drm/i915: Trim some if-else braces
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36
37 /* Rough estimate of the typical request size, performing a flush,
38  * set-context and then emitting the batch.
39  */
40 #define LEGACY_REQUEST_SIZE 200
41
42 int __intel_ring_space(int head, int tail, int size)
43 {
44         int space = head - tail;
45         if (space <= 0)
46                 space += size;
47         return space - I915_RING_FREE_SPACE;
48 }
49
50 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
51 {
52         if (ringbuf->last_retired_head != -1) {
53                 ringbuf->head = ringbuf->last_retired_head;
54                 ringbuf->last_retired_head = -1;
55         }
56
57         ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
58                                             ringbuf->tail, ringbuf->size);
59 }
60
61 bool intel_engine_stopped(struct intel_engine_cs *engine)
62 {
63         struct drm_i915_private *dev_priv = engine->i915;
64         return dev_priv->gpu_error.stop_rings & intel_engine_flag(engine);
65 }
66
67 static void __intel_ring_advance(struct intel_engine_cs *engine)
68 {
69         struct intel_ringbuffer *ringbuf = engine->buffer;
70         ringbuf->tail &= ringbuf->size - 1;
71         if (intel_engine_stopped(engine))
72                 return;
73         engine->write_tail(engine, ringbuf->tail);
74 }
75
76 static int
77 gen2_render_ring_flush(struct drm_i915_gem_request *req,
78                        u32      invalidate_domains,
79                        u32      flush_domains)
80 {
81         struct intel_engine_cs *engine = req->engine;
82         u32 cmd;
83         int ret;
84
85         cmd = MI_FLUSH;
86         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
87                 cmd |= MI_NO_WRITE_FLUSH;
88
89         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
90                 cmd |= MI_READ_FLUSH;
91
92         ret = intel_ring_begin(req, 2);
93         if (ret)
94                 return ret;
95
96         intel_ring_emit(engine, cmd);
97         intel_ring_emit(engine, MI_NOOP);
98         intel_ring_advance(engine);
99
100         return 0;
101 }
102
103 static int
104 gen4_render_ring_flush(struct drm_i915_gem_request *req,
105                        u32      invalidate_domains,
106                        u32      flush_domains)
107 {
108         struct intel_engine_cs *engine = req->engine;
109         u32 cmd;
110         int ret;
111
112         /*
113          * read/write caches:
114          *
115          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
116          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
117          * also flushed at 2d versus 3d pipeline switches.
118          *
119          * read-only caches:
120          *
121          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
122          * MI_READ_FLUSH is set, and is always flushed on 965.
123          *
124          * I915_GEM_DOMAIN_COMMAND may not exist?
125          *
126          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
127          * invalidated when MI_EXE_FLUSH is set.
128          *
129          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
130          * invalidated with every MI_FLUSH.
131          *
132          * TLBs:
133          *
134          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
135          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
136          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
137          * are flushed at any MI_FLUSH.
138          */
139
140         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
141         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
142                 cmd &= ~MI_NO_WRITE_FLUSH;
143         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
144                 cmd |= MI_EXE_FLUSH;
145
146         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
147             (IS_G4X(req->i915) || IS_GEN5(req->i915)))
148                 cmd |= MI_INVALIDATE_ISP;
149
150         ret = intel_ring_begin(req, 2);
151         if (ret)
152                 return ret;
153
154         intel_ring_emit(engine, cmd);
155         intel_ring_emit(engine, MI_NOOP);
156         intel_ring_advance(engine);
157
158         return 0;
159 }
160
161 /**
162  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
163  * implementing two workarounds on gen6.  From section 1.4.7.1
164  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
165  *
166  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
167  * produced by non-pipelined state commands), software needs to first
168  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
169  * 0.
170  *
171  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
172  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
173  *
174  * And the workaround for these two requires this workaround first:
175  *
176  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
177  * BEFORE the pipe-control with a post-sync op and no write-cache
178  * flushes.
179  *
180  * And this last workaround is tricky because of the requirements on
181  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
182  * volume 2 part 1:
183  *
184  *     "1 of the following must also be set:
185  *      - Render Target Cache Flush Enable ([12] of DW1)
186  *      - Depth Cache Flush Enable ([0] of DW1)
187  *      - Stall at Pixel Scoreboard ([1] of DW1)
188  *      - Depth Stall ([13] of DW1)
189  *      - Post-Sync Operation ([13] of DW1)
190  *      - Notify Enable ([8] of DW1)"
191  *
192  * The cache flushes require the workaround flush that triggered this
193  * one, so we can't use it.  Depth stall would trigger the same.
194  * Post-sync nonzero is what triggered this second workaround, so we
195  * can't use that one either.  Notify enable is IRQs, which aren't
196  * really our business.  That leaves only stall at scoreboard.
197  */
198 static int
199 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
200 {
201         struct intel_engine_cs *engine = req->engine;
202         u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
203         int ret;
204
205         ret = intel_ring_begin(req, 6);
206         if (ret)
207                 return ret;
208
209         intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
210         intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
211                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
212         intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
213         intel_ring_emit(engine, 0); /* low dword */
214         intel_ring_emit(engine, 0); /* high dword */
215         intel_ring_emit(engine, MI_NOOP);
216         intel_ring_advance(engine);
217
218         ret = intel_ring_begin(req, 6);
219         if (ret)
220                 return ret;
221
222         intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
223         intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
224         intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
225         intel_ring_emit(engine, 0);
226         intel_ring_emit(engine, 0);
227         intel_ring_emit(engine, MI_NOOP);
228         intel_ring_advance(engine);
229
230         return 0;
231 }
232
233 static int
234 gen6_render_ring_flush(struct drm_i915_gem_request *req,
235                        u32 invalidate_domains, u32 flush_domains)
236 {
237         struct intel_engine_cs *engine = req->engine;
238         u32 flags = 0;
239         u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
240         int ret;
241
242         /* Force SNB workarounds for PIPE_CONTROL flushes */
243         ret = intel_emit_post_sync_nonzero_flush(req);
244         if (ret)
245                 return ret;
246
247         /* Just flush everything.  Experiments have shown that reducing the
248          * number of bits based on the write domains has little performance
249          * impact.
250          */
251         if (flush_domains) {
252                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
253                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
254                 /*
255                  * Ensure that any following seqno writes only happen
256                  * when the render cache is indeed flushed.
257                  */
258                 flags |= PIPE_CONTROL_CS_STALL;
259         }
260         if (invalidate_domains) {
261                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
262                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
263                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
264                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
265                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
266                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
267                 /*
268                  * TLB invalidate requires a post-sync write.
269                  */
270                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
271         }
272
273         ret = intel_ring_begin(req, 4);
274         if (ret)
275                 return ret;
276
277         intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
278         intel_ring_emit(engine, flags);
279         intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
280         intel_ring_emit(engine, 0);
281         intel_ring_advance(engine);
282
283         return 0;
284 }
285
286 static int
287 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
288 {
289         struct intel_engine_cs *engine = req->engine;
290         int ret;
291
292         ret = intel_ring_begin(req, 4);
293         if (ret)
294                 return ret;
295
296         intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
297         intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
298                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
299         intel_ring_emit(engine, 0);
300         intel_ring_emit(engine, 0);
301         intel_ring_advance(engine);
302
303         return 0;
304 }
305
306 static int
307 gen7_render_ring_flush(struct drm_i915_gem_request *req,
308                        u32 invalidate_domains, u32 flush_domains)
309 {
310         struct intel_engine_cs *engine = req->engine;
311         u32 flags = 0;
312         u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
313         int ret;
314
315         /*
316          * Ensure that any following seqno writes only happen when the render
317          * cache is indeed flushed.
318          *
319          * Workaround: 4th PIPE_CONTROL command (except the ones with only
320          * read-cache invalidate bits set) must have the CS_STALL bit set. We
321          * don't try to be clever and just set it unconditionally.
322          */
323         flags |= PIPE_CONTROL_CS_STALL;
324
325         /* Just flush everything.  Experiments have shown that reducing the
326          * number of bits based on the write domains has little performance
327          * impact.
328          */
329         if (flush_domains) {
330                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
331                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
332                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
333                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
334         }
335         if (invalidate_domains) {
336                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
337                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
338                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
339                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
340                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
341                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
342                 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
343                 /*
344                  * TLB invalidate requires a post-sync write.
345                  */
346                 flags |= PIPE_CONTROL_QW_WRITE;
347                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
348
349                 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
350
351                 /* Workaround: we must issue a pipe_control with CS-stall bit
352                  * set before a pipe_control command that has the state cache
353                  * invalidate bit set. */
354                 gen7_render_ring_cs_stall_wa(req);
355         }
356
357         ret = intel_ring_begin(req, 4);
358         if (ret)
359                 return ret;
360
361         intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
362         intel_ring_emit(engine, flags);
363         intel_ring_emit(engine, scratch_addr);
364         intel_ring_emit(engine, 0);
365         intel_ring_advance(engine);
366
367         return 0;
368 }
369
370 static int
371 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
372                        u32 flags, u32 scratch_addr)
373 {
374         struct intel_engine_cs *engine = req->engine;
375         int ret;
376
377         ret = intel_ring_begin(req, 6);
378         if (ret)
379                 return ret;
380
381         intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
382         intel_ring_emit(engine, flags);
383         intel_ring_emit(engine, scratch_addr);
384         intel_ring_emit(engine, 0);
385         intel_ring_emit(engine, 0);
386         intel_ring_emit(engine, 0);
387         intel_ring_advance(engine);
388
389         return 0;
390 }
391
392 static int
393 gen8_render_ring_flush(struct drm_i915_gem_request *req,
394                        u32 invalidate_domains, u32 flush_domains)
395 {
396         u32 flags = 0;
397         u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
398         int ret;
399
400         flags |= PIPE_CONTROL_CS_STALL;
401
402         if (flush_domains) {
403                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
404                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
405                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
406                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
407         }
408         if (invalidate_domains) {
409                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
410                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
411                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
412                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
413                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
414                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
415                 flags |= PIPE_CONTROL_QW_WRITE;
416                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
417
418                 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
419                 ret = gen8_emit_pipe_control(req,
420                                              PIPE_CONTROL_CS_STALL |
421                                              PIPE_CONTROL_STALL_AT_SCOREBOARD,
422                                              0);
423                 if (ret)
424                         return ret;
425         }
426
427         return gen8_emit_pipe_control(req, flags, scratch_addr);
428 }
429
430 static void ring_write_tail(struct intel_engine_cs *engine,
431                             u32 value)
432 {
433         struct drm_i915_private *dev_priv = engine->i915;
434         I915_WRITE_TAIL(engine, value);
435 }
436
437 u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
438 {
439         struct drm_i915_private *dev_priv = engine->i915;
440         u64 acthd;
441
442         if (INTEL_GEN(dev_priv) >= 8)
443                 acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
444                                          RING_ACTHD_UDW(engine->mmio_base));
445         else if (INTEL_GEN(dev_priv) >= 4)
446                 acthd = I915_READ(RING_ACTHD(engine->mmio_base));
447         else
448                 acthd = I915_READ(ACTHD);
449
450         return acthd;
451 }
452
453 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
454 {
455         struct drm_i915_private *dev_priv = engine->i915;
456         u32 addr;
457
458         addr = dev_priv->status_page_dmah->busaddr;
459         if (INTEL_GEN(dev_priv) >= 4)
460                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
461         I915_WRITE(HWS_PGA, addr);
462 }
463
464 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
465 {
466         struct drm_i915_private *dev_priv = engine->i915;
467         i915_reg_t mmio;
468
469         /* The ring status page addresses are no longer next to the rest of
470          * the ring registers as of gen7.
471          */
472         if (IS_GEN7(dev_priv)) {
473                 switch (engine->id) {
474                 case RCS:
475                         mmio = RENDER_HWS_PGA_GEN7;
476                         break;
477                 case BCS:
478                         mmio = BLT_HWS_PGA_GEN7;
479                         break;
480                 /*
481                  * VCS2 actually doesn't exist on Gen7. Only shut up
482                  * gcc switch check warning
483                  */
484                 case VCS2:
485                 case VCS:
486                         mmio = BSD_HWS_PGA_GEN7;
487                         break;
488                 case VECS:
489                         mmio = VEBOX_HWS_PGA_GEN7;
490                         break;
491                 }
492         } else if (IS_GEN6(dev_priv)) {
493                 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
494         } else {
495                 /* XXX: gen8 returns to sanity */
496                 mmio = RING_HWS_PGA(engine->mmio_base);
497         }
498
499         I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
500         POSTING_READ(mmio);
501
502         /*
503          * Flush the TLB for this page
504          *
505          * FIXME: These two bits have disappeared on gen8, so a question
506          * arises: do we still need this and if so how should we go about
507          * invalidating the TLB?
508          */
509         if (IS_GEN(dev_priv, 6, 7)) {
510                 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
511
512                 /* ring should be idle before issuing a sync flush*/
513                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
514
515                 I915_WRITE(reg,
516                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
517                                               INSTPM_SYNC_FLUSH));
518                 if (intel_wait_for_register(dev_priv,
519                                             reg, INSTPM_SYNC_FLUSH, 0,
520                                             1000))
521                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
522                                   engine->name);
523         }
524 }
525
526 static bool stop_ring(struct intel_engine_cs *engine)
527 {
528         struct drm_i915_private *dev_priv = engine->i915;
529
530         if (!IS_GEN2(dev_priv)) {
531                 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
532                 if (intel_wait_for_register(dev_priv,
533                                             RING_MI_MODE(engine->mmio_base),
534                                             MODE_IDLE,
535                                             MODE_IDLE,
536                                             1000)) {
537                         DRM_ERROR("%s : timed out trying to stop ring\n",
538                                   engine->name);
539                         /* Sometimes we observe that the idle flag is not
540                          * set even though the ring is empty. So double
541                          * check before giving up.
542                          */
543                         if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
544                                 return false;
545                 }
546         }
547
548         I915_WRITE_CTL(engine, 0);
549         I915_WRITE_HEAD(engine, 0);
550         engine->write_tail(engine, 0);
551
552         if (!IS_GEN2(dev_priv)) {
553                 (void)I915_READ_CTL(engine);
554                 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
555         }
556
557         return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
558 }
559
560 void intel_engine_init_hangcheck(struct intel_engine_cs *engine)
561 {
562         memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
563 }
564
565 static int init_ring_common(struct intel_engine_cs *engine)
566 {
567         struct drm_i915_private *dev_priv = engine->i915;
568         struct intel_ringbuffer *ringbuf = engine->buffer;
569         struct drm_i915_gem_object *obj = ringbuf->obj;
570         int ret = 0;
571
572         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
573
574         if (!stop_ring(engine)) {
575                 /* G45 ring initialization often fails to reset head to zero */
576                 DRM_DEBUG_KMS("%s head not reset to zero "
577                               "ctl %08x head %08x tail %08x start %08x\n",
578                               engine->name,
579                               I915_READ_CTL(engine),
580                               I915_READ_HEAD(engine),
581                               I915_READ_TAIL(engine),
582                               I915_READ_START(engine));
583
584                 if (!stop_ring(engine)) {
585                         DRM_ERROR("failed to set %s head to zero "
586                                   "ctl %08x head %08x tail %08x start %08x\n",
587                                   engine->name,
588                                   I915_READ_CTL(engine),
589                                   I915_READ_HEAD(engine),
590                                   I915_READ_TAIL(engine),
591                                   I915_READ_START(engine));
592                         ret = -EIO;
593                         goto out;
594                 }
595         }
596
597         if (I915_NEED_GFX_HWS(dev_priv))
598                 intel_ring_setup_status_page(engine);
599         else
600                 ring_setup_phys_status_page(engine);
601
602         /* Enforce ordering by reading HEAD register back */
603         I915_READ_HEAD(engine);
604
605         /* Initialize the ring. This must happen _after_ we've cleared the ring
606          * registers with the above sequence (the readback of the HEAD registers
607          * also enforces ordering), otherwise the hw might lose the new ring
608          * register values. */
609         I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
610
611         /* WaClearRingBufHeadRegAtInit:ctg,elk */
612         if (I915_READ_HEAD(engine))
613                 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
614                           engine->name, I915_READ_HEAD(engine));
615         I915_WRITE_HEAD(engine, 0);
616         (void)I915_READ_HEAD(engine);
617
618         I915_WRITE_CTL(engine,
619                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
620                         | RING_VALID);
621
622         /* If the head is still not zero, the ring is dead */
623         if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
624                      I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
625                      (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
626                 DRM_ERROR("%s initialization failed "
627                           "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
628                           engine->name,
629                           I915_READ_CTL(engine),
630                           I915_READ_CTL(engine) & RING_VALID,
631                           I915_READ_HEAD(engine), I915_READ_TAIL(engine),
632                           I915_READ_START(engine),
633                           (unsigned long)i915_gem_obj_ggtt_offset(obj));
634                 ret = -EIO;
635                 goto out;
636         }
637
638         ringbuf->last_retired_head = -1;
639         ringbuf->head = I915_READ_HEAD(engine);
640         ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
641         intel_ring_update_space(ringbuf);
642
643         intel_engine_init_hangcheck(engine);
644
645 out:
646         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
647
648         return ret;
649 }
650
651 void
652 intel_fini_pipe_control(struct intel_engine_cs *engine)
653 {
654         if (engine->scratch.obj == NULL)
655                 return;
656
657         if (INTEL_GEN(engine->i915) >= 5) {
658                 kunmap(sg_page(engine->scratch.obj->pages->sgl));
659                 i915_gem_object_ggtt_unpin(engine->scratch.obj);
660         }
661
662         drm_gem_object_unreference(&engine->scratch.obj->base);
663         engine->scratch.obj = NULL;
664 }
665
666 int
667 intel_init_pipe_control(struct intel_engine_cs *engine)
668 {
669         int ret;
670
671         WARN_ON(engine->scratch.obj);
672
673         engine->scratch.obj = i915_gem_object_create(engine->i915->dev, 4096);
674         if (IS_ERR(engine->scratch.obj)) {
675                 DRM_ERROR("Failed to allocate seqno page\n");
676                 ret = PTR_ERR(engine->scratch.obj);
677                 engine->scratch.obj = NULL;
678                 goto err;
679         }
680
681         ret = i915_gem_object_set_cache_level(engine->scratch.obj,
682                                               I915_CACHE_LLC);
683         if (ret)
684                 goto err_unref;
685
686         ret = i915_gem_obj_ggtt_pin(engine->scratch.obj, 4096, 0);
687         if (ret)
688                 goto err_unref;
689
690         engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(engine->scratch.obj);
691         engine->scratch.cpu_page = kmap(sg_page(engine->scratch.obj->pages->sgl));
692         if (engine->scratch.cpu_page == NULL) {
693                 ret = -ENOMEM;
694                 goto err_unpin;
695         }
696
697         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
698                          engine->name, engine->scratch.gtt_offset);
699         return 0;
700
701 err_unpin:
702         i915_gem_object_ggtt_unpin(engine->scratch.obj);
703 err_unref:
704         drm_gem_object_unreference(&engine->scratch.obj->base);
705 err:
706         return ret;
707 }
708
709 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
710 {
711         struct intel_engine_cs *engine = req->engine;
712         struct i915_workarounds *w = &req->i915->workarounds;
713         int ret, i;
714
715         if (w->count == 0)
716                 return 0;
717
718         engine->gpu_caches_dirty = true;
719         ret = intel_ring_flush_all_caches(req);
720         if (ret)
721                 return ret;
722
723         ret = intel_ring_begin(req, (w->count * 2 + 2));
724         if (ret)
725                 return ret;
726
727         intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
728         for (i = 0; i < w->count; i++) {
729                 intel_ring_emit_reg(engine, w->reg[i].addr);
730                 intel_ring_emit(engine, w->reg[i].value);
731         }
732         intel_ring_emit(engine, MI_NOOP);
733
734         intel_ring_advance(engine);
735
736         engine->gpu_caches_dirty = true;
737         ret = intel_ring_flush_all_caches(req);
738         if (ret)
739                 return ret;
740
741         DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
742
743         return 0;
744 }
745
746 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
747 {
748         int ret;
749
750         ret = intel_ring_workarounds_emit(req);
751         if (ret != 0)
752                 return ret;
753
754         ret = i915_gem_render_state_init(req);
755         if (ret)
756                 return ret;
757
758         return 0;
759 }
760
761 static int wa_add(struct drm_i915_private *dev_priv,
762                   i915_reg_t addr,
763                   const u32 mask, const u32 val)
764 {
765         const u32 idx = dev_priv->workarounds.count;
766
767         if (WARN_ON(idx >= I915_MAX_WA_REGS))
768                 return -ENOSPC;
769
770         dev_priv->workarounds.reg[idx].addr = addr;
771         dev_priv->workarounds.reg[idx].value = val;
772         dev_priv->workarounds.reg[idx].mask = mask;
773
774         dev_priv->workarounds.count++;
775
776         return 0;
777 }
778
779 #define WA_REG(addr, mask, val) do { \
780                 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
781                 if (r) \
782                         return r; \
783         } while (0)
784
785 #define WA_SET_BIT_MASKED(addr, mask) \
786         WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
787
788 #define WA_CLR_BIT_MASKED(addr, mask) \
789         WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
790
791 #define WA_SET_FIELD_MASKED(addr, mask, value) \
792         WA_REG(addr, mask, _MASKED_FIELD(mask, value))
793
794 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
795 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
796
797 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
798
799 static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
800                                  i915_reg_t reg)
801 {
802         struct drm_i915_private *dev_priv = engine->i915;
803         struct i915_workarounds *wa = &dev_priv->workarounds;
804         const uint32_t index = wa->hw_whitelist_count[engine->id];
805
806         if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
807                 return -EINVAL;
808
809         WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
810                  i915_mmio_reg_offset(reg));
811         wa->hw_whitelist_count[engine->id]++;
812
813         return 0;
814 }
815
816 static int gen8_init_workarounds(struct intel_engine_cs *engine)
817 {
818         struct drm_i915_private *dev_priv = engine->i915;
819
820         WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
821
822         /* WaDisableAsyncFlipPerfMode:bdw,chv */
823         WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
824
825         /* WaDisablePartialInstShootdown:bdw,chv */
826         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
827                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
828
829         /* Use Force Non-Coherent whenever executing a 3D context. This is a
830          * workaround for for a possible hang in the unlikely event a TLB
831          * invalidation occurs during a PSD flush.
832          */
833         /* WaForceEnableNonCoherent:bdw,chv */
834         /* WaHdcDisableFetchWhenMasked:bdw,chv */
835         WA_SET_BIT_MASKED(HDC_CHICKEN0,
836                           HDC_DONOT_FETCH_MEM_WHEN_MASKED |
837                           HDC_FORCE_NON_COHERENT);
838
839         /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
840          * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
841          *  polygons in the same 8x4 pixel/sample area to be processed without
842          *  stalling waiting for the earlier ones to write to Hierarchical Z
843          *  buffer."
844          *
845          * This optimization is off by default for BDW and CHV; turn it on.
846          */
847         WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
848
849         /* Wa4x4STCOptimizationDisable:bdw,chv */
850         WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
851
852         /*
853          * BSpec recommends 8x4 when MSAA is used,
854          * however in practice 16x4 seems fastest.
855          *
856          * Note that PS/WM thread counts depend on the WIZ hashing
857          * disable bit, which we don't touch here, but it's good
858          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
859          */
860         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
861                             GEN6_WIZ_HASHING_MASK,
862                             GEN6_WIZ_HASHING_16x4);
863
864         return 0;
865 }
866
867 static int bdw_init_workarounds(struct intel_engine_cs *engine)
868 {
869         struct drm_i915_private *dev_priv = engine->i915;
870         int ret;
871
872         ret = gen8_init_workarounds(engine);
873         if (ret)
874                 return ret;
875
876         /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
877         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
878
879         /* WaDisableDopClockGating:bdw */
880         WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
881                           DOP_CLOCK_GATING_DISABLE);
882
883         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
884                           GEN8_SAMPLER_POWER_BYPASS_DIS);
885
886         WA_SET_BIT_MASKED(HDC_CHICKEN0,
887                           /* WaForceContextSaveRestoreNonCoherent:bdw */
888                           HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
889                           /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
890                           (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
891
892         return 0;
893 }
894
895 static int chv_init_workarounds(struct intel_engine_cs *engine)
896 {
897         struct drm_i915_private *dev_priv = engine->i915;
898         int ret;
899
900         ret = gen8_init_workarounds(engine);
901         if (ret)
902                 return ret;
903
904         /* WaDisableThreadStallDopClockGating:chv */
905         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
906
907         /* Improve HiZ throughput on CHV. */
908         WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
909
910         return 0;
911 }
912
913 static int gen9_init_workarounds(struct intel_engine_cs *engine)
914 {
915         struct drm_i915_private *dev_priv = engine->i915;
916         int ret;
917
918         /* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
919         I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
920
921         /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
922         I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
923                    GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
924
925         /* WaDisableKillLogic:bxt,skl,kbl */
926         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
927                    ECOCHK_DIS_TLB);
928
929         /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
930         /* WaDisablePartialInstShootdown:skl,bxt,kbl */
931         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
932                           FLOW_CONTROL_ENABLE |
933                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
934
935         /* Syncing dependencies between camera and graphics:skl,bxt,kbl */
936         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
937                           GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
938
939         /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
940         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
941             IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
942                 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
943                                   GEN9_DG_MIRROR_FIX_ENABLE);
944
945         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
946         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
947             IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
948                 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
949                                   GEN9_RHWO_OPTIMIZATION_DISABLE);
950                 /*
951                  * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
952                  * but we do that in per ctx batchbuffer as there is an issue
953                  * with this register not getting restored on ctx restore
954                  */
955         }
956
957         /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
958         /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
959         WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
960                           GEN9_ENABLE_YV12_BUGFIX |
961                           GEN9_ENABLE_GPGPU_PREEMPTION);
962
963         /* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
964         /* WaDisablePartialResolveInVc:skl,bxt,kbl */
965         WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
966                                          GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
967
968         /* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
969         WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
970                           GEN9_CCS_TLB_PREFETCH_ENABLE);
971
972         /* WaDisableMaskBasedCammingInRCC:skl,bxt */
973         if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
974             IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
975                 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
976                                   PIXEL_MASK_CAMMING_DISABLE);
977
978         /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
979         WA_SET_BIT_MASKED(HDC_CHICKEN0,
980                           HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
981                           HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
982
983         /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
984          * both tied to WaForceContextSaveRestoreNonCoherent
985          * in some hsds for skl. We keep the tie for all gen9. The
986          * documentation is a bit hazy and so we want to get common behaviour,
987          * even though there is no clear evidence we would need both on kbl/bxt.
988          * This area has been source of system hangs so we play it safe
989          * and mimic the skl regardless of what bspec says.
990          *
991          * Use Force Non-Coherent whenever executing a 3D context. This
992          * is a workaround for a possible hang in the unlikely event
993          * a TLB invalidation occurs during a PSD flush.
994          */
995
996         /* WaForceEnableNonCoherent:skl,bxt,kbl */
997         WA_SET_BIT_MASKED(HDC_CHICKEN0,
998                           HDC_FORCE_NON_COHERENT);
999
1000         /* WaDisableHDCInvalidation:skl,bxt,kbl */
1001         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
1002                    BDW_DISABLE_HDC_INVALIDATION);
1003
1004         /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
1005         if (IS_SKYLAKE(dev_priv) ||
1006             IS_KABYLAKE(dev_priv) ||
1007             IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
1008                 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
1009                                   GEN8_SAMPLER_POWER_BYPASS_DIS);
1010
1011         /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
1012         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
1013
1014         /* WaOCLCoherentLineFlush:skl,bxt,kbl */
1015         I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
1016                                     GEN8_LQSC_FLUSH_COHERENT_LINES));
1017
1018         /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
1019         ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
1020         if (ret)
1021                 return ret;
1022
1023         /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
1024         ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
1025         if (ret)
1026                 return ret;
1027
1028         /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
1029         ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
1030         if (ret)
1031                 return ret;
1032
1033         return 0;
1034 }
1035
1036 static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
1037 {
1038         struct drm_i915_private *dev_priv = engine->i915;
1039         u8 vals[3] = { 0, 0, 0 };
1040         unsigned int i;
1041
1042         for (i = 0; i < 3; i++) {
1043                 u8 ss;
1044
1045                 /*
1046                  * Only consider slices where one, and only one, subslice has 7
1047                  * EUs
1048                  */
1049                 if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
1050                         continue;
1051
1052                 /*
1053                  * subslice_7eu[i] != 0 (because of the check above) and
1054                  * ss_max == 4 (maximum number of subslices possible per slice)
1055                  *
1056                  * ->    0 <= ss <= 3;
1057                  */
1058                 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1059                 vals[i] = 3 - ss;
1060         }
1061
1062         if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1063                 return 0;
1064
1065         /* Tune IZ hashing. See intel_device_info_runtime_init() */
1066         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1067                             GEN9_IZ_HASHING_MASK(2) |
1068                             GEN9_IZ_HASHING_MASK(1) |
1069                             GEN9_IZ_HASHING_MASK(0),
1070                             GEN9_IZ_HASHING(2, vals[2]) |
1071                             GEN9_IZ_HASHING(1, vals[1]) |
1072                             GEN9_IZ_HASHING(0, vals[0]));
1073
1074         return 0;
1075 }
1076
1077 static int skl_init_workarounds(struct intel_engine_cs *engine)
1078 {
1079         struct drm_i915_private *dev_priv = engine->i915;
1080         int ret;
1081
1082         ret = gen9_init_workarounds(engine);
1083         if (ret)
1084                 return ret;
1085
1086         /*
1087          * Actual WA is to disable percontext preemption granularity control
1088          * until D0 which is the default case so this is equivalent to
1089          * !WaDisablePerCtxtPreemptionGranularityControl:skl
1090          */
1091         if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
1092                 I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
1093                            _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
1094         }
1095
1096         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) {
1097                 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1098                 I915_WRITE(FF_SLICE_CS_CHICKEN2,
1099                            _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1100         }
1101
1102         /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1103          * involving this register should also be added to WA batch as required.
1104          */
1105         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
1106                 /* WaDisableLSQCROPERFforOCL:skl */
1107                 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1108                            GEN8_LQSC_RO_PERF_DIS);
1109
1110         /* WaEnableGapsTsvCreditFix:skl */
1111         if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
1112                 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1113                                            GEN9_GAPS_TSV_CREDIT_DISABLE));
1114         }
1115
1116         /* WaDisablePowerCompilerClockGating:skl */
1117         if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
1118                 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1119                                   BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1120
1121         /* WaBarrierPerformanceFixDisable:skl */
1122         if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
1123                 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1124                                   HDC_FENCE_DEST_SLM_DISABLE |
1125                                   HDC_BARRIER_PERFORMANCE_DISABLE);
1126
1127         /* WaDisableSbeCacheDispatchPortSharing:skl */
1128         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
1129                 WA_SET_BIT_MASKED(
1130                         GEN7_HALF_SLICE_CHICKEN1,
1131                         GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1132
1133         /* WaDisableGafsUnitClkGating:skl */
1134         WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1135
1136         /* WaDisableLSQCROPERFforOCL:skl */
1137         ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1138         if (ret)
1139                 return ret;
1140
1141         return skl_tune_iz_hashing(engine);
1142 }
1143
1144 static int bxt_init_workarounds(struct intel_engine_cs *engine)
1145 {
1146         struct drm_i915_private *dev_priv = engine->i915;
1147         int ret;
1148
1149         ret = gen9_init_workarounds(engine);
1150         if (ret)
1151                 return ret;
1152
1153         /* WaStoreMultiplePTEenable:bxt */
1154         /* This is a requirement according to Hardware specification */
1155         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1156                 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1157
1158         /* WaSetClckGatingDisableMedia:bxt */
1159         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1160                 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1161                                             ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1162         }
1163
1164         /* WaDisableThreadStallDopClockGating:bxt */
1165         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1166                           STALL_DOP_GATING_DISABLE);
1167
1168         /* WaDisablePooledEuLoadBalancingFix:bxt */
1169         if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
1170                 WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
1171                                   GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
1172         }
1173
1174         /* WaDisableSbeCacheDispatchPortSharing:bxt */
1175         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1176                 WA_SET_BIT_MASKED(
1177                         GEN7_HALF_SLICE_CHICKEN1,
1178                         GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1179         }
1180
1181         /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
1182         /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
1183         /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1184         /* WaDisableLSQCROPERFforOCL:bxt */
1185         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1186                 ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1187                 if (ret)
1188                         return ret;
1189
1190                 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1191                 if (ret)
1192                         return ret;
1193         }
1194
1195         /* WaProgramL3SqcReg1DefaultForPerf:bxt */
1196         if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1197                 I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
1198                                            L3_HIGH_PRIO_CREDITS(2));
1199
1200         /* WaInsertDummyPushConstPs:bxt */
1201         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
1202                 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1203                                   GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1204
1205         return 0;
1206 }
1207
1208 static int kbl_init_workarounds(struct intel_engine_cs *engine)
1209 {
1210         struct drm_i915_private *dev_priv = engine->i915;
1211         int ret;
1212
1213         ret = gen9_init_workarounds(engine);
1214         if (ret)
1215                 return ret;
1216
1217         /* WaEnableGapsTsvCreditFix:kbl */
1218         I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1219                                    GEN9_GAPS_TSV_CREDIT_DISABLE));
1220
1221         /* WaDisableDynamicCreditSharing:kbl */
1222         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
1223                 WA_SET_BIT(GAMT_CHKN_BIT_REG,
1224                            GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1225
1226         /* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
1227         if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
1228                 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1229                                   HDC_FENCE_DEST_SLM_DISABLE);
1230
1231         /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1232          * involving this register should also be added to WA batch as required.
1233          */
1234         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
1235                 /* WaDisableLSQCROPERFforOCL:kbl */
1236                 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1237                            GEN8_LQSC_RO_PERF_DIS);
1238
1239         /* WaInsertDummyPushConstPs:kbl */
1240         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
1241                 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1242                                   GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1243
1244         /* WaDisableGafsUnitClkGating:kbl */
1245         WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1246
1247         /* WaDisableSbeCacheDispatchPortSharing:kbl */
1248         WA_SET_BIT_MASKED(
1249                 GEN7_HALF_SLICE_CHICKEN1,
1250                 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1251
1252         /* WaDisableLSQCROPERFforOCL:kbl */
1253         ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1254         if (ret)
1255                 return ret;
1256
1257         return 0;
1258 }
1259
1260 int init_workarounds_ring(struct intel_engine_cs *engine)
1261 {
1262         struct drm_i915_private *dev_priv = engine->i915;
1263
1264         WARN_ON(engine->id != RCS);
1265
1266         dev_priv->workarounds.count = 0;
1267         dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1268
1269         if (IS_BROADWELL(dev_priv))
1270                 return bdw_init_workarounds(engine);
1271
1272         if (IS_CHERRYVIEW(dev_priv))
1273                 return chv_init_workarounds(engine);
1274
1275         if (IS_SKYLAKE(dev_priv))
1276                 return skl_init_workarounds(engine);
1277
1278         if (IS_BROXTON(dev_priv))
1279                 return bxt_init_workarounds(engine);
1280
1281         if (IS_KABYLAKE(dev_priv))
1282                 return kbl_init_workarounds(engine);
1283
1284         return 0;
1285 }
1286
1287 static int init_render_ring(struct intel_engine_cs *engine)
1288 {
1289         struct drm_i915_private *dev_priv = engine->i915;
1290         int ret = init_ring_common(engine);
1291         if (ret)
1292                 return ret;
1293
1294         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1295         if (IS_GEN(dev_priv, 4, 6))
1296                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1297
1298         /* We need to disable the AsyncFlip performance optimisations in order
1299          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1300          * programmed to '1' on all products.
1301          *
1302          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1303          */
1304         if (IS_GEN(dev_priv, 6, 7))
1305                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1306
1307         /* Required for the hardware to program scanline values for waiting */
1308         /* WaEnableFlushTlbInvalidationMode:snb */
1309         if (IS_GEN6(dev_priv))
1310                 I915_WRITE(GFX_MODE,
1311                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1312
1313         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1314         if (IS_GEN7(dev_priv))
1315                 I915_WRITE(GFX_MODE_GEN7,
1316                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1317                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1318
1319         if (IS_GEN6(dev_priv)) {
1320                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1321                  * "If this bit is set, STCunit will have LRA as replacement
1322                  *  policy. [...] This bit must be reset.  LRA replacement
1323                  *  policy is not supported."
1324                  */
1325                 I915_WRITE(CACHE_MODE_0,
1326                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1327         }
1328
1329         if (IS_GEN(dev_priv, 6, 7))
1330                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1331
1332         if (HAS_L3_DPF(dev_priv))
1333                 I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev_priv));
1334
1335         return init_workarounds_ring(engine);
1336 }
1337
1338 static void render_ring_cleanup(struct intel_engine_cs *engine)
1339 {
1340         struct drm_i915_private *dev_priv = engine->i915;
1341
1342         if (dev_priv->semaphore_obj) {
1343                 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1344                 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1345                 dev_priv->semaphore_obj = NULL;
1346         }
1347
1348         intel_fini_pipe_control(engine);
1349 }
1350
1351 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1352                            unsigned int num_dwords)
1353 {
1354 #define MBOX_UPDATE_DWORDS 8
1355         struct intel_engine_cs *signaller = signaller_req->engine;
1356         struct drm_i915_private *dev_priv = signaller_req->i915;
1357         struct intel_engine_cs *waiter;
1358         enum intel_engine_id id;
1359         int ret, num_rings;
1360
1361         num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1362         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1363 #undef MBOX_UPDATE_DWORDS
1364
1365         ret = intel_ring_begin(signaller_req, num_dwords);
1366         if (ret)
1367                 return ret;
1368
1369         for_each_engine_id(waiter, dev_priv, id) {
1370                 u32 seqno;
1371                 u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1372                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1373                         continue;
1374
1375                 seqno = i915_gem_request_get_seqno(signaller_req);
1376                 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1377                 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1378                                            PIPE_CONTROL_QW_WRITE |
1379                                            PIPE_CONTROL_CS_STALL);
1380                 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1381                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1382                 intel_ring_emit(signaller, seqno);
1383                 intel_ring_emit(signaller, 0);
1384                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1385                                            MI_SEMAPHORE_TARGET(waiter->hw_id));
1386                 intel_ring_emit(signaller, 0);
1387         }
1388
1389         return 0;
1390 }
1391
1392 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1393                            unsigned int num_dwords)
1394 {
1395 #define MBOX_UPDATE_DWORDS 6
1396         struct intel_engine_cs *signaller = signaller_req->engine;
1397         struct drm_i915_private *dev_priv = signaller_req->i915;
1398         struct intel_engine_cs *waiter;
1399         enum intel_engine_id id;
1400         int ret, num_rings;
1401
1402         num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1403         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1404 #undef MBOX_UPDATE_DWORDS
1405
1406         ret = intel_ring_begin(signaller_req, num_dwords);
1407         if (ret)
1408                 return ret;
1409
1410         for_each_engine_id(waiter, dev_priv, id) {
1411                 u32 seqno;
1412                 u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1413                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1414                         continue;
1415
1416                 seqno = i915_gem_request_get_seqno(signaller_req);
1417                 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1418                                            MI_FLUSH_DW_OP_STOREDW);
1419                 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1420                                            MI_FLUSH_DW_USE_GTT);
1421                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1422                 intel_ring_emit(signaller, seqno);
1423                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1424                                            MI_SEMAPHORE_TARGET(waiter->hw_id));
1425                 intel_ring_emit(signaller, 0);
1426         }
1427
1428         return 0;
1429 }
1430
1431 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1432                        unsigned int num_dwords)
1433 {
1434         struct intel_engine_cs *signaller = signaller_req->engine;
1435         struct drm_i915_private *dev_priv = signaller_req->i915;
1436         struct intel_engine_cs *useless;
1437         enum intel_engine_id id;
1438         int ret, num_rings;
1439
1440 #define MBOX_UPDATE_DWORDS 3
1441         num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1442         num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1443 #undef MBOX_UPDATE_DWORDS
1444
1445         ret = intel_ring_begin(signaller_req, num_dwords);
1446         if (ret)
1447                 return ret;
1448
1449         for_each_engine_id(useless, dev_priv, id) {
1450                 i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
1451
1452                 if (i915_mmio_reg_valid(mbox_reg)) {
1453                         u32 seqno = i915_gem_request_get_seqno(signaller_req);
1454
1455                         intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1456                         intel_ring_emit_reg(signaller, mbox_reg);
1457                         intel_ring_emit(signaller, seqno);
1458                 }
1459         }
1460
1461         /* If num_dwords was rounded, make sure the tail pointer is correct */
1462         if (num_rings % 2 == 0)
1463                 intel_ring_emit(signaller, MI_NOOP);
1464
1465         return 0;
1466 }
1467
1468 /**
1469  * gen6_add_request - Update the semaphore mailbox registers
1470  *
1471  * @request - request to write to the ring
1472  *
1473  * Update the mailbox registers in the *other* rings with the current seqno.
1474  * This acts like a signal in the canonical semaphore.
1475  */
1476 static int
1477 gen6_add_request(struct drm_i915_gem_request *req)
1478 {
1479         struct intel_engine_cs *engine = req->engine;
1480         int ret;
1481
1482         if (engine->semaphore.signal)
1483                 ret = engine->semaphore.signal(req, 4);
1484         else
1485                 ret = intel_ring_begin(req, 4);
1486
1487         if (ret)
1488                 return ret;
1489
1490         intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
1491         intel_ring_emit(engine,
1492                         I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1493         intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1494         intel_ring_emit(engine, MI_USER_INTERRUPT);
1495         __intel_ring_advance(engine);
1496
1497         return 0;
1498 }
1499
1500 static int
1501 gen8_render_add_request(struct drm_i915_gem_request *req)
1502 {
1503         struct intel_engine_cs *engine = req->engine;
1504         int ret;
1505
1506         if (engine->semaphore.signal)
1507                 ret = engine->semaphore.signal(req, 8);
1508         else
1509                 ret = intel_ring_begin(req, 8);
1510         if (ret)
1511                 return ret;
1512
1513         intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
1514         intel_ring_emit(engine, (PIPE_CONTROL_GLOBAL_GTT_IVB |
1515                                  PIPE_CONTROL_CS_STALL |
1516                                  PIPE_CONTROL_QW_WRITE));
1517         intel_ring_emit(engine, intel_hws_seqno_address(req->engine));
1518         intel_ring_emit(engine, 0);
1519         intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1520         /* We're thrashing one dword of HWS. */
1521         intel_ring_emit(engine, 0);
1522         intel_ring_emit(engine, MI_USER_INTERRUPT);
1523         intel_ring_emit(engine, MI_NOOP);
1524         __intel_ring_advance(engine);
1525
1526         return 0;
1527 }
1528
1529 static inline bool i915_gem_has_seqno_wrapped(struct drm_i915_private *dev_priv,
1530                                               u32 seqno)
1531 {
1532         return dev_priv->last_seqno < seqno;
1533 }
1534
1535 /**
1536  * intel_ring_sync - sync the waiter to the signaller on seqno
1537  *
1538  * @waiter - ring that is waiting
1539  * @signaller - ring which has, or will signal
1540  * @seqno - seqno which the waiter will block on
1541  */
1542
1543 static int
1544 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1545                struct intel_engine_cs *signaller,
1546                u32 seqno)
1547 {
1548         struct intel_engine_cs *waiter = waiter_req->engine;
1549         struct drm_i915_private *dev_priv = waiter_req->i915;
1550         u64 offset = GEN8_WAIT_OFFSET(waiter, signaller->id);
1551         struct i915_hw_ppgtt *ppgtt;
1552         int ret;
1553
1554         ret = intel_ring_begin(waiter_req, 4);
1555         if (ret)
1556                 return ret;
1557
1558         intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1559                                 MI_SEMAPHORE_GLOBAL_GTT |
1560                                 MI_SEMAPHORE_SAD_GTE_SDD);
1561         intel_ring_emit(waiter, seqno);
1562         intel_ring_emit(waiter, lower_32_bits(offset));
1563         intel_ring_emit(waiter, upper_32_bits(offset));
1564         intel_ring_advance(waiter);
1565
1566         /* When the !RCS engines idle waiting upon a semaphore, they lose their
1567          * pagetables and we must reload them before executing the batch.
1568          * We do this on the i915_switch_context() following the wait and
1569          * before the dispatch.
1570          */
1571         ppgtt = waiter_req->ctx->ppgtt;
1572         if (ppgtt && waiter_req->engine->id != RCS)
1573                 ppgtt->pd_dirty_rings |= intel_engine_flag(waiter_req->engine);
1574         return 0;
1575 }
1576
1577 static int
1578 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1579                struct intel_engine_cs *signaller,
1580                u32 seqno)
1581 {
1582         struct intel_engine_cs *waiter = waiter_req->engine;
1583         u32 dw1 = MI_SEMAPHORE_MBOX |
1584                   MI_SEMAPHORE_COMPARE |
1585                   MI_SEMAPHORE_REGISTER;
1586         u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1587         int ret;
1588
1589         /* Throughout all of the GEM code, seqno passed implies our current
1590          * seqno is >= the last seqno executed. However for hardware the
1591          * comparison is strictly greater than.
1592          */
1593         seqno -= 1;
1594
1595         WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1596
1597         ret = intel_ring_begin(waiter_req, 4);
1598         if (ret)
1599                 return ret;
1600
1601         /* If seqno wrap happened, omit the wait with no-ops */
1602         if (likely(!i915_gem_has_seqno_wrapped(waiter_req->i915, seqno))) {
1603                 intel_ring_emit(waiter, dw1 | wait_mbox);
1604                 intel_ring_emit(waiter, seqno);
1605                 intel_ring_emit(waiter, 0);
1606                 intel_ring_emit(waiter, MI_NOOP);
1607         } else {
1608                 intel_ring_emit(waiter, MI_NOOP);
1609                 intel_ring_emit(waiter, MI_NOOP);
1610                 intel_ring_emit(waiter, MI_NOOP);
1611                 intel_ring_emit(waiter, MI_NOOP);
1612         }
1613         intel_ring_advance(waiter);
1614
1615         return 0;
1616 }
1617
1618 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
1619 do {                                                                    \
1620         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
1621                  PIPE_CONTROL_DEPTH_STALL);                             \
1622         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
1623         intel_ring_emit(ring__, 0);                                                     \
1624         intel_ring_emit(ring__, 0);                                                     \
1625 } while (0)
1626
1627 static int
1628 pc_render_add_request(struct drm_i915_gem_request *req)
1629 {
1630         struct intel_engine_cs *engine = req->engine;
1631         u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1632         int ret;
1633
1634         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1635          * incoherent with writes to memory, i.e. completely fubar,
1636          * so we need to use PIPE_NOTIFY instead.
1637          *
1638          * However, we also need to workaround the qword write
1639          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1640          * memory before requesting an interrupt.
1641          */
1642         ret = intel_ring_begin(req, 32);
1643         if (ret)
1644                 return ret;
1645
1646         intel_ring_emit(engine,
1647                         GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1648                         PIPE_CONTROL_WRITE_FLUSH |
1649                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1650         intel_ring_emit(engine,
1651                         engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1652         intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1653         intel_ring_emit(engine, 0);
1654         PIPE_CONTROL_FLUSH(engine, scratch_addr);
1655         scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1656         PIPE_CONTROL_FLUSH(engine, scratch_addr);
1657         scratch_addr += 2 * CACHELINE_BYTES;
1658         PIPE_CONTROL_FLUSH(engine, scratch_addr);
1659         scratch_addr += 2 * CACHELINE_BYTES;
1660         PIPE_CONTROL_FLUSH(engine, scratch_addr);
1661         scratch_addr += 2 * CACHELINE_BYTES;
1662         PIPE_CONTROL_FLUSH(engine, scratch_addr);
1663         scratch_addr += 2 * CACHELINE_BYTES;
1664         PIPE_CONTROL_FLUSH(engine, scratch_addr);
1665
1666         intel_ring_emit(engine,
1667                         GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1668                         PIPE_CONTROL_WRITE_FLUSH |
1669                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1670                         PIPE_CONTROL_NOTIFY);
1671         intel_ring_emit(engine,
1672                         engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1673         intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1674         intel_ring_emit(engine, 0);
1675         __intel_ring_advance(engine);
1676
1677         return 0;
1678 }
1679
1680 static void
1681 gen6_seqno_barrier(struct intel_engine_cs *engine)
1682 {
1683         struct drm_i915_private *dev_priv = engine->i915;
1684
1685         /* Workaround to force correct ordering between irq and seqno writes on
1686          * ivb (and maybe also on snb) by reading from a CS register (like
1687          * ACTHD) before reading the status page.
1688          *
1689          * Note that this effectively stalls the read by the time it takes to
1690          * do a memory transaction, which more or less ensures that the write
1691          * from the GPU has sufficient time to invalidate the CPU cacheline.
1692          * Alternatively we could delay the interrupt from the CS ring to give
1693          * the write time to land, but that would incur a delay after every
1694          * batch i.e. much more frequent than a delay when waiting for the
1695          * interrupt (with the same net latency).
1696          *
1697          * Also note that to prevent whole machine hangs on gen7, we have to
1698          * take the spinlock to guard against concurrent cacheline access.
1699          */
1700         spin_lock_irq(&dev_priv->uncore.lock);
1701         POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1702         spin_unlock_irq(&dev_priv->uncore.lock);
1703 }
1704
1705 static u32
1706 ring_get_seqno(struct intel_engine_cs *engine)
1707 {
1708         return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1709 }
1710
1711 static void
1712 ring_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1713 {
1714         intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1715 }
1716
1717 static u32
1718 pc_render_get_seqno(struct intel_engine_cs *engine)
1719 {
1720         return engine->scratch.cpu_page[0];
1721 }
1722
1723 static void
1724 pc_render_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1725 {
1726         engine->scratch.cpu_page[0] = seqno;
1727 }
1728
1729 static bool
1730 gen5_ring_get_irq(struct intel_engine_cs *engine)
1731 {
1732         struct drm_i915_private *dev_priv = engine->i915;
1733         unsigned long flags;
1734
1735         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1736                 return false;
1737
1738         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1739         if (engine->irq_refcount++ == 0)
1740                 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1741         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1742
1743         return true;
1744 }
1745
1746 static void
1747 gen5_ring_put_irq(struct intel_engine_cs *engine)
1748 {
1749         struct drm_i915_private *dev_priv = engine->i915;
1750         unsigned long flags;
1751
1752         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1753         if (--engine->irq_refcount == 0)
1754                 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1755         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1756 }
1757
1758 static bool
1759 i9xx_ring_get_irq(struct intel_engine_cs *engine)
1760 {
1761         struct drm_i915_private *dev_priv = engine->i915;
1762         unsigned long flags;
1763
1764         if (!intel_irqs_enabled(dev_priv))
1765                 return false;
1766
1767         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1768         if (engine->irq_refcount++ == 0) {
1769                 dev_priv->irq_mask &= ~engine->irq_enable_mask;
1770                 I915_WRITE(IMR, dev_priv->irq_mask);
1771                 POSTING_READ(IMR);
1772         }
1773         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1774
1775         return true;
1776 }
1777
1778 static void
1779 i9xx_ring_put_irq(struct intel_engine_cs *engine)
1780 {
1781         struct drm_i915_private *dev_priv = engine->i915;
1782         unsigned long flags;
1783
1784         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1785         if (--engine->irq_refcount == 0) {
1786                 dev_priv->irq_mask |= engine->irq_enable_mask;
1787                 I915_WRITE(IMR, dev_priv->irq_mask);
1788                 POSTING_READ(IMR);
1789         }
1790         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1791 }
1792
1793 static bool
1794 i8xx_ring_get_irq(struct intel_engine_cs *engine)
1795 {
1796         struct drm_i915_private *dev_priv = engine->i915;
1797         unsigned long flags;
1798
1799         if (!intel_irqs_enabled(dev_priv))
1800                 return false;
1801
1802         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1803         if (engine->irq_refcount++ == 0) {
1804                 dev_priv->irq_mask &= ~engine->irq_enable_mask;
1805                 I915_WRITE16(IMR, dev_priv->irq_mask);
1806                 POSTING_READ16(IMR);
1807         }
1808         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1809
1810         return true;
1811 }
1812
1813 static void
1814 i8xx_ring_put_irq(struct intel_engine_cs *engine)
1815 {
1816         struct drm_i915_private *dev_priv = engine->i915;
1817         unsigned long flags;
1818
1819         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1820         if (--engine->irq_refcount == 0) {
1821                 dev_priv->irq_mask |= engine->irq_enable_mask;
1822                 I915_WRITE16(IMR, dev_priv->irq_mask);
1823                 POSTING_READ16(IMR);
1824         }
1825         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1826 }
1827
1828 static int
1829 bsd_ring_flush(struct drm_i915_gem_request *req,
1830                u32     invalidate_domains,
1831                u32     flush_domains)
1832 {
1833         struct intel_engine_cs *engine = req->engine;
1834         int ret;
1835
1836         ret = intel_ring_begin(req, 2);
1837         if (ret)
1838                 return ret;
1839
1840         intel_ring_emit(engine, MI_FLUSH);
1841         intel_ring_emit(engine, MI_NOOP);
1842         intel_ring_advance(engine);
1843         return 0;
1844 }
1845
1846 static int
1847 i9xx_add_request(struct drm_i915_gem_request *req)
1848 {
1849         struct intel_engine_cs *engine = req->engine;
1850         int ret;
1851
1852         ret = intel_ring_begin(req, 4);
1853         if (ret)
1854                 return ret;
1855
1856         intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
1857         intel_ring_emit(engine,
1858                         I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1859         intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1860         intel_ring_emit(engine, MI_USER_INTERRUPT);
1861         __intel_ring_advance(engine);
1862
1863         return 0;
1864 }
1865
1866 static bool
1867 gen6_ring_get_irq(struct intel_engine_cs *engine)
1868 {
1869         struct drm_i915_private *dev_priv = engine->i915;
1870         unsigned long flags;
1871
1872         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1873                 return false;
1874
1875         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1876         if (engine->irq_refcount++ == 0) {
1877                 if (HAS_L3_DPF(dev_priv) && engine->id == RCS)
1878                         I915_WRITE_IMR(engine,
1879                                        ~(engine->irq_enable_mask |
1880                                          GT_PARITY_ERROR(dev_priv)));
1881                 else
1882                         I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1883                 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1884         }
1885         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1886
1887         return true;
1888 }
1889
1890 static void
1891 gen6_ring_put_irq(struct intel_engine_cs *engine)
1892 {
1893         struct drm_i915_private *dev_priv = engine->i915;
1894         unsigned long flags;
1895
1896         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1897         if (--engine->irq_refcount == 0) {
1898                 if (HAS_L3_DPF(dev_priv) && engine->id == RCS)
1899                         I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev_priv));
1900                 else
1901                         I915_WRITE_IMR(engine, ~0);
1902                 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1903         }
1904         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1905 }
1906
1907 static bool
1908 hsw_vebox_get_irq(struct intel_engine_cs *engine)
1909 {
1910         struct drm_i915_private *dev_priv = engine->i915;
1911         unsigned long flags;
1912
1913         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1914                 return false;
1915
1916         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1917         if (engine->irq_refcount++ == 0) {
1918                 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1919                 gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
1920         }
1921         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1922
1923         return true;
1924 }
1925
1926 static void
1927 hsw_vebox_put_irq(struct intel_engine_cs *engine)
1928 {
1929         struct drm_i915_private *dev_priv = engine->i915;
1930         unsigned long flags;
1931
1932         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1933         if (--engine->irq_refcount == 0) {
1934                 I915_WRITE_IMR(engine, ~0);
1935                 gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
1936         }
1937         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1938 }
1939
1940 static bool
1941 gen8_ring_get_irq(struct intel_engine_cs *engine)
1942 {
1943         struct drm_i915_private *dev_priv = engine->i915;
1944         unsigned long flags;
1945
1946         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1947                 return false;
1948
1949         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1950         if (engine->irq_refcount++ == 0) {
1951                 if (HAS_L3_DPF(dev_priv) && engine->id == RCS) {
1952                         I915_WRITE_IMR(engine,
1953                                        ~(engine->irq_enable_mask |
1954                                          GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1955                 } else {
1956                         I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1957                 }
1958                 POSTING_READ(RING_IMR(engine->mmio_base));
1959         }
1960         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1961
1962         return true;
1963 }
1964
1965 static void
1966 gen8_ring_put_irq(struct intel_engine_cs *engine)
1967 {
1968         struct drm_i915_private *dev_priv = engine->i915;
1969         unsigned long flags;
1970
1971         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1972         if (--engine->irq_refcount == 0) {
1973                 if (HAS_L3_DPF(dev_priv) && engine->id == RCS) {
1974                         I915_WRITE_IMR(engine,
1975                                        ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1976                 } else {
1977                         I915_WRITE_IMR(engine, ~0);
1978                 }
1979                 POSTING_READ(RING_IMR(engine->mmio_base));
1980         }
1981         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1982 }
1983
1984 static int
1985 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1986                          u64 offset, u32 length,
1987                          unsigned dispatch_flags)
1988 {
1989         struct intel_engine_cs *engine = req->engine;
1990         int ret;
1991
1992         ret = intel_ring_begin(req, 2);
1993         if (ret)
1994                 return ret;
1995
1996         intel_ring_emit(engine,
1997                         MI_BATCH_BUFFER_START |
1998                         MI_BATCH_GTT |
1999                         (dispatch_flags & I915_DISPATCH_SECURE ?
2000                          0 : MI_BATCH_NON_SECURE_I965));
2001         intel_ring_emit(engine, offset);
2002         intel_ring_advance(engine);
2003
2004         return 0;
2005 }
2006
2007 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
2008 #define I830_BATCH_LIMIT (256*1024)
2009 #define I830_TLB_ENTRIES (2)
2010 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
2011 static int
2012 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
2013                          u64 offset, u32 len,
2014                          unsigned dispatch_flags)
2015 {
2016         struct intel_engine_cs *engine = req->engine;
2017         u32 cs_offset = engine->scratch.gtt_offset;
2018         int ret;
2019
2020         ret = intel_ring_begin(req, 6);
2021         if (ret)
2022                 return ret;
2023
2024         /* Evict the invalid PTE TLBs */
2025         intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
2026         intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
2027         intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
2028         intel_ring_emit(engine, cs_offset);
2029         intel_ring_emit(engine, 0xdeadbeef);
2030         intel_ring_emit(engine, MI_NOOP);
2031         intel_ring_advance(engine);
2032
2033         if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
2034                 if (len > I830_BATCH_LIMIT)
2035                         return -ENOSPC;
2036
2037                 ret = intel_ring_begin(req, 6 + 2);
2038                 if (ret)
2039                         return ret;
2040
2041                 /* Blit the batch (which has now all relocs applied) to the
2042                  * stable batch scratch bo area (so that the CS never
2043                  * stumbles over its tlb invalidation bug) ...
2044                  */
2045                 intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
2046                 intel_ring_emit(engine,
2047                                 BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
2048                 intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
2049                 intel_ring_emit(engine, cs_offset);
2050                 intel_ring_emit(engine, 4096);
2051                 intel_ring_emit(engine, offset);
2052
2053                 intel_ring_emit(engine, MI_FLUSH);
2054                 intel_ring_emit(engine, MI_NOOP);
2055                 intel_ring_advance(engine);
2056
2057                 /* ... and execute it. */
2058                 offset = cs_offset;
2059         }
2060
2061         ret = intel_ring_begin(req, 2);
2062         if (ret)
2063                 return ret;
2064
2065         intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
2066         intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
2067                                           0 : MI_BATCH_NON_SECURE));
2068         intel_ring_advance(engine);
2069
2070         return 0;
2071 }
2072
2073 static int
2074 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
2075                          u64 offset, u32 len,
2076                          unsigned dispatch_flags)
2077 {
2078         struct intel_engine_cs *engine = req->engine;
2079         int ret;
2080
2081         ret = intel_ring_begin(req, 2);
2082         if (ret)
2083                 return ret;
2084
2085         intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
2086         intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
2087                                           0 : MI_BATCH_NON_SECURE));
2088         intel_ring_advance(engine);
2089
2090         return 0;
2091 }
2092
2093 static void cleanup_phys_status_page(struct intel_engine_cs *engine)
2094 {
2095         struct drm_i915_private *dev_priv = engine->i915;
2096
2097         if (!dev_priv->status_page_dmah)
2098                 return;
2099
2100         drm_pci_free(dev_priv->dev, dev_priv->status_page_dmah);
2101         engine->status_page.page_addr = NULL;
2102 }
2103
2104 static void cleanup_status_page(struct intel_engine_cs *engine)
2105 {
2106         struct drm_i915_gem_object *obj;
2107
2108         obj = engine->status_page.obj;
2109         if (obj == NULL)
2110                 return;
2111
2112         kunmap(sg_page(obj->pages->sgl));
2113         i915_gem_object_ggtt_unpin(obj);
2114         drm_gem_object_unreference(&obj->base);
2115         engine->status_page.obj = NULL;
2116 }
2117
2118 static int init_status_page(struct intel_engine_cs *engine)
2119 {
2120         struct drm_i915_gem_object *obj = engine->status_page.obj;
2121
2122         if (obj == NULL) {
2123                 unsigned flags;
2124                 int ret;
2125
2126                 obj = i915_gem_object_create(engine->i915->dev, 4096);
2127                 if (IS_ERR(obj)) {
2128                         DRM_ERROR("Failed to allocate status page\n");
2129                         return PTR_ERR(obj);
2130                 }
2131
2132                 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2133                 if (ret)
2134                         goto err_unref;
2135
2136                 flags = 0;
2137                 if (!HAS_LLC(engine->i915))
2138                         /* On g33, we cannot place HWS above 256MiB, so
2139                          * restrict its pinning to the low mappable arena.
2140                          * Though this restriction is not documented for
2141                          * gen4, gen5, or byt, they also behave similarly
2142                          * and hang if the HWS is placed at the top of the
2143                          * GTT. To generalise, it appears that all !llc
2144                          * platforms have issues with us placing the HWS
2145                          * above the mappable region (even though we never
2146                          * actualy map it).
2147                          */
2148                         flags |= PIN_MAPPABLE;
2149                 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
2150                 if (ret) {
2151 err_unref:
2152                         drm_gem_object_unreference(&obj->base);
2153                         return ret;
2154                 }
2155
2156                 engine->status_page.obj = obj;
2157         }
2158
2159         engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
2160         engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
2161         memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2162
2163         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
2164                         engine->name, engine->status_page.gfx_addr);
2165
2166         return 0;
2167 }
2168
2169 static int init_phys_status_page(struct intel_engine_cs *engine)
2170 {
2171         struct drm_i915_private *dev_priv = engine->i915;
2172
2173         if (!dev_priv->status_page_dmah) {
2174                 dev_priv->status_page_dmah =
2175                         drm_pci_alloc(dev_priv->dev, PAGE_SIZE, PAGE_SIZE);
2176                 if (!dev_priv->status_page_dmah)
2177                         return -ENOMEM;
2178         }
2179
2180         engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
2181         memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2182
2183         return 0;
2184 }
2185
2186 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2187 {
2188         GEM_BUG_ON(ringbuf->vma == NULL);
2189         GEM_BUG_ON(ringbuf->virtual_start == NULL);
2190
2191         if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
2192                 i915_gem_object_unpin_map(ringbuf->obj);
2193         else
2194                 i915_vma_unpin_iomap(ringbuf->vma);
2195         ringbuf->virtual_start = NULL;
2196
2197         i915_gem_object_ggtt_unpin(ringbuf->obj);
2198         ringbuf->vma = NULL;
2199 }
2200
2201 int intel_pin_and_map_ringbuffer_obj(struct drm_i915_private *dev_priv,
2202                                      struct intel_ringbuffer *ringbuf)
2203 {
2204         struct drm_i915_gem_object *obj = ringbuf->obj;
2205         /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
2206         unsigned flags = PIN_OFFSET_BIAS | 4096;
2207         void *addr;
2208         int ret;
2209
2210         if (HAS_LLC(dev_priv) && !obj->stolen) {
2211                 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
2212                 if (ret)
2213                         return ret;
2214
2215                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2216                 if (ret)
2217                         goto err_unpin;
2218
2219                 addr = i915_gem_object_pin_map(obj);
2220                 if (IS_ERR(addr)) {
2221                         ret = PTR_ERR(addr);
2222                         goto err_unpin;
2223                 }
2224         } else {
2225                 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
2226                                             flags | PIN_MAPPABLE);
2227                 if (ret)
2228                         return ret;
2229
2230                 ret = i915_gem_object_set_to_gtt_domain(obj, true);
2231                 if (ret)
2232                         goto err_unpin;
2233
2234                 /* Access through the GTT requires the device to be awake. */
2235                 assert_rpm_wakelock_held(dev_priv);
2236
2237                 addr = i915_vma_pin_iomap(i915_gem_obj_to_ggtt(obj));
2238                 if (IS_ERR(addr)) {
2239                         ret = PTR_ERR(addr);
2240                         goto err_unpin;
2241                 }
2242         }
2243
2244         ringbuf->virtual_start = addr;
2245         ringbuf->vma = i915_gem_obj_to_ggtt(obj);
2246         return 0;
2247
2248 err_unpin:
2249         i915_gem_object_ggtt_unpin(obj);
2250         return ret;
2251 }
2252
2253 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2254 {
2255         drm_gem_object_unreference(&ringbuf->obj->base);
2256         ringbuf->obj = NULL;
2257 }
2258
2259 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2260                                       struct intel_ringbuffer *ringbuf)
2261 {
2262         struct drm_i915_gem_object *obj;
2263
2264         obj = NULL;
2265         if (!HAS_LLC(dev))
2266                 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2267         if (obj == NULL)
2268                 obj = i915_gem_object_create(dev, ringbuf->size);
2269         if (IS_ERR(obj))
2270                 return PTR_ERR(obj);
2271
2272         /* mark ring buffers as read-only from GPU side by default */
2273         obj->gt_ro = 1;
2274
2275         ringbuf->obj = obj;
2276
2277         return 0;
2278 }
2279
2280 struct intel_ringbuffer *
2281 intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2282 {
2283         struct intel_ringbuffer *ring;
2284         int ret;
2285
2286         ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2287         if (ring == NULL) {
2288                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2289                                  engine->name);
2290                 return ERR_PTR(-ENOMEM);
2291         }
2292
2293         ring->engine = engine;
2294         list_add(&ring->link, &engine->buffers);
2295
2296         ring->size = size;
2297         /* Workaround an erratum on the i830 which causes a hang if
2298          * the TAIL pointer points to within the last 2 cachelines
2299          * of the buffer.
2300          */
2301         ring->effective_size = size;
2302         if (IS_I830(engine->i915) || IS_845G(engine->i915))
2303                 ring->effective_size -= 2 * CACHELINE_BYTES;
2304
2305         ring->last_retired_head = -1;
2306         intel_ring_update_space(ring);
2307
2308         ret = intel_alloc_ringbuffer_obj(engine->i915->dev, ring);
2309         if (ret) {
2310                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
2311                                  engine->name, ret);
2312                 list_del(&ring->link);
2313                 kfree(ring);
2314                 return ERR_PTR(ret);
2315         }
2316
2317         return ring;
2318 }
2319
2320 void
2321 intel_ringbuffer_free(struct intel_ringbuffer *ring)
2322 {
2323         intel_destroy_ringbuffer_obj(ring);
2324         list_del(&ring->link);
2325         kfree(ring);
2326 }
2327
2328 static int intel_ring_context_pin(struct i915_gem_context *ctx,
2329                                   struct intel_engine_cs *engine)
2330 {
2331         struct intel_context *ce = &ctx->engine[engine->id];
2332         int ret;
2333
2334         lockdep_assert_held(&ctx->i915->dev->struct_mutex);
2335
2336         if (ce->pin_count++)
2337                 return 0;
2338
2339         if (ce->state) {
2340                 ret = i915_gem_obj_ggtt_pin(ce->state, ctx->ggtt_alignment, 0);
2341                 if (ret)
2342                         goto error;
2343         }
2344
2345         /* The kernel context is only used as a placeholder for flushing the
2346          * active context. It is never used for submitting user rendering and
2347          * as such never requires the golden render context, and so we can skip
2348          * emitting it when we switch to the kernel context. This is required
2349          * as during eviction we cannot allocate and pin the renderstate in
2350          * order to initialise the context.
2351          */
2352         if (ctx == ctx->i915->kernel_context)
2353                 ce->initialised = true;
2354
2355         i915_gem_context_reference(ctx);
2356         return 0;
2357
2358 error:
2359         ce->pin_count = 0;
2360         return ret;
2361 }
2362
2363 static void intel_ring_context_unpin(struct i915_gem_context *ctx,
2364                                      struct intel_engine_cs *engine)
2365 {
2366         struct intel_context *ce = &ctx->engine[engine->id];
2367
2368         lockdep_assert_held(&ctx->i915->dev->struct_mutex);
2369
2370         if (--ce->pin_count)
2371                 return;
2372
2373         if (ce->state)
2374                 i915_gem_object_ggtt_unpin(ce->state);
2375
2376         i915_gem_context_unreference(ctx);
2377 }
2378
2379 static int intel_init_ring_buffer(struct drm_device *dev,
2380                                   struct intel_engine_cs *engine)
2381 {
2382         struct drm_i915_private *dev_priv = to_i915(dev);
2383         struct intel_ringbuffer *ringbuf;
2384         int ret;
2385
2386         WARN_ON(engine->buffer);
2387
2388         engine->i915 = dev_priv;
2389         INIT_LIST_HEAD(&engine->active_list);
2390         INIT_LIST_HEAD(&engine->request_list);
2391         INIT_LIST_HEAD(&engine->execlist_queue);
2392         INIT_LIST_HEAD(&engine->buffers);
2393         i915_gem_batch_pool_init(dev, &engine->batch_pool);
2394         memset(engine->semaphore.sync_seqno, 0,
2395                sizeof(engine->semaphore.sync_seqno));
2396
2397         init_waitqueue_head(&engine->irq_queue);
2398
2399         /* We may need to do things with the shrinker which
2400          * require us to immediately switch back to the default
2401          * context. This can cause a problem as pinning the
2402          * default context also requires GTT space which may not
2403          * be available. To avoid this we always pin the default
2404          * context.
2405          */
2406         ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
2407         if (ret)
2408                 goto error;
2409
2410         ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
2411         if (IS_ERR(ringbuf)) {
2412                 ret = PTR_ERR(ringbuf);
2413                 goto error;
2414         }
2415         engine->buffer = ringbuf;
2416
2417         if (I915_NEED_GFX_HWS(dev_priv)) {
2418                 ret = init_status_page(engine);
2419                 if (ret)
2420                         goto error;
2421         } else {
2422                 WARN_ON(engine->id != RCS);
2423                 ret = init_phys_status_page(engine);
2424                 if (ret)
2425                         goto error;
2426         }
2427
2428         ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ringbuf);
2429         if (ret) {
2430                 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2431                                 engine->name, ret);
2432                 intel_destroy_ringbuffer_obj(ringbuf);
2433                 goto error;
2434         }
2435
2436         ret = i915_cmd_parser_init_ring(engine);
2437         if (ret)
2438                 goto error;
2439
2440         return 0;
2441
2442 error:
2443         intel_cleanup_engine(engine);
2444         return ret;
2445 }
2446
2447 void intel_cleanup_engine(struct intel_engine_cs *engine)
2448 {
2449         struct drm_i915_private *dev_priv;
2450
2451         if (!intel_engine_initialized(engine))
2452                 return;
2453
2454         dev_priv = engine->i915;
2455
2456         if (engine->buffer) {
2457                 intel_stop_engine(engine);
2458                 WARN_ON(!IS_GEN2(dev_priv) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2459
2460                 intel_unpin_ringbuffer_obj(engine->buffer);
2461                 intel_ringbuffer_free(engine->buffer);
2462                 engine->buffer = NULL;
2463         }
2464
2465         if (engine->cleanup)
2466                 engine->cleanup(engine);
2467
2468         if (I915_NEED_GFX_HWS(dev_priv)) {
2469                 cleanup_status_page(engine);
2470         } else {
2471                 WARN_ON(engine->id != RCS);
2472                 cleanup_phys_status_page(engine);
2473         }
2474
2475         i915_cmd_parser_fini_ring(engine);
2476         i915_gem_batch_pool_fini(&engine->batch_pool);
2477
2478         intel_ring_context_unpin(dev_priv->kernel_context, engine);
2479
2480         engine->i915 = NULL;
2481 }
2482
2483 int intel_engine_idle(struct intel_engine_cs *engine)
2484 {
2485         struct drm_i915_gem_request *req;
2486
2487         /* Wait upon the last request to be completed */
2488         if (list_empty(&engine->request_list))
2489                 return 0;
2490
2491         req = list_entry(engine->request_list.prev,
2492                          struct drm_i915_gem_request,
2493                          list);
2494
2495         /* Make sure we do not trigger any retires */
2496         return __i915_wait_request(req,
2497                                    req->i915->mm.interruptible,
2498                                    NULL, NULL);
2499 }
2500
2501 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2502 {
2503         int ret;
2504
2505         /* Flush enough space to reduce the likelihood of waiting after
2506          * we start building the request - in which case we will just
2507          * have to repeat work.
2508          */
2509         request->reserved_space += LEGACY_REQUEST_SIZE;
2510
2511         request->ringbuf = request->engine->buffer;
2512
2513         ret = intel_ring_begin(request, 0);
2514         if (ret)
2515                 return ret;
2516
2517         request->reserved_space -= LEGACY_REQUEST_SIZE;
2518         return 0;
2519 }
2520
2521 static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
2522 {
2523         struct intel_ringbuffer *ringbuf = req->ringbuf;
2524         struct intel_engine_cs *engine = req->engine;
2525         struct drm_i915_gem_request *target;
2526
2527         intel_ring_update_space(ringbuf);
2528         if (ringbuf->space >= bytes)
2529                 return 0;
2530
2531         /*
2532          * Space is reserved in the ringbuffer for finalising the request,
2533          * as that cannot be allowed to fail. During request finalisation,
2534          * reserved_space is set to 0 to stop the overallocation and the
2535          * assumption is that then we never need to wait (which has the
2536          * risk of failing with EINTR).
2537          *
2538          * See also i915_gem_request_alloc() and i915_add_request().
2539          */
2540         GEM_BUG_ON(!req->reserved_space);
2541
2542         list_for_each_entry(target, &engine->request_list, list) {
2543                 unsigned space;
2544
2545                 /*
2546                  * The request queue is per-engine, so can contain requests
2547                  * from multiple ringbuffers. Here, we must ignore any that
2548                  * aren't from the ringbuffer we're considering.
2549                  */
2550                 if (target->ringbuf != ringbuf)
2551                         continue;
2552
2553                 /* Would completion of this request free enough space? */
2554                 space = __intel_ring_space(target->postfix, ringbuf->tail,
2555                                            ringbuf->size);
2556                 if (space >= bytes)
2557                         break;
2558         }
2559
2560         if (WARN_ON(&target->list == &engine->request_list))
2561                 return -ENOSPC;
2562
2563         return i915_wait_request(target);
2564 }
2565
2566 int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
2567 {
2568         struct intel_ringbuffer *ringbuf = req->ringbuf;
2569         int remain_actual = ringbuf->size - ringbuf->tail;
2570         int remain_usable = ringbuf->effective_size - ringbuf->tail;
2571         int bytes = num_dwords * sizeof(u32);
2572         int total_bytes, wait_bytes;
2573         bool need_wrap = false;
2574
2575         total_bytes = bytes + req->reserved_space;
2576
2577         if (unlikely(bytes > remain_usable)) {
2578                 /*
2579                  * Not enough space for the basic request. So need to flush
2580                  * out the remainder and then wait for base + reserved.
2581                  */
2582                 wait_bytes = remain_actual + total_bytes;
2583                 need_wrap = true;
2584         } else if (unlikely(total_bytes > remain_usable)) {
2585                 /*
2586                  * The base request will fit but the reserved space
2587                  * falls off the end. So we don't need an immediate wrap
2588                  * and only need to effectively wait for the reserved
2589                  * size space from the start of ringbuffer.
2590                  */
2591                 wait_bytes = remain_actual + req->reserved_space;
2592         } else {
2593                 /* No wrapping required, just waiting. */
2594                 wait_bytes = total_bytes;
2595         }
2596
2597         if (wait_bytes > ringbuf->space) {
2598                 int ret = wait_for_space(req, wait_bytes);
2599                 if (unlikely(ret))
2600                         return ret;
2601
2602                 intel_ring_update_space(ringbuf);
2603                 if (unlikely(ringbuf->space < wait_bytes))
2604                         return -EAGAIN;
2605         }
2606
2607         if (unlikely(need_wrap)) {
2608                 GEM_BUG_ON(remain_actual > ringbuf->space);
2609                 GEM_BUG_ON(ringbuf->tail + remain_actual > ringbuf->size);
2610
2611                 /* Fill the tail with MI_NOOP */
2612                 memset(ringbuf->virtual_start + ringbuf->tail,
2613                        0, remain_actual);
2614                 ringbuf->tail = 0;
2615                 ringbuf->space -= remain_actual;
2616         }
2617
2618         ringbuf->space -= bytes;
2619         GEM_BUG_ON(ringbuf->space < 0);
2620         return 0;
2621 }
2622
2623 /* Align the ring tail to a cacheline boundary */
2624 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2625 {
2626         struct intel_engine_cs *engine = req->engine;
2627         int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2628         int ret;
2629
2630         if (num_dwords == 0)
2631                 return 0;
2632
2633         num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2634         ret = intel_ring_begin(req, num_dwords);
2635         if (ret)
2636                 return ret;
2637
2638         while (num_dwords--)
2639                 intel_ring_emit(engine, MI_NOOP);
2640
2641         intel_ring_advance(engine);
2642
2643         return 0;
2644 }
2645
2646 void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
2647 {
2648         struct drm_i915_private *dev_priv = engine->i915;
2649
2650         /* Our semaphore implementation is strictly monotonic (i.e. we proceed
2651          * so long as the semaphore value in the register/page is greater
2652          * than the sync value), so whenever we reset the seqno,
2653          * so long as we reset the tracking semaphore value to 0, it will
2654          * always be before the next request's seqno. If we don't reset
2655          * the semaphore value, then when the seqno moves backwards all
2656          * future waits will complete instantly (causing rendering corruption).
2657          */
2658         if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
2659                 I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
2660                 I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
2661                 if (HAS_VEBOX(dev_priv))
2662                         I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
2663         }
2664         if (dev_priv->semaphore_obj) {
2665                 struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
2666                 struct page *page = i915_gem_object_get_dirty_page(obj, 0);
2667                 void *semaphores = kmap(page);
2668                 memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
2669                        0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
2670                 kunmap(page);
2671         }
2672         memset(engine->semaphore.sync_seqno, 0,
2673                sizeof(engine->semaphore.sync_seqno));
2674
2675         engine->set_seqno(engine, seqno);
2676         engine->last_submitted_seqno = seqno;
2677
2678         engine->hangcheck.seqno = seqno;
2679 }
2680
2681 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
2682                                      u32 value)
2683 {
2684         struct drm_i915_private *dev_priv = engine->i915;
2685
2686         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2687
2688        /* Every tail move must follow the sequence below */
2689
2690         /* Disable notification that the ring is IDLE. The GT
2691          * will then assume that it is busy and bring it out of rc6.
2692          */
2693         I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2694                       _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2695
2696         /* Clear the context id. Here be magic! */
2697         I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2698
2699         /* Wait for the ring not to be idle, i.e. for it to wake up. */
2700         if (intel_wait_for_register_fw(dev_priv,
2701                                        GEN6_BSD_SLEEP_PSMI_CONTROL,
2702                                        GEN6_BSD_SLEEP_INDICATOR,
2703                                        0,
2704                                        50))
2705                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2706
2707         /* Now that the ring is fully powered up, update the tail */
2708         I915_WRITE_FW(RING_TAIL(engine->mmio_base), value);
2709         POSTING_READ_FW(RING_TAIL(engine->mmio_base));
2710
2711         /* Let the ring send IDLE messages to the GT again,
2712          * and so let it sleep to conserve power when idle.
2713          */
2714         I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2715                       _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2716
2717         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2718 }
2719
2720 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2721                                u32 invalidate, u32 flush)
2722 {
2723         struct intel_engine_cs *engine = req->engine;
2724         uint32_t cmd;
2725         int ret;
2726
2727         ret = intel_ring_begin(req, 4);
2728         if (ret)
2729                 return ret;
2730
2731         cmd = MI_FLUSH_DW;
2732         if (INTEL_GEN(req->i915) >= 8)
2733                 cmd += 1;
2734
2735         /* We always require a command barrier so that subsequent
2736          * commands, such as breadcrumb interrupts, are strictly ordered
2737          * wrt the contents of the write cache being flushed to memory
2738          * (and thus being coherent from the CPU).
2739          */
2740         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2741
2742         /*
2743          * Bspec vol 1c.5 - video engine command streamer:
2744          * "If ENABLED, all TLBs will be invalidated once the flush
2745          * operation is complete. This bit is only valid when the
2746          * Post-Sync Operation field is a value of 1h or 3h."
2747          */
2748         if (invalidate & I915_GEM_GPU_DOMAINS)
2749                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2750
2751         intel_ring_emit(engine, cmd);
2752         intel_ring_emit(engine,
2753                         I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2754         if (INTEL_GEN(req->i915) >= 8) {
2755                 intel_ring_emit(engine, 0); /* upper addr */
2756                 intel_ring_emit(engine, 0); /* value */
2757         } else  {
2758                 intel_ring_emit(engine, 0);
2759                 intel_ring_emit(engine, MI_NOOP);
2760         }
2761         intel_ring_advance(engine);
2762         return 0;
2763 }
2764
2765 static int
2766 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2767                               u64 offset, u32 len,
2768                               unsigned dispatch_flags)
2769 {
2770         struct intel_engine_cs *engine = req->engine;
2771         bool ppgtt = USES_PPGTT(engine->dev) &&
2772                         !(dispatch_flags & I915_DISPATCH_SECURE);
2773         int ret;
2774
2775         ret = intel_ring_begin(req, 4);
2776         if (ret)
2777                 return ret;
2778
2779         /* FIXME(BDW): Address space and security selectors. */
2780         intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2781                         (dispatch_flags & I915_DISPATCH_RS ?
2782                          MI_BATCH_RESOURCE_STREAMER : 0));
2783         intel_ring_emit(engine, lower_32_bits(offset));
2784         intel_ring_emit(engine, upper_32_bits(offset));
2785         intel_ring_emit(engine, MI_NOOP);
2786         intel_ring_advance(engine);
2787
2788         return 0;
2789 }
2790
2791 static int
2792 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2793                              u64 offset, u32 len,
2794                              unsigned dispatch_flags)
2795 {
2796         struct intel_engine_cs *engine = req->engine;
2797         int ret;
2798
2799         ret = intel_ring_begin(req, 2);
2800         if (ret)
2801                 return ret;
2802
2803         intel_ring_emit(engine,
2804                         MI_BATCH_BUFFER_START |
2805                         (dispatch_flags & I915_DISPATCH_SECURE ?
2806                          0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2807                         (dispatch_flags & I915_DISPATCH_RS ?
2808                          MI_BATCH_RESOURCE_STREAMER : 0));
2809         /* bit0-7 is the length on GEN6+ */
2810         intel_ring_emit(engine, offset);
2811         intel_ring_advance(engine);
2812
2813         return 0;
2814 }
2815
2816 static int
2817 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2818                               u64 offset, u32 len,
2819                               unsigned dispatch_flags)
2820 {
2821         struct intel_engine_cs *engine = req->engine;
2822         int ret;
2823
2824         ret = intel_ring_begin(req, 2);
2825         if (ret)
2826                 return ret;
2827
2828         intel_ring_emit(engine,
2829                         MI_BATCH_BUFFER_START |
2830                         (dispatch_flags & I915_DISPATCH_SECURE ?
2831                          0 : MI_BATCH_NON_SECURE_I965));
2832         /* bit0-7 is the length on GEN6+ */
2833         intel_ring_emit(engine, offset);
2834         intel_ring_advance(engine);
2835
2836         return 0;
2837 }
2838
2839 /* Blitter support (SandyBridge+) */
2840
2841 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2842                            u32 invalidate, u32 flush)
2843 {
2844         struct intel_engine_cs *engine = req->engine;
2845         uint32_t cmd;
2846         int ret;
2847
2848         ret = intel_ring_begin(req, 4);
2849         if (ret)
2850                 return ret;
2851
2852         cmd = MI_FLUSH_DW;
2853         if (INTEL_GEN(req->i915) >= 8)
2854                 cmd += 1;
2855
2856         /* We always require a command barrier so that subsequent
2857          * commands, such as breadcrumb interrupts, are strictly ordered
2858          * wrt the contents of the write cache being flushed to memory
2859          * (and thus being coherent from the CPU).
2860          */
2861         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2862
2863         /*
2864          * Bspec vol 1c.3 - blitter engine command streamer:
2865          * "If ENABLED, all TLBs will be invalidated once the flush
2866          * operation is complete. This bit is only valid when the
2867          * Post-Sync Operation field is a value of 1h or 3h."
2868          */
2869         if (invalidate & I915_GEM_DOMAIN_RENDER)
2870                 cmd |= MI_INVALIDATE_TLB;
2871         intel_ring_emit(engine, cmd);
2872         intel_ring_emit(engine,
2873                         I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2874         if (INTEL_GEN(req->i915) >= 8) {
2875                 intel_ring_emit(engine, 0); /* upper addr */
2876                 intel_ring_emit(engine, 0); /* value */
2877         } else  {
2878                 intel_ring_emit(engine, 0);
2879                 intel_ring_emit(engine, MI_NOOP);
2880         }
2881         intel_ring_advance(engine);
2882
2883         return 0;
2884 }
2885
2886 static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
2887                                        struct intel_engine_cs *engine)
2888 {
2889         struct drm_i915_gem_object *obj;
2890         int ret, i;
2891
2892         if (!i915_semaphore_is_enabled(dev_priv))
2893                 return;
2894
2895         if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore_obj) {
2896                 obj = i915_gem_object_create(dev_priv->dev, 4096);
2897                 if (IS_ERR(obj)) {
2898                         DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2899                         i915.semaphores = 0;
2900                 } else {
2901                         i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2902                         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2903                         if (ret != 0) {
2904                                 drm_gem_object_unreference(&obj->base);
2905                                 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2906                                 i915.semaphores = 0;
2907                         } else {
2908                                 dev_priv->semaphore_obj = obj;
2909                         }
2910                 }
2911         }
2912
2913         if (!i915_semaphore_is_enabled(dev_priv))
2914                 return;
2915
2916         if (INTEL_GEN(dev_priv) >= 8) {
2917                 u64 offset = i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj);
2918
2919                 engine->semaphore.sync_to = gen8_ring_sync;
2920                 engine->semaphore.signal = gen8_xcs_signal;
2921
2922                 for (i = 0; i < I915_NUM_ENGINES; i++) {
2923                         u64 ring_offset;
2924
2925                         if (i != engine->id)
2926                                 ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
2927                         else
2928                                 ring_offset = MI_SEMAPHORE_SYNC_INVALID;
2929
2930                         engine->semaphore.signal_ggtt[i] = ring_offset;
2931                 }
2932         } else if (INTEL_GEN(dev_priv) >= 6) {
2933                 engine->semaphore.sync_to = gen6_ring_sync;
2934                 engine->semaphore.signal = gen6_signal;
2935
2936                 /*
2937                  * The current semaphore is only applied on pre-gen8
2938                  * platform.  And there is no VCS2 ring on the pre-gen8
2939                  * platform. So the semaphore between RCS and VCS2 is
2940                  * initialized as INVALID.  Gen8 will initialize the
2941                  * sema between VCS2 and RCS later.
2942                  */
2943                 for (i = 0; i < I915_NUM_ENGINES; i++) {
2944                         static const struct {
2945                                 u32 wait_mbox;
2946                                 i915_reg_t mbox_reg;
2947                         } sem_data[I915_NUM_ENGINES][I915_NUM_ENGINES] = {
2948                                 [RCS] = {
2949                                         [VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
2950                                         [BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
2951                                         [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2952                                 },
2953                                 [VCS] = {
2954                                         [RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
2955                                         [BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
2956                                         [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2957                                 },
2958                                 [BCS] = {
2959                                         [RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
2960                                         [VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
2961                                         [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2962                                 },
2963                                 [VECS] = {
2964                                         [RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
2965                                         [VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
2966                                         [BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2967                                 },
2968                         };
2969                         u32 wait_mbox;
2970                         i915_reg_t mbox_reg;
2971
2972                         if (i == engine->id || i == VCS2) {
2973                                 wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
2974                                 mbox_reg = GEN6_NOSYNC;
2975                         } else {
2976                                 wait_mbox = sem_data[engine->id][i].wait_mbox;
2977                                 mbox_reg = sem_data[engine->id][i].mbox_reg;
2978                         }
2979
2980                         engine->semaphore.mbox.wait[i] = wait_mbox;
2981                         engine->semaphore.mbox.signal[i] = mbox_reg;
2982                 }
2983         }
2984 }
2985
2986 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2987                                       struct intel_engine_cs *engine)
2988 {
2989         engine->init_hw = init_ring_common;
2990         engine->write_tail = ring_write_tail;
2991         engine->get_seqno = ring_get_seqno;
2992         engine->set_seqno = ring_set_seqno;
2993
2994         if (INTEL_GEN(dev_priv) >= 8) {
2995                 engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2996                 engine->add_request = gen6_add_request;
2997                 engine->irq_seqno_barrier = gen6_seqno_barrier;
2998         } else if (INTEL_GEN(dev_priv) >= 6) {
2999                 engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3000                 engine->add_request = gen6_add_request;
3001                 engine->irq_seqno_barrier = gen6_seqno_barrier;
3002         } else {
3003                 engine->dispatch_execbuffer = i965_dispatch_execbuffer;
3004                 engine->add_request = i9xx_add_request;
3005         }
3006
3007         if (INTEL_GEN(dev_priv) >= 8) {
3008                 engine->irq_get = gen8_ring_get_irq;
3009                 engine->irq_put = gen8_ring_put_irq;
3010         } else if (INTEL_GEN(dev_priv) >= 6) {
3011                 engine->irq_get = gen6_ring_get_irq;
3012                 engine->irq_put = gen6_ring_put_irq;
3013         } else if (INTEL_GEN(dev_priv) >= 5) {
3014                 engine->irq_get = gen5_ring_get_irq;
3015                 engine->irq_put = gen5_ring_put_irq;
3016         } else if (INTEL_GEN(dev_priv) >= 3) {
3017                 engine->irq_get = i9xx_ring_get_irq;
3018                 engine->irq_put = i9xx_ring_put_irq;
3019         } else {
3020                 engine->irq_get = i8xx_ring_get_irq;
3021                 engine->irq_put = i8xx_ring_put_irq;
3022         }
3023
3024         intel_ring_init_semaphores(dev_priv, engine);
3025 }
3026
3027 int intel_init_render_ring_buffer(struct drm_device *dev)
3028 {
3029         struct drm_i915_private *dev_priv = dev->dev_private;
3030         struct intel_engine_cs *engine = &dev_priv->engine[RCS];
3031         struct drm_i915_gem_object *obj;
3032         int ret;
3033
3034         engine->name = "render ring";
3035         engine->id = RCS;
3036         engine->exec_id = I915_EXEC_RENDER;
3037         engine->hw_id = 0;
3038         engine->mmio_base = RENDER_RING_BASE;
3039
3040         intel_ring_default_vfuncs(dev_priv, engine);
3041
3042         if (INTEL_GEN(dev_priv) >= 8) {
3043                 engine->init_context = intel_rcs_ctx_init;
3044                 engine->add_request = gen8_render_add_request;
3045                 engine->flush = gen8_render_ring_flush;
3046                 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
3047                 if (i915_semaphore_is_enabled(dev_priv))
3048                         engine->semaphore.signal = gen8_rcs_signal;
3049         } else if (INTEL_GEN(dev_priv) >= 6) {
3050                 engine->init_context = intel_rcs_ctx_init;
3051                 engine->flush = gen7_render_ring_flush;
3052                 if (IS_GEN6(dev_priv))
3053                         engine->flush = gen6_render_ring_flush;
3054                 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
3055         } else if (IS_GEN5(dev_priv)) {
3056                 engine->add_request = pc_render_add_request;
3057                 engine->flush = gen4_render_ring_flush;
3058                 engine->get_seqno = pc_render_get_seqno;
3059                 engine->set_seqno = pc_render_set_seqno;
3060                 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
3061                                         GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
3062         } else {
3063                 if (INTEL_GEN(dev_priv) < 4)
3064                         engine->flush = gen2_render_ring_flush;
3065                 else
3066                         engine->flush = gen4_render_ring_flush;
3067                 engine->irq_enable_mask = I915_USER_INTERRUPT;
3068         }
3069
3070         if (IS_HASWELL(dev_priv))
3071                 engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
3072         else if (IS_I830(dev_priv) || IS_845G(dev_priv))
3073                 engine->dispatch_execbuffer = i830_dispatch_execbuffer;
3074         else if (INTEL_GEN(dev_priv) <= 3)
3075                 engine->dispatch_execbuffer = i915_dispatch_execbuffer;
3076         engine->init_hw = init_render_ring;
3077         engine->cleanup = render_ring_cleanup;
3078
3079         /* Workaround batchbuffer to combat CS tlb bug. */
3080         if (HAS_BROKEN_CS_TLB(dev_priv)) {
3081                 obj = i915_gem_object_create(dev, I830_WA_SIZE);
3082                 if (IS_ERR(obj)) {
3083                         DRM_ERROR("Failed to allocate batch bo\n");
3084                         return PTR_ERR(obj);
3085                 }
3086
3087                 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
3088                 if (ret != 0) {
3089                         drm_gem_object_unreference(&obj->base);
3090                         DRM_ERROR("Failed to ping batch bo\n");
3091                         return ret;
3092                 }
3093
3094                 engine->scratch.obj = obj;
3095                 engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
3096         }
3097
3098         ret = intel_init_ring_buffer(dev, engine);
3099         if (ret)
3100                 return ret;
3101
3102         if (INTEL_GEN(dev_priv) >= 5) {
3103                 ret = intel_init_pipe_control(engine);
3104                 if (ret)
3105                         return ret;
3106         }
3107
3108         return 0;
3109 }
3110
3111 int intel_init_bsd_ring_buffer(struct drm_device *dev)
3112 {
3113         struct drm_i915_private *dev_priv = dev->dev_private;
3114         struct intel_engine_cs *engine = &dev_priv->engine[VCS];
3115
3116         engine->name = "bsd ring";
3117         engine->id = VCS;
3118         engine->exec_id = I915_EXEC_BSD;
3119         engine->hw_id = 1;
3120
3121         intel_ring_default_vfuncs(dev_priv, engine);
3122
3123         if (INTEL_GEN(dev_priv) >= 6) {
3124                 engine->mmio_base = GEN6_BSD_RING_BASE;
3125                 /* gen6 bsd needs a special wa for tail updates */
3126                 if (IS_GEN6(dev_priv))
3127                         engine->write_tail = gen6_bsd_ring_write_tail;
3128                 engine->flush = gen6_bsd_ring_flush;
3129                 if (INTEL_GEN(dev_priv) >= 8)
3130                         engine->irq_enable_mask =
3131                                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
3132                 else
3133                         engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
3134         } else {
3135                 engine->mmio_base = BSD_RING_BASE;
3136                 engine->flush = bsd_ring_flush;
3137                 if (IS_GEN5(dev_priv))
3138                         engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
3139                 else
3140                         engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
3141         }
3142
3143         return intel_init_ring_buffer(dev, engine);
3144 }
3145
3146 /**
3147  * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
3148  */
3149 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
3150 {
3151         struct drm_i915_private *dev_priv = dev->dev_private;
3152         struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
3153
3154         engine->name = "bsd2 ring";
3155         engine->id = VCS2;
3156         engine->exec_id = I915_EXEC_BSD;
3157         engine->hw_id = 4;
3158         engine->mmio_base = GEN8_BSD2_RING_BASE;
3159
3160         intel_ring_default_vfuncs(dev_priv, engine);
3161
3162         engine->flush = gen6_bsd_ring_flush;
3163         engine->irq_enable_mask =
3164                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
3165
3166         return intel_init_ring_buffer(dev, engine);
3167 }
3168
3169 int intel_init_blt_ring_buffer(struct drm_device *dev)
3170 {
3171         struct drm_i915_private *dev_priv = dev->dev_private;
3172         struct intel_engine_cs *engine = &dev_priv->engine[BCS];
3173
3174         engine->name = "blitter ring";
3175         engine->id = BCS;
3176         engine->exec_id = I915_EXEC_BLT;
3177         engine->hw_id = 2;
3178         engine->mmio_base = BLT_RING_BASE;
3179
3180         intel_ring_default_vfuncs(dev_priv, engine);
3181
3182         engine->flush = gen6_ring_flush;
3183         if (INTEL_GEN(dev_priv) >= 8)
3184                 engine->irq_enable_mask =
3185                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
3186         else
3187                 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
3188
3189         return intel_init_ring_buffer(dev, engine);
3190 }
3191
3192 int intel_init_vebox_ring_buffer(struct drm_device *dev)
3193 {
3194         struct drm_i915_private *dev_priv = dev->dev_private;
3195         struct intel_engine_cs *engine = &dev_priv->engine[VECS];
3196
3197         engine->name = "video enhancement ring";
3198         engine->id = VECS;
3199         engine->exec_id = I915_EXEC_VEBOX;
3200         engine->hw_id = 3;
3201         engine->mmio_base = VEBOX_RING_BASE;
3202
3203         intel_ring_default_vfuncs(dev_priv, engine);
3204
3205         engine->flush = gen6_ring_flush;
3206
3207         if (INTEL_GEN(dev_priv) >= 8) {
3208                 engine->irq_enable_mask =
3209                         GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
3210         } else {
3211                 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
3212                 engine->irq_get = hsw_vebox_get_irq;
3213                 engine->irq_put = hsw_vebox_put_irq;
3214         }
3215
3216         return intel_init_ring_buffer(dev, engine);
3217 }
3218
3219 int
3220 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3221 {
3222         struct intel_engine_cs *engine = req->engine;
3223         int ret;
3224
3225         if (!engine->gpu_caches_dirty)
3226                 return 0;
3227
3228         ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
3229         if (ret)
3230                 return ret;
3231
3232         trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3233
3234         engine->gpu_caches_dirty = false;
3235         return 0;
3236 }
3237
3238 int
3239 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3240 {
3241         struct intel_engine_cs *engine = req->engine;
3242         uint32_t flush_domains;
3243         int ret;
3244
3245         flush_domains = 0;
3246         if (engine->gpu_caches_dirty)
3247                 flush_domains = I915_GEM_GPU_DOMAINS;
3248
3249         ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3250         if (ret)
3251                 return ret;
3252
3253         trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3254
3255         engine->gpu_caches_dirty = false;
3256         return 0;
3257 }
3258
3259 void
3260 intel_stop_engine(struct intel_engine_cs *engine)
3261 {
3262         int ret;
3263
3264         if (!intel_engine_initialized(engine))
3265                 return;
3266
3267         ret = intel_engine_idle(engine);
3268         if (ret)
3269                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3270                           engine->name, ret);
3271
3272         stop_ring(engine);
3273 }