x86: remove duplicate turbo ratio limit MSRs
[cascardo/linux.git] / drivers / gpu / drm / ttm / ttm_bo.c
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30
31 #define pr_fmt(fmt) "[TTM] " fmt
32
33 #include <drm/ttm/ttm_module.h>
34 #include <drm/ttm/ttm_bo_driver.h>
35 #include <drm/ttm/ttm_placement.h>
36 #include <linux/jiffies.h>
37 #include <linux/slab.h>
38 #include <linux/sched.h>
39 #include <linux/mm.h>
40 #include <linux/file.h>
41 #include <linux/module.h>
42 #include <linux/atomic.h>
43 #include <linux/reservation.h>
44
45 #define TTM_ASSERT_LOCKED(param)
46 #define TTM_DEBUG(fmt, arg...)
47 #define TTM_BO_HASH_ORDER 13
48
49 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
50 static void ttm_bo_global_kobj_release(struct kobject *kobj);
51
52 static struct attribute ttm_bo_count = {
53         .name = "bo_count",
54         .mode = S_IRUGO
55 };
56
57 static inline int ttm_mem_type_from_place(const struct ttm_place *place,
58                                           uint32_t *mem_type)
59 {
60         int i;
61
62         for (i = 0; i <= TTM_PL_PRIV5; i++)
63                 if (place->flags & (1 << i)) {
64                         *mem_type = i;
65                         return 0;
66                 }
67         return -EINVAL;
68 }
69
70 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
71 {
72         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
73
74         pr_err("    has_type: %d\n", man->has_type);
75         pr_err("    use_type: %d\n", man->use_type);
76         pr_err("    flags: 0x%08X\n", man->flags);
77         pr_err("    gpu_offset: 0x%08llX\n", man->gpu_offset);
78         pr_err("    size: %llu\n", man->size);
79         pr_err("    available_caching: 0x%08X\n", man->available_caching);
80         pr_err("    default_caching: 0x%08X\n", man->default_caching);
81         if (mem_type != TTM_PL_SYSTEM)
82                 (*man->func->debug)(man, TTM_PFX);
83 }
84
85 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
86                                         struct ttm_placement *placement)
87 {
88         int i, ret, mem_type;
89
90         pr_err("No space for %p (%lu pages, %luK, %luM)\n",
91                bo, bo->mem.num_pages, bo->mem.size >> 10,
92                bo->mem.size >> 20);
93         for (i = 0; i < placement->num_placement; i++) {
94                 ret = ttm_mem_type_from_place(&placement->placement[i],
95                                                 &mem_type);
96                 if (ret)
97                         return;
98                 pr_err("  placement[%d]=0x%08X (%d)\n",
99                        i, placement->placement[i].flags, mem_type);
100                 ttm_mem_type_debug(bo->bdev, mem_type);
101         }
102 }
103
104 static ssize_t ttm_bo_global_show(struct kobject *kobj,
105                                   struct attribute *attr,
106                                   char *buffer)
107 {
108         struct ttm_bo_global *glob =
109                 container_of(kobj, struct ttm_bo_global, kobj);
110
111         return snprintf(buffer, PAGE_SIZE, "%lu\n",
112                         (unsigned long) atomic_read(&glob->bo_count));
113 }
114
115 static struct attribute *ttm_bo_global_attrs[] = {
116         &ttm_bo_count,
117         NULL
118 };
119
120 static const struct sysfs_ops ttm_bo_global_ops = {
121         .show = &ttm_bo_global_show
122 };
123
124 static struct kobj_type ttm_bo_glob_kobj_type  = {
125         .release = &ttm_bo_global_kobj_release,
126         .sysfs_ops = &ttm_bo_global_ops,
127         .default_attrs = ttm_bo_global_attrs
128 };
129
130
131 static inline uint32_t ttm_bo_type_flags(unsigned type)
132 {
133         return 1 << (type);
134 }
135
136 static void ttm_bo_release_list(struct kref *list_kref)
137 {
138         struct ttm_buffer_object *bo =
139             container_of(list_kref, struct ttm_buffer_object, list_kref);
140         struct ttm_bo_device *bdev = bo->bdev;
141         size_t acc_size = bo->acc_size;
142
143         BUG_ON(atomic_read(&bo->list_kref.refcount));
144         BUG_ON(atomic_read(&bo->kref.refcount));
145         BUG_ON(atomic_read(&bo->cpu_writers));
146         BUG_ON(bo->mem.mm_node != NULL);
147         BUG_ON(!list_empty(&bo->lru));
148         BUG_ON(!list_empty(&bo->ddestroy));
149
150         if (bo->ttm)
151                 ttm_tt_destroy(bo->ttm);
152         atomic_dec(&bo->glob->bo_count);
153         if (bo->resv == &bo->ttm_resv)
154                 reservation_object_fini(&bo->ttm_resv);
155         mutex_destroy(&bo->wu_mutex);
156         if (bo->destroy)
157                 bo->destroy(bo);
158         else {
159                 kfree(bo);
160         }
161         ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
162 }
163
164 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
165 {
166         struct ttm_bo_device *bdev = bo->bdev;
167
168         lockdep_assert_held(&bo->resv->lock.base);
169
170         if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
171
172                 BUG_ON(!list_empty(&bo->lru));
173
174                 list_add(&bo->lru, bdev->driver->lru_tail(bo));
175                 kref_get(&bo->list_kref);
176
177                 if (bo->ttm && !(bo->ttm->page_flags & TTM_PAGE_FLAG_SG)) {
178                         list_add(&bo->swap, bdev->driver->swap_lru_tail(bo));
179                         kref_get(&bo->list_kref);
180                 }
181         }
182 }
183 EXPORT_SYMBOL(ttm_bo_add_to_lru);
184
185 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
186 {
187         struct ttm_bo_device *bdev = bo->bdev;
188         int put_count = 0;
189
190         if (bdev->driver->lru_removal)
191                 bdev->driver->lru_removal(bo);
192
193         if (!list_empty(&bo->swap)) {
194                 list_del_init(&bo->swap);
195                 ++put_count;
196         }
197         if (!list_empty(&bo->lru)) {
198                 list_del_init(&bo->lru);
199                 ++put_count;
200         }
201
202         return put_count;
203 }
204
205 static void ttm_bo_ref_bug(struct kref *list_kref)
206 {
207         BUG();
208 }
209
210 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
211                          bool never_free)
212 {
213         kref_sub(&bo->list_kref, count,
214                  (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
215 }
216
217 void ttm_bo_del_sub_from_lru(struct ttm_buffer_object *bo)
218 {
219         int put_count;
220
221         spin_lock(&bo->glob->lru_lock);
222         put_count = ttm_bo_del_from_lru(bo);
223         spin_unlock(&bo->glob->lru_lock);
224         ttm_bo_list_ref_sub(bo, put_count, true);
225 }
226 EXPORT_SYMBOL(ttm_bo_del_sub_from_lru);
227
228 void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo)
229 {
230         struct ttm_bo_device *bdev = bo->bdev;
231         int put_count = 0;
232
233         lockdep_assert_held(&bo->resv->lock.base);
234
235         if (bdev->driver->lru_removal)
236                 bdev->driver->lru_removal(bo);
237
238         put_count = ttm_bo_del_from_lru(bo);
239         ttm_bo_list_ref_sub(bo, put_count, true);
240         ttm_bo_add_to_lru(bo);
241 }
242 EXPORT_SYMBOL(ttm_bo_move_to_lru_tail);
243
244 struct list_head *ttm_bo_default_lru_tail(struct ttm_buffer_object *bo)
245 {
246         return bo->bdev->man[bo->mem.mem_type].lru.prev;
247 }
248 EXPORT_SYMBOL(ttm_bo_default_lru_tail);
249
250 struct list_head *ttm_bo_default_swap_lru_tail(struct ttm_buffer_object *bo)
251 {
252         return bo->glob->swap_lru.prev;
253 }
254 EXPORT_SYMBOL(ttm_bo_default_swap_lru_tail);
255
256 /*
257  * Call bo->mutex locked.
258  */
259 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
260 {
261         struct ttm_bo_device *bdev = bo->bdev;
262         struct ttm_bo_global *glob = bo->glob;
263         int ret = 0;
264         uint32_t page_flags = 0;
265
266         TTM_ASSERT_LOCKED(&bo->mutex);
267         bo->ttm = NULL;
268
269         if (bdev->need_dma32)
270                 page_flags |= TTM_PAGE_FLAG_DMA32;
271
272         switch (bo->type) {
273         case ttm_bo_type_device:
274                 if (zero_alloc)
275                         page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
276         case ttm_bo_type_kernel:
277                 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
278                                                       page_flags, glob->dummy_read_page);
279                 if (unlikely(bo->ttm == NULL))
280                         ret = -ENOMEM;
281                 break;
282         case ttm_bo_type_sg:
283                 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
284                                                       page_flags | TTM_PAGE_FLAG_SG,
285                                                       glob->dummy_read_page);
286                 if (unlikely(bo->ttm == NULL)) {
287                         ret = -ENOMEM;
288                         break;
289                 }
290                 bo->ttm->sg = bo->sg;
291                 break;
292         default:
293                 pr_err("Illegal buffer object type\n");
294                 ret = -EINVAL;
295                 break;
296         }
297
298         return ret;
299 }
300
301 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
302                                   struct ttm_mem_reg *mem,
303                                   bool evict, bool interruptible,
304                                   bool no_wait_gpu)
305 {
306         struct ttm_bo_device *bdev = bo->bdev;
307         bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
308         bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
309         struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
310         struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
311         int ret = 0;
312
313         if (old_is_pci || new_is_pci ||
314             ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
315                 ret = ttm_mem_io_lock(old_man, true);
316                 if (unlikely(ret != 0))
317                         goto out_err;
318                 ttm_bo_unmap_virtual_locked(bo);
319                 ttm_mem_io_unlock(old_man);
320         }
321
322         /*
323          * Create and bind a ttm if required.
324          */
325
326         if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
327                 if (bo->ttm == NULL) {
328                         bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
329                         ret = ttm_bo_add_ttm(bo, zero);
330                         if (ret)
331                                 goto out_err;
332                 }
333
334                 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
335                 if (ret)
336                         goto out_err;
337
338                 if (mem->mem_type != TTM_PL_SYSTEM) {
339                         ret = ttm_tt_bind(bo->ttm, mem);
340                         if (ret)
341                                 goto out_err;
342                 }
343
344                 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
345                         if (bdev->driver->move_notify)
346                                 bdev->driver->move_notify(bo, mem);
347                         bo->mem = *mem;
348                         mem->mm_node = NULL;
349                         goto moved;
350                 }
351         }
352
353         if (bdev->driver->move_notify)
354                 bdev->driver->move_notify(bo, mem);
355
356         if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
357             !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
358                 ret = ttm_bo_move_ttm(bo, evict, no_wait_gpu, mem);
359         else if (bdev->driver->move)
360                 ret = bdev->driver->move(bo, evict, interruptible,
361                                          no_wait_gpu, mem);
362         else
363                 ret = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, mem);
364
365         if (ret) {
366                 if (bdev->driver->move_notify) {
367                         struct ttm_mem_reg tmp_mem = *mem;
368                         *mem = bo->mem;
369                         bo->mem = tmp_mem;
370                         bdev->driver->move_notify(bo, mem);
371                         bo->mem = *mem;
372                         *mem = tmp_mem;
373                 }
374
375                 goto out_err;
376         }
377
378 moved:
379         if (bo->evicted) {
380                 if (bdev->driver->invalidate_caches) {
381                         ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
382                         if (ret)
383                                 pr_err("Can not flush read caches\n");
384                 }
385                 bo->evicted = false;
386         }
387
388         if (bo->mem.mm_node) {
389                 bo->offset = (bo->mem.start << PAGE_SHIFT) +
390                     bdev->man[bo->mem.mem_type].gpu_offset;
391                 bo->cur_placement = bo->mem.placement;
392         } else
393                 bo->offset = 0;
394
395         return 0;
396
397 out_err:
398         new_man = &bdev->man[bo->mem.mem_type];
399         if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
400                 ttm_tt_unbind(bo->ttm);
401                 ttm_tt_destroy(bo->ttm);
402                 bo->ttm = NULL;
403         }
404
405         return ret;
406 }
407
408 /**
409  * Call bo::reserved.
410  * Will release GPU memory type usage on destruction.
411  * This is the place to put in driver specific hooks to release
412  * driver private resources.
413  * Will release the bo::reserved lock.
414  */
415
416 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
417 {
418         if (bo->bdev->driver->move_notify)
419                 bo->bdev->driver->move_notify(bo, NULL);
420
421         if (bo->ttm) {
422                 ttm_tt_unbind(bo->ttm);
423                 ttm_tt_destroy(bo->ttm);
424                 bo->ttm = NULL;
425         }
426         ttm_bo_mem_put(bo, &bo->mem);
427
428         ww_mutex_unlock (&bo->resv->lock);
429 }
430
431 static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo)
432 {
433         struct reservation_object_list *fobj;
434         struct fence *fence;
435         int i;
436
437         fobj = reservation_object_get_list(bo->resv);
438         fence = reservation_object_get_excl(bo->resv);
439         if (fence && !fence->ops->signaled)
440                 fence_enable_sw_signaling(fence);
441
442         for (i = 0; fobj && i < fobj->shared_count; ++i) {
443                 fence = rcu_dereference_protected(fobj->shared[i],
444                                         reservation_object_held(bo->resv));
445
446                 if (!fence->ops->signaled)
447                         fence_enable_sw_signaling(fence);
448         }
449 }
450
451 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
452 {
453         struct ttm_bo_device *bdev = bo->bdev;
454         struct ttm_bo_global *glob = bo->glob;
455         int put_count;
456         int ret;
457
458         spin_lock(&glob->lru_lock);
459         ret = __ttm_bo_reserve(bo, false, true, NULL);
460
461         if (!ret) {
462                 if (!ttm_bo_wait(bo, false, true)) {
463                         put_count = ttm_bo_del_from_lru(bo);
464
465                         spin_unlock(&glob->lru_lock);
466                         ttm_bo_cleanup_memtype_use(bo);
467
468                         ttm_bo_list_ref_sub(bo, put_count, true);
469
470                         return;
471                 } else
472                         ttm_bo_flush_all_fences(bo);
473
474                 /*
475                  * Make NO_EVICT bos immediately available to
476                  * shrinkers, now that they are queued for
477                  * destruction.
478                  */
479                 if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) {
480                         bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT;
481                         ttm_bo_add_to_lru(bo);
482                 }
483
484                 __ttm_bo_unreserve(bo);
485         }
486
487         kref_get(&bo->list_kref);
488         list_add_tail(&bo->ddestroy, &bdev->ddestroy);
489         spin_unlock(&glob->lru_lock);
490
491         schedule_delayed_work(&bdev->wq,
492                               ((HZ / 100) < 1) ? 1 : HZ / 100);
493 }
494
495 /**
496  * function ttm_bo_cleanup_refs_and_unlock
497  * If bo idle, remove from delayed- and lru lists, and unref.
498  * If not idle, do nothing.
499  *
500  * Must be called with lru_lock and reservation held, this function
501  * will drop both before returning.
502  *
503  * @interruptible         Any sleeps should occur interruptibly.
504  * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
505  */
506
507 static int ttm_bo_cleanup_refs_and_unlock(struct ttm_buffer_object *bo,
508                                           bool interruptible,
509                                           bool no_wait_gpu)
510 {
511         struct ttm_bo_global *glob = bo->glob;
512         int put_count;
513         int ret;
514
515         ret = ttm_bo_wait(bo, false, true);
516
517         if (ret && !no_wait_gpu) {
518                 long lret;
519                 ww_mutex_unlock(&bo->resv->lock);
520                 spin_unlock(&glob->lru_lock);
521
522                 lret = reservation_object_wait_timeout_rcu(bo->resv,
523                                                            true,
524                                                            interruptible,
525                                                            30 * HZ);
526
527                 if (lret < 0)
528                         return lret;
529                 else if (lret == 0)
530                         return -EBUSY;
531
532                 spin_lock(&glob->lru_lock);
533                 ret = __ttm_bo_reserve(bo, false, true, NULL);
534
535                 /*
536                  * We raced, and lost, someone else holds the reservation now,
537                  * and is probably busy in ttm_bo_cleanup_memtype_use.
538                  *
539                  * Even if it's not the case, because we finished waiting any
540                  * delayed destruction would succeed, so just return success
541                  * here.
542                  */
543                 if (ret) {
544                         spin_unlock(&glob->lru_lock);
545                         return 0;
546                 }
547
548                 /*
549                  * remove sync_obj with ttm_bo_wait, the wait should be
550                  * finished, and no new wait object should have been added.
551                  */
552                 ret = ttm_bo_wait(bo, false, true);
553                 WARN_ON(ret);
554         }
555
556         if (ret || unlikely(list_empty(&bo->ddestroy))) {
557                 __ttm_bo_unreserve(bo);
558                 spin_unlock(&glob->lru_lock);
559                 return ret;
560         }
561
562         put_count = ttm_bo_del_from_lru(bo);
563         list_del_init(&bo->ddestroy);
564         ++put_count;
565
566         spin_unlock(&glob->lru_lock);
567         ttm_bo_cleanup_memtype_use(bo);
568
569         ttm_bo_list_ref_sub(bo, put_count, true);
570
571         return 0;
572 }
573
574 /**
575  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
576  * encountered buffers.
577  */
578
579 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
580 {
581         struct ttm_bo_global *glob = bdev->glob;
582         struct ttm_buffer_object *entry = NULL;
583         int ret = 0;
584
585         spin_lock(&glob->lru_lock);
586         if (list_empty(&bdev->ddestroy))
587                 goto out_unlock;
588
589         entry = list_first_entry(&bdev->ddestroy,
590                 struct ttm_buffer_object, ddestroy);
591         kref_get(&entry->list_kref);
592
593         for (;;) {
594                 struct ttm_buffer_object *nentry = NULL;
595
596                 if (entry->ddestroy.next != &bdev->ddestroy) {
597                         nentry = list_first_entry(&entry->ddestroy,
598                                 struct ttm_buffer_object, ddestroy);
599                         kref_get(&nentry->list_kref);
600                 }
601
602                 ret = __ttm_bo_reserve(entry, false, true, NULL);
603                 if (remove_all && ret) {
604                         spin_unlock(&glob->lru_lock);
605                         ret = __ttm_bo_reserve(entry, false, false, NULL);
606                         spin_lock(&glob->lru_lock);
607                 }
608
609                 if (!ret)
610                         ret = ttm_bo_cleanup_refs_and_unlock(entry, false,
611                                                              !remove_all);
612                 else
613                         spin_unlock(&glob->lru_lock);
614
615                 kref_put(&entry->list_kref, ttm_bo_release_list);
616                 entry = nentry;
617
618                 if (ret || !entry)
619                         goto out;
620
621                 spin_lock(&glob->lru_lock);
622                 if (list_empty(&entry->ddestroy))
623                         break;
624         }
625
626 out_unlock:
627         spin_unlock(&glob->lru_lock);
628 out:
629         if (entry)
630                 kref_put(&entry->list_kref, ttm_bo_release_list);
631         return ret;
632 }
633
634 static void ttm_bo_delayed_workqueue(struct work_struct *work)
635 {
636         struct ttm_bo_device *bdev =
637             container_of(work, struct ttm_bo_device, wq.work);
638
639         if (ttm_bo_delayed_delete(bdev, false)) {
640                 schedule_delayed_work(&bdev->wq,
641                                       ((HZ / 100) < 1) ? 1 : HZ / 100);
642         }
643 }
644
645 static void ttm_bo_release(struct kref *kref)
646 {
647         struct ttm_buffer_object *bo =
648             container_of(kref, struct ttm_buffer_object, kref);
649         struct ttm_bo_device *bdev = bo->bdev;
650         struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
651
652         drm_vma_offset_remove(&bdev->vma_manager, &bo->vma_node);
653         ttm_mem_io_lock(man, false);
654         ttm_mem_io_free_vm(bo);
655         ttm_mem_io_unlock(man);
656         ttm_bo_cleanup_refs_or_queue(bo);
657         kref_put(&bo->list_kref, ttm_bo_release_list);
658 }
659
660 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
661 {
662         struct ttm_buffer_object *bo = *p_bo;
663
664         *p_bo = NULL;
665         kref_put(&bo->kref, ttm_bo_release);
666 }
667 EXPORT_SYMBOL(ttm_bo_unref);
668
669 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
670 {
671         return cancel_delayed_work_sync(&bdev->wq);
672 }
673 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
674
675 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
676 {
677         if (resched)
678                 schedule_delayed_work(&bdev->wq,
679                                       ((HZ / 100) < 1) ? 1 : HZ / 100);
680 }
681 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
682
683 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
684                         bool no_wait_gpu)
685 {
686         struct ttm_bo_device *bdev = bo->bdev;
687         struct ttm_mem_reg evict_mem;
688         struct ttm_placement placement;
689         int ret = 0;
690
691         ret = ttm_bo_wait(bo, interruptible, no_wait_gpu);
692
693         if (unlikely(ret != 0)) {
694                 if (ret != -ERESTARTSYS) {
695                         pr_err("Failed to expire sync object before buffer eviction\n");
696                 }
697                 goto out;
698         }
699
700         lockdep_assert_held(&bo->resv->lock.base);
701
702         evict_mem = bo->mem;
703         evict_mem.mm_node = NULL;
704         evict_mem.bus.io_reserved_vm = false;
705         evict_mem.bus.io_reserved_count = 0;
706
707         placement.num_placement = 0;
708         placement.num_busy_placement = 0;
709         bdev->driver->evict_flags(bo, &placement);
710         ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
711                                 no_wait_gpu);
712         if (ret) {
713                 if (ret != -ERESTARTSYS) {
714                         pr_err("Failed to find memory space for buffer 0x%p eviction\n",
715                                bo);
716                         ttm_bo_mem_space_debug(bo, &placement);
717                 }
718                 goto out;
719         }
720
721         ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
722                                      no_wait_gpu);
723         if (ret) {
724                 if (ret != -ERESTARTSYS)
725                         pr_err("Buffer eviction failed\n");
726                 ttm_bo_mem_put(bo, &evict_mem);
727                 goto out;
728         }
729         bo->evicted = true;
730 out:
731         return ret;
732 }
733
734 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
735                                 uint32_t mem_type,
736                                 const struct ttm_place *place,
737                                 bool interruptible,
738                                 bool no_wait_gpu)
739 {
740         struct ttm_bo_global *glob = bdev->glob;
741         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
742         struct ttm_buffer_object *bo;
743         int ret = -EBUSY, put_count;
744
745         spin_lock(&glob->lru_lock);
746         list_for_each_entry(bo, &man->lru, lru) {
747                 ret = __ttm_bo_reserve(bo, false, true, NULL);
748                 if (!ret) {
749                         if (place && (place->fpfn || place->lpfn)) {
750                                 /* Don't evict this BO if it's outside of the
751                                  * requested placement range
752                                  */
753                                 if (place->fpfn >= (bo->mem.start + bo->mem.size) ||
754                                     (place->lpfn && place->lpfn <= bo->mem.start)) {
755                                         __ttm_bo_unreserve(bo);
756                                         ret = -EBUSY;
757                                         continue;
758                                 }
759                         }
760
761                         break;
762                 }
763         }
764
765         if (ret) {
766                 spin_unlock(&glob->lru_lock);
767                 return ret;
768         }
769
770         kref_get(&bo->list_kref);
771
772         if (!list_empty(&bo->ddestroy)) {
773                 ret = ttm_bo_cleanup_refs_and_unlock(bo, interruptible,
774                                                      no_wait_gpu);
775                 kref_put(&bo->list_kref, ttm_bo_release_list);
776                 return ret;
777         }
778
779         put_count = ttm_bo_del_from_lru(bo);
780         spin_unlock(&glob->lru_lock);
781
782         BUG_ON(ret != 0);
783
784         ttm_bo_list_ref_sub(bo, put_count, true);
785
786         ret = ttm_bo_evict(bo, interruptible, no_wait_gpu);
787         ttm_bo_unreserve(bo);
788
789         kref_put(&bo->list_kref, ttm_bo_release_list);
790         return ret;
791 }
792
793 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
794 {
795         struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
796
797         if (mem->mm_node)
798                 (*man->func->put_node)(man, mem);
799 }
800 EXPORT_SYMBOL(ttm_bo_mem_put);
801
802 /**
803  * Repeatedly evict memory from the LRU for @mem_type until we create enough
804  * space, or we've evicted everything and there isn't enough space.
805  */
806 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
807                                         uint32_t mem_type,
808                                         const struct ttm_place *place,
809                                         struct ttm_mem_reg *mem,
810                                         bool interruptible,
811                                         bool no_wait_gpu)
812 {
813         struct ttm_bo_device *bdev = bo->bdev;
814         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
815         int ret;
816
817         do {
818                 ret = (*man->func->get_node)(man, bo, place, mem);
819                 if (unlikely(ret != 0))
820                         return ret;
821                 if (mem->mm_node)
822                         break;
823                 ret = ttm_mem_evict_first(bdev, mem_type, place,
824                                           interruptible, no_wait_gpu);
825                 if (unlikely(ret != 0))
826                         return ret;
827         } while (1);
828         if (mem->mm_node == NULL)
829                 return -ENOMEM;
830         mem->mem_type = mem_type;
831         return 0;
832 }
833
834 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
835                                       uint32_t cur_placement,
836                                       uint32_t proposed_placement)
837 {
838         uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
839         uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
840
841         /**
842          * Keep current caching if possible.
843          */
844
845         if ((cur_placement & caching) != 0)
846                 result |= (cur_placement & caching);
847         else if ((man->default_caching & caching) != 0)
848                 result |= man->default_caching;
849         else if ((TTM_PL_FLAG_CACHED & caching) != 0)
850                 result |= TTM_PL_FLAG_CACHED;
851         else if ((TTM_PL_FLAG_WC & caching) != 0)
852                 result |= TTM_PL_FLAG_WC;
853         else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
854                 result |= TTM_PL_FLAG_UNCACHED;
855
856         return result;
857 }
858
859 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
860                                  uint32_t mem_type,
861                                  const struct ttm_place *place,
862                                  uint32_t *masked_placement)
863 {
864         uint32_t cur_flags = ttm_bo_type_flags(mem_type);
865
866         if ((cur_flags & place->flags & TTM_PL_MASK_MEM) == 0)
867                 return false;
868
869         if ((place->flags & man->available_caching) == 0)
870                 return false;
871
872         cur_flags |= (place->flags & man->available_caching);
873
874         *masked_placement = cur_flags;
875         return true;
876 }
877
878 /**
879  * Creates space for memory region @mem according to its type.
880  *
881  * This function first searches for free space in compatible memory types in
882  * the priority order defined by the driver.  If free space isn't found, then
883  * ttm_bo_mem_force_space is attempted in priority order to evict and find
884  * space.
885  */
886 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
887                         struct ttm_placement *placement,
888                         struct ttm_mem_reg *mem,
889                         bool interruptible,
890                         bool no_wait_gpu)
891 {
892         struct ttm_bo_device *bdev = bo->bdev;
893         struct ttm_mem_type_manager *man;
894         uint32_t mem_type = TTM_PL_SYSTEM;
895         uint32_t cur_flags = 0;
896         bool type_found = false;
897         bool type_ok = false;
898         bool has_erestartsys = false;
899         int i, ret;
900
901         mem->mm_node = NULL;
902         for (i = 0; i < placement->num_placement; ++i) {
903                 const struct ttm_place *place = &placement->placement[i];
904
905                 ret = ttm_mem_type_from_place(place, &mem_type);
906                 if (ret)
907                         return ret;
908                 man = &bdev->man[mem_type];
909                 if (!man->has_type || !man->use_type)
910                         continue;
911
912                 type_ok = ttm_bo_mt_compatible(man, mem_type, place,
913                                                 &cur_flags);
914
915                 if (!type_ok)
916                         continue;
917
918                 type_found = true;
919                 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
920                                                   cur_flags);
921                 /*
922                  * Use the access and other non-mapping-related flag bits from
923                  * the memory placement flags to the current flags
924                  */
925                 ttm_flag_masked(&cur_flags, place->flags,
926                                 ~TTM_PL_MASK_MEMTYPE);
927
928                 if (mem_type == TTM_PL_SYSTEM)
929                         break;
930
931                 ret = (*man->func->get_node)(man, bo, place, mem);
932                 if (unlikely(ret))
933                         return ret;
934                 
935                 if (mem->mm_node)
936                         break;
937         }
938
939         if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
940                 mem->mem_type = mem_type;
941                 mem->placement = cur_flags;
942                 return 0;
943         }
944
945         for (i = 0; i < placement->num_busy_placement; ++i) {
946                 const struct ttm_place *place = &placement->busy_placement[i];
947
948                 ret = ttm_mem_type_from_place(place, &mem_type);
949                 if (ret)
950                         return ret;
951                 man = &bdev->man[mem_type];
952                 if (!man->has_type || !man->use_type)
953                         continue;
954                 if (!ttm_bo_mt_compatible(man, mem_type, place, &cur_flags))
955                         continue;
956
957                 type_found = true;
958                 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
959                                                   cur_flags);
960                 /*
961                  * Use the access and other non-mapping-related flag bits from
962                  * the memory placement flags to the current flags
963                  */
964                 ttm_flag_masked(&cur_flags, place->flags,
965                                 ~TTM_PL_MASK_MEMTYPE);
966
967                 if (mem_type == TTM_PL_SYSTEM) {
968                         mem->mem_type = mem_type;
969                         mem->placement = cur_flags;
970                         mem->mm_node = NULL;
971                         return 0;
972                 }
973
974                 ret = ttm_bo_mem_force_space(bo, mem_type, place, mem,
975                                                 interruptible, no_wait_gpu);
976                 if (ret == 0 && mem->mm_node) {
977                         mem->placement = cur_flags;
978                         return 0;
979                 }
980                 if (ret == -ERESTARTSYS)
981                         has_erestartsys = true;
982         }
983
984         if (!type_found) {
985                 printk(KERN_ERR TTM_PFX "No compatible memory type found.\n");
986                 return -EINVAL;
987         }
988
989         return (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
990 }
991 EXPORT_SYMBOL(ttm_bo_mem_space);
992
993 static int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
994                         struct ttm_placement *placement,
995                         bool interruptible,
996                         bool no_wait_gpu)
997 {
998         int ret = 0;
999         struct ttm_mem_reg mem;
1000
1001         lockdep_assert_held(&bo->resv->lock.base);
1002
1003         /*
1004          * Don't wait for the BO on initial allocation. This is important when
1005          * the BO has an imported reservation object.
1006          */
1007         if (bo->mem.mem_type != TTM_PL_SYSTEM || bo->ttm != NULL) {
1008                 /*
1009                  * FIXME: It's possible to pipeline buffer moves.
1010                  * Have the driver move function wait for idle when necessary,
1011                  * instead of doing it here.
1012                  */
1013                 ret = ttm_bo_wait(bo, interruptible, no_wait_gpu);
1014                 if (ret)
1015                         return ret;
1016         }
1017         mem.num_pages = bo->num_pages;
1018         mem.size = mem.num_pages << PAGE_SHIFT;
1019         mem.page_alignment = bo->mem.page_alignment;
1020         mem.bus.io_reserved_vm = false;
1021         mem.bus.io_reserved_count = 0;
1022         /*
1023          * Determine where to move the buffer.
1024          */
1025         ret = ttm_bo_mem_space(bo, placement, &mem,
1026                                interruptible, no_wait_gpu);
1027         if (ret)
1028                 goto out_unlock;
1029         ret = ttm_bo_handle_move_mem(bo, &mem, false,
1030                                      interruptible, no_wait_gpu);
1031 out_unlock:
1032         if (ret && mem.mm_node)
1033                 ttm_bo_mem_put(bo, &mem);
1034         return ret;
1035 }
1036
1037 static bool ttm_bo_mem_compat(struct ttm_placement *placement,
1038                               struct ttm_mem_reg *mem,
1039                               uint32_t *new_flags)
1040 {
1041         int i;
1042
1043         for (i = 0; i < placement->num_placement; i++) {
1044                 const struct ttm_place *heap = &placement->placement[i];
1045                 if (mem->mm_node &&
1046                     (mem->start < heap->fpfn ||
1047                      (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn)))
1048                         continue;
1049
1050                 *new_flags = heap->flags;
1051                 if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1052                     (*new_flags & mem->placement & TTM_PL_MASK_MEM))
1053                         return true;
1054         }
1055
1056         for (i = 0; i < placement->num_busy_placement; i++) {
1057                 const struct ttm_place *heap = &placement->busy_placement[i];
1058                 if (mem->mm_node &&
1059                     (mem->start < heap->fpfn ||
1060                      (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn)))
1061                         continue;
1062
1063                 *new_flags = heap->flags;
1064                 if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1065                     (*new_flags & mem->placement & TTM_PL_MASK_MEM))
1066                         return true;
1067         }
1068
1069         return false;
1070 }
1071
1072 int ttm_bo_validate(struct ttm_buffer_object *bo,
1073                         struct ttm_placement *placement,
1074                         bool interruptible,
1075                         bool no_wait_gpu)
1076 {
1077         int ret;
1078         uint32_t new_flags;
1079
1080         lockdep_assert_held(&bo->resv->lock.base);
1081         /*
1082          * Check whether we need to move buffer.
1083          */
1084         if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) {
1085                 ret = ttm_bo_move_buffer(bo, placement, interruptible,
1086                                          no_wait_gpu);
1087                 if (ret)
1088                         return ret;
1089         } else {
1090                 /*
1091                  * Use the access and other non-mapping-related flag bits from
1092                  * the compatible memory placement flags to the active flags
1093                  */
1094                 ttm_flag_masked(&bo->mem.placement, new_flags,
1095                                 ~TTM_PL_MASK_MEMTYPE);
1096         }
1097         /*
1098          * We might need to add a TTM.
1099          */
1100         if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1101                 ret = ttm_bo_add_ttm(bo, true);
1102                 if (ret)
1103                         return ret;
1104         }
1105         return 0;
1106 }
1107 EXPORT_SYMBOL(ttm_bo_validate);
1108
1109 int ttm_bo_init(struct ttm_bo_device *bdev,
1110                 struct ttm_buffer_object *bo,
1111                 unsigned long size,
1112                 enum ttm_bo_type type,
1113                 struct ttm_placement *placement,
1114                 uint32_t page_alignment,
1115                 bool interruptible,
1116                 struct file *persistent_swap_storage,
1117                 size_t acc_size,
1118                 struct sg_table *sg,
1119                 struct reservation_object *resv,
1120                 void (*destroy) (struct ttm_buffer_object *))
1121 {
1122         int ret = 0;
1123         unsigned long num_pages;
1124         struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1125         bool locked;
1126
1127         ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1128         if (ret) {
1129                 pr_err("Out of kernel memory\n");
1130                 if (destroy)
1131                         (*destroy)(bo);
1132                 else
1133                         kfree(bo);
1134                 return -ENOMEM;
1135         }
1136
1137         num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1138         if (num_pages == 0) {
1139                 pr_err("Illegal buffer object size\n");
1140                 if (destroy)
1141                         (*destroy)(bo);
1142                 else
1143                         kfree(bo);
1144                 ttm_mem_global_free(mem_glob, acc_size);
1145                 return -EINVAL;
1146         }
1147         bo->destroy = destroy;
1148
1149         kref_init(&bo->kref);
1150         kref_init(&bo->list_kref);
1151         atomic_set(&bo->cpu_writers, 0);
1152         INIT_LIST_HEAD(&bo->lru);
1153         INIT_LIST_HEAD(&bo->ddestroy);
1154         INIT_LIST_HEAD(&bo->swap);
1155         INIT_LIST_HEAD(&bo->io_reserve_lru);
1156         mutex_init(&bo->wu_mutex);
1157         bo->bdev = bdev;
1158         bo->glob = bdev->glob;
1159         bo->type = type;
1160         bo->num_pages = num_pages;
1161         bo->mem.size = num_pages << PAGE_SHIFT;
1162         bo->mem.mem_type = TTM_PL_SYSTEM;
1163         bo->mem.num_pages = bo->num_pages;
1164         bo->mem.mm_node = NULL;
1165         bo->mem.page_alignment = page_alignment;
1166         bo->mem.bus.io_reserved_vm = false;
1167         bo->mem.bus.io_reserved_count = 0;
1168         bo->priv_flags = 0;
1169         bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1170         bo->persistent_swap_storage = persistent_swap_storage;
1171         bo->acc_size = acc_size;
1172         bo->sg = sg;
1173         if (resv) {
1174                 bo->resv = resv;
1175                 lockdep_assert_held(&bo->resv->lock.base);
1176         } else {
1177                 bo->resv = &bo->ttm_resv;
1178                 reservation_object_init(&bo->ttm_resv);
1179         }
1180         atomic_inc(&bo->glob->bo_count);
1181         drm_vma_node_reset(&bo->vma_node);
1182
1183         /*
1184          * For ttm_bo_type_device buffers, allocate
1185          * address space from the device.
1186          */
1187         if (bo->type == ttm_bo_type_device ||
1188             bo->type == ttm_bo_type_sg)
1189                 ret = drm_vma_offset_add(&bdev->vma_manager, &bo->vma_node,
1190                                          bo->mem.num_pages);
1191
1192         /* passed reservation objects should already be locked,
1193          * since otherwise lockdep will be angered in radeon.
1194          */
1195         if (!resv) {
1196                 locked = ww_mutex_trylock(&bo->resv->lock);
1197                 WARN_ON(!locked);
1198         }
1199
1200         if (likely(!ret))
1201                 ret = ttm_bo_validate(bo, placement, interruptible, false);
1202
1203         if (!resv) {
1204                 ttm_bo_unreserve(bo);
1205
1206         } else if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
1207                 spin_lock(&bo->glob->lru_lock);
1208                 ttm_bo_add_to_lru(bo);
1209                 spin_unlock(&bo->glob->lru_lock);
1210         }
1211
1212         if (unlikely(ret))
1213                 ttm_bo_unref(&bo);
1214
1215         return ret;
1216 }
1217 EXPORT_SYMBOL(ttm_bo_init);
1218
1219 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1220                        unsigned long bo_size,
1221                        unsigned struct_size)
1222 {
1223         unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1224         size_t size = 0;
1225
1226         size += ttm_round_pot(struct_size);
1227         size += ttm_round_pot(npages * sizeof(void *));
1228         size += ttm_round_pot(sizeof(struct ttm_tt));
1229         return size;
1230 }
1231 EXPORT_SYMBOL(ttm_bo_acc_size);
1232
1233 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1234                            unsigned long bo_size,
1235                            unsigned struct_size)
1236 {
1237         unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1238         size_t size = 0;
1239
1240         size += ttm_round_pot(struct_size);
1241         size += ttm_round_pot(npages * (2*sizeof(void *) + sizeof(dma_addr_t)));
1242         size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1243         return size;
1244 }
1245 EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1246
1247 int ttm_bo_create(struct ttm_bo_device *bdev,
1248                         unsigned long size,
1249                         enum ttm_bo_type type,
1250                         struct ttm_placement *placement,
1251                         uint32_t page_alignment,
1252                         bool interruptible,
1253                         struct file *persistent_swap_storage,
1254                         struct ttm_buffer_object **p_bo)
1255 {
1256         struct ttm_buffer_object *bo;
1257         size_t acc_size;
1258         int ret;
1259
1260         bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1261         if (unlikely(bo == NULL))
1262                 return -ENOMEM;
1263
1264         acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1265         ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1266                           interruptible, persistent_swap_storage, acc_size,
1267                           NULL, NULL, NULL);
1268         if (likely(ret == 0))
1269                 *p_bo = bo;
1270
1271         return ret;
1272 }
1273 EXPORT_SYMBOL(ttm_bo_create);
1274
1275 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1276                                         unsigned mem_type, bool allow_errors)
1277 {
1278         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1279         struct ttm_bo_global *glob = bdev->glob;
1280         int ret;
1281
1282         /*
1283          * Can't use standard list traversal since we're unlocking.
1284          */
1285
1286         spin_lock(&glob->lru_lock);
1287         while (!list_empty(&man->lru)) {
1288                 spin_unlock(&glob->lru_lock);
1289                 ret = ttm_mem_evict_first(bdev, mem_type, NULL, false, false);
1290                 if (ret) {
1291                         if (allow_errors) {
1292                                 return ret;
1293                         } else {
1294                                 pr_err("Cleanup eviction failed\n");
1295                         }
1296                 }
1297                 spin_lock(&glob->lru_lock);
1298         }
1299         spin_unlock(&glob->lru_lock);
1300         return 0;
1301 }
1302
1303 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1304 {
1305         struct ttm_mem_type_manager *man;
1306         int ret = -EINVAL;
1307
1308         if (mem_type >= TTM_NUM_MEM_TYPES) {
1309                 pr_err("Illegal memory type %d\n", mem_type);
1310                 return ret;
1311         }
1312         man = &bdev->man[mem_type];
1313
1314         if (!man->has_type) {
1315                 pr_err("Trying to take down uninitialized memory manager type %u\n",
1316                        mem_type);
1317                 return ret;
1318         }
1319
1320         man->use_type = false;
1321         man->has_type = false;
1322
1323         ret = 0;
1324         if (mem_type > 0) {
1325                 ttm_bo_force_list_clean(bdev, mem_type, false);
1326
1327                 ret = (*man->func->takedown)(man);
1328         }
1329
1330         return ret;
1331 }
1332 EXPORT_SYMBOL(ttm_bo_clean_mm);
1333
1334 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1335 {
1336         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1337
1338         if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1339                 pr_err("Illegal memory manager memory type %u\n", mem_type);
1340                 return -EINVAL;
1341         }
1342
1343         if (!man->has_type) {
1344                 pr_err("Memory type %u has not been initialized\n", mem_type);
1345                 return 0;
1346         }
1347
1348         return ttm_bo_force_list_clean(bdev, mem_type, true);
1349 }
1350 EXPORT_SYMBOL(ttm_bo_evict_mm);
1351
1352 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1353                         unsigned long p_size)
1354 {
1355         int ret = -EINVAL;
1356         struct ttm_mem_type_manager *man;
1357
1358         BUG_ON(type >= TTM_NUM_MEM_TYPES);
1359         man = &bdev->man[type];
1360         BUG_ON(man->has_type);
1361         man->io_reserve_fastpath = true;
1362         man->use_io_reserve_lru = false;
1363         mutex_init(&man->io_reserve_mutex);
1364         INIT_LIST_HEAD(&man->io_reserve_lru);
1365
1366         ret = bdev->driver->init_mem_type(bdev, type, man);
1367         if (ret)
1368                 return ret;
1369         man->bdev = bdev;
1370
1371         ret = 0;
1372         if (type != TTM_PL_SYSTEM) {
1373                 ret = (*man->func->init)(man, p_size);
1374                 if (ret)
1375                         return ret;
1376         }
1377         man->has_type = true;
1378         man->use_type = true;
1379         man->size = p_size;
1380
1381         INIT_LIST_HEAD(&man->lru);
1382
1383         return 0;
1384 }
1385 EXPORT_SYMBOL(ttm_bo_init_mm);
1386
1387 static void ttm_bo_global_kobj_release(struct kobject *kobj)
1388 {
1389         struct ttm_bo_global *glob =
1390                 container_of(kobj, struct ttm_bo_global, kobj);
1391
1392         ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1393         __free_page(glob->dummy_read_page);
1394         kfree(glob);
1395 }
1396
1397 void ttm_bo_global_release(struct drm_global_reference *ref)
1398 {
1399         struct ttm_bo_global *glob = ref->object;
1400
1401         kobject_del(&glob->kobj);
1402         kobject_put(&glob->kobj);
1403 }
1404 EXPORT_SYMBOL(ttm_bo_global_release);
1405
1406 int ttm_bo_global_init(struct drm_global_reference *ref)
1407 {
1408         struct ttm_bo_global_ref *bo_ref =
1409                 container_of(ref, struct ttm_bo_global_ref, ref);
1410         struct ttm_bo_global *glob = ref->object;
1411         int ret;
1412
1413         mutex_init(&glob->device_list_mutex);
1414         spin_lock_init(&glob->lru_lock);
1415         glob->mem_glob = bo_ref->mem_glob;
1416         glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1417
1418         if (unlikely(glob->dummy_read_page == NULL)) {
1419                 ret = -ENOMEM;
1420                 goto out_no_drp;
1421         }
1422
1423         INIT_LIST_HEAD(&glob->swap_lru);
1424         INIT_LIST_HEAD(&glob->device_list);
1425
1426         ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1427         ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1428         if (unlikely(ret != 0)) {
1429                 pr_err("Could not register buffer object swapout\n");
1430                 goto out_no_shrink;
1431         }
1432
1433         atomic_set(&glob->bo_count, 0);
1434
1435         ret = kobject_init_and_add(
1436                 &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1437         if (unlikely(ret != 0))
1438                 kobject_put(&glob->kobj);
1439         return ret;
1440 out_no_shrink:
1441         __free_page(glob->dummy_read_page);
1442 out_no_drp:
1443         kfree(glob);
1444         return ret;
1445 }
1446 EXPORT_SYMBOL(ttm_bo_global_init);
1447
1448
1449 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1450 {
1451         int ret = 0;
1452         unsigned i = TTM_NUM_MEM_TYPES;
1453         struct ttm_mem_type_manager *man;
1454         struct ttm_bo_global *glob = bdev->glob;
1455
1456         while (i--) {
1457                 man = &bdev->man[i];
1458                 if (man->has_type) {
1459                         man->use_type = false;
1460                         if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1461                                 ret = -EBUSY;
1462                                 pr_err("DRM memory manager type %d is not clean\n",
1463                                        i);
1464                         }
1465                         man->has_type = false;
1466                 }
1467         }
1468
1469         mutex_lock(&glob->device_list_mutex);
1470         list_del(&bdev->device_list);
1471         mutex_unlock(&glob->device_list_mutex);
1472
1473         cancel_delayed_work_sync(&bdev->wq);
1474
1475         while (ttm_bo_delayed_delete(bdev, true))
1476                 ;
1477
1478         spin_lock(&glob->lru_lock);
1479         if (list_empty(&bdev->ddestroy))
1480                 TTM_DEBUG("Delayed destroy list was clean\n");
1481
1482         if (list_empty(&bdev->man[0].lru))
1483                 TTM_DEBUG("Swap list was clean\n");
1484         spin_unlock(&glob->lru_lock);
1485
1486         drm_vma_offset_manager_destroy(&bdev->vma_manager);
1487
1488         return ret;
1489 }
1490 EXPORT_SYMBOL(ttm_bo_device_release);
1491
1492 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1493                        struct ttm_bo_global *glob,
1494                        struct ttm_bo_driver *driver,
1495                        struct address_space *mapping,
1496                        uint64_t file_page_offset,
1497                        bool need_dma32)
1498 {
1499         int ret = -EINVAL;
1500
1501         bdev->driver = driver;
1502
1503         memset(bdev->man, 0, sizeof(bdev->man));
1504
1505         /*
1506          * Initialize the system memory buffer type.
1507          * Other types need to be driver / IOCTL initialized.
1508          */
1509         ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1510         if (unlikely(ret != 0))
1511                 goto out_no_sys;
1512
1513         drm_vma_offset_manager_init(&bdev->vma_manager, file_page_offset,
1514                                     0x10000000);
1515         INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1516         INIT_LIST_HEAD(&bdev->ddestroy);
1517         bdev->dev_mapping = mapping;
1518         bdev->glob = glob;
1519         bdev->need_dma32 = need_dma32;
1520         mutex_lock(&glob->device_list_mutex);
1521         list_add_tail(&bdev->device_list, &glob->device_list);
1522         mutex_unlock(&glob->device_list_mutex);
1523
1524         return 0;
1525 out_no_sys:
1526         return ret;
1527 }
1528 EXPORT_SYMBOL(ttm_bo_device_init);
1529
1530 /*
1531  * buffer object vm functions.
1532  */
1533
1534 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1535 {
1536         struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1537
1538         if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1539                 if (mem->mem_type == TTM_PL_SYSTEM)
1540                         return false;
1541
1542                 if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1543                         return false;
1544
1545                 if (mem->placement & TTM_PL_FLAG_CACHED)
1546                         return false;
1547         }
1548         return true;
1549 }
1550
1551 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1552 {
1553         struct ttm_bo_device *bdev = bo->bdev;
1554
1555         drm_vma_node_unmap(&bo->vma_node, bdev->dev_mapping);
1556         ttm_mem_io_free_vm(bo);
1557 }
1558
1559 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1560 {
1561         struct ttm_bo_device *bdev = bo->bdev;
1562         struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1563
1564         ttm_mem_io_lock(man, false);
1565         ttm_bo_unmap_virtual_locked(bo);
1566         ttm_mem_io_unlock(man);
1567 }
1568
1569
1570 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1571
1572 int ttm_bo_wait(struct ttm_buffer_object *bo,
1573                 bool interruptible, bool no_wait)
1574 {
1575         struct reservation_object_list *fobj;
1576         struct reservation_object *resv;
1577         struct fence *excl;
1578         long timeout = 15 * HZ;
1579         int i;
1580
1581         resv = bo->resv;
1582         fobj = reservation_object_get_list(resv);
1583         excl = reservation_object_get_excl(resv);
1584         if (excl) {
1585                 if (!fence_is_signaled(excl)) {
1586                         if (no_wait)
1587                                 return -EBUSY;
1588
1589                         timeout = fence_wait_timeout(excl,
1590                                                      interruptible, timeout);
1591                 }
1592         }
1593
1594         for (i = 0; fobj && timeout > 0 && i < fobj->shared_count; ++i) {
1595                 struct fence *fence;
1596                 fence = rcu_dereference_protected(fobj->shared[i],
1597                                                 reservation_object_held(resv));
1598
1599                 if (!fence_is_signaled(fence)) {
1600                         if (no_wait)
1601                                 return -EBUSY;
1602
1603                         timeout = fence_wait_timeout(fence,
1604                                                      interruptible, timeout);
1605                 }
1606         }
1607
1608         if (timeout < 0)
1609                 return timeout;
1610
1611         if (timeout == 0)
1612                 return -EBUSY;
1613
1614         reservation_object_add_excl_fence(resv, NULL);
1615         clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1616         return 0;
1617 }
1618 EXPORT_SYMBOL(ttm_bo_wait);
1619
1620 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1621 {
1622         int ret = 0;
1623
1624         /*
1625          * Using ttm_bo_reserve makes sure the lru lists are updated.
1626          */
1627
1628         ret = ttm_bo_reserve(bo, true, no_wait, NULL);
1629         if (unlikely(ret != 0))
1630                 return ret;
1631         ret = ttm_bo_wait(bo, true, no_wait);
1632         if (likely(ret == 0))
1633                 atomic_inc(&bo->cpu_writers);
1634         ttm_bo_unreserve(bo);
1635         return ret;
1636 }
1637 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1638
1639 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1640 {
1641         atomic_dec(&bo->cpu_writers);
1642 }
1643 EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1644
1645 /**
1646  * A buffer object shrink method that tries to swap out the first
1647  * buffer object on the bo_global::swap_lru list.
1648  */
1649
1650 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1651 {
1652         struct ttm_bo_global *glob =
1653             container_of(shrink, struct ttm_bo_global, shrink);
1654         struct ttm_buffer_object *bo;
1655         int ret = -EBUSY;
1656         int put_count;
1657         uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1658
1659         spin_lock(&glob->lru_lock);
1660         list_for_each_entry(bo, &glob->swap_lru, swap) {
1661                 ret = __ttm_bo_reserve(bo, false, true, NULL);
1662                 if (!ret)
1663                         break;
1664         }
1665
1666         if (ret) {
1667                 spin_unlock(&glob->lru_lock);
1668                 return ret;
1669         }
1670
1671         kref_get(&bo->list_kref);
1672
1673         if (!list_empty(&bo->ddestroy)) {
1674                 ret = ttm_bo_cleanup_refs_and_unlock(bo, false, false);
1675                 kref_put(&bo->list_kref, ttm_bo_release_list);
1676                 return ret;
1677         }
1678
1679         put_count = ttm_bo_del_from_lru(bo);
1680         spin_unlock(&glob->lru_lock);
1681
1682         ttm_bo_list_ref_sub(bo, put_count, true);
1683
1684         /**
1685          * Wait for GPU, then move to system cached.
1686          */
1687
1688         ret = ttm_bo_wait(bo, false, false);
1689
1690         if (unlikely(ret != 0))
1691                 goto out;
1692
1693         if ((bo->mem.placement & swap_placement) != swap_placement) {
1694                 struct ttm_mem_reg evict_mem;
1695
1696                 evict_mem = bo->mem;
1697                 evict_mem.mm_node = NULL;
1698                 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1699                 evict_mem.mem_type = TTM_PL_SYSTEM;
1700
1701                 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1702                                              false, false);
1703                 if (unlikely(ret != 0))
1704                         goto out;
1705         }
1706
1707         ttm_bo_unmap_virtual(bo);
1708
1709         /**
1710          * Swap out. Buffer will be swapped in again as soon as
1711          * anyone tries to access a ttm page.
1712          */
1713
1714         if (bo->bdev->driver->swap_notify)
1715                 bo->bdev->driver->swap_notify(bo);
1716
1717         ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1718 out:
1719
1720         /**
1721          *
1722          * Unreserve without putting on LRU to avoid swapping out an
1723          * already swapped buffer.
1724          */
1725
1726         __ttm_bo_unreserve(bo);
1727         kref_put(&bo->list_kref, ttm_bo_release_list);
1728         return ret;
1729 }
1730
1731 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1732 {
1733         while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1734                 ;
1735 }
1736 EXPORT_SYMBOL(ttm_bo_swapout_all);
1737
1738 /**
1739  * ttm_bo_wait_unreserved - interruptible wait for a buffer object to become
1740  * unreserved
1741  *
1742  * @bo: Pointer to buffer
1743  */
1744 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo)
1745 {
1746         int ret;
1747
1748         /*
1749          * In the absense of a wait_unlocked API,
1750          * Use the bo::wu_mutex to avoid triggering livelocks due to
1751          * concurrent use of this function. Note that this use of
1752          * bo::wu_mutex can go away if we change locking order to
1753          * mmap_sem -> bo::reserve.
1754          */
1755         ret = mutex_lock_interruptible(&bo->wu_mutex);
1756         if (unlikely(ret != 0))
1757                 return -ERESTARTSYS;
1758         if (!ww_mutex_is_locked(&bo->resv->lock))
1759                 goto out_unlock;
1760         ret = __ttm_bo_reserve(bo, true, false, NULL);
1761         if (unlikely(ret != 0))
1762                 goto out_unlock;
1763         __ttm_bo_unreserve(bo);
1764
1765 out_unlock:
1766         mutex_unlock(&bo->wu_mutex);
1767         return ret;
1768 }