cfg80211: handle failed skb allocation
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36
37 int __intel_ring_space(int head, int tail, int size)
38 {
39         int space = head - tail;
40         if (space <= 0)
41                 space += size;
42         return space - I915_RING_FREE_SPACE;
43 }
44
45 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
46 {
47         if (ringbuf->last_retired_head != -1) {
48                 ringbuf->head = ringbuf->last_retired_head;
49                 ringbuf->last_retired_head = -1;
50         }
51
52         ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
53                                             ringbuf->tail, ringbuf->size);
54 }
55
56 int intel_ring_space(struct intel_ringbuffer *ringbuf)
57 {
58         intel_ring_update_space(ringbuf);
59         return ringbuf->space;
60 }
61
62 bool intel_ring_stopped(struct intel_engine_cs *ring)
63 {
64         struct drm_i915_private *dev_priv = ring->dev->dev_private;
65         return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
66 }
67
68 static void __intel_ring_advance(struct intel_engine_cs *ring)
69 {
70         struct intel_ringbuffer *ringbuf = ring->buffer;
71         ringbuf->tail &= ringbuf->size - 1;
72         if (intel_ring_stopped(ring))
73                 return;
74         ring->write_tail(ring, ringbuf->tail);
75 }
76
77 static int
78 gen2_render_ring_flush(struct drm_i915_gem_request *req,
79                        u32      invalidate_domains,
80                        u32      flush_domains)
81 {
82         struct intel_engine_cs *ring = req->ring;
83         u32 cmd;
84         int ret;
85
86         cmd = MI_FLUSH;
87         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
88                 cmd |= MI_NO_WRITE_FLUSH;
89
90         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
91                 cmd |= MI_READ_FLUSH;
92
93         ret = intel_ring_begin(req, 2);
94         if (ret)
95                 return ret;
96
97         intel_ring_emit(ring, cmd);
98         intel_ring_emit(ring, MI_NOOP);
99         intel_ring_advance(ring);
100
101         return 0;
102 }
103
104 static int
105 gen4_render_ring_flush(struct drm_i915_gem_request *req,
106                        u32      invalidate_domains,
107                        u32      flush_domains)
108 {
109         struct intel_engine_cs *ring = req->ring;
110         struct drm_device *dev = ring->dev;
111         u32 cmd;
112         int ret;
113
114         /*
115          * read/write caches:
116          *
117          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
118          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
119          * also flushed at 2d versus 3d pipeline switches.
120          *
121          * read-only caches:
122          *
123          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
124          * MI_READ_FLUSH is set, and is always flushed on 965.
125          *
126          * I915_GEM_DOMAIN_COMMAND may not exist?
127          *
128          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
129          * invalidated when MI_EXE_FLUSH is set.
130          *
131          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
132          * invalidated with every MI_FLUSH.
133          *
134          * TLBs:
135          *
136          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
137          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
138          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
139          * are flushed at any MI_FLUSH.
140          */
141
142         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
143         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
144                 cmd &= ~MI_NO_WRITE_FLUSH;
145         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
146                 cmd |= MI_EXE_FLUSH;
147
148         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
149             (IS_G4X(dev) || IS_GEN5(dev)))
150                 cmd |= MI_INVALIDATE_ISP;
151
152         ret = intel_ring_begin(req, 2);
153         if (ret)
154                 return ret;
155
156         intel_ring_emit(ring, cmd);
157         intel_ring_emit(ring, MI_NOOP);
158         intel_ring_advance(ring);
159
160         return 0;
161 }
162
163 /**
164  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
165  * implementing two workarounds on gen6.  From section 1.4.7.1
166  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
167  *
168  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
169  * produced by non-pipelined state commands), software needs to first
170  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
171  * 0.
172  *
173  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
174  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
175  *
176  * And the workaround for these two requires this workaround first:
177  *
178  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
179  * BEFORE the pipe-control with a post-sync op and no write-cache
180  * flushes.
181  *
182  * And this last workaround is tricky because of the requirements on
183  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
184  * volume 2 part 1:
185  *
186  *     "1 of the following must also be set:
187  *      - Render Target Cache Flush Enable ([12] of DW1)
188  *      - Depth Cache Flush Enable ([0] of DW1)
189  *      - Stall at Pixel Scoreboard ([1] of DW1)
190  *      - Depth Stall ([13] of DW1)
191  *      - Post-Sync Operation ([13] of DW1)
192  *      - Notify Enable ([8] of DW1)"
193  *
194  * The cache flushes require the workaround flush that triggered this
195  * one, so we can't use it.  Depth stall would trigger the same.
196  * Post-sync nonzero is what triggered this second workaround, so we
197  * can't use that one either.  Notify enable is IRQs, which aren't
198  * really our business.  That leaves only stall at scoreboard.
199  */
200 static int
201 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
202 {
203         struct intel_engine_cs *ring = req->ring;
204         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
205         int ret;
206
207         ret = intel_ring_begin(req, 6);
208         if (ret)
209                 return ret;
210
211         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
212         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
213                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
214         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
215         intel_ring_emit(ring, 0); /* low dword */
216         intel_ring_emit(ring, 0); /* high dword */
217         intel_ring_emit(ring, MI_NOOP);
218         intel_ring_advance(ring);
219
220         ret = intel_ring_begin(req, 6);
221         if (ret)
222                 return ret;
223
224         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
225         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
226         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
227         intel_ring_emit(ring, 0);
228         intel_ring_emit(ring, 0);
229         intel_ring_emit(ring, MI_NOOP);
230         intel_ring_advance(ring);
231
232         return 0;
233 }
234
235 static int
236 gen6_render_ring_flush(struct drm_i915_gem_request *req,
237                        u32 invalidate_domains, u32 flush_domains)
238 {
239         struct intel_engine_cs *ring = req->ring;
240         u32 flags = 0;
241         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
242         int ret;
243
244         /* Force SNB workarounds for PIPE_CONTROL flushes */
245         ret = intel_emit_post_sync_nonzero_flush(req);
246         if (ret)
247                 return ret;
248
249         /* Just flush everything.  Experiments have shown that reducing the
250          * number of bits based on the write domains has little performance
251          * impact.
252          */
253         if (flush_domains) {
254                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
255                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
256                 /*
257                  * Ensure that any following seqno writes only happen
258                  * when the render cache is indeed flushed.
259                  */
260                 flags |= PIPE_CONTROL_CS_STALL;
261         }
262         if (invalidate_domains) {
263                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
264                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
265                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
266                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
267                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
268                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
269                 /*
270                  * TLB invalidate requires a post-sync write.
271                  */
272                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
273         }
274
275         ret = intel_ring_begin(req, 4);
276         if (ret)
277                 return ret;
278
279         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
280         intel_ring_emit(ring, flags);
281         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
282         intel_ring_emit(ring, 0);
283         intel_ring_advance(ring);
284
285         return 0;
286 }
287
288 static int
289 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
290 {
291         struct intel_engine_cs *ring = req->ring;
292         int ret;
293
294         ret = intel_ring_begin(req, 4);
295         if (ret)
296                 return ret;
297
298         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
299         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
300                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
301         intel_ring_emit(ring, 0);
302         intel_ring_emit(ring, 0);
303         intel_ring_advance(ring);
304
305         return 0;
306 }
307
308 static int
309 gen7_render_ring_flush(struct drm_i915_gem_request *req,
310                        u32 invalidate_domains, u32 flush_domains)
311 {
312         struct intel_engine_cs *ring = req->ring;
313         u32 flags = 0;
314         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
315         int ret;
316
317         /*
318          * Ensure that any following seqno writes only happen when the render
319          * cache is indeed flushed.
320          *
321          * Workaround: 4th PIPE_CONTROL command (except the ones with only
322          * read-cache invalidate bits set) must have the CS_STALL bit set. We
323          * don't try to be clever and just set it unconditionally.
324          */
325         flags |= PIPE_CONTROL_CS_STALL;
326
327         /* Just flush everything.  Experiments have shown that reducing the
328          * number of bits based on the write domains has little performance
329          * impact.
330          */
331         if (flush_domains) {
332                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
333                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
334                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
335                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
336         }
337         if (invalidate_domains) {
338                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
339                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
340                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
341                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
342                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
343                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
344                 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
345                 /*
346                  * TLB invalidate requires a post-sync write.
347                  */
348                 flags |= PIPE_CONTROL_QW_WRITE;
349                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
350
351                 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
352
353                 /* Workaround: we must issue a pipe_control with CS-stall bit
354                  * set before a pipe_control command that has the state cache
355                  * invalidate bit set. */
356                 gen7_render_ring_cs_stall_wa(req);
357         }
358
359         ret = intel_ring_begin(req, 4);
360         if (ret)
361                 return ret;
362
363         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
364         intel_ring_emit(ring, flags);
365         intel_ring_emit(ring, scratch_addr);
366         intel_ring_emit(ring, 0);
367         intel_ring_advance(ring);
368
369         return 0;
370 }
371
372 static int
373 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
374                        u32 flags, u32 scratch_addr)
375 {
376         struct intel_engine_cs *ring = req->ring;
377         int ret;
378
379         ret = intel_ring_begin(req, 6);
380         if (ret)
381                 return ret;
382
383         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
384         intel_ring_emit(ring, flags);
385         intel_ring_emit(ring, scratch_addr);
386         intel_ring_emit(ring, 0);
387         intel_ring_emit(ring, 0);
388         intel_ring_emit(ring, 0);
389         intel_ring_advance(ring);
390
391         return 0;
392 }
393
394 static int
395 gen8_render_ring_flush(struct drm_i915_gem_request *req,
396                        u32 invalidate_domains, u32 flush_domains)
397 {
398         u32 flags = 0;
399         u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
400         int ret;
401
402         flags |= PIPE_CONTROL_CS_STALL;
403
404         if (flush_domains) {
405                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
406                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
407                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
408                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
409         }
410         if (invalidate_domains) {
411                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
412                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
413                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
414                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
415                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
416                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
417                 flags |= PIPE_CONTROL_QW_WRITE;
418                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
419
420                 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
421                 ret = gen8_emit_pipe_control(req,
422                                              PIPE_CONTROL_CS_STALL |
423                                              PIPE_CONTROL_STALL_AT_SCOREBOARD,
424                                              0);
425                 if (ret)
426                         return ret;
427         }
428
429         return gen8_emit_pipe_control(req, flags, scratch_addr);
430 }
431
432 static void ring_write_tail(struct intel_engine_cs *ring,
433                             u32 value)
434 {
435         struct drm_i915_private *dev_priv = ring->dev->dev_private;
436         I915_WRITE_TAIL(ring, value);
437 }
438
439 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
440 {
441         struct drm_i915_private *dev_priv = ring->dev->dev_private;
442         u64 acthd;
443
444         if (INTEL_INFO(ring->dev)->gen >= 8)
445                 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
446                                          RING_ACTHD_UDW(ring->mmio_base));
447         else if (INTEL_INFO(ring->dev)->gen >= 4)
448                 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
449         else
450                 acthd = I915_READ(ACTHD);
451
452         return acthd;
453 }
454
455 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
456 {
457         struct drm_i915_private *dev_priv = ring->dev->dev_private;
458         u32 addr;
459
460         addr = dev_priv->status_page_dmah->busaddr;
461         if (INTEL_INFO(ring->dev)->gen >= 4)
462                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
463         I915_WRITE(HWS_PGA, addr);
464 }
465
466 static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
467 {
468         struct drm_device *dev = ring->dev;
469         struct drm_i915_private *dev_priv = ring->dev->dev_private;
470         i915_reg_t mmio;
471
472         /* The ring status page addresses are no longer next to the rest of
473          * the ring registers as of gen7.
474          */
475         if (IS_GEN7(dev)) {
476                 switch (ring->id) {
477                 case RCS:
478                         mmio = RENDER_HWS_PGA_GEN7;
479                         break;
480                 case BCS:
481                         mmio = BLT_HWS_PGA_GEN7;
482                         break;
483                 /*
484                  * VCS2 actually doesn't exist on Gen7. Only shut up
485                  * gcc switch check warning
486                  */
487                 case VCS2:
488                 case VCS:
489                         mmio = BSD_HWS_PGA_GEN7;
490                         break;
491                 case VECS:
492                         mmio = VEBOX_HWS_PGA_GEN7;
493                         break;
494                 }
495         } else if (IS_GEN6(ring->dev)) {
496                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
497         } else {
498                 /* XXX: gen8 returns to sanity */
499                 mmio = RING_HWS_PGA(ring->mmio_base);
500         }
501
502         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
503         POSTING_READ(mmio);
504
505         /*
506          * Flush the TLB for this page
507          *
508          * FIXME: These two bits have disappeared on gen8, so a question
509          * arises: do we still need this and if so how should we go about
510          * invalidating the TLB?
511          */
512         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
513                 i915_reg_t reg = RING_INSTPM(ring->mmio_base);
514
515                 /* ring should be idle before issuing a sync flush*/
516                 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
517
518                 I915_WRITE(reg,
519                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
520                                               INSTPM_SYNC_FLUSH));
521                 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
522                              1000))
523                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
524                                   ring->name);
525         }
526 }
527
528 static bool stop_ring(struct intel_engine_cs *ring)
529 {
530         struct drm_i915_private *dev_priv = to_i915(ring->dev);
531
532         if (!IS_GEN2(ring->dev)) {
533                 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
534                 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
535                         DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
536                         /* Sometimes we observe that the idle flag is not
537                          * set even though the ring is empty. So double
538                          * check before giving up.
539                          */
540                         if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
541                                 return false;
542                 }
543         }
544
545         I915_WRITE_CTL(ring, 0);
546         I915_WRITE_HEAD(ring, 0);
547         ring->write_tail(ring, 0);
548
549         if (!IS_GEN2(ring->dev)) {
550                 (void)I915_READ_CTL(ring);
551                 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
552         }
553
554         return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
555 }
556
557 static int init_ring_common(struct intel_engine_cs *ring)
558 {
559         struct drm_device *dev = ring->dev;
560         struct drm_i915_private *dev_priv = dev->dev_private;
561         struct intel_ringbuffer *ringbuf = ring->buffer;
562         struct drm_i915_gem_object *obj = ringbuf->obj;
563         int ret = 0;
564
565         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
566
567         if (!stop_ring(ring)) {
568                 /* G45 ring initialization often fails to reset head to zero */
569                 DRM_DEBUG_KMS("%s head not reset to zero "
570                               "ctl %08x head %08x tail %08x start %08x\n",
571                               ring->name,
572                               I915_READ_CTL(ring),
573                               I915_READ_HEAD(ring),
574                               I915_READ_TAIL(ring),
575                               I915_READ_START(ring));
576
577                 if (!stop_ring(ring)) {
578                         DRM_ERROR("failed to set %s head to zero "
579                                   "ctl %08x head %08x tail %08x start %08x\n",
580                                   ring->name,
581                                   I915_READ_CTL(ring),
582                                   I915_READ_HEAD(ring),
583                                   I915_READ_TAIL(ring),
584                                   I915_READ_START(ring));
585                         ret = -EIO;
586                         goto out;
587                 }
588         }
589
590         if (I915_NEED_GFX_HWS(dev))
591                 intel_ring_setup_status_page(ring);
592         else
593                 ring_setup_phys_status_page(ring);
594
595         /* Enforce ordering by reading HEAD register back */
596         I915_READ_HEAD(ring);
597
598         /* Initialize the ring. This must happen _after_ we've cleared the ring
599          * registers with the above sequence (the readback of the HEAD registers
600          * also enforces ordering), otherwise the hw might lose the new ring
601          * register values. */
602         I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
603
604         /* WaClearRingBufHeadRegAtInit:ctg,elk */
605         if (I915_READ_HEAD(ring))
606                 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
607                           ring->name, I915_READ_HEAD(ring));
608         I915_WRITE_HEAD(ring, 0);
609         (void)I915_READ_HEAD(ring);
610
611         I915_WRITE_CTL(ring,
612                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
613                         | RING_VALID);
614
615         /* If the head is still not zero, the ring is dead */
616         if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
617                      I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
618                      (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
619                 DRM_ERROR("%s initialization failed "
620                           "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
621                           ring->name,
622                           I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
623                           I915_READ_HEAD(ring), I915_READ_TAIL(ring),
624                           I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
625                 ret = -EIO;
626                 goto out;
627         }
628
629         ringbuf->last_retired_head = -1;
630         ringbuf->head = I915_READ_HEAD(ring);
631         ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
632         intel_ring_update_space(ringbuf);
633
634         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
635
636 out:
637         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
638
639         return ret;
640 }
641
642 void
643 intel_fini_pipe_control(struct intel_engine_cs *ring)
644 {
645         struct drm_device *dev = ring->dev;
646
647         if (ring->scratch.obj == NULL)
648                 return;
649
650         if (INTEL_INFO(dev)->gen >= 5) {
651                 kunmap(sg_page(ring->scratch.obj->pages->sgl));
652                 i915_gem_object_ggtt_unpin(ring->scratch.obj);
653         }
654
655         drm_gem_object_unreference(&ring->scratch.obj->base);
656         ring->scratch.obj = NULL;
657 }
658
659 int
660 intel_init_pipe_control(struct intel_engine_cs *ring)
661 {
662         int ret;
663
664         WARN_ON(ring->scratch.obj);
665
666         ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
667         if (ring->scratch.obj == NULL) {
668                 DRM_ERROR("Failed to allocate seqno page\n");
669                 ret = -ENOMEM;
670                 goto err;
671         }
672
673         ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
674         if (ret)
675                 goto err_unref;
676
677         ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
678         if (ret)
679                 goto err_unref;
680
681         ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
682         ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
683         if (ring->scratch.cpu_page == NULL) {
684                 ret = -ENOMEM;
685                 goto err_unpin;
686         }
687
688         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
689                          ring->name, ring->scratch.gtt_offset);
690         return 0;
691
692 err_unpin:
693         i915_gem_object_ggtt_unpin(ring->scratch.obj);
694 err_unref:
695         drm_gem_object_unreference(&ring->scratch.obj->base);
696 err:
697         return ret;
698 }
699
700 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
701 {
702         int ret, i;
703         struct intel_engine_cs *ring = req->ring;
704         struct drm_device *dev = ring->dev;
705         struct drm_i915_private *dev_priv = dev->dev_private;
706         struct i915_workarounds *w = &dev_priv->workarounds;
707
708         if (w->count == 0)
709                 return 0;
710
711         ring->gpu_caches_dirty = true;
712         ret = intel_ring_flush_all_caches(req);
713         if (ret)
714                 return ret;
715
716         ret = intel_ring_begin(req, (w->count * 2 + 2));
717         if (ret)
718                 return ret;
719
720         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
721         for (i = 0; i < w->count; i++) {
722                 intel_ring_emit_reg(ring, w->reg[i].addr);
723                 intel_ring_emit(ring, w->reg[i].value);
724         }
725         intel_ring_emit(ring, MI_NOOP);
726
727         intel_ring_advance(ring);
728
729         ring->gpu_caches_dirty = true;
730         ret = intel_ring_flush_all_caches(req);
731         if (ret)
732                 return ret;
733
734         DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
735
736         return 0;
737 }
738
739 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
740 {
741         int ret;
742
743         ret = intel_ring_workarounds_emit(req);
744         if (ret != 0)
745                 return ret;
746
747         ret = i915_gem_render_state_init(req);
748         if (ret)
749                 return ret;
750
751         return 0;
752 }
753
754 static int wa_add(struct drm_i915_private *dev_priv,
755                   i915_reg_t addr,
756                   const u32 mask, const u32 val)
757 {
758         const u32 idx = dev_priv->workarounds.count;
759
760         if (WARN_ON(idx >= I915_MAX_WA_REGS))
761                 return -ENOSPC;
762
763         dev_priv->workarounds.reg[idx].addr = addr;
764         dev_priv->workarounds.reg[idx].value = val;
765         dev_priv->workarounds.reg[idx].mask = mask;
766
767         dev_priv->workarounds.count++;
768
769         return 0;
770 }
771
772 #define WA_REG(addr, mask, val) do { \
773                 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
774                 if (r) \
775                         return r; \
776         } while (0)
777
778 #define WA_SET_BIT_MASKED(addr, mask) \
779         WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
780
781 #define WA_CLR_BIT_MASKED(addr, mask) \
782         WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
783
784 #define WA_SET_FIELD_MASKED(addr, mask, value) \
785         WA_REG(addr, mask, _MASKED_FIELD(mask, value))
786
787 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
788 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
789
790 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
791
792 static int wa_ring_whitelist_reg(struct intel_engine_cs *ring, i915_reg_t reg)
793 {
794         struct drm_i915_private *dev_priv = ring->dev->dev_private;
795         struct i915_workarounds *wa = &dev_priv->workarounds;
796         const uint32_t index = wa->hw_whitelist_count[ring->id];
797
798         if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
799                 return -EINVAL;
800
801         WA_WRITE(RING_FORCE_TO_NONPRIV(ring->mmio_base, index),
802                  i915_mmio_reg_offset(reg));
803         wa->hw_whitelist_count[ring->id]++;
804
805         return 0;
806 }
807
808 static int gen8_init_workarounds(struct intel_engine_cs *ring)
809 {
810         struct drm_device *dev = ring->dev;
811         struct drm_i915_private *dev_priv = dev->dev_private;
812
813         WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
814
815         /* WaDisableAsyncFlipPerfMode:bdw,chv */
816         WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
817
818         /* WaDisablePartialInstShootdown:bdw,chv */
819         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
820                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
821
822         /* Use Force Non-Coherent whenever executing a 3D context. This is a
823          * workaround for for a possible hang in the unlikely event a TLB
824          * invalidation occurs during a PSD flush.
825          */
826         /* WaForceEnableNonCoherent:bdw,chv */
827         /* WaHdcDisableFetchWhenMasked:bdw,chv */
828         WA_SET_BIT_MASKED(HDC_CHICKEN0,
829                           HDC_DONOT_FETCH_MEM_WHEN_MASKED |
830                           HDC_FORCE_NON_COHERENT);
831
832         /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
833          * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
834          *  polygons in the same 8x4 pixel/sample area to be processed without
835          *  stalling waiting for the earlier ones to write to Hierarchical Z
836          *  buffer."
837          *
838          * This optimization is off by default for BDW and CHV; turn it on.
839          */
840         WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
841
842         /* Wa4x4STCOptimizationDisable:bdw,chv */
843         WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
844
845         /*
846          * BSpec recommends 8x4 when MSAA is used,
847          * however in practice 16x4 seems fastest.
848          *
849          * Note that PS/WM thread counts depend on the WIZ hashing
850          * disable bit, which we don't touch here, but it's good
851          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
852          */
853         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
854                             GEN6_WIZ_HASHING_MASK,
855                             GEN6_WIZ_HASHING_16x4);
856
857         return 0;
858 }
859
860 static int bdw_init_workarounds(struct intel_engine_cs *ring)
861 {
862         int ret;
863         struct drm_device *dev = ring->dev;
864         struct drm_i915_private *dev_priv = dev->dev_private;
865
866         ret = gen8_init_workarounds(ring);
867         if (ret)
868                 return ret;
869
870         /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
871         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
872
873         /* WaDisableDopClockGating:bdw */
874         WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
875                           DOP_CLOCK_GATING_DISABLE);
876
877         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
878                           GEN8_SAMPLER_POWER_BYPASS_DIS);
879
880         WA_SET_BIT_MASKED(HDC_CHICKEN0,
881                           /* WaForceContextSaveRestoreNonCoherent:bdw */
882                           HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
883                           /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
884                           (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
885
886         return 0;
887 }
888
889 static int chv_init_workarounds(struct intel_engine_cs *ring)
890 {
891         int ret;
892         struct drm_device *dev = ring->dev;
893         struct drm_i915_private *dev_priv = dev->dev_private;
894
895         ret = gen8_init_workarounds(ring);
896         if (ret)
897                 return ret;
898
899         /* WaDisableThreadStallDopClockGating:chv */
900         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
901
902         /* Improve HiZ throughput on CHV. */
903         WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
904
905         return 0;
906 }
907
908 static int gen9_init_workarounds(struct intel_engine_cs *ring)
909 {
910         struct drm_device *dev = ring->dev;
911         struct drm_i915_private *dev_priv = dev->dev_private;
912         uint32_t tmp;
913         int ret;
914
915         /* WaEnableLbsSlaRetryTimerDecrement:skl */
916         I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
917                    GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
918
919         /* WaDisableKillLogic:bxt,skl */
920         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
921                    ECOCHK_DIS_TLB);
922
923         /* WaDisablePartialInstShootdown:skl,bxt */
924         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
925                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
926
927         /* Syncing dependencies between camera and graphics:skl,bxt */
928         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
929                           GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
930
931         /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
932         if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
933             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
934                 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
935                                   GEN9_DG_MIRROR_FIX_ENABLE);
936
937         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
938         if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
939             IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
940                 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
941                                   GEN9_RHWO_OPTIMIZATION_DISABLE);
942                 /*
943                  * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
944                  * but we do that in per ctx batchbuffer as there is an issue
945                  * with this register not getting restored on ctx restore
946                  */
947         }
948
949         /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
950         if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER) || IS_BROXTON(dev))
951                 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
952                                   GEN9_ENABLE_YV12_BUGFIX);
953
954         /* Wa4x4STCOptimizationDisable:skl,bxt */
955         /* WaDisablePartialResolveInVc:skl,bxt */
956         WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
957                                          GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
958
959         /* WaCcsTlbPrefetchDisable:skl,bxt */
960         WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
961                           GEN9_CCS_TLB_PREFETCH_ENABLE);
962
963         /* WaDisableMaskBasedCammingInRCC:skl,bxt */
964         if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_C0) ||
965             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
966                 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
967                                   PIXEL_MASK_CAMMING_DISABLE);
968
969         /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
970         tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
971         if (IS_SKL_REVID(dev, SKL_REVID_F0, REVID_FOREVER) ||
972             IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
973                 tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
974         WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
975
976         /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
977         if (IS_SKYLAKE(dev) || IS_BXT_REVID(dev, 0, BXT_REVID_B0))
978                 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
979                                   GEN8_SAMPLER_POWER_BYPASS_DIS);
980
981         /* WaDisableSTUnitPowerOptimization:skl,bxt */
982         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
983
984         /* WaOCLCoherentLineFlush:skl,bxt */
985         I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
986                                     GEN8_LQSC_FLUSH_COHERENT_LINES));
987
988         /* WaEnablePreemptionGranularityControlByUMD:skl,bxt */
989         ret= wa_ring_whitelist_reg(ring, GEN8_CS_CHICKEN1);
990         if (ret)
991                 return ret;
992
993         /* WaAllowUMDToModifyHDCChicken1:skl,bxt */
994         ret = wa_ring_whitelist_reg(ring, GEN8_HDC_CHICKEN1);
995         if (ret)
996                 return ret;
997
998         return 0;
999 }
1000
1001 static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
1002 {
1003         struct drm_device *dev = ring->dev;
1004         struct drm_i915_private *dev_priv = dev->dev_private;
1005         u8 vals[3] = { 0, 0, 0 };
1006         unsigned int i;
1007
1008         for (i = 0; i < 3; i++) {
1009                 u8 ss;
1010
1011                 /*
1012                  * Only consider slices where one, and only one, subslice has 7
1013                  * EUs
1014                  */
1015                 if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
1016                         continue;
1017
1018                 /*
1019                  * subslice_7eu[i] != 0 (because of the check above) and
1020                  * ss_max == 4 (maximum number of subslices possible per slice)
1021                  *
1022                  * ->    0 <= ss <= 3;
1023                  */
1024                 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1025                 vals[i] = 3 - ss;
1026         }
1027
1028         if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1029                 return 0;
1030
1031         /* Tune IZ hashing. See intel_device_info_runtime_init() */
1032         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1033                             GEN9_IZ_HASHING_MASK(2) |
1034                             GEN9_IZ_HASHING_MASK(1) |
1035                             GEN9_IZ_HASHING_MASK(0),
1036                             GEN9_IZ_HASHING(2, vals[2]) |
1037                             GEN9_IZ_HASHING(1, vals[1]) |
1038                             GEN9_IZ_HASHING(0, vals[0]));
1039
1040         return 0;
1041 }
1042
1043 static int skl_init_workarounds(struct intel_engine_cs *ring)
1044 {
1045         int ret;
1046         struct drm_device *dev = ring->dev;
1047         struct drm_i915_private *dev_priv = dev->dev_private;
1048
1049         ret = gen9_init_workarounds(ring);
1050         if (ret)
1051                 return ret;
1052
1053         /*
1054          * Actual WA is to disable percontext preemption granularity control
1055          * until D0 which is the default case so this is equivalent to
1056          * !WaDisablePerCtxtPreemptionGranularityControl:skl
1057          */
1058         if (IS_SKL_REVID(dev, SKL_REVID_E0, REVID_FOREVER)) {
1059                 I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
1060                            _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
1061         }
1062
1063         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
1064                 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1065                 I915_WRITE(FF_SLICE_CS_CHICKEN2,
1066                            _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1067         }
1068
1069         /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1070          * involving this register should also be added to WA batch as required.
1071          */
1072         if (IS_SKL_REVID(dev, 0, SKL_REVID_E0))
1073                 /* WaDisableLSQCROPERFforOCL:skl */
1074                 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1075                            GEN8_LQSC_RO_PERF_DIS);
1076
1077         /* WaEnableGapsTsvCreditFix:skl */
1078         if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER)) {
1079                 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1080                                            GEN9_GAPS_TSV_CREDIT_DISABLE));
1081         }
1082
1083         /* WaDisablePowerCompilerClockGating:skl */
1084         if (IS_SKL_REVID(dev, SKL_REVID_B0, SKL_REVID_B0))
1085                 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1086                                   BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1087
1088         /* This is tied to WaForceContextSaveRestoreNonCoherent */
1089         if (IS_SKL_REVID(dev, 0, REVID_FOREVER)) {
1090                 /*
1091                  *Use Force Non-Coherent whenever executing a 3D context. This
1092                  * is a workaround for a possible hang in the unlikely event
1093                  * a TLB invalidation occurs during a PSD flush.
1094                  */
1095                 /* WaForceEnableNonCoherent:skl */
1096                 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1097                                   HDC_FORCE_NON_COHERENT);
1098
1099                 /* WaDisableHDCInvalidation:skl */
1100                 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
1101                            BDW_DISABLE_HDC_INVALIDATION);
1102         }
1103
1104         /* WaBarrierPerformanceFixDisable:skl */
1105         if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_D0))
1106                 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1107                                   HDC_FENCE_DEST_SLM_DISABLE |
1108                                   HDC_BARRIER_PERFORMANCE_DISABLE);
1109
1110         /* WaDisableSbeCacheDispatchPortSharing:skl */
1111         if (IS_SKL_REVID(dev, 0, SKL_REVID_F0))
1112                 WA_SET_BIT_MASKED(
1113                         GEN7_HALF_SLICE_CHICKEN1,
1114                         GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1115
1116         /* WaDisableLSQCROPERFforOCL:skl */
1117         ret = wa_ring_whitelist_reg(ring, GEN8_L3SQCREG4);
1118         if (ret)
1119                 return ret;
1120
1121         return skl_tune_iz_hashing(ring);
1122 }
1123
1124 static int bxt_init_workarounds(struct intel_engine_cs *ring)
1125 {
1126         int ret;
1127         struct drm_device *dev = ring->dev;
1128         struct drm_i915_private *dev_priv = dev->dev_private;
1129
1130         ret = gen9_init_workarounds(ring);
1131         if (ret)
1132                 return ret;
1133
1134         /* WaStoreMultiplePTEenable:bxt */
1135         /* This is a requirement according to Hardware specification */
1136         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1137                 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1138
1139         /* WaSetClckGatingDisableMedia:bxt */
1140         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1141                 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1142                                             ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1143         }
1144
1145         /* WaDisableThreadStallDopClockGating:bxt */
1146         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1147                           STALL_DOP_GATING_DISABLE);
1148
1149         /* WaDisableSbeCacheDispatchPortSharing:bxt */
1150         if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1151                 WA_SET_BIT_MASKED(
1152                         GEN7_HALF_SLICE_CHICKEN1,
1153                         GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1154         }
1155
1156         /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
1157         /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
1158         /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1159         /* WaDisableLSQCROPERFforOCL:bxt */
1160         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1161                 ret = wa_ring_whitelist_reg(ring, GEN9_CS_DEBUG_MODE1);
1162                 if (ret)
1163                         return ret;
1164
1165                 ret = wa_ring_whitelist_reg(ring, GEN8_L3SQCREG4);
1166                 if (ret)
1167                         return ret;
1168         }
1169
1170         return 0;
1171 }
1172
1173 int init_workarounds_ring(struct intel_engine_cs *ring)
1174 {
1175         struct drm_device *dev = ring->dev;
1176         struct drm_i915_private *dev_priv = dev->dev_private;
1177
1178         WARN_ON(ring->id != RCS);
1179
1180         dev_priv->workarounds.count = 0;
1181         dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1182
1183         if (IS_BROADWELL(dev))
1184                 return bdw_init_workarounds(ring);
1185
1186         if (IS_CHERRYVIEW(dev))
1187                 return chv_init_workarounds(ring);
1188
1189         if (IS_SKYLAKE(dev))
1190                 return skl_init_workarounds(ring);
1191
1192         if (IS_BROXTON(dev))
1193                 return bxt_init_workarounds(ring);
1194
1195         return 0;
1196 }
1197
1198 static int init_render_ring(struct intel_engine_cs *ring)
1199 {
1200         struct drm_device *dev = ring->dev;
1201         struct drm_i915_private *dev_priv = dev->dev_private;
1202         int ret = init_ring_common(ring);
1203         if (ret)
1204                 return ret;
1205
1206         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1207         if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1208                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1209
1210         /* We need to disable the AsyncFlip performance optimisations in order
1211          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1212          * programmed to '1' on all products.
1213          *
1214          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1215          */
1216         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1217                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1218
1219         /* Required for the hardware to program scanline values for waiting */
1220         /* WaEnableFlushTlbInvalidationMode:snb */
1221         if (INTEL_INFO(dev)->gen == 6)
1222                 I915_WRITE(GFX_MODE,
1223                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1224
1225         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1226         if (IS_GEN7(dev))
1227                 I915_WRITE(GFX_MODE_GEN7,
1228                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1229                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1230
1231         if (IS_GEN6(dev)) {
1232                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1233                  * "If this bit is set, STCunit will have LRA as replacement
1234                  *  policy. [...] This bit must be reset.  LRA replacement
1235                  *  policy is not supported."
1236                  */
1237                 I915_WRITE(CACHE_MODE_0,
1238                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1239         }
1240
1241         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1242                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1243
1244         if (HAS_L3_DPF(dev))
1245                 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1246
1247         return init_workarounds_ring(ring);
1248 }
1249
1250 static void render_ring_cleanup(struct intel_engine_cs *ring)
1251 {
1252         struct drm_device *dev = ring->dev;
1253         struct drm_i915_private *dev_priv = dev->dev_private;
1254
1255         if (dev_priv->semaphore_obj) {
1256                 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1257                 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1258                 dev_priv->semaphore_obj = NULL;
1259         }
1260
1261         intel_fini_pipe_control(ring);
1262 }
1263
1264 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1265                            unsigned int num_dwords)
1266 {
1267 #define MBOX_UPDATE_DWORDS 8
1268         struct intel_engine_cs *signaller = signaller_req->ring;
1269         struct drm_device *dev = signaller->dev;
1270         struct drm_i915_private *dev_priv = dev->dev_private;
1271         struct intel_engine_cs *waiter;
1272         int i, ret, num_rings;
1273
1274         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1275         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1276 #undef MBOX_UPDATE_DWORDS
1277
1278         ret = intel_ring_begin(signaller_req, num_dwords);
1279         if (ret)
1280                 return ret;
1281
1282         for_each_ring(waiter, dev_priv, i) {
1283                 u32 seqno;
1284                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1285                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1286                         continue;
1287
1288                 seqno = i915_gem_request_get_seqno(signaller_req);
1289                 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1290                 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1291                                            PIPE_CONTROL_QW_WRITE |
1292                                            PIPE_CONTROL_FLUSH_ENABLE);
1293                 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1294                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1295                 intel_ring_emit(signaller, seqno);
1296                 intel_ring_emit(signaller, 0);
1297                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1298                                            MI_SEMAPHORE_TARGET(waiter->id));
1299                 intel_ring_emit(signaller, 0);
1300         }
1301
1302         return 0;
1303 }
1304
1305 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1306                            unsigned int num_dwords)
1307 {
1308 #define MBOX_UPDATE_DWORDS 6
1309         struct intel_engine_cs *signaller = signaller_req->ring;
1310         struct drm_device *dev = signaller->dev;
1311         struct drm_i915_private *dev_priv = dev->dev_private;
1312         struct intel_engine_cs *waiter;
1313         int i, ret, num_rings;
1314
1315         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1316         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1317 #undef MBOX_UPDATE_DWORDS
1318
1319         ret = intel_ring_begin(signaller_req, num_dwords);
1320         if (ret)
1321                 return ret;
1322
1323         for_each_ring(waiter, dev_priv, i) {
1324                 u32 seqno;
1325                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1326                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1327                         continue;
1328
1329                 seqno = i915_gem_request_get_seqno(signaller_req);
1330                 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1331                                            MI_FLUSH_DW_OP_STOREDW);
1332                 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1333                                            MI_FLUSH_DW_USE_GTT);
1334                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1335                 intel_ring_emit(signaller, seqno);
1336                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1337                                            MI_SEMAPHORE_TARGET(waiter->id));
1338                 intel_ring_emit(signaller, 0);
1339         }
1340
1341         return 0;
1342 }
1343
1344 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1345                        unsigned int num_dwords)
1346 {
1347         struct intel_engine_cs *signaller = signaller_req->ring;
1348         struct drm_device *dev = signaller->dev;
1349         struct drm_i915_private *dev_priv = dev->dev_private;
1350         struct intel_engine_cs *useless;
1351         int i, ret, num_rings;
1352
1353 #define MBOX_UPDATE_DWORDS 3
1354         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1355         num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1356 #undef MBOX_UPDATE_DWORDS
1357
1358         ret = intel_ring_begin(signaller_req, num_dwords);
1359         if (ret)
1360                 return ret;
1361
1362         for_each_ring(useless, dev_priv, i) {
1363                 i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[i];
1364
1365                 if (i915_mmio_reg_valid(mbox_reg)) {
1366                         u32 seqno = i915_gem_request_get_seqno(signaller_req);
1367
1368                         intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1369                         intel_ring_emit_reg(signaller, mbox_reg);
1370                         intel_ring_emit(signaller, seqno);
1371                 }
1372         }
1373
1374         /* If num_dwords was rounded, make sure the tail pointer is correct */
1375         if (num_rings % 2 == 0)
1376                 intel_ring_emit(signaller, MI_NOOP);
1377
1378         return 0;
1379 }
1380
1381 /**
1382  * gen6_add_request - Update the semaphore mailbox registers
1383  *
1384  * @request - request to write to the ring
1385  *
1386  * Update the mailbox registers in the *other* rings with the current seqno.
1387  * This acts like a signal in the canonical semaphore.
1388  */
1389 static int
1390 gen6_add_request(struct drm_i915_gem_request *req)
1391 {
1392         struct intel_engine_cs *ring = req->ring;
1393         int ret;
1394
1395         if (ring->semaphore.signal)
1396                 ret = ring->semaphore.signal(req, 4);
1397         else
1398                 ret = intel_ring_begin(req, 4);
1399
1400         if (ret)
1401                 return ret;
1402
1403         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1404         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1405         intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1406         intel_ring_emit(ring, MI_USER_INTERRUPT);
1407         __intel_ring_advance(ring);
1408
1409         return 0;
1410 }
1411
1412 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1413                                               u32 seqno)
1414 {
1415         struct drm_i915_private *dev_priv = dev->dev_private;
1416         return dev_priv->last_seqno < seqno;
1417 }
1418
1419 /**
1420  * intel_ring_sync - sync the waiter to the signaller on seqno
1421  *
1422  * @waiter - ring that is waiting
1423  * @signaller - ring which has, or will signal
1424  * @seqno - seqno which the waiter will block on
1425  */
1426
1427 static int
1428 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1429                struct intel_engine_cs *signaller,
1430                u32 seqno)
1431 {
1432         struct intel_engine_cs *waiter = waiter_req->ring;
1433         struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1434         int ret;
1435
1436         ret = intel_ring_begin(waiter_req, 4);
1437         if (ret)
1438                 return ret;
1439
1440         intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1441                                 MI_SEMAPHORE_GLOBAL_GTT |
1442                                 MI_SEMAPHORE_POLL |
1443                                 MI_SEMAPHORE_SAD_GTE_SDD);
1444         intel_ring_emit(waiter, seqno);
1445         intel_ring_emit(waiter,
1446                         lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1447         intel_ring_emit(waiter,
1448                         upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1449         intel_ring_advance(waiter);
1450         return 0;
1451 }
1452
1453 static int
1454 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1455                struct intel_engine_cs *signaller,
1456                u32 seqno)
1457 {
1458         struct intel_engine_cs *waiter = waiter_req->ring;
1459         u32 dw1 = MI_SEMAPHORE_MBOX |
1460                   MI_SEMAPHORE_COMPARE |
1461                   MI_SEMAPHORE_REGISTER;
1462         u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1463         int ret;
1464
1465         /* Throughout all of the GEM code, seqno passed implies our current
1466          * seqno is >= the last seqno executed. However for hardware the
1467          * comparison is strictly greater than.
1468          */
1469         seqno -= 1;
1470
1471         WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1472
1473         ret = intel_ring_begin(waiter_req, 4);
1474         if (ret)
1475                 return ret;
1476
1477         /* If seqno wrap happened, omit the wait with no-ops */
1478         if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1479                 intel_ring_emit(waiter, dw1 | wait_mbox);
1480                 intel_ring_emit(waiter, seqno);
1481                 intel_ring_emit(waiter, 0);
1482                 intel_ring_emit(waiter, MI_NOOP);
1483         } else {
1484                 intel_ring_emit(waiter, MI_NOOP);
1485                 intel_ring_emit(waiter, MI_NOOP);
1486                 intel_ring_emit(waiter, MI_NOOP);
1487                 intel_ring_emit(waiter, MI_NOOP);
1488         }
1489         intel_ring_advance(waiter);
1490
1491         return 0;
1492 }
1493
1494 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
1495 do {                                                                    \
1496         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
1497                  PIPE_CONTROL_DEPTH_STALL);                             \
1498         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
1499         intel_ring_emit(ring__, 0);                                                     \
1500         intel_ring_emit(ring__, 0);                                                     \
1501 } while (0)
1502
1503 static int
1504 pc_render_add_request(struct drm_i915_gem_request *req)
1505 {
1506         struct intel_engine_cs *ring = req->ring;
1507         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1508         int ret;
1509
1510         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1511          * incoherent with writes to memory, i.e. completely fubar,
1512          * so we need to use PIPE_NOTIFY instead.
1513          *
1514          * However, we also need to workaround the qword write
1515          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1516          * memory before requesting an interrupt.
1517          */
1518         ret = intel_ring_begin(req, 32);
1519         if (ret)
1520                 return ret;
1521
1522         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1523                         PIPE_CONTROL_WRITE_FLUSH |
1524                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1525         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1526         intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1527         intel_ring_emit(ring, 0);
1528         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1529         scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1530         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1531         scratch_addr += 2 * CACHELINE_BYTES;
1532         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1533         scratch_addr += 2 * CACHELINE_BYTES;
1534         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1535         scratch_addr += 2 * CACHELINE_BYTES;
1536         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1537         scratch_addr += 2 * CACHELINE_BYTES;
1538         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1539
1540         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1541                         PIPE_CONTROL_WRITE_FLUSH |
1542                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1543                         PIPE_CONTROL_NOTIFY);
1544         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1545         intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1546         intel_ring_emit(ring, 0);
1547         __intel_ring_advance(ring);
1548
1549         return 0;
1550 }
1551
1552 static u32
1553 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1554 {
1555         /* Workaround to force correct ordering between irq and seqno writes on
1556          * ivb (and maybe also on snb) by reading from a CS register (like
1557          * ACTHD) before reading the status page. */
1558         if (!lazy_coherency) {
1559                 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1560                 POSTING_READ(RING_ACTHD(ring->mmio_base));
1561         }
1562
1563         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1564 }
1565
1566 static u32
1567 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1568 {
1569         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1570 }
1571
1572 static void
1573 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1574 {
1575         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1576 }
1577
1578 static u32
1579 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1580 {
1581         return ring->scratch.cpu_page[0];
1582 }
1583
1584 static void
1585 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1586 {
1587         ring->scratch.cpu_page[0] = seqno;
1588 }
1589
1590 static bool
1591 gen5_ring_get_irq(struct intel_engine_cs *ring)
1592 {
1593         struct drm_device *dev = ring->dev;
1594         struct drm_i915_private *dev_priv = dev->dev_private;
1595         unsigned long flags;
1596
1597         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1598                 return false;
1599
1600         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1601         if (ring->irq_refcount++ == 0)
1602                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1603         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1604
1605         return true;
1606 }
1607
1608 static void
1609 gen5_ring_put_irq(struct intel_engine_cs *ring)
1610 {
1611         struct drm_device *dev = ring->dev;
1612         struct drm_i915_private *dev_priv = dev->dev_private;
1613         unsigned long flags;
1614
1615         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1616         if (--ring->irq_refcount == 0)
1617                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1618         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1619 }
1620
1621 static bool
1622 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1623 {
1624         struct drm_device *dev = ring->dev;
1625         struct drm_i915_private *dev_priv = dev->dev_private;
1626         unsigned long flags;
1627
1628         if (!intel_irqs_enabled(dev_priv))
1629                 return false;
1630
1631         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1632         if (ring->irq_refcount++ == 0) {
1633                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1634                 I915_WRITE(IMR, dev_priv->irq_mask);
1635                 POSTING_READ(IMR);
1636         }
1637         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1638
1639         return true;
1640 }
1641
1642 static void
1643 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1644 {
1645         struct drm_device *dev = ring->dev;
1646         struct drm_i915_private *dev_priv = dev->dev_private;
1647         unsigned long flags;
1648
1649         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1650         if (--ring->irq_refcount == 0) {
1651                 dev_priv->irq_mask |= ring->irq_enable_mask;
1652                 I915_WRITE(IMR, dev_priv->irq_mask);
1653                 POSTING_READ(IMR);
1654         }
1655         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1656 }
1657
1658 static bool
1659 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1660 {
1661         struct drm_device *dev = ring->dev;
1662         struct drm_i915_private *dev_priv = dev->dev_private;
1663         unsigned long flags;
1664
1665         if (!intel_irqs_enabled(dev_priv))
1666                 return false;
1667
1668         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1669         if (ring->irq_refcount++ == 0) {
1670                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1671                 I915_WRITE16(IMR, dev_priv->irq_mask);
1672                 POSTING_READ16(IMR);
1673         }
1674         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1675
1676         return true;
1677 }
1678
1679 static void
1680 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1681 {
1682         struct drm_device *dev = ring->dev;
1683         struct drm_i915_private *dev_priv = dev->dev_private;
1684         unsigned long flags;
1685
1686         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1687         if (--ring->irq_refcount == 0) {
1688                 dev_priv->irq_mask |= ring->irq_enable_mask;
1689                 I915_WRITE16(IMR, dev_priv->irq_mask);
1690                 POSTING_READ16(IMR);
1691         }
1692         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1693 }
1694
1695 static int
1696 bsd_ring_flush(struct drm_i915_gem_request *req,
1697                u32     invalidate_domains,
1698                u32     flush_domains)
1699 {
1700         struct intel_engine_cs *ring = req->ring;
1701         int ret;
1702
1703         ret = intel_ring_begin(req, 2);
1704         if (ret)
1705                 return ret;
1706
1707         intel_ring_emit(ring, MI_FLUSH);
1708         intel_ring_emit(ring, MI_NOOP);
1709         intel_ring_advance(ring);
1710         return 0;
1711 }
1712
1713 static int
1714 i9xx_add_request(struct drm_i915_gem_request *req)
1715 {
1716         struct intel_engine_cs *ring = req->ring;
1717         int ret;
1718
1719         ret = intel_ring_begin(req, 4);
1720         if (ret)
1721                 return ret;
1722
1723         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1724         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1725         intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1726         intel_ring_emit(ring, MI_USER_INTERRUPT);
1727         __intel_ring_advance(ring);
1728
1729         return 0;
1730 }
1731
1732 static bool
1733 gen6_ring_get_irq(struct intel_engine_cs *ring)
1734 {
1735         struct drm_device *dev = ring->dev;
1736         struct drm_i915_private *dev_priv = dev->dev_private;
1737         unsigned long flags;
1738
1739         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1740                 return false;
1741
1742         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1743         if (ring->irq_refcount++ == 0) {
1744                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1745                         I915_WRITE_IMR(ring,
1746                                        ~(ring->irq_enable_mask |
1747                                          GT_PARITY_ERROR(dev)));
1748                 else
1749                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1750                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1751         }
1752         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1753
1754         return true;
1755 }
1756
1757 static void
1758 gen6_ring_put_irq(struct intel_engine_cs *ring)
1759 {
1760         struct drm_device *dev = ring->dev;
1761         struct drm_i915_private *dev_priv = dev->dev_private;
1762         unsigned long flags;
1763
1764         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1765         if (--ring->irq_refcount == 0) {
1766                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1767                         I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1768                 else
1769                         I915_WRITE_IMR(ring, ~0);
1770                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1771         }
1772         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1773 }
1774
1775 static bool
1776 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1777 {
1778         struct drm_device *dev = ring->dev;
1779         struct drm_i915_private *dev_priv = dev->dev_private;
1780         unsigned long flags;
1781
1782         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1783                 return false;
1784
1785         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1786         if (ring->irq_refcount++ == 0) {
1787                 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1788                 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1789         }
1790         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1791
1792         return true;
1793 }
1794
1795 static void
1796 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1797 {
1798         struct drm_device *dev = ring->dev;
1799         struct drm_i915_private *dev_priv = dev->dev_private;
1800         unsigned long flags;
1801
1802         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1803         if (--ring->irq_refcount == 0) {
1804                 I915_WRITE_IMR(ring, ~0);
1805                 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1806         }
1807         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1808 }
1809
1810 static bool
1811 gen8_ring_get_irq(struct intel_engine_cs *ring)
1812 {
1813         struct drm_device *dev = ring->dev;
1814         struct drm_i915_private *dev_priv = dev->dev_private;
1815         unsigned long flags;
1816
1817         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1818                 return false;
1819
1820         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1821         if (ring->irq_refcount++ == 0) {
1822                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1823                         I915_WRITE_IMR(ring,
1824                                        ~(ring->irq_enable_mask |
1825                                          GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1826                 } else {
1827                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1828                 }
1829                 POSTING_READ(RING_IMR(ring->mmio_base));
1830         }
1831         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1832
1833         return true;
1834 }
1835
1836 static void
1837 gen8_ring_put_irq(struct intel_engine_cs *ring)
1838 {
1839         struct drm_device *dev = ring->dev;
1840         struct drm_i915_private *dev_priv = dev->dev_private;
1841         unsigned long flags;
1842
1843         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1844         if (--ring->irq_refcount == 0) {
1845                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1846                         I915_WRITE_IMR(ring,
1847                                        ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1848                 } else {
1849                         I915_WRITE_IMR(ring, ~0);
1850                 }
1851                 POSTING_READ(RING_IMR(ring->mmio_base));
1852         }
1853         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1854 }
1855
1856 static int
1857 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1858                          u64 offset, u32 length,
1859                          unsigned dispatch_flags)
1860 {
1861         struct intel_engine_cs *ring = req->ring;
1862         int ret;
1863
1864         ret = intel_ring_begin(req, 2);
1865         if (ret)
1866                 return ret;
1867
1868         intel_ring_emit(ring,
1869                         MI_BATCH_BUFFER_START |
1870                         MI_BATCH_GTT |
1871                         (dispatch_flags & I915_DISPATCH_SECURE ?
1872                          0 : MI_BATCH_NON_SECURE_I965));
1873         intel_ring_emit(ring, offset);
1874         intel_ring_advance(ring);
1875
1876         return 0;
1877 }
1878
1879 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1880 #define I830_BATCH_LIMIT (256*1024)
1881 #define I830_TLB_ENTRIES (2)
1882 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1883 static int
1884 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1885                          u64 offset, u32 len,
1886                          unsigned dispatch_flags)
1887 {
1888         struct intel_engine_cs *ring = req->ring;
1889         u32 cs_offset = ring->scratch.gtt_offset;
1890         int ret;
1891
1892         ret = intel_ring_begin(req, 6);
1893         if (ret)
1894                 return ret;
1895
1896         /* Evict the invalid PTE TLBs */
1897         intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1898         intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1899         intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1900         intel_ring_emit(ring, cs_offset);
1901         intel_ring_emit(ring, 0xdeadbeef);
1902         intel_ring_emit(ring, MI_NOOP);
1903         intel_ring_advance(ring);
1904
1905         if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1906                 if (len > I830_BATCH_LIMIT)
1907                         return -ENOSPC;
1908
1909                 ret = intel_ring_begin(req, 6 + 2);
1910                 if (ret)
1911                         return ret;
1912
1913                 /* Blit the batch (which has now all relocs applied) to the
1914                  * stable batch scratch bo area (so that the CS never
1915                  * stumbles over its tlb invalidation bug) ...
1916                  */
1917                 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1918                 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1919                 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1920                 intel_ring_emit(ring, cs_offset);
1921                 intel_ring_emit(ring, 4096);
1922                 intel_ring_emit(ring, offset);
1923
1924                 intel_ring_emit(ring, MI_FLUSH);
1925                 intel_ring_emit(ring, MI_NOOP);
1926                 intel_ring_advance(ring);
1927
1928                 /* ... and execute it. */
1929                 offset = cs_offset;
1930         }
1931
1932         ret = intel_ring_begin(req, 2);
1933         if (ret)
1934                 return ret;
1935
1936         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1937         intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1938                                         0 : MI_BATCH_NON_SECURE));
1939         intel_ring_advance(ring);
1940
1941         return 0;
1942 }
1943
1944 static int
1945 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1946                          u64 offset, u32 len,
1947                          unsigned dispatch_flags)
1948 {
1949         struct intel_engine_cs *ring = req->ring;
1950         int ret;
1951
1952         ret = intel_ring_begin(req, 2);
1953         if (ret)
1954                 return ret;
1955
1956         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1957         intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1958                                         0 : MI_BATCH_NON_SECURE));
1959         intel_ring_advance(ring);
1960
1961         return 0;
1962 }
1963
1964 static void cleanup_phys_status_page(struct intel_engine_cs *ring)
1965 {
1966         struct drm_i915_private *dev_priv = to_i915(ring->dev);
1967
1968         if (!dev_priv->status_page_dmah)
1969                 return;
1970
1971         drm_pci_free(ring->dev, dev_priv->status_page_dmah);
1972         ring->status_page.page_addr = NULL;
1973 }
1974
1975 static void cleanup_status_page(struct intel_engine_cs *ring)
1976 {
1977         struct drm_i915_gem_object *obj;
1978
1979         obj = ring->status_page.obj;
1980         if (obj == NULL)
1981                 return;
1982
1983         kunmap(sg_page(obj->pages->sgl));
1984         i915_gem_object_ggtt_unpin(obj);
1985         drm_gem_object_unreference(&obj->base);
1986         ring->status_page.obj = NULL;
1987 }
1988
1989 static int init_status_page(struct intel_engine_cs *ring)
1990 {
1991         struct drm_i915_gem_object *obj = ring->status_page.obj;
1992
1993         if (obj == NULL) {
1994                 unsigned flags;
1995                 int ret;
1996
1997                 obj = i915_gem_alloc_object(ring->dev, 4096);
1998                 if (obj == NULL) {
1999                         DRM_ERROR("Failed to allocate status page\n");
2000                         return -ENOMEM;
2001                 }
2002
2003                 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2004                 if (ret)
2005                         goto err_unref;
2006
2007                 flags = 0;
2008                 if (!HAS_LLC(ring->dev))
2009                         /* On g33, we cannot place HWS above 256MiB, so
2010                          * restrict its pinning to the low mappable arena.
2011                          * Though this restriction is not documented for
2012                          * gen4, gen5, or byt, they also behave similarly
2013                          * and hang if the HWS is placed at the top of the
2014                          * GTT. To generalise, it appears that all !llc
2015                          * platforms have issues with us placing the HWS
2016                          * above the mappable region (even though we never
2017                          * actualy map it).
2018                          */
2019                         flags |= PIN_MAPPABLE;
2020                 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
2021                 if (ret) {
2022 err_unref:
2023                         drm_gem_object_unreference(&obj->base);
2024                         return ret;
2025                 }
2026
2027                 ring->status_page.obj = obj;
2028         }
2029
2030         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
2031         ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
2032         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
2033
2034         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
2035                         ring->name, ring->status_page.gfx_addr);
2036
2037         return 0;
2038 }
2039
2040 static int init_phys_status_page(struct intel_engine_cs *ring)
2041 {
2042         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2043
2044         if (!dev_priv->status_page_dmah) {
2045                 dev_priv->status_page_dmah =
2046                         drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
2047                 if (!dev_priv->status_page_dmah)
2048                         return -ENOMEM;
2049         }
2050
2051         ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
2052         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
2053
2054         return 0;
2055 }
2056
2057 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2058 {
2059         if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
2060                 vunmap(ringbuf->virtual_start);
2061         else
2062                 iounmap(ringbuf->virtual_start);
2063         ringbuf->virtual_start = NULL;
2064         ringbuf->vma = NULL;
2065         i915_gem_object_ggtt_unpin(ringbuf->obj);
2066 }
2067
2068 static u32 *vmap_obj(struct drm_i915_gem_object *obj)
2069 {
2070         struct sg_page_iter sg_iter;
2071         struct page **pages;
2072         void *addr;
2073         int i;
2074
2075         pages = drm_malloc_ab(obj->base.size >> PAGE_SHIFT, sizeof(*pages));
2076         if (pages == NULL)
2077                 return NULL;
2078
2079         i = 0;
2080         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0)
2081                 pages[i++] = sg_page_iter_page(&sg_iter);
2082
2083         addr = vmap(pages, i, 0, PAGE_KERNEL);
2084         drm_free_large(pages);
2085
2086         return addr;
2087 }
2088
2089 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
2090                                      struct intel_ringbuffer *ringbuf)
2091 {
2092         struct drm_i915_private *dev_priv = to_i915(dev);
2093         struct drm_i915_gem_object *obj = ringbuf->obj;
2094         /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
2095         unsigned flags = PIN_OFFSET_BIAS | 4096;
2096         int ret;
2097
2098         if (HAS_LLC(dev_priv) && !obj->stolen) {
2099                 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
2100                 if (ret)
2101                         return ret;
2102
2103                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2104                 if (ret) {
2105                         i915_gem_object_ggtt_unpin(obj);
2106                         return ret;
2107                 }
2108
2109                 ringbuf->virtual_start = vmap_obj(obj);
2110                 if (ringbuf->virtual_start == NULL) {
2111                         i915_gem_object_ggtt_unpin(obj);
2112                         return -ENOMEM;
2113                 }
2114         } else {
2115                 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
2116                                             flags | PIN_MAPPABLE);
2117                 if (ret)
2118                         return ret;
2119
2120                 ret = i915_gem_object_set_to_gtt_domain(obj, true);
2121                 if (ret) {
2122                         i915_gem_object_ggtt_unpin(obj);
2123                         return ret;
2124                 }
2125
2126                 /* Access through the GTT requires the device to be awake. */
2127                 assert_rpm_wakelock_held(dev_priv);
2128
2129                 ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
2130                                                     i915_gem_obj_ggtt_offset(obj), ringbuf->size);
2131                 if (ringbuf->virtual_start == NULL) {
2132                         i915_gem_object_ggtt_unpin(obj);
2133                         return -EINVAL;
2134                 }
2135         }
2136
2137         ringbuf->vma = i915_gem_obj_to_ggtt(obj);
2138
2139         return 0;
2140 }
2141
2142 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2143 {
2144         drm_gem_object_unreference(&ringbuf->obj->base);
2145         ringbuf->obj = NULL;
2146 }
2147
2148 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2149                                       struct intel_ringbuffer *ringbuf)
2150 {
2151         struct drm_i915_gem_object *obj;
2152
2153         obj = NULL;
2154         if (!HAS_LLC(dev))
2155                 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2156         if (obj == NULL)
2157                 obj = i915_gem_alloc_object(dev, ringbuf->size);
2158         if (obj == NULL)
2159                 return -ENOMEM;
2160
2161         /* mark ring buffers as read-only from GPU side by default */
2162         obj->gt_ro = 1;
2163
2164         ringbuf->obj = obj;
2165
2166         return 0;
2167 }
2168
2169 struct intel_ringbuffer *
2170 intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2171 {
2172         struct intel_ringbuffer *ring;
2173         int ret;
2174
2175         ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2176         if (ring == NULL) {
2177                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2178                                  engine->name);
2179                 return ERR_PTR(-ENOMEM);
2180         }
2181
2182         ring->ring = engine;
2183         list_add(&ring->link, &engine->buffers);
2184
2185         ring->size = size;
2186         /* Workaround an erratum on the i830 which causes a hang if
2187          * the TAIL pointer points to within the last 2 cachelines
2188          * of the buffer.
2189          */
2190         ring->effective_size = size;
2191         if (IS_I830(engine->dev) || IS_845G(engine->dev))
2192                 ring->effective_size -= 2 * CACHELINE_BYTES;
2193
2194         ring->last_retired_head = -1;
2195         intel_ring_update_space(ring);
2196
2197         ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
2198         if (ret) {
2199                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
2200                                  engine->name, ret);
2201                 list_del(&ring->link);
2202                 kfree(ring);
2203                 return ERR_PTR(ret);
2204         }
2205
2206         return ring;
2207 }
2208
2209 void
2210 intel_ringbuffer_free(struct intel_ringbuffer *ring)
2211 {
2212         intel_destroy_ringbuffer_obj(ring);
2213         list_del(&ring->link);
2214         kfree(ring);
2215 }
2216
2217 static int intel_init_ring_buffer(struct drm_device *dev,
2218                                   struct intel_engine_cs *ring)
2219 {
2220         struct intel_ringbuffer *ringbuf;
2221         int ret;
2222
2223         WARN_ON(ring->buffer);
2224
2225         ring->dev = dev;
2226         INIT_LIST_HEAD(&ring->active_list);
2227         INIT_LIST_HEAD(&ring->request_list);
2228         INIT_LIST_HEAD(&ring->execlist_queue);
2229         INIT_LIST_HEAD(&ring->buffers);
2230         i915_gem_batch_pool_init(dev, &ring->batch_pool);
2231         memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2232
2233         init_waitqueue_head(&ring->irq_queue);
2234
2235         ringbuf = intel_engine_create_ringbuffer(ring, 32 * PAGE_SIZE);
2236         if (IS_ERR(ringbuf)) {
2237                 ret = PTR_ERR(ringbuf);
2238                 goto error;
2239         }
2240         ring->buffer = ringbuf;
2241
2242         if (I915_NEED_GFX_HWS(dev)) {
2243                 ret = init_status_page(ring);
2244                 if (ret)
2245                         goto error;
2246         } else {
2247                 WARN_ON(ring->id != RCS);
2248                 ret = init_phys_status_page(ring);
2249                 if (ret)
2250                         goto error;
2251         }
2252
2253         ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2254         if (ret) {
2255                 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2256                                 ring->name, ret);
2257                 intel_destroy_ringbuffer_obj(ringbuf);
2258                 goto error;
2259         }
2260
2261         ret = i915_cmd_parser_init_ring(ring);
2262         if (ret)
2263                 goto error;
2264
2265         return 0;
2266
2267 error:
2268         intel_cleanup_ring_buffer(ring);
2269         return ret;
2270 }
2271
2272 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2273 {
2274         struct drm_i915_private *dev_priv;
2275
2276         if (!intel_ring_initialized(ring))
2277                 return;
2278
2279         dev_priv = to_i915(ring->dev);
2280
2281         if (ring->buffer) {
2282                 intel_stop_ring_buffer(ring);
2283                 WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2284
2285                 intel_unpin_ringbuffer_obj(ring->buffer);
2286                 intel_ringbuffer_free(ring->buffer);
2287                 ring->buffer = NULL;
2288         }
2289
2290         if (ring->cleanup)
2291                 ring->cleanup(ring);
2292
2293         if (I915_NEED_GFX_HWS(ring->dev)) {
2294                 cleanup_status_page(ring);
2295         } else {
2296                 WARN_ON(ring->id != RCS);
2297                 cleanup_phys_status_page(ring);
2298         }
2299
2300         i915_cmd_parser_fini_ring(ring);
2301         i915_gem_batch_pool_fini(&ring->batch_pool);
2302         ring->dev = NULL;
2303 }
2304
2305 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2306 {
2307         struct intel_ringbuffer *ringbuf = ring->buffer;
2308         struct drm_i915_gem_request *request;
2309         unsigned space;
2310         int ret;
2311
2312         if (intel_ring_space(ringbuf) >= n)
2313                 return 0;
2314
2315         /* The whole point of reserving space is to not wait! */
2316         WARN_ON(ringbuf->reserved_in_use);
2317
2318         list_for_each_entry(request, &ring->request_list, list) {
2319                 space = __intel_ring_space(request->postfix, ringbuf->tail,
2320                                            ringbuf->size);
2321                 if (space >= n)
2322                         break;
2323         }
2324
2325         if (WARN_ON(&request->list == &ring->request_list))
2326                 return -ENOSPC;
2327
2328         ret = i915_wait_request(request);
2329         if (ret)
2330                 return ret;
2331
2332         ringbuf->space = space;
2333         return 0;
2334 }
2335
2336 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
2337 {
2338         uint32_t __iomem *virt;
2339         int rem = ringbuf->size - ringbuf->tail;
2340
2341         virt = ringbuf->virtual_start + ringbuf->tail;
2342         rem /= 4;
2343         while (rem--)
2344                 iowrite32(MI_NOOP, virt++);
2345
2346         ringbuf->tail = 0;
2347         intel_ring_update_space(ringbuf);
2348 }
2349
2350 int intel_ring_idle(struct intel_engine_cs *ring)
2351 {
2352         struct drm_i915_gem_request *req;
2353
2354         /* Wait upon the last request to be completed */
2355         if (list_empty(&ring->request_list))
2356                 return 0;
2357
2358         req = list_entry(ring->request_list.prev,
2359                         struct drm_i915_gem_request,
2360                         list);
2361
2362         /* Make sure we do not trigger any retires */
2363         return __i915_wait_request(req,
2364                                    atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2365                                    to_i915(ring->dev)->mm.interruptible,
2366                                    NULL, NULL);
2367 }
2368
2369 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2370 {
2371         request->ringbuf = request->ring->buffer;
2372         return 0;
2373 }
2374
2375 int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2376 {
2377         /*
2378          * The first call merely notes the reserve request and is common for
2379          * all back ends. The subsequent localised _begin() call actually
2380          * ensures that the reservation is available. Without the begin, if
2381          * the request creator immediately submitted the request without
2382          * adding any commands to it then there might not actually be
2383          * sufficient room for the submission commands.
2384          */
2385         intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2386
2387         return intel_ring_begin(request, 0);
2388 }
2389
2390 void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2391 {
2392         WARN_ON(ringbuf->reserved_size);
2393         WARN_ON(ringbuf->reserved_in_use);
2394
2395         ringbuf->reserved_size = size;
2396 }
2397
2398 void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2399 {
2400         WARN_ON(ringbuf->reserved_in_use);
2401
2402         ringbuf->reserved_size   = 0;
2403         ringbuf->reserved_in_use = false;
2404 }
2405
2406 void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2407 {
2408         WARN_ON(ringbuf->reserved_in_use);
2409
2410         ringbuf->reserved_in_use = true;
2411         ringbuf->reserved_tail   = ringbuf->tail;
2412 }
2413
2414 void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2415 {
2416         WARN_ON(!ringbuf->reserved_in_use);
2417         if (ringbuf->tail > ringbuf->reserved_tail) {
2418                 WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2419                      "request reserved size too small: %d vs %d!\n",
2420                      ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2421         } else {
2422                 /*
2423                  * The ring was wrapped while the reserved space was in use.
2424                  * That means that some unknown amount of the ring tail was
2425                  * no-op filled and skipped. Thus simply adding the ring size
2426                  * to the tail and doing the above space check will not work.
2427                  * Rather than attempt to track how much tail was skipped,
2428                  * it is much simpler to say that also skipping the sanity
2429                  * check every once in a while is not a big issue.
2430                  */
2431         }
2432
2433         ringbuf->reserved_size   = 0;
2434         ringbuf->reserved_in_use = false;
2435 }
2436
2437 static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
2438 {
2439         struct intel_ringbuffer *ringbuf = ring->buffer;
2440         int remain_usable = ringbuf->effective_size - ringbuf->tail;
2441         int remain_actual = ringbuf->size - ringbuf->tail;
2442         int ret, total_bytes, wait_bytes = 0;
2443         bool need_wrap = false;
2444
2445         if (ringbuf->reserved_in_use)
2446                 total_bytes = bytes;
2447         else
2448                 total_bytes = bytes + ringbuf->reserved_size;
2449
2450         if (unlikely(bytes > remain_usable)) {
2451                 /*
2452                  * Not enough space for the basic request. So need to flush
2453                  * out the remainder and then wait for base + reserved.
2454                  */
2455                 wait_bytes = remain_actual + total_bytes;
2456                 need_wrap = true;
2457         } else {
2458                 if (unlikely(total_bytes > remain_usable)) {
2459                         /*
2460                          * The base request will fit but the reserved space
2461                          * falls off the end. So don't need an immediate wrap
2462                          * and only need to effectively wait for the reserved
2463                          * size space from the start of ringbuffer.
2464                          */
2465                         wait_bytes = remain_actual + ringbuf->reserved_size;
2466                 } else if (total_bytes > ringbuf->space) {
2467                         /* No wrapping required, just waiting. */
2468                         wait_bytes = total_bytes;
2469                 }
2470         }
2471
2472         if (wait_bytes) {
2473                 ret = ring_wait_for_space(ring, wait_bytes);
2474                 if (unlikely(ret))
2475                         return ret;
2476
2477                 if (need_wrap)
2478                         __wrap_ring_buffer(ringbuf);
2479         }
2480
2481         return 0;
2482 }
2483
2484 int intel_ring_begin(struct drm_i915_gem_request *req,
2485                      int num_dwords)
2486 {
2487         struct intel_engine_cs *ring;
2488         struct drm_i915_private *dev_priv;
2489         int ret;
2490
2491         WARN_ON(req == NULL);
2492         ring = req->ring;
2493         dev_priv = ring->dev->dev_private;
2494
2495         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2496                                    dev_priv->mm.interruptible);
2497         if (ret)
2498                 return ret;
2499
2500         ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2501         if (ret)
2502                 return ret;
2503
2504         ring->buffer->space -= num_dwords * sizeof(uint32_t);
2505         return 0;
2506 }
2507
2508 /* Align the ring tail to a cacheline boundary */
2509 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2510 {
2511         struct intel_engine_cs *ring = req->ring;
2512         int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2513         int ret;
2514
2515         if (num_dwords == 0)
2516                 return 0;
2517
2518         num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2519         ret = intel_ring_begin(req, num_dwords);
2520         if (ret)
2521                 return ret;
2522
2523         while (num_dwords--)
2524                 intel_ring_emit(ring, MI_NOOP);
2525
2526         intel_ring_advance(ring);
2527
2528         return 0;
2529 }
2530
2531 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2532 {
2533         struct drm_device *dev = ring->dev;
2534         struct drm_i915_private *dev_priv = dev->dev_private;
2535
2536         if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2537                 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2538                 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2539                 if (HAS_VEBOX(dev))
2540                         I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2541         }
2542
2543         ring->set_seqno(ring, seqno);
2544         ring->hangcheck.seqno = seqno;
2545 }
2546
2547 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2548                                      u32 value)
2549 {
2550         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2551
2552        /* Every tail move must follow the sequence below */
2553
2554         /* Disable notification that the ring is IDLE. The GT
2555          * will then assume that it is busy and bring it out of rc6.
2556          */
2557         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2558                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2559
2560         /* Clear the context id. Here be magic! */
2561         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2562
2563         /* Wait for the ring not to be idle, i.e. for it to wake up. */
2564         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2565                       GEN6_BSD_SLEEP_INDICATOR) == 0,
2566                      50))
2567                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2568
2569         /* Now that the ring is fully powered up, update the tail */
2570         I915_WRITE_TAIL(ring, value);
2571         POSTING_READ(RING_TAIL(ring->mmio_base));
2572
2573         /* Let the ring send IDLE messages to the GT again,
2574          * and so let it sleep to conserve power when idle.
2575          */
2576         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2577                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2578 }
2579
2580 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2581                                u32 invalidate, u32 flush)
2582 {
2583         struct intel_engine_cs *ring = req->ring;
2584         uint32_t cmd;
2585         int ret;
2586
2587         ret = intel_ring_begin(req, 4);
2588         if (ret)
2589                 return ret;
2590
2591         cmd = MI_FLUSH_DW;
2592         if (INTEL_INFO(ring->dev)->gen >= 8)
2593                 cmd += 1;
2594
2595         /* We always require a command barrier so that subsequent
2596          * commands, such as breadcrumb interrupts, are strictly ordered
2597          * wrt the contents of the write cache being flushed to memory
2598          * (and thus being coherent from the CPU).
2599          */
2600         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2601
2602         /*
2603          * Bspec vol 1c.5 - video engine command streamer:
2604          * "If ENABLED, all TLBs will be invalidated once the flush
2605          * operation is complete. This bit is only valid when the
2606          * Post-Sync Operation field is a value of 1h or 3h."
2607          */
2608         if (invalidate & I915_GEM_GPU_DOMAINS)
2609                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2610
2611         intel_ring_emit(ring, cmd);
2612         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2613         if (INTEL_INFO(ring->dev)->gen >= 8) {
2614                 intel_ring_emit(ring, 0); /* upper addr */
2615                 intel_ring_emit(ring, 0); /* value */
2616         } else  {
2617                 intel_ring_emit(ring, 0);
2618                 intel_ring_emit(ring, MI_NOOP);
2619         }
2620         intel_ring_advance(ring);
2621         return 0;
2622 }
2623
2624 static int
2625 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2626                               u64 offset, u32 len,
2627                               unsigned dispatch_flags)
2628 {
2629         struct intel_engine_cs *ring = req->ring;
2630         bool ppgtt = USES_PPGTT(ring->dev) &&
2631                         !(dispatch_flags & I915_DISPATCH_SECURE);
2632         int ret;
2633
2634         ret = intel_ring_begin(req, 4);
2635         if (ret)
2636                 return ret;
2637
2638         /* FIXME(BDW): Address space and security selectors. */
2639         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2640                         (dispatch_flags & I915_DISPATCH_RS ?
2641                          MI_BATCH_RESOURCE_STREAMER : 0));
2642         intel_ring_emit(ring, lower_32_bits(offset));
2643         intel_ring_emit(ring, upper_32_bits(offset));
2644         intel_ring_emit(ring, MI_NOOP);
2645         intel_ring_advance(ring);
2646
2647         return 0;
2648 }
2649
2650 static int
2651 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2652                              u64 offset, u32 len,
2653                              unsigned dispatch_flags)
2654 {
2655         struct intel_engine_cs *ring = req->ring;
2656         int ret;
2657
2658         ret = intel_ring_begin(req, 2);
2659         if (ret)
2660                 return ret;
2661
2662         intel_ring_emit(ring,
2663                         MI_BATCH_BUFFER_START |
2664                         (dispatch_flags & I915_DISPATCH_SECURE ?
2665                          0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2666                         (dispatch_flags & I915_DISPATCH_RS ?
2667                          MI_BATCH_RESOURCE_STREAMER : 0));
2668         /* bit0-7 is the length on GEN6+ */
2669         intel_ring_emit(ring, offset);
2670         intel_ring_advance(ring);
2671
2672         return 0;
2673 }
2674
2675 static int
2676 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2677                               u64 offset, u32 len,
2678                               unsigned dispatch_flags)
2679 {
2680         struct intel_engine_cs *ring = req->ring;
2681         int ret;
2682
2683         ret = intel_ring_begin(req, 2);
2684         if (ret)
2685                 return ret;
2686
2687         intel_ring_emit(ring,
2688                         MI_BATCH_BUFFER_START |
2689                         (dispatch_flags & I915_DISPATCH_SECURE ?
2690                          0 : MI_BATCH_NON_SECURE_I965));
2691         /* bit0-7 is the length on GEN6+ */
2692         intel_ring_emit(ring, offset);
2693         intel_ring_advance(ring);
2694
2695         return 0;
2696 }
2697
2698 /* Blitter support (SandyBridge+) */
2699
2700 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2701                            u32 invalidate, u32 flush)
2702 {
2703         struct intel_engine_cs *ring = req->ring;
2704         struct drm_device *dev = ring->dev;
2705         uint32_t cmd;
2706         int ret;
2707
2708         ret = intel_ring_begin(req, 4);
2709         if (ret)
2710                 return ret;
2711
2712         cmd = MI_FLUSH_DW;
2713         if (INTEL_INFO(dev)->gen >= 8)
2714                 cmd += 1;
2715
2716         /* We always require a command barrier so that subsequent
2717          * commands, such as breadcrumb interrupts, are strictly ordered
2718          * wrt the contents of the write cache being flushed to memory
2719          * (and thus being coherent from the CPU).
2720          */
2721         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2722
2723         /*
2724          * Bspec vol 1c.3 - blitter engine command streamer:
2725          * "If ENABLED, all TLBs will be invalidated once the flush
2726          * operation is complete. This bit is only valid when the
2727          * Post-Sync Operation field is a value of 1h or 3h."
2728          */
2729         if (invalidate & I915_GEM_DOMAIN_RENDER)
2730                 cmd |= MI_INVALIDATE_TLB;
2731         intel_ring_emit(ring, cmd);
2732         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2733         if (INTEL_INFO(dev)->gen >= 8) {
2734                 intel_ring_emit(ring, 0); /* upper addr */
2735                 intel_ring_emit(ring, 0); /* value */
2736         } else  {
2737                 intel_ring_emit(ring, 0);
2738                 intel_ring_emit(ring, MI_NOOP);
2739         }
2740         intel_ring_advance(ring);
2741
2742         return 0;
2743 }
2744
2745 int intel_init_render_ring_buffer(struct drm_device *dev)
2746 {
2747         struct drm_i915_private *dev_priv = dev->dev_private;
2748         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2749         struct drm_i915_gem_object *obj;
2750         int ret;
2751
2752         ring->name = "render ring";
2753         ring->id = RCS;
2754         ring->exec_id = I915_EXEC_RENDER;
2755         ring->mmio_base = RENDER_RING_BASE;
2756
2757         if (INTEL_INFO(dev)->gen >= 8) {
2758                 if (i915_semaphore_is_enabled(dev)) {
2759                         obj = i915_gem_alloc_object(dev, 4096);
2760                         if (obj == NULL) {
2761                                 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2762                                 i915.semaphores = 0;
2763                         } else {
2764                                 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2765                                 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2766                                 if (ret != 0) {
2767                                         drm_gem_object_unreference(&obj->base);
2768                                         DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2769                                         i915.semaphores = 0;
2770                                 } else
2771                                         dev_priv->semaphore_obj = obj;
2772                         }
2773                 }
2774
2775                 ring->init_context = intel_rcs_ctx_init;
2776                 ring->add_request = gen6_add_request;
2777                 ring->flush = gen8_render_ring_flush;
2778                 ring->irq_get = gen8_ring_get_irq;
2779                 ring->irq_put = gen8_ring_put_irq;
2780                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2781                 ring->get_seqno = gen6_ring_get_seqno;
2782                 ring->set_seqno = ring_set_seqno;
2783                 if (i915_semaphore_is_enabled(dev)) {
2784                         WARN_ON(!dev_priv->semaphore_obj);
2785                         ring->semaphore.sync_to = gen8_ring_sync;
2786                         ring->semaphore.signal = gen8_rcs_signal;
2787                         GEN8_RING_SEMAPHORE_INIT;
2788                 }
2789         } else if (INTEL_INFO(dev)->gen >= 6) {
2790                 ring->init_context = intel_rcs_ctx_init;
2791                 ring->add_request = gen6_add_request;
2792                 ring->flush = gen7_render_ring_flush;
2793                 if (INTEL_INFO(dev)->gen == 6)
2794                         ring->flush = gen6_render_ring_flush;
2795                 ring->irq_get = gen6_ring_get_irq;
2796                 ring->irq_put = gen6_ring_put_irq;
2797                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2798                 ring->get_seqno = gen6_ring_get_seqno;
2799                 ring->set_seqno = ring_set_seqno;
2800                 if (i915_semaphore_is_enabled(dev)) {
2801                         ring->semaphore.sync_to = gen6_ring_sync;
2802                         ring->semaphore.signal = gen6_signal;
2803                         /*
2804                          * The current semaphore is only applied on pre-gen8
2805                          * platform.  And there is no VCS2 ring on the pre-gen8
2806                          * platform. So the semaphore between RCS and VCS2 is
2807                          * initialized as INVALID.  Gen8 will initialize the
2808                          * sema between VCS2 and RCS later.
2809                          */
2810                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2811                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2812                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2813                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2814                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2815                         ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2816                         ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2817                         ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2818                         ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2819                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2820                 }
2821         } else if (IS_GEN5(dev)) {
2822                 ring->add_request = pc_render_add_request;
2823                 ring->flush = gen4_render_ring_flush;
2824                 ring->get_seqno = pc_render_get_seqno;
2825                 ring->set_seqno = pc_render_set_seqno;
2826                 ring->irq_get = gen5_ring_get_irq;
2827                 ring->irq_put = gen5_ring_put_irq;
2828                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2829                                         GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2830         } else {
2831                 ring->add_request = i9xx_add_request;
2832                 if (INTEL_INFO(dev)->gen < 4)
2833                         ring->flush = gen2_render_ring_flush;
2834                 else
2835                         ring->flush = gen4_render_ring_flush;
2836                 ring->get_seqno = ring_get_seqno;
2837                 ring->set_seqno = ring_set_seqno;
2838                 if (IS_GEN2(dev)) {
2839                         ring->irq_get = i8xx_ring_get_irq;
2840                         ring->irq_put = i8xx_ring_put_irq;
2841                 } else {
2842                         ring->irq_get = i9xx_ring_get_irq;
2843                         ring->irq_put = i9xx_ring_put_irq;
2844                 }
2845                 ring->irq_enable_mask = I915_USER_INTERRUPT;
2846         }
2847         ring->write_tail = ring_write_tail;
2848
2849         if (IS_HASWELL(dev))
2850                 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2851         else if (IS_GEN8(dev))
2852                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2853         else if (INTEL_INFO(dev)->gen >= 6)
2854                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2855         else if (INTEL_INFO(dev)->gen >= 4)
2856                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2857         else if (IS_I830(dev) || IS_845G(dev))
2858                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2859         else
2860                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2861         ring->init_hw = init_render_ring;
2862         ring->cleanup = render_ring_cleanup;
2863
2864         /* Workaround batchbuffer to combat CS tlb bug. */
2865         if (HAS_BROKEN_CS_TLB(dev)) {
2866                 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2867                 if (obj == NULL) {
2868                         DRM_ERROR("Failed to allocate batch bo\n");
2869                         return -ENOMEM;
2870                 }
2871
2872                 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2873                 if (ret != 0) {
2874                         drm_gem_object_unreference(&obj->base);
2875                         DRM_ERROR("Failed to ping batch bo\n");
2876                         return ret;
2877                 }
2878
2879                 ring->scratch.obj = obj;
2880                 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2881         }
2882
2883         ret = intel_init_ring_buffer(dev, ring);
2884         if (ret)
2885                 return ret;
2886
2887         if (INTEL_INFO(dev)->gen >= 5) {
2888                 ret = intel_init_pipe_control(ring);
2889                 if (ret)
2890                         return ret;
2891         }
2892
2893         return 0;
2894 }
2895
2896 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2897 {
2898         struct drm_i915_private *dev_priv = dev->dev_private;
2899         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2900
2901         ring->name = "bsd ring";
2902         ring->id = VCS;
2903         ring->exec_id = I915_EXEC_BSD;
2904
2905         ring->write_tail = ring_write_tail;
2906         if (INTEL_INFO(dev)->gen >= 6) {
2907                 ring->mmio_base = GEN6_BSD_RING_BASE;
2908                 /* gen6 bsd needs a special wa for tail updates */
2909                 if (IS_GEN6(dev))
2910                         ring->write_tail = gen6_bsd_ring_write_tail;
2911                 ring->flush = gen6_bsd_ring_flush;
2912                 ring->add_request = gen6_add_request;
2913                 ring->get_seqno = gen6_ring_get_seqno;
2914                 ring->set_seqno = ring_set_seqno;
2915                 if (INTEL_INFO(dev)->gen >= 8) {
2916                         ring->irq_enable_mask =
2917                                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2918                         ring->irq_get = gen8_ring_get_irq;
2919                         ring->irq_put = gen8_ring_put_irq;
2920                         ring->dispatch_execbuffer =
2921                                 gen8_ring_dispatch_execbuffer;
2922                         if (i915_semaphore_is_enabled(dev)) {
2923                                 ring->semaphore.sync_to = gen8_ring_sync;
2924                                 ring->semaphore.signal = gen8_xcs_signal;
2925                                 GEN8_RING_SEMAPHORE_INIT;
2926                         }
2927                 } else {
2928                         ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2929                         ring->irq_get = gen6_ring_get_irq;
2930                         ring->irq_put = gen6_ring_put_irq;
2931                         ring->dispatch_execbuffer =
2932                                 gen6_ring_dispatch_execbuffer;
2933                         if (i915_semaphore_is_enabled(dev)) {
2934                                 ring->semaphore.sync_to = gen6_ring_sync;
2935                                 ring->semaphore.signal = gen6_signal;
2936                                 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2937                                 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2938                                 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2939                                 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2940                                 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2941                                 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2942                                 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2943                                 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2944                                 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2945                                 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2946                         }
2947                 }
2948         } else {
2949                 ring->mmio_base = BSD_RING_BASE;
2950                 ring->flush = bsd_ring_flush;
2951                 ring->add_request = i9xx_add_request;
2952                 ring->get_seqno = ring_get_seqno;
2953                 ring->set_seqno = ring_set_seqno;
2954                 if (IS_GEN5(dev)) {
2955                         ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2956                         ring->irq_get = gen5_ring_get_irq;
2957                         ring->irq_put = gen5_ring_put_irq;
2958                 } else {
2959                         ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2960                         ring->irq_get = i9xx_ring_get_irq;
2961                         ring->irq_put = i9xx_ring_put_irq;
2962                 }
2963                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2964         }
2965         ring->init_hw = init_ring_common;
2966
2967         return intel_init_ring_buffer(dev, ring);
2968 }
2969
2970 /**
2971  * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2972  */
2973 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2974 {
2975         struct drm_i915_private *dev_priv = dev->dev_private;
2976         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2977
2978         ring->name = "bsd2 ring";
2979         ring->id = VCS2;
2980         ring->exec_id = I915_EXEC_BSD;
2981
2982         ring->write_tail = ring_write_tail;
2983         ring->mmio_base = GEN8_BSD2_RING_BASE;
2984         ring->flush = gen6_bsd_ring_flush;
2985         ring->add_request = gen6_add_request;
2986         ring->get_seqno = gen6_ring_get_seqno;
2987         ring->set_seqno = ring_set_seqno;
2988         ring->irq_enable_mask =
2989                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2990         ring->irq_get = gen8_ring_get_irq;
2991         ring->irq_put = gen8_ring_put_irq;
2992         ring->dispatch_execbuffer =
2993                         gen8_ring_dispatch_execbuffer;
2994         if (i915_semaphore_is_enabled(dev)) {
2995                 ring->semaphore.sync_to = gen8_ring_sync;
2996                 ring->semaphore.signal = gen8_xcs_signal;
2997                 GEN8_RING_SEMAPHORE_INIT;
2998         }
2999         ring->init_hw = init_ring_common;
3000
3001         return intel_init_ring_buffer(dev, ring);
3002 }
3003
3004 int intel_init_blt_ring_buffer(struct drm_device *dev)
3005 {
3006         struct drm_i915_private *dev_priv = dev->dev_private;
3007         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
3008
3009         ring->name = "blitter ring";
3010         ring->id = BCS;
3011         ring->exec_id = I915_EXEC_BLT;
3012
3013         ring->mmio_base = BLT_RING_BASE;
3014         ring->write_tail = ring_write_tail;
3015         ring->flush = gen6_ring_flush;
3016         ring->add_request = gen6_add_request;
3017         ring->get_seqno = gen6_ring_get_seqno;
3018         ring->set_seqno = ring_set_seqno;
3019         if (INTEL_INFO(dev)->gen >= 8) {
3020                 ring->irq_enable_mask =
3021                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
3022                 ring->irq_get = gen8_ring_get_irq;
3023                 ring->irq_put = gen8_ring_put_irq;
3024                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3025                 if (i915_semaphore_is_enabled(dev)) {
3026                         ring->semaphore.sync_to = gen8_ring_sync;
3027                         ring->semaphore.signal = gen8_xcs_signal;
3028                         GEN8_RING_SEMAPHORE_INIT;
3029                 }
3030         } else {
3031                 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
3032                 ring->irq_get = gen6_ring_get_irq;
3033                 ring->irq_put = gen6_ring_put_irq;
3034                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3035                 if (i915_semaphore_is_enabled(dev)) {
3036                         ring->semaphore.signal = gen6_signal;
3037                         ring->semaphore.sync_to = gen6_ring_sync;
3038                         /*
3039                          * The current semaphore is only applied on pre-gen8
3040                          * platform.  And there is no VCS2 ring on the pre-gen8
3041                          * platform. So the semaphore between BCS and VCS2 is
3042                          * initialized as INVALID.  Gen8 will initialize the
3043                          * sema between BCS and VCS2 later.
3044                          */
3045                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
3046                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
3047                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
3048                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
3049                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3050                         ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
3051                         ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
3052                         ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
3053                         ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
3054                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3055                 }
3056         }
3057         ring->init_hw = init_ring_common;
3058
3059         return intel_init_ring_buffer(dev, ring);
3060 }
3061
3062 int intel_init_vebox_ring_buffer(struct drm_device *dev)
3063 {
3064         struct drm_i915_private *dev_priv = dev->dev_private;
3065         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
3066
3067         ring->name = "video enhancement ring";
3068         ring->id = VECS;
3069         ring->exec_id = I915_EXEC_VEBOX;
3070
3071         ring->mmio_base = VEBOX_RING_BASE;
3072         ring->write_tail = ring_write_tail;
3073         ring->flush = gen6_ring_flush;
3074         ring->add_request = gen6_add_request;
3075         ring->get_seqno = gen6_ring_get_seqno;
3076         ring->set_seqno = ring_set_seqno;
3077
3078         if (INTEL_INFO(dev)->gen >= 8) {
3079                 ring->irq_enable_mask =
3080                         GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
3081                 ring->irq_get = gen8_ring_get_irq;
3082                 ring->irq_put = gen8_ring_put_irq;
3083                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3084                 if (i915_semaphore_is_enabled(dev)) {
3085                         ring->semaphore.sync_to = gen8_ring_sync;
3086                         ring->semaphore.signal = gen8_xcs_signal;
3087                         GEN8_RING_SEMAPHORE_INIT;
3088                 }
3089         } else {
3090                 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
3091                 ring->irq_get = hsw_vebox_get_irq;
3092                 ring->irq_put = hsw_vebox_put_irq;
3093                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3094                 if (i915_semaphore_is_enabled(dev)) {
3095                         ring->semaphore.sync_to = gen6_ring_sync;
3096                         ring->semaphore.signal = gen6_signal;
3097                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
3098                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
3099                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
3100                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
3101                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3102                         ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
3103                         ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
3104                         ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
3105                         ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
3106                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3107                 }
3108         }
3109         ring->init_hw = init_ring_common;
3110
3111         return intel_init_ring_buffer(dev, ring);
3112 }
3113
3114 int
3115 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3116 {
3117         struct intel_engine_cs *ring = req->ring;
3118         int ret;
3119
3120         if (!ring->gpu_caches_dirty)
3121                 return 0;
3122
3123         ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
3124         if (ret)
3125                 return ret;
3126
3127         trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3128
3129         ring->gpu_caches_dirty = false;
3130         return 0;
3131 }
3132
3133 int
3134 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3135 {
3136         struct intel_engine_cs *ring = req->ring;
3137         uint32_t flush_domains;
3138         int ret;
3139
3140         flush_domains = 0;
3141         if (ring->gpu_caches_dirty)
3142                 flush_domains = I915_GEM_GPU_DOMAINS;
3143
3144         ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3145         if (ret)
3146                 return ret;
3147
3148         trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3149
3150         ring->gpu_caches_dirty = false;
3151         return 0;
3152 }
3153
3154 void
3155 intel_stop_ring_buffer(struct intel_engine_cs *ring)
3156 {
3157         int ret;
3158
3159         if (!intel_ring_initialized(ring))
3160                 return;
3161
3162         ret = intel_ring_idle(ring);
3163         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
3164                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3165                           ring->name, ret);
3166
3167         stop_ring(ring);
3168 }