Back-merge tag 'v4.7-rc5' into drm-next
[cascardo/linux.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
1 /*
2  * Copyright (C) 2015 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8
9 /**
10  * DOC: VC4 CRTC module
11  *
12  * In VC4, the Pixel Valve is what most closely corresponds to the
13  * DRM's concept of a CRTC.  The PV generates video timings from the
14  * output's clock plus its configuration.  It pulls scaled pixels from
15  * the HVS at that timing, and feeds it to the encoder.
16  *
17  * However, the DRM CRTC also collects the configuration of all the
18  * DRM planes attached to it.  As a result, this file also manages
19  * setup of the VC4 HVS's display elements on the CRTC.
20  *
21  * The 2835 has 3 different pixel valves.  pv0 in the audio power
22  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
23  * image domain can feed either HDMI or the SDTV controller.  The
24  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
25  * SDTV, etc.) according to which output type is chosen in the mux.
26  *
27  * For power management, the pixel valve's registers are all clocked
28  * by the AXI clock, while the timings and FIFOs make use of the
29  * output-specific clock.  Since the encoders also directly consume
30  * the CPRMAN clocks, and know what timings they need, they are the
31  * ones that set the clock.
32  */
33
34 #include "drm_atomic.h"
35 #include "drm_atomic_helper.h"
36 #include "drm_crtc_helper.h"
37 #include "linux/clk.h"
38 #include "drm_fb_cma_helper.h"
39 #include "linux/component.h"
40 #include "linux/of_device.h"
41 #include "vc4_drv.h"
42 #include "vc4_regs.h"
43
44 struct vc4_crtc {
45         struct drm_crtc base;
46         const struct vc4_crtc_data *data;
47         void __iomem *regs;
48
49         /* Which HVS channel we're using for our CRTC. */
50         int channel;
51
52         u8 lut_r[256];
53         u8 lut_g[256];
54         u8 lut_b[256];
55
56         struct drm_pending_vblank_event *event;
57 };
58
59 struct vc4_crtc_state {
60         struct drm_crtc_state base;
61         /* Dlist area for this CRTC configuration. */
62         struct drm_mm_node mm;
63 };
64
65 static inline struct vc4_crtc *
66 to_vc4_crtc(struct drm_crtc *crtc)
67 {
68         return (struct vc4_crtc *)crtc;
69 }
70
71 static inline struct vc4_crtc_state *
72 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
73 {
74         return (struct vc4_crtc_state *)crtc_state;
75 }
76
77 struct vc4_crtc_data {
78         /* Which channel of the HVS this pixelvalve sources from. */
79         int hvs_channel;
80
81         enum vc4_encoder_type encoder0_type;
82         enum vc4_encoder_type encoder1_type;
83 };
84
85 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
86 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
87
88 #define CRTC_REG(reg) { reg, #reg }
89 static const struct {
90         u32 reg;
91         const char *name;
92 } crtc_regs[] = {
93         CRTC_REG(PV_CONTROL),
94         CRTC_REG(PV_V_CONTROL),
95         CRTC_REG(PV_VSYNCD_EVEN),
96         CRTC_REG(PV_HORZA),
97         CRTC_REG(PV_HORZB),
98         CRTC_REG(PV_VERTA),
99         CRTC_REG(PV_VERTB),
100         CRTC_REG(PV_VERTA_EVEN),
101         CRTC_REG(PV_VERTB_EVEN),
102         CRTC_REG(PV_INTEN),
103         CRTC_REG(PV_INTSTAT),
104         CRTC_REG(PV_STAT),
105         CRTC_REG(PV_HACT_ACT),
106 };
107
108 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
109 {
110         int i;
111
112         for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
113                 DRM_INFO("0x%04x (%s): 0x%08x\n",
114                          crtc_regs[i].reg, crtc_regs[i].name,
115                          CRTC_READ(crtc_regs[i].reg));
116         }
117 }
118
119 #ifdef CONFIG_DEBUG_FS
120 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
121 {
122         struct drm_info_node *node = (struct drm_info_node *)m->private;
123         struct drm_device *dev = node->minor->dev;
124         int crtc_index = (uintptr_t)node->info_ent->data;
125         struct drm_crtc *crtc;
126         struct vc4_crtc *vc4_crtc;
127         int i;
128
129         i = 0;
130         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
131                 if (i == crtc_index)
132                         break;
133                 i++;
134         }
135         if (!crtc)
136                 return 0;
137         vc4_crtc = to_vc4_crtc(crtc);
138
139         for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
140                 seq_printf(m, "%s (0x%04x): 0x%08x\n",
141                            crtc_regs[i].name, crtc_regs[i].reg,
142                            CRTC_READ(crtc_regs[i].reg));
143         }
144
145         return 0;
146 }
147 #endif
148
149 static void vc4_crtc_destroy(struct drm_crtc *crtc)
150 {
151         drm_crtc_cleanup(crtc);
152 }
153
154 static void
155 vc4_crtc_lut_load(struct drm_crtc *crtc)
156 {
157         struct drm_device *dev = crtc->dev;
158         struct vc4_dev *vc4 = to_vc4_dev(dev);
159         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
160         u32 i;
161
162         /* The LUT memory is laid out with each HVS channel in order,
163          * each of which takes 256 writes for R, 256 for G, then 256
164          * for B.
165          */
166         HVS_WRITE(SCALER_GAMADDR,
167                   SCALER_GAMADDR_AUTOINC |
168                   (vc4_crtc->channel * 3 * crtc->gamma_size));
169
170         for (i = 0; i < crtc->gamma_size; i++)
171                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
172         for (i = 0; i < crtc->gamma_size; i++)
173                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
174         for (i = 0; i < crtc->gamma_size; i++)
175                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
176 }
177
178 static int
179 vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
180                    uint32_t size)
181 {
182         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
183         u32 i;
184
185         for (i = 0; i < size; i++) {
186                 vc4_crtc->lut_r[i] = r[i] >> 8;
187                 vc4_crtc->lut_g[i] = g[i] >> 8;
188                 vc4_crtc->lut_b[i] = b[i] >> 8;
189         }
190
191         vc4_crtc_lut_load(crtc);
192
193         return 0;
194 }
195
196 static u32 vc4_get_fifo_full_level(u32 format)
197 {
198         static const u32 fifo_len_bytes = 64;
199         static const u32 hvs_latency_pix = 6;
200
201         switch (format) {
202         case PV_CONTROL_FORMAT_DSIV_16:
203         case PV_CONTROL_FORMAT_DSIC_16:
204                 return fifo_len_bytes - 2 * hvs_latency_pix;
205         case PV_CONTROL_FORMAT_DSIV_18:
206                 return fifo_len_bytes - 14;
207         case PV_CONTROL_FORMAT_24:
208         case PV_CONTROL_FORMAT_DSIV_24:
209         default:
210                 return fifo_len_bytes - 3 * hvs_latency_pix;
211         }
212 }
213
214 /*
215  * Returns the clock select bit for the connector attached to the
216  * CRTC.
217  */
218 static int vc4_get_clock_select(struct drm_crtc *crtc)
219 {
220         struct drm_connector *connector;
221
222         drm_for_each_connector(connector, crtc->dev) {
223                 if (connector->state->crtc == crtc) {
224                         struct drm_encoder *encoder = connector->encoder;
225                         struct vc4_encoder *vc4_encoder =
226                                 to_vc4_encoder(encoder);
227
228                         return vc4_encoder->clock_select;
229                 }
230         }
231
232         return -1;
233 }
234
235 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
236 {
237         struct drm_device *dev = crtc->dev;
238         struct vc4_dev *vc4 = to_vc4_dev(dev);
239         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
240         struct drm_crtc_state *state = crtc->state;
241         struct drm_display_mode *mode = &state->adjusted_mode;
242         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
243         u32 vactive = (mode->vdisplay >> (interlace ? 1 : 0));
244         u32 format = PV_CONTROL_FORMAT_24;
245         bool debug_dump_regs = false;
246         int clock_select = vc4_get_clock_select(crtc);
247
248         if (debug_dump_regs) {
249                 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
250                 vc4_crtc_dump_regs(vc4_crtc);
251         }
252
253         /* Reset the PV fifo. */
254         CRTC_WRITE(PV_CONTROL, 0);
255         CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
256         CRTC_WRITE(PV_CONTROL, 0);
257
258         CRTC_WRITE(PV_HORZA,
259                    VC4_SET_FIELD(mode->htotal - mode->hsync_end,
260                                  PV_HORZA_HBP) |
261                    VC4_SET_FIELD(mode->hsync_end - mode->hsync_start,
262                                  PV_HORZA_HSYNC));
263         CRTC_WRITE(PV_HORZB,
264                    VC4_SET_FIELD(mode->hsync_start - mode->hdisplay,
265                                  PV_HORZB_HFP) |
266                    VC4_SET_FIELD(mode->hdisplay, PV_HORZB_HACTIVE));
267
268         CRTC_WRITE(PV_VERTA,
269                    VC4_SET_FIELD(mode->vtotal - mode->vsync_end,
270                                  PV_VERTA_VBP) |
271                    VC4_SET_FIELD(mode->vsync_end - mode->vsync_start,
272                                  PV_VERTA_VSYNC));
273         CRTC_WRITE(PV_VERTB,
274                    VC4_SET_FIELD(mode->vsync_start - mode->vdisplay,
275                                  PV_VERTB_VFP) |
276                    VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE));
277
278         if (interlace) {
279                 CRTC_WRITE(PV_VERTA_EVEN,
280                            VC4_SET_FIELD(mode->vtotal - mode->vsync_end - 1,
281                                          PV_VERTA_VBP) |
282                            VC4_SET_FIELD(mode->vsync_end - mode->vsync_start,
283                                          PV_VERTA_VSYNC));
284                 CRTC_WRITE(PV_VERTB_EVEN,
285                            VC4_SET_FIELD(mode->vsync_start - mode->vdisplay,
286                                          PV_VERTB_VFP) |
287                            VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE));
288         }
289
290         CRTC_WRITE(PV_HACT_ACT, mode->hdisplay);
291
292         CRTC_WRITE(PV_V_CONTROL,
293                    PV_VCONTROL_CONTINUOUS |
294                    (interlace ? PV_VCONTROL_INTERLACE : 0));
295
296         CRTC_WRITE(PV_CONTROL,
297                    VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
298                    VC4_SET_FIELD(vc4_get_fifo_full_level(format),
299                                  PV_CONTROL_FIFO_LEVEL) |
300                    PV_CONTROL_CLR_AT_START |
301                    PV_CONTROL_TRIGGER_UNDERFLOW |
302                    PV_CONTROL_WAIT_HSTART |
303                    VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) |
304                    PV_CONTROL_FIFO_CLR |
305                    PV_CONTROL_EN);
306
307         HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
308                   SCALER_DISPBKGND_AUTOHS |
309                   SCALER_DISPBKGND_GAMMA |
310                   (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
311
312         /* Reload the LUT, since the SRAMs would have been disabled if
313          * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
314          */
315         vc4_crtc_lut_load(crtc);
316
317         if (debug_dump_regs) {
318                 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
319                 vc4_crtc_dump_regs(vc4_crtc);
320         }
321 }
322
323 static void require_hvs_enabled(struct drm_device *dev)
324 {
325         struct vc4_dev *vc4 = to_vc4_dev(dev);
326
327         WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
328                      SCALER_DISPCTRL_ENABLE);
329 }
330
331 static void vc4_crtc_disable(struct drm_crtc *crtc)
332 {
333         struct drm_device *dev = crtc->dev;
334         struct vc4_dev *vc4 = to_vc4_dev(dev);
335         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
336         u32 chan = vc4_crtc->channel;
337         int ret;
338         require_hvs_enabled(dev);
339
340         CRTC_WRITE(PV_V_CONTROL,
341                    CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
342         ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
343         WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
344
345         if (HVS_READ(SCALER_DISPCTRLX(chan)) &
346             SCALER_DISPCTRLX_ENABLE) {
347                 HVS_WRITE(SCALER_DISPCTRLX(chan),
348                           SCALER_DISPCTRLX_RESET);
349
350                 /* While the docs say that reset is self-clearing, it
351                  * seems it doesn't actually.
352                  */
353                 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
354         }
355
356         /* Once we leave, the scaler should be disabled and its fifo empty. */
357
358         WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
359
360         WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
361                                    SCALER_DISPSTATX_MODE) !=
362                      SCALER_DISPSTATX_MODE_DISABLED);
363
364         WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
365                       (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
366                      SCALER_DISPSTATX_EMPTY);
367 }
368
369 static void vc4_crtc_enable(struct drm_crtc *crtc)
370 {
371         struct drm_device *dev = crtc->dev;
372         struct vc4_dev *vc4 = to_vc4_dev(dev);
373         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
374         struct drm_crtc_state *state = crtc->state;
375         struct drm_display_mode *mode = &state->adjusted_mode;
376
377         require_hvs_enabled(dev);
378
379         /* Turn on the scaler, which will wait for vstart to start
380          * compositing.
381          */
382         HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
383                   VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
384                   VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
385                   SCALER_DISPCTRLX_ENABLE);
386
387         /* Turn on the pixel valve, which will emit the vstart signal. */
388         CRTC_WRITE(PV_V_CONTROL,
389                    CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
390 }
391
392 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
393                                  struct drm_crtc_state *state)
394 {
395         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
396         struct drm_device *dev = crtc->dev;
397         struct vc4_dev *vc4 = to_vc4_dev(dev);
398         struct drm_plane *plane;
399         unsigned long flags;
400         const struct drm_plane_state *plane_state;
401         u32 dlist_count = 0;
402         int ret;
403
404         /* The pixelvalve can only feed one encoder (and encoders are
405          * 1:1 with connectors.)
406          */
407         if (hweight32(state->connector_mask) > 1)
408                 return -EINVAL;
409
410         drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
411                 dlist_count += vc4_plane_dlist_size(plane_state);
412
413         dlist_count++; /* Account for SCALER_CTL0_END. */
414
415         spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
416         ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
417                                  dlist_count, 1, 0);
418         spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
419         if (ret)
420                 return ret;
421
422         return 0;
423 }
424
425 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
426                                   struct drm_crtc_state *old_state)
427 {
428         struct drm_device *dev = crtc->dev;
429         struct vc4_dev *vc4 = to_vc4_dev(dev);
430         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
431         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
432         struct drm_plane *plane;
433         bool debug_dump_regs = false;
434         u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
435         u32 __iomem *dlist_next = dlist_start;
436
437         if (debug_dump_regs) {
438                 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
439                 vc4_hvs_dump_state(dev);
440         }
441
442         /* Copy all the active planes' dlist contents to the hardware dlist. */
443         drm_atomic_crtc_for_each_plane(plane, crtc) {
444                 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
445         }
446
447         writel(SCALER_CTL0_END, dlist_next);
448         dlist_next++;
449
450         WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
451
452         if (crtc->state->event) {
453                 unsigned long flags;
454
455                 crtc->state->event->pipe = drm_crtc_index(crtc);
456
457                 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
458
459                 spin_lock_irqsave(&dev->event_lock, flags);
460                 vc4_crtc->event = crtc->state->event;
461                 crtc->state->event = NULL;
462
463                 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
464                           vc4_state->mm.start);
465
466                 spin_unlock_irqrestore(&dev->event_lock, flags);
467         } else {
468                 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
469                           vc4_state->mm.start);
470         }
471
472         if (debug_dump_regs) {
473                 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
474                 vc4_hvs_dump_state(dev);
475         }
476 }
477
478 int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id)
479 {
480         struct vc4_dev *vc4 = to_vc4_dev(dev);
481         struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
482
483         CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
484
485         return 0;
486 }
487
488 void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id)
489 {
490         struct vc4_dev *vc4 = to_vc4_dev(dev);
491         struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
492
493         CRTC_WRITE(PV_INTEN, 0);
494 }
495
496 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
497 {
498         struct drm_crtc *crtc = &vc4_crtc->base;
499         struct drm_device *dev = crtc->dev;
500         struct vc4_dev *vc4 = to_vc4_dev(dev);
501         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
502         u32 chan = vc4_crtc->channel;
503         unsigned long flags;
504
505         spin_lock_irqsave(&dev->event_lock, flags);
506         if (vc4_crtc->event &&
507             (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
508                 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
509                 vc4_crtc->event = NULL;
510                 drm_crtc_vblank_put(crtc);
511         }
512         spin_unlock_irqrestore(&dev->event_lock, flags);
513 }
514
515 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
516 {
517         struct vc4_crtc *vc4_crtc = data;
518         u32 stat = CRTC_READ(PV_INTSTAT);
519         irqreturn_t ret = IRQ_NONE;
520
521         if (stat & PV_INT_VFP_START) {
522                 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
523                 drm_crtc_handle_vblank(&vc4_crtc->base);
524                 vc4_crtc_handle_page_flip(vc4_crtc);
525                 ret = IRQ_HANDLED;
526         }
527
528         return ret;
529 }
530
531 struct vc4_async_flip_state {
532         struct drm_crtc *crtc;
533         struct drm_framebuffer *fb;
534         struct drm_pending_vblank_event *event;
535
536         struct vc4_seqno_cb cb;
537 };
538
539 /* Called when the V3D execution for the BO being flipped to is done, so that
540  * we can actually update the plane's address to point to it.
541  */
542 static void
543 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
544 {
545         struct vc4_async_flip_state *flip_state =
546                 container_of(cb, struct vc4_async_flip_state, cb);
547         struct drm_crtc *crtc = flip_state->crtc;
548         struct drm_device *dev = crtc->dev;
549         struct vc4_dev *vc4 = to_vc4_dev(dev);
550         struct drm_plane *plane = crtc->primary;
551
552         vc4_plane_async_set_fb(plane, flip_state->fb);
553         if (flip_state->event) {
554                 unsigned long flags;
555
556                 spin_lock_irqsave(&dev->event_lock, flags);
557                 drm_crtc_send_vblank_event(crtc, flip_state->event);
558                 spin_unlock_irqrestore(&dev->event_lock, flags);
559         }
560
561         drm_crtc_vblank_put(crtc);
562         drm_framebuffer_unreference(flip_state->fb);
563         kfree(flip_state);
564
565         up(&vc4->async_modeset);
566 }
567
568 /* Implements async (non-vblank-synced) page flips.
569  *
570  * The page flip ioctl needs to return immediately, so we grab the
571  * modeset semaphore on the pipe, and queue the address update for
572  * when V3D is done with the BO being flipped to.
573  */
574 static int vc4_async_page_flip(struct drm_crtc *crtc,
575                                struct drm_framebuffer *fb,
576                                struct drm_pending_vblank_event *event,
577                                uint32_t flags)
578 {
579         struct drm_device *dev = crtc->dev;
580         struct vc4_dev *vc4 = to_vc4_dev(dev);
581         struct drm_plane *plane = crtc->primary;
582         int ret = 0;
583         struct vc4_async_flip_state *flip_state;
584         struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
585         struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
586
587         flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
588         if (!flip_state)
589                 return -ENOMEM;
590
591         drm_framebuffer_reference(fb);
592         flip_state->fb = fb;
593         flip_state->crtc = crtc;
594         flip_state->event = event;
595
596         /* Make sure all other async modesetes have landed. */
597         ret = down_interruptible(&vc4->async_modeset);
598         if (ret) {
599                 drm_framebuffer_unreference(fb);
600                 kfree(flip_state);
601                 return ret;
602         }
603
604         WARN_ON(drm_crtc_vblank_get(crtc) != 0);
605
606         /* Immediately update the plane's legacy fb pointer, so that later
607          * modeset prep sees the state that will be present when the semaphore
608          * is released.
609          */
610         drm_atomic_set_fb_for_plane(plane->state, fb);
611         plane->fb = fb;
612
613         vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
614                            vc4_async_page_flip_complete);
615
616         /* Driver takes ownership of state on successful async commit. */
617         return 0;
618 }
619
620 static int vc4_page_flip(struct drm_crtc *crtc,
621                          struct drm_framebuffer *fb,
622                          struct drm_pending_vblank_event *event,
623                          uint32_t flags)
624 {
625         if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
626                 return vc4_async_page_flip(crtc, fb, event, flags);
627         else
628                 return drm_atomic_helper_page_flip(crtc, fb, event, flags);
629 }
630
631 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
632 {
633         struct vc4_crtc_state *vc4_state;
634
635         vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
636         if (!vc4_state)
637                 return NULL;
638
639         __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
640         return &vc4_state->base;
641 }
642
643 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
644                                    struct drm_crtc_state *state)
645 {
646         struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
647         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
648
649         if (vc4_state->mm.allocated) {
650                 unsigned long flags;
651
652                 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
653                 drm_mm_remove_node(&vc4_state->mm);
654                 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
655
656         }
657
658         __drm_atomic_helper_crtc_destroy_state(state);
659 }
660
661 static const struct drm_crtc_funcs vc4_crtc_funcs = {
662         .set_config = drm_atomic_helper_set_config,
663         .destroy = vc4_crtc_destroy,
664         .page_flip = vc4_page_flip,
665         .set_property = NULL,
666         .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
667         .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
668         .reset = drm_atomic_helper_crtc_reset,
669         .atomic_duplicate_state = vc4_crtc_duplicate_state,
670         .atomic_destroy_state = vc4_crtc_destroy_state,
671         .gamma_set = vc4_crtc_gamma_set,
672 };
673
674 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
675         .mode_set_nofb = vc4_crtc_mode_set_nofb,
676         .disable = vc4_crtc_disable,
677         .enable = vc4_crtc_enable,
678         .atomic_check = vc4_crtc_atomic_check,
679         .atomic_flush = vc4_crtc_atomic_flush,
680 };
681
682 static const struct vc4_crtc_data pv0_data = {
683         .hvs_channel = 0,
684         .encoder0_type = VC4_ENCODER_TYPE_DSI0,
685         .encoder1_type = VC4_ENCODER_TYPE_DPI,
686 };
687
688 static const struct vc4_crtc_data pv1_data = {
689         .hvs_channel = 2,
690         .encoder0_type = VC4_ENCODER_TYPE_DSI1,
691         .encoder1_type = VC4_ENCODER_TYPE_SMI,
692 };
693
694 static const struct vc4_crtc_data pv2_data = {
695         .hvs_channel = 1,
696         .encoder0_type = VC4_ENCODER_TYPE_VEC,
697         .encoder1_type = VC4_ENCODER_TYPE_HDMI,
698 };
699
700 static const struct of_device_id vc4_crtc_dt_match[] = {
701         { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
702         { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
703         { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
704         {}
705 };
706
707 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
708                                         struct drm_crtc *crtc)
709 {
710         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
711         struct drm_encoder *encoder;
712
713         drm_for_each_encoder(encoder, drm) {
714                 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
715
716                 if (vc4_encoder->type == vc4_crtc->data->encoder0_type) {
717                         vc4_encoder->clock_select = 0;
718                         encoder->possible_crtcs |= drm_crtc_mask(crtc);
719                 } else if (vc4_encoder->type == vc4_crtc->data->encoder1_type) {
720                         vc4_encoder->clock_select = 1;
721                         encoder->possible_crtcs |= drm_crtc_mask(crtc);
722                 }
723         }
724 }
725
726 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
727 {
728         struct platform_device *pdev = to_platform_device(dev);
729         struct drm_device *drm = dev_get_drvdata(master);
730         struct vc4_dev *vc4 = to_vc4_dev(drm);
731         struct vc4_crtc *vc4_crtc;
732         struct drm_crtc *crtc;
733         struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
734         const struct of_device_id *match;
735         int ret, i;
736
737         vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
738         if (!vc4_crtc)
739                 return -ENOMEM;
740         crtc = &vc4_crtc->base;
741
742         match = of_match_device(vc4_crtc_dt_match, dev);
743         if (!match)
744                 return -ENODEV;
745         vc4_crtc->data = match->data;
746
747         vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
748         if (IS_ERR(vc4_crtc->regs))
749                 return PTR_ERR(vc4_crtc->regs);
750
751         /* For now, we create just the primary and the legacy cursor
752          * planes.  We should be able to stack more planes on easily,
753          * but to do that we would need to compute the bandwidth
754          * requirement of the plane configuration, and reject ones
755          * that will take too much.
756          */
757         primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
758         if (IS_ERR(primary_plane)) {
759                 dev_err(dev, "failed to construct primary plane\n");
760                 ret = PTR_ERR(primary_plane);
761                 goto err;
762         }
763
764         drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
765                                   &vc4_crtc_funcs, NULL);
766         drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
767         primary_plane->crtc = crtc;
768         vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc;
769         vc4_crtc->channel = vc4_crtc->data->hvs_channel;
770         drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
771
772         /* Set up some arbitrary number of planes.  We're not limited
773          * by a set number of physical registers, just the space in
774          * the HVS (16k) and how small an plane can be (28 bytes).
775          * However, each plane we set up takes up some memory, and
776          * increases the cost of looping over planes, which atomic
777          * modesetting does quite a bit.  As a result, we pick a
778          * modest number of planes to expose, that should hopefully
779          * still cover any sane usecase.
780          */
781         for (i = 0; i < 8; i++) {
782                 struct drm_plane *plane =
783                         vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
784
785                 if (IS_ERR(plane))
786                         continue;
787
788                 plane->possible_crtcs = 1 << drm_crtc_index(crtc);
789         }
790
791         /* Set up the legacy cursor after overlay initialization,
792          * since we overlay planes on the CRTC in the order they were
793          * initialized.
794          */
795         cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
796         if (!IS_ERR(cursor_plane)) {
797                 cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
798                 cursor_plane->crtc = crtc;
799                 crtc->cursor = cursor_plane;
800         }
801
802         CRTC_WRITE(PV_INTEN, 0);
803         CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
804         ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
805                                vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
806         if (ret)
807                 goto err_destroy_planes;
808
809         vc4_set_crtc_possible_masks(drm, crtc);
810
811         for (i = 0; i < crtc->gamma_size; i++) {
812                 vc4_crtc->lut_r[i] = i;
813                 vc4_crtc->lut_g[i] = i;
814                 vc4_crtc->lut_b[i] = i;
815         }
816
817         platform_set_drvdata(pdev, vc4_crtc);
818
819         return 0;
820
821 err_destroy_planes:
822         list_for_each_entry_safe(destroy_plane, temp,
823                                  &drm->mode_config.plane_list, head) {
824                 if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
825                     destroy_plane->funcs->destroy(destroy_plane);
826         }
827 err:
828         return ret;
829 }
830
831 static void vc4_crtc_unbind(struct device *dev, struct device *master,
832                             void *data)
833 {
834         struct platform_device *pdev = to_platform_device(dev);
835         struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
836
837         vc4_crtc_destroy(&vc4_crtc->base);
838
839         CRTC_WRITE(PV_INTEN, 0);
840
841         platform_set_drvdata(pdev, NULL);
842 }
843
844 static const struct component_ops vc4_crtc_ops = {
845         .bind   = vc4_crtc_bind,
846         .unbind = vc4_crtc_unbind,
847 };
848
849 static int vc4_crtc_dev_probe(struct platform_device *pdev)
850 {
851         return component_add(&pdev->dev, &vc4_crtc_ops);
852 }
853
854 static int vc4_crtc_dev_remove(struct platform_device *pdev)
855 {
856         component_del(&pdev->dev, &vc4_crtc_ops);
857         return 0;
858 }
859
860 struct platform_driver vc4_crtc_driver = {
861         .probe = vc4_crtc_dev_probe,
862         .remove = vc4_crtc_dev_remove,
863         .driver = {
864                 .name = "vc4_crtc",
865                 .of_match_table = vc4_crtc_dt_match,
866         },
867 };