MAINTAINERS: mmc: Move the mmc tree to kernel.org
[cascardo/linux.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
1 /*
2  * Copyright (C) 2015 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8
9 /**
10  * DOC: VC4 CRTC module
11  *
12  * In VC4, the Pixel Valve is what most closely corresponds to the
13  * DRM's concept of a CRTC.  The PV generates video timings from the
14  * output's clock plus its configuration.  It pulls scaled pixels from
15  * the HVS at that timing, and feeds it to the encoder.
16  *
17  * However, the DRM CRTC also collects the configuration of all the
18  * DRM planes attached to it.  As a result, this file also manages
19  * setup of the VC4 HVS's display elements on the CRTC.
20  *
21  * The 2835 has 3 different pixel valves.  pv0 in the audio power
22  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
23  * image domain can feed either HDMI or the SDTV controller.  The
24  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
25  * SDTV, etc.) according to which output type is chosen in the mux.
26  *
27  * For power management, the pixel valve's registers are all clocked
28  * by the AXI clock, while the timings and FIFOs make use of the
29  * output-specific clock.  Since the encoders also directly consume
30  * the CPRMAN clocks, and know what timings they need, they are the
31  * ones that set the clock.
32  */
33
34 #include "drm_atomic.h"
35 #include "drm_atomic_helper.h"
36 #include "drm_crtc_helper.h"
37 #include "linux/clk.h"
38 #include "drm_fb_cma_helper.h"
39 #include "linux/component.h"
40 #include "linux/of_device.h"
41 #include "vc4_drv.h"
42 #include "vc4_regs.h"
43
44 struct vc4_crtc {
45         struct drm_crtc base;
46         const struct vc4_crtc_data *data;
47         void __iomem *regs;
48
49         /* Timestamp at start of vblank irq - unaffected by lock delays. */
50         ktime_t t_vblank;
51
52         /* Which HVS channel we're using for our CRTC. */
53         int channel;
54
55         u8 lut_r[256];
56         u8 lut_g[256];
57         u8 lut_b[256];
58         /* Size in pixels of the COB memory allocated to this CRTC. */
59         u32 cob_size;
60
61         struct drm_pending_vblank_event *event;
62 };
63
64 struct vc4_crtc_state {
65         struct drm_crtc_state base;
66         /* Dlist area for this CRTC configuration. */
67         struct drm_mm_node mm;
68 };
69
70 static inline struct vc4_crtc *
71 to_vc4_crtc(struct drm_crtc *crtc)
72 {
73         return (struct vc4_crtc *)crtc;
74 }
75
76 static inline struct vc4_crtc_state *
77 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
78 {
79         return (struct vc4_crtc_state *)crtc_state;
80 }
81
82 struct vc4_crtc_data {
83         /* Which channel of the HVS this pixelvalve sources from. */
84         int hvs_channel;
85
86         enum vc4_encoder_type encoder0_type;
87         enum vc4_encoder_type encoder1_type;
88 };
89
90 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
91 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
92
93 #define CRTC_REG(reg) { reg, #reg }
94 static const struct {
95         u32 reg;
96         const char *name;
97 } crtc_regs[] = {
98         CRTC_REG(PV_CONTROL),
99         CRTC_REG(PV_V_CONTROL),
100         CRTC_REG(PV_VSYNCD_EVEN),
101         CRTC_REG(PV_HORZA),
102         CRTC_REG(PV_HORZB),
103         CRTC_REG(PV_VERTA),
104         CRTC_REG(PV_VERTB),
105         CRTC_REG(PV_VERTA_EVEN),
106         CRTC_REG(PV_VERTB_EVEN),
107         CRTC_REG(PV_INTEN),
108         CRTC_REG(PV_INTSTAT),
109         CRTC_REG(PV_STAT),
110         CRTC_REG(PV_HACT_ACT),
111 };
112
113 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
114 {
115         int i;
116
117         for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
118                 DRM_INFO("0x%04x (%s): 0x%08x\n",
119                          crtc_regs[i].reg, crtc_regs[i].name,
120                          CRTC_READ(crtc_regs[i].reg));
121         }
122 }
123
124 #ifdef CONFIG_DEBUG_FS
125 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
126 {
127         struct drm_info_node *node = (struct drm_info_node *)m->private;
128         struct drm_device *dev = node->minor->dev;
129         int crtc_index = (uintptr_t)node->info_ent->data;
130         struct drm_crtc *crtc;
131         struct vc4_crtc *vc4_crtc;
132         int i;
133
134         i = 0;
135         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
136                 if (i == crtc_index)
137                         break;
138                 i++;
139         }
140         if (!crtc)
141                 return 0;
142         vc4_crtc = to_vc4_crtc(crtc);
143
144         for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
145                 seq_printf(m, "%s (0x%04x): 0x%08x\n",
146                            crtc_regs[i].name, crtc_regs[i].reg,
147                            CRTC_READ(crtc_regs[i].reg));
148         }
149
150         return 0;
151 }
152 #endif
153
154 int vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
155                             unsigned int flags, int *vpos, int *hpos,
156                             ktime_t *stime, ktime_t *etime,
157                             const struct drm_display_mode *mode)
158 {
159         struct vc4_dev *vc4 = to_vc4_dev(dev);
160         struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
161         u32 val;
162         int fifo_lines;
163         int vblank_lines;
164         int ret = 0;
165
166         /*
167          * XXX Doesn't work well in interlaced mode yet, partially due
168          * to problems in vc4 kms or drm core interlaced mode handling,
169          * so disable for now in interlaced mode.
170          */
171         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
172                 return ret;
173
174         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
175
176         /* Get optional system timestamp before query. */
177         if (stime)
178                 *stime = ktime_get();
179
180         /*
181          * Read vertical scanline which is currently composed for our
182          * pixelvalve by the HVS, and also the scaler status.
183          */
184         val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
185
186         /* Get optional system timestamp after query. */
187         if (etime)
188                 *etime = ktime_get();
189
190         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
191
192         /* Vertical position of hvs composed scanline. */
193         *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
194
195         /* No hpos info available. */
196         if (hpos)
197                 *hpos = 0;
198
199         /* This is the offset we need for translating hvs -> pv scanout pos. */
200         fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
201
202         if (fifo_lines > 0)
203                 ret |= DRM_SCANOUTPOS_VALID;
204
205         /* HVS more than fifo_lines into frame for compositing? */
206         if (*vpos > fifo_lines) {
207                 /*
208                  * We are in active scanout and can get some meaningful results
209                  * from HVS. The actual PV scanout can not trail behind more
210                  * than fifo_lines as that is the fifo's capacity. Assume that
211                  * in active scanout the HVS and PV work in lockstep wrt. HVS
212                  * refilling the fifo and PV consuming from the fifo, ie.
213                  * whenever the PV consumes and frees up a scanline in the
214                  * fifo, the HVS will immediately refill it, therefore
215                  * incrementing vpos. Therefore we choose HVS read position -
216                  * fifo size in scanlines as a estimate of the real scanout
217                  * position of the PV.
218                  */
219                 *vpos -= fifo_lines + 1;
220                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
221                         *vpos /= 2;
222
223                 ret |= DRM_SCANOUTPOS_ACCURATE;
224                 return ret;
225         }
226
227         /*
228          * Less: This happens when we are in vblank and the HVS, after getting
229          * the VSTART restart signal from the PV, just started refilling its
230          * fifo with new lines from the top-most lines of the new framebuffers.
231          * The PV does not scan out in vblank, so does not remove lines from
232          * the fifo, so the fifo will be full quickly and the HVS has to pause.
233          * We can't get meaningful readings wrt. scanline position of the PV
234          * and need to make things up in a approximative but consistent way.
235          */
236         ret |= DRM_SCANOUTPOS_IN_VBLANK;
237         vblank_lines = mode->crtc_vtotal - mode->crtc_vdisplay;
238
239         if (flags & DRM_CALLED_FROM_VBLIRQ) {
240                 /*
241                  * Assume the irq handler got called close to first
242                  * line of vblank, so PV has about a full vblank
243                  * scanlines to go, and as a base timestamp use the
244                  * one taken at entry into vblank irq handler, so it
245                  * is not affected by random delays due to lock
246                  * contention on event_lock or vblank_time lock in
247                  * the core.
248                  */
249                 *vpos = -vblank_lines;
250
251                 if (stime)
252                         *stime = vc4_crtc->t_vblank;
253                 if (etime)
254                         *etime = vc4_crtc->t_vblank;
255
256                 /*
257                  * If the HVS fifo is not yet full then we know for certain
258                  * we are at the very beginning of vblank, as the hvs just
259                  * started refilling, and the stime and etime timestamps
260                  * truly correspond to start of vblank.
261                  */
262                 if ((val & SCALER_DISPSTATX_FULL) != SCALER_DISPSTATX_FULL)
263                         ret |= DRM_SCANOUTPOS_ACCURATE;
264         } else {
265                 /*
266                  * No clue where we are inside vblank. Return a vpos of zero,
267                  * which will cause calling code to just return the etime
268                  * timestamp uncorrected. At least this is no worse than the
269                  * standard fallback.
270                  */
271                 *vpos = 0;
272         }
273
274         return ret;
275 }
276
277 int vc4_crtc_get_vblank_timestamp(struct drm_device *dev, unsigned int crtc_id,
278                                   int *max_error, struct timeval *vblank_time,
279                                   unsigned flags)
280 {
281         struct vc4_dev *vc4 = to_vc4_dev(dev);
282         struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
283         struct drm_crtc *crtc = &vc4_crtc->base;
284         struct drm_crtc_state *state = crtc->state;
285
286         /* Helper routine in DRM core does all the work: */
287         return drm_calc_vbltimestamp_from_scanoutpos(dev, crtc_id, max_error,
288                                                      vblank_time, flags,
289                                                      &state->adjusted_mode);
290 }
291
292 static void vc4_crtc_destroy(struct drm_crtc *crtc)
293 {
294         drm_crtc_cleanup(crtc);
295 }
296
297 static void
298 vc4_crtc_lut_load(struct drm_crtc *crtc)
299 {
300         struct drm_device *dev = crtc->dev;
301         struct vc4_dev *vc4 = to_vc4_dev(dev);
302         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
303         u32 i;
304
305         /* The LUT memory is laid out with each HVS channel in order,
306          * each of which takes 256 writes for R, 256 for G, then 256
307          * for B.
308          */
309         HVS_WRITE(SCALER_GAMADDR,
310                   SCALER_GAMADDR_AUTOINC |
311                   (vc4_crtc->channel * 3 * crtc->gamma_size));
312
313         for (i = 0; i < crtc->gamma_size; i++)
314                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
315         for (i = 0; i < crtc->gamma_size; i++)
316                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
317         for (i = 0; i < crtc->gamma_size; i++)
318                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
319 }
320
321 static int
322 vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
323                    uint32_t size)
324 {
325         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
326         u32 i;
327
328         for (i = 0; i < size; i++) {
329                 vc4_crtc->lut_r[i] = r[i] >> 8;
330                 vc4_crtc->lut_g[i] = g[i] >> 8;
331                 vc4_crtc->lut_b[i] = b[i] >> 8;
332         }
333
334         vc4_crtc_lut_load(crtc);
335
336         return 0;
337 }
338
339 static u32 vc4_get_fifo_full_level(u32 format)
340 {
341         static const u32 fifo_len_bytes = 64;
342         static const u32 hvs_latency_pix = 6;
343
344         switch (format) {
345         case PV_CONTROL_FORMAT_DSIV_16:
346         case PV_CONTROL_FORMAT_DSIC_16:
347                 return fifo_len_bytes - 2 * hvs_latency_pix;
348         case PV_CONTROL_FORMAT_DSIV_18:
349                 return fifo_len_bytes - 14;
350         case PV_CONTROL_FORMAT_24:
351         case PV_CONTROL_FORMAT_DSIV_24:
352         default:
353                 return fifo_len_bytes - 3 * hvs_latency_pix;
354         }
355 }
356
357 /*
358  * Returns the clock select bit for the connector attached to the
359  * CRTC.
360  */
361 static int vc4_get_clock_select(struct drm_crtc *crtc)
362 {
363         struct drm_connector *connector;
364
365         drm_for_each_connector(connector, crtc->dev) {
366                 if (connector->state->crtc == crtc) {
367                         struct drm_encoder *encoder = connector->encoder;
368                         struct vc4_encoder *vc4_encoder =
369                                 to_vc4_encoder(encoder);
370
371                         return vc4_encoder->clock_select;
372                 }
373         }
374
375         return -1;
376 }
377
378 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
379 {
380         struct drm_device *dev = crtc->dev;
381         struct vc4_dev *vc4 = to_vc4_dev(dev);
382         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
383         struct drm_crtc_state *state = crtc->state;
384         struct drm_display_mode *mode = &state->adjusted_mode;
385         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
386         u32 vactive = (mode->vdisplay >> (interlace ? 1 : 0));
387         u32 format = PV_CONTROL_FORMAT_24;
388         bool debug_dump_regs = false;
389         int clock_select = vc4_get_clock_select(crtc);
390
391         if (debug_dump_regs) {
392                 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
393                 vc4_crtc_dump_regs(vc4_crtc);
394         }
395
396         /* Reset the PV fifo. */
397         CRTC_WRITE(PV_CONTROL, 0);
398         CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
399         CRTC_WRITE(PV_CONTROL, 0);
400
401         CRTC_WRITE(PV_HORZA,
402                    VC4_SET_FIELD(mode->htotal - mode->hsync_end,
403                                  PV_HORZA_HBP) |
404                    VC4_SET_FIELD(mode->hsync_end - mode->hsync_start,
405                                  PV_HORZA_HSYNC));
406         CRTC_WRITE(PV_HORZB,
407                    VC4_SET_FIELD(mode->hsync_start - mode->hdisplay,
408                                  PV_HORZB_HFP) |
409                    VC4_SET_FIELD(mode->hdisplay, PV_HORZB_HACTIVE));
410
411         CRTC_WRITE(PV_VERTA,
412                    VC4_SET_FIELD(mode->vtotal - mode->vsync_end,
413                                  PV_VERTA_VBP) |
414                    VC4_SET_FIELD(mode->vsync_end - mode->vsync_start,
415                                  PV_VERTA_VSYNC));
416         CRTC_WRITE(PV_VERTB,
417                    VC4_SET_FIELD(mode->vsync_start - mode->vdisplay,
418                                  PV_VERTB_VFP) |
419                    VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE));
420
421         if (interlace) {
422                 CRTC_WRITE(PV_VERTA_EVEN,
423                            VC4_SET_FIELD(mode->vtotal - mode->vsync_end - 1,
424                                          PV_VERTA_VBP) |
425                            VC4_SET_FIELD(mode->vsync_end - mode->vsync_start,
426                                          PV_VERTA_VSYNC));
427                 CRTC_WRITE(PV_VERTB_EVEN,
428                            VC4_SET_FIELD(mode->vsync_start - mode->vdisplay,
429                                          PV_VERTB_VFP) |
430                            VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE));
431         }
432
433         CRTC_WRITE(PV_HACT_ACT, mode->hdisplay);
434
435         CRTC_WRITE(PV_V_CONTROL,
436                    PV_VCONTROL_CONTINUOUS |
437                    (interlace ? PV_VCONTROL_INTERLACE : 0));
438
439         CRTC_WRITE(PV_CONTROL,
440                    VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
441                    VC4_SET_FIELD(vc4_get_fifo_full_level(format),
442                                  PV_CONTROL_FIFO_LEVEL) |
443                    PV_CONTROL_CLR_AT_START |
444                    PV_CONTROL_TRIGGER_UNDERFLOW |
445                    PV_CONTROL_WAIT_HSTART |
446                    VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) |
447                    PV_CONTROL_FIFO_CLR |
448                    PV_CONTROL_EN);
449
450         HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
451                   SCALER_DISPBKGND_AUTOHS |
452                   SCALER_DISPBKGND_GAMMA |
453                   (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
454
455         /* Reload the LUT, since the SRAMs would have been disabled if
456          * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
457          */
458         vc4_crtc_lut_load(crtc);
459
460         if (debug_dump_regs) {
461                 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
462                 vc4_crtc_dump_regs(vc4_crtc);
463         }
464 }
465
466 static void require_hvs_enabled(struct drm_device *dev)
467 {
468         struct vc4_dev *vc4 = to_vc4_dev(dev);
469
470         WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
471                      SCALER_DISPCTRL_ENABLE);
472 }
473
474 static void vc4_crtc_disable(struct drm_crtc *crtc)
475 {
476         struct drm_device *dev = crtc->dev;
477         struct vc4_dev *vc4 = to_vc4_dev(dev);
478         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
479         u32 chan = vc4_crtc->channel;
480         int ret;
481         require_hvs_enabled(dev);
482
483         CRTC_WRITE(PV_V_CONTROL,
484                    CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
485         ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
486         WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
487
488         if (HVS_READ(SCALER_DISPCTRLX(chan)) &
489             SCALER_DISPCTRLX_ENABLE) {
490                 HVS_WRITE(SCALER_DISPCTRLX(chan),
491                           SCALER_DISPCTRLX_RESET);
492
493                 /* While the docs say that reset is self-clearing, it
494                  * seems it doesn't actually.
495                  */
496                 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
497         }
498
499         /* Once we leave, the scaler should be disabled and its fifo empty. */
500
501         WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
502
503         WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
504                                    SCALER_DISPSTATX_MODE) !=
505                      SCALER_DISPSTATX_MODE_DISABLED);
506
507         WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
508                       (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
509                      SCALER_DISPSTATX_EMPTY);
510 }
511
512 static void vc4_crtc_enable(struct drm_crtc *crtc)
513 {
514         struct drm_device *dev = crtc->dev;
515         struct vc4_dev *vc4 = to_vc4_dev(dev);
516         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
517         struct drm_crtc_state *state = crtc->state;
518         struct drm_display_mode *mode = &state->adjusted_mode;
519
520         require_hvs_enabled(dev);
521
522         /* Turn on the scaler, which will wait for vstart to start
523          * compositing.
524          */
525         HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
526                   VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
527                   VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
528                   SCALER_DISPCTRLX_ENABLE);
529
530         /* Turn on the pixel valve, which will emit the vstart signal. */
531         CRTC_WRITE(PV_V_CONTROL,
532                    CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
533 }
534
535 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
536                                  struct drm_crtc_state *state)
537 {
538         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
539         struct drm_device *dev = crtc->dev;
540         struct vc4_dev *vc4 = to_vc4_dev(dev);
541         struct drm_plane *plane;
542         unsigned long flags;
543         const struct drm_plane_state *plane_state;
544         u32 dlist_count = 0;
545         int ret;
546
547         /* The pixelvalve can only feed one encoder (and encoders are
548          * 1:1 with connectors.)
549          */
550         if (hweight32(state->connector_mask) > 1)
551                 return -EINVAL;
552
553         drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
554                 dlist_count += vc4_plane_dlist_size(plane_state);
555
556         dlist_count++; /* Account for SCALER_CTL0_END. */
557
558         spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
559         ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
560                                  dlist_count, 1, 0);
561         spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
562         if (ret)
563                 return ret;
564
565         return 0;
566 }
567
568 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
569                                   struct drm_crtc_state *old_state)
570 {
571         struct drm_device *dev = crtc->dev;
572         struct vc4_dev *vc4 = to_vc4_dev(dev);
573         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
574         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
575         struct drm_plane *plane;
576         bool debug_dump_regs = false;
577         u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
578         u32 __iomem *dlist_next = dlist_start;
579
580         if (debug_dump_regs) {
581                 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
582                 vc4_hvs_dump_state(dev);
583         }
584
585         /* Copy all the active planes' dlist contents to the hardware dlist. */
586         drm_atomic_crtc_for_each_plane(plane, crtc) {
587                 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
588         }
589
590         writel(SCALER_CTL0_END, dlist_next);
591         dlist_next++;
592
593         WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
594
595         if (crtc->state->event) {
596                 unsigned long flags;
597
598                 crtc->state->event->pipe = drm_crtc_index(crtc);
599
600                 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
601
602                 spin_lock_irqsave(&dev->event_lock, flags);
603                 vc4_crtc->event = crtc->state->event;
604                 crtc->state->event = NULL;
605
606                 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
607                           vc4_state->mm.start);
608
609                 spin_unlock_irqrestore(&dev->event_lock, flags);
610         } else {
611                 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
612                           vc4_state->mm.start);
613         }
614
615         if (debug_dump_regs) {
616                 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
617                 vc4_hvs_dump_state(dev);
618         }
619 }
620
621 int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id)
622 {
623         struct vc4_dev *vc4 = to_vc4_dev(dev);
624         struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
625
626         CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
627
628         return 0;
629 }
630
631 void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id)
632 {
633         struct vc4_dev *vc4 = to_vc4_dev(dev);
634         struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
635
636         CRTC_WRITE(PV_INTEN, 0);
637 }
638
639 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
640 {
641         struct drm_crtc *crtc = &vc4_crtc->base;
642         struct drm_device *dev = crtc->dev;
643         struct vc4_dev *vc4 = to_vc4_dev(dev);
644         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
645         u32 chan = vc4_crtc->channel;
646         unsigned long flags;
647
648         spin_lock_irqsave(&dev->event_lock, flags);
649         if (vc4_crtc->event &&
650             (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
651                 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
652                 vc4_crtc->event = NULL;
653                 drm_crtc_vblank_put(crtc);
654         }
655         spin_unlock_irqrestore(&dev->event_lock, flags);
656 }
657
658 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
659 {
660         struct vc4_crtc *vc4_crtc = data;
661         u32 stat = CRTC_READ(PV_INTSTAT);
662         irqreturn_t ret = IRQ_NONE;
663
664         if (stat & PV_INT_VFP_START) {
665                 vc4_crtc->t_vblank = ktime_get();
666                 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
667                 drm_crtc_handle_vblank(&vc4_crtc->base);
668                 vc4_crtc_handle_page_flip(vc4_crtc);
669                 ret = IRQ_HANDLED;
670         }
671
672         return ret;
673 }
674
675 struct vc4_async_flip_state {
676         struct drm_crtc *crtc;
677         struct drm_framebuffer *fb;
678         struct drm_pending_vblank_event *event;
679
680         struct vc4_seqno_cb cb;
681 };
682
683 /* Called when the V3D execution for the BO being flipped to is done, so that
684  * we can actually update the plane's address to point to it.
685  */
686 static void
687 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
688 {
689         struct vc4_async_flip_state *flip_state =
690                 container_of(cb, struct vc4_async_flip_state, cb);
691         struct drm_crtc *crtc = flip_state->crtc;
692         struct drm_device *dev = crtc->dev;
693         struct vc4_dev *vc4 = to_vc4_dev(dev);
694         struct drm_plane *plane = crtc->primary;
695
696         vc4_plane_async_set_fb(plane, flip_state->fb);
697         if (flip_state->event) {
698                 unsigned long flags;
699
700                 spin_lock_irqsave(&dev->event_lock, flags);
701                 drm_crtc_send_vblank_event(crtc, flip_state->event);
702                 spin_unlock_irqrestore(&dev->event_lock, flags);
703         }
704
705         drm_crtc_vblank_put(crtc);
706         drm_framebuffer_unreference(flip_state->fb);
707         kfree(flip_state);
708
709         up(&vc4->async_modeset);
710 }
711
712 /* Implements async (non-vblank-synced) page flips.
713  *
714  * The page flip ioctl needs to return immediately, so we grab the
715  * modeset semaphore on the pipe, and queue the address update for
716  * when V3D is done with the BO being flipped to.
717  */
718 static int vc4_async_page_flip(struct drm_crtc *crtc,
719                                struct drm_framebuffer *fb,
720                                struct drm_pending_vblank_event *event,
721                                uint32_t flags)
722 {
723         struct drm_device *dev = crtc->dev;
724         struct vc4_dev *vc4 = to_vc4_dev(dev);
725         struct drm_plane *plane = crtc->primary;
726         int ret = 0;
727         struct vc4_async_flip_state *flip_state;
728         struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
729         struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
730
731         flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
732         if (!flip_state)
733                 return -ENOMEM;
734
735         drm_framebuffer_reference(fb);
736         flip_state->fb = fb;
737         flip_state->crtc = crtc;
738         flip_state->event = event;
739
740         /* Make sure all other async modesetes have landed. */
741         ret = down_interruptible(&vc4->async_modeset);
742         if (ret) {
743                 drm_framebuffer_unreference(fb);
744                 kfree(flip_state);
745                 return ret;
746         }
747
748         WARN_ON(drm_crtc_vblank_get(crtc) != 0);
749
750         /* Immediately update the plane's legacy fb pointer, so that later
751          * modeset prep sees the state that will be present when the semaphore
752          * is released.
753          */
754         drm_atomic_set_fb_for_plane(plane->state, fb);
755         plane->fb = fb;
756
757         vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
758                            vc4_async_page_flip_complete);
759
760         /* Driver takes ownership of state on successful async commit. */
761         return 0;
762 }
763
764 static int vc4_page_flip(struct drm_crtc *crtc,
765                          struct drm_framebuffer *fb,
766                          struct drm_pending_vblank_event *event,
767                          uint32_t flags)
768 {
769         if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
770                 return vc4_async_page_flip(crtc, fb, event, flags);
771         else
772                 return drm_atomic_helper_page_flip(crtc, fb, event, flags);
773 }
774
775 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
776 {
777         struct vc4_crtc_state *vc4_state;
778
779         vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
780         if (!vc4_state)
781                 return NULL;
782
783         __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
784         return &vc4_state->base;
785 }
786
787 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
788                                    struct drm_crtc_state *state)
789 {
790         struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
791         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
792
793         if (vc4_state->mm.allocated) {
794                 unsigned long flags;
795
796                 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
797                 drm_mm_remove_node(&vc4_state->mm);
798                 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
799
800         }
801
802         __drm_atomic_helper_crtc_destroy_state(state);
803 }
804
805 static const struct drm_crtc_funcs vc4_crtc_funcs = {
806         .set_config = drm_atomic_helper_set_config,
807         .destroy = vc4_crtc_destroy,
808         .page_flip = vc4_page_flip,
809         .set_property = NULL,
810         .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
811         .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
812         .reset = drm_atomic_helper_crtc_reset,
813         .atomic_duplicate_state = vc4_crtc_duplicate_state,
814         .atomic_destroy_state = vc4_crtc_destroy_state,
815         .gamma_set = vc4_crtc_gamma_set,
816 };
817
818 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
819         .mode_set_nofb = vc4_crtc_mode_set_nofb,
820         .disable = vc4_crtc_disable,
821         .enable = vc4_crtc_enable,
822         .atomic_check = vc4_crtc_atomic_check,
823         .atomic_flush = vc4_crtc_atomic_flush,
824 };
825
826 static const struct vc4_crtc_data pv0_data = {
827         .hvs_channel = 0,
828         .encoder0_type = VC4_ENCODER_TYPE_DSI0,
829         .encoder1_type = VC4_ENCODER_TYPE_DPI,
830 };
831
832 static const struct vc4_crtc_data pv1_data = {
833         .hvs_channel = 2,
834         .encoder0_type = VC4_ENCODER_TYPE_DSI1,
835         .encoder1_type = VC4_ENCODER_TYPE_SMI,
836 };
837
838 static const struct vc4_crtc_data pv2_data = {
839         .hvs_channel = 1,
840         .encoder0_type = VC4_ENCODER_TYPE_VEC,
841         .encoder1_type = VC4_ENCODER_TYPE_HDMI,
842 };
843
844 static const struct of_device_id vc4_crtc_dt_match[] = {
845         { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
846         { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
847         { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
848         {}
849 };
850
851 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
852                                         struct drm_crtc *crtc)
853 {
854         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
855         struct drm_encoder *encoder;
856
857         drm_for_each_encoder(encoder, drm) {
858                 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
859
860                 if (vc4_encoder->type == vc4_crtc->data->encoder0_type) {
861                         vc4_encoder->clock_select = 0;
862                         encoder->possible_crtcs |= drm_crtc_mask(crtc);
863                 } else if (vc4_encoder->type == vc4_crtc->data->encoder1_type) {
864                         vc4_encoder->clock_select = 1;
865                         encoder->possible_crtcs |= drm_crtc_mask(crtc);
866                 }
867         }
868 }
869
870 static void
871 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
872 {
873         struct drm_device *drm = vc4_crtc->base.dev;
874         struct vc4_dev *vc4 = to_vc4_dev(drm);
875         u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
876         /* Top/base are supposed to be 4-pixel aligned, but the
877          * Raspberry Pi firmware fills the low bits (which are
878          * presumably ignored).
879          */
880         u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
881         u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
882
883         vc4_crtc->cob_size = top - base + 4;
884 }
885
886 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
887 {
888         struct platform_device *pdev = to_platform_device(dev);
889         struct drm_device *drm = dev_get_drvdata(master);
890         struct vc4_dev *vc4 = to_vc4_dev(drm);
891         struct vc4_crtc *vc4_crtc;
892         struct drm_crtc *crtc;
893         struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
894         const struct of_device_id *match;
895         int ret, i;
896
897         vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
898         if (!vc4_crtc)
899                 return -ENOMEM;
900         crtc = &vc4_crtc->base;
901
902         match = of_match_device(vc4_crtc_dt_match, dev);
903         if (!match)
904                 return -ENODEV;
905         vc4_crtc->data = match->data;
906
907         vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
908         if (IS_ERR(vc4_crtc->regs))
909                 return PTR_ERR(vc4_crtc->regs);
910
911         /* For now, we create just the primary and the legacy cursor
912          * planes.  We should be able to stack more planes on easily,
913          * but to do that we would need to compute the bandwidth
914          * requirement of the plane configuration, and reject ones
915          * that will take too much.
916          */
917         primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
918         if (IS_ERR(primary_plane)) {
919                 dev_err(dev, "failed to construct primary plane\n");
920                 ret = PTR_ERR(primary_plane);
921                 goto err;
922         }
923
924         drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
925                                   &vc4_crtc_funcs, NULL);
926         drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
927         primary_plane->crtc = crtc;
928         vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc;
929         vc4_crtc->channel = vc4_crtc->data->hvs_channel;
930         drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
931
932         /* Set up some arbitrary number of planes.  We're not limited
933          * by a set number of physical registers, just the space in
934          * the HVS (16k) and how small an plane can be (28 bytes).
935          * However, each plane we set up takes up some memory, and
936          * increases the cost of looping over planes, which atomic
937          * modesetting does quite a bit.  As a result, we pick a
938          * modest number of planes to expose, that should hopefully
939          * still cover any sane usecase.
940          */
941         for (i = 0; i < 8; i++) {
942                 struct drm_plane *plane =
943                         vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
944
945                 if (IS_ERR(plane))
946                         continue;
947
948                 plane->possible_crtcs = 1 << drm_crtc_index(crtc);
949         }
950
951         /* Set up the legacy cursor after overlay initialization,
952          * since we overlay planes on the CRTC in the order they were
953          * initialized.
954          */
955         cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
956         if (!IS_ERR(cursor_plane)) {
957                 cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
958                 cursor_plane->crtc = crtc;
959                 crtc->cursor = cursor_plane;
960         }
961
962         vc4_crtc_get_cob_allocation(vc4_crtc);
963
964         CRTC_WRITE(PV_INTEN, 0);
965         CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
966         ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
967                                vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
968         if (ret)
969                 goto err_destroy_planes;
970
971         vc4_set_crtc_possible_masks(drm, crtc);
972
973         for (i = 0; i < crtc->gamma_size; i++) {
974                 vc4_crtc->lut_r[i] = i;
975                 vc4_crtc->lut_g[i] = i;
976                 vc4_crtc->lut_b[i] = i;
977         }
978
979         platform_set_drvdata(pdev, vc4_crtc);
980
981         return 0;
982
983 err_destroy_planes:
984         list_for_each_entry_safe(destroy_plane, temp,
985                                  &drm->mode_config.plane_list, head) {
986                 if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
987                     destroy_plane->funcs->destroy(destroy_plane);
988         }
989 err:
990         return ret;
991 }
992
993 static void vc4_crtc_unbind(struct device *dev, struct device *master,
994                             void *data)
995 {
996         struct platform_device *pdev = to_platform_device(dev);
997         struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
998
999         vc4_crtc_destroy(&vc4_crtc->base);
1000
1001         CRTC_WRITE(PV_INTEN, 0);
1002
1003         platform_set_drvdata(pdev, NULL);
1004 }
1005
1006 static const struct component_ops vc4_crtc_ops = {
1007         .bind   = vc4_crtc_bind,
1008         .unbind = vc4_crtc_unbind,
1009 };
1010
1011 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1012 {
1013         return component_add(&pdev->dev, &vc4_crtc_ops);
1014 }
1015
1016 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1017 {
1018         component_del(&pdev->dev, &vc4_crtc_ops);
1019         return 0;
1020 }
1021
1022 struct platform_driver vc4_crtc_driver = {
1023         .probe = vc4_crtc_dev_probe,
1024         .remove = vc4_crtc_dev_remove,
1025         .driver = {
1026                 .name = "vc4_crtc",
1027                 .of_match_table = vc4_crtc_dt_match,
1028         },
1029 };