923                                     enum intel_ddb_partitioning ddb_partitioning,
1924                                     struct ilk_wm_maximums *max)
1925 {
1926         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1927         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1928         max->cur = ilk_cursor_wm_max(dev, level, config);
1929         max->fbc = ilk_fbc_wm_reg_max(dev);
1930 }
1931
1932 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1933                                         int level,
1934                                         struct ilk_wm_maximums *max)
1935 {
1936         max->pri = ilk_plane_wm_reg_max(dev, level, false);
1937         max->spr = ilk_plane_wm_reg_max(dev, level, true);
1938         max->cur = ilk_cursor_wm_reg_max(dev, level);
1939         max->fbc = ilk_fbc_wm_reg_max(dev);
1940 }
1941
1942 static bool ilk_validate_wm_level(int level,
1943                                   const struct ilk_wm_maximums *max,
1944                                   struct intel_wm_level *result)
1945 {
1946         bool ret;
1947
1948         /* already determined to be invalid? */
1949         if (!result->enable)
1950                 return false;
1951
1952         result->enable = result->pri_val <= max->pri &&
1953                          result->spr_val <= max->spr &&
1954                          result->cur_val <= max->cur;
1955
1956         ret = result->enable;
1957
1958         /*
1959          * HACK until we can pre-compute everything,
1960          * and thus fail gracefully if LP0 watermarks
1961          * are exceeded...
1962          */
1963         if (level == 0 && !result->enable) {
1964                 if (result->pri_val > max->pri)
1965                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1966                                       level, result->pri_val, max->pri);
1967                 if (result->spr_val > max->spr)
1968                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1969                                       level, result->spr_val, max->spr);
1970                 if (result->cur_val > max->cur)
1971                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1972                                       level, result->cur_val, max->cur);
1973
1974                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1975                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1976                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1977                 result->enable = true;
1978         }
1979
1980         return ret;
1981 }
1982
1983 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1984                                  const struct intel_crtc *intel_crtc,
1985                                  int level,
1986                                  struct intel_crtc_state *cstate,
1987                                  struct intel_plane_state *pristate,
1988                                  struct intel_plane_state *sprstate,
1989                                  struct intel_plane_state *curstate,
1990                                  struct intel_wm_level *result)
1991 {
1992         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1993         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1994         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1995
1996         /* WM1+ latency values stored in 0.5us units */
1997         if (level > 0) {
1998                 pri_latency *= 5;
1999                 spr_latency *= 5;
2000                 cur_latency *= 5;
2001         }
2002
2003         if (pristate) {
2004                 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2005                                                      pri_latency, level);
2006                 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2007         }
2008
2009         if (sprstate)
2010                 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2011
2012         if (curstate)
2013                 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2014
2015         result->enable = true;
2016 }
2017
2018 static uint32_t
2019 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2020 {
2021         const struct intel_atomic_state *intel_state =
2022                 to_intel_atomic_state(cstate->base.state);
2023         const struct drm_display_mode *adjusted_mode =
2024                 &cstate->base.adjusted_mode;
2025         u32 linetime, ips_linetime;
2026
2027         if (!cstate->base.active)
2028                 return 0;
2029         if (WARN_ON(adjusted_mode->crtc_clock == 0))
2030                 return 0;
2031         if (WARN_ON(intel_state->cdclk == 0))
2032                 return 0;
2033
2034         /* The WM are computed with base on how long it takes to fill a single
2035          * row at the given clock rate, multiplied by 8.
2036          * */
2037         linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2038                                      adjusted_mode->crtc_clock);
2039         ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2040                                          intel_state->cdclk);
2041
2042         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2043                PIPE_WM_LINETIME_TIME(linetime);
2044 }
2045
2046 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2047 {
2048         struct drm_i915_private *dev_priv = dev->dev_private;
2049
2050         if (IS_GEN9(dev)) {
2051                 uint32_t val;
2052                 int ret, i;
2053                 int level, max_level = ilk_wm_max_level(dev);
2054
2055                 /* read the first set of memory latencies[0:3] */
2056                 val = 0; /* data0 to be programmed to 0 for first set */
2057                 mutex_lock(&dev_priv->rps.hw_lock);
2058                 ret = sandybridge_pcode_read(dev_priv,
2059                                              GEN9_PCODE_READ_MEM_LATENCY,
2060                                              &val);
2061                 mutex_unlock(&dev_priv->rps.hw_lock);
2062
2063                 if (ret) {
2064                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2065                         return;
2066                 }
2067
2068                 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2069                 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2070                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2071                 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2072                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2073                 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2074                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2075
2076                 /* read the second set of memory latencies[4:7] */
2077                 val = 1; /* data0 to be programmed to 1 for second set */
2078                 mutex_lock(&dev_priv->rps.hw_lock);
2079                 ret = sandybridge_pcode_read(dev_priv,
2080                                              GEN9_PCODE_READ_MEM_LATENCY,
2081                                              &val);
2082                 mutex_unlock(&dev_priv->rps.hw_lock);
2083                 if (ret) {
2084                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2085                         return;
2086                 }
2087
2088                 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2089                 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2090                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2091                 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2092                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2093                 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2094                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2095
2096                 /*
2097                  * WaWmMemoryReadLatency:skl
2098                  *
2099                  * punit doesn't take into account the read latency so we need
2100                  * to add 2us to the various latency levels we retrieve from
2101                  * the punit.
2102                  *   - W0 is a bit special in that it's the only level that
2103                  *   can't be disabled if we want to have display working, so
2104                  *   we always add 2us there.
2105                  *   - For levels >=1, punit returns 0us latency when they are
2106                  *   disabled, so we respect that and don't add 2us then
2107                  *
2108                  * Additionally, if a level n (n > 1) has a 0us latency, all
2109                  * levels m (m >= n) need to be disabled. We make sure to
2110                  * sanitize the values out of the punit to satisfy this
2111                  * requirement.
2112                  */
2113                 wm[0] += 2;
2114                 for (level = 1; level <= max_level; level++)
2115                         if (wm[level] != 0)
2116                                 wm[level] += 2;
2117                         else {
2118                                 for (i = level + 1; i <= max_level; i++)
2119                                         wm[i] = 0;
2120
2121                                 break;
2122                         }
2123         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2124                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2125
2126                 wm[0] = (sskpd >> 56) & 0xFF;
2127                 if (wm[0] == 0)
2128                         wm[0] = sskpd & 0xF;
2129                 wm[1] = (sskpd >> 4) & 0xFF;
2130                 wm[2] = (sskpd >> 12) & 0xFF;
2131                 wm[3] = (sskpd >> 20) & 0x1FF;
2132                 wm[4] = (sskpd >> 32) & 0x1FF;
2133         } else if (INTEL_INFO(dev)->gen >= 6) {
2134                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2135
2136                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2137                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2138                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2139                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2140         } else if (INTEL_INFO(dev)->gen >= 5) {
2141                 uint32_t mltr = I915_READ(MLTR_ILK);
2142
2143                 /* ILK primary LP0 latency is 700 ns */
2144                 wm[0] = 7;
2145                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2146                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2147         }
2148 }
2149
2150 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2151 {
2152         /* ILK sprite LP0 latency is 1300 ns */
2153         if (IS_GEN5(dev))
2154                 wm[0] = 13;
2155 }
2156
2157 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2158 {
2159         /* ILK cursor LP0 latency is 1300 ns */
2160         if (IS_GEN5(dev))
2161                 wm[0] = 13;
2162
2163         /* WaDoubleCursorLP3Latency:ivb */
2164         if (IS_IVYBRIDGE(dev))
2165                 wm[3] *= 2;
2166 }
2167
2168 int ilk_wm_max_level(const struct drm_device *dev)
2169 {
2170         /* how many WM levels are we expecting */
2171         if (INTEL_INFO(dev)->gen >= 9)
2172                 return 7;
2173         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2174                 return 4;
2175         else if (INTEL_INFO(dev)->gen >= 6)
2176                 return 3;
2177         else
2178                 return 2;
2179 }
2180
2181 static void intel_print_wm_latency(struct drm_device *dev,
2182                                    const char *name,
2183                                    const uint16_t wm[8])
2184 {
2185         int level, max_level = ilk_wm_max_level(dev);
2186
2187         for (level = 0; level <= max_level; level++) {
2188                 unsigned int latency = wm[level];
2189
2190                 if (latency == 0) {
2191                         DRM_ERROR("%s WM%d latency not provided\n",
2192                                   name, level);
2193                         continue;
2194                 }
2195
2196                 /*
2197                  * - latencies are in us on gen9.
2198                  * - before then, WM1+ latency values are in 0.5us units
2199                  */
2200                 if (IS_GEN9(dev))
2201                         latency *= 10;
2202                 else if (level > 0)
2203                         latency *= 5;
2204
2205                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2206                               name, level, wm[level],
2207                               latency / 10, latency % 10);
2208         }
2209 }
2210
2211 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2212                                     uint16_t wm[5], uint16_t min)
2213 {
2214         int level, max_level = ilk_wm_max_level(dev_priv->dev);
2215
2216         if (wm[0] >= min)
2217                 return false;
2218
2219         wm[0] = max(wm[0], min);
2220         for (level = 1; level <= max_level; level++)
2221                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2222
2223         return true;
2224 }
2225
2226 static void snb_wm_latency_quirk(struct drm_device *dev)
2227 {
2228         struct drm_i915_private *dev_priv = dev->dev_private;
2229         bool changed;
2230
2231         /*
2232          * The BIOS provided WM memory latency values are often
2233          * inadequate for high resolution displays. Adjust them.
2234          */
2235         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2236                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2237                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2238
2239         if (!changed)
2240                 return;
2241
2242         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2243         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2244         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2245         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2246 }
2247
2248 static void ilk_setup_wm_latency(struct drm_device *dev)
2249 {
2250         struct drm_i915_private *dev_priv = dev->dev_private;
2251
2252         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2253
2254         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2255                sizeof(dev_priv->wm.pri_latency));
2256         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2257                sizeof(dev_priv->wm.pri_latency));
2258
2259         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2260         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2261
2262         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2263         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2264         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2265
2266         if (IS_GEN6(dev))
2267                 snb_wm_latency_quirk(dev);
2268 }
2269
2270 static void skl_setup_wm_latency(struct drm_device *dev)
2271 {
2272         struct drm_i915_private *dev_priv = dev->dev_private;
2273
2274         intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2275         intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2276 }
2277
2278 static bool ilk_validate_pipe_wm(struct drm_device *dev,
2279                                  struct intel_pipe_wm *pipe_wm)
2280 {
2281         /* LP0 watermark maximums depend on this pipe alone */
2282         const struct intel_wm_config config = {
2283                 .num_pipes_active = 1,
2284                 .sprites_enabled = pipe_wm->sprites_enabled,
2285                 .sprites_scaled = pipe_wm->sprites_scaled,
2286         };
2287         struct ilk_wm_maximums max;
2288
2289         /* LP0 watermarks always use 1/2 DDB partitioning */
2290         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2291
2292         /* At least LP0 must be valid */
2293         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
2294                 DRM_DEBUG_KMS("LP0 watermark invalid\n");
2295                 return false;
2296         }
2297
2298         return true;
2299 }
2300
2301 /* Compute new watermarks for the pipe */
2302 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2303 {
2304         struct drm_atomic_state *state = cstate->base.state;
2305         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2306         struct intel_pipe_wm *pipe_wm;
2307         struct drm_device *dev = state->dev;
2308         const struct drm_i915_private *dev_priv = dev->dev_private;
2309         struct intel_plane *intel_plane;
2310         struct intel_plane_state *pristate = NULL;
2311         struct intel_plane_state *sprstate = NULL;
2312         struct intel_plane_state *curstate = NULL;
2313         int level, max_level = ilk_wm_max_level(dev), usable_level;
2314         struct ilk_wm_maximums max;
2315
2316         pipe_wm = &cstate->wm.ilk.optimal;
2317
2318         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2319                 struct intel_plane_state *ps;
2320
2321                 ps = intel_atomic_get_existing_plane_state(state,
2322                                                            intel_plane);
2323                 if (!ps)
2324                         continue;
2325
2326                 if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2327                         pristate = ps;
2328                 else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2329                         sprstate = ps;
2330                 else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2331                         curstate = ps;
2332         }
2333
2334         pipe_wm->pipe_enabled = cstate->base.active;
2335         if (sprstate) {
2336                 pipe_wm->sprites_enabled = sprstate->visible;
2337                 pipe_wm->sprites_scaled = sprstate->visible &&
2338                         (drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2339                          drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2340         }
2341
2342         usable_level = max_level;
2343
2344         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2345         if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2346                 usable_level = 1;
2347
2348         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2349         if (pipe_wm->sprites_scaled)
2350                 usable_level = 0;
2351
2352         ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2353                              pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);
2354
2355         memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
2356         pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2357
2358         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2359                 pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2360
2361         if (!ilk_validate_pipe_wm(dev, pipe_wm))
2362                 return -EINVAL;
2363
2364         ilk_compute_wm_reg_maximums(dev, 1, &max);
2365
2366         for (level = 1; level <= max_level; level++) {
2367                 struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2368
2369                 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2370                                      pristate, sprstate, curstate, wm);
2371
2372                 /*
2373                  * Disable any watermark level that exceeds the
2374                  * register maximums since such watermarks are
2375                  * always invalid.
2376                  */
2377                 if (level > usable_level)
2378                         continue;
2379
2380                 if (ilk_validate_wm_level(level, &max, wm))
2381                         pipe_wm->wm[level] = *wm;
2382                 else
2383                         usable_level = level;
2384         }
2385
2386         return 0;
2387 }
2388
2389 /*
2390  * Build a set of 'intermediate' watermark values that satisfy both the old
2391  * state and the new state.  These can be programmed to the hardware
2392  * immediately.
2393  */
2394 static int ilk_compute_intermediate_wm(struct drm_device *dev,
2395                                        struct intel_crtc *intel_crtc,
2396                                        struct intel_crtc_state *newstate)
2397 {
2398         struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2399         struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2400         int level, max_level = ilk_wm_max_level(dev);
2401
2402         /*
2403          * Start with the final, target watermarks, then combine with the
2404          * currently active watermarks to get values that are safe both before
2405          * and after the vblank.
2406          */
2407         *a = newstate->wm.ilk.optimal;
2408         a->pipe_enabled |= b->pipe_enabled;
2409         a->sprites_enabled |= b->sprites_enabled;
2410         a->sprites_scaled |= b->sprites_scaled;
2411
2412         for (level = 0; level <= max_level; level++) {
2413                 struct intel_wm_level *a_wm = &a->wm[level];
2414                 const struct intel_wm_level *b_wm = &b->wm[level];
2415
2416                 a_wm->enable &= b_wm->enable;
2417                 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
2418                 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
2419                 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
2420                 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
2421         }
2422
2423         /*
2424          * We need to make sure that these merged watermark values are
2425          * actually a valid configuration themselves.  If they're not,
2426          * there's no safe way to transition from the old state to
2427          * the new state, so we need to fail the atomic transaction.
2428          */
2429         if (!ilk_validate_pipe_wm(dev, a))
2430                 return -EINVAL;
2431
2432         /*
2433          * If our intermediate WM are identical to the final WM, then we can
2434          * omit the post-vblank programming; only update if it's different.
2435          */
2436         if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2437                 newstate->wm.need_postvbl_update = false;
2438
2439         return 0;
2440 }
2441
2442 /*
2443  * Merge the watermarks from all active pipes for a specific level.
2444  */
2445 static void ilk_merge_wm_level(struct drm_device *dev,
2446                                int level,
2447                                struct intel_wm_level *ret_wm)
2448 {
2449         const struct intel_crtc *intel_crtc;
2450
2451         ret_wm->enable = true;
2452
2453         for_each_intel_crtc(dev, intel_crtc) {
2454                 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2455                 const struct intel_wm_level *wm = &active->wm[level];
2456
2457                 if (!active->pipe_enabled)
2458                         continue;
2459
2460                 /*
2461                  * The watermark values may have been used in the past,
2462                  * so we must maintain them in the registers for some
2463                  * time even if the level is now disabled.
2464                  */
2465                 if (!wm->enable)
2466                         ret_wm->enable = false;
2467
2468                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2469                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2470                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2471                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2472         }
2473 }
2474
2475 /*
2476  * Merge all low power watermarks for all active pipes.
2477  */
2478 static void ilk_wm_merge(struct drm_device *dev,
2479                          const struct intel_wm_config *config,
2480                          const struct ilk_wm_maximums *max,
2481                          struct intel_pipe_wm *merged)
2482 {
2483         struct drm_i915_private *dev_priv = dev->dev_private;
2484         int level, max_level = ilk_wm_max_level(dev);
2485         int last_enabled_level = max_level;
2486
2487         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2488         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2489             config->num_pipes_active > 1)
2490                 last_enabled_level = 0;
2491
2492         /* ILK: FBC WM must be disabled always */
2493         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2494
2495         /* merge each WM1+ level */
2496         for (level = 1; level <= max_level; level++) {
2497                 struct intel_wm_level *wm = &merged->wm[level];
2498
2499                 ilk_merge_wm_level(dev, level, wm);
2500
2501                 if (level > last_enabled_level)
2502                         wm->enable = false;
2503                 else if (!ilk_validate_wm_level(level, max, wm))
2504                         /* make sure all following levels get disabled */
2505                         last_enabled_level = level - 1;
2506
2507                 /*
2508                  * The spec says it is preferred to disable
2509                  * FBC WMs instead of disabling a WM level.
2510                  */
2511                 if (wm->fbc_val > max->fbc) {
2512                         if (wm->enable)
2513                                 merged->fbc_wm_enabled = false;
2514                         wm->fbc_val = 0;
2515                 }
2516         }
2517
2518         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2519         /*
2520          * FIXME this is racy. FBC might get enabled later.
2521          * What we should check here is whether FBC can be
2522          * enabled sometime later.
2523          */
2524         if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2525             intel_fbc_is_active(dev_priv)) {
2526                 for (level = 2; level <= max_level; level++) {
2527                         struct intel_wm_level *wm = &merged->wm[level];
2528
2529                         wm->enable = false;
2530                 }
2531         }
2532 }
2533
2534 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2535 {
2536         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2537         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2538 }
2539
2540 /* The value we need to program into the WM_LPx latency field */
2541 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2542 {
2543         struct drm_i915_private *dev_priv = dev->dev_private;
2544
2545         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2546                 return 2 * level;
2547         else
2548                 return dev_priv->wm.pri_latency[level];
2549 }
2550
2551 static void ilk_compute_wm_results(struct drm_device *dev,
2552                                    const struct intel_pipe_wm *merged,
2553                                    enum intel_ddb_partitioning partitioning,
2554                                    struct ilk_wm_values *results)
2555 {
2556         struct intel_crtc *intel_crtc;
2557         int level, wm_lp;
2558
2559         results->enable_fbc_wm = merged->fbc_wm_enabled;
2560         results->partitioning = partitioning;
2561
2562         /* LP1+ register values */
2563         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2564                 const struct intel_wm_level *r;
2565
2566                 level = ilk_wm_lp_to_level(wm_lp, merged);
2567
2568                 r = &merged->wm[level];
2569
2570                 /*
2571                  * Maintain the watermark values even if the level is
2572                  * disabled. Doing otherwise could cause underruns.
2573                  */
2574                 results->wm_lp[wm_lp - 1] =
2575                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2576                         (r->pri_val << WM1_LP_SR_SHIFT) |
2577                         r->cur_val;
2578
2579                 if (r->enable)
2580                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2581
2582                 if (INTEL_INFO(dev)->gen >= 8)
2583                         results->wm_lp[wm_lp - 1] |=
2584                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2585                 else
2586                         results->wm_lp[wm_lp - 1] |=
2587                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2588
2589                 /*
2590                  * Always set WM1S_LP_EN when spr_val != 0, even if the
2591                  * level is disabled. Doing otherwise could cause underruns.
2592                  */
2593                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2594                         WARN_ON(wm_lp != 1);
2595                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2596                 } else
2597                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2598         }
2599
2600         /* LP0 register values */
2601         for_each_intel_crtc(dev, intel_crtc) {
2602                 enum pipe pipe = intel_crtc->pipe;
2603                 const struct intel_wm_level *r =
2604                         &intel_crtc->wm.active.ilk.wm[0];
2605
2606                 if (WARN_ON(!r->enable))
2607                         continue;
2608
2609                 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2610
2611                 results->wm_pipe[pipe] =
2612                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2613                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2614                         r->cur_val;
2615         }
2616 }
2617
2618 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2619  * case both are at the same level. Prefer r1 in case they're the same. */
2620 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2621                                                   struct intel_pipe_wm *r1,
2622                                                   struct intel_pipe_wm *r2)
2623 {
2624         int level, max_level = ilk_wm_max_level(dev);
2625         int level1 = 0, level2 = 0;
2626
2627         for (level = 1; level <= max_level; level++) {
2628                 if (r1->wm[level].enable)
2629                         level1 = level;
2630                 if (r2->wm[level].enable)
2631                         level2 = level;
2632         }
2633
2634         if (level1 == level2) {
2635                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2636                         return r2;
2637                 else
2638                         return r1;
2639         } else if (level1 > level2) {
2640                 return r1;
2641         } else {
2642                 return r2;
2643         }
2644 }
2645
2646 /* dirty bits used to track which watermarks need changes */
2647 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2648 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2649 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2650 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2651 #define WM_DIRTY_FBC (1 << 24)
2652 #define WM_DIRTY_DDB (1 << 25)
2653
2654 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2655                                          const struct ilk_wm_values *old,
2656                                          const struct ilk_wm_values *new)
2657 {
2658         unsigned int dirty = 0;
2659         enum pipe pipe;
2660         int wm_lp;
2661
2662         for_each_pipe(dev_priv, pipe) {
2663                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2664                         dirty |= WM_DIRTY_LINETIME(pipe);
2665                         /* Must disable LP1+ watermarks too */
2666                         dirty |= WM_DIRTY_LP_ALL;
2667                 }
2668
2669                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2670                         dirty |= WM_DIRTY_PIPE(pipe);
2671                         /* Must disable LP1+ watermarks too */
2672                         dirty |= WM_DIRTY_LP_ALL;
2673                 }
2674         }
2675
2676         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2677                 dirty |= WM_DIRTY_FBC;
2678                 /* Must disable LP1+ watermarks too */
2679                 dirty |= WM_DIRTY_LP_ALL;
2680         }
2681
2682         if (old->partitioning != new->partitioning) {
2683                 dirty |= WM_DIRTY_DDB;
2684                 /* Must disable LP1+ watermarks too */
2685                 dirty |= WM_DIRTY_LP_ALL;
2686         }
2687
2688         /* LP1+ watermarks already deemed dirty, no need to continue */
2689         if (dirty & WM_DIRTY_LP_ALL)
2690                 return dirty;
2691
2692         /* Find the lowest numbered LP1+ watermark in need of an update... */
2693         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2694                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2695                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2696                         break;
2697         }
2698
2699         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2700         for (; wm_lp <= 3; wm_lp++)
2701                 dirty |= WM_DIRTY_LP(wm_lp);
2702
2703         return dirty;
2704 }
2705
2706 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2707                                unsigned int dirty)
2708 {
2709         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2710         bool changed = false;
2711
2712         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2713                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2714                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2715                 changed = true;
2716         }
2717         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2718                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2719                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2720                 changed = true;
2721         }
2722         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2723                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2724                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2725                 changed = true;
2726         }
2727
2728         /*
2729          * Don't touch WM1S_LP_EN here.
2730          * Doing so could cause underruns.
2731          */
2732
2733         return changed;
2734 }
2735
2736 /*
2737  * The spec says we shouldn't write when we don't need, because every write
2738  * causes WMs to be re-evaluated, expending some power.
2739  */
2740 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2741                                 struct ilk_wm_values *results)
2742 {
2743         struct drm_device *dev = dev_priv->dev;
2744         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2745         unsigned int dirty;
2746         uint32_t val;
2747
2748         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2749         if (!dirty)
2750                 return;
2751
2752         _ilk_disable_lp_wm(dev_priv, dirty);
2753
2754         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2755                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2756         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2757                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2758         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2759                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2760
2761         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2762                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2763         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2764                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2765         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2766                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2767
2768         if (dirty & WM_DIRTY_DDB) {
2769                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2770                         val = I915_READ(WM_MISC);
2771                         if (results->partitioning == INTEL_DDB_PART_1_2)
2772                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2773                         else
2774                                 val |= WM_MISC_DATA_PARTITION_5_6;
2775                         I915_WRITE(WM_MISC, val);
2776                 } else {
2777                         val = I915_READ(DISP_ARB_CTL2);
2778                         if (results->partitioning == INTEL_DDB_PART_1_2)
2779                                 val &= ~DISP_DATA_PARTITION_5_6;
2780                         else
2781                                 val |= DISP_DATA_PARTITION_5_6;
2782                         I915_WRITE(DISP_ARB_CTL2, val);
2783                 }
2784         }
2785
2786         if (dirty & WM_DIRTY_FBC) {
2787                 val = I915_READ(DISP_ARB_CTL);
2788                 if (results->enable_fbc_wm)
2789                         val &= ~DISP_FBC_WM_DIS;
2790                 else
2791                         val |= DISP_FBC_WM_DIS;
2792                 I915_WRITE(DISP_ARB_CTL, val);
2793         }
2794
2795         if (dirty & WM_DIRTY_LP(1) &&
2796             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2797                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2798
2799         if (INTEL_INFO(dev)->gen >= 7) {
2800                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2801                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2802                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2803                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2804         }
2805
2806         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2807                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2808         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2809                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2810         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2811                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2812
2813         dev_priv->wm.hw = *results;
2814 }
2815
2816 bool ilk_disable_lp_wm(struct drm_device *dev)
2817 {
2818         struct drm_i915_private *dev_priv = dev->dev_private;
2819
2820         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2821 }
2822
2823 /*
2824  * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2825  * different active planes.
2826  */
2827
2828 #define SKL_DDB_SIZE            896     /* in blocks */
2829 #define BXT_DDB_SIZE            512
2830
2831 /*
2832  * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
2833  * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
2834  * other universal planes are in indices 1..n.  Note that this may leave unused
2835  * indices between the top "sprite" plane and the cursor.
2836  */
2837 static int
2838 skl_wm_plane_id(const struct intel_plane *plane)
2839 {
2840         switch (plane->base.type) {
2841         case DRM_PLANE_TYPE_PRIMARY:
2842                 return 0;
2843         case DRM_PLANE_TYPE_CURSOR:
2844                 return PLANE_CURSOR;
2845         case DRM_PLANE_TYPE_OVERLAY:
2846                 return plane->plane + 1;
2847         default:
2848                 MISSING_CASE(plane->base.type);
2849                 return plane->plane;
2850         }
2851 }
2852
2853 static void
2854 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2855                                    const struct intel_crtc_state *cstate,
2856                                    struct skl_ddb_entry *alloc, /* out */
2857                                    int *num_active /* out */)
2858 {
2859         struct drm_atomic_state *state = cstate->base.state;
2860         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
2861         struct drm_i915_private *dev_priv = to_i915(dev);
2862         struct drm_crtc *for_crtc = cstate->base.crtc;
2863         unsigned int pipe_size, ddb_size;
2864         int nth_active_pipe;
2865         int pipe = to_intel_crtc(for_crtc)->pipe;
2866
2867         if (WARN_ON(!state) || !cstate->base.active) {
2868                 alloc->start = 0;
2869                 alloc->end = 0;
2870                 *num_active = hweight32(dev_priv->active_crtcs);
2871                 return;
2872         }
2873
2874         if (intel_state->active_pipe_changes)
2875                 *num_active = hweight32(intel_state->active_crtcs);
2876         else
2877                 *num_active = hweight32(dev_priv->active_crtcs);
2878
2879         if (IS_BROXTON(dev))
2880                 ddb_size = BXT_DDB_SIZE;
2881         else
2882                 ddb_size = SKL_DDB_SIZE;
2883
2884         ddb_size -= 4; /* 4 blocks for bypass path allocation */
2885
2886         /*
2887          * If the state doesn't change the active CRTC's, then there's
2888          * no need to recalculate; the existing pipe allocation limits
2889          * should remain unchanged.  Note that we're safe from racing
2890          * commits since any racing commit that changes the active CRTC
2891          * list would need to grab _all_ crtc locks, including the one
2892          * we currently hold.
2893          */
2894         if (!intel_state->active_pipe_changes) {
2895                 *alloc = dev_priv->wm.skl_hw.ddb.pipe[pipe];
2896                 return;
2897         }
2898
2899         nth_active_pipe = hweight32(intel_state->active_crtcs &
2900                                     (drm_crtc_mask(for_crtc) - 1));
2901         pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
2902         alloc->start = nth_active_pipe * ddb_size / *num_active;
2903         alloc->end = alloc->start + pipe_size;
2904 }
2905
2906 static unsigned int skl_cursor_allocation(int num_active)
2907 {
2908         if (num_active == 1)
2909                 return 32;
2910
2911         return 8;
2912 }
2913
2914 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2915 {
2916         entry->start = reg & 0x3ff;
2917         entry->end = (reg >> 16) & 0x3ff;
2918         if (entry->end)
2919                 entry->end += 1;
2920 }
2921
2922 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2923                           struct skl_ddb_allocation *ddb /* out */)
2924 {
2925         enum pipe pipe;
2926         int plane;
2927         u32 val;
2928
2929         memset(ddb, 0, sizeof(*ddb));
2930
2931         for_each_pipe(dev_priv, pipe) {
2932                 enum intel_display_power_domain power_domain;
2933
2934                 power_domain = POWER_DOMAIN_PIPE(pipe);
2935                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2936                         continue;
2937
2938                 for_each_plane(dev_priv, pipe, plane) {
2939                         val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2940                         skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2941                                                    val);
2942                 }
2943
2944                 val = I915_READ(CUR_BUF_CFG(pipe));
2945                 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
2946                                            val);
2947
2948                 intel_display_power_put(dev_priv, power_domain);
2949         }
2950 }
2951
2952 static unsigned int
2953 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
2954                              const struct drm_plane_state *pstate,
2955                              int y)
2956 {
2957         struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
2958         struct drm_framebuffer *fb = pstate->fb;
2959         uint32_t width = 0, height = 0;
2960         unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;
2961
2962         if (!intel_pstate->visible)
2963                 return 0;
2964         if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
2965                 return 0;
2966         if (y && format != DRM_FORMAT_NV12)
2967                 return 0;
2968
2969         width = drm_rect_width(&intel_pstate->src) >> 16;
2970         height = drm_rect_height(&intel_pstate->src) >> 16;
2971
2972         if (intel_rotation_90_or_270(pstate->rotation))
2973                 swap(width, height);
2974
2975         /* for planar format */
2976         if (format == DRM_FORMAT_NV12) {
2977                 if (y)  /* y-plane data rate */
2978                         return width * height *
2979                                 drm_format_plane_cpp(format, 0);
2980                 else    /* uv-plane data rate */
2981                         return (width / 2) * (height / 2) *
2982                                 drm_format_plane_cpp(format, 1);
2983         }
2984
2985         /* for packed formats */
2986         return width * height * drm_format_plane_cpp(format, 0);
2987 }
2988
2989 /*
2990  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2991  * a 8192x4096@32bpp framebuffer:
2992  *   3 * 4096 * 8192  * 4 < 2^32
2993  */
2994 static unsigned int
2995 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate)
2996 {
2997         struct drm_crtc_state *cstate = &intel_cstate->base;
2998         struct drm_atomic_state *state = cstate->state;
2999         struct drm_crtc *crtc = cstate->crtc;
3000         struct drm_device *dev = crtc->dev;
3001         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3002         const struct drm_plane *plane;
3003         const struct intel_plane *intel_plane;
3004         struct drm_plane_state *pstate;
3005         unsigned int rate, total_data_rate = 0;
3006         int id;
3007         int i;
3008
3009         if (WARN_ON(!state))
3010                 return 0;
3011
3012         /* Calculate and cache data rate for each plane */
3013         for_each_plane_in_state(state, plane, pstate, i) {
3014                 id = skl_wm_plane_id(to_intel_plane(plane));
3015                 intel_plane = to_intel_plane(plane);
3016
3017                 if (intel_plane->pipe != intel_crtc->pipe)
3018                         continue;
3019
3020                 /* packed/uv */
3021                 rate = skl_plane_relative_data_rate(intel_cstate,
3022                                                     pstate, 0);
3023                 intel_cstate->wm.skl.plane_data_rate[id] = rate;
3024
3025                 /* y-plane */
3026                 rate = skl_plane_relative_data_rate(intel_cstate,
3027                                                     pstate, 1);
3028                 intel_cstate->wm.skl.plane_y_data_rate[id] = rate;
3029         }
3030
3031         /* Calculate CRTC's total data rate from cached values */
3032         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3033                 int id = skl_wm_plane_id(intel_plane);
3034
3035                 /* packed/uv */
3036                 total_data_rate += intel_cstate->wm.skl.plane_data_rate[id];
3037                 total_data_rate += intel_cstate->wm.skl.plane_y_data_rate[id];
3038         }
3039
3040         WARN_ON(cstate->plane_mask && total_data_rate == 0);
3041
3042         return total_data_rate;
3043 }
3044
3045 static int
3046 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3047                       struct skl_ddb_allocation *ddb /* out */)
3048 {
3049         struct drm_atomic_state *state = cstate->base.state;
3050         struct drm_crtc *crtc = cstate->base.crtc;
3051         struct drm_device *dev = crtc->dev;
3052         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3053         struct intel_plane *intel_plane;
3054         struct drm_plane *plane;
3055         struct drm_plane_state *pstate;
3056         enum pipe pipe = intel_crtc->pipe;
3057         struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
3058         uint16_t alloc_size, start, cursor_blocks;
3059         uint16_t *minimum = cstate->wm.skl.minimum_blocks;
3060         uint16_t *y_minimum = cstate->wm.skl.minimum_y_blocks;
3061         unsigned int total_data_rate;
3062         int num_active;
3063         int id, i;
3064
3065         if (WARN_ON(!state))
3066                 return 0;
3067
3068         if (!cstate->base.active) {
3069                 ddb->pipe[pipe].start = ddb->pipe[pipe].end = 0;
3070                 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3071                 memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
3072                 return 0;
3073         }
3074
3075         skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3076         alloc_size = skl_ddb_entry_size(alloc);
3077         if (alloc_size == 0) {
3078                 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3079                 return 0;
3080         }
3081
3082         cursor_blocks = skl_cursor_allocation(num_active);
3083         ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
3084         ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3085
3086         alloc_size -= cursor_blocks;
3087
3088         /* 1. Allocate the mininum required blocks for each active plane */
3089         for_each_plane_in_state(state, plane, pstate, i) {
3090                 intel_plane = to_intel_plane(plane);
3091                 id = skl_wm_plane_id(intel_plane);
3092
3093                 if (intel_plane->pipe != pipe)
3094                         continue;
3095
3096                 if (!to_intel_plane_state(pstate)->visible) {
3097                         minimum[id] = 0;
3098                         y_minimum[id] = 0;
3099                         continue;
3100                 }
3101                 if (plane->type == DRM_PLANE_TYPE_CURSOR) {
3102                         minimum[id] = 0;
3103                         y_minimum[id] = 0;
3104                         continue;
3105                 }
3106
3107                 minimum[id] = 8;
3108                 if (pstate->fb->pixel_format == DRM_FORMAT_NV12)
3109                         y_minimum[id] = 8;
3110                 else
3111                         y_minimum[id] = 0;
3112         }
3113
3114         for (i = 0; i < PLANE_CURSOR; i++) {
3115                 alloc_size -= minimum[i];
3116                 alloc_size -= y_minimum[i];
3117         }
3118
3119         /*
3120          * 2. Distribute the remaining space in proportion to the amount of
3121          * data each plane needs to fetch from memory.
3122          *
3123          * FIXME: we may not allocate every single block here.
3124          */
3125         total_data_rate = skl_get_total_relative_data_rate(cstate);
3126         if (total_data_rate == 0)
3127                 return 0;
3128
3129         start = alloc->start;
3130         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3131                 unsigned int data_rate, y_data_rate;
3132                 uint16_t plane_blocks, y_plane_blocks = 0;
3133                 int id = skl_wm_plane_id(intel_plane);
3134
3135                 data_rate = cstate->wm.skl.plane_data_rate[id];
3136
3137                 /*
3138                  * allocation for (packed formats) or (uv-plane part of planar format):
3139                  * promote the expression to 64 bits to avoid overflowing, the
3140                  * result is < available as data_rate / total_data_rate < 1
3141                  */
3142                 plane_blocks = minimum[id];
3143                 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3144                                         total_data_rate);
3145
3146                 /* Leave disabled planes at (0,0) */
3147                 if (data_rate) {
3148                         ddb->plane[pipe][id].start = start;
3149                         ddb->plane[pipe][id].end = start + plane_blocks;
3150                 }
3151
3152                 start += plane_blocks;
3153
3154                 /*
3155                  * allocation for y_plane part of planar format:
3156                  */
3157                 y_data_rate = cstate->wm.skl.plane_y_data_rate[id];
3158
3159                 y_plane_blocks = y_minimum[id];
3160                 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3161                                         total_data_rate);
3162
3163                 if (y_data_rate) {
3164                         ddb->y_plane[pipe][id].start = start;
3165                         ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3166                 }
3167
3168                 start += y_plane_blocks;
3169         }
3170
3171         return 0;
3172 }
3173
3174 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3175 {
3176         /* TODO: Take into account the scalers once we support them */
3177         return config->base.adjusted_mode.crtc_clock;
3178 }
3179
3180 /*
3181  * The max latency should be 257 (max the punit can code is 255 and we add 2us
3182  * for the read latency) and cpp should always be <= 8, so that
3183  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3184  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3185 */
3186 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3187 {
3188         uint32_t wm_intermediate_val, ret;
3189
3190         if (latency == 0)
3191                 return UINT_MAX;
3192
3193         wm_intermediate_val = latency * pixel_rate * cpp / 512;
3194         ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3195
3196         return ret;
3197 }
3198
3199 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3200                                uint32_t horiz_pixels, uint8_t cpp,
3201                                uint64_t tiling, uint32_t latency)
3202 {
3203         uint32_t ret;
3204         uint32_t plane_bytes_per_line, plane_blocks_per_line;
3205         uint32_t wm_intermediate_val;
3206
3207         if (latency == 0)
3208                 return UINT_MAX;
3209
3210         plane_bytes_per_line = horiz_pixels * cpp;
3211
3212         if (tiling == I915_FORMAT_MOD_Y_TILED ||
3213             tiling == I915_FORMAT_MOD_Yf_TILED) {
3214                 plane_bytes_per_line *= 4;
3215                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3216                 plane_blocks_per_line /= 4;
3217         } else {
3218                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3219         }
3220
3221         wm_intermediate_val = latency * pixel_rate;
3222         ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3223                                 plane_blocks_per_line;
3224
3225         return ret;
3226 }
3227
3228 static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3229                                 struct intel_crtc_state *cstate,
3230                                 struct intel_plane_state *intel_pstate,
3231                                 uint16_t ddb_allocation,
3232                                 int level,
3233                                 uint16_t *out_blocks, /* out */
3234                                 uint8_t *out_lines, /* out */
3235                                 bool *enabled /* out */)
3236 {
3237         struct drm_plane_state *pstate = &intel_pstate->base;
3238         struct drm_framebuffer *fb = pstate->fb;
3239         uint32_t latency = dev_priv->wm.skl_latency[level];
3240         uint32_t method1, method2;
3241         uint32_t plane_bytes_per_line, plane_blocks_per_line;
3242         uint32_t res_blocks, res_lines;
3243         uint32_t selected_result;
3244         uint8_t cpp;
3245         uint32_t width = 0, height = 0;
3246
3247         if (latency == 0 || !cstate->base.active || !intel_pstate->visible) {
3248                 *enabled = false;
3249                 return 0;
3250         }
3251
3252         width = drm_rect_width(&intel_pstate->src) >> 16;
3253         height = drm_rect_height(&intel_pstate->src) >> 16;
3254
3255         if (intel_rotation_90_or_270(pstate->rotation))
3256                 swap(width, height);
3257
3258         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3259         method1 = skl_wm_method1(skl_pipe_pixel_rate(cstate),
3260                                  cpp, latency);
3261         method2 = skl_wm_method2(skl_pipe_pixel_rate(cstate),
3262                                  cstate->base.adjusted_mode.crtc_htotal,
3263                                  width,
3264                                  cpp,
3265                                  fb->modifier[0],
3266                                  latency);
3267
3268         plane_bytes_per_line = width * cpp;
3269         plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3270
3271         if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3272             fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3273                 uint32_t min_scanlines = 4;
3274                 uint32_t y_tile_minimum;
3275                 if (intel_rotation_90_or_270(pstate->rotation)) {
3276                         int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3277                                 drm_format_plane_cpp(fb->pixel_format, 1) :
3278                                 drm_format_plane_cpp(fb->pixel_format, 0);
3279
3280                         switch (cpp) {
3281                         case 1:
3282                                 min_scanlines = 16;
3283                                 break;
3284                         case 2:
3285                                 min_scanlines = 8;
3286                                 break;
3287                         case 8:
3288                                 WARN(1, "Unsupported pixel depth for rotation");
3289                         }
3290                 }
3291                 y_tile_minimum = plane_blocks_per_line * min_scanlines;
3292                 selected_result = max(method2, y_tile_minimum);
3293         } else {
3294                 if ((ddb_allocation / plane_blocks_per_line) >= 1)
3295                         selected_result = min(method1, method2);
3296                 else
3297                         selected_result = method1;
3298         }
3299
3300         res_blocks = selected_result + 1;
3301         res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3302
3303         if (level >= 1 && level <= 7) {
3304                 if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3305                     fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3306                         res_lines += 4;
3307                 else
3308                         res_blocks++;
3309         }
3310
3311         if (res_blocks >= ddb_allocation || res_lines > 31) {
3312                 *enabled = false;
3313
3314                 /*
3315                  * If there are no valid level 0 watermarks, then we can't
3316                  * support this display configuration.
3317                  */
3318                 if (level) {
3319                         return 0;
3320                 } else {
3321                         DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
3322                         DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
3323                                       to_intel_crtc(cstate->base.crtc)->pipe,
3324                                       skl_wm_plane_id(to_intel_plane(pstate->plane)),
3325                                       res_blocks, ddb_allocation, res_lines);
3326
3327                         return -EINVAL;
3328                 }
3329         }
3330
3331         *out_blocks = res_blocks;
3332         *out_lines = res_lines;
3333         *enabled = true;
3334
3335         return 0;
3336 }
3337
3338 static int
3339 skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3340                      struct skl_ddb_allocation *ddb,
3341                      struct intel_crtc_state *cstate,
3342                      int level,
3343                      struct skl_wm_level *result)
3344 {
3345         struct drm_device *dev = dev_priv->dev;
3346         struct drm_atomic_state *state = cstate->base.state;
3347         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3348         struct drm_plane *plane;
3349         struct intel_plane *intel_plane;
3350         struct intel_plane_state *intel_pstate;
3351         uint16_t ddb_blocks;
3352         enum pipe pipe = intel_crtc->pipe;
3353         int ret;
3354
3355         /*
3356          * We'll only calculate watermarks for planes that are actually
3357          * enabled, so make sure all other planes are set as disabled.
3358          */
3359         memset(result, 0, sizeof(*result));
3360
3361         for_each_intel_plane_mask(dev, intel_plane, cstate->base.plane_mask) {
3362                 int i = skl_wm_plane_id(intel_plane);
3363
3364                 plane = &intel_plane->base;
3365                 intel_pstate = NULL;
3366                 if (state)
3367                         intel_pstate =
3368                                 intel_atomic_get_existing_plane_state(state,
3369                                                                       intel_plane);
3370
3371                 /*
3372                  * Note: If we start supporting multiple pending atomic commits
3373                  * against the same planes/CRTC's in the future, plane->state
3374                  * will no longer be the correct pre-state to use for the
3375                  * calculations here and we'll need to change where we get the
3376                  * 'unchanged' plane data from.
3377                  *
3378                  * For now this is fine because we only allow one queued commit
3379                  * against a CRTC.  Even if the plane isn't modified by this
3380                  * transaction and we don't have a plane lock, we still have
3381                  * the CRTC's lock, so we know that no other transactions are
3382                  * racing with us to update it.
3383                  */
3384                 if (!intel_pstate)
3385                         intel_pstate = to_intel_plane_state(plane->state);
3386
3387                 WARN_ON(!intel_pstate->base.fb);
3388
3389                 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3390
3391                 ret = skl_compute_plane_wm(dev_priv,
3392                                            cstate,
3393                                            intel_pstate,
3394                                            ddb_blocks,
3395                                            level,
3396                                            &result->plane_res_b[i],
3397                                            &result->plane_res_l[i],
3398                                            &result->plane_en[i]);
3399                 if (ret)
3400                         return ret;
3401         }
3402
3403         return 0;
3404 }
3405
3406 static uint32_t
3407 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3408 {
3409         if (!cstate->base.active)
3410                 return 0;
3411
3412         if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3413                 return 0;
3414
3415         return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3416                             skl_pipe_pixel_rate(cstate));
3417 }
3418
3419 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3420                                       struct skl_wm_level *trans_wm /* out */)
3421 {
3422         struct drm_crtc *crtc = cstate->base.crtc;
3423         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3424         struct intel_plane *intel_plane;
3425
3426         if (!cstate->base.active)
3427                 return;
3428
3429         /* Until we know more, just disable transition WMs */
3430         for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
3431                 int i = skl_wm_plane_id(intel_plane);
3432
3433                 trans_wm->plane_en[i] = false;
3434         }
3435 }
3436
3437 static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
3438                              struct skl_ddb_allocation *ddb,
3439                              struct skl_pipe_wm *pipe_wm)
3440 {
3441         struct drm_device *dev = cstate->base.crtc->dev;
3442         const struct drm_i915_private *dev_priv = dev->dev_private;
3443         int level, max_level = ilk_wm_max_level(dev);
3444         int ret;
3445
3446         for (level = 0; level <= max_level; level++) {
3447                 ret = skl_compute_wm_level(dev_priv, ddb, cstate,
3448                                            level, &pipe_wm->wm[level]);
3449                 if (ret)
3450                         return ret;
3451         }
3452         pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3453
3454         skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3455
3456         return 0;
3457 }
3458
3459 static void skl_compute_wm_results(struct drm_device *dev,
3460                                    struct skl_pipe_wm *p_wm,
3461                                    struct skl_wm_values *r,
3462                                    struct intel_crtc *intel_crtc)
3463 {
3464         int level, max_level = ilk_wm_max_level(dev);
3465         enum pipe pipe = intel_crtc->pipe;
3466         uint32_t temp;
3467         int i;
3468
3469         for (level = 0; level <= max_level; level++) {
3470                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3471                         temp = 0;
3472
3473                         temp |= p_wm->wm[level].plane_res_l[i] <<
3474                                         PLANE_WM_LINES_SHIFT;
3475                         temp |= p_wm->wm[level].plane_res_b[i];
3476                         if (p_wm->wm[level].plane_en[i])
3477                                 temp |= PLANE_WM_EN;
3478
3479                         r->plane[pipe][i][level] = temp;
3480                 }
3481
3482                 temp = 0;
3483
3484                 temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3485                 temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3486
3487                 if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3488                         temp |= PLANE_WM_EN;
3489
3490                 r->plane[pipe][PLANE_CURSOR][level] = temp;
3491
3492         }
3493
3494         /* transition WMs */
3495         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3496                 temp = 0;
3497                 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3498                 temp |= p_wm->trans_wm.plane_res_b[i];
3499                 if (p_wm->trans_wm.plane_en[i])
3500                         temp |= PLANE_WM_EN;
3501
3502                 r->plane_trans[pipe][i] = temp;
3503         }
3504
3505         temp = 0;
3506         temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3507         temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3508         if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3509                 temp |= PLANE_WM_EN;
3510
3511         r->plane_trans[pipe][PLANE_CURSOR] = temp;
3512
3513         r->wm_linetime[pipe] = p_wm->linetime;
3514 }
3515
3516 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
3517                                 i915_reg_t reg,
3518                                 const struct skl_ddb_entry *entry)
3519 {
3520         if (entry->end)
3521                 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3522         else
3523                 I915_WRITE(reg, 0);
3524 }
3525
3526 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3527                                 const struct skl_wm_values *new)
3528 {
3529         struct drm_device *dev = dev_priv->dev;
3530         struct intel_crtc *crtc;
3531
3532         for_each_intel_crtc(dev, crtc) {
3533                 int i, level, max_level = ilk_wm_max_level(dev);
3534                 enum pipe pipe = crtc->pipe;
3535
3536                 if ((new->dirty_pipes & drm_crtc_mask(&crtc->base)) == 0)
3537                         continue;
3538                 if (!crtc->active)
3539                         continue;
3540
3541                 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3542
3543                 for (level = 0; level <= max_level; level++) {
3544                         for (i = 0; i < intel_num_planes(crtc); i++)
3545                                 I915_WRITE(PLANE_WM(pipe, i, level),
3546                                            new->plane[pipe][i][level]);
3547                         I915_WRITE(CUR_WM(pipe, level),
3548                                    new->plane[pipe][PLANE_CURSOR][level]);
3549                 }
3550                 for (i = 0; i < intel_num_planes(crtc); i++)
3551                         I915_WRITE(PLANE_WM_TRANS(pipe, i),
3552                                    new->plane_trans[pipe][i]);
3553                 I915_WRITE(CUR_WM_TRANS(pipe),
3554                            new->plane_trans[pipe][PLANE_CURSOR]);
3555
3556                 for (i = 0; i < intel_num_planes(crtc); i++) {
3557                         skl_ddb_entry_write(dev_priv,
3558                                             PLANE_BUF_CFG(pipe, i),
3559                                             &new->ddb.plane[pipe][i]);
3560                         skl_ddb_entry_write(dev_priv,
3561                                             PLANE_NV12_BUF_CFG(pipe, i),
3562                                             &new->ddb.y_plane[pipe][i]);
3563                 }
3564
3565                 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3566                                     &new->ddb.plane[pipe][PLANE_CURSOR]);
3567         }
3568 }
3569
3570 /*
3571  * When setting up a new DDB allocation arrangement, we need to correctly
3572  * sequence the times at which the new allocations for the pipes are taken into
3573  * account or we'll have pipes fetching from space previously allocated to
3574  * another pipe.
3575  *
3576  * Roughly the sequence looks like:
3577  *  1. re-allocate the pipe(s) with the allocation being reduced and not
3578  *     overlapping with a previous light-up pipe (another way to put it is:
3579  *     pipes with their new allocation strickly included into their old ones).
3580  *  2. re-allocate the other pipes that get their allocation reduced
3581  *  3. allocate the pipes having their allocation increased
3582  *
3583  * Steps 1. and 2. are here to take care of the following case:
3584  * - Initially DDB looks like this:
3585  *     |   B    |   C    |
3586  * - enable pipe A.
3587  * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3588  *   allocation
3589  *     |  A  |  B  |  C  |
3590  *
3591  * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3592  */
3593
3594 static void
3595 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3596 {
3597         int plane;
3598
3599         DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3600
3601         for_each_plane(dev_priv, pipe, plane) {
3602                 I915_WRITE(PLANE_SURF(pipe, plane),
3603                            I915_READ(PLANE_SURF(pipe, plane)));
3604         }
3605         I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3606 }
3607
3608 static bool
3609 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3610                             const struct skl_ddb_allocation *new,
3611                             enum pipe pipe)
3612 {
3613         uint16_t old_size, new_size;
3614
3615         old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3616         new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3617
3618         return old_size != new_size &&
3619                new->pipe[pipe].start >= old->pipe[pipe].start &&
3620                new->pipe[pipe].end <= old->pipe[pipe].end;
3621 }
3622
3623 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3624                                 struct skl_wm_values *new_values)
3625 {
3626         struct drm_device *dev = dev_priv->dev;
3627         struct skl_ddb_allocation *cur_ddb, *new_ddb;
3628         bool reallocated[I915_MAX_PIPES] = {};
3629         struct intel_crtc *crtc;
3630         enum pipe pipe;
3631
3632         new_ddb = &new_values->ddb;
3633         cur_ddb = &dev_priv->wm.skl_hw.ddb;
3634
3635         /*
3636          * First pass: flush the pipes with the new allocation contained into
3637          * the old space.
3638          *
3639          * We'll wait for the vblank on those pipes to ensure we can safely
3640          * re-allocate the freed space without this pipe fetching from it.
3641          */
3642         for_each_intel_crtc(dev, crtc) {
3643                 if (!crtc->active)
3644                         continue;
3645
3646                 pipe = crtc->pipe;
3647
3648                 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3649                         continue;
3650
3651                 skl_wm_flush_pipe(dev_priv, pipe, 1);
3652                 intel_wait_for_vblank(dev, pipe);
3653
3654                 reallocated[pipe] = true;
3655         }
3656
3657
3658         /*
3659          * Second pass: flush the pipes that are having their allocation
3660          * reduced, but overlapping with a previous allocation.
3661          *
3662          * Here as well we need to wait for the vblank to make sure the freed
3663          * space is not used anymore.
3664          */
3665         for_each_intel_crtc(dev, crtc) {
3666                 if (!crtc->active)
3667                         continue;
3668
3669                 pipe = crtc->pipe;
3670
3671                 if (reallocated[pipe])
3672                         continue;
3673
3674                 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3675                     skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3676                         skl_wm_flush_pipe(dev_priv, pipe, 2);
3677                         intel_wait_for_vblank(dev, pipe);
3678                         reallocated[pipe] = true;
3679                 }
3680         }
3681
3682         /*
3683          * Third pass: flush the pipes that got more space allocated.
3684          *
3685          * We don't need to actively wait for the update here, next vblank
3686          * will just get more DDB space with the correct WM values.
3687          */
3688         for_each_intel_crtc(dev, crtc) {
3689                 if (!crtc->active)
3690                         continue;
3691
3692                 pipe = crtc->pipe;
3693
3694                 /*
3695                  * At this point, only the pipes more space than before are
3696                  * left to re-allocate.
3697                  */
3698                 if (reallocated[pipe])
3699                         continue;
3700
3701                 skl_wm_flush_pipe(dev_priv, pipe, 3);
3702         }
3703 }
3704
3705 static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
3706                               struct skl_ddb_allocation *ddb, /* out */
3707                               struct skl_pipe_wm *pipe_wm, /* out */
3708                               bool *changed /* out */)
3709 {
3710         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->crtc);
3711         struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3712         int ret;
3713
3714         ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
3715         if (ret)
3716                 return ret;
3717
3718         if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3719                 *changed = false;
3720         else
3721                 *changed = true;
3722
3723         return 0;
3724 }
3725
3726 static int
3727 skl_compute_ddb(struct drm_atomic_state *state)
3728 {
3729         struct drm_device *dev = state->dev;
3730         struct drm_i915_private *dev_priv = to_i915(dev);
3731         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3732         struct intel_crtc *intel_crtc;
3733         struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
3734         unsigned realloc_pipes = dev_priv->active_crtcs;
3735         int ret;
3736
3737         /*
3738          * If this is our first atomic update following hardware readout,
3739          * we can't trust the DDB that the BIOS programmed for us.  Let's
3740          * pretend that all pipes switched active status so that we'll
3741          * ensure a full DDB recompute.
3742          */
3743         if (dev_priv->wm.distrust_bios_wm)
3744                 intel_state->active_pipe_changes = ~0;
3745
3746         /*
3747          * If the modeset changes which CRTC's are active, we need to
3748          * recompute the DDB allocation for *all* active pipes, even
3749          * those that weren't otherwise being modified in any way by this
3750          * atomic commit.  Due to the shrinking of the per-pipe allocations
3751          * when new active CRTC's are added, it's possible for a pipe that
3752          * we were already using and aren't changing at all here to suddenly
3753          * become invalid if its DDB needs exceeds its new allocation.
3754          *
3755          * Note that if we wind up doing a full DDB recompute, we can't let
3756          * any other display updates race with this transaction, so we need
3757          * to grab the lock on *all* CRTC's.
3758          */
3759         if (intel_state->active_pipe_changes) {
3760                 realloc_pipes = ~0;
3761                 intel_state->wm_results.dirty_pipes = ~0;
3762         }
3763
3764         for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
3765                 struct intel_crtc_state *cstate;
3766
3767                 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
3768                 if (IS_ERR(cstate))
3769                         return PTR_ERR(cstate);
3770
3771                 ret = skl_allocate_pipe_ddb(cstate, ddb);
3772                 if (ret)
3773                         return ret;
3774         }
3775
3776         return 0;
3777 }
3778
3779 static int
3780 skl_compute_wm(struct drm_atomic_state *state)
3781 {
3782         struct drm_crtc *crtc;
3783         struct drm_crtc_state *cstate;
3784         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3785         struct skl_wm_values *results = &intel_state->wm_results;
3786         struct skl_pipe_wm *pipe_wm;
3787         bool changed = false;
3788         int ret, i;
3789
3790         /*
3791          * If this transaction isn't actually touching any CRTC's, don't
3792          * bother with watermark calculation.  Note that if we pass this
3793          * test, we're guaranteed to hold at least one CRTC state mutex,
3794          * which means we can safely use values like dev_priv->active_crtcs
3795          * since any racing commits that want to update them would need to
3796          * hold _all_ CRTC state mutexes.
3797          */
3798         for_each_crtc_in_state(state, crtc, cstate, i)
3799                 changed = true;
3800         if (!changed)
3801                 return 0;
3802
3803         /* Clear all dirty flags */
3804         results->dirty_pipes = 0;
3805
3806         ret = skl_compute_ddb(state);
3807         if (ret)
3808                 return ret;
3809
3810         /*
3811          * Calculate WM's for all pipes that are part of this transaction.
3812          * Note that the DDB allocation above may have added more CRTC's that
3813          * weren't otherwise being modified (and set bits in dirty_pipes) if
3814          * pipe allocations had to change.
3815          *
3816          * FIXME:  Now that we're doing this in the atomic check phase, we
3817          * should allow skl_update_pipe_wm() to return failure in cases where
3818          * no suitable watermark values can be found.
3819          */
3820         for_each_crtc_in_state(state, crtc, cstate, i) {
3821                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3822                 struct intel_crtc_state *intel_cstate =
3823                         to_intel_crtc_state(cstate);
3824
3825                 pipe_wm = &intel_cstate->wm.skl.optimal;
3826                 ret = skl_update_pipe_wm(cstate, &results->ddb, pipe_wm,
3827                                          &changed);
3828                 if (ret)
3829                         return ret;
3830
3831                 if (changed)
3832                         results->dirty_pipes |= drm_crtc_mask(crtc);
3833
3834                 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
3835                         /* This pipe's WM's did not change */
3836                         continue;
3837
3838                 intel_cstate->update_wm_pre = true;
3839                 skl_compute_wm_results(crtc->dev, pipe_wm, results, intel_crtc);
3840         }
3841
3842         return 0;
3843 }
3844
3845 static void skl_update_wm(struct drm_crtc *crtc)
3846 {
3847         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3848         struct drm_device *dev = crtc->dev;
3849         struct drm_i915_private *dev_priv = dev->dev_private;
3850         struct skl_wm_values *results = &dev_priv->wm.skl_results;
3851         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3852         struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
3853
3854         if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
3855                 return;
3856
3857         intel_crtc->wm.active.skl = *pipe_wm;
3858
3859         mutex_lock(&dev_priv->wm.wm_mutex);
3860
3861         skl_write_wm_values(dev_priv, results);
3862         skl_flush_wm_values(dev_priv, results);
3863
3864         /* store the new configuration */
3865         dev_priv->wm.skl_hw = *results;
3866
3867         mutex_unlock(&dev_priv->wm.wm_mutex);
3868 }
3869
3870 static void ilk_compute_wm_config(struct drm_device *dev,
3871                                   struct intel_wm_config *config)
3872 {
3873         struct intel_crtc *crtc;
3874
3875         /* Compute the currently _active_ config */
3876         for_each_intel_crtc(dev, crtc) {
3877                 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
3878
3879                 if (!wm->pipe_enabled)
3880                         continue;
3881
3882                 config->sprites_enabled |= wm->sprites_enabled;
3883                 config->sprites_scaled |= wm->sprites_scaled;
3884                 config->num_pipes_active++;
3885         }
3886 }
3887
3888 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
3889 {
3890         struct drm_device *dev = dev_priv->dev;
3891         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3892         struct ilk_wm_maximums max;
3893         struct intel_wm_config config = {};
3894         struct ilk_wm_values results = {};
3895         enum intel_ddb_partitioning partitioning;
3896
3897         ilk_compute_wm_config(dev, &config);
3898
3899         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3900         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3901
3902         /* 5/6 split only in single pipe config on IVB+ */
3903         if (INTEL_INFO(dev)->gen >= 7 &&
3904             config.num_pipes_active == 1 && config.sprites_enabled) {
3905                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3906                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3907
3908                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3909         } else {
3910                 best_lp_wm = &lp_wm_1_2;
3911         }
3912
3913         partitioning = (best_lp_wm == &lp_wm_1_2) ?
3914                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3915
3916         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3917
3918         ilk_write_wm_values(dev_priv, &results);
3919 }
3920
3921 static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
3922 {
3923         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
3924         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3925
3926         mutex_lock(&dev_priv->wm.wm_mutex);
3927         intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
3928         ilk_program_watermarks(dev_priv);
3929         mutex_unlock(&dev_priv->wm.wm_mutex);
3930 }
3931
3932 static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
3933 {
3934         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
3935         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3936
3937         mutex_lock(&dev_priv->wm.wm_mutex);
3938         if (cstate->wm.need_postvbl_update) {
3939                 intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
3940                 ilk_program_watermarks(dev_priv);
3941         }
3942         mutex_unlock(&dev_priv->wm.wm_mutex);
3943 }
3944
3945 static void skl_pipe_wm_active_state(uint32_t val,
3946                                      struct skl_pipe_wm *active,
3947                                      bool is_transwm,
3948                                      bool is_cursor,
3949                                      int i,
3950                                      int level)
3951 {
3952         bool is_enabled = (val & PLANE_WM_EN) != 0;
3953
3954         if (!is_transwm) {
3955                 if (!is_cursor) {
3956                         active->wm[level].plane_en[i] = is_enabled;
3957                         active->wm[level].plane_res_b[i] =
3958                                         val & PLANE_WM_BLOCKS_MASK;
3959                         active->wm[level].plane_res_l[i] =
3960                                         (val >> PLANE_WM_LINES_SHIFT) &
3961                                                 PLANE_WM_LINES_MASK;
3962                 } else {
3963                         active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
3964                         active->wm[level].plane_res_b[PLANE_CURSOR] =
3965                                         val & PLANE_WM_BLOCKS_MASK;
3966                         active->wm[level].plane_res_l[PLANE_CURSOR] =
3967                                         (val >> PLANE_WM_LINES_SHIFT) &
3968                                                 PLANE_WM_LINES_MASK;
3969                 }
3970         } else {
3971                 if (!is_cursor) {
3972                         active->trans_wm.plane_en[i] = is_enabled;
3973                         active->trans_wm.plane_res_b[i] =
3974                                         val & PLANE_WM_BLOCKS_MASK;
3975                         active->trans_wm.plane_res_l[i] =
3976                                         (val >> PLANE_WM_LINES_SHIFT) &
3977                                                 PLANE_WM_LINES_MASK;
3978                 } else {
3979                         active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
3980                         active->trans_wm.plane_res_b[PLANE_CURSOR] =
3981                                         val & PLANE_WM_BLOCKS_MASK;
3982                         active->trans_wm.plane_res_l[PLANE_CURSOR] =
3983                                         (val >> PLANE_WM_LINES_SHIFT) &
3984                                                 PLANE_WM_LINES_MASK;
3985                 }
3986         }
3987 }
3988
3989 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3990 {
3991         struct drm_device *dev = crtc->dev;
3992         struct drm_i915_private *dev_priv = dev->dev_private;
3993         struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3994         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3995         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3996         struct skl_pipe_wm *active = &cstate->wm.skl.optimal;
3997         enum pipe pipe = intel_crtc->pipe;
3998         int level, i, max_level;
3999         uint32_t temp;
4000
4001         max_level = ilk_wm_max_level(dev);
4002
4003         hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4004
4005         for (level = 0; level <= max_level; level++) {
4006                 for (i = 0; i < intel_num_planes(intel_crtc); i++)
4007                         hw->plane[pipe][i][level] =
4008                                         I915_READ(PLANE_WM(pipe, i, level));
4009                 hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
4010         }
4011
4012         for (i = 0; i < intel_num_planes(intel_crtc); i++)
4013                 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
4014         hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
4015
4016         if (!intel_crtc->active)
4017                 return;
4018
4019         hw->dirty_pipes |= drm_crtc_mask(crtc);
4020
4021         active->linetime = hw->wm_linetime[pipe];
4022
4023         for (level = 0; level <= max_level; level++) {
4024                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
4025                         temp = hw->plane[pipe][i][level];
4026                         skl_pipe_wm_active_state(temp, active, false,
4027                                                 false, i, level);
4028                 }
4029                 temp = hw->plane[pipe][PLANE_CURSOR][level];
4030                 skl_pipe_wm_active_state(temp, active, false, true, i, level);
4031         }
4032
4033         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
4034                 temp = hw->plane_trans[pipe][i];
4035                 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
4036         }
4037
4038         temp = hw->plane_trans[pipe][PLANE_CURSOR];
4039         skl_pipe_wm_active_state(temp, active, true, true, i, 0);
4040
4041         intel_crtc->wm.active.skl = *active;
4042 }
4043
4044 void skl_wm_get_hw_state(struct drm_device *dev)
4045 {
4046         struct drm_i915_private *dev_priv = dev->dev_private;
4047         struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4048         struct drm_crtc *crtc;
4049         struct intel_crtc *intel_crtc;
4050
4051         skl_ddb_get_hw_state(dev_priv, ddb);
4052         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
4053                 skl_pipe_wm_get_hw_state(crtc);
4054
4055         if (dev_priv->active_crtcs) {
4056                 /* Fully recompute DDB on first atomic commit */
4057                 dev_priv->wm.distrust_bios_wm = true;
4058         } else {
4059                 /* Easy/common case; just sanitize DDB now if everything off */
4060                 memset(ddb, 0, sizeof(*ddb));
4061         }
4062
4063         /* Calculate plane data rates */
4064         for_each_intel_crtc(dev, intel_crtc) {
4065                 struct intel_crtc_state *cstate = intel_crtc->config;
4066                 struct intel_plane *intel_plane;
4067
4068                 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4069                         const struct drm_plane_state *pstate =
4070                                 intel_plane->base.state;
4071                         int id = skl_wm_plane_id(intel_plane);
4072
4073                         cstate->wm.skl.plane_data_rate[id] =
4074                                 skl_plane_relative_data_rate(cstate, pstate, 0);
4075                         cstate->wm.skl.plane_y_data_rate[id] =
4076                                 skl_plane_relative_data_rate(cstate, pstate, 1);
4077                 }
4078         }
4079 }
4080
4081 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
4082 {
4083         struct drm_device *dev = crtc->dev;
4084         struct drm_i915_private *dev_priv = dev->dev_private;
4085         struct ilk_wm_values *hw = &dev_priv->wm.hw;
4086         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4087         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4088         struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4089         enum pipe pipe = intel_crtc->pipe;
4090         static const i915_reg_t wm0_pipe_reg[] = {
4091                 [PIPE_A] = WM0_PIPEA_ILK,
4092                 [PIPE_B] = WM0_PIPEB_ILK,
4093                 [PIPE_C] = WM0_PIPEC_IVB,
4094         };
4095
4096         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4097         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4098                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4099
4100         memset(active, 0, sizeof(*active));
4101
4102         active->pipe_enabled = intel_crtc->active;
4103
4104         if (active->pipe_enabled) {
4105                 u32 tmp = hw->wm_pipe[pipe];
4106
4107                 /*
4108                  * For active pipes LP0 watermark is marked as
4109                  * enabled, and LP1+ watermaks as disabled since
4110                  * we can't really reverse compute them in case
4111                  * multiple pipes are active.
4112                  */
4113                 active->wm[0].enable = true;
4114                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
4115                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
4116                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
4117                 active->linetime = hw->wm_linetime[pipe];
4118         } else {
4119                 int level, max_level = ilk_wm_max_level(dev);
4120
4121                 /*
4122                  * For inactive pipes, all watermark levels
4123                  * should be marked as enabled but zeroed,
4124                  * which is what we'd compute them to.
4125                  */
4126                 for (level = 0; level <= max_level; level++)
4127                         active->wm[level].enable = true;
4128         }
4129
4130         intel_crtc->wm.active.ilk = *active;
4131 }
4132
4133 #define _FW_WM(value, plane) \
4134         (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
4135 #define _FW_WM_VLV(value, plane) \
4136         (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
4137
4138 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
4139                                struct vlv_wm_values *wm)
4140 {
4141         enum pipe pipe;
4142         uint32_t tmp;
4143
4144         for_each_pipe(dev_priv, pipe) {
4145                 tmp = I915_READ(VLV_DDL(pipe));
4146
4147                 wm->ddl[pipe].primary =
4148                         (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4149                 wm->ddl[pipe].cursor =
4150                         (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4151                 wm->ddl[pipe].sprite[0] =
4152                         (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4153                 wm->ddl[pipe].sprite[1] =
4154                         (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4155         }
4156
4157         tmp = I915_READ(DSPFW1);
4158         wm->sr.plane = _FW_WM(tmp, SR);
4159         wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
4160         wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
4161         wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
4162
4163         tmp = I915_READ(DSPFW2);
4164         wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
4165         wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
4166         wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
4167
4168         tmp = I915_READ(DSPFW3);
4169         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
4170
4171         if (IS_CHERRYVIEW(dev_priv)) {
4172                 tmp = I915_READ(DSPFW7_CHV);
4173                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4174                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4175
4176                 tmp = I915_READ(DSPFW8_CHV);
4177                 wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
4178                 wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
4179
4180                 tmp = I915_READ(DSPFW9_CHV);
4181                 wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
4182                 wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
4183
4184                 tmp = I915_READ(DSPHOWM);
4185                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4186                 wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
4187                 wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
4188                 wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
4189                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4190                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4191                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4192                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4193                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4194                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4195         } else {
4196                 tmp = I915_READ(DSPFW7);
4197                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4198                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4199
4200                 tmp = I915_READ(DSPHOWM);
4201                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4202                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4203                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4204                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4205                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4206                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4207                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4208         }
4209 }
4210
4211 #undef _FW_WM
4212 #undef _FW_WM_VLV
4213
4214 void vlv_wm_get_hw_state(struct drm_device *dev)
4215 {
4216         struct drm_i915_private *dev_priv = to_i915(dev);
4217         struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4218         struct intel_plane *plane;
4219         enum pipe pipe;
4220         u32 val;
4221
4222         vlv_read_wm_values(dev_priv, wm);
4223
4224         for_each_intel_plane(dev, plane) {
4225                 switch (plane->base.type) {
4226                         int sprite;
4227                 case DRM_PLANE_TYPE_CURSOR:
4228                         plane->wm.fifo_size = 63;
4229                         break;
4230                 case DRM_PLANE_TYPE_PRIMARY:
4231                         plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
4232                         break;
4233                 case DRM_PLANE_TYPE_OVERLAY:
4234                         sprite = plane->plane;
4235                         plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
4236                         break;
4237                 }
4238         }
4239
4240         wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4241         wm->level = VLV_WM_LEVEL_PM2;
4242
4243         if (IS_CHERRYVIEW(dev_priv)) {
4244                 mutex_lock(&dev_priv->rps.hw_lock);
4245
4246                 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4247                 if (val & DSP_MAXFIFO_PM5_ENABLE)
4248                         wm->level = VLV_WM_LEVEL_PM5;
4249
4250                 /*
4251                  * If DDR DVFS is disabled in the BIOS, Punit
4252                  * will never ack the request. So if that happens
4253                  * assume we don't have to enable/disable DDR DVFS
4254                  * dynamically. To test that just set the REQ_ACK
4255                  * bit to poke the Punit, but don't change the
4256                  * HIGH/LOW bits so that we don't actually change
4257                  * the current state.
4258                  */
4259                 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4260                 val |= FORCE_DDR_FREQ_REQ_ACK;
4261                 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4262
4263                 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4264                               FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4265                         DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4266                                       "assuming DDR DVFS is disabled\n");
4267                         dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4268                 } else {
4269                         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4270                         if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4271                                 wm->level = VLV_WM_LEVEL_DDR_DVFS;
4272                 }
4273
4274                 mutex_unlock(&dev_priv->rps.hw_lock);
4275         }
4276
4277         for_each_pipe(dev_priv, pipe)
4278                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4279                               pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4280                               wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4281
4282         DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4283                       wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4284 }
4285
4286 void ilk_wm_get_hw_state(struct drm_device *dev)
4287 {
4288         struct drm_i915_private *dev_priv = dev->dev_private;
4289         struct ilk_wm_values *hw = &dev_priv->wm.hw;
4290         struct drm_crtc *crtc;
4291
4292         for_each_crtc(dev, crtc)
4293                 ilk_pipe_wm_get_hw_state(crtc);
4294
4295         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4296         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4297         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4298
4299         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4300         if (INTEL_INFO(dev)->gen >= 7) {
4301                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4302                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4303         }
4304
4305         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4306                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4307                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4308         else if (IS_IVYBRIDGE(dev))
4309                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4310                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4311
4312         hw->enable_fbc_wm =
4313                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4314 }
4315
4316 /**
4317  * intel_update_watermarks - update FIFO watermark values based on current modes
4318  *
4319  * Calculate watermark values for the various WM regs based on current mode
4320  * and plane configuration.
4321  *
4322  * There are several cases to deal with here:
4323  *   - normal (i.e. non-self-refresh)
4324  *   - self-refresh (SR) mode
4325  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4326  *   - lines are small relative to FIFO size (buffer can hold more than 2
4327  *     lines), so need to account for TLB latency
4328  *
4329  *   The normal calculation is:
4330  *     watermark = dotclock * bytes per pixel * latency
4331  *   where latency is platform & configuration dependent (we assume pessimal
4332  *   values here).
4333  *
4334  *   The SR calculation is:
4335  *     watermark = (trunc(latency/line time)+1) * surface width *
4336  *       bytes per pixel
4337  *   where
4338  *     line time = htotal / dotclock
4339  *     surface width = hdisplay for normal plane and 64 for cursor
4340  *   and latency is assumed to be high, as above.
4341  *
4342  * The final value programmed to the register should always be rounded up,
4343  * and include an extra 2 entries to account for clock crossings.
4344  *
4345  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4346  * to set the non-SR watermarks to 8.
4347  */
4348 void intel_update_watermarks(struct drm_crtc *crtc)
4349 {
4350         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4351
4352         if (dev_priv->display.update_wm)
4353                 dev_priv->display.update_wm(crtc);
4354 }
4355
4356 /*
4357  * Lock protecting IPS related data structures
4358  */
4359 DEFINE_SPINLOCK(mchdev_lock);
4360
4361 /* Global for IPS driver to get at the current i915 device. Protected by
4362  * mchdev_lock. */
4363 static struct drm_i915_private *i915_mch_dev;
4364
4365 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4366 {
4367         u16 rgvswctl;
4368
4369         assert_spin_locked(&mchdev_lock);
4370
4371         rgvswctl = I915_READ16(MEMSWCTL);
4372         if (rgvswctl & MEMCTL_CMD_STS) {
4373                 DRM_DEBUG("gpu busy, RCS change rejected\n");
4374                 return false; /* still busy with another command */
4375         }
4376
4377         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4378                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4379         I915_WRITE16(MEMSWCTL, rgvswctl);
4380         POSTING_READ16(MEMSWCTL);
4381
4382         rgvswctl |= MEMCTL_CMD_STS;
4383         I915_WRITE16(MEMSWCTL, rgvswctl);
4384
4385         return true;
4386 }
4387
4388 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4389 {
4390         u32 rgvmodectl;
4391         u8 fmax, fmin, fstart, vstart;
4392
4393         spin_lock_irq(&mchdev_lock);
4394
4395         rgvmodectl = I915_READ(MEMMODECTL);
4396
4397         /* Enable temp reporting */
4398         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4399         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4400
4401         /* 100ms RC evaluation intervals */
4402         I915_WRITE(RCUPEI, 100000);
4403         I915_WRITE(RCDNEI, 100000);
4404
4405         /* Set max/min thresholds to 90ms and 80ms respectively */
4406         I915_WRITE(RCBMAXAVG, 90000);
4407         I915_WRITE(RCBMINAVG, 80000);
4408
4409         I915_WRITE(MEMIHYST, 1);
4410
4411         /* Set up min, max, and cur for interrupt handling */
4412         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4413         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4414         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4415                 MEMMODE_FSTART_SHIFT;
4416
4417         vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4418                 PXVFREQ_PX_SHIFT;
4419
4420         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4421         dev_priv->ips.fstart = fstart;
4422
4423         dev_priv->ips.max_delay = fstart;
4424         dev_priv->ips.min_delay = fmin;
4425         dev_priv->ips.cur_delay = fstart;
4426
4427         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4428                          fmax, fmin, fstart);
4429
4430         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4431
4432         /*
4433          * Interrupts will be enabled in ironlake_irq_postinstall
4434          */
4435
4436         I915_WRITE(VIDSTART, vstart);
4437         POSTING_READ(VIDSTART);
4438
4439         rgvmodectl |= MEMMODE_SWMODE_EN;
4440         I915_WRITE(MEMMODECTL, rgvmodectl);
4441
4442         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4443                 DRM_ERROR("stuck trying to change perf mode\n");
4444         mdelay(1);
4445
4446         ironlake_set_drps(dev_priv, fstart);
4447
4448         dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4449                 I915_READ(DDREC) + I915_READ(CSIEC);
4450         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4451         dev_priv->ips.last_count2 = I915_READ(GFXEC);
4452         dev_priv->ips.last_time2 = ktime_get_raw_ns();
4453
4454         spin_unlock_irq(&mchdev_lock);
4455 }
4456
4457 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4458 {
4459         u16 rgvswctl;
4460
4461         spin_lock_irq(&mchdev_lock);
4462
4463         rgvswctl = I915_READ16(MEMSWCTL);
4464
4465         /* Ack interrupts, disable EFC interrupt */
4466         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4467         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4468         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4469         I915_WRITE(DEIIR, DE_PCU_EVENT);
4470         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4471
4472         /* Go back to the starting frequency */
4473         ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4474         mdelay(1);
4475         rgvswctl |= MEMCTL_CMD_STS;
4476         I915_WRITE(MEMSWCTL, rgvswctl);
4477         mdelay(1);
4478
4479         spin_unlock_irq(&mchdev_lock);
4480 }
4481
4482 /* There's a funny hw issue where the hw returns all 0 when reading from
4483  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4484  * ourselves, instead of doing a rmw cycle (which might result in us clearing
4485  * all limits and the gpu stuck at whatever frequency it is at atm).
4486  */
4487 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4488 {
4489         u32 limits;
4490
4491         /* Only set the down limit when we've reached the lowest level to avoid
4492          * getting more interrupts, otherwise leave this clear. This prevents a
4493          * race in the hw when coming out of rc6: There's a tiny window where
4494          * the hw runs at the minimal clock before selecting the desired
4495          * frequency, if the down threshold expires in that window we will not
4496          * receive a down interrupt. */
4497         if (IS_GEN9(dev_priv)) {
4498                 limits = (dev_priv->rps.max_freq_softlimit) << 23;
4499                 if (val <= dev_priv->rps.min_freq_softlimit)
4500                         limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4501         } else {
4502                 limits = dev_priv->rps.max_freq_softlimit << 24;
4503                 if (val <= dev_priv->rps.min_freq_softlimit)
4504                         limits |= dev_priv->rps.min_freq_softlimit << 16;
4505         }
4506
4507         return limits;
4508 }
4509
4510 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4511 {
4512         int new_power;
4513         u32 threshold_up = 0, threshold_down = 0; /* in % */
4514         u32 ei_up = 0, ei_down = 0;
4515
4516         new_power = dev_priv->rps.power;
4517         switch (dev_priv->rps.power) {
4518         case LOW_POWER:
4519                 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4520                         new_power = BETWEEN;
4521                 break;
4522
4523         case BETWEEN:
4524                 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4525                         new_power = LOW_POWER;
4526                 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4527                         new_power = HIGH_POWER;
4528                 break;
4529
4530         case HIGH_POWER:
4531                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4532                         new_power = BETWEEN;
4533                 break;
4534         }
4535         /* Max/min bins are special */
4536         if (val <= dev_priv->rps.min_freq_softlimit)
4537                 new_power = LOW_POWER;
4538         if (val >= dev_priv->rps.max_freq_softlimit)
4539                 new_power = HIGH_POWER;
4540         if (new_power == dev_priv->rps.power)
4541                 return;
4542
4543         /* Note the units here are not exactly 1us, but 1280ns. */
4544         switch (new_power) {
4545         case LOW_POWER:
4546                 /* Upclock if more than 95% busy over 16ms */
4547                 ei_up = 16000;
4548                 threshold_up = 95;
4549
4550                 /* Downclock if less than 85% busy over 32ms */
4551                 ei_down = 32000;
4552                 threshold_down = 85;
4553                 break;
4554
4555         case BETWEEN:
4556                 /* Upclock if more than 90% busy over 13ms */
4557                 ei_up = 13000;
4558                 threshold_up = 90;
4559
4560                 /* Downclock if less than 75% busy over 32ms */
4561                 ei_down = 32000;
4562                 threshold_down = 75;
4563                 break;
4564
4565         case HIGH_POWER:
4566                 /* Upclock if more than 85% busy over 10ms */
4567                 ei_up = 10000;
4568                 threshold_up = 85;
4569
4570                 /* Downclock if less than 60% busy over 32ms */
4571                 ei_down = 32000;
4572                 threshold_down = 60;
4573                 break;
4574         }
4575
4576         I915_WRITE(GEN6_RP_UP_EI,
4577                 GT_INTERVAL_FROM_US(dev_priv, ei_up));
4578         I915_WRITE(GEN6_RP_UP_THRESHOLD,
4579                 GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4580
4581         I915_WRITE(GEN6_RP_DOWN_EI,
4582                 GT_INTERVAL_FROM_US(dev_priv, ei_down));
4583         I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4584                 GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4585
4586          I915_WRITE(GEN6_RP_CONTROL,
4587                     GEN6_RP_MEDIA_TURBO |
4588                     GEN6_RP_MEDIA_HW_NORMAL_MODE |
4589                     GEN6_RP_MEDIA_IS_GFX |
4590                     GEN6_RP_ENABLE |
4591                     GEN6_RP_UP_BUSY_AVG |
4592                     GEN6_RP_DOWN_IDLE_AVG);
4593
4594         dev_priv->rps.power = new_power;
4595         dev_priv->rps.up_threshold = threshold_up;
4596         dev_priv->rps.down_threshold = threshold_down;
4597         dev_priv->rps.last_adj = 0;
4598 }
4599
4600 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4601 {
4602         u32 mask = 0;
4603
4604         if (val > dev_priv->rps.min_freq_softlimit)
4605                 mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4606         if (val < dev_priv->rps.max_freq_softlimit)
4607                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4608
4609         mask &= dev_priv->pm_rps_events;
4610
4611         return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4612 }
4613
4614 /* gen6_set_rps is called to update the frequency request, but should also be
4615  * called when the range (min_delay and max_delay) is modified so that we can
4616  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4617 static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4618 {
4619         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4620         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4621                 return;
4622
4623         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4624         WARN_ON(val > dev_priv->rps.max_freq);
4625         WARN_ON(val < dev_priv->rps.min_freq);
4626
4627         /* min/max delay may still have been modified so be sure to
4628          * write the limits value.
4629          */
4630         if (val != dev_priv->rps.cur_freq) {
4631                 gen6_set_rps_thresholds(dev_priv, val);
4632
4633                 if (IS_GEN9(dev_priv))
4634                         I915_WRITE(GEN6_RPNSWREQ,
4635                                    GEN9_FREQUENCY(val));
4636                 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4637                         I915_WRITE(GEN6_RPNSWREQ,
4638                                    HSW_FREQUENCY(val));
4639                 else
4640                         I915_WRITE(GEN6_RPNSWREQ,
4641                                    GEN6_FREQUENCY(val) |
4642                                    GEN6_OFFSET(0) |
4643                                    GEN6_AGGRESSIVE_TURBO);
4644         }
4645
4646         /* Make sure we continue to get interrupts
4647          * until we hit the minimum or maximum frequencies.
4648          */
4649         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4650         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4651
4652         POSTING_READ(GEN6_RPNSWREQ);
4653
4654         dev_priv->rps.cur_freq = val;
4655         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4656 }
4657
4658 static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4659 {
4660         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4661         WARN_ON(val > dev_priv->rps.max_freq);
4662         WARN_ON(val < dev_priv->rps.min_freq);
4663
4664         if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4665                       "Odd GPU freq value\n"))
4666                 val &= ~1;
4667
4668         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4669
4670         if (val != dev_priv->rps.cur_freq) {
4671                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4672                 if (!IS_CHERRYVIEW(dev_priv))
4673                         gen6_set_rps_thresholds(dev_priv, val);
4674         }
4675
4676         dev_priv->rps.cur_freq = val;
4677         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4678 }
4679
4680 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4681  *
4682  * * If Gfx is Idle, then
4683  * 1. Forcewake Media well.
4684  * 2. Request idle freq.
4685  * 3. Release Forcewake of Media well.
4686 */
4687 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4688 {
4689         u32 val = dev_priv->rps.idle_freq;
4690
4691         if (dev_priv->rps.cur_freq <= val)
4692                 return;
4693
4694         /* Wake up the media well, as that takes a lot less
4695          * power than the Render well. */
4696         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4697         valleyview_set_rps(dev_priv, val);
4698         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4699 }
4700
4701 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4702 {
4703         mutex_lock(&dev_priv->rps.hw_lock);
4704         if (dev_priv->rps.enabled) {
4705                 if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4706                         gen6_rps_reset_ei(dev_priv);
4707                 I915_WRITE(GEN6_PMINTRMSK,
4708                            gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4709         }
4710         mutex_unlock(&dev_priv->rps.hw_lock);
4711 }
4712
4713 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4714 {
4715         mutex_lock(&dev_priv->rps.hw_lock);
4716         if (dev_priv->rps.enabled) {
4717                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4718                         vlv_set_rps_idle(dev_priv);
4719                 else
4720                         gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
4721                 dev_priv->rps.last_adj = 0;
4722                 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4723         }
4724         mutex_unlock(&dev_priv->rps.hw_lock);
4725
4726         spin_lock(&dev_priv->rps.client_lock);
4727         while (!list_empty(&dev_priv->rps.clients))
4728                 list_del_init(dev_priv->rps.clients.next);
4729         spin_unlock(&dev_priv->rps.client_lock);
4730 }
4731
4732 void gen6_rps_boost(struct drm_i915_private *dev_priv,
4733                     struct intel_rps_client *rps,
4734                     unsigned long submitted)
4735 {
4736         /* This is intentionally racy! We peek at the state here, then
4737          * validate inside the RPS worker.
4738          */
4739         if (!(dev_priv->mm.busy &&
4740               dev_priv->rps.enabled &&
4741               dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4742                 return;
4743
4744         /* Force a RPS boost (and don't count it against the client) if
4745          * the GPU is severely congested.
4746          */
4747         if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4748                 rps = NULL;
4749
4750         spin_lock(&dev_priv->rps.client_lock);
4751         if (rps == NULL || list_empty(&rps->link)) {
4752                 spin_lock_irq(&dev_priv->irq_lock);
4753                 if (dev_priv->rps.interrupts_enabled) {
4754                         dev_priv->rps.client_boost = true;
4755                         queue_work(dev_priv->wq, &dev_priv->rps.work);
4756                 }
4757                 spin_unlock_irq(&dev_priv->irq_lock);
4758
4759                 if (rps != NULL) {
4760                         list_add(&rps->link, &dev_priv->rps.clients);
4761                         rps->boosts++;
4762                 } else
4763                         dev_priv->rps.boosts++;
4764         }
4765         spin_unlock(&dev_priv->rps.client_lock);
4766 }
4767
4768 void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
4769 {
4770         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4771                 valleyview_set_rps(dev_priv, val);
4772         else
4773                 gen6_set_rps(dev_priv, val);
4774 }
4775
4776 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
4777 {
4778         I915_WRITE(GEN6_RC_CONTROL, 0);
4779         I915_WRITE(GEN9_PG_ENABLE, 0);
4780 }
4781
4782 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
4783 {
4784         I915_WRITE(GEN6_RP_CONTROL, 0);
4785 }
4786
4787 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
4788 {
4789         I915_WRITE(GEN6_RC_CONTROL, 0);
4790         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4791         I915_WRITE(GEN6_RP_CONTROL, 0);
4792 }
4793
4794 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
4795 {
4796         I915_WRITE(GEN6_RC_CONTROL, 0);
4797 }
4798
4799 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
4800 {
4801         /* we're doing forcewake before Disabling RC6,
4802          * This what the BIOS expects when going into suspend */
4803         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4804
4805         I915_WRITE(GEN6_RC_CONTROL, 0);
4806
4807         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4808 }
4809
4810 static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
4811 {
4812         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4813                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4814                         mode = GEN6_RC_CTL_RC6_ENABLE;
4815                 else
4816                         mode = 0;
4817         }
4818         if (HAS_RC6p(dev_priv))
4819                 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4820                               onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
4821                               onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
4822                               onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
4823
4824         else
4825                 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4826                               onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
4827 }
4828
4829 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
4830 {
4831         struct i915_ggtt *ggtt = &dev_priv->ggtt;
4832         bool enable_rc6 = true;
4833         unsigned long rc6_ctx_base;
4834
4835         if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
4836                 DRM_DEBUG_KMS("RC6 Base location not set properly.\n");
4837                 enable_rc6 = false;
4838         }
4839
4840         /*
4841          * The exact context size is not known for BXT, so assume a page size
4842          * for this check.
4843          */
4844         rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
4845         if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
4846               (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
4847                                         ggtt->stolen_reserved_size))) {
4848                 DRM_DEBUG_KMS("RC6 Base address not as expected.\n");
4849                 enable_rc6 = false;
4850         }
4851
4852         if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
4853               ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
4854               ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
4855               ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
4856                 DRM_DEBUG_KMS("Engine Idle wait time not set properly.\n");
4857                 enable_rc6 = false;
4858         }
4859
4860         if (!(I915_READ(GEN6_RC_CONTROL) & (GEN6_RC_CTL_RC6_ENABLE |
4861                                             GEN6_RC_CTL_HW_ENABLE)) &&
4862             ((I915_READ(GEN6_RC_CONTROL) & GEN6_RC_CTL_HW_ENABLE) ||
4863              !(I915_READ(GEN6_RC_STATE) & RC6_STATE))) {
4864                 DRM_DEBUG_KMS("HW/SW RC6 is not enabled by BIOS.\n");
4865                 enable_rc6 = false;
4866         }
4867
4868         return enable_rc6;
4869 }
4870
4871 int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
4872 {
4873         /* No RC6 before Ironlake and code is gone for ilk. */
4874         if (INTEL_INFO(dev_priv)->gen < 6)
4875                 return 0;
4876
4877         if (!enable_rc6)
4878                 return 0;
4879
4880         if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
4881                 DRM_INFO("RC6 disabled by BIOS\n");
4882                 return 0;
4883         }
4884
4885         /* Respect the kernel parameter if it is set */
4886         if (enable_rc6 >= 0) {
4887                 int mask;
4888
4889                 if (HAS_RC6p(dev_priv))
4890                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4891                                INTEL_RC6pp_ENABLE;
4892                 else
4893                         mask = INTEL_RC6_ENABLE;
4894
4895                 if ((enable_rc6 & mask) != enable_rc6)
4896                         DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4897                                       enable_rc6 & mask, enable_rc6, mask);
4898
4899                 return enable_rc6 & mask;
4900         }
4901
4902         if (IS_IVYBRIDGE(dev_priv))
4903                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4904
4905         return INTEL_RC6_ENABLE;
4906 }
4907
4908 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
4909 {
4910         uint32_t rp_state_cap;
4911         u32 ddcc_status = 0;
4912         int ret;
4913
4914         /* All of these values are in units of 50MHz */
4915         dev_priv->rps.cur_freq          = 0;
4916         /* static values from HW: RP0 > RP1 > RPn (min_freq) */
4917         if (IS_BROXTON(dev_priv)) {
4918                 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
4919                 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
4920                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4921                 dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
4922         } else {
4923                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4924                 dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
4925                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4926                 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4927         }
4928
4929         /* hw_max = RP0 until we check for overclocking */
4930         dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
4931
4932         dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4933         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
4934             IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
4935                 ret = sandybridge_pcode_read(dev_priv,
4936                                         HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4937                                         &ddcc_status);
4938                 if (0 == ret)
4939                         dev_priv->rps.efficient_freq =
4940                                 clamp_t(u8,
4941                                         ((ddcc_status >> 8) & 0xff),
4942                                         dev_priv->rps.min_freq,
4943                                         dev_priv->rps.max_freq);
4944         }
4945
4946         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
4947                 /* Store the frequency values in 16.66 MHZ units, which is
4948                    the natural hardware unit for SKL */
4949                 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4950                 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4951                 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4952                 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
4953                 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
4954         }
4955
4956         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4957
4958         /* Preserve min/max settings in case of re-init */
4959         if (dev_priv->rps.max_freq_softlimit == 0)
4960                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4961
4962         if (dev_priv->rps.min_freq_softlimit == 0) {
4963                 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4964                         dev_priv->rps.min_freq_softlimit =
4965                                 max_t(int, dev_priv->rps.efficient_freq,
4966                                       intel_freq_opcode(dev_priv, 450));
4967                 else
4968                         dev_priv->rps.min_freq_softlimit =
4969                                 dev_priv->rps.min_freq;
4970         }
4971 }
4972
4973 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
4974 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
4975 {
4976         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4977
4978         gen6_init_rps_frequencies(dev_priv);
4979
4980         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4981         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
4982                 /*
4983                  * BIOS could leave the Hw Turbo enabled, so need to explicitly
4984                  * clear out the Control register just to avoid inconsitency
4985                  * with debugfs interface, which will show  Turbo as enabled
4986                  * only and that is not expected by the User after adding the
4987                  * WaGsvDisableTurbo. Apart from this there is no problem even
4988                  * if the Turbo is left enabled in the Control register, as the
4989                  * Up/Down interrupts would remain masked.
4990                  */
4991                 gen9_disable_rps(dev_priv);
4992                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4993                 return;
4994         }
4995
4996         /* Program defaults and thresholds for RPS*/
4997         I915_WRITE(GEN6_RC_VIDEO_FREQ,
4998                 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4999
5000         /* 1 second timeout*/
5001         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
5002                 GT_INTERVAL_FROM_US(dev_priv, 1000000));
5003
5004         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
5005
5006         /* Leaning on the below call to gen6_set_rps to program/setup the
5007          * Up/Down EI & threshold registers, as well as the RP_CONTROL,
5008          * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5009         dev_priv->rps.power = HIGH_POWER; /* force a reset */
5010         gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5011
5012         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5013 }
5014
5015 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
5016 {
5017         struct intel_engine_cs *engine;
5018         uint32_t rc6_mask = 0;
5019
5020         /* 1a: Software RC state - RC0 */
5021         I915_WRITE(GEN6_RC_STATE, 0);
5022
5023         /* 1b: Get forcewake during program sequence. Although the driver
5024          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5025         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5026
5027         /* 2a: Disable RC states. */
5028         I915_WRITE(GEN6_RC_CONTROL, 0);
5029
5030         /* 2b: Program RC6 thresholds.*/
5031
5032         /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5033         if (IS_SKYLAKE(dev_priv))
5034                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
5035         else
5036                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
5037         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5038         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5039         for_each_engine(engine, dev_priv)
5040                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5041
5042         if (HAS_GUC_UCODE(dev_priv))
5043                 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
5044
5045         I915_WRITE(GEN6_RC_SLEEP, 0);
5046
5047         /* 2c: Program Coarse Power Gating Policies. */
5048         I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
5049         I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
5050
5051         /* 3a: Enable RC6 */
5052         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5053                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5054         DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5055         /* WaRsUseTimeoutMode */
5056         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
5057             IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5058                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
5059                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5060                            GEN7_RC_CTL_TO_MODE |
5061                            rc6_mask);
5062         } else {
5063                 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
5064                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5065                            GEN6_RC_CTL_EI_MODE(1) |
5066                            rc6_mask);
5067         }
5068
5069         /*
5070          * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5071          * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5072          */
5073         if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5074                 I915_WRITE(GEN9_PG_ENABLE, 0);
5075         else
5076                 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
5077                                 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5078
5079         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5080 }
5081
5082 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5083 {
5084         struct intel_engine_cs *engine;
5085         uint32_t rc6_mask = 0;
5086
5087         /* 1a: Software RC state - RC0 */
5088         I915_WRITE(GEN6_RC_STATE, 0);
5089
5090         /* 1c & 1d: Get forcewake during program sequence. Although the driver
5091          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5092         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5093
5094         /* 2a: Disable RC states. */
5095         I915_WRITE(GEN6_RC_CONTROL, 0);
5096
5097         /* Initialize rps frequencies */
5098         gen6_init_rps_frequencies(dev_priv);
5099
5100         /* 2b: Program RC6 thresholds.*/
5101         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5102         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5103         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5104         for_each_engine(engine, dev_priv)
5105                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5106         I915_WRITE(GEN6_RC_SLEEP, 0);
5107         if (IS_BROADWELL(dev_priv))
5108                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
5109         else
5110                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5111
5112         /* 3: Enable RC6 */
5113         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5114                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5115         intel_print_rc6_info(dev_priv, rc6_mask);
5116         if (IS_BROADWELL(dev_priv))
5117                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5118                                 GEN7_RC_CTL_TO_MODE |
5119                                 rc6_mask);
5120         else
5121                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5122                                 GEN6_RC_CTL_EI_MODE(1) |
5123                                 rc6_mask);
5124
5125         /* 4 Program defaults and thresholds for RPS*/
5126         I915_WRITE(GEN6_RPNSWREQ,
5127                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5128         I915_WRITE(GEN6_RC_VIDEO_FREQ,
5129                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5130         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
5131         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
5132
5133         /* Docs recommend 900MHz, and 300 MHz respectively */
5134         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
5135                    dev_priv->rps.max_freq_softlimit << 24 |
5136                    dev_priv->rps.min_freq_softlimit << 16);
5137
5138         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
5139         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
5140         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
5141         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
5142
5143         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5144
5145         /* 5: Enable RPS */
5146         I915_WRITE(GEN6_RP_CONTROL,
5147                    GEN6_RP_MEDIA_TURBO |
5148                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5149                    GEN6_RP_MEDIA_IS_GFX |
5150                    GEN6_RP_ENABLE |
5151                    GEN6_RP_UP_BUSY_AVG |
5152                    GEN6_RP_DOWN_IDLE_AVG);
5153
5154         /* 6: Ring frequency + overclocking (our driver does this later */
5155
5156         dev_priv->rps.power = HIGH_POWER; /* force a reset */
5157         gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5158
5159         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5160 }
5161
5162 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5163 {
5164         struct intel_engine_cs *engine;
5165         u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
5166         u32 gtfifodbg;
5167         int rc6_mode;
5168         int ret;
5169
5170         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5171
5172         /* Here begins a magic sequence of register writes to enable
5173          * auto-downclocking.
5174          *
5175          * Perhaps there might be some value in exposing these to
5176          * userspace...
5177          */
5178         I915_WRITE(GEN6_RC_STATE, 0);
5179
5180         /* Clear the DBG now so we don't confuse earlier errors */
5181         gtfifodbg = I915_READ(GTFIFODBG);
5182         if (gtfifodbg) {
5183                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
5184                 I915_WRITE(GTFIFODBG, gtfifodbg);
5185         }
5186
5187         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5188
5189         /* Initialize rps frequencies */
5190         gen6_init_rps_frequencies(dev_priv);
5191
5192         /* disable the counters and set deterministic thresholds */
5193         I915_WRITE(GEN6_RC_CONTROL, 0);
5194
5195         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
5196         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
5197         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
5198         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5199         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5200
5201         for_each_engine(engine, dev_priv)
5202                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5203
5204         I915_WRITE(GEN6_RC_SLEEP, 0);
5205         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5206         if (IS_IVYBRIDGE(dev_priv))
5207                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
5208         else
5209                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5210         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5211         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
5212
5213         /* Check if we are enabling RC6 */
5214         rc6_mode = intel_enable_rc6();
5215         if (rc6_mode & INTEL_RC6_ENABLE)
5216                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
5217
5218         /* We don't use those on Haswell */
5219         if (!IS_HASWELL(dev_priv)) {
5220                 if (rc6_mode & INTEL_RC6p_ENABLE)
5221                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5222
5223                 if (rc6_mode & INTEL_RC6pp_ENABLE)
5224                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
5225         }
5226
5227         intel_print_rc6_info(dev_priv, rc6_mask);
5228
5229         I915_WRITE(GEN6_RC_CONTROL,
5230                    rc6_mask |
5231                    GEN6_RC_CTL_EI_MODE(1) |
5232                    GEN6_RC_CTL_HW_ENABLE);
5233
5234         /* Power down if completely idle for over 50ms */
5235         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5236         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5237
5238         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5239         if (ret)
5240                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5241
5242         ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
5243         if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
5244                 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5245                                  (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5246                                  (pcu_mbox & 0xff) * 50);
5247                 dev_priv->rps.max_freq = pcu_mbox & 0xff;
5248         }
5249
5250         dev_priv->rps.power = HIGH_POWER; /* force a reset */
5251         gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5252
5253         rc6vids = 0;
5254         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5255         if (IS_GEN6(dev_priv) && ret) {
5256                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5257         } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5258                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5259                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5260                 rc6vids &= 0xffff00;
5261                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
5262                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5263                 if (ret)
5264                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5265         }
5266
5267         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5268 }
5269
5270 static void __gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5271 {
5272         int min_freq = 15;
5273         unsigned int gpu_freq;
5274         unsigned int max_ia_freq, min_ring_freq;
5275         unsigned int max_gpu_freq, min_gpu_freq;
5276         int scaling_factor = 180;
5277         struct cpufreq_policy *policy;
5278
5279         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5280
5281         policy = cpufreq_cpu_get(0);
5282         if (policy) {
5283                 max_ia_freq = policy->cpuinfo.max_freq;
5284                 cpufreq_cpu_put(policy);
5285         } else {
5286                 /*
5287                  * Default to measured freq if none found, PCU will ensure we
5288                  * don't go over
5289                  */
5290                 max_ia_freq = tsc_khz;
5291         }
5292
5293         /* Convert from kHz to MHz */
5294         max_ia_freq /= 1000;
5295
5296         min_ring_freq = I915_READ(DCLK) & 0xf;
5297         /* convert DDR frequency from units of 266.6MHz to bandwidth */
5298         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5299
5300         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5301                 /* Convert GT frequency to 50 HZ units */
5302                 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5303                 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5304         } else {
5305                 min_gpu_freq = dev_priv->rps.min_freq;
5306                 max_gpu_freq = dev_priv->rps.max_freq;
5307         }
5308
5309         /*
5310          * For each potential GPU frequency, load a ring frequency we'd like
5311          * to use for memory access.  We do this by specifying the IA frequency
5312          * the PCU should use as a reference to determine the ring frequency.
5313          */
5314         for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5315                 int diff = max_gpu_freq - gpu_freq;
5316                 unsigned int ia_freq = 0, ring_freq = 0;
5317
5318                 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5319                         /*
5320                          * ring_freq = 2 * GT. ring_freq is in 100MHz units
5321                          * No floor required for ring frequency on SKL.
5322                          */
5323                         ring_freq = gpu_freq;
5324                 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
5325                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
5326                         ring_freq = max(min_ring_freq, gpu_freq);
5327                 } else if (IS_HASWELL(dev_priv)) {
5328                         ring_freq = mult_frac(gpu_freq, 5, 4);
5329                         ring_freq = max(min_ring_freq, ring_freq);
5330                         /* leave ia_freq as the default, chosen by cpufreq */
5331                 } else {
5332                         /* On older processors, there is no separate ring
5333                          * clock domain, so in order to boost the bandwidth
5334                          * of the ring, we need to upclock the CPU (ia_freq).
5335                          *
5336                          * For GPU frequencies less than 750MHz,
5337                          * just use the lowest ring freq.
5338                          */
5339                         if (gpu_freq < min_freq)
5340                                 ia_freq = 800;
5341                         else
5342                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5343                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5344                 }
5345
5346                 sandybridge_pcode_write(dev_priv,
5347                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5348                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5349                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5350                                         gpu_freq);
5351         }
5352 }
5353
5354 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5355 {
5356         if (!HAS_CORE_RING_FREQ(dev_priv))
5357                 return;
5358
5359         mutex_lock(&dev_priv->rps.hw_lock);
5360         __gen6_update_ring_freq(dev_priv);
5361         mutex_unlock(&dev_priv->rps.hw_lock);
5362 }
5363
5364 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5365 {
5366         u32 val, rp0;
5367
5368         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5369
5370         switch (INTEL_INFO(dev_priv)->eu_total) {
5371         case 8:
5372                 /* (2 * 4) config */
5373                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5374                 break;
5375         case 12:
5376                 /* (2 * 6) config */
5377                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5378                 break;
5379         case 16:
5380                 /* (2 * 8) config */
5381         default:
5382                 /* Setting (2 * 8) Min RP0 for any other combination */
5383                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5384                 break;
5385         }
5386
5387         rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5388
5389         return rp0;
5390 }
5391
5392 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5393 {
5394         u32 val, rpe;
5395
5396         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5397         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5398
5399         return rpe;
5400 }
5401
5402 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5403 {
5404         u32 val, rp1;
5405
5406         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5407         rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5408
5409         return rp1;
5410 }
5411
5412 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5413 {
5414         u32 val, rp1;
5415
5416         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5417
5418         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5419
5420         return rp1;
5421 }
5422
5423 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5424 {
5425         u32 val, rp0;
5426
5427         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5428
5429         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5430         /* Clamp to max */
5431         rp0 = min_t(u32, rp0, 0xea);
5432
5433         return rp0;
5434 }
5435
5436 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5437 {
5438         u32 val, rpe;
5439
5440         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5441         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5442         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5443         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5444
5445         return rpe;
5446 }
5447
5448 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5449 {
5450         u32 val;
5451
5452         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5453         /*
5454          * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
5455          * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
5456          * a BYT-M B0 the above register contains 0xbf. Moreover when setting
5457          * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
5458          * to make sure it matches what Punit accepts.
5459          */
5460         return max_t(u32, val, 0xc0);
5461 }
5462
5463 /* Check that the pctx buffer wasn't move under us. */
5464 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5465 {
5466         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5467
5468         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5469                              dev_priv->vlv_pctx->stolen->start);
5470 }
5471
5472
5473 /* Check that the pcbr address is not empty. */
5474 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5475 {
5476         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5477
5478         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5479 }
5480
5481 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5482 {
5483         struct i915_ggtt *ggtt = &dev_priv->ggtt;
5484         unsigned long pctx_paddr, paddr;
5485         u32 pcbr;
5486         int pctx_size = 32*1024;
5487
5488         pcbr = I915_READ(VLV_PCBR);
5489         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5490                 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5491                 paddr = (dev_priv->mm.stolen_base +
5492                          (ggtt->stolen_size - pctx_size));
5493
5494                 pctx_paddr = (paddr & (~4095));
5495                 I915_WRITE(VLV_PCBR, pctx_paddr);
5496         }
5497
5498         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5499 }
5500
5501 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5502 {
5503         struct drm_i915_gem_object *pctx;
5504         unsigned long pctx_paddr;
5505         u32 pcbr;
5506         int pctx_size = 24*1024;
5507
5508         mutex_lock(&dev_priv->dev->struct_mutex);
5509
5510         pcbr = I915_READ(VLV_PCBR);
5511         if (pcbr) {
5512                 /* BIOS set it up already, grab the pre-alloc'd space */
5513                 int pcbr_offset;
5514
5515                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5516                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5517                                                                       pcbr_offset,
5518                                                                       I915_GTT_OFFSET_NONE,
5519                                                                       pctx_size);
5520                 goto out;
5521         }
5522
5523         DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5524
5525         /*
5526          * From the Gunit register HAS:
5527          * The Gfx driver is expected to program this register and ensure
5528          * proper allocation within Gfx stolen memory.  For example, this
5529          * register should be programmed such than the PCBR range does not
5530          * overlap with other ranges, such as the frame buffer, protected
5531          * memory, or any other relevant ranges.
5532          */
5533         pctx = i915_gem_object_create_stolen(dev_priv->dev, pctx_size);
5534         if (!pctx) {
5535                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5536                 goto out;
5537         }
5538
5539         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5540         I915_WRITE(VLV_PCBR, pctx_paddr);
5541
5542 out:
5543         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5544         dev_priv->vlv_pctx = pctx;
5545         mutex_unlock(&dev_priv->dev->struct_mutex);
5546 }
5547
5548 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5549 {
5550         if (WARN_ON(!dev_priv->vlv_pctx))
5551                 return;
5552
5553         drm_gem_object_unreference_unlocked(&dev_priv->vlv_pctx->base);
5554         dev_priv->vlv_pctx = NULL;
5555 }
5556
5557 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
5558 {
5559         dev_priv->rps.gpll_ref_freq =
5560                 vlv_get_cck_clock(dev_priv, "GPLL ref",
5561                                   CCK_GPLL_CLOCK_CONTROL,
5562                                   dev_priv->czclk_freq);
5563
5564         DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
5565                          dev_priv->rps.gpll_ref_freq);
5566 }
5567
5568 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5569 {
5570         u32 val;
5571
5572         valleyview_setup_pctx(dev_priv);
5573
5574         vlv_init_gpll_ref_freq(dev_priv);
5575
5576         mutex_lock(&dev_priv->rps.hw_lock);
5577
5578         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5579         switch ((val >> 6) & 3) {
5580         case 0:
5581         case 1:
5582                 dev_priv->mem_freq = 800;
5583                 break;
5584         case 2:
5585                 dev_priv->mem_freq = 1066;
5586                 break;
5587         case 3:
5588                 dev_priv->mem_freq = 1333;
5589                 break;
5590         }
5591         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5592
5593         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5594         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5595         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5596                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5597                          dev_priv->rps.max_freq);
5598
5599         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5600         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5601                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5602                          dev_priv->rps.efficient_freq);
5603
5604         dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5605         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5606                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5607                          dev_priv->rps.rp1_freq);
5608
5609         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5610         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5611                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5612                          dev_priv->rps.min_freq);
5613
5614         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5615
5616         /* Preserve min/max settings in case of re-init */
5617         if (dev_priv->rps.max_freq_softlimit == 0)
5618                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5619
5620         if (dev_priv->rps.min_freq_softlimit == 0)
5621                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5622
5623         mutex_unlock(&dev_priv->rps.hw_lock);
5624 }
5625
5626 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5627 {
5628         u32 val;
5629
5630         cherryview_setup_pctx(dev_priv);
5631
5632         vlv_init_gpll_ref_freq(dev_priv);
5633
5634         mutex_lock(&dev_priv->rps.hw_lock);
5635
5636         mutex_lock(&dev_priv->sb_lock);
5637         val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5638         mutex_unlock(&dev_priv->sb_lock);
5639
5640         switch ((val >> 2) & 0x7) {
5641         case 3:
5642                 dev_priv->mem_freq = 2000;
5643                 break;
5644         default:
5645                 dev_priv->mem_freq = 1600;
5646                 break;
5647         }
5648         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5649
5650         dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5651         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5652         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5653                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5654                          dev_priv->rps.max_freq);
5655
5656         dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5657         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5658                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5659                          dev_priv->rps.efficient_freq);
5660
5661         dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5662         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5663                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5664                          dev_priv->rps.rp1_freq);
5665
5666         /* PUnit validated range is only [RPe, RP0] */
5667         dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5668         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5669                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5670                          dev_priv->rps.min_freq);
5671
5672         WARN_ONCE((dev_priv->rps.max_freq |
5673                    dev_priv->rps.efficient_freq |
5674                    dev_priv->rps.rp1_freq |
5675                    dev_priv->rps.min_freq) & 1,
5676                   "Odd GPU freq values\n");
5677
5678         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5679
5680         /* Preserve min/max settings in case of re-init */
5681         if (dev_priv->rps.max_freq_softlimit == 0)
5682                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5683
5684         if (dev_priv->rps.min_freq_softlimit == 0)
5685                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5686
5687         mutex_unlock(&dev_priv->rps.hw_lock);
5688 }
5689
5690 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5691 {
5692         valleyview_cleanup_pctx(dev_priv);
5693 }
5694
5695 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5696 {
5697         struct intel_engine_cs *engine;
5698         u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5699
5700         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5701
5702         gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
5703                                              GT_FIFO_FREE_ENTRIES_CHV);
5704         if (gtfifodbg) {
5705                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5706                                  gtfifodbg);
5707                 I915_WRITE(GTFIFODBG, gtfifodbg);
5708         }
5709
5710         cherryview_check_pctx(dev_priv);
5711
5712         /* 1a & 1b: Get forcewake during program sequence. Although the driver
5713          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5714         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5715
5716         /*  Disable RC states. */
5717         I915_WRITE(GEN6_RC_CONTROL, 0);
5718
5719         /* 2a: Program RC6 thresholds.*/
5720         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5721         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5722         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5723
5724         for_each_engine(engine, dev_priv)
5725                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5726         I915_WRITE(GEN6_RC_SLEEP, 0);
5727
5728         /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5729         I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5730
5731         /* allows RC6 residency counter to work */
5732         I915_WRITE(VLV_COUNTER_CONTROL,
5733                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5734                                       VLV_MEDIA_RC6_COUNT_EN |
5735                                       VLV_RENDER_RC6_COUNT_EN));
5736
5737         /* For now we assume BIOS is allocating and populating the PCBR  */
5738         pcbr = I915_READ(VLV_PCBR);
5739
5740         /* 3: Enable RC6 */
5741         if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
5742             (pcbr >> VLV_PCBR_ADDR_SHIFT))
5743                 rc6_mode = GEN7_RC_CTL_TO_MODE;
5744
5745         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5746
5747         /* 4 Program defaults and thresholds for RPS*/
5748         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5749         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5750         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5751         I915_WRITE(GEN6_RP_UP_EI, 66000);
5752         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5753
5754         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5755
5756         /* 5: Enable RPS */
5757         I915_WRITE(GEN6_RP_CONTROL,
5758                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5759                    GEN6_RP_MEDIA_IS_GFX |
5760                    GEN6_RP_ENABLE |
5761                    GEN6_RP_UP_BUSY_AVG |
5762                    GEN6_RP_DOWN_IDLE_AVG);
5763
5764         /* Setting Fixed Bias */
5765         val = VLV_OVERRIDE_EN |
5766                   VLV_SOC_TDP_EN |
5767                   CHV_BIAS_CPU_50_SOC_50;
5768         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5769
5770         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5771
5772         /* RPS code assumes GPLL is used */
5773         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5774
5775         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5776         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5777
5778         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5779         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5780                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5781                          dev_priv->rps.cur_freq);
5782
5783         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5784                          intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
5785                          dev_priv->rps.idle_freq);
5786
5787         valleyview_set_rps(dev_priv, dev_priv->rps.idle_freq);
5788
5789         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5790 }
5791
5792 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
5793 {
5794         struct intel_engine_cs *engine;
5795         u32 gtfifodbg, val, rc6_mode = 0;
5796
5797         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5798
5799         valleyview_check_pctx(dev_priv);
5800
5801         gtfifodbg = I915_READ(GTFIFODBG);
5802         if (gtfifodbg) {
5803                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5804                                  gtfifodbg);
5805                 I915_WRITE(GTFIFODBG, gtfifodbg);
5806         }
5807
5808         /* If VLV, Forcewake all wells, else re-direct to regular path */
5809         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5810
5811         /*  Disable RC states. */
5812         I915_WRITE(GEN6_RC_CONTROL, 0);
5813
5814         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5815         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5816         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5817         I915_WRITE(GEN6_RP_UP_EI, 66000);
5818         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5819
5820         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5821
5822         I915_WRITE(GEN6_RP_CONTROL,
5823                    GEN6_RP_MEDIA_TURBO |
5824                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5825                    GEN6_RP_MEDIA_IS_GFX |
5826                    GEN6_RP_ENABLE |
5827                    GEN6_RP_UP_BUSY_AVG |
5828                    GEN6_RP_DOWN_IDLE_CONT);
5829
5830         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5831         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5832         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5833
5834         for_each_engine(engine, dev_priv)
5835                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5836
5837         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5838
5839         /* allows RC6 residency counter to work */
5840         I915_WRITE(VLV_COUNTER_CONTROL,
5841                    _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5842                                       VLV_RENDER_RC0_COUNT_EN |
5843                                       VLV_MEDIA_RC6_COUNT_EN |
5844                                       VLV_RENDER_RC6_COUNT_EN));
5845
5846         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5847                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5848
5849         intel_print_rc6_info(dev_priv, rc6_mode);
5850
5851         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5852
5853         /* Setting Fixed Bias */
5854         val = VLV_OVERRIDE_EN |
5855                   VLV_SOC_TDP_EN |
5856                   VLV_BIAS_CPU_125_SOC_875;
5857         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5858
5859         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5860
5861         /* RPS code assumes GPLL is used */
5862         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5863
5864         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5865         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5866
5867         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5868         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5869                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5870                          dev_priv->rps.cur_freq);
5871
5872         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5873                          intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
5874                          dev_priv->rps.idle_freq);
5875
5876         valleyview_set_rps(dev_priv, dev_priv->rps.idle_freq);
5877
5878         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5879 }
5880
5881 static unsigned long intel_pxfreq(u32 vidfreq)
5882 {
5883         unsigned long freq;
5884         int div = (vidfreq & 0x3f0000) >> 16;
5885         int post = (vidfreq & 0x3000) >> 12;
5886         int pre = (vidfreq & 0x7);
5887
5888         if (!pre)
5889                 return 0;
5890
5891         freq = ((div * 133333) / ((1<<post) * pre));
5892
5893         return freq;
5894 }
5895
5896 static const struct cparams {
5897         u16 i;
5898         u16 t;
5899         u16 m;
5900         u16 c;
5901 } cparams[] = {
5902         { 1, 1333, 301, 28664 },
5903         { 1, 1066, 294, 24460 },
5904         { 1, 800, 294, 25192 },
5905         { 0, 1333, 276, 27605 },
5906         { 0, 1066, 276, 27605 },
5907         { 0, 800, 231, 23784 },
5908 };
5909
5910 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5911 {
5912         u64 total_count, diff, ret;
5913         u32 count1, count2, count3, m = 0, c = 0;
5914         unsigned long now = jiffies_to_msecs(jiffies), diff1;
5915         int i;
5916
5917         assert_spin_locked(&mchdev_lock);
5918
5919         diff1 = now - dev_priv->ips.last_time1;
5920
5921         /* Prevent division-by-zero if we are asking too fast.
5922          * Also, we don't get interesting results if we are polling
5923          * faster than once in 10ms, so just return the saved value
5924          * in such cases.
5925          */
5926         if (diff1 <= 10)
5927                 return dev_priv->ips.chipset_power;
5928
5929         count1 = I915_READ(DMIEC);
5930         count2 = I915_READ(DDREC);
5931         count3 = I915_READ(CSIEC);
5932
5933         total_count = count1 + count2 + count3;
5934
5935         /* FIXME: handle per-counter overflow */
5936         if (total_count < dev_priv->ips.last_count1) {
5937                 diff = ~0UL - dev_priv->ips.last_count1;
5938                 diff += total_count;
5939         } else {
5940                 diff = total_count - dev_priv->ips.last_count1;
5941         }
5942
5943         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5944                 if (cparams[i].i == dev_priv->ips.c_m &&
5945                     cparams[i].t == dev_priv->ips.r_t) {
5946                         m = cparams[i].m;
5947                         c = cparams[i].c;
5948                         break;
5949                 }
5950         }
5951
5952         diff = div_u64(diff, diff1);
5953         ret = ((m * diff) + c);
5954         ret = div_u64(ret, 10);
5955
5956         dev_priv->ips.last_count1 = total_count;
5957         dev_priv->ips.last_time1 = now;
5958
5959         dev_priv->ips.chipset_power = ret;
5960
5961         return ret;
5962 }
5963
5964 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5965 {
5966         unsigned long val;
5967
5968         if (INTEL_INFO(dev_priv)->gen != 5)
5969                 return 0;
5970
5971         spin_lock_irq(&mchdev_lock);
5972
5973         val = __i915_chipset_val(dev_priv);
5974
5975         spin_unlock_irq(&mchdev_lock);
5976
5977         return val;
5978 }
5979
5980 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5981 {
5982         unsigned long m, x, b;
5983         u32 tsfs;
5984
5985         tsfs = I915_READ(TSFS);
5986
5987         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5988         x = I915_READ8(TR1);
5989
5990         b = tsfs & TSFS_INTR_MASK;
5991
5992         return ((m * x) / 127) - b;
5993 }
5994
5995 static int _pxvid_to_vd(u8 pxvid)
5996 {
5997         if (pxvid == 0)
5998                 return 0;
5999
6000         if (pxvid >= 8 && pxvid < 31)
6001                 pxvid = 31;
6002
6003         return (pxvid + 2) * 125;
6004 }
6005
6006 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6007 {
6008         const int vd = _pxvid_to_vd(pxvid);
6009         const int vm = vd - 1125;
6010
6011         if (INTEL_INFO(dev_priv)->is_mobile)
6012                 return vm > 0 ? vm : 0;
6013
6014         return vd;
6015 }
6016
6017 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6018 {
6019         u64 now, diff, diffms;
6020         u32 count;
6021
6022         assert_spin_locked(&mchdev_lock);
6023
6024         now = ktime_get_raw_ns();
6025         diffms = now - dev_priv->ips.last_time2;
6026         do_div(diffms, NSEC_PER_MSEC);
6027
6028         /* Don't divide by 0 */
6029         if (!diffms)
6030                 return;
6031
6032         count = I915_READ(GFXEC);
6033
6034         if (count < dev_priv->ips.last_count2) {
6035                 diff = ~0UL - dev_priv->ips.last_count2;
6036                 diff += count;
6037         } else {
6038                 diff = count - dev_priv->ips.last_count2;
6039         }
6040
6041         dev_priv->ips.last_count2 = count;
6042         dev_priv->ips.last_time2 = now;
6043
6044         /* More magic constants... */
6045         diff = diff * 1181;
6046         diff = div_u64(diff, diffms * 10);
6047         dev_priv->ips.gfx_power = diff;
6048 }
6049
6050 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
6051 {
6052         if (INTEL_INFO(dev_priv)->gen != 5)
6053                 return;
6054
6055         spin_lock_irq(&mchdev_lock);
6056
6057         __i915_update_gfx_val(dev_priv);
6058
6059         spin_unlock_irq(&mchdev_lock);
6060 }
6061
6062 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6063 {
6064         unsigned long t, corr, state1, corr2, state2;
6065         u32 pxvid, ext_v;
6066
6067         assert_spin_locked(&mchdev_lock);
6068
6069         pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6070         pxvid = (pxvid >> 24) & 0x7f;
6071         ext_v = pvid_to_extvid(dev_priv, pxvid);
6072
6073         state1 = ext_v;
6074
6075         t = i915_mch_val(dev_priv);
6076
6077         /* Revel in the empirically derived constants */
6078
6079         /* Correction factor in 1/100000 units */
6080         if (t > 80)
6081                 corr = ((t * 2349) + 135940);
6082         else if (t >= 50)
6083                 corr = ((t * 964) + 29317);
6084         else /* < 50 */
6085                 corr = ((t * 301) + 1004);
6086
6087         corr = corr * ((150142 * state1) / 10000 - 78642);
6088         corr /= 100000;
6089         corr2 = (corr * dev_priv->ips.corr);
6090
6091         state2 = (corr2 * state1) / 10000;
6092         state2 /= 100; /* convert to mW */
6093
6094         __i915_update_gfx_val(dev_priv);
6095
6096         return dev_priv->ips.gfx_power + state2;
6097 }
6098
6099 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
6100 {
6101         unsigned long val;
6102
6103         if (INTEL_INFO(dev_priv)->gen != 5)
6104                 return 0;
6105
6106         spin_lock_irq(&mchdev_lock);
6107
6108         val = __i915_gfx_val(dev_priv);
6109
6110         spin_unlock_irq(&mchdev_lock);
6111
6112         return val;
6113 }
6114
6115 /**
6116  * i915_read_mch_val - return value for IPS use
6117  *
6118  * Calculate and return a value for the IPS driver to use when deciding whether
6119  * we have thermal and power headroom to increase CPU or GPU power budget.
6120  */
6121 unsigned long i915_read_mch_val(void)
6122 {
6123         struct drm_i915_private *dev_priv;
6124         unsigned long chipset_val, graphics_val, ret = 0;
6125
6126         spin_lock_irq(&mchdev_lock);
6127         if (!i915_mch_dev)
6128                 goto out_unlock;
6129         dev_priv = i915_mch_dev;
6130
6131         chipset_val = __i915_chipset_val(dev_priv);
6132         graphics_val = __i915_gfx_val(dev_priv);
6133
6134         ret = chipset_val + graphics_val;
6135
6136 out_unlock:
6137         spin_unlock_irq(&mchdev_lock);
6138
6139         return ret;
6140 }
6141 EXPORT_SYMBOL_GPL(i915_read_mch_val);
6142
6143 /**
6144  * i915_gpu_raise - raise GPU frequency limit
6145  *
6146  * Raise the limit; IPS indicates we have thermal headroom.
6147  */
6148 bool i915_gpu_raise(void)
6149 {
6150         struct drm_i915_private *dev_priv;
6151         bool ret = true;
6152
6153         spin_lock_irq(&mchdev_lock);
6154         if (!i915_mch_dev) {
6155                 ret = false;
6156                 goto out_unlock;
6157         }
6158         dev_priv = i915_mch_dev;
6159
6160         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
6161                 dev_priv->ips.max_delay--;
6162
6163 out_unlock:
6164         spin_unlock_irq(&mchdev_lock);
6165
6166         return ret;
6167 }
6168 EXPORT_SYMBOL_GPL(i915_gpu_raise);
6169
6170 /**
6171  * i915_gpu_lower - lower GPU frequency limit
6172  *
6173  * IPS indicates we're close to a thermal limit, so throttle back the GPU
6174  * frequency maximum.
6175  */
6176 bool i915_gpu_lower(void)
6177 {
6178         struct drm_i915_private *dev_priv;
6179         bool ret = true;
6180
6181         spin_lock_irq(&mchdev_lock);
6182         if (!i915_mch_dev) {
6183                 ret = false;
6184                 goto out_unlock;
6185         }
6186         dev_priv = i915_mch_dev;
6187
6188         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
6189                 dev_priv->ips.max_delay++;
6190
6191 out_unlock:
6192         spin_unlock_irq(&mchdev_lock);
6193
6194         return ret;
6195 }
6196 EXPORT_SYMBOL_GPL(i915_gpu_lower);
6197
6198 /**
6199  * i915_gpu_busy - indicate GPU business to IPS
6200  *
6201  * Tell the IPS driver whether or not the GPU is busy.
6202  */
6203 bool i915_gpu_busy(void)
6204 {
6205         struct drm_i915_private *dev_priv;
6206         struct intel_engine_cs *engine;
6207         bool ret = false;
6208
6209         spin_lock_irq(&mchdev_lock);
6210         if (!i915_mch_dev)
6211                 goto out_unlock;
6212         dev_priv = i915_mch_dev;
6213
6214         for_each_engine(engine, dev_priv)
6215                 ret |= !list_empty(&engine->request_list);
6216
6217 out_unlock:
6218         spin_unlock_irq(&mchdev_lock);
6219
6220         return ret;
6221 }
6222 EXPORT_SYMBOL_GPL(i915_gpu_busy);
6223
6224 /**
6225  * i915_gpu_turbo_disable - disable graphics turbo
6226  *
6227  * Disable graphics turbo by resetting the max frequency and setting the
6228  * current frequency to the default.
6229  */
6230 bool i915_gpu_turbo_disable(void)
6231 {
6232         struct drm_i915_private *dev_priv;
6233         bool ret = true;
6234
6235         spin_lock_irq(&mchdev_lock);
6236         if (!i915_mch_dev) {
6237                 ret = false;
6238                 goto out_unlock;
6239         }
6240         dev_priv = i915_mch_dev;
6241
6242         dev_priv->ips.max_delay = dev_priv->ips.fstart;
6243
6244         if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6245                 ret = false;
6246
6247 out_unlock:
6248         spin_unlock_irq(&mchdev_lock);
6249
6250         return ret;
6251 }
6252 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6253
6254 /**
6255  * Tells the intel_ips driver that the i915 driver is now loaded, if
6256  * IPS got loaded first.
6257  *
6258  * This awkward dance is so that neither module has to depend on the
6259  * other in order for IPS to do the appropriate communication of
6260  * GPU turbo limits to i915.
6261  */
6262 static void
6263 ips_ping_for_i915_load(void)
6264 {
6265         void (*link)(void);
6266
6267         link = symbol_get(ips_link_to_i915_driver);
6268         if (link) {
6269                 link();
6270                 symbol_put(ips_link_to_i915_driver);
6271         }
6272 }
6273
6274 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6275 {
6276         /* We only register the i915 ips part with intel-ips once everything is
6277          * set up, to avoid intel-ips sneaking in and reading bogus values. */
6278         spin_lock_irq(&mchdev_lock);
6279         i915_mch_dev = dev_priv;
6280         spin_unlock_irq(&mchdev_lock);
6281
6282         ips_ping_for_i915_load();
6283 }
6284
6285 void intel_gpu_ips_teardown(void)
6286 {
6287         spin_lock_irq(&mchdev_lock);
6288         i915_mch_dev = NULL;
6289         spin_unlock_irq(&mchdev_lock);
6290 }
6291
6292 static void intel_init_emon(struct drm_i915_private *dev_priv)
6293 {
6294         u32 lcfuse;
6295         u8 pxw[16];
6296         int i;
6297
6298         /* Disable to program */
6299         I915_WRITE(ECR, 0);
6300         POSTING_READ(ECR);
6301
6302         /* Program energy weights for various events */
6303         I915_WRITE(SDEW, 0x15040d00);
6304         I915_WRITE(CSIEW0, 0x007f0000);
6305         I915_WRITE(CSIEW1, 0x1e220004);
6306         I915_WRITE(CSIEW2, 0x04000004);
6307
6308         for (i = 0; i < 5; i++)
6309                 I915_WRITE(PEW(i), 0);
6310         for (i = 0; i < 3; i++)
6311                 I915_WRITE(DEW(i), 0);
6312
6313         /* Program P-state weights to account for frequency power adjustment */
6314         for (i = 0; i < 16; i++) {
6315                 u32 pxvidfreq = I915_READ(PXVFREQ(i));
6316                 unsigned long freq = intel_pxfreq(pxvidfreq);
6317                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6318                         PXVFREQ_PX_SHIFT;
6319                 unsigned long val;
6320
6321                 val = vid * vid;
6322                 val *= (freq / 1000);
6323                 val *= 255;
6324                 val /= (127*127*900);
6325                 if (val > 0xff)
6326                         DRM_ERROR("bad pxval: %ld\n", val);
6327                 pxw[i] = val;
6328         }
6329         /* Render standby states get 0 weight */
6330         pxw[14] = 0;
6331         pxw[15] = 0;
6332
6333         for (i = 0; i < 4; i++) {
6334                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6335                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6336                 I915_WRITE(PXW(i), val);
6337         }
6338
6339         /* Adjust magic regs to magic values (more experimental results) */
6340         I915_WRITE(OGW0, 0);
6341         I915_WRITE(OGW1, 0);
6342         I915_WRITE(EG0, 0x00007f00);
6343         I915_WRITE(EG1, 0x0000000e);
6344         I915_WRITE(EG2, 0x000e0000);
6345         I915_WRITE(EG3, 0x68000300);
6346         I915_WRITE(EG4, 0x42000000);
6347         I915_WRITE(EG5, 0x00140031);
6348         I915_WRITE(EG6, 0);
6349         I915_WRITE(EG7, 0);
6350
6351         for (i = 0; i < 8; i++)
6352                 I915_WRITE(PXWL(i), 0);
6353
6354         /* Enable PMON + select events */
6355         I915_WRITE(ECR, 0x80000019);
6356
6357         lcfuse = I915_READ(LCFUSE02);
6358
6359         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6360 }
6361
6362 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6363 {
6364         /*
6365          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6366          * requirement.
6367          */
6368         if (!i915.enable_rc6) {
6369                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6370                 intel_runtime_pm_get(dev_priv);
6371         }
6372
6373         if (IS_CHERRYVIEW(dev_priv))
6374                 cherryview_init_gt_powersave(dev_priv);
6375         else if (IS_VALLEYVIEW(dev_priv))
6376                 valleyview_init_gt_powersave(dev_priv);
6377 }
6378
6379 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6380 {
6381         if (IS_CHERRYVIEW(dev_priv))
6382                 return;
6383         else if (IS_VALLEYVIEW(dev_priv))
6384                 valleyview_cleanup_gt_powersave(dev_priv);
6385
6386         if (!i915.enable_rc6)
6387                 intel_runtime_pm_put(dev_priv);
6388 }
6389
6390 static void gen6_suspend_rps(struct drm_i915_private *dev_priv)
6391 {
6392         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6393
6394         gen6_disable_rps_interrupts(dev_priv);
6395 }
6396
6397 /**
6398  * intel_suspend_gt_powersave - suspend PM work and helper threads
6399  * @dev_priv: i915 device
6400  *
6401  * We don't want to disable RC6 or other features here, we just want
6402  * to make sure any work we've queued has finished and won't bother
6403  * us while we're suspended.
6404  */
6405 void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
6406 {
6407         if (INTEL_GEN(dev_priv) < 6)
6408                 return;
6409
6410         gen6_suspend_rps(dev_priv);
6411
6412         /* Force GPU to min freq during suspend */
6413         gen6_rps_idle(dev_priv);
6414 }
6415
6416 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6417 {
6418         if (IS_IRONLAKE_M(dev_priv)) {
6419                 ironlake_disable_drps(dev_priv);
6420         } else if (INTEL_INFO(dev_priv)->gen >= 6) {
6421                 intel_suspend_gt_powersave(dev_priv);
6422
6423                 mutex_lock(&dev_priv->rps.hw_lock);
6424                 if (INTEL_INFO(dev_priv)->gen >= 9) {
6425                         gen9_disable_rc6(dev_priv);
6426                         gen9_disable_rps(dev_priv);
6427                 } else if (IS_CHERRYVIEW(dev_priv))
6428                         cherryview_disable_rps(dev_priv);
6429                 else if (IS_VALLEYVIEW(dev_priv))
6430                         valleyview_disable_rps(dev_priv);
6431                 else
6432                         gen6_disable_rps(dev_priv);
6433
6434                 dev_priv->rps.enabled = false;
6435                 mutex_unlock(&dev_priv->rps.hw_lock);
6436         }
6437 }
6438
6439 static void intel_gen6_powersave_work(struct work_struct *work)
6440 {
6441         struct drm_i915_private *dev_priv =
6442                 container_of(work, struct drm_i915_private,
6443                              rps.delayed_resume_work.work);
6444
6445         mutex_lock(&dev_priv->rps.hw_lock);
6446
6447         gen6_reset_rps_interrupts(dev_priv);
6448
6449         if (IS_CHERRYVIEW(dev_priv)) {
6450                 cherryview_enable_rps(dev_priv);
6451         } else if (IS_VALLEYVIEW(dev_priv)) {
6452                 valleyview_enable_rps(dev_priv);
6453         } else if (INTEL_INFO(dev_priv)->gen >= 9) {
6454                 gen9_enable_rc6(dev_priv);
6455                 gen9_enable_rps(dev_priv);
6456                 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6457                         __gen6_update_ring_freq(dev_priv);
6458         } else if (IS_BROADWELL(dev_priv)) {
6459                 gen8_enable_rps(dev_priv);
6460                 __gen6_update_ring_freq(dev_priv);
6461         } else {
6462                 gen6_enable_rps(dev_priv);
6463                 __gen6_update_ring_freq(dev_priv);
6464         }
6465
6466         WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6467         WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6468
6469         WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6470         WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6471
6472         dev_priv->rps.enabled = true;
6473
6474         gen6_enable_rps_interrupts(dev_priv);
6475
6476         mutex_unlock(&dev_priv->rps.hw_lock);
6477
6478         intel_runtime_pm_put(dev_priv);
6479 }
6480
6481 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6482 {
6483         /* Powersaving is controlled by the host when inside a VM */
6484         if (intel_vgpu_active(dev_priv))
6485                 return;
6486
6487         if (IS_IRONLAKE_M(dev_priv)) {
6488                 ironlake_enable_drps(dev_priv);
6489                 mutex_lock(&dev_priv->dev->struct_mutex);
6490                 intel_init_emon(dev_priv);
6491                 mutex_unlock(&dev_priv->dev->struct_mutex);
6492         } else if (INTEL_INFO(dev_priv)->gen >= 6) {
6493                 /*
6494                  * PCU communication is slow and this doesn't need to be
6495                  * done at any specific time, so do this out of our fast path
6496                  * to make resume and init faster.
6497                  *
6498                  * We depend on the HW RC6 power context save/restore
6499                  * mechanism when entering D3 through runtime PM suspend. So
6500                  * disable RPM until RPS/RC6 is properly setup. We can only
6501                  * get here via the driver load/system resume/runtime resume
6502                  * paths, so the _noresume version is enough (and in case of
6503                  * runtime resume it's necessary).
6504                  */
6505                 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6506                                            round_jiffies_up_relative(HZ)))
6507                         intel_runtime_pm_get_noresume(dev_priv);
6508         }
6509 }
6510
6511 void intel_reset_gt_powersave(struct drm_i915_private *dev_priv)
6512 {
6513         if (INTEL_INFO(dev_priv)->gen < 6)
6514                 return;
6515
6516         gen6_suspend_rps(dev_priv);
6517         dev_priv->rps.enabled = false;
6518 }
6519
6520 static void ibx_init_clock_gating(struct drm_device *dev)
6521 {
6522         struct drm_i915_private *dev_priv = dev->dev_private;
6523
6524         /*
6525          * On Ibex Peak and Cougar Point, we need to disable clock
6526          * gating for the panel power sequencer or it will fail to
6527          * start up when no ports are active.
6528          */
6529         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6530 }
6531
6532 static void g4x_disable_trickle_feed(struct drm_device *dev)
6533 {
6534         struct drm_i915_private *dev_priv = dev->dev_private;
6535         enum pipe pipe;
6536
6537         for_each_pipe(dev_priv, pipe) {
6538                 I915_WRITE(DSPCNTR(pipe),
6539                            I915_READ(DSPCNTR(pipe)) |
6540                            DISPPLANE_TRICKLE_FEED_DISABLE);
6541
6542                 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6543                 POSTING_READ(DSPSURF(pipe));
6544         }
6545 }
6546
6547 static void ilk_init_lp_watermarks(struct drm_device *dev)
6548 {
6549         struct drm_i915_private *dev_priv = dev->dev_private;
6550
6551         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6552         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6553         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6554
6555         /*
6556          * Don't touch WM1S_LP_EN here.
6557          * Doing so could cause underruns.
6558          */
6559 }
6560
6561 static void ironlake_init_clock_gating(struct drm_device *dev)
6562 {
6563         struct drm_i915_private *dev_priv = dev->dev_private;
6564         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6565
6566         /*
6567          * Required for FBC
6568          * WaFbcDisableDpfcClockGating:ilk
6569          */
6570         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6571                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6572                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6573
6574         I915_WRITE(PCH_3DCGDIS0,
6575                    MARIUNIT_CLOCK_GATE_DISABLE |
6576                    SVSMUNIT_CLOCK_GATE_DISABLE);
6577         I915_WRITE(PCH_3DCGDIS1,
6578                    VFMUNIT_CLOCK_GATE_DISABLE);
6579
6580         /*
6581          * According to the spec the following bits should be set in
6582          * order to enable memory self-refresh
6583          * The bit 22/21 of 0x42004
6584          * The bit 5 of 0x42020
6585          * The bit 15 of 0x45000
6586          */
6587         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6588                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
6589                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6590         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6591         I915_WRITE(DISP_ARB_CTL,
6592                    (I915_READ(DISP_ARB_CTL) |
6593                     DISP_FBC_WM_DIS));
6594
6595         ilk_init_lp_watermarks(dev);
6596
6597         /*
6598          * Based on the document from hardware guys the following bits
6599          * should be set unconditionally in order to enable FBC.
6600          * The bit 22 of 0x42000
6601          * The bit 22 of 0x42004
6602          * The bit 7,8,9 of 0x42020.
6603          */
6604         if (IS_IRONLAKE_M(dev)) {
6605                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6606                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6607                            I915_READ(ILK_DISPLAY_CHICKEN1) |
6608                            ILK_FBCQ_DIS);
6609                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6610                            I915_READ(ILK_DISPLAY_CHICKEN2) |
6611                            ILK_DPARB_GATE);
6612         }
6613
6614         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6615
6616         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6617                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6618                    ILK_ELPIN_409_SELECT);
6619         I915_WRITE(_3D_CHICKEN2,
6620                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6621                    _3D_CHICKEN2_WM_READ_PIPELINED);
6622
6623         /* WaDisableRenderCachePipelinedFlush:ilk */
6624         I915_WRITE(CACHE_MODE_0,
6625                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6626
6627         /* WaDisable_RenderCache_OperationalFlush:ilk */
6628         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6629
6630         g4x_disable_trickle_feed(dev);
6631
6632         ibx_init_clock_gating(dev);
6633 }
6634
6635 static void cpt_init_clock_gating(struct drm_device *dev)
6636 {
6637         struct drm_i915_private *dev_priv = dev->dev_private;
6638         int pipe;
6639         uint32_t val;
6640
6641         /*
6642          * On Ibex Peak and Cougar Point, we need to disable clock
6643          * gating for the panel power sequencer or it will fail to
6644          * start up when no ports are active.
6645          */
6646         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6647                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6648                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
6649         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6650                    DPLS_EDP_PPS_FIX_DIS);
6651         /* The below fixes the weird display corruption, a few pixels shifted
6652          * downward, on (only) LVDS of some HP laptops with IVY.
6653          */
6654         for_each_pipe(dev_priv, pipe) {
6655                 val = I915_READ(TRANS_CHICKEN2(pipe));
6656                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6657                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6658                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6659                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6660                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6661                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6662                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6663                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6664         }
6665         /* WADP0ClockGatingDisable */
6666         for_each_pipe(dev_priv, pipe) {
6667                 I915_WRITE(TRANS_CHICKEN1(pipe),
6668                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6669         }
6670 }
6671
6672 static void gen6_check_mch_setup(struct drm_device *dev)
6673 {
6674         struct drm_i915_private *dev_priv = dev->dev_private;
6675         uint32_t tmp;
6676
6677         tmp = I915_READ(MCH_SSKPD);
6678         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6679                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6680                               tmp);
6681 }
6682
6683 static void gen6_init_clock_gating(struct drm_device *dev)
6684 {
6685         struct drm_i915_private *dev_priv = dev->dev_private;
6686         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6687
6688         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6689
6690         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6691                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6692                    ILK_ELPIN_409_SELECT);
6693
6694         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6695         I915_WRITE(_3D_CHICKEN,
6696                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6697
6698         /* WaDisable_RenderCache_OperationalFlush:snb */
6699         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6700
6701         /*
6702          * BSpec recoomends 8x4 when MSAA is used,
6703          * however in practice 16x4 seems fastest.
6704          *
6705          * Note that PS/WM thread counts depend on the WIZ hashing
6706          * disable bit, which we don't touch here, but it's good
6707          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6708          */
6709         I915_WRITE(GEN6_GT_MODE,
6710                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6711
6712         ilk_init_lp_watermarks(dev);
6713
6714         I915_WRITE(CACHE_MODE_0,
6715                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6716
6717         I915_WRITE(GEN6_UCGCTL1,
6718                    I915_READ(GEN6_UCGCTL1) |
6719                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6720                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6721
6722         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6723          * gating disable must be set.  Failure to set it results in
6724          * flickering pixels due to Z write ordering failures after
6725          * some amount of runtime in the Mesa "fire" demo, and Unigine
6726          * Sanctuary and Tropics, and apparently anything else with
6727          * alpha test or pixel discard.
6728          *
6729          * According to the spec, bit 11 (RCCUNIT) must also be set,
6730          * but we didn't debug actual testcases to find it out.
6731          *
6732          * WaDisableRCCUnitClockGating:snb
6733          * WaDisableRCPBUnitClockGating:snb
6734          */
6735         I915_WRITE(GEN6_UCGCTL2,
6736                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6737                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6738
6739         /* WaStripsFansDisableFastClipPerformanceFix:snb */
6740         I915_WRITE(_3D_CHICKEN3,
6741                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6742
6743         /*
6744          * Bspec says:
6745          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6746          * 3DSTATE_SF number of SF output attributes is more than 16."
6747          */
6748         I915_WRITE(_3D_CHICKEN3,
6749                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6750
6751         /*
6752          * According to the spec the following bits should be
6753          * set in order to enable memory self-refresh and fbc:
6754          * The bit21 and bit22 of 0x42000
6755          * The bit21 and bit22 of 0x42004
6756          * The bit5 and bit7 of 0x42020
6757          * The bit14 of 0x70180
6758          * The bit14 of 0x71180
6759          *
6760          * WaFbcAsynchFlipDisableFbcQueue:snb
6761          */
6762         I915_WRITE(ILK_DISPLAY_CHICKEN1,
6763                    I915_READ(ILK_DISPLAY_CHICKEN1) |
6764                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6765         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6766                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6767                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6768         I915_WRITE(ILK_DSPCLK_GATE_D,
6769                    I915_READ(ILK_DSPCLK_GATE_D) |
6770                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6771                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6772
6773         g4x_disable_trickle_feed(dev);
6774
6775         cpt_init_clock_gating(dev);
6776
6777         gen6_check_mch_setup(dev);
6778 }
6779
6780 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6781 {
6782         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6783
6784         /*
6785          * WaVSThreadDispatchOverride:ivb,vlv
6786          *
6787          * This actually overrides the dispatch
6788          * mode for all thread types.
6789          */
6790         reg &= ~GEN7_FF_SCHED_MASK;
6791         reg |= GEN7_FF_TS_SCHED_HW;
6792         reg |= GEN7_FF_VS_SCHED_HW;
6793         reg |= GEN7_FF_DS_SCHED_HW;
6794
6795         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6796 }
6797
6798 static void lpt_init_clock_gating(struct drm_device *dev)
6799 {
6800         struct drm_i915_private *dev_priv = dev->dev_private;
6801
6802         /*
6803          * TODO: this bit should only be enabled when really needed, then
6804          * disabled when not needed anymore in order to save power.
6805          */
6806         if (HAS_PCH_LPT_LP(dev))
6807                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6808                            I915_READ(SOUTH_DSPCLK_GATE_D) |
6809                            PCH_LP_PARTITION_LEVEL_DISABLE);
6810
6811         /* WADPOClockGatingDisable:hsw */
6812         I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6813                    I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6814                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6815 }
6816
6817 static void lpt_suspend_hw(struct drm_device *dev)
6818 {
6819         struct drm_i915_private *dev_priv = dev->dev_private;
6820
6821         if (HAS_PCH_LPT_LP(dev)) {
6822                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6823
6824                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6825                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6826         }
6827 }
6828
6829 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
6830                                    int general_prio_credits,
6831                                    int high_prio_credits)
6832 {
6833         u32 misccpctl;
6834
6835         /* WaTempDisableDOPClkGating:bdw */
6836         misccpctl = I915_READ(GEN7_MISCCPCTL);
6837         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6838
6839         I915_WRITE(GEN8_L3SQCREG1,
6840                    L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
6841                    L3_HIGH_PRIO_CREDITS(high_prio_credits));
6842
6843         /*
6844          * Wait at least 100 clocks before re-enabling clock gating.
6845          * See the definition of L3SQCREG1 in BSpec.
6846          */
6847         POSTING_READ(GEN8_L3SQCREG1);
6848         udelay(1);
6849         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6850 }
6851
6852 static void skylake_init_clock_gating(struct drm_device *dev)
6853 {
6854         struct drm_i915_private *dev_priv = dev->dev_private;
6855
6856         /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,kbl */
6857         I915_WRITE(CHICKEN_PAR1_1,
6858                    I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
6859 }
6860
6861 static void broadwell_init_clock_gating(struct drm_device *dev)
6862 {
6863         struct drm_i915_private *dev_priv = dev->dev_private;
6864         enum pipe pipe;
6865
6866         ilk_init_lp_watermarks(dev);
6867
6868         /* WaSwitchSolVfFArbitrationPriority:bdw */
6869         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6870
6871         /* WaPsrDPAMaskVBlankInSRD:bdw */
6872         I915_WRITE(CHICKEN_PAR1_1,
6873                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6874
6875         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6876         for_each_pipe(dev_priv, pipe) {
6877                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
6878                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
6879                            BDW_DPRS_MASK_VBLANK_SRD);
6880         }
6881
6882         /* WaVSRefCountFullforceMissDisable:bdw */
6883         /* WaDSRefCountFullforceMissDisable:bdw */
6884         I915_WRITE(GEN7_FF_THREAD_MODE,
6885                    I915_READ(GEN7_FF_THREAD_MODE) &
6886                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6887
6888         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6889                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6890
6891         /* WaDisableSDEUnitClockGating:bdw */
6892         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6893                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6894
6895         /* WaProgramL3SqcReg1Default:bdw */
6896         gen8_set_l3sqc_credits(dev_priv, 30, 2);
6897
6898         /*
6899          * WaGttCachingOffByDefault:bdw
6900          * GTT cache may not work with big pages, so if those
6901          * are ever enabled GTT cache may need to be disabled.
6902          */
6903         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6904
6905         lpt_init_clock_gating(dev);
6906 }
6907
6908 static void haswell_init_clock_gating(struct drm_device *dev)
6909 {
6910         struct drm_i915_private *dev_priv = dev->dev_private;
6911
6912         ilk_init_lp_watermarks(dev);
6913
6914         /* L3 caching of data atomics doesn't work -- disable it. */
6915         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6916         I915_WRITE(HSW_ROW_CHICKEN3,
6917                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6918
6919         /* This is required by WaCatErrorRejectionIssue:hsw */
6920         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6921                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6922                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6923
6924         /* WaVSRefCountFullforceMissDisable:hsw */
6925         I915_WRITE(GEN7_FF_THREAD_MODE,
6926                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6927
6928         /* WaDisable_RenderCache_OperationalFlush:hsw */
6929         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6930
6931         /* enable HiZ Raw Stall Optimization */
6932         I915_WRITE(CACHE_MODE_0_GEN7,
6933                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6934
6935         /* WaDisable4x2SubspanOptimization:hsw */
6936         I915_WRITE(CACHE_MODE_1,
6937                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6938
6939         /*
6940          * BSpec recommends 8x4 when MSAA is used,
6941          * however in practice 16x4 seems fastest.
6942          *
6943          * Note that PS/WM thread counts depend on the WIZ hashing
6944          * disable bit, which we don't touch here, but it's good
6945          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6946          */
6947         I915_WRITE(GEN7_GT_MODE,
6948                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6949
6950         /* WaSampleCChickenBitEnable:hsw */
6951         I915_WRITE(HALF_SLICE_CHICKEN3,
6952                    _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6953
6954         /* WaSwitchSolVfFArbitrationPriority:hsw */
6955         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6956
6957         /* WaRsPkgCStateDisplayPMReq:hsw */
6958         I915_WRITE(CHICKEN_PAR1_1,
6959                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6960
6961         lpt_init_clock_gating(dev);
6962 }
6963
6964 static void ivybridge_init_clock_gating(struct drm_device *dev)
6965 {
6966         struct drm_i915_private *dev_priv = dev->dev_private;
6967         uint32_t snpcr;
6968
6969         ilk_init_lp_watermarks(dev);
6970
6971         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6972
6973         /* WaDisableEarlyCull:ivb */
6974         I915_WRITE(_3D_CHICKEN3,
6975                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6976
6977         /* WaDisableBackToBackFlipFix:ivb */
6978         I915_WRITE(IVB_CHICKEN3,
6979                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6980                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
6981
6982         /* WaDisablePSDDualDispatchEnable:ivb */
6983         if (IS_IVB_GT1(dev))
6984                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6985                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6986
6987         /* WaDisable_RenderCache_OperationalFlush:ivb */
6988         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6989
6990         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6991         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6992                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6993
6994         /* WaApplyL3ControlAndL3ChickenMode:ivb */
6995         I915_WRITE(GEN7_L3CNTLREG1,
6996                         GEN7_WA_FOR_GEN7_L3_CONTROL);
6997         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6998                    GEN7_WA_L3_CHICKEN_MODE);
6999         if (IS_IVB_GT1(dev))
7000                 I915_WRITE(GEN7_ROW_CHICKEN2,
7001                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7002         else {
7003                 /* must write both registers */
7004                 I915_WRITE(GEN7_ROW_CHICKEN2,
7005                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7006                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
7007                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7008         }
7009
7010         /* WaForceL3Serialization:ivb */
7011         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7012                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7013
7014         /*
7015          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7016          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7017          */
7018         I915_WRITE(GEN6_UCGCTL2,
7019                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7020
7021         /* This is required by WaCatErrorRejectionIssue:ivb */
7022         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7023                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7024                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7025
7026         g4x_disable_trickle_feed(dev);
7027
7028         gen7_setup_fixed_func_scheduler(dev_priv);
7029
7030         if (0) { /* causes HiZ corruption on ivb:gt1 */
7031                 /* enable HiZ Raw Stall Optimization */
7032                 I915_WRITE(CACHE_MODE_0_GEN7,
7033                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7034         }
7035
7036         /* WaDisable4x2SubspanOptimization:ivb */
7037         I915_WRITE(CACHE_MODE_1,
7038                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7039
7040         /*
7041          * BSpec recommends 8x4 when MSAA is used,
7042          * however in practice 16x4 seems fastest.
7043          *
7044          * Note that PS/WM thread counts depend on the WIZ hashing
7045          * disable bit, which we don't touch here, but it's good
7046          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7047          */
7048         I915_WRITE(GEN7_GT_MODE,
7049                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7050
7051         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
7052         snpcr &= ~GEN6_MBC_SNPCR_MASK;
7053         snpcr |= GEN6_MBC_SNPCR_MED;
7054         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7055
7056         if (!HAS_PCH_NOP(dev))
7057                 cpt_init_clock_gating(dev);
7058
7059         gen6_check_mch_setup(dev);
7060 }
7061
7062 static void valleyview_init_clock_gating(struct drm_device *dev)
7063 {
7064         struct drm_i915_private *dev_priv = dev->dev_private;
7065
7066         /* WaDisableEarlyCull:vlv */
7067         I915_WRITE(_3D_CHICKEN3,
7068                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7069
7070         /* WaDisableBackToBackFlipFix:vlv */
7071         I915_WRITE(IVB_CHICKEN3,
7072                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7073                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
7074
7075         /* WaPsdDispatchEnable:vlv */
7076         /* WaDisablePSDDualDispatchEnable:vlv */
7077         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7078                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
7079                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7080
7081         /* WaDisable_RenderCache_OperationalFlush:vlv */
7082         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7083
7084         /* WaForceL3Serialization:vlv */
7085         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7086                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7087
7088         /* WaDisableDopClockGating:vlv */
7089         I915_WRITE(GEN7_ROW_CHICKEN2,
7090                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7091
7092         /* This is required by WaCatErrorRejectionIssue:vlv */
7093         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7094                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7095                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7096
7097         gen7_setup_fixed_func_scheduler(dev_priv);
7098
7099         /*
7100          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7101          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7102          */
7103         I915_WRITE(GEN6_UCGCTL2,
7104                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7105
7106         /* WaDisableL3Bank2xClockGate:vlv
7107          * Disabling L3 clock gating- MMIO 940c[25] = 1
7108          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7109         I915_WRITE(GEN7_UCGCTL4,
7110                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7111
7112         /*
7113          * BSpec says this must be set, even though
7114          * WaDisable4x2SubspanOptimization isn't listed for VLV.
7115          */
7116         I915_WRITE(CACHE_MODE_1,
7117                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7118
7119         /*
7120          * BSpec recommends 8x4 when MSAA is used,
7121          * however in practice 16x4 seems fastest.
7122          *
7123          * Note that PS/WM thread counts depend on the WIZ hashing
7124          * disable bit, which we don't touch here, but it's good
7125          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7126          */
7127         I915_WRITE(GEN7_GT_MODE,
7128                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7129
7130         /*
7131          * WaIncreaseL3CreditsForVLVB0:vlv
7132          * This is the hardware default actually.
7133          */
7134         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
7135
7136         /*
7137          * WaDisableVLVClockGating_VBIIssue:vlv
7138          * Disable clock gating on th GCFG unit to prevent a delay
7139          * in the reporting of vblank events.
7140          */
7141         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7142 }
7143
7144 static void cherryview_init_clock_gating(struct drm_device *dev)
7145 {
7146         struct drm_i915_private *dev_priv = dev->dev_private;
7147
7148         /* WaVSRefCountFullforceMissDisable:chv */
7149         /* WaDSRefCountFullforceMissDisable:chv */
7150         I915_WRITE(GEN7_FF_THREAD_MODE,
7151                    I915_READ(GEN7_FF_THREAD_MODE) &
7152                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7153
7154         /* WaDisableSemaphoreAndSyncFlipWait:chv */
7155         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7156                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7157
7158         /* WaDisableCSUnitClockGating:chv */
7159         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7160                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7161
7162         /* WaDisableSDEUnitClockGating:chv */
7163         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7164                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7165
7166         /*
7167          * WaProgramL3SqcReg1Default:chv
7168          * See gfxspecs/Related Documents/Performance Guide/
7169          * LSQC Setting Recommendations.
7170          */
7171         gen8_set_l3sqc_credits(dev_priv, 38, 2);
7172
7173         /*
7174          * GTT cache may not work with big pages, so if those
7175          * are ever enabled GTT cache may need to be disabled.
7176          */
7177         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7178 }
7179
7180 static void g4x_init_clock_gating(struct drm_device *dev)
7181 {
7182         struct drm_i915_private *dev_priv = dev->dev_private;
7183         uint32_t dspclk_gate;
7184
7185         I915_WRITE(RENCLK_GATE_D1, 0);
7186         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7187                    GS_UNIT_CLOCK_GATE_DISABLE |
7188                    CL_UNIT_CLOCK_GATE_DISABLE);
7189         I915_WRITE(RAMCLK_GATE_D, 0);
7190         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7191                 OVRUNIT_CLOCK_GATE_DISABLE |
7192                 OVCUNIT_CLOCK_GATE_DISABLE;
7193         if (IS_GM45(dev))
7194                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7195         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7196
7197         /* WaDisableRenderCachePipelinedFlush */
7198         I915_WRITE(CACHE_MODE_0,
7199                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7200
7201         /* WaDisable_RenderCache_OperationalFlush:g4x */
7202         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7203
7204         g4x_disable_trickle_feed(dev);
7205 }
7206
7207 static void crestline_init_clock_gating(struct drm_device *dev)
7208 {
7209         struct drm_i915_private *dev_priv = dev->dev_private;
7210
7211         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7212         I915_WRITE(RENCLK_GATE_D2, 0);
7213         I915_WRITE(DSPCLK_GATE_D, 0);
7214         I915_WRITE(RAMCLK_GATE_D, 0);
7215         I915_WRITE16(DEUC, 0);
7216         I915_WRITE(MI_ARB_STATE,
7217                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7218
7219         /* WaDisable_RenderCache_OperationalFlush:gen4 */
7220         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7221 }
7222
7223 static void broadwater_init_clock_gating(struct drm_device *dev)
7224 {
7225         struct drm_i915_private *dev_priv = dev->dev_private;
7226
7227         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7228                    I965_RCC_CLOCK_GATE_DISABLE |
7229                    I965_RCPB_CLOCK_GATE_DISABLE |
7230                    I965_ISC_CLOCK_GATE_DISABLE |
7231                    I965_FBC_CLOCK_GATE_DISABLE);
7232         I915_WRITE(RENCLK_GATE_D2, 0);
7233         I915_WRITE(MI_ARB_STATE,
7234                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7235
7236         /* WaDisable_RenderCache_OperationalFlush:gen4 */
7237         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7238 }
7239
7240 static void gen3_init_clock_gating(struct drm_device *dev)
7241 {
7242         struct drm_i915_private *dev_priv = dev->dev_private;
7243         u32 dstate = I915_READ(D_STATE);
7244
7245         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7246                 DSTATE_DOT_CLOCK_GATING;
7247         I915_WRITE(D_STATE, dstate);
7248
7249         if (IS_PINEVIEW(dev))
7250                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7251
7252         /* IIR "flip pending" means done if this bit is set */
7253         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7254
7255         /* interrupts should cause a wake up from C3 */
7256         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7257
7258         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7259         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7260
7261         I915_WRITE(MI_ARB_STATE,
7262                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7263 }
7264
7265 static void i85x_init_clock_gating(struct drm_device *dev)
7266 {
7267         struct drm_i915_private *dev_priv = dev->dev_private;
7268
7269         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7270
7271         /* interrupts should cause a wake up from C3 */
7272         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7273                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7274
7275         I915_WRITE(MEM_MODE,
7276                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7277 }
7278
7279 static void i830_init_clock_gating(struct drm_device *dev)
7280 {
7281         struct drm_i915_private *dev_priv = dev->dev_private;
7282
7283         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7284
7285         I915_WRITE(MEM_MODE,
7286                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7287                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7288 }
7289
7290 void intel_init_clock_gating(struct drm_device *dev)
7291 {
7292         struct drm_i915_private *dev_priv = dev->dev_private;
7293
7294         dev_priv->display.init_clock_gating(dev);
7295 }
7296
7297 void intel_suspend_hw(struct drm_device *dev)
7298 {
7299         if (HAS_PCH_LPT(dev))
7300                 lpt_suspend_hw(dev);
7301 }
7302
7303 static void nop_init_clock_gating(struct drm_device *dev)
7304 {
7305         DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
7306 }
7307
7308 /**
7309  * intel_init_clock_gating_hooks - setup the clock gating hooks
7310  * @dev_priv: device private
7311  *
7312  * Setup the hooks that configure which clocks of a given platform can be
7313  * gated and also apply various GT and display specific workarounds for these
7314  * platforms. Note that some GT specific workarounds are applied separately
7315  * when GPU contexts or batchbuffers start their execution.
7316  */
7317 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
7318 {
7319         if (IS_SKYLAKE(dev_priv))
7320                 dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7321         else if (IS_KABYLAKE(dev_priv))
7322                 dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7323         else if (IS_BROXTON(dev_priv))
7324                 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7325         else if (IS_BROADWELL(dev_priv))
7326                 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7327         else if (IS_CHERRYVIEW(dev_priv))
7328                 dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
7329         else if (IS_HASWELL(dev_priv))
7330                 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7331         else if (IS_IVYBRIDGE(dev_priv))
7332                 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7333         else if (IS_VALLEYVIEW(dev_priv))
7334                 dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
7335         else if (IS_GEN6(dev_priv))
7336                 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7337         else if (IS_GEN5(dev_priv))
7338                 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7339         else if (IS_G4X(dev_priv))
7340                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7341         else if (IS_CRESTLINE(dev_priv))
7342                 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7343         else if (IS_BROADWATER(dev_priv))
7344                 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7345         else if (IS_GEN3(dev_priv))
7346                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7347         else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
7348                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7349         else if (IS_GEN2(dev_priv))
7350                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7351         else {
7352                 MISSING_CASE(INTEL_DEVID(dev_priv));
7353                 dev_priv->display.init_clock_gating = nop_init_clock_gating;
7354         }
7355 }
7356
7357 /* Set up chip specific power management-related functions */
7358 void intel_init_pm(struct drm_device *dev)
7359 {
7360         struct drm_i915_private *dev_priv = dev->dev_private;
7361
7362         intel_fbc_init(dev_priv);
7363
7364         /* For cxsr */
7365         if (IS_PINEVIEW(dev))
7366                 i915_pineview_get_mem_freq(dev);
7367         else if (IS_GEN5(dev))
7368                 i915_ironlake_get_mem_freq(dev);
7369
7370         /* For FIFO watermark updates */
7371         if (INTEL_INFO(dev)->gen >= 9) {
7372                 skl_setup_wm_latency(dev);
7373                 dev_priv->display.update_wm = skl_update_wm;
7374                 dev_priv->display.compute_global_watermarks = skl_compute_wm;
7375         } else if (HAS_PCH_SPLIT(dev)) {
7376                 ilk_setup_wm_latency(dev);
7377
7378                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7379                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7380                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7381                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7382                         dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7383                         dev_priv->display.compute_intermediate_wm =
7384                                 ilk_compute_intermediate_wm;
7385                         dev_priv->display.initial_watermarks =
7386                                 ilk_initial_watermarks;
7387                         dev_priv->display.optimize_watermarks =
7388                                 ilk_optimize_watermarks;
7389                 } else {
7390                         DRM_DEBUG_KMS("Failed to read display plane latency. "
7391                                       "Disable CxSR\n");
7392                 }
7393         } else if (IS_CHERRYVIEW(dev)) {
7394                 vlv_setup_wm_latency(dev);
7395                 dev_priv->display.update_wm = vlv_update_wm;
7396         } else if (IS_VALLEYVIEW(dev)) {
7397                 vlv_setup_wm_latency(dev);
7398                 dev_priv->display.update_wm = vlv_update_wm;
7399         } else if (IS_PINEVIEW(dev)) {
7400                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7401                                             dev_priv->is_ddr3,
7402                                             dev_priv->fsb_freq,
7403                                             dev_priv->mem_freq)) {
7404                         DRM_INFO("failed to find known CxSR latency "
7405                                  "(found ddr%s fsb freq %d, mem freq %d), "
7406                                  "disabling CxSR\n",
7407                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
7408                                  dev_priv->fsb_freq, dev_priv->mem_freq);
7409                         /* Disable CxSR and never update its watermark again */
7410                         intel_set_memory_cxsr(dev_priv, false);
7411                         dev_priv->display.update_wm = NULL;
7412                 } else
7413                         dev_priv->display.update_wm = pineview_update_wm;
7414         } else if (IS_G4X(dev)) {
7415                 dev_priv->display.update_wm = g4x_update_wm;
7416         } else if (IS_GEN4(dev)) {
7417                 dev_priv->display.update_wm = i965_update_wm;
7418         } else if (IS_GEN3(dev)) {
7419                 dev_priv->display.update_wm = i9xx_update_wm;
7420                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7421         } else if (IS_GEN2(dev)) {
7422                 if (INTEL_INFO(dev)->num_pipes == 1) {
7423                         dev_priv->display.update_wm = i845_update_wm;
7424                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
7425                 } else {
7426                         dev_priv->display.update_wm = i9xx_update_wm;
7427                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
7428                 }
7429         } else {
7430                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7431         }
7432 }
7433
7434 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7435 {
7436         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7437
7438         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7439                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7440                 return -EAGAIN;
7441         }
7442
7443         I915_WRITE(GEN6_PCODE_DATA, *val);
7444         I915_WRITE(GEN6_PCODE_DATA1, 0);
7445         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7446
7447         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7448                      500)) {
7449                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7450                 return -ETIMEDOUT;
7451         }
7452
7453         *val = I915_READ(GEN6_PCODE_DATA);
7454         I915_WRITE(GEN6_PCODE_DATA, 0);
7455
7456         return 0;
7457 }
7458
7459 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
7460 {
7461         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7462
7463         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7464                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7465                 return -EAGAIN;
7466         }
7467
7468         I915_WRITE(GEN6_PCODE_DATA, val);
7469         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7470
7471         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7472                      500)) {
7473                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7474                 return -ETIMEDOUT;
7475         }
7476
7477         I915_WRITE(GEN6_PCODE_DATA, 0);
7478
7479         return 0;
7480 }
7481
7482 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7483 {
7484         /*
7485          * N = val - 0xb7
7486          * Slow = Fast = GPLL ref * N
7487          */
7488         return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7489 }
7490
7491 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7492 {
7493         return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7494 }
7495
7496 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7497 {
7498         /*
7499          * N = val / 2
7500          * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
7501          */
7502         return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7503 }
7504
7505 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7506 {
7507         /* CHV needs even values */
7508         return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7509 }
7510
7511 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7512 {
7513         if (IS_GEN9(dev_priv))
7514                 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7515                                          GEN9_FREQ_SCALER);
7516         else if (IS_CHERRYVIEW(dev_priv))
7517                 return chv_gpu_freq(dev_priv, val);
7518         else if (IS_VALLEYVIEW(dev_priv))
7519                 return byt_gpu_freq(dev_priv, val);
7520         else
7521                 return val * GT_FREQUENCY_MULTIPLIER;
7522 }
7523
7524 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7525 {
7526         if (IS_GEN9(dev_priv))
7527                 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7528                                          GT_FREQUENCY_MULTIPLIER);
7529         else if (IS_CHERRYVIEW(dev_priv))
7530                 return chv_freq_opcode(dev_priv, val);
7531         else if (IS_VALLEYVIEW(dev_priv))
7532                 return byt_freq_opcode(dev_priv, val);
7533         else
7534                 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7535 }
7536
7537 struct request_boost {
7538         struct work_struct work;
7539         struct drm_i915_gem_request *req;
7540 };
7541
7542 static void __intel_rps_boost_work(struct work_struct *work)
7543 {
7544         struct request_boost *boost = container_of(work, struct request_boost, work);
7545         struct drm_i915_gem_request *req = boost->req;
7546
7547         if (!i915_gem_request_completed(req, true))
7548                 gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
7549
7550         i915_gem_request_unreference(req);
7551         kfree(boost);
7552 }
7553
7554 void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
7555 {
7556         struct request_boost *boost;
7557
7558         if (req == NULL || INTEL_GEN(req->i915) < 6)
7559                 return;
7560
7561         if (i915_gem_request_completed(req, true))
7562                 return;
7563
7564         boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7565         if (boost == NULL)
7566                 return;
7567
7568         i915_gem_request_reference(req);
7569         boost->req = req;
7570
7571         INIT_WORK(&boost->work, __intel_rps_boost_work);
7572         queue_work(req->i915->wq, &boost->work);
7573 }
7574
7575 void intel_pm_setup(struct drm_device *dev)
7576 {
7577         struct drm_i915_private *dev_priv = dev->dev_private;
7578
7579         mutex_init(&dev_priv->rps.hw_lock);
7580         spin_lock_init(&dev_priv->rps.client_lock);
7581
7582         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7583                           intel_gen6_powersave_work);
7584         INIT_LIST_HEAD(&dev_priv->rps.clients);
7585         INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7586         INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7587
7588         dev_priv->pm.suspended = false;
7589         atomic_set(&dev_priv->pm.wakeref_count, 0);
7590         atomic_set(&dev_priv->pm.atomic_seq, 0);
7591 }