Merge remote-tracking branch 'airlied/drm-next' into drm-intel-next-queued
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36
37 /* Rough estimate of the typical request size, performing a flush,
38  * set-context and then emitting the batch.
39  */
40 #define LEGACY_REQUEST_SIZE 200
41
42 int __intel_ring_space(int head, int tail, int size)
43 {
44         int space = head - tail;
45         if (space <= 0)
46                 space += size;
47         return space - I915_RING_FREE_SPACE;
48 }
49
50 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
51 {
52         if (ringbuf->last_retired_head != -1) {
53                 ringbuf->head = ringbuf->last_retired_head;
54                 ringbuf->last_retired_head = -1;
55         }
56
57         ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
58                                             ringbuf->tail, ringbuf->size);
59 }
60
61 bool intel_engine_stopped(struct intel_engine_cs *engine)
62 {
63         struct drm_i915_private *dev_priv = engine->i915;
64         return dev_priv->gpu_error.stop_rings & intel_engine_flag(engine);
65 }
66
67 static void __intel_ring_advance(struct intel_engine_cs *engine)
68 {
69         struct intel_ringbuffer *ringbuf = engine->buffer;
70         ringbuf->tail &= ringbuf->size - 1;
71         if (intel_engine_stopped(engine))
72                 return;
73         engine->write_tail(engine, ringbuf->tail);
74 }
75
76 static int
77 gen2_render_ring_flush(struct drm_i915_gem_request *req,
78                        u32      invalidate_domains,
79                        u32      flush_domains)
80 {
81         struct intel_engine_cs *engine = req->engine;
82         u32 cmd;
83         int ret;
84
85         cmd = MI_FLUSH;
86         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
87                 cmd |= MI_NO_WRITE_FLUSH;
88
89         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
90                 cmd |= MI_READ_FLUSH;
91
92         ret = intel_ring_begin(req, 2);
93         if (ret)
94                 return ret;
95
96         intel_ring_emit(engine, cmd);
97         intel_ring_emit(engine, MI_NOOP);
98         intel_ring_advance(engine);
99
100         return 0;
101 }
102
103 static int
104 gen4_render_ring_flush(struct drm_i915_gem_request *req,
105                        u32      invalidate_domains,
106                        u32      flush_domains)
107 {
108         struct intel_engine_cs *engine = req->engine;
109         u32 cmd;
110         int ret;
111
112         /*
113          * read/write caches:
114          *
115          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
116          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
117          * also flushed at 2d versus 3d pipeline switches.
118          *
119          * read-only caches:
120          *
121          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
122          * MI_READ_FLUSH is set, and is always flushed on 965.
123          *
124          * I915_GEM_DOMAIN_COMMAND may not exist?
125          *
126          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
127          * invalidated when MI_EXE_FLUSH is set.
128          *
129          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
130          * invalidated with every MI_FLUSH.
131          *
132          * TLBs:
133          *
134          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
135          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
136          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
137          * are flushed at any MI_FLUSH.
138          */
139
140         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
141         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
142                 cmd &= ~MI_NO_WRITE_FLUSH;
143         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
144                 cmd |= MI_EXE_FLUSH;
145
146         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
147             (IS_G4X(req->i915) || IS_GEN5(req->i915)))
148                 cmd |= MI_INVALIDATE_ISP;
149
150         ret = intel_ring_begin(req, 2);
151         if (ret)
152                 return ret;
153
154         intel_ring_emit(engine, cmd);
155         intel_ring_emit(engine, MI_NOOP);
156         intel_ring_advance(engine);
157
158         return 0;
159 }
160
161 /**
162  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
163  * implementing two workarounds on gen6.  From section 1.4.7.1
164  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
165  *
166  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
167  * produced by non-pipelined state commands), software needs to first
168  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
169  * 0.
170  *
171  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
172  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
173  *
174  * And the workaround for these two requires this workaround first:
175  *
176  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
177  * BEFORE the pipe-control with a post-sync op and no write-cache
178  * flushes.
179  *
180  * And this last workaround is tricky because of the requirements on
181  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
182  * volume 2 part 1:
183  *
184  *     "1 of the following must also be set:
185  *      - Render Target Cache Flush Enable ([12] of DW1)
186  *      - Depth Cache Flush Enable ([0] of DW1)
187  *      - Stall at Pixel Scoreboard ([1] of DW1)
188  *      - Depth Stall ([13] of DW1)
189  *      - Post-Sync Operation ([13] of DW1)
190  *      - Notify Enable ([8] of DW1)"
191  *
192  * The cache flushes require the workaround flush that triggered this
193  * one, so we can't use it.  Depth stall would trigger the same.
194  * Post-sync nonzero is what triggered this second workaround, so we
195  * can't use that one either.  Notify enable is IRQs, which aren't
196  * really our business.  That leaves only stall at scoreboard.
197  */
198 static int
199 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
200 {
201         struct intel_engine_cs *engine = req->engine;
202         u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
203         int ret;
204
205         ret = intel_ring_begin(req, 6);
206         if (ret)
207                 return ret;
208
209         intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
210         intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
211                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
212         intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
213         intel_ring_emit(engine, 0); /* low dword */
214         intel_ring_emit(engine, 0); /* high dword */
215         intel_ring_emit(engine, MI_NOOP);
216         intel_ring_advance(engine);
217
218         ret = intel_ring_begin(req, 6);
219         if (ret)
220                 return ret;
221
222         intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
223         intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
224         intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
225         intel_ring_emit(engine, 0);
226         intel_ring_emit(engine, 0);
227         intel_ring_emit(engine, MI_NOOP);
228         intel_ring_advance(engine);
229
230         return 0;
231 }
232
233 static int
234 gen6_render_ring_flush(struct drm_i915_gem_request *req,
235                        u32 invalidate_domains, u32 flush_domains)
236 {
237         struct intel_engine_cs *engine = req->engine;
238         u32 flags = 0;
239         u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
240         int ret;
241
242         /* Force SNB workarounds for PIPE_CONTROL flushes */
243         ret = intel_emit_post_sync_nonzero_flush(req);
244         if (ret)
245                 return ret;
246
247         /* Just flush everything.  Experiments have shown that reducing the
248          * number of bits based on the write domains has little performance
249          * impact.
250          */
251         if (flush_domains) {
252                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
253                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
254                 /*
255                  * Ensure that any following seqno writes only happen
256                  * when the render cache is indeed flushed.
257                  */
258                 flags |= PIPE_CONTROL_CS_STALL;
259         }
260         if (invalidate_domains) {
261                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
262                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
263                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
264                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
265                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
266                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
267                 /*
268                  * TLB invalidate requires a post-sync write.
269                  */
270                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
271         }
272
273         ret = intel_ring_begin(req, 4);
274         if (ret)
275                 return ret;
276
277         intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
278         intel_ring_emit(engine, flags);
279         intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
280         intel_ring_emit(engine, 0);
281         intel_ring_advance(engine);
282
283         return 0;
284 }
285
286 static int
287 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
288 {
289         struct intel_engine_cs *engine = req->engine;
290         int ret;
291
292         ret = intel_ring_begin(req, 4);
293         if (ret)
294                 return ret;
295
296         intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
297         intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
298                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
299         intel_ring_emit(engine, 0);
300         intel_ring_emit(engine, 0);
301         intel_ring_advance(engine);
302
303         return 0;
304 }
305
306 static int
307 gen7_render_ring_flush(struct drm_i915_gem_request *req,
308                        u32 invalidate_domains, u32 flush_domains)
309 {
310         struct intel_engine_cs *engine = req->engine;
311         u32 flags = 0;
312         u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
313         int ret;
314
315         /*
316          * Ensure that any following seqno writes only happen when the render
317          * cache is indeed flushed.
318          *
319          * Workaround: 4th PIPE_CONTROL command (except the ones with only
320          * read-cache invalidate bits set) must have the CS_STALL bit set. We
321          * don't try to be clever and just set it unconditionally.
322          */
323         flags |= PIPE_CONTROL_CS_STALL;
324
325         /* Just flush everything.  Experiments have shown that reducing the
326          * number of bits based on the write domains has little performance
327          * impact.
328          */
329         if (flush_domains) {
330                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
331                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
332                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
333                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
334         }
335         if (invalidate_domains) {
336                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
337                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
338                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
339                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
340                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
341                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
342                 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
343                 /*
344                  * TLB invalidate requires a post-sync write.
345                  */
346                 flags |= PIPE_CONTROL_QW_WRITE;
347                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
348
349                 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
350
351                 /* Workaround: we must issue a pipe_control with CS-stall bit
352                  * set before a pipe_control command that has the state cache
353                  * invalidate bit set. */
354                 gen7_render_ring_cs_stall_wa(req);
355         }
356
357         ret = intel_ring_begin(req, 4);
358         if (ret)
359                 return ret;
360
361         intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
362         intel_ring_emit(engine, flags);
363         intel_ring_emit(engine, scratch_addr);
364         intel_ring_emit(engine, 0);
365         intel_ring_advance(engine);
366
367         return 0;
368 }
369
370 static int
371 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
372                        u32 flags, u32 scratch_addr)
373 {
374         struct intel_engine_cs *engine = req->engine;
375         int ret;
376
377         ret = intel_ring_begin(req, 6);
378         if (ret)
379                 return ret;
380
381         intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
382         intel_ring_emit(engine, flags);
383         intel_ring_emit(engine, scratch_addr);
384         intel_ring_emit(engine, 0);
385         intel_ring_emit(engine, 0);
386         intel_ring_emit(engine, 0);
387         intel_ring_advance(engine);
388
389         return 0;
390 }
391
392 static int
393 gen8_render_ring_flush(struct drm_i915_gem_request *req,
394                        u32 invalidate_domains, u32 flush_domains)
395 {
396         u32 flags = 0;
397         u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
398         int ret;
399
400         flags |= PIPE_CONTROL_CS_STALL;
401
402         if (flush_domains) {
403                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
404                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
405                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
406                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
407         }
408         if (invalidate_domains) {
409                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
410                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
411                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
412                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
413                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
414                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
415                 flags |= PIPE_CONTROL_QW_WRITE;
416                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
417
418                 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
419                 ret = gen8_emit_pipe_control(req,
420                                              PIPE_CONTROL_CS_STALL |
421                                              PIPE_CONTROL_STALL_AT_SCOREBOARD,
422                                              0);
423                 if (ret)
424                         return ret;
425         }
426
427         return gen8_emit_pipe_control(req, flags, scratch_addr);
428 }
429
430 static void ring_write_tail(struct intel_engine_cs *engine,
431                             u32 value)
432 {
433         struct drm_i915_private *dev_priv = engine->i915;
434         I915_WRITE_TAIL(engine, value);
435 }
436
437 u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
438 {
439         struct drm_i915_private *dev_priv = engine->i915;
440         u64 acthd;
441
442         if (INTEL_GEN(dev_priv) >= 8)
443                 acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
444                                          RING_ACTHD_UDW(engine->mmio_base));
445         else if (INTEL_GEN(dev_priv) >= 4)
446                 acthd = I915_READ(RING_ACTHD(engine->mmio_base));
447         else
448                 acthd = I915_READ(ACTHD);
449
450         return acthd;
451 }
452
453 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
454 {
455         struct drm_i915_private *dev_priv = engine->i915;
456         u32 addr;
457
458         addr = dev_priv->status_page_dmah->busaddr;
459         if (INTEL_GEN(dev_priv) >= 4)
460                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
461         I915_WRITE(HWS_PGA, addr);
462 }
463
464 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
465 {
466         struct drm_i915_private *dev_priv = engine->i915;
467         i915_reg_t mmio;
468
469         /* The ring status page addresses are no longer next to the rest of
470          * the ring registers as of gen7.
471          */
472         if (IS_GEN7(dev_priv)) {
473                 switch (engine->id) {
474                 case RCS:
475                         mmio = RENDER_HWS_PGA_GEN7;
476                         break;
477                 case BCS:
478                         mmio = BLT_HWS_PGA_GEN7;
479                         break;
480                 /*
481                  * VCS2 actually doesn't exist on Gen7. Only shut up
482                  * gcc switch check warning
483                  */
484                 case VCS2:
485                 case VCS:
486                         mmio = BSD_HWS_PGA_GEN7;
487                         break;
488                 case VECS:
489                         mmio = VEBOX_HWS_PGA_GEN7;
490                         break;
491                 }
492         } else if (IS_GEN6(dev_priv)) {
493                 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
494         } else {
495                 /* XXX: gen8 returns to sanity */
496                 mmio = RING_HWS_PGA(engine->mmio_base);
497         }
498
499         I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
500         POSTING_READ(mmio);
501
502         /*
503          * Flush the TLB for this page
504          *
505          * FIXME: These two bits have disappeared on gen8, so a question
506          * arises: do we still need this and if so how should we go about
507          * invalidating the TLB?
508          */
509         if (IS_GEN(dev_priv, 6, 7)) {
510                 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
511
512                 /* ring should be idle before issuing a sync flush*/
513                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
514
515                 I915_WRITE(reg,
516                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
517                                               INSTPM_SYNC_FLUSH));
518                 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
519                              1000))
520                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
521                                   engine->name);
522         }
523 }
524
525 static bool stop_ring(struct intel_engine_cs *engine)
526 {
527         struct drm_i915_private *dev_priv = engine->i915;
528
529         if (!IS_GEN2(dev_priv)) {
530                 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
531                 if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
532                         DRM_ERROR("%s : timed out trying to stop ring\n",
533                                   engine->name);
534                         /* Sometimes we observe that the idle flag is not
535                          * set even though the ring is empty. So double
536                          * check before giving up.
537                          */
538                         if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
539                                 return false;
540                 }
541         }
542
543         I915_WRITE_CTL(engine, 0);
544         I915_WRITE_HEAD(engine, 0);
545         engine->write_tail(engine, 0);
546
547         if (!IS_GEN2(dev_priv)) {
548                 (void)I915_READ_CTL(engine);
549                 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
550         }
551
552         return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
553 }
554
555 void intel_engine_init_hangcheck(struct intel_engine_cs *engine)
556 {
557         memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
558 }
559
560 static int init_ring_common(struct intel_engine_cs *engine)
561 {
562         struct drm_i915_private *dev_priv = engine->i915;
563         struct intel_ringbuffer *ringbuf = engine->buffer;
564         struct drm_i915_gem_object *obj = ringbuf->obj;
565         int ret = 0;
566
567         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
568
569         if (!stop_ring(engine)) {
570                 /* G45 ring initialization often fails to reset head to zero */
571                 DRM_DEBUG_KMS("%s head not reset to zero "
572                               "ctl %08x head %08x tail %08x start %08x\n",
573                               engine->name,
574                               I915_READ_CTL(engine),
575                               I915_READ_HEAD(engine),
576                               I915_READ_TAIL(engine),
577                               I915_READ_START(engine));
578
579                 if (!stop_ring(engine)) {
580                         DRM_ERROR("failed to set %s head to zero "
581                                   "ctl %08x head %08x tail %08x start %08x\n",
582                                   engine->name,
583                                   I915_READ_CTL(engine),
584                                   I915_READ_HEAD(engine),
585                                   I915_READ_TAIL(engine),
586                                   I915_READ_START(engine));
587                         ret = -EIO;
588                         goto out;
589                 }
590         }
591
592         if (I915_NEED_GFX_HWS(dev_priv))
593                 intel_ring_setup_status_page(engine);
594         else
595                 ring_setup_phys_status_page(engine);
596
597         /* Enforce ordering by reading HEAD register back */
598         I915_READ_HEAD(engine);
599
600         /* Initialize the ring. This must happen _after_ we've cleared the ring
601          * registers with the above sequence (the readback of the HEAD registers
602          * also enforces ordering), otherwise the hw might lose the new ring
603          * register values. */
604         I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
605
606         /* WaClearRingBufHeadRegAtInit:ctg,elk */
607         if (I915_READ_HEAD(engine))
608                 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
609                           engine->name, I915_READ_HEAD(engine));
610         I915_WRITE_HEAD(engine, 0);
611         (void)I915_READ_HEAD(engine);
612
613         I915_WRITE_CTL(engine,
614                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
615                         | RING_VALID);
616
617         /* If the head is still not zero, the ring is dead */
618         if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
619                      I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
620                      (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
621                 DRM_ERROR("%s initialization failed "
622                           "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
623                           engine->name,
624                           I915_READ_CTL(engine),
625                           I915_READ_CTL(engine) & RING_VALID,
626                           I915_READ_HEAD(engine), I915_READ_TAIL(engine),
627                           I915_READ_START(engine),
628                           (unsigned long)i915_gem_obj_ggtt_offset(obj));
629                 ret = -EIO;
630                 goto out;
631         }
632
633         ringbuf->last_retired_head = -1;
634         ringbuf->head = I915_READ_HEAD(engine);
635         ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
636         intel_ring_update_space(ringbuf);
637
638         intel_engine_init_hangcheck(engine);
639
640 out:
641         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
642
643         return ret;
644 }
645
646 void
647 intel_fini_pipe_control(struct intel_engine_cs *engine)
648 {
649         if (engine->scratch.obj == NULL)
650                 return;
651
652         if (INTEL_GEN(engine->i915) >= 5) {
653                 kunmap(sg_page(engine->scratch.obj->pages->sgl));
654                 i915_gem_object_ggtt_unpin(engine->scratch.obj);
655         }
656
657         drm_gem_object_unreference(&engine->scratch.obj->base);
658         engine->scratch.obj = NULL;
659 }
660
661 int
662 intel_init_pipe_control(struct intel_engine_cs *engine)
663 {
664         int ret;
665
666         WARN_ON(engine->scratch.obj);
667
668         engine->scratch.obj = i915_gem_object_create(engine->i915->dev, 4096);
669         if (IS_ERR(engine->scratch.obj)) {
670                 DRM_ERROR("Failed to allocate seqno page\n");
671                 ret = PTR_ERR(engine->scratch.obj);
672                 engine->scratch.obj = NULL;
673                 goto err;
674         }
675
676         ret = i915_gem_object_set_cache_level(engine->scratch.obj,
677                                               I915_CACHE_LLC);
678         if (ret)
679                 goto err_unref;
680
681         ret = i915_gem_obj_ggtt_pin(engine->scratch.obj, 4096, 0);
682         if (ret)
683                 goto err_unref;
684
685         engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(engine->scratch.obj);
686         engine->scratch.cpu_page = kmap(sg_page(engine->scratch.obj->pages->sgl));
687         if (engine->scratch.cpu_page == NULL) {
688                 ret = -ENOMEM;
689                 goto err_unpin;
690         }
691
692         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
693                          engine->name, engine->scratch.gtt_offset);
694         return 0;
695
696 err_unpin:
697         i915_gem_object_ggtt_unpin(engine->scratch.obj);
698 err_unref:
699         drm_gem_object_unreference(&engine->scratch.obj->base);
700 err:
701         return ret;
702 }
703
704 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
705 {
706         struct intel_engine_cs *engine = req->engine;
707         struct i915_workarounds *w = &req->i915->workarounds;
708         int ret, i;
709
710         if (w->count == 0)
711                 return 0;
712
713         engine->gpu_caches_dirty = true;
714         ret = intel_ring_flush_all_caches(req);
715         if (ret)
716                 return ret;
717
718         ret = intel_ring_begin(req, (w->count * 2 + 2));
719         if (ret)
720                 return ret;
721
722         intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
723         for (i = 0; i < w->count; i++) {
724                 intel_ring_emit_reg(engine, w->reg[i].addr);
725                 intel_ring_emit(engine, w->reg[i].value);
726         }
727         intel_ring_emit(engine, MI_NOOP);
728
729         intel_ring_advance(engine);
730
731         engine->gpu_caches_dirty = true;
732         ret = intel_ring_flush_all_caches(req);
733         if (ret)
734                 return ret;
735
736         DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
737
738         return 0;
739 }
740
741 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
742 {
743         int ret;
744
745         ret = intel_ring_workarounds_emit(req);
746         if (ret != 0)
747                 return ret;
748
749         ret = i915_gem_render_state_init(req);
750         if (ret)
751                 return ret;
752
753         return 0;
754 }
755
756 static int wa_add(struct drm_i915_private *dev_priv,
757                   i915_reg_t addr,
758                   const u32 mask, const u32 val)
759 {
760         const u32 idx = dev_priv->workarounds.count;
761
762         if (WARN_ON(idx >= I915_MAX_WA_REGS))
763                 return -ENOSPC;
764
765         dev_priv->workarounds.reg[idx].addr = addr;
766         dev_priv->workarounds.reg[idx].value = val;
767         dev_priv->workarounds.reg[idx].mask = mask;
768
769         dev_priv->workarounds.count++;
770
771         return 0;
772 }
773
774 #define WA_REG(addr, mask, val) do { \
775                 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
776                 if (r) \
777                         return r; \
778         } while (0)
779
780 #define WA_SET_BIT_MASKED(addr, mask) \
781         WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
782
783 #define WA_CLR_BIT_MASKED(addr, mask) \
784         WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
785
786 #define WA_SET_FIELD_MASKED(addr, mask, value) \
787         WA_REG(addr, mask, _MASKED_FIELD(mask, value))
788
789 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
790 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
791
792 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
793
794 static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
795                                  i915_reg_t reg)
796 {
797         struct drm_i915_private *dev_priv = engine->i915;
798         struct i915_workarounds *wa = &dev_priv->workarounds;
799         const uint32_t index = wa->hw_whitelist_count[engine->id];
800
801         if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
802                 return -EINVAL;
803
804         WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
805                  i915_mmio_reg_offset(reg));
806         wa->hw_whitelist_count[engine->id]++;
807
808         return 0;
809 }
810
811 static int gen8_init_workarounds(struct intel_engine_cs *engine)
812 {
813         struct drm_i915_private *dev_priv = engine->i915;
814
815         WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
816
817         /* WaDisableAsyncFlipPerfMode:bdw,chv */
818         WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
819
820         /* WaDisablePartialInstShootdown:bdw,chv */
821         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
822                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
823
824         /* Use Force Non-Coherent whenever executing a 3D context. This is a
825          * workaround for for a possible hang in the unlikely event a TLB
826          * invalidation occurs during a PSD flush.
827          */
828         /* WaForceEnableNonCoherent:bdw,chv */
829         /* WaHdcDisableFetchWhenMasked:bdw,chv */
830         WA_SET_BIT_MASKED(HDC_CHICKEN0,
831                           HDC_DONOT_FETCH_MEM_WHEN_MASKED |
832                           HDC_FORCE_NON_COHERENT);
833
834         /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
835          * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
836          *  polygons in the same 8x4 pixel/sample area to be processed without
837          *  stalling waiting for the earlier ones to write to Hierarchical Z
838          *  buffer."
839          *
840          * This optimization is off by default for BDW and CHV; turn it on.
841          */
842         WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
843
844         /* Wa4x4STCOptimizationDisable:bdw,chv */
845         WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
846
847         /*
848          * BSpec recommends 8x4 when MSAA is used,
849          * however in practice 16x4 seems fastest.
850          *
851          * Note that PS/WM thread counts depend on the WIZ hashing
852          * disable bit, which we don't touch here, but it's good
853          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
854          */
855         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
856                             GEN6_WIZ_HASHING_MASK,
857                             GEN6_WIZ_HASHING_16x4);
858
859         return 0;
860 }
861
862 static int bdw_init_workarounds(struct intel_engine_cs *engine)
863 {
864         struct drm_i915_private *dev_priv = engine->i915;
865         int ret;
866
867         ret = gen8_init_workarounds(engine);
868         if (ret)
869                 return ret;
870
871         /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
872         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
873
874         /* WaDisableDopClockGating:bdw */
875         WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
876                           DOP_CLOCK_GATING_DISABLE);
877
878         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
879                           GEN8_SAMPLER_POWER_BYPASS_DIS);
880
881         WA_SET_BIT_MASKED(HDC_CHICKEN0,
882                           /* WaForceContextSaveRestoreNonCoherent:bdw */
883                           HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
884                           /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
885                           (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
886
887         return 0;
888 }
889
890 static int chv_init_workarounds(struct intel_engine_cs *engine)
891 {
892         struct drm_i915_private *dev_priv = engine->i915;
893         int ret;
894
895         ret = gen8_init_workarounds(engine);
896         if (ret)
897                 return ret;
898
899         /* WaDisableThreadStallDopClockGating:chv */
900         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
901
902         /* Improve HiZ throughput on CHV. */
903         WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
904
905         return 0;
906 }
907
908 static int gen9_init_workarounds(struct intel_engine_cs *engine)
909 {
910         struct drm_i915_private *dev_priv = engine->i915;
911         int ret;
912
913         /* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
914         I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
915
916         /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
917         I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
918                    GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
919
920         /* WaDisableKillLogic:bxt,skl,kbl */
921         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
922                    ECOCHK_DIS_TLB);
923
924         /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
925         /* WaDisablePartialInstShootdown:skl,bxt,kbl */
926         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
927                           FLOW_CONTROL_ENABLE |
928                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
929
930         /* Syncing dependencies between camera and graphics:skl,bxt,kbl */
931         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
932                           GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
933
934         /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
935         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
936             IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
937                 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
938                                   GEN9_DG_MIRROR_FIX_ENABLE);
939
940         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
941         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
942             IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
943                 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
944                                   GEN9_RHWO_OPTIMIZATION_DISABLE);
945                 /*
946                  * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
947                  * but we do that in per ctx batchbuffer as there is an issue
948                  * with this register not getting restored on ctx restore
949                  */
950         }
951
952         /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
953         /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
954         WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
955                           GEN9_ENABLE_YV12_BUGFIX |
956                           GEN9_ENABLE_GPGPU_PREEMPTION);
957
958         /* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
959         /* WaDisablePartialResolveInVc:skl,bxt,kbl */
960         WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
961                                          GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
962
963         /* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
964         WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
965                           GEN9_CCS_TLB_PREFETCH_ENABLE);
966
967         /* WaDisableMaskBasedCammingInRCC:skl,bxt */
968         if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
969             IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
970                 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
971                                   PIXEL_MASK_CAMMING_DISABLE);
972
973         /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
974         WA_SET_BIT_MASKED(HDC_CHICKEN0,
975                           HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
976                           HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
977
978         /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
979          * both tied to WaForceContextSaveRestoreNonCoherent
980          * in some hsds for skl. We keep the tie for all gen9. The
981          * documentation is a bit hazy and so we want to get common behaviour,
982          * even though there is no clear evidence we would need both on kbl/bxt.
983          * This area has been source of system hangs so we play it safe
984          * and mimic the skl regardless of what bspec says.
985          *
986          * Use Force Non-Coherent whenever executing a 3D context. This
987          * is a workaround for a possible hang in the unlikely event
988          * a TLB invalidation occurs during a PSD flush.
989          */
990
991         /* WaForceEnableNonCoherent:skl,bxt,kbl */
992         WA_SET_BIT_MASKED(HDC_CHICKEN0,
993                           HDC_FORCE_NON_COHERENT);
994
995         /* WaDisableHDCInvalidation:skl,bxt,kbl */
996         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
997                    BDW_DISABLE_HDC_INVALIDATION);
998
999         /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
1000         if (IS_SKYLAKE(dev_priv) ||
1001             IS_KABYLAKE(dev_priv) ||
1002             IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
1003                 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
1004                                   GEN8_SAMPLER_POWER_BYPASS_DIS);
1005
1006         /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
1007         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
1008
1009         /* WaOCLCoherentLineFlush:skl,bxt,kbl */
1010         I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
1011                                     GEN8_LQSC_FLUSH_COHERENT_LINES));
1012
1013         /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
1014         ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
1015         if (ret)
1016                 return ret;
1017
1018         /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
1019         ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
1020         if (ret)
1021                 return ret;
1022
1023         /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
1024         ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
1025         if (ret)
1026                 return ret;
1027
1028         return 0;
1029 }
1030
1031 static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
1032 {
1033         struct drm_i915_private *dev_priv = engine->i915;
1034         u8 vals[3] = { 0, 0, 0 };
1035         unsigned int i;
1036
1037         for (i = 0; i < 3; i++) {
1038                 u8 ss;
1039
1040                 /*
1041                  * Only consider slices where one, and only one, subslice has 7
1042                  * EUs
1043                  */
1044                 if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
1045                         continue;
1046
1047                 /*
1048                  * subslice_7eu[i] != 0 (because of the check above) and
1049                  * ss_max == 4 (maximum number of subslices possible per slice)
1050                  *
1051                  * ->    0 <= ss <= 3;
1052                  */
1053                 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1054                 vals[i] = 3 - ss;
1055         }
1056
1057         if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1058                 return 0;
1059
1060         /* Tune IZ hashing. See intel_device_info_runtime_init() */
1061         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1062                             GEN9_IZ_HASHING_MASK(2) |
1063                             GEN9_IZ_HASHING_MASK(1) |
1064                             GEN9_IZ_HASHING_MASK(0),
1065                             GEN9_IZ_HASHING(2, vals[2]) |
1066                             GEN9_IZ_HASHING(1, vals[1]) |
1067                             GEN9_IZ_HASHING(0, vals[0]));
1068
1069         return 0;
1070 }
1071
1072 static int skl_init_workarounds(struct intel_engine_cs *engine)
1073 {
1074         struct drm_i915_private *dev_priv = engine->i915;
1075         int ret;
1076
1077         ret = gen9_init_workarounds(engine);
1078         if (ret)
1079                 return ret;
1080
1081         /*
1082          * Actual WA is to disable percontext preemption granularity control
1083          * until D0 which is the default case so this is equivalent to
1084          * !WaDisablePerCtxtPreemptionGranularityControl:skl
1085          */
1086         if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
1087                 I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
1088                            _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
1089         }
1090
1091         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) {
1092                 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1093                 I915_WRITE(FF_SLICE_CS_CHICKEN2,
1094                            _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1095         }
1096
1097         /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1098          * involving this register should also be added to WA batch as required.
1099          */
1100         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
1101                 /* WaDisableLSQCROPERFforOCL:skl */
1102                 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1103                            GEN8_LQSC_RO_PERF_DIS);
1104
1105         /* WaEnableGapsTsvCreditFix:skl */
1106         if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
1107                 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1108                                            GEN9_GAPS_TSV_CREDIT_DISABLE));
1109         }
1110
1111         /* WaDisablePowerCompilerClockGating:skl */
1112         if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
1113                 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1114                                   BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1115
1116         /* WaBarrierPerformanceFixDisable:skl */
1117         if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
1118                 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1119                                   HDC_FENCE_DEST_SLM_DISABLE |
1120                                   HDC_BARRIER_PERFORMANCE_DISABLE);
1121
1122         /* WaDisableSbeCacheDispatchPortSharing:skl */
1123         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
1124                 WA_SET_BIT_MASKED(
1125                         GEN7_HALF_SLICE_CHICKEN1,
1126                         GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1127
1128         /* WaDisableGafsUnitClkGating:skl */
1129         WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1130
1131         /* WaDisableLSQCROPERFforOCL:skl */
1132         ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1133         if (ret)
1134                 return ret;
1135
1136         return skl_tune_iz_hashing(engine);
1137 }
1138
1139 static int bxt_init_workarounds(struct intel_engine_cs *engine)
1140 {
1141         struct drm_i915_private *dev_priv = engine->i915;
1142         int ret;
1143
1144         ret = gen9_init_workarounds(engine);
1145         if (ret)
1146                 return ret;
1147
1148         /* WaStoreMultiplePTEenable:bxt */
1149         /* This is a requirement according to Hardware specification */
1150         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1151                 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1152
1153         /* WaSetClckGatingDisableMedia:bxt */
1154         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1155                 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1156                                             ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1157         }
1158
1159         /* WaDisableThreadStallDopClockGating:bxt */
1160         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1161                           STALL_DOP_GATING_DISABLE);
1162
1163         /* WaDisablePooledEuLoadBalancingFix:bxt */
1164         if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
1165                 WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
1166                                   GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
1167         }
1168
1169         /* WaDisableSbeCacheDispatchPortSharing:bxt */
1170         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1171                 WA_SET_BIT_MASKED(
1172                         GEN7_HALF_SLICE_CHICKEN1,
1173                         GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1174         }
1175
1176         /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
1177         /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
1178         /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1179         /* WaDisableLSQCROPERFforOCL:bxt */
1180         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1181                 ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1182                 if (ret)
1183                         return ret;
1184
1185                 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1186                 if (ret)
1187                         return ret;
1188         }
1189
1190         /* WaProgramL3SqcReg1DefaultForPerf:bxt */
1191         if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1192                 I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
1193                                            L3_HIGH_PRIO_CREDITS(2));
1194
1195         /* WaInsertDummyPushConstPs:bxt */
1196         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
1197                 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1198                                   GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1199
1200         return 0;
1201 }
1202
1203 static int kbl_init_workarounds(struct intel_engine_cs *engine)
1204 {
1205         struct drm_i915_private *dev_priv = engine->i915;
1206         int ret;
1207
1208         ret = gen9_init_workarounds(engine);
1209         if (ret)
1210                 return ret;
1211
1212         /* WaEnableGapsTsvCreditFix:kbl */
1213         I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1214                                    GEN9_GAPS_TSV_CREDIT_DISABLE));
1215
1216         /* WaDisableDynamicCreditSharing:kbl */
1217         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
1218                 WA_SET_BIT(GAMT_CHKN_BIT_REG,
1219                            GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1220
1221         /* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
1222         if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
1223                 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1224                                   HDC_FENCE_DEST_SLM_DISABLE);
1225
1226         /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1227          * involving this register should also be added to WA batch as required.
1228          */
1229         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
1230                 /* WaDisableLSQCROPERFforOCL:kbl */
1231                 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1232                            GEN8_LQSC_RO_PERF_DIS);
1233
1234         /* WaInsertDummyPushConstPs:kbl */
1235         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
1236                 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1237                                   GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1238
1239         /* WaDisableGafsUnitClkGating:kbl */
1240         WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1241
1242         /* WaDisableSbeCacheDispatchPortSharing:kbl */
1243         WA_SET_BIT_MASKED(
1244                 GEN7_HALF_SLICE_CHICKEN1,
1245                 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1246
1247         /* WaDisableLSQCROPERFforOCL:kbl */
1248         ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1249         if (ret)
1250                 return ret;
1251
1252         return 0;
1253 }
1254
1255 int init_workarounds_ring(struct intel_engine_cs *engine)
1256 {
1257         struct drm_i915_private *dev_priv = engine->i915;
1258
1259         WARN_ON(engine->id != RCS);
1260
1261         dev_priv->workarounds.count = 0;
1262         dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1263
1264         if (IS_BROADWELL(dev_priv))
1265                 return bdw_init_workarounds(engine);
1266
1267         if (IS_CHERRYVIEW(dev_priv))
1268                 return chv_init_workarounds(engine);
1269
1270         if (IS_SKYLAKE(dev_priv))
1271                 return skl_init_workarounds(engine);
1272
1273         if (IS_BROXTON(dev_priv))
1274                 return bxt_init_workarounds(engine);
1275
1276         if (IS_KABYLAKE(dev_priv))
1277                 return kbl_init_workarounds(engine);
1278
1279         return 0;
1280 }
1281
1282 static int init_render_ring(struct intel_engine_cs *engine)
1283 {
1284         struct drm_i915_private *dev_priv = engine->i915;
1285         int ret = init_ring_common(engine);
1286         if (ret)
1287                 return ret;
1288
1289         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1290         if (IS_GEN(dev_priv, 4, 6))
1291                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1292
1293         /* We need to disable the AsyncFlip performance optimisations in order
1294          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1295          * programmed to '1' on all products.
1296          *
1297          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1298          */
1299         if (IS_GEN(dev_priv, 6, 7))
1300                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1301
1302         /* Required for the hardware to program scanline values for waiting */
1303         /* WaEnableFlushTlbInvalidationMode:snb */
1304         if (IS_GEN6(dev_priv))
1305                 I915_WRITE(GFX_MODE,
1306                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1307
1308         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1309         if (IS_GEN7(dev_priv))
1310                 I915_WRITE(GFX_MODE_GEN7,
1311                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1312                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1313
1314         if (IS_GEN6(dev_priv)) {
1315                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1316                  * "If this bit is set, STCunit will have LRA as replacement
1317                  *  policy. [...] This bit must be reset.  LRA replacement
1318                  *  policy is not supported."
1319                  */
1320                 I915_WRITE(CACHE_MODE_0,
1321                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1322         }
1323
1324         if (IS_GEN(dev_priv, 6, 7))
1325                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1326
1327         if (HAS_L3_DPF(dev_priv))
1328                 I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev_priv));
1329
1330         return init_workarounds_ring(engine);
1331 }
1332
1333 static void render_ring_cleanup(struct intel_engine_cs *engine)
1334 {
1335         struct drm_i915_private *dev_priv = engine->i915;
1336
1337         if (dev_priv->semaphore_obj) {
1338                 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1339                 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1340                 dev_priv->semaphore_obj = NULL;
1341         }
1342
1343         intel_fini_pipe_control(engine);
1344 }
1345
1346 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1347                            unsigned int num_dwords)
1348 {
1349 #define MBOX_UPDATE_DWORDS 8
1350         struct intel_engine_cs *signaller = signaller_req->engine;
1351         struct drm_i915_private *dev_priv = signaller_req->i915;
1352         struct intel_engine_cs *waiter;
1353         enum intel_engine_id id;
1354         int ret, num_rings;
1355
1356         num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1357         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1358 #undef MBOX_UPDATE_DWORDS
1359
1360         ret = intel_ring_begin(signaller_req, num_dwords);
1361         if (ret)
1362                 return ret;
1363
1364         for_each_engine_id(waiter, dev_priv, id) {
1365                 u32 seqno;
1366                 u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1367                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1368                         continue;
1369
1370                 seqno = i915_gem_request_get_seqno(signaller_req);
1371                 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1372                 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1373                                            PIPE_CONTROL_QW_WRITE |
1374                                            PIPE_CONTROL_CS_STALL);
1375                 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1376                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1377                 intel_ring_emit(signaller, seqno);
1378                 intel_ring_emit(signaller, 0);
1379                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1380                                            MI_SEMAPHORE_TARGET(waiter->hw_id));
1381                 intel_ring_emit(signaller, 0);
1382         }
1383
1384         return 0;
1385 }
1386
1387 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1388                            unsigned int num_dwords)
1389 {
1390 #define MBOX_UPDATE_DWORDS 6
1391         struct intel_engine_cs *signaller = signaller_req->engine;
1392         struct drm_i915_private *dev_priv = signaller_req->i915;
1393         struct intel_engine_cs *waiter;
1394         enum intel_engine_id id;
1395         int ret, num_rings;
1396
1397         num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1398         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1399 #undef MBOX_UPDATE_DWORDS
1400
1401         ret = intel_ring_begin(signaller_req, num_dwords);
1402         if (ret)
1403                 return ret;
1404
1405         for_each_engine_id(waiter, dev_priv, id) {
1406                 u32 seqno;
1407                 u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
1408                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1409                         continue;
1410
1411                 seqno = i915_gem_request_get_seqno(signaller_req);
1412                 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1413                                            MI_FLUSH_DW_OP_STOREDW);
1414                 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1415                                            MI_FLUSH_DW_USE_GTT);
1416                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1417                 intel_ring_emit(signaller, seqno);
1418                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1419                                            MI_SEMAPHORE_TARGET(waiter->hw_id));
1420                 intel_ring_emit(signaller, 0);
1421         }
1422
1423         return 0;
1424 }
1425
1426 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1427                        unsigned int num_dwords)
1428 {
1429         struct intel_engine_cs *signaller = signaller_req->engine;
1430         struct drm_i915_private *dev_priv = signaller_req->i915;
1431         struct intel_engine_cs *useless;
1432         enum intel_engine_id id;
1433         int ret, num_rings;
1434
1435 #define MBOX_UPDATE_DWORDS 3
1436         num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
1437         num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1438 #undef MBOX_UPDATE_DWORDS
1439
1440         ret = intel_ring_begin(signaller_req, num_dwords);
1441         if (ret)
1442                 return ret;
1443
1444         for_each_engine_id(useless, dev_priv, id) {
1445                 i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
1446
1447                 if (i915_mmio_reg_valid(mbox_reg)) {
1448                         u32 seqno = i915_gem_request_get_seqno(signaller_req);
1449
1450                         intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1451                         intel_ring_emit_reg(signaller, mbox_reg);
1452                         intel_ring_emit(signaller, seqno);
1453                 }
1454         }
1455
1456         /* If num_dwords was rounded, make sure the tail pointer is correct */
1457         if (num_rings % 2 == 0)
1458                 intel_ring_emit(signaller, MI_NOOP);
1459
1460         return 0;
1461 }
1462
1463 /**
1464  * gen6_add_request - Update the semaphore mailbox registers
1465  *
1466  * @request - request to write to the ring
1467  *
1468  * Update the mailbox registers in the *other* rings with the current seqno.
1469  * This acts like a signal in the canonical semaphore.
1470  */
1471 static int
1472 gen6_add_request(struct drm_i915_gem_request *req)
1473 {
1474         struct intel_engine_cs *engine = req->engine;
1475         int ret;
1476
1477         if (engine->semaphore.signal)
1478                 ret = engine->semaphore.signal(req, 4);
1479         else
1480                 ret = intel_ring_begin(req, 4);
1481
1482         if (ret)
1483                 return ret;
1484
1485         intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
1486         intel_ring_emit(engine,
1487                         I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1488         intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1489         intel_ring_emit(engine, MI_USER_INTERRUPT);
1490         __intel_ring_advance(engine);
1491
1492         return 0;
1493 }
1494
1495 static int
1496 gen8_render_add_request(struct drm_i915_gem_request *req)
1497 {
1498         struct intel_engine_cs *engine = req->engine;
1499         int ret;
1500
1501         if (engine->semaphore.signal)
1502                 ret = engine->semaphore.signal(req, 8);
1503         else
1504                 ret = intel_ring_begin(req, 8);
1505         if (ret)
1506                 return ret;
1507
1508         intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
1509         intel_ring_emit(engine, (PIPE_CONTROL_GLOBAL_GTT_IVB |
1510                                  PIPE_CONTROL_CS_STALL |
1511                                  PIPE_CONTROL_QW_WRITE));
1512         intel_ring_emit(engine, intel_hws_seqno_address(req->engine));
1513         intel_ring_emit(engine, 0);
1514         intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1515         /* We're thrashing one dword of HWS. */
1516         intel_ring_emit(engine, 0);
1517         intel_ring_emit(engine, MI_USER_INTERRUPT);
1518         intel_ring_emit(engine, MI_NOOP);
1519         __intel_ring_advance(engine);
1520
1521         return 0;
1522 }
1523
1524 static inline bool i915_gem_has_seqno_wrapped(struct drm_i915_private *dev_priv,
1525                                               u32 seqno)
1526 {
1527         return dev_priv->last_seqno < seqno;
1528 }
1529
1530 /**
1531  * intel_ring_sync - sync the waiter to the signaller on seqno
1532  *
1533  * @waiter - ring that is waiting
1534  * @signaller - ring which has, or will signal
1535  * @seqno - seqno which the waiter will block on
1536  */
1537
1538 static int
1539 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1540                struct intel_engine_cs *signaller,
1541                u32 seqno)
1542 {
1543         struct intel_engine_cs *waiter = waiter_req->engine;
1544         struct drm_i915_private *dev_priv = waiter_req->i915;
1545         struct i915_hw_ppgtt *ppgtt;
1546         int ret;
1547
1548         ret = intel_ring_begin(waiter_req, 4);
1549         if (ret)
1550                 return ret;
1551
1552         intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1553                                 MI_SEMAPHORE_GLOBAL_GTT |
1554                                 MI_SEMAPHORE_SAD_GTE_SDD);
1555         intel_ring_emit(waiter, seqno);
1556         intel_ring_emit(waiter,
1557                         lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1558         intel_ring_emit(waiter,
1559                         upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1560         intel_ring_advance(waiter);
1561
1562         /* When the !RCS engines idle waiting upon a semaphore, they lose their
1563          * pagetables and we must reload them before executing the batch.
1564          * We do this on the i915_switch_context() following the wait and
1565          * before the dispatch.
1566          */
1567         ppgtt = waiter_req->ctx->ppgtt;
1568         if (ppgtt && waiter_req->engine->id != RCS)
1569                 ppgtt->pd_dirty_rings |= intel_engine_flag(waiter_req->engine);
1570         return 0;
1571 }
1572
1573 static int
1574 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1575                struct intel_engine_cs *signaller,
1576                u32 seqno)
1577 {
1578         struct intel_engine_cs *waiter = waiter_req->engine;
1579         u32 dw1 = MI_SEMAPHORE_MBOX |
1580                   MI_SEMAPHORE_COMPARE |
1581                   MI_SEMAPHORE_REGISTER;
1582         u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1583         int ret;
1584
1585         /* Throughout all of the GEM code, seqno passed implies our current
1586          * seqno is >= the last seqno executed. However for hardware the
1587          * comparison is strictly greater than.
1588          */
1589         seqno -= 1;
1590
1591         WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1592
1593         ret = intel_ring_begin(waiter_req, 4);
1594         if (ret)
1595                 return ret;
1596
1597         /* If seqno wrap happened, omit the wait with no-ops */
1598         if (likely(!i915_gem_has_seqno_wrapped(waiter_req->i915, seqno))) {
1599                 intel_ring_emit(waiter, dw1 | wait_mbox);
1600                 intel_ring_emit(waiter, seqno);
1601                 intel_ring_emit(waiter, 0);
1602                 intel_ring_emit(waiter, MI_NOOP);
1603         } else {
1604                 intel_ring_emit(waiter, MI_NOOP);
1605                 intel_ring_emit(waiter, MI_NOOP);
1606                 intel_ring_emit(waiter, MI_NOOP);
1607                 intel_ring_emit(waiter, MI_NOOP);
1608         }
1609         intel_ring_advance(waiter);
1610
1611         return 0;
1612 }
1613
1614 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
1615 do {                                                                    \
1616         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
1617                  PIPE_CONTROL_DEPTH_STALL);                             \
1618         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
1619         intel_ring_emit(ring__, 0);                                                     \
1620         intel_ring_emit(ring__, 0);                                                     \
1621 } while (0)
1622
1623 static int
1624 pc_render_add_request(struct drm_i915_gem_request *req)
1625 {
1626         struct intel_engine_cs *engine = req->engine;
1627         u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1628         int ret;
1629
1630         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1631          * incoherent with writes to memory, i.e. completely fubar,
1632          * so we need to use PIPE_NOTIFY instead.
1633          *
1634          * However, we also need to workaround the qword write
1635          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1636          * memory before requesting an interrupt.
1637          */
1638         ret = intel_ring_begin(req, 32);
1639         if (ret)
1640                 return ret;
1641
1642         intel_ring_emit(engine,
1643                         GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1644                         PIPE_CONTROL_WRITE_FLUSH |
1645                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1646         intel_ring_emit(engine,
1647                         engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1648         intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1649         intel_ring_emit(engine, 0);
1650         PIPE_CONTROL_FLUSH(engine, scratch_addr);
1651         scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1652         PIPE_CONTROL_FLUSH(engine, scratch_addr);
1653         scratch_addr += 2 * CACHELINE_BYTES;
1654         PIPE_CONTROL_FLUSH(engine, scratch_addr);
1655         scratch_addr += 2 * CACHELINE_BYTES;
1656         PIPE_CONTROL_FLUSH(engine, scratch_addr);
1657         scratch_addr += 2 * CACHELINE_BYTES;
1658         PIPE_CONTROL_FLUSH(engine, scratch_addr);
1659         scratch_addr += 2 * CACHELINE_BYTES;
1660         PIPE_CONTROL_FLUSH(engine, scratch_addr);
1661
1662         intel_ring_emit(engine,
1663                         GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1664                         PIPE_CONTROL_WRITE_FLUSH |
1665                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1666                         PIPE_CONTROL_NOTIFY);
1667         intel_ring_emit(engine,
1668                         engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1669         intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1670         intel_ring_emit(engine, 0);
1671         __intel_ring_advance(engine);
1672
1673         return 0;
1674 }
1675
1676 static void
1677 gen6_seqno_barrier(struct intel_engine_cs *engine)
1678 {
1679         struct drm_i915_private *dev_priv = engine->i915;
1680
1681         /* Workaround to force correct ordering between irq and seqno writes on
1682          * ivb (and maybe also on snb) by reading from a CS register (like
1683          * ACTHD) before reading the status page.
1684          *
1685          * Note that this effectively stalls the read by the time it takes to
1686          * do a memory transaction, which more or less ensures that the write
1687          * from the GPU has sufficient time to invalidate the CPU cacheline.
1688          * Alternatively we could delay the interrupt from the CS ring to give
1689          * the write time to land, but that would incur a delay after every
1690          * batch i.e. much more frequent than a delay when waiting for the
1691          * interrupt (with the same net latency).
1692          *
1693          * Also note that to prevent whole machine hangs on gen7, we have to
1694          * take the spinlock to guard against concurrent cacheline access.
1695          */
1696         spin_lock_irq(&dev_priv->uncore.lock);
1697         POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1698         spin_unlock_irq(&dev_priv->uncore.lock);
1699 }
1700
1701 static u32
1702 ring_get_seqno(struct intel_engine_cs *engine)
1703 {
1704         return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1705 }
1706
1707 static void
1708 ring_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1709 {
1710         intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1711 }
1712
1713 static u32
1714 pc_render_get_seqno(struct intel_engine_cs *engine)
1715 {
1716         return engine->scratch.cpu_page[0];
1717 }
1718
1719 static void
1720 pc_render_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1721 {
1722         engine->scratch.cpu_page[0] = seqno;
1723 }
1724
1725 static bool
1726 gen5_ring_get_irq(struct intel_engine_cs *engine)
1727 {
1728         struct drm_i915_private *dev_priv = engine->i915;
1729         unsigned long flags;
1730
1731         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1732                 return false;
1733
1734         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1735         if (engine->irq_refcount++ == 0)
1736                 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1737         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1738
1739         return true;
1740 }
1741
1742 static void
1743 gen5_ring_put_irq(struct intel_engine_cs *engine)
1744 {
1745         struct drm_i915_private *dev_priv = engine->i915;
1746         unsigned long flags;
1747
1748         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1749         if (--engine->irq_refcount == 0)
1750                 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1751         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1752 }
1753
1754 static bool
1755 i9xx_ring_get_irq(struct intel_engine_cs *engine)
1756 {
1757         struct drm_i915_private *dev_priv = engine->i915;
1758         unsigned long flags;
1759
1760         if (!intel_irqs_enabled(dev_priv))
1761                 return false;
1762
1763         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1764         if (engine->irq_refcount++ == 0) {
1765                 dev_priv->irq_mask &= ~engine->irq_enable_mask;
1766                 I915_WRITE(IMR, dev_priv->irq_mask);
1767                 POSTING_READ(IMR);
1768         }
1769         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1770
1771         return true;
1772 }
1773
1774 static void
1775 i9xx_ring_put_irq(struct intel_engine_cs *engine)
1776 {
1777         struct drm_i915_private *dev_priv = engine->i915;
1778         unsigned long flags;
1779
1780         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1781         if (--engine->irq_refcount == 0) {
1782                 dev_priv->irq_mask |= engine->irq_enable_mask;
1783                 I915_WRITE(IMR, dev_priv->irq_mask);
1784                 POSTING_READ(IMR);
1785         }
1786         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1787 }
1788
1789 static bool
1790 i8xx_ring_get_irq(struct intel_engine_cs *engine)
1791 {
1792         struct drm_i915_private *dev_priv = engine->i915;
1793         unsigned long flags;
1794
1795         if (!intel_irqs_enabled(dev_priv))
1796                 return false;
1797
1798         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1799         if (engine->irq_refcount++ == 0) {
1800                 dev_priv->irq_mask &= ~engine->irq_enable_mask;
1801                 I915_WRITE16(IMR, dev_priv->irq_mask);
1802                 POSTING_READ16(IMR);
1803         }
1804         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1805
1806         return true;
1807 }
1808
1809 static void
1810 i8xx_ring_put_irq(struct intel_engine_cs *engine)
1811 {
1812         struct drm_i915_private *dev_priv = engine->i915;
1813         unsigned long flags;
1814
1815         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1816         if (--engine->irq_refcount == 0) {
1817                 dev_priv->irq_mask |= engine->irq_enable_mask;
1818                 I915_WRITE16(IMR, dev_priv->irq_mask);
1819                 POSTING_READ16(IMR);
1820         }
1821         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1822 }
1823
1824 static int
1825 bsd_ring_flush(struct drm_i915_gem_request *req,
1826                u32     invalidate_domains,
1827                u32     flush_domains)
1828 {
1829         struct intel_engine_cs *engine = req->engine;
1830         int ret;
1831
1832         ret = intel_ring_begin(req, 2);
1833         if (ret)
1834                 return ret;
1835
1836         intel_ring_emit(engine, MI_FLUSH);
1837         intel_ring_emit(engine, MI_NOOP);
1838         intel_ring_advance(engine);
1839         return 0;
1840 }
1841
1842 static int
1843 i9xx_add_request(struct drm_i915_gem_request *req)
1844 {
1845         struct intel_engine_cs *engine = req->engine;
1846         int ret;
1847
1848         ret = intel_ring_begin(req, 4);
1849         if (ret)
1850                 return ret;
1851
1852         intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
1853         intel_ring_emit(engine,
1854                         I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1855         intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1856         intel_ring_emit(engine, MI_USER_INTERRUPT);
1857         __intel_ring_advance(engine);
1858
1859         return 0;
1860 }
1861
1862 static bool
1863 gen6_ring_get_irq(struct intel_engine_cs *engine)
1864 {
1865         struct drm_i915_private *dev_priv = engine->i915;
1866         unsigned long flags;
1867
1868         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1869                 return false;
1870
1871         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1872         if (engine->irq_refcount++ == 0) {
1873                 if (HAS_L3_DPF(dev_priv) && engine->id == RCS)
1874                         I915_WRITE_IMR(engine,
1875                                        ~(engine->irq_enable_mask |
1876                                          GT_PARITY_ERROR(dev_priv)));
1877                 else
1878                         I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1879                 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1880         }
1881         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1882
1883         return true;
1884 }
1885
1886 static void
1887 gen6_ring_put_irq(struct intel_engine_cs *engine)
1888 {
1889         struct drm_i915_private *dev_priv = engine->i915;
1890         unsigned long flags;
1891
1892         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1893         if (--engine->irq_refcount == 0) {
1894                 if (HAS_L3_DPF(dev_priv) && engine->id == RCS)
1895                         I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev_priv));
1896                 else
1897                         I915_WRITE_IMR(engine, ~0);
1898                 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1899         }
1900         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1901 }
1902
1903 static bool
1904 hsw_vebox_get_irq(struct intel_engine_cs *engine)
1905 {
1906         struct drm_i915_private *dev_priv = engine->i915;
1907         unsigned long flags;
1908
1909         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1910                 return false;
1911
1912         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1913         if (engine->irq_refcount++ == 0) {
1914                 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1915                 gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
1916         }
1917         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1918
1919         return true;
1920 }
1921
1922 static void
1923 hsw_vebox_put_irq(struct intel_engine_cs *engine)
1924 {
1925         struct drm_i915_private *dev_priv = engine->i915;
1926         unsigned long flags;
1927
1928         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1929         if (--engine->irq_refcount == 0) {
1930                 I915_WRITE_IMR(engine, ~0);
1931                 gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
1932         }
1933         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1934 }
1935
1936 static bool
1937 gen8_ring_get_irq(struct intel_engine_cs *engine)
1938 {
1939         struct drm_i915_private *dev_priv = engine->i915;
1940         unsigned long flags;
1941
1942         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1943                 return false;
1944
1945         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1946         if (engine->irq_refcount++ == 0) {
1947                 if (HAS_L3_DPF(dev_priv) && engine->id == RCS) {
1948                         I915_WRITE_IMR(engine,
1949                                        ~(engine->irq_enable_mask |
1950                                          GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1951                 } else {
1952                         I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1953                 }
1954                 POSTING_READ(RING_IMR(engine->mmio_base));
1955         }
1956         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1957
1958         return true;
1959 }
1960
1961 static void
1962 gen8_ring_put_irq(struct intel_engine_cs *engine)
1963 {
1964         struct drm_i915_private *dev_priv = engine->i915;
1965         unsigned long flags;
1966
1967         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1968         if (--engine->irq_refcount == 0) {
1969                 if (HAS_L3_DPF(dev_priv) && engine->id == RCS) {
1970                         I915_WRITE_IMR(engine,
1971                                        ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1972                 } else {
1973                         I915_WRITE_IMR(engine, ~0);
1974                 }
1975                 POSTING_READ(RING_IMR(engine->mmio_base));
1976         }
1977         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1978 }
1979
1980 static int
1981 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1982                          u64 offset, u32 length,
1983                          unsigned dispatch_flags)
1984 {
1985         struct intel_engine_cs *engine = req->engine;
1986         int ret;
1987
1988         ret = intel_ring_begin(req, 2);
1989         if (ret)
1990                 return ret;
1991
1992         intel_ring_emit(engine,
1993                         MI_BATCH_BUFFER_START |
1994                         MI_BATCH_GTT |
1995                         (dispatch_flags & I915_DISPATCH_SECURE ?
1996                          0 : MI_BATCH_NON_SECURE_I965));
1997         intel_ring_emit(engine, offset);
1998         intel_ring_advance(engine);
1999
2000         return 0;
2001 }
2002
2003 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
2004 #define I830_BATCH_LIMIT (256*1024)
2005 #define I830_TLB_ENTRIES (2)
2006 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
2007 static int
2008 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
2009                          u64 offset, u32 len,
2010                          unsigned dispatch_flags)
2011 {
2012         struct intel_engine_cs *engine = req->engine;
2013         u32 cs_offset = engine->scratch.gtt_offset;
2014         int ret;
2015
2016         ret = intel_ring_begin(req, 6);
2017         if (ret)
2018                 return ret;
2019
2020         /* Evict the invalid PTE TLBs */
2021         intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
2022         intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
2023         intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
2024         intel_ring_emit(engine, cs_offset);
2025         intel_ring_emit(engine, 0xdeadbeef);
2026         intel_ring_emit(engine, MI_NOOP);
2027         intel_ring_advance(engine);
2028
2029         if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
2030                 if (len > I830_BATCH_LIMIT)
2031                         return -ENOSPC;
2032
2033                 ret = intel_ring_begin(req, 6 + 2);
2034                 if (ret)
2035                         return ret;
2036
2037                 /* Blit the batch (which has now all relocs applied) to the
2038                  * stable batch scratch bo area (so that the CS never
2039                  * stumbles over its tlb invalidation bug) ...
2040                  */
2041                 intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
2042                 intel_ring_emit(engine,
2043                                 BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
2044                 intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
2045                 intel_ring_emit(engine, cs_offset);
2046                 intel_ring_emit(engine, 4096);
2047                 intel_ring_emit(engine, offset);
2048
2049                 intel_ring_emit(engine, MI_FLUSH);
2050                 intel_ring_emit(engine, MI_NOOP);
2051                 intel_ring_advance(engine);
2052
2053                 /* ... and execute it. */
2054                 offset = cs_offset;
2055         }
2056
2057         ret = intel_ring_begin(req, 2);
2058         if (ret)
2059                 return ret;
2060
2061         intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
2062         intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
2063                                           0 : MI_BATCH_NON_SECURE));
2064         intel_ring_advance(engine);
2065
2066         return 0;
2067 }
2068
2069 static int
2070 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
2071                          u64 offset, u32 len,
2072                          unsigned dispatch_flags)
2073 {
2074         struct intel_engine_cs *engine = req->engine;
2075         int ret;
2076
2077         ret = intel_ring_begin(req, 2);
2078         if (ret)
2079                 return ret;
2080
2081         intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
2082         intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
2083                                           0 : MI_BATCH_NON_SECURE));
2084         intel_ring_advance(engine);
2085
2086         return 0;
2087 }
2088
2089 static void cleanup_phys_status_page(struct intel_engine_cs *engine)
2090 {
2091         struct drm_i915_private *dev_priv = engine->i915;
2092
2093         if (!dev_priv->status_page_dmah)
2094                 return;
2095
2096         drm_pci_free(dev_priv->dev, dev_priv->status_page_dmah);
2097         engine->status_page.page_addr = NULL;
2098 }
2099
2100 static void cleanup_status_page(struct intel_engine_cs *engine)
2101 {
2102         struct drm_i915_gem_object *obj;
2103
2104         obj = engine->status_page.obj;
2105         if (obj == NULL)
2106                 return;
2107
2108         kunmap(sg_page(obj->pages->sgl));
2109         i915_gem_object_ggtt_unpin(obj);
2110         drm_gem_object_unreference(&obj->base);
2111         engine->status_page.obj = NULL;
2112 }
2113
2114 static int init_status_page(struct intel_engine_cs *engine)
2115 {
2116         struct drm_i915_gem_object *obj = engine->status_page.obj;
2117
2118         if (obj == NULL) {
2119                 unsigned flags;
2120                 int ret;
2121
2122                 obj = i915_gem_object_create(engine->i915->dev, 4096);
2123                 if (IS_ERR(obj)) {
2124                         DRM_ERROR("Failed to allocate status page\n");
2125                         return PTR_ERR(obj);
2126                 }
2127
2128                 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2129                 if (ret)
2130                         goto err_unref;
2131
2132                 flags = 0;
2133                 if (!HAS_LLC(engine->i915))
2134                         /* On g33, we cannot place HWS above 256MiB, so
2135                          * restrict its pinning to the low mappable arena.
2136                          * Though this restriction is not documented for
2137                          * gen4, gen5, or byt, they also behave similarly
2138                          * and hang if the HWS is placed at the top of the
2139                          * GTT. To generalise, it appears that all !llc
2140                          * platforms have issues with us placing the HWS
2141                          * above the mappable region (even though we never
2142                          * actualy map it).
2143                          */
2144                         flags |= PIN_MAPPABLE;
2145                 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
2146                 if (ret) {
2147 err_unref:
2148                         drm_gem_object_unreference(&obj->base);
2149                         return ret;
2150                 }
2151
2152                 engine->status_page.obj = obj;
2153         }
2154
2155         engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
2156         engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
2157         memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2158
2159         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
2160                         engine->name, engine->status_page.gfx_addr);
2161
2162         return 0;
2163 }
2164
2165 static int init_phys_status_page(struct intel_engine_cs *engine)
2166 {
2167         struct drm_i915_private *dev_priv = engine->i915;
2168
2169         if (!dev_priv->status_page_dmah) {
2170                 dev_priv->status_page_dmah =
2171                         drm_pci_alloc(dev_priv->dev, PAGE_SIZE, PAGE_SIZE);
2172                 if (!dev_priv->status_page_dmah)
2173                         return -ENOMEM;
2174         }
2175
2176         engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
2177         memset(engine->status_page.page_addr, 0, PAGE_SIZE);
2178
2179         return 0;
2180 }
2181
2182 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2183 {
2184         GEM_BUG_ON(ringbuf->vma == NULL);
2185         GEM_BUG_ON(ringbuf->virtual_start == NULL);
2186
2187         if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
2188                 i915_gem_object_unpin_map(ringbuf->obj);
2189         else
2190                 i915_vma_unpin_iomap(ringbuf->vma);
2191         ringbuf->virtual_start = NULL;
2192
2193         i915_gem_object_ggtt_unpin(ringbuf->obj);
2194         ringbuf->vma = NULL;
2195 }
2196
2197 int intel_pin_and_map_ringbuffer_obj(struct drm_i915_private *dev_priv,
2198                                      struct intel_ringbuffer *ringbuf)
2199 {
2200         struct drm_i915_gem_object *obj = ringbuf->obj;
2201         /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
2202         unsigned flags = PIN_OFFSET_BIAS | 4096;
2203         void *addr;
2204         int ret;
2205
2206         if (HAS_LLC(dev_priv) && !obj->stolen) {
2207                 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
2208                 if (ret)
2209                         return ret;
2210
2211                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2212                 if (ret)
2213                         goto err_unpin;
2214
2215                 addr = i915_gem_object_pin_map(obj);
2216                 if (IS_ERR(addr)) {
2217                         ret = PTR_ERR(addr);
2218                         goto err_unpin;
2219                 }
2220         } else {
2221                 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
2222                                             flags | PIN_MAPPABLE);
2223                 if (ret)
2224                         return ret;
2225
2226                 ret = i915_gem_object_set_to_gtt_domain(obj, true);
2227                 if (ret)
2228                         goto err_unpin;
2229
2230                 /* Access through the GTT requires the device to be awake. */
2231                 assert_rpm_wakelock_held(dev_priv);
2232
2233                 addr = i915_vma_pin_iomap(i915_gem_obj_to_ggtt(obj));
2234                 if (IS_ERR(addr)) {
2235                         ret = PTR_ERR(addr);
2236                         goto err_unpin;
2237                 }
2238         }
2239
2240         ringbuf->virtual_start = addr;
2241         ringbuf->vma = i915_gem_obj_to_ggtt(obj);
2242         return 0;
2243
2244 err_unpin:
2245         i915_gem_object_ggtt_unpin(obj);
2246         return ret;
2247 }
2248
2249 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2250 {
2251         drm_gem_object_unreference(&ringbuf->obj->base);
2252         ringbuf->obj = NULL;
2253 }
2254
2255 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2256                                       struct intel_ringbuffer *ringbuf)
2257 {
2258         struct drm_i915_gem_object *obj;
2259
2260         obj = NULL;
2261         if (!HAS_LLC(dev))
2262                 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2263         if (obj == NULL)
2264                 obj = i915_gem_object_create(dev, ringbuf->size);
2265         if (IS_ERR(obj))
2266                 return PTR_ERR(obj);
2267
2268         /* mark ring buffers as read-only from GPU side by default */
2269         obj->gt_ro = 1;
2270
2271         ringbuf->obj = obj;
2272
2273         return 0;
2274 }
2275
2276 struct intel_ringbuffer *
2277 intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2278 {
2279         struct intel_ringbuffer *ring;
2280         int ret;
2281
2282         ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2283         if (ring == NULL) {
2284                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2285                                  engine->name);
2286                 return ERR_PTR(-ENOMEM);
2287         }
2288
2289         ring->engine = engine;
2290         list_add(&ring->link, &engine->buffers);
2291
2292         ring->size = size;
2293         /* Workaround an erratum on the i830 which causes a hang if
2294          * the TAIL pointer points to within the last 2 cachelines
2295          * of the buffer.
2296          */
2297         ring->effective_size = size;
2298         if (IS_I830(engine->i915) || IS_845G(engine->i915))
2299                 ring->effective_size -= 2 * CACHELINE_BYTES;
2300
2301         ring->last_retired_head = -1;
2302         intel_ring_update_space(ring);
2303
2304         ret = intel_alloc_ringbuffer_obj(engine->i915->dev, ring);
2305         if (ret) {
2306                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
2307                                  engine->name, ret);
2308                 list_del(&ring->link);
2309                 kfree(ring);
2310                 return ERR_PTR(ret);
2311         }
2312
2313         return ring;
2314 }
2315
2316 void
2317 intel_ringbuffer_free(struct intel_ringbuffer *ring)
2318 {
2319         intel_destroy_ringbuffer_obj(ring);
2320         list_del(&ring->link);
2321         kfree(ring);
2322 }
2323
2324 static int intel_init_ring_buffer(struct drm_device *dev,
2325                                   struct intel_engine_cs *engine)
2326 {
2327         struct drm_i915_private *dev_priv = to_i915(dev);
2328         struct intel_ringbuffer *ringbuf;
2329         int ret;
2330
2331         WARN_ON(engine->buffer);
2332
2333         engine->i915 = dev_priv;
2334         INIT_LIST_HEAD(&engine->active_list);
2335         INIT_LIST_HEAD(&engine->request_list);
2336         INIT_LIST_HEAD(&engine->execlist_queue);
2337         INIT_LIST_HEAD(&engine->buffers);
2338         i915_gem_batch_pool_init(dev, &engine->batch_pool);
2339         memset(engine->semaphore.sync_seqno, 0,
2340                sizeof(engine->semaphore.sync_seqno));
2341
2342         init_waitqueue_head(&engine->irq_queue);
2343
2344         ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
2345         if (IS_ERR(ringbuf)) {
2346                 ret = PTR_ERR(ringbuf);
2347                 goto error;
2348         }
2349         engine->buffer = ringbuf;
2350
2351         if (I915_NEED_GFX_HWS(dev_priv)) {
2352                 ret = init_status_page(engine);
2353                 if (ret)
2354                         goto error;
2355         } else {
2356                 WARN_ON(engine->id != RCS);
2357                 ret = init_phys_status_page(engine);
2358                 if (ret)
2359                         goto error;
2360         }
2361
2362         ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ringbuf);
2363         if (ret) {
2364                 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2365                                 engine->name, ret);
2366                 intel_destroy_ringbuffer_obj(ringbuf);
2367                 goto error;
2368         }
2369
2370         ret = i915_cmd_parser_init_ring(engine);
2371         if (ret)
2372                 goto error;
2373
2374         return 0;
2375
2376 error:
2377         intel_cleanup_engine(engine);
2378         return ret;
2379 }
2380
2381 void intel_cleanup_engine(struct intel_engine_cs *engine)
2382 {
2383         struct drm_i915_private *dev_priv;
2384
2385         if (!intel_engine_initialized(engine))
2386                 return;
2387
2388         dev_priv = engine->i915;
2389
2390         if (engine->buffer) {
2391                 intel_stop_engine(engine);
2392                 WARN_ON(!IS_GEN2(dev_priv) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2393
2394                 intel_unpin_ringbuffer_obj(engine->buffer);
2395                 intel_ringbuffer_free(engine->buffer);
2396                 engine->buffer = NULL;
2397         }
2398
2399         if (engine->cleanup)
2400                 engine->cleanup(engine);
2401
2402         if (I915_NEED_GFX_HWS(dev_priv)) {
2403                 cleanup_status_page(engine);
2404         } else {
2405                 WARN_ON(engine->id != RCS);
2406                 cleanup_phys_status_page(engine);
2407         }
2408
2409         i915_cmd_parser_fini_ring(engine);
2410         i915_gem_batch_pool_fini(&engine->batch_pool);
2411         engine->i915 = NULL;
2412 }
2413
2414 int intel_engine_idle(struct intel_engine_cs *engine)
2415 {
2416         struct drm_i915_gem_request *req;
2417
2418         /* Wait upon the last request to be completed */
2419         if (list_empty(&engine->request_list))
2420                 return 0;
2421
2422         req = list_entry(engine->request_list.prev,
2423                          struct drm_i915_gem_request,
2424                          list);
2425
2426         /* Make sure we do not trigger any retires */
2427         return __i915_wait_request(req,
2428                                    req->i915->mm.interruptible,
2429                                    NULL, NULL);
2430 }
2431
2432 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2433 {
2434         int ret;
2435
2436         /* Flush enough space to reduce the likelihood of waiting after
2437          * we start building the request - in which case we will just
2438          * have to repeat work.
2439          */
2440         request->reserved_space += LEGACY_REQUEST_SIZE;
2441
2442         request->ringbuf = request->engine->buffer;
2443
2444         ret = intel_ring_begin(request, 0);
2445         if (ret)
2446                 return ret;
2447
2448         request->reserved_space -= LEGACY_REQUEST_SIZE;
2449         return 0;
2450 }
2451
2452 static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
2453 {
2454         struct intel_ringbuffer *ringbuf = req->ringbuf;
2455         struct intel_engine_cs *engine = req->engine;
2456         struct drm_i915_gem_request *target;
2457
2458         intel_ring_update_space(ringbuf);
2459         if (ringbuf->space >= bytes)
2460                 return 0;
2461
2462         /*
2463          * Space is reserved in the ringbuffer for finalising the request,
2464          * as that cannot be allowed to fail. During request finalisation,
2465          * reserved_space is set to 0 to stop the overallocation and the
2466          * assumption is that then we never need to wait (which has the
2467          * risk of failing with EINTR).
2468          *
2469          * See also i915_gem_request_alloc() and i915_add_request().
2470          */
2471         GEM_BUG_ON(!req->reserved_space);
2472
2473         list_for_each_entry(target, &engine->request_list, list) {
2474                 unsigned space;
2475
2476                 /*
2477                  * The request queue is per-engine, so can contain requests
2478                  * from multiple ringbuffers. Here, we must ignore any that
2479                  * aren't from the ringbuffer we're considering.
2480                  */
2481                 if (target->ringbuf != ringbuf)
2482                         continue;
2483
2484                 /* Would completion of this request free enough space? */
2485                 space = __intel_ring_space(target->postfix, ringbuf->tail,
2486                                            ringbuf->size);
2487                 if (space >= bytes)
2488                         break;
2489         }
2490
2491         if (WARN_ON(&target->list == &engine->request_list))
2492                 return -ENOSPC;
2493
2494         return i915_wait_request(target);
2495 }
2496
2497 int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
2498 {
2499         struct intel_ringbuffer *ringbuf = req->ringbuf;
2500         int remain_actual = ringbuf->size - ringbuf->tail;
2501         int remain_usable = ringbuf->effective_size - ringbuf->tail;
2502         int bytes = num_dwords * sizeof(u32);
2503         int total_bytes, wait_bytes;
2504         bool need_wrap = false;
2505
2506         total_bytes = bytes + req->reserved_space;
2507
2508         if (unlikely(bytes > remain_usable)) {
2509                 /*
2510                  * Not enough space for the basic request. So need to flush
2511                  * out the remainder and then wait for base + reserved.
2512                  */
2513                 wait_bytes = remain_actual + total_bytes;
2514                 need_wrap = true;
2515         } else if (unlikely(total_bytes > remain_usable)) {
2516                 /*
2517                  * The base request will fit but the reserved space
2518                  * falls off the end. So we don't need an immediate wrap
2519                  * and only need to effectively wait for the reserved
2520                  * size space from the start of ringbuffer.
2521                  */
2522                 wait_bytes = remain_actual + req->reserved_space;
2523         } else {
2524                 /* No wrapping required, just waiting. */
2525                 wait_bytes = total_bytes;
2526         }
2527
2528         if (wait_bytes > ringbuf->space) {
2529                 int ret = wait_for_space(req, wait_bytes);
2530                 if (unlikely(ret))
2531                         return ret;
2532
2533                 intel_ring_update_space(ringbuf);
2534                 if (unlikely(ringbuf->space < wait_bytes))
2535                         return -EAGAIN;
2536         }
2537
2538         if (unlikely(need_wrap)) {
2539                 GEM_BUG_ON(remain_actual > ringbuf->space);
2540                 GEM_BUG_ON(ringbuf->tail + remain_actual > ringbuf->size);
2541
2542                 /* Fill the tail with MI_NOOP */
2543                 memset(ringbuf->virtual_start + ringbuf->tail,
2544                        0, remain_actual);
2545                 ringbuf->tail = 0;
2546                 ringbuf->space -= remain_actual;
2547         }
2548
2549         ringbuf->space -= bytes;
2550         GEM_BUG_ON(ringbuf->space < 0);
2551         return 0;
2552 }
2553
2554 /* Align the ring tail to a cacheline boundary */
2555 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2556 {
2557         struct intel_engine_cs *engine = req->engine;
2558         int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2559         int ret;
2560
2561         if (num_dwords == 0)
2562                 return 0;
2563
2564         num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2565         ret = intel_ring_begin(req, num_dwords);
2566         if (ret)
2567                 return ret;
2568
2569         while (num_dwords--)
2570                 intel_ring_emit(engine, MI_NOOP);
2571
2572         intel_ring_advance(engine);
2573
2574         return 0;
2575 }
2576
2577 void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
2578 {
2579         struct drm_i915_private *dev_priv = engine->i915;
2580
2581         /* Our semaphore implementation is strictly monotonic (i.e. we proceed
2582          * so long as the semaphore value in the register/page is greater
2583          * than the sync value), so whenever we reset the seqno,
2584          * so long as we reset the tracking semaphore value to 0, it will
2585          * always be before the next request's seqno. If we don't reset
2586          * the semaphore value, then when the seqno moves backwards all
2587          * future waits will complete instantly (causing rendering corruption).
2588          */
2589         if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
2590                 I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
2591                 I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
2592                 if (HAS_VEBOX(dev_priv))
2593                         I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
2594         }
2595         if (dev_priv->semaphore_obj) {
2596                 struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
2597                 struct page *page = i915_gem_object_get_dirty_page(obj, 0);
2598                 void *semaphores = kmap(page);
2599                 memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
2600                        0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
2601                 kunmap(page);
2602         }
2603         memset(engine->semaphore.sync_seqno, 0,
2604                sizeof(engine->semaphore.sync_seqno));
2605
2606         engine->set_seqno(engine, seqno);
2607         engine->last_submitted_seqno = seqno;
2608
2609         engine->hangcheck.seqno = seqno;
2610 }
2611
2612 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
2613                                      u32 value)
2614 {
2615         struct drm_i915_private *dev_priv = engine->i915;
2616
2617        /* Every tail move must follow the sequence below */
2618
2619         /* Disable notification that the ring is IDLE. The GT
2620          * will then assume that it is busy and bring it out of rc6.
2621          */
2622         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2623                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2624
2625         /* Clear the context id. Here be magic! */
2626         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2627
2628         /* Wait for the ring not to be idle, i.e. for it to wake up. */
2629         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2630                       GEN6_BSD_SLEEP_INDICATOR) == 0,
2631                      50))
2632                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2633
2634         /* Now that the ring is fully powered up, update the tail */
2635         I915_WRITE_TAIL(engine, value);
2636         POSTING_READ(RING_TAIL(engine->mmio_base));
2637
2638         /* Let the ring send IDLE messages to the GT again,
2639          * and so let it sleep to conserve power when idle.
2640          */
2641         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2642                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2643 }
2644
2645 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2646                                u32 invalidate, u32 flush)
2647 {
2648         struct intel_engine_cs *engine = req->engine;
2649         uint32_t cmd;
2650         int ret;
2651
2652         ret = intel_ring_begin(req, 4);
2653         if (ret)
2654                 return ret;
2655
2656         cmd = MI_FLUSH_DW;
2657         if (INTEL_GEN(req->i915) >= 8)
2658                 cmd += 1;
2659
2660         /* We always require a command barrier so that subsequent
2661          * commands, such as breadcrumb interrupts, are strictly ordered
2662          * wrt the contents of the write cache being flushed to memory
2663          * (and thus being coherent from the CPU).
2664          */
2665         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2666
2667         /*
2668          * Bspec vol 1c.5 - video engine command streamer:
2669          * "If ENABLED, all TLBs will be invalidated once the flush
2670          * operation is complete. This bit is only valid when the
2671          * Post-Sync Operation field is a value of 1h or 3h."
2672          */
2673         if (invalidate & I915_GEM_GPU_DOMAINS)
2674                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2675
2676         intel_ring_emit(engine, cmd);
2677         intel_ring_emit(engine,
2678                         I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2679         if (INTEL_GEN(req->i915) >= 8) {
2680                 intel_ring_emit(engine, 0); /* upper addr */
2681                 intel_ring_emit(engine, 0); /* value */
2682         } else  {
2683                 intel_ring_emit(engine, 0);
2684                 intel_ring_emit(engine, MI_NOOP);
2685         }
2686         intel_ring_advance(engine);
2687         return 0;
2688 }
2689
2690 static int
2691 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2692                               u64 offset, u32 len,
2693                               unsigned dispatch_flags)
2694 {
2695         struct intel_engine_cs *engine = req->engine;
2696         bool ppgtt = USES_PPGTT(engine->dev) &&
2697                         !(dispatch_flags & I915_DISPATCH_SECURE);
2698         int ret;
2699
2700         ret = intel_ring_begin(req, 4);
2701         if (ret)
2702                 return ret;
2703
2704         /* FIXME(BDW): Address space and security selectors. */
2705         intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2706                         (dispatch_flags & I915_DISPATCH_RS ?
2707                          MI_BATCH_RESOURCE_STREAMER : 0));
2708         intel_ring_emit(engine, lower_32_bits(offset));
2709         intel_ring_emit(engine, upper_32_bits(offset));
2710         intel_ring_emit(engine, MI_NOOP);
2711         intel_ring_advance(engine);
2712
2713         return 0;
2714 }
2715
2716 static int
2717 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2718                              u64 offset, u32 len,
2719                              unsigned dispatch_flags)
2720 {
2721         struct intel_engine_cs *engine = req->engine;
2722         int ret;
2723
2724         ret = intel_ring_begin(req, 2);
2725         if (ret)
2726                 return ret;
2727
2728         intel_ring_emit(engine,
2729                         MI_BATCH_BUFFER_START |
2730                         (dispatch_flags & I915_DISPATCH_SECURE ?
2731                          0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2732                         (dispatch_flags & I915_DISPATCH_RS ?
2733                          MI_BATCH_RESOURCE_STREAMER : 0));
2734         /* bit0-7 is the length on GEN6+ */
2735         intel_ring_emit(engine, offset);
2736         intel_ring_advance(engine);
2737
2738         return 0;
2739 }
2740
2741 static int
2742 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2743                               u64 offset, u32 len,
2744                               unsigned dispatch_flags)
2745 {
2746         struct intel_engine_cs *engine = req->engine;
2747         int ret;
2748
2749         ret = intel_ring_begin(req, 2);
2750         if (ret)
2751                 return ret;
2752
2753         intel_ring_emit(engine,
2754                         MI_BATCH_BUFFER_START |
2755                         (dispatch_flags & I915_DISPATCH_SECURE ?
2756                          0 : MI_BATCH_NON_SECURE_I965));
2757         /* bit0-7 is the length on GEN6+ */
2758         intel_ring_emit(engine, offset);
2759         intel_ring_advance(engine);
2760
2761         return 0;
2762 }
2763
2764 /* Blitter support (SandyBridge+) */
2765
2766 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2767                            u32 invalidate, u32 flush)
2768 {
2769         struct intel_engine_cs *engine = req->engine;
2770         uint32_t cmd;
2771         int ret;
2772
2773         ret = intel_ring_begin(req, 4);
2774         if (ret)
2775                 return ret;
2776
2777         cmd = MI_FLUSH_DW;
2778         if (INTEL_GEN(req->i915) >= 8)
2779                 cmd += 1;
2780
2781         /* We always require a command barrier so that subsequent
2782          * commands, such as breadcrumb interrupts, are strictly ordered
2783          * wrt the contents of the write cache being flushed to memory
2784          * (and thus being coherent from the CPU).
2785          */
2786         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2787
2788         /*
2789          * Bspec vol 1c.3 - blitter engine command streamer:
2790          * "If ENABLED, all TLBs will be invalidated once the flush
2791          * operation is complete. This bit is only valid when the
2792          * Post-Sync Operation field is a value of 1h or 3h."
2793          */
2794         if (invalidate & I915_GEM_DOMAIN_RENDER)
2795                 cmd |= MI_INVALIDATE_TLB;
2796         intel_ring_emit(engine, cmd);
2797         intel_ring_emit(engine,
2798                         I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2799         if (INTEL_GEN(req->i915) >= 8) {
2800                 intel_ring_emit(engine, 0); /* upper addr */
2801                 intel_ring_emit(engine, 0); /* value */
2802         } else  {
2803                 intel_ring_emit(engine, 0);
2804                 intel_ring_emit(engine, MI_NOOP);
2805         }
2806         intel_ring_advance(engine);
2807
2808         return 0;
2809 }
2810
2811 int intel_init_render_ring_buffer(struct drm_device *dev)
2812 {
2813         struct drm_i915_private *dev_priv = dev->dev_private;
2814         struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2815         struct drm_i915_gem_object *obj;
2816         int ret;
2817
2818         engine->name = "render ring";
2819         engine->id = RCS;
2820         engine->exec_id = I915_EXEC_RENDER;
2821         engine->hw_id = 0;
2822         engine->mmio_base = RENDER_RING_BASE;
2823
2824         if (INTEL_GEN(dev_priv) >= 8) {
2825                 if (i915_semaphore_is_enabled(dev_priv)) {
2826                         obj = i915_gem_object_create(dev, 4096);
2827                         if (IS_ERR(obj)) {
2828                                 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2829                                 i915.semaphores = 0;
2830                         } else {
2831                                 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2832                                 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2833                                 if (ret != 0) {
2834                                         drm_gem_object_unreference(&obj->base);
2835                                         DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2836                                         i915.semaphores = 0;
2837                                 } else
2838                                         dev_priv->semaphore_obj = obj;
2839                         }
2840                 }
2841
2842                 engine->init_context = intel_rcs_ctx_init;
2843                 engine->add_request = gen8_render_add_request;
2844                 engine->flush = gen8_render_ring_flush;
2845                 engine->irq_get = gen8_ring_get_irq;
2846                 engine->irq_put = gen8_ring_put_irq;
2847                 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2848                 engine->get_seqno = ring_get_seqno;
2849                 engine->set_seqno = ring_set_seqno;
2850                 if (i915_semaphore_is_enabled(dev_priv)) {
2851                         WARN_ON(!dev_priv->semaphore_obj);
2852                         engine->semaphore.sync_to = gen8_ring_sync;
2853                         engine->semaphore.signal = gen8_rcs_signal;
2854                         GEN8_RING_SEMAPHORE_INIT(engine);
2855                 }
2856         } else if (INTEL_GEN(dev_priv) >= 6) {
2857                 engine->init_context = intel_rcs_ctx_init;
2858                 engine->add_request = gen6_add_request;
2859                 engine->flush = gen7_render_ring_flush;
2860                 if (IS_GEN6(dev_priv))
2861                         engine->flush = gen6_render_ring_flush;
2862                 engine->irq_get = gen6_ring_get_irq;
2863                 engine->irq_put = gen6_ring_put_irq;
2864                 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2865                 engine->irq_seqno_barrier = gen6_seqno_barrier;
2866                 engine->get_seqno = ring_get_seqno;
2867                 engine->set_seqno = ring_set_seqno;
2868                 if (i915_semaphore_is_enabled(dev_priv)) {
2869                         engine->semaphore.sync_to = gen6_ring_sync;
2870                         engine->semaphore.signal = gen6_signal;
2871                         /*
2872                          * The current semaphore is only applied on pre-gen8
2873                          * platform.  And there is no VCS2 ring on the pre-gen8
2874                          * platform. So the semaphore between RCS and VCS2 is
2875                          * initialized as INVALID.  Gen8 will initialize the
2876                          * sema between VCS2 and RCS later.
2877                          */
2878                         engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2879                         engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2880                         engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2881                         engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2882                         engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2883                         engine->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2884                         engine->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2885                         engine->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2886                         engine->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2887                         engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2888                 }
2889         } else if (IS_GEN5(dev_priv)) {
2890                 engine->add_request = pc_render_add_request;
2891                 engine->flush = gen4_render_ring_flush;
2892                 engine->get_seqno = pc_render_get_seqno;
2893                 engine->set_seqno = pc_render_set_seqno;
2894                 engine->irq_get = gen5_ring_get_irq;
2895                 engine->irq_put = gen5_ring_put_irq;
2896                 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2897                                         GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2898         } else {
2899                 engine->add_request = i9xx_add_request;
2900                 if (INTEL_GEN(dev_priv) < 4)
2901                         engine->flush = gen2_render_ring_flush;
2902                 else
2903                         engine->flush = gen4_render_ring_flush;
2904                 engine->get_seqno = ring_get_seqno;
2905                 engine->set_seqno = ring_set_seqno;
2906                 if (IS_GEN2(dev_priv)) {
2907                         engine->irq_get = i8xx_ring_get_irq;
2908                         engine->irq_put = i8xx_ring_put_irq;
2909                 } else {
2910                         engine->irq_get = i9xx_ring_get_irq;
2911                         engine->irq_put = i9xx_ring_put_irq;
2912                 }
2913                 engine->irq_enable_mask = I915_USER_INTERRUPT;
2914         }
2915         engine->write_tail = ring_write_tail;
2916
2917         if (IS_HASWELL(dev_priv))
2918                 engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2919         else if (IS_GEN8(dev_priv))
2920                 engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2921         else if (INTEL_GEN(dev_priv) >= 6)
2922                 engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2923         else if (INTEL_GEN(dev_priv) >= 4)
2924                 engine->dispatch_execbuffer = i965_dispatch_execbuffer;
2925         else if (IS_I830(dev_priv) || IS_845G(dev_priv))
2926                 engine->dispatch_execbuffer = i830_dispatch_execbuffer;
2927         else
2928                 engine->dispatch_execbuffer = i915_dispatch_execbuffer;
2929         engine->init_hw = init_render_ring;
2930         engine->cleanup = render_ring_cleanup;
2931
2932         /* Workaround batchbuffer to combat CS tlb bug. */
2933         if (HAS_BROKEN_CS_TLB(dev_priv)) {
2934                 obj = i915_gem_object_create(dev, I830_WA_SIZE);
2935                 if (IS_ERR(obj)) {
2936                         DRM_ERROR("Failed to allocate batch bo\n");
2937                         return PTR_ERR(obj);
2938                 }
2939
2940                 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2941                 if (ret != 0) {
2942                         drm_gem_object_unreference(&obj->base);
2943                         DRM_ERROR("Failed to ping batch bo\n");
2944                         return ret;
2945                 }
2946
2947                 engine->scratch.obj = obj;
2948                 engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2949         }
2950
2951         ret = intel_init_ring_buffer(dev, engine);
2952         if (ret)
2953                 return ret;
2954
2955         if (INTEL_GEN(dev_priv) >= 5) {
2956                 ret = intel_init_pipe_control(engine);
2957                 if (ret)
2958                         return ret;
2959         }
2960
2961         return 0;
2962 }
2963
2964 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2965 {
2966         struct drm_i915_private *dev_priv = dev->dev_private;
2967         struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2968
2969         engine->name = "bsd ring";
2970         engine->id = VCS;
2971         engine->exec_id = I915_EXEC_BSD;
2972         engine->hw_id = 1;
2973
2974         engine->write_tail = ring_write_tail;
2975         if (INTEL_GEN(dev_priv) >= 6) {
2976                 engine->mmio_base = GEN6_BSD_RING_BASE;
2977                 /* gen6 bsd needs a special wa for tail updates */
2978                 if (IS_GEN6(dev_priv))
2979                         engine->write_tail = gen6_bsd_ring_write_tail;
2980                 engine->flush = gen6_bsd_ring_flush;
2981                 engine->add_request = gen6_add_request;
2982                 engine->irq_seqno_barrier = gen6_seqno_barrier;
2983                 engine->get_seqno = ring_get_seqno;
2984                 engine->set_seqno = ring_set_seqno;
2985                 if (INTEL_GEN(dev_priv) >= 8) {
2986                         engine->irq_enable_mask =
2987                                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2988                         engine->irq_get = gen8_ring_get_irq;
2989                         engine->irq_put = gen8_ring_put_irq;
2990                         engine->dispatch_execbuffer =
2991                                 gen8_ring_dispatch_execbuffer;
2992                         if (i915_semaphore_is_enabled(dev_priv)) {
2993                                 engine->semaphore.sync_to = gen8_ring_sync;
2994                                 engine->semaphore.signal = gen8_xcs_signal;
2995                                 GEN8_RING_SEMAPHORE_INIT(engine);
2996                         }
2997                 } else {
2998                         engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2999                         engine->irq_get = gen6_ring_get_irq;
3000                         engine->irq_put = gen6_ring_put_irq;
3001                         engine->dispatch_execbuffer =
3002                                 gen6_ring_dispatch_execbuffer;
3003                         if (i915_semaphore_is_enabled(dev_priv)) {
3004                                 engine->semaphore.sync_to = gen6_ring_sync;
3005                                 engine->semaphore.signal = gen6_signal;
3006                                 engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
3007                                 engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
3008                                 engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
3009                                 engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
3010                                 engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3011                                 engine->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
3012                                 engine->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
3013                                 engine->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
3014                                 engine->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
3015                                 engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3016                         }
3017                 }
3018         } else {
3019                 engine->mmio_base = BSD_RING_BASE;
3020                 engine->flush = bsd_ring_flush;
3021                 engine->add_request = i9xx_add_request;
3022                 engine->get_seqno = ring_get_seqno;
3023                 engine->set_seqno = ring_set_seqno;
3024                 if (IS_GEN5(dev_priv)) {
3025                         engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
3026                         engine->irq_get = gen5_ring_get_irq;
3027                         engine->irq_put = gen5_ring_put_irq;
3028                 } else {
3029                         engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
3030                         engine->irq_get = i9xx_ring_get_irq;
3031                         engine->irq_put = i9xx_ring_put_irq;
3032                 }
3033                 engine->dispatch_execbuffer = i965_dispatch_execbuffer;
3034         }
3035         engine->init_hw = init_ring_common;
3036
3037         return intel_init_ring_buffer(dev, engine);
3038 }
3039
3040 /**
3041  * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
3042  */
3043 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
3044 {
3045         struct drm_i915_private *dev_priv = dev->dev_private;
3046         struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
3047
3048         engine->name = "bsd2 ring";
3049         engine->id = VCS2;
3050         engine->exec_id = I915_EXEC_BSD;
3051         engine->hw_id = 4;
3052
3053         engine->write_tail = ring_write_tail;
3054         engine->mmio_base = GEN8_BSD2_RING_BASE;
3055         engine->flush = gen6_bsd_ring_flush;
3056         engine->add_request = gen6_add_request;
3057         engine->irq_seqno_barrier = gen6_seqno_barrier;
3058         engine->get_seqno = ring_get_seqno;
3059         engine->set_seqno = ring_set_seqno;
3060         engine->irq_enable_mask =
3061                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
3062         engine->irq_get = gen8_ring_get_irq;
3063         engine->irq_put = gen8_ring_put_irq;
3064         engine->dispatch_execbuffer =
3065                         gen8_ring_dispatch_execbuffer;
3066         if (i915_semaphore_is_enabled(dev_priv)) {
3067                 engine->semaphore.sync_to = gen8_ring_sync;
3068                 engine->semaphore.signal = gen8_xcs_signal;
3069                 GEN8_RING_SEMAPHORE_INIT(engine);
3070         }
3071         engine->init_hw = init_ring_common;
3072
3073         return intel_init_ring_buffer(dev, engine);
3074 }
3075
3076 int intel_init_blt_ring_buffer(struct drm_device *dev)
3077 {
3078         struct drm_i915_private *dev_priv = dev->dev_private;
3079         struct intel_engine_cs *engine = &dev_priv->engine[BCS];
3080
3081         engine->name = "blitter ring";
3082         engine->id = BCS;
3083         engine->exec_id = I915_EXEC_BLT;
3084         engine->hw_id = 2;
3085
3086         engine->mmio_base = BLT_RING_BASE;
3087         engine->write_tail = ring_write_tail;
3088         engine->flush = gen6_ring_flush;
3089         engine->add_request = gen6_add_request;
3090         engine->irq_seqno_barrier = gen6_seqno_barrier;
3091         engine->get_seqno = ring_get_seqno;
3092         engine->set_seqno = ring_set_seqno;
3093         if (INTEL_GEN(dev_priv) >= 8) {
3094                 engine->irq_enable_mask =
3095                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
3096                 engine->irq_get = gen8_ring_get_irq;
3097                 engine->irq_put = gen8_ring_put_irq;
3098                 engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3099                 if (i915_semaphore_is_enabled(dev_priv)) {
3100                         engine->semaphore.sync_to = gen8_ring_sync;
3101                         engine->semaphore.signal = gen8_xcs_signal;
3102                         GEN8_RING_SEMAPHORE_INIT(engine);
3103                 }
3104         } else {
3105                 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
3106                 engine->irq_get = gen6_ring_get_irq;
3107                 engine->irq_put = gen6_ring_put_irq;
3108                 engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3109                 if (i915_semaphore_is_enabled(dev_priv)) {
3110                         engine->semaphore.signal = gen6_signal;
3111                         engine->semaphore.sync_to = gen6_ring_sync;
3112                         /*
3113                          * The current semaphore is only applied on pre-gen8
3114                          * platform.  And there is no VCS2 ring on the pre-gen8
3115                          * platform. So the semaphore between BCS and VCS2 is
3116                          * initialized as INVALID.  Gen8 will initialize the
3117                          * sema between BCS and VCS2 later.
3118                          */
3119                         engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
3120                         engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
3121                         engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
3122                         engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
3123                         engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3124                         engine->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
3125                         engine->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
3126                         engine->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
3127                         engine->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
3128                         engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3129                 }
3130         }
3131         engine->init_hw = init_ring_common;
3132
3133         return intel_init_ring_buffer(dev, engine);
3134 }
3135
3136 int intel_init_vebox_ring_buffer(struct drm_device *dev)
3137 {
3138         struct drm_i915_private *dev_priv = dev->dev_private;
3139         struct intel_engine_cs *engine = &dev_priv->engine[VECS];
3140
3141         engine->name = "video enhancement ring";
3142         engine->id = VECS;
3143         engine->exec_id = I915_EXEC_VEBOX;
3144         engine->hw_id = 3;
3145
3146         engine->mmio_base = VEBOX_RING_BASE;
3147         engine->write_tail = ring_write_tail;
3148         engine->flush = gen6_ring_flush;
3149         engine->add_request = gen6_add_request;
3150         engine->irq_seqno_barrier = gen6_seqno_barrier;
3151         engine->get_seqno = ring_get_seqno;
3152         engine->set_seqno = ring_set_seqno;
3153
3154         if (INTEL_GEN(dev_priv) >= 8) {
3155                 engine->irq_enable_mask =
3156                         GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
3157                 engine->irq_get = gen8_ring_get_irq;
3158                 engine->irq_put = gen8_ring_put_irq;
3159                 engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3160                 if (i915_semaphore_is_enabled(dev_priv)) {
3161                         engine->semaphore.sync_to = gen8_ring_sync;
3162                         engine->semaphore.signal = gen8_xcs_signal;
3163                         GEN8_RING_SEMAPHORE_INIT(engine);
3164                 }
3165         } else {
3166                 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
3167                 engine->irq_get = hsw_vebox_get_irq;
3168                 engine->irq_put = hsw_vebox_put_irq;
3169                 engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3170                 if (i915_semaphore_is_enabled(dev_priv)) {
3171                         engine->semaphore.sync_to = gen6_ring_sync;
3172                         engine->semaphore.signal = gen6_signal;
3173                         engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
3174                         engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
3175                         engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
3176                         engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
3177                         engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3178                         engine->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
3179                         engine->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
3180                         engine->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
3181                         engine->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
3182                         engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3183                 }
3184         }
3185         engine->init_hw = init_ring_common;
3186
3187         return intel_init_ring_buffer(dev, engine);
3188 }
3189
3190 int
3191 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3192 {
3193         struct intel_engine_cs *engine = req->engine;
3194         int ret;
3195
3196         if (!engine->gpu_caches_dirty)
3197                 return 0;
3198
3199         ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
3200         if (ret)
3201                 return ret;
3202
3203         trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3204
3205         engine->gpu_caches_dirty = false;
3206         return 0;
3207 }
3208
3209 int
3210 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3211 {
3212         struct intel_engine_cs *engine = req->engine;
3213         uint32_t flush_domains;
3214         int ret;
3215
3216         flush_domains = 0;
3217         if (engine->gpu_caches_dirty)
3218                 flush_domains = I915_GEM_GPU_DOMAINS;
3219
3220         ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3221         if (ret)
3222                 return ret;
3223
3224         trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3225
3226         engine->gpu_caches_dirty = false;
3227         return 0;
3228 }
3229
3230 void
3231 intel_stop_engine(struct intel_engine_cs *engine)
3232 {
3233         int ret;
3234
3235         if (!intel_engine_initialized(engine))
3236                 return;
3237
3238         ret = intel_engine_idle(engine);
3239         if (ret)
3240                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3241                           engine->name, ret);
3242
3243         stop_ring(engine);
3244 }