ACPI / PCI: make pci_slot explicitly non-modular
[cascardo/linux.git] / drivers / infiniband / core / verbs.c
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47
48 #include <rdma/ib_verbs.h>
49 #include <rdma/ib_cache.h>
50 #include <rdma/ib_addr.h>
51 #include <rdma/rw.h>
52
53 #include "core_priv.h"
54
55 static const char * const ib_events[] = {
56         [IB_EVENT_CQ_ERR]               = "CQ error",
57         [IB_EVENT_QP_FATAL]             = "QP fatal error",
58         [IB_EVENT_QP_REQ_ERR]           = "QP request error",
59         [IB_EVENT_QP_ACCESS_ERR]        = "QP access error",
60         [IB_EVENT_COMM_EST]             = "communication established",
61         [IB_EVENT_SQ_DRAINED]           = "send queue drained",
62         [IB_EVENT_PATH_MIG]             = "path migration successful",
63         [IB_EVENT_PATH_MIG_ERR]         = "path migration error",
64         [IB_EVENT_DEVICE_FATAL]         = "device fatal error",
65         [IB_EVENT_PORT_ACTIVE]          = "port active",
66         [IB_EVENT_PORT_ERR]             = "port error",
67         [IB_EVENT_LID_CHANGE]           = "LID change",
68         [IB_EVENT_PKEY_CHANGE]          = "P_key change",
69         [IB_EVENT_SM_CHANGE]            = "SM change",
70         [IB_EVENT_SRQ_ERR]              = "SRQ error",
71         [IB_EVENT_SRQ_LIMIT_REACHED]    = "SRQ limit reached",
72         [IB_EVENT_QP_LAST_WQE_REACHED]  = "last WQE reached",
73         [IB_EVENT_CLIENT_REREGISTER]    = "client reregister",
74         [IB_EVENT_GID_CHANGE]           = "GID changed",
75 };
76
77 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
78 {
79         size_t index = event;
80
81         return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
82                         ib_events[index] : "unrecognized event";
83 }
84 EXPORT_SYMBOL(ib_event_msg);
85
86 static const char * const wc_statuses[] = {
87         [IB_WC_SUCCESS]                 = "success",
88         [IB_WC_LOC_LEN_ERR]             = "local length error",
89         [IB_WC_LOC_QP_OP_ERR]           = "local QP operation error",
90         [IB_WC_LOC_EEC_OP_ERR]          = "local EE context operation error",
91         [IB_WC_LOC_PROT_ERR]            = "local protection error",
92         [IB_WC_WR_FLUSH_ERR]            = "WR flushed",
93         [IB_WC_MW_BIND_ERR]             = "memory management operation error",
94         [IB_WC_BAD_RESP_ERR]            = "bad response error",
95         [IB_WC_LOC_ACCESS_ERR]          = "local access error",
96         [IB_WC_REM_INV_REQ_ERR]         = "invalid request error",
97         [IB_WC_REM_ACCESS_ERR]          = "remote access error",
98         [IB_WC_REM_OP_ERR]              = "remote operation error",
99         [IB_WC_RETRY_EXC_ERR]           = "transport retry counter exceeded",
100         [IB_WC_RNR_RETRY_EXC_ERR]       = "RNR retry counter exceeded",
101         [IB_WC_LOC_RDD_VIOL_ERR]        = "local RDD violation error",
102         [IB_WC_REM_INV_RD_REQ_ERR]      = "remote invalid RD request",
103         [IB_WC_REM_ABORT_ERR]           = "operation aborted",
104         [IB_WC_INV_EECN_ERR]            = "invalid EE context number",
105         [IB_WC_INV_EEC_STATE_ERR]       = "invalid EE context state",
106         [IB_WC_FATAL_ERR]               = "fatal error",
107         [IB_WC_RESP_TIMEOUT_ERR]        = "response timeout error",
108         [IB_WC_GENERAL_ERR]             = "general error",
109 };
110
111 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
112 {
113         size_t index = status;
114
115         return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
116                         wc_statuses[index] : "unrecognized status";
117 }
118 EXPORT_SYMBOL(ib_wc_status_msg);
119
120 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
121 {
122         switch (rate) {
123         case IB_RATE_2_5_GBPS: return  1;
124         case IB_RATE_5_GBPS:   return  2;
125         case IB_RATE_10_GBPS:  return  4;
126         case IB_RATE_20_GBPS:  return  8;
127         case IB_RATE_30_GBPS:  return 12;
128         case IB_RATE_40_GBPS:  return 16;
129         case IB_RATE_60_GBPS:  return 24;
130         case IB_RATE_80_GBPS:  return 32;
131         case IB_RATE_120_GBPS: return 48;
132         default:               return -1;
133         }
134 }
135 EXPORT_SYMBOL(ib_rate_to_mult);
136
137 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
138 {
139         switch (mult) {
140         case 1:  return IB_RATE_2_5_GBPS;
141         case 2:  return IB_RATE_5_GBPS;
142         case 4:  return IB_RATE_10_GBPS;
143         case 8:  return IB_RATE_20_GBPS;
144         case 12: return IB_RATE_30_GBPS;
145         case 16: return IB_RATE_40_GBPS;
146         case 24: return IB_RATE_60_GBPS;
147         case 32: return IB_RATE_80_GBPS;
148         case 48: return IB_RATE_120_GBPS;
149         default: return IB_RATE_PORT_CURRENT;
150         }
151 }
152 EXPORT_SYMBOL(mult_to_ib_rate);
153
154 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
155 {
156         switch (rate) {
157         case IB_RATE_2_5_GBPS: return 2500;
158         case IB_RATE_5_GBPS:   return 5000;
159         case IB_RATE_10_GBPS:  return 10000;
160         case IB_RATE_20_GBPS:  return 20000;
161         case IB_RATE_30_GBPS:  return 30000;
162         case IB_RATE_40_GBPS:  return 40000;
163         case IB_RATE_60_GBPS:  return 60000;
164         case IB_RATE_80_GBPS:  return 80000;
165         case IB_RATE_120_GBPS: return 120000;
166         case IB_RATE_14_GBPS:  return 14062;
167         case IB_RATE_56_GBPS:  return 56250;
168         case IB_RATE_112_GBPS: return 112500;
169         case IB_RATE_168_GBPS: return 168750;
170         case IB_RATE_25_GBPS:  return 25781;
171         case IB_RATE_100_GBPS: return 103125;
172         case IB_RATE_200_GBPS: return 206250;
173         case IB_RATE_300_GBPS: return 309375;
174         default:               return -1;
175         }
176 }
177 EXPORT_SYMBOL(ib_rate_to_mbps);
178
179 __attribute_const__ enum rdma_transport_type
180 rdma_node_get_transport(enum rdma_node_type node_type)
181 {
182         switch (node_type) {
183         case RDMA_NODE_IB_CA:
184         case RDMA_NODE_IB_SWITCH:
185         case RDMA_NODE_IB_ROUTER:
186                 return RDMA_TRANSPORT_IB;
187         case RDMA_NODE_RNIC:
188                 return RDMA_TRANSPORT_IWARP;
189         case RDMA_NODE_USNIC:
190                 return RDMA_TRANSPORT_USNIC;
191         case RDMA_NODE_USNIC_UDP:
192                 return RDMA_TRANSPORT_USNIC_UDP;
193         default:
194                 BUG();
195                 return 0;
196         }
197 }
198 EXPORT_SYMBOL(rdma_node_get_transport);
199
200 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
201 {
202         if (device->get_link_layer)
203                 return device->get_link_layer(device, port_num);
204
205         switch (rdma_node_get_transport(device->node_type)) {
206         case RDMA_TRANSPORT_IB:
207                 return IB_LINK_LAYER_INFINIBAND;
208         case RDMA_TRANSPORT_IWARP:
209         case RDMA_TRANSPORT_USNIC:
210         case RDMA_TRANSPORT_USNIC_UDP:
211                 return IB_LINK_LAYER_ETHERNET;
212         default:
213                 return IB_LINK_LAYER_UNSPECIFIED;
214         }
215 }
216 EXPORT_SYMBOL(rdma_port_get_link_layer);
217
218 /* Protection domains */
219
220 /**
221  * ib_alloc_pd - Allocates an unused protection domain.
222  * @device: The device on which to allocate the protection domain.
223  *
224  * A protection domain object provides an association between QPs, shared
225  * receive queues, address handles, memory regions, and memory windows.
226  *
227  * Every PD has a local_dma_lkey which can be used as the lkey value for local
228  * memory operations.
229  */
230 struct ib_pd *ib_alloc_pd(struct ib_device *device)
231 {
232         struct ib_pd *pd;
233
234         pd = device->alloc_pd(device, NULL, NULL);
235         if (IS_ERR(pd))
236                 return pd;
237
238         pd->device = device;
239         pd->uobject = NULL;
240         pd->local_mr = NULL;
241         atomic_set(&pd->usecnt, 0);
242
243         if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
244                 pd->local_dma_lkey = device->local_dma_lkey;
245         else {
246                 struct ib_mr *mr;
247
248                 mr = ib_get_dma_mr(pd, IB_ACCESS_LOCAL_WRITE);
249                 if (IS_ERR(mr)) {
250                         ib_dealloc_pd(pd);
251                         return (struct ib_pd *)mr;
252                 }
253
254                 pd->local_mr = mr;
255                 pd->local_dma_lkey = pd->local_mr->lkey;
256         }
257         return pd;
258 }
259 EXPORT_SYMBOL(ib_alloc_pd);
260
261 /**
262  * ib_dealloc_pd - Deallocates a protection domain.
263  * @pd: The protection domain to deallocate.
264  *
265  * It is an error to call this function while any resources in the pd still
266  * exist.  The caller is responsible to synchronously destroy them and
267  * guarantee no new allocations will happen.
268  */
269 void ib_dealloc_pd(struct ib_pd *pd)
270 {
271         int ret;
272
273         if (pd->local_mr) {
274                 ret = ib_dereg_mr(pd->local_mr);
275                 WARN_ON(ret);
276                 pd->local_mr = NULL;
277         }
278
279         /* uverbs manipulates usecnt with proper locking, while the kabi
280            requires the caller to guarantee we can't race here. */
281         WARN_ON(atomic_read(&pd->usecnt));
282
283         /* Making delalloc_pd a void return is a WIP, no driver should return
284            an error here. */
285         ret = pd->device->dealloc_pd(pd);
286         WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
287 }
288 EXPORT_SYMBOL(ib_dealloc_pd);
289
290 /* Address handles */
291
292 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr)
293 {
294         struct ib_ah *ah;
295
296         ah = pd->device->create_ah(pd, ah_attr);
297
298         if (!IS_ERR(ah)) {
299                 ah->device  = pd->device;
300                 ah->pd      = pd;
301                 ah->uobject = NULL;
302                 atomic_inc(&pd->usecnt);
303         }
304
305         return ah;
306 }
307 EXPORT_SYMBOL(ib_create_ah);
308
309 static int ib_get_header_version(const union rdma_network_hdr *hdr)
310 {
311         const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
312         struct iphdr ip4h_checked;
313         const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
314
315         /* If it's IPv6, the version must be 6, otherwise, the first
316          * 20 bytes (before the IPv4 header) are garbled.
317          */
318         if (ip6h->version != 6)
319                 return (ip4h->version == 4) ? 4 : 0;
320         /* version may be 6 or 4 because the first 20 bytes could be garbled */
321
322         /* RoCE v2 requires no options, thus header length
323          * must be 5 words
324          */
325         if (ip4h->ihl != 5)
326                 return 6;
327
328         /* Verify checksum.
329          * We can't write on scattered buffers so we need to copy to
330          * temp buffer.
331          */
332         memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
333         ip4h_checked.check = 0;
334         ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
335         /* if IPv4 header checksum is OK, believe it */
336         if (ip4h->check == ip4h_checked.check)
337                 return 4;
338         return 6;
339 }
340
341 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
342                                                      u8 port_num,
343                                                      const struct ib_grh *grh)
344 {
345         int grh_version;
346
347         if (rdma_protocol_ib(device, port_num))
348                 return RDMA_NETWORK_IB;
349
350         grh_version = ib_get_header_version((union rdma_network_hdr *)grh);
351
352         if (grh_version == 4)
353                 return RDMA_NETWORK_IPV4;
354
355         if (grh->next_hdr == IPPROTO_UDP)
356                 return RDMA_NETWORK_IPV6;
357
358         return RDMA_NETWORK_ROCE_V1;
359 }
360
361 struct find_gid_index_context {
362         u16 vlan_id;
363         enum ib_gid_type gid_type;
364 };
365
366 static bool find_gid_index(const union ib_gid *gid,
367                            const struct ib_gid_attr *gid_attr,
368                            void *context)
369 {
370         struct find_gid_index_context *ctx =
371                 (struct find_gid_index_context *)context;
372
373         if (ctx->gid_type != gid_attr->gid_type)
374                 return false;
375
376         if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
377             (is_vlan_dev(gid_attr->ndev) &&
378              vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
379                 return false;
380
381         return true;
382 }
383
384 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
385                                    u16 vlan_id, const union ib_gid *sgid,
386                                    enum ib_gid_type gid_type,
387                                    u16 *gid_index)
388 {
389         struct find_gid_index_context context = {.vlan_id = vlan_id,
390                                                  .gid_type = gid_type};
391
392         return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
393                                      &context, gid_index);
394 }
395
396 static int get_gids_from_rdma_hdr(union rdma_network_hdr *hdr,
397                                   enum rdma_network_type net_type,
398                                   union ib_gid *sgid, union ib_gid *dgid)
399 {
400         struct sockaddr_in  src_in;
401         struct sockaddr_in  dst_in;
402         __be32 src_saddr, dst_saddr;
403
404         if (!sgid || !dgid)
405                 return -EINVAL;
406
407         if (net_type == RDMA_NETWORK_IPV4) {
408                 memcpy(&src_in.sin_addr.s_addr,
409                        &hdr->roce4grh.saddr, 4);
410                 memcpy(&dst_in.sin_addr.s_addr,
411                        &hdr->roce4grh.daddr, 4);
412                 src_saddr = src_in.sin_addr.s_addr;
413                 dst_saddr = dst_in.sin_addr.s_addr;
414                 ipv6_addr_set_v4mapped(src_saddr,
415                                        (struct in6_addr *)sgid);
416                 ipv6_addr_set_v4mapped(dst_saddr,
417                                        (struct in6_addr *)dgid);
418                 return 0;
419         } else if (net_type == RDMA_NETWORK_IPV6 ||
420                    net_type == RDMA_NETWORK_IB) {
421                 *dgid = hdr->ibgrh.dgid;
422                 *sgid = hdr->ibgrh.sgid;
423                 return 0;
424         } else {
425                 return -EINVAL;
426         }
427 }
428
429 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
430                        const struct ib_wc *wc, const struct ib_grh *grh,
431                        struct ib_ah_attr *ah_attr)
432 {
433         u32 flow_class;
434         u16 gid_index;
435         int ret;
436         enum rdma_network_type net_type = RDMA_NETWORK_IB;
437         enum ib_gid_type gid_type = IB_GID_TYPE_IB;
438         int hoplimit = 0xff;
439         union ib_gid dgid;
440         union ib_gid sgid;
441
442         memset(ah_attr, 0, sizeof *ah_attr);
443         if (rdma_cap_eth_ah(device, port_num)) {
444                 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
445                         net_type = wc->network_hdr_type;
446                 else
447                         net_type = ib_get_net_type_by_grh(device, port_num, grh);
448                 gid_type = ib_network_to_gid_type(net_type);
449         }
450         ret = get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
451                                      &sgid, &dgid);
452         if (ret)
453                 return ret;
454
455         if (rdma_protocol_roce(device, port_num)) {
456                 int if_index = 0;
457                 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
458                                 wc->vlan_id : 0xffff;
459                 struct net_device *idev;
460                 struct net_device *resolved_dev;
461
462                 if (!(wc->wc_flags & IB_WC_GRH))
463                         return -EPROTOTYPE;
464
465                 if (!device->get_netdev)
466                         return -EOPNOTSUPP;
467
468                 idev = device->get_netdev(device, port_num);
469                 if (!idev)
470                         return -ENODEV;
471
472                 ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid,
473                                                    ah_attr->dmac,
474                                                    wc->wc_flags & IB_WC_WITH_VLAN ?
475                                                    NULL : &vlan_id,
476                                                    &if_index, &hoplimit);
477                 if (ret) {
478                         dev_put(idev);
479                         return ret;
480                 }
481
482                 resolved_dev = dev_get_by_index(&init_net, if_index);
483                 if (resolved_dev->flags & IFF_LOOPBACK) {
484                         dev_put(resolved_dev);
485                         resolved_dev = idev;
486                         dev_hold(resolved_dev);
487                 }
488                 rcu_read_lock();
489                 if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev,
490                                                                    resolved_dev))
491                         ret = -EHOSTUNREACH;
492                 rcu_read_unlock();
493                 dev_put(idev);
494                 dev_put(resolved_dev);
495                 if (ret)
496                         return ret;
497
498                 ret = get_sgid_index_from_eth(device, port_num, vlan_id,
499                                               &dgid, gid_type, &gid_index);
500                 if (ret)
501                         return ret;
502         }
503
504         ah_attr->dlid = wc->slid;
505         ah_attr->sl = wc->sl;
506         ah_attr->src_path_bits = wc->dlid_path_bits;
507         ah_attr->port_num = port_num;
508
509         if (wc->wc_flags & IB_WC_GRH) {
510                 ah_attr->ah_flags = IB_AH_GRH;
511                 ah_attr->grh.dgid = sgid;
512
513                 if (!rdma_cap_eth_ah(device, port_num)) {
514                         ret = ib_find_cached_gid_by_port(device, &dgid,
515                                                          IB_GID_TYPE_IB,
516                                                          port_num, NULL,
517                                                          &gid_index);
518                         if (ret)
519                                 return ret;
520                 }
521
522                 ah_attr->grh.sgid_index = (u8) gid_index;
523                 flow_class = be32_to_cpu(grh->version_tclass_flow);
524                 ah_attr->grh.flow_label = flow_class & 0xFFFFF;
525                 ah_attr->grh.hop_limit = hoplimit;
526                 ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF;
527         }
528         return 0;
529 }
530 EXPORT_SYMBOL(ib_init_ah_from_wc);
531
532 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
533                                    const struct ib_grh *grh, u8 port_num)
534 {
535         struct ib_ah_attr ah_attr;
536         int ret;
537
538         ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
539         if (ret)
540                 return ERR_PTR(ret);
541
542         return ib_create_ah(pd, &ah_attr);
543 }
544 EXPORT_SYMBOL(ib_create_ah_from_wc);
545
546 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
547 {
548         return ah->device->modify_ah ?
549                 ah->device->modify_ah(ah, ah_attr) :
550                 -ENOSYS;
551 }
552 EXPORT_SYMBOL(ib_modify_ah);
553
554 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
555 {
556         return ah->device->query_ah ?
557                 ah->device->query_ah(ah, ah_attr) :
558                 -ENOSYS;
559 }
560 EXPORT_SYMBOL(ib_query_ah);
561
562 int ib_destroy_ah(struct ib_ah *ah)
563 {
564         struct ib_pd *pd;
565         int ret;
566
567         pd = ah->pd;
568         ret = ah->device->destroy_ah(ah);
569         if (!ret)
570                 atomic_dec(&pd->usecnt);
571
572         return ret;
573 }
574 EXPORT_SYMBOL(ib_destroy_ah);
575
576 /* Shared receive queues */
577
578 struct ib_srq *ib_create_srq(struct ib_pd *pd,
579                              struct ib_srq_init_attr *srq_init_attr)
580 {
581         struct ib_srq *srq;
582
583         if (!pd->device->create_srq)
584                 return ERR_PTR(-ENOSYS);
585
586         srq = pd->device->create_srq(pd, srq_init_attr, NULL);
587
588         if (!IS_ERR(srq)) {
589                 srq->device        = pd->device;
590                 srq->pd            = pd;
591                 srq->uobject       = NULL;
592                 srq->event_handler = srq_init_attr->event_handler;
593                 srq->srq_context   = srq_init_attr->srq_context;
594                 srq->srq_type      = srq_init_attr->srq_type;
595                 if (srq->srq_type == IB_SRQT_XRC) {
596                         srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
597                         srq->ext.xrc.cq   = srq_init_attr->ext.xrc.cq;
598                         atomic_inc(&srq->ext.xrc.xrcd->usecnt);
599                         atomic_inc(&srq->ext.xrc.cq->usecnt);
600                 }
601                 atomic_inc(&pd->usecnt);
602                 atomic_set(&srq->usecnt, 0);
603         }
604
605         return srq;
606 }
607 EXPORT_SYMBOL(ib_create_srq);
608
609 int ib_modify_srq(struct ib_srq *srq,
610                   struct ib_srq_attr *srq_attr,
611                   enum ib_srq_attr_mask srq_attr_mask)
612 {
613         return srq->device->modify_srq ?
614                 srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
615                 -ENOSYS;
616 }
617 EXPORT_SYMBOL(ib_modify_srq);
618
619 int ib_query_srq(struct ib_srq *srq,
620                  struct ib_srq_attr *srq_attr)
621 {
622         return srq->device->query_srq ?
623                 srq->device->query_srq(srq, srq_attr) : -ENOSYS;
624 }
625 EXPORT_SYMBOL(ib_query_srq);
626
627 int ib_destroy_srq(struct ib_srq *srq)
628 {
629         struct ib_pd *pd;
630         enum ib_srq_type srq_type;
631         struct ib_xrcd *uninitialized_var(xrcd);
632         struct ib_cq *uninitialized_var(cq);
633         int ret;
634
635         if (atomic_read(&srq->usecnt))
636                 return -EBUSY;
637
638         pd = srq->pd;
639         srq_type = srq->srq_type;
640         if (srq_type == IB_SRQT_XRC) {
641                 xrcd = srq->ext.xrc.xrcd;
642                 cq = srq->ext.xrc.cq;
643         }
644
645         ret = srq->device->destroy_srq(srq);
646         if (!ret) {
647                 atomic_dec(&pd->usecnt);
648                 if (srq_type == IB_SRQT_XRC) {
649                         atomic_dec(&xrcd->usecnt);
650                         atomic_dec(&cq->usecnt);
651                 }
652         }
653
654         return ret;
655 }
656 EXPORT_SYMBOL(ib_destroy_srq);
657
658 /* Queue pairs */
659
660 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
661 {
662         struct ib_qp *qp = context;
663         unsigned long flags;
664
665         spin_lock_irqsave(&qp->device->event_handler_lock, flags);
666         list_for_each_entry(event->element.qp, &qp->open_list, open_list)
667                 if (event->element.qp->event_handler)
668                         event->element.qp->event_handler(event, event->element.qp->qp_context);
669         spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
670 }
671
672 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
673 {
674         mutex_lock(&xrcd->tgt_qp_mutex);
675         list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
676         mutex_unlock(&xrcd->tgt_qp_mutex);
677 }
678
679 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
680                                   void (*event_handler)(struct ib_event *, void *),
681                                   void *qp_context)
682 {
683         struct ib_qp *qp;
684         unsigned long flags;
685
686         qp = kzalloc(sizeof *qp, GFP_KERNEL);
687         if (!qp)
688                 return ERR_PTR(-ENOMEM);
689
690         qp->real_qp = real_qp;
691         atomic_inc(&real_qp->usecnt);
692         qp->device = real_qp->device;
693         qp->event_handler = event_handler;
694         qp->qp_context = qp_context;
695         qp->qp_num = real_qp->qp_num;
696         qp->qp_type = real_qp->qp_type;
697
698         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
699         list_add(&qp->open_list, &real_qp->open_list);
700         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
701
702         return qp;
703 }
704
705 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
706                          struct ib_qp_open_attr *qp_open_attr)
707 {
708         struct ib_qp *qp, *real_qp;
709
710         if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
711                 return ERR_PTR(-EINVAL);
712
713         qp = ERR_PTR(-EINVAL);
714         mutex_lock(&xrcd->tgt_qp_mutex);
715         list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
716                 if (real_qp->qp_num == qp_open_attr->qp_num) {
717                         qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
718                                           qp_open_attr->qp_context);
719                         break;
720                 }
721         }
722         mutex_unlock(&xrcd->tgt_qp_mutex);
723         return qp;
724 }
725 EXPORT_SYMBOL(ib_open_qp);
726
727 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
728                 struct ib_qp_init_attr *qp_init_attr)
729 {
730         struct ib_qp *real_qp = qp;
731
732         qp->event_handler = __ib_shared_qp_event_handler;
733         qp->qp_context = qp;
734         qp->pd = NULL;
735         qp->send_cq = qp->recv_cq = NULL;
736         qp->srq = NULL;
737         qp->xrcd = qp_init_attr->xrcd;
738         atomic_inc(&qp_init_attr->xrcd->usecnt);
739         INIT_LIST_HEAD(&qp->open_list);
740
741         qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
742                           qp_init_attr->qp_context);
743         if (!IS_ERR(qp))
744                 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
745         else
746                 real_qp->device->destroy_qp(real_qp);
747         return qp;
748 }
749
750 struct ib_qp *ib_create_qp(struct ib_pd *pd,
751                            struct ib_qp_init_attr *qp_init_attr)
752 {
753         struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
754         struct ib_qp *qp;
755         int ret;
756
757         /*
758          * If the callers is using the RDMA API calculate the resources
759          * needed for the RDMA READ/WRITE operations.
760          *
761          * Note that these callers need to pass in a port number.
762          */
763         if (qp_init_attr->cap.max_rdma_ctxs)
764                 rdma_rw_init_qp(device, qp_init_attr);
765
766         qp = device->create_qp(pd, qp_init_attr, NULL);
767         if (IS_ERR(qp))
768                 return qp;
769
770         qp->device     = device;
771         qp->real_qp    = qp;
772         qp->uobject    = NULL;
773         qp->qp_type    = qp_init_attr->qp_type;
774
775         atomic_set(&qp->usecnt, 0);
776         qp->mrs_used = 0;
777         spin_lock_init(&qp->mr_lock);
778         INIT_LIST_HEAD(&qp->rdma_mrs);
779         INIT_LIST_HEAD(&qp->sig_mrs);
780
781         if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
782                 return ib_create_xrc_qp(qp, qp_init_attr);
783
784         qp->event_handler = qp_init_attr->event_handler;
785         qp->qp_context = qp_init_attr->qp_context;
786         if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
787                 qp->recv_cq = NULL;
788                 qp->srq = NULL;
789         } else {
790                 qp->recv_cq = qp_init_attr->recv_cq;
791                 atomic_inc(&qp_init_attr->recv_cq->usecnt);
792                 qp->srq = qp_init_attr->srq;
793                 if (qp->srq)
794                         atomic_inc(&qp_init_attr->srq->usecnt);
795         }
796
797         qp->pd      = pd;
798         qp->send_cq = qp_init_attr->send_cq;
799         qp->xrcd    = NULL;
800
801         atomic_inc(&pd->usecnt);
802         atomic_inc(&qp_init_attr->send_cq->usecnt);
803
804         if (qp_init_attr->cap.max_rdma_ctxs) {
805                 ret = rdma_rw_init_mrs(qp, qp_init_attr);
806                 if (ret) {
807                         pr_err("failed to init MR pool ret= %d\n", ret);
808                         ib_destroy_qp(qp);
809                         qp = ERR_PTR(ret);
810                 }
811         }
812
813         return qp;
814 }
815 EXPORT_SYMBOL(ib_create_qp);
816
817 static const struct {
818         int                     valid;
819         enum ib_qp_attr_mask    req_param[IB_QPT_MAX];
820         enum ib_qp_attr_mask    opt_param[IB_QPT_MAX];
821 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
822         [IB_QPS_RESET] = {
823                 [IB_QPS_RESET] = { .valid = 1 },
824                 [IB_QPS_INIT]  = {
825                         .valid = 1,
826                         .req_param = {
827                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
828                                                 IB_QP_PORT                      |
829                                                 IB_QP_QKEY),
830                                 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
831                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
832                                                 IB_QP_PORT                      |
833                                                 IB_QP_ACCESS_FLAGS),
834                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
835                                                 IB_QP_PORT                      |
836                                                 IB_QP_ACCESS_FLAGS),
837                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
838                                                 IB_QP_PORT                      |
839                                                 IB_QP_ACCESS_FLAGS),
840                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
841                                                 IB_QP_PORT                      |
842                                                 IB_QP_ACCESS_FLAGS),
843                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
844                                                 IB_QP_QKEY),
845                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
846                                                 IB_QP_QKEY),
847                         }
848                 },
849         },
850         [IB_QPS_INIT]  = {
851                 [IB_QPS_RESET] = { .valid = 1 },
852                 [IB_QPS_ERR] =   { .valid = 1 },
853                 [IB_QPS_INIT]  = {
854                         .valid = 1,
855                         .opt_param = {
856                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
857                                                 IB_QP_PORT                      |
858                                                 IB_QP_QKEY),
859                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
860                                                 IB_QP_PORT                      |
861                                                 IB_QP_ACCESS_FLAGS),
862                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
863                                                 IB_QP_PORT                      |
864                                                 IB_QP_ACCESS_FLAGS),
865                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
866                                                 IB_QP_PORT                      |
867                                                 IB_QP_ACCESS_FLAGS),
868                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
869                                                 IB_QP_PORT                      |
870                                                 IB_QP_ACCESS_FLAGS),
871                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
872                                                 IB_QP_QKEY),
873                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
874                                                 IB_QP_QKEY),
875                         }
876                 },
877                 [IB_QPS_RTR]   = {
878                         .valid = 1,
879                         .req_param = {
880                                 [IB_QPT_UC]  = (IB_QP_AV                        |
881                                                 IB_QP_PATH_MTU                  |
882                                                 IB_QP_DEST_QPN                  |
883                                                 IB_QP_RQ_PSN),
884                                 [IB_QPT_RC]  = (IB_QP_AV                        |
885                                                 IB_QP_PATH_MTU                  |
886                                                 IB_QP_DEST_QPN                  |
887                                                 IB_QP_RQ_PSN                    |
888                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
889                                                 IB_QP_MIN_RNR_TIMER),
890                                 [IB_QPT_XRC_INI] = (IB_QP_AV                    |
891                                                 IB_QP_PATH_MTU                  |
892                                                 IB_QP_DEST_QPN                  |
893                                                 IB_QP_RQ_PSN),
894                                 [IB_QPT_XRC_TGT] = (IB_QP_AV                    |
895                                                 IB_QP_PATH_MTU                  |
896                                                 IB_QP_DEST_QPN                  |
897                                                 IB_QP_RQ_PSN                    |
898                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
899                                                 IB_QP_MIN_RNR_TIMER),
900                         },
901                         .opt_param = {
902                                  [IB_QPT_UD]  = (IB_QP_PKEY_INDEX               |
903                                                  IB_QP_QKEY),
904                                  [IB_QPT_UC]  = (IB_QP_ALT_PATH                 |
905                                                  IB_QP_ACCESS_FLAGS             |
906                                                  IB_QP_PKEY_INDEX),
907                                  [IB_QPT_RC]  = (IB_QP_ALT_PATH                 |
908                                                  IB_QP_ACCESS_FLAGS             |
909                                                  IB_QP_PKEY_INDEX),
910                                  [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH             |
911                                                  IB_QP_ACCESS_FLAGS             |
912                                                  IB_QP_PKEY_INDEX),
913                                  [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH             |
914                                                  IB_QP_ACCESS_FLAGS             |
915                                                  IB_QP_PKEY_INDEX),
916                                  [IB_QPT_SMI] = (IB_QP_PKEY_INDEX               |
917                                                  IB_QP_QKEY),
918                                  [IB_QPT_GSI] = (IB_QP_PKEY_INDEX               |
919                                                  IB_QP_QKEY),
920                          },
921                 },
922         },
923         [IB_QPS_RTR]   = {
924                 [IB_QPS_RESET] = { .valid = 1 },
925                 [IB_QPS_ERR] =   { .valid = 1 },
926                 [IB_QPS_RTS]   = {
927                         .valid = 1,
928                         .req_param = {
929                                 [IB_QPT_UD]  = IB_QP_SQ_PSN,
930                                 [IB_QPT_UC]  = IB_QP_SQ_PSN,
931                                 [IB_QPT_RC]  = (IB_QP_TIMEOUT                   |
932                                                 IB_QP_RETRY_CNT                 |
933                                                 IB_QP_RNR_RETRY                 |
934                                                 IB_QP_SQ_PSN                    |
935                                                 IB_QP_MAX_QP_RD_ATOMIC),
936                                 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT               |
937                                                 IB_QP_RETRY_CNT                 |
938                                                 IB_QP_RNR_RETRY                 |
939                                                 IB_QP_SQ_PSN                    |
940                                                 IB_QP_MAX_QP_RD_ATOMIC),
941                                 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT               |
942                                                 IB_QP_SQ_PSN),
943                                 [IB_QPT_SMI] = IB_QP_SQ_PSN,
944                                 [IB_QPT_GSI] = IB_QP_SQ_PSN,
945                         },
946                         .opt_param = {
947                                  [IB_QPT_UD]  = (IB_QP_CUR_STATE                |
948                                                  IB_QP_QKEY),
949                                  [IB_QPT_UC]  = (IB_QP_CUR_STATE                |
950                                                  IB_QP_ALT_PATH                 |
951                                                  IB_QP_ACCESS_FLAGS             |
952                                                  IB_QP_PATH_MIG_STATE),
953                                  [IB_QPT_RC]  = (IB_QP_CUR_STATE                |
954                                                  IB_QP_ALT_PATH                 |
955                                                  IB_QP_ACCESS_FLAGS             |
956                                                  IB_QP_MIN_RNR_TIMER            |
957                                                  IB_QP_PATH_MIG_STATE),
958                                  [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE            |
959                                                  IB_QP_ALT_PATH                 |
960                                                  IB_QP_ACCESS_FLAGS             |
961                                                  IB_QP_PATH_MIG_STATE),
962                                  [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE            |
963                                                  IB_QP_ALT_PATH                 |
964                                                  IB_QP_ACCESS_FLAGS             |
965                                                  IB_QP_MIN_RNR_TIMER            |
966                                                  IB_QP_PATH_MIG_STATE),
967                                  [IB_QPT_SMI] = (IB_QP_CUR_STATE                |
968                                                  IB_QP_QKEY),
969                                  [IB_QPT_GSI] = (IB_QP_CUR_STATE                |
970                                                  IB_QP_QKEY),
971                          }
972                 }
973         },
974         [IB_QPS_RTS]   = {
975                 [IB_QPS_RESET] = { .valid = 1 },
976                 [IB_QPS_ERR] =   { .valid = 1 },
977                 [IB_QPS_RTS]   = {
978                         .valid = 1,
979                         .opt_param = {
980                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
981                                                 IB_QP_QKEY),
982                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
983                                                 IB_QP_ACCESS_FLAGS              |
984                                                 IB_QP_ALT_PATH                  |
985                                                 IB_QP_PATH_MIG_STATE),
986                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
987                                                 IB_QP_ACCESS_FLAGS              |
988                                                 IB_QP_ALT_PATH                  |
989                                                 IB_QP_PATH_MIG_STATE            |
990                                                 IB_QP_MIN_RNR_TIMER),
991                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
992                                                 IB_QP_ACCESS_FLAGS              |
993                                                 IB_QP_ALT_PATH                  |
994                                                 IB_QP_PATH_MIG_STATE),
995                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
996                                                 IB_QP_ACCESS_FLAGS              |
997                                                 IB_QP_ALT_PATH                  |
998                                                 IB_QP_PATH_MIG_STATE            |
999                                                 IB_QP_MIN_RNR_TIMER),
1000                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1001                                                 IB_QP_QKEY),
1002                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1003                                                 IB_QP_QKEY),
1004                         }
1005                 },
1006                 [IB_QPS_SQD]   = {
1007                         .valid = 1,
1008                         .opt_param = {
1009                                 [IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1010                                 [IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1011                                 [IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1012                                 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1013                                 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1014                                 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1015                                 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1016                         }
1017                 },
1018         },
1019         [IB_QPS_SQD]   = {
1020                 [IB_QPS_RESET] = { .valid = 1 },
1021                 [IB_QPS_ERR] =   { .valid = 1 },
1022                 [IB_QPS_RTS]   = {
1023                         .valid = 1,
1024                         .opt_param = {
1025                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1026                                                 IB_QP_QKEY),
1027                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1028                                                 IB_QP_ALT_PATH                  |
1029                                                 IB_QP_ACCESS_FLAGS              |
1030                                                 IB_QP_PATH_MIG_STATE),
1031                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1032                                                 IB_QP_ALT_PATH                  |
1033                                                 IB_QP_ACCESS_FLAGS              |
1034                                                 IB_QP_MIN_RNR_TIMER             |
1035                                                 IB_QP_PATH_MIG_STATE),
1036                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1037                                                 IB_QP_ALT_PATH                  |
1038                                                 IB_QP_ACCESS_FLAGS              |
1039                                                 IB_QP_PATH_MIG_STATE),
1040                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1041                                                 IB_QP_ALT_PATH                  |
1042                                                 IB_QP_ACCESS_FLAGS              |
1043                                                 IB_QP_MIN_RNR_TIMER             |
1044                                                 IB_QP_PATH_MIG_STATE),
1045                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1046                                                 IB_QP_QKEY),
1047                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1048                                                 IB_QP_QKEY),
1049                         }
1050                 },
1051                 [IB_QPS_SQD]   = {
1052                         .valid = 1,
1053                         .opt_param = {
1054                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1055                                                 IB_QP_QKEY),
1056                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1057                                                 IB_QP_ALT_PATH                  |
1058                                                 IB_QP_ACCESS_FLAGS              |
1059                                                 IB_QP_PKEY_INDEX                |
1060                                                 IB_QP_PATH_MIG_STATE),
1061                                 [IB_QPT_RC]  = (IB_QP_PORT                      |
1062                                                 IB_QP_AV                        |
1063                                                 IB_QP_TIMEOUT                   |
1064                                                 IB_QP_RETRY_CNT                 |
1065                                                 IB_QP_RNR_RETRY                 |
1066                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1067                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1068                                                 IB_QP_ALT_PATH                  |
1069                                                 IB_QP_ACCESS_FLAGS              |
1070                                                 IB_QP_PKEY_INDEX                |
1071                                                 IB_QP_MIN_RNR_TIMER             |
1072                                                 IB_QP_PATH_MIG_STATE),
1073                                 [IB_QPT_XRC_INI] = (IB_QP_PORT                  |
1074                                                 IB_QP_AV                        |
1075                                                 IB_QP_TIMEOUT                   |
1076                                                 IB_QP_RETRY_CNT                 |
1077                                                 IB_QP_RNR_RETRY                 |
1078                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1079                                                 IB_QP_ALT_PATH                  |
1080                                                 IB_QP_ACCESS_FLAGS              |
1081                                                 IB_QP_PKEY_INDEX                |
1082                                                 IB_QP_PATH_MIG_STATE),
1083                                 [IB_QPT_XRC_TGT] = (IB_QP_PORT                  |
1084                                                 IB_QP_AV                        |
1085                                                 IB_QP_TIMEOUT                   |
1086                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1087                                                 IB_QP_ALT_PATH                  |
1088                                                 IB_QP_ACCESS_FLAGS              |
1089                                                 IB_QP_PKEY_INDEX                |
1090                                                 IB_QP_MIN_RNR_TIMER             |
1091                                                 IB_QP_PATH_MIG_STATE),
1092                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1093                                                 IB_QP_QKEY),
1094                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1095                                                 IB_QP_QKEY),
1096                         }
1097                 }
1098         },
1099         [IB_QPS_SQE]   = {
1100                 [IB_QPS_RESET] = { .valid = 1 },
1101                 [IB_QPS_ERR] =   { .valid = 1 },
1102                 [IB_QPS_RTS]   = {
1103                         .valid = 1,
1104                         .opt_param = {
1105                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1106                                                 IB_QP_QKEY),
1107                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1108                                                 IB_QP_ACCESS_FLAGS),
1109                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1110                                                 IB_QP_QKEY),
1111                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1112                                                 IB_QP_QKEY),
1113                         }
1114                 }
1115         },
1116         [IB_QPS_ERR] = {
1117                 [IB_QPS_RESET] = { .valid = 1 },
1118                 [IB_QPS_ERR] =   { .valid = 1 }
1119         }
1120 };
1121
1122 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1123                        enum ib_qp_type type, enum ib_qp_attr_mask mask,
1124                        enum rdma_link_layer ll)
1125 {
1126         enum ib_qp_attr_mask req_param, opt_param;
1127
1128         if (cur_state  < 0 || cur_state  > IB_QPS_ERR ||
1129             next_state < 0 || next_state > IB_QPS_ERR)
1130                 return 0;
1131
1132         if (mask & IB_QP_CUR_STATE  &&
1133             cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1134             cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1135                 return 0;
1136
1137         if (!qp_state_table[cur_state][next_state].valid)
1138                 return 0;
1139
1140         req_param = qp_state_table[cur_state][next_state].req_param[type];
1141         opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1142
1143         if ((mask & req_param) != req_param)
1144                 return 0;
1145
1146         if (mask & ~(req_param | opt_param | IB_QP_STATE))
1147                 return 0;
1148
1149         return 1;
1150 }
1151 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1152
1153 int ib_resolve_eth_dmac(struct ib_qp *qp,
1154                         struct ib_qp_attr *qp_attr, int *qp_attr_mask)
1155 {
1156         int           ret = 0;
1157
1158         if (*qp_attr_mask & IB_QP_AV) {
1159                 if (qp_attr->ah_attr.port_num < rdma_start_port(qp->device) ||
1160                     qp_attr->ah_attr.port_num > rdma_end_port(qp->device))
1161                         return -EINVAL;
1162
1163                 if (!rdma_cap_eth_ah(qp->device, qp_attr->ah_attr.port_num))
1164                         return 0;
1165
1166                 if (rdma_link_local_addr((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw)) {
1167                         rdma_get_ll_mac((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw,
1168                                         qp_attr->ah_attr.dmac);
1169                 } else {
1170                         union ib_gid            sgid;
1171                         struct ib_gid_attr      sgid_attr;
1172                         int                     ifindex;
1173                         int                     hop_limit;
1174
1175                         ret = ib_query_gid(qp->device,
1176                                            qp_attr->ah_attr.port_num,
1177                                            qp_attr->ah_attr.grh.sgid_index,
1178                                            &sgid, &sgid_attr);
1179
1180                         if (ret || !sgid_attr.ndev) {
1181                                 if (!ret)
1182                                         ret = -ENXIO;
1183                                 goto out;
1184                         }
1185
1186                         ifindex = sgid_attr.ndev->ifindex;
1187
1188                         ret = rdma_addr_find_l2_eth_by_grh(&sgid,
1189                                                            &qp_attr->ah_attr.grh.dgid,
1190                                                            qp_attr->ah_attr.dmac,
1191                                                            NULL, &ifindex, &hop_limit);
1192
1193                         dev_put(sgid_attr.ndev);
1194
1195                         qp_attr->ah_attr.grh.hop_limit = hop_limit;
1196                 }
1197         }
1198 out:
1199         return ret;
1200 }
1201 EXPORT_SYMBOL(ib_resolve_eth_dmac);
1202
1203
1204 int ib_modify_qp(struct ib_qp *qp,
1205                  struct ib_qp_attr *qp_attr,
1206                  int qp_attr_mask)
1207 {
1208         int ret;
1209
1210         ret = ib_resolve_eth_dmac(qp, qp_attr, &qp_attr_mask);
1211         if (ret)
1212                 return ret;
1213
1214         return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1215 }
1216 EXPORT_SYMBOL(ib_modify_qp);
1217
1218 int ib_query_qp(struct ib_qp *qp,
1219                 struct ib_qp_attr *qp_attr,
1220                 int qp_attr_mask,
1221                 struct ib_qp_init_attr *qp_init_attr)
1222 {
1223         return qp->device->query_qp ?
1224                 qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1225                 -ENOSYS;
1226 }
1227 EXPORT_SYMBOL(ib_query_qp);
1228
1229 int ib_close_qp(struct ib_qp *qp)
1230 {
1231         struct ib_qp *real_qp;
1232         unsigned long flags;
1233
1234         real_qp = qp->real_qp;
1235         if (real_qp == qp)
1236                 return -EINVAL;
1237
1238         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1239         list_del(&qp->open_list);
1240         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1241
1242         atomic_dec(&real_qp->usecnt);
1243         kfree(qp);
1244
1245         return 0;
1246 }
1247 EXPORT_SYMBOL(ib_close_qp);
1248
1249 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1250 {
1251         struct ib_xrcd *xrcd;
1252         struct ib_qp *real_qp;
1253         int ret;
1254
1255         real_qp = qp->real_qp;
1256         xrcd = real_qp->xrcd;
1257
1258         mutex_lock(&xrcd->tgt_qp_mutex);
1259         ib_close_qp(qp);
1260         if (atomic_read(&real_qp->usecnt) == 0)
1261                 list_del(&real_qp->xrcd_list);
1262         else
1263                 real_qp = NULL;
1264         mutex_unlock(&xrcd->tgt_qp_mutex);
1265
1266         if (real_qp) {
1267                 ret = ib_destroy_qp(real_qp);
1268                 if (!ret)
1269                         atomic_dec(&xrcd->usecnt);
1270                 else
1271                         __ib_insert_xrcd_qp(xrcd, real_qp);
1272         }
1273
1274         return 0;
1275 }
1276
1277 int ib_destroy_qp(struct ib_qp *qp)
1278 {
1279         struct ib_pd *pd;
1280         struct ib_cq *scq, *rcq;
1281         struct ib_srq *srq;
1282         int ret;
1283
1284         WARN_ON_ONCE(qp->mrs_used > 0);
1285
1286         if (atomic_read(&qp->usecnt))
1287                 return -EBUSY;
1288
1289         if (qp->real_qp != qp)
1290                 return __ib_destroy_shared_qp(qp);
1291
1292         pd   = qp->pd;
1293         scq  = qp->send_cq;
1294         rcq  = qp->recv_cq;
1295         srq  = qp->srq;
1296
1297         if (!qp->uobject)
1298                 rdma_rw_cleanup_mrs(qp);
1299
1300         ret = qp->device->destroy_qp(qp);
1301         if (!ret) {
1302                 if (pd)
1303                         atomic_dec(&pd->usecnt);
1304                 if (scq)
1305                         atomic_dec(&scq->usecnt);
1306                 if (rcq)
1307                         atomic_dec(&rcq->usecnt);
1308                 if (srq)
1309                         atomic_dec(&srq->usecnt);
1310         }
1311
1312         return ret;
1313 }
1314 EXPORT_SYMBOL(ib_destroy_qp);
1315
1316 /* Completion queues */
1317
1318 struct ib_cq *ib_create_cq(struct ib_device *device,
1319                            ib_comp_handler comp_handler,
1320                            void (*event_handler)(struct ib_event *, void *),
1321                            void *cq_context,
1322                            const struct ib_cq_init_attr *cq_attr)
1323 {
1324         struct ib_cq *cq;
1325
1326         cq = device->create_cq(device, cq_attr, NULL, NULL);
1327
1328         if (!IS_ERR(cq)) {
1329                 cq->device        = device;
1330                 cq->uobject       = NULL;
1331                 cq->comp_handler  = comp_handler;
1332                 cq->event_handler = event_handler;
1333                 cq->cq_context    = cq_context;
1334                 atomic_set(&cq->usecnt, 0);
1335         }
1336
1337         return cq;
1338 }
1339 EXPORT_SYMBOL(ib_create_cq);
1340
1341 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1342 {
1343         return cq->device->modify_cq ?
1344                 cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1345 }
1346 EXPORT_SYMBOL(ib_modify_cq);
1347
1348 int ib_destroy_cq(struct ib_cq *cq)
1349 {
1350         if (atomic_read(&cq->usecnt))
1351                 return -EBUSY;
1352
1353         return cq->device->destroy_cq(cq);
1354 }
1355 EXPORT_SYMBOL(ib_destroy_cq);
1356
1357 int ib_resize_cq(struct ib_cq *cq, int cqe)
1358 {
1359         return cq->device->resize_cq ?
1360                 cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1361 }
1362 EXPORT_SYMBOL(ib_resize_cq);
1363
1364 /* Memory regions */
1365
1366 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags)
1367 {
1368         struct ib_mr *mr;
1369         int err;
1370
1371         err = ib_check_mr_access(mr_access_flags);
1372         if (err)
1373                 return ERR_PTR(err);
1374
1375         mr = pd->device->get_dma_mr(pd, mr_access_flags);
1376
1377         if (!IS_ERR(mr)) {
1378                 mr->device  = pd->device;
1379                 mr->pd      = pd;
1380                 mr->uobject = NULL;
1381                 atomic_inc(&pd->usecnt);
1382                 mr->need_inval = false;
1383         }
1384
1385         return mr;
1386 }
1387 EXPORT_SYMBOL(ib_get_dma_mr);
1388
1389 int ib_dereg_mr(struct ib_mr *mr)
1390 {
1391         struct ib_pd *pd = mr->pd;
1392         int ret;
1393
1394         ret = mr->device->dereg_mr(mr);
1395         if (!ret)
1396                 atomic_dec(&pd->usecnt);
1397
1398         return ret;
1399 }
1400 EXPORT_SYMBOL(ib_dereg_mr);
1401
1402 /**
1403  * ib_alloc_mr() - Allocates a memory region
1404  * @pd:            protection domain associated with the region
1405  * @mr_type:       memory region type
1406  * @max_num_sg:    maximum sg entries available for registration.
1407  *
1408  * Notes:
1409  * Memory registeration page/sg lists must not exceed max_num_sg.
1410  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1411  * max_num_sg * used_page_size.
1412  *
1413  */
1414 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1415                           enum ib_mr_type mr_type,
1416                           u32 max_num_sg)
1417 {
1418         struct ib_mr *mr;
1419
1420         if (!pd->device->alloc_mr)
1421                 return ERR_PTR(-ENOSYS);
1422
1423         mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1424         if (!IS_ERR(mr)) {
1425                 mr->device  = pd->device;
1426                 mr->pd      = pd;
1427                 mr->uobject = NULL;
1428                 atomic_inc(&pd->usecnt);
1429                 mr->need_inval = false;
1430         }
1431
1432         return mr;
1433 }
1434 EXPORT_SYMBOL(ib_alloc_mr);
1435
1436 /* "Fast" memory regions */
1437
1438 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1439                             int mr_access_flags,
1440                             struct ib_fmr_attr *fmr_attr)
1441 {
1442         struct ib_fmr *fmr;
1443
1444         if (!pd->device->alloc_fmr)
1445                 return ERR_PTR(-ENOSYS);
1446
1447         fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1448         if (!IS_ERR(fmr)) {
1449                 fmr->device = pd->device;
1450                 fmr->pd     = pd;
1451                 atomic_inc(&pd->usecnt);
1452         }
1453
1454         return fmr;
1455 }
1456 EXPORT_SYMBOL(ib_alloc_fmr);
1457
1458 int ib_unmap_fmr(struct list_head *fmr_list)
1459 {
1460         struct ib_fmr *fmr;
1461
1462         if (list_empty(fmr_list))
1463                 return 0;
1464
1465         fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1466         return fmr->device->unmap_fmr(fmr_list);
1467 }
1468 EXPORT_SYMBOL(ib_unmap_fmr);
1469
1470 int ib_dealloc_fmr(struct ib_fmr *fmr)
1471 {
1472         struct ib_pd *pd;
1473         int ret;
1474
1475         pd = fmr->pd;
1476         ret = fmr->device->dealloc_fmr(fmr);
1477         if (!ret)
1478                 atomic_dec(&pd->usecnt);
1479
1480         return ret;
1481 }
1482 EXPORT_SYMBOL(ib_dealloc_fmr);
1483
1484 /* Multicast groups */
1485
1486 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1487 {
1488         int ret;
1489
1490         if (!qp->device->attach_mcast)
1491                 return -ENOSYS;
1492         if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
1493                 return -EINVAL;
1494
1495         ret = qp->device->attach_mcast(qp, gid, lid);
1496         if (!ret)
1497                 atomic_inc(&qp->usecnt);
1498         return ret;
1499 }
1500 EXPORT_SYMBOL(ib_attach_mcast);
1501
1502 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1503 {
1504         int ret;
1505
1506         if (!qp->device->detach_mcast)
1507                 return -ENOSYS;
1508         if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
1509                 return -EINVAL;
1510
1511         ret = qp->device->detach_mcast(qp, gid, lid);
1512         if (!ret)
1513                 atomic_dec(&qp->usecnt);
1514         return ret;
1515 }
1516 EXPORT_SYMBOL(ib_detach_mcast);
1517
1518 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
1519 {
1520         struct ib_xrcd *xrcd;
1521
1522         if (!device->alloc_xrcd)
1523                 return ERR_PTR(-ENOSYS);
1524
1525         xrcd = device->alloc_xrcd(device, NULL, NULL);
1526         if (!IS_ERR(xrcd)) {
1527                 xrcd->device = device;
1528                 xrcd->inode = NULL;
1529                 atomic_set(&xrcd->usecnt, 0);
1530                 mutex_init(&xrcd->tgt_qp_mutex);
1531                 INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1532         }
1533
1534         return xrcd;
1535 }
1536 EXPORT_SYMBOL(ib_alloc_xrcd);
1537
1538 int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
1539 {
1540         struct ib_qp *qp;
1541         int ret;
1542
1543         if (atomic_read(&xrcd->usecnt))
1544                 return -EBUSY;
1545
1546         while (!list_empty(&xrcd->tgt_qp_list)) {
1547                 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1548                 ret = ib_destroy_qp(qp);
1549                 if (ret)
1550                         return ret;
1551         }
1552
1553         return xrcd->device->dealloc_xrcd(xrcd);
1554 }
1555 EXPORT_SYMBOL(ib_dealloc_xrcd);
1556
1557 struct ib_flow *ib_create_flow(struct ib_qp *qp,
1558                                struct ib_flow_attr *flow_attr,
1559                                int domain)
1560 {
1561         struct ib_flow *flow_id;
1562         if (!qp->device->create_flow)
1563                 return ERR_PTR(-ENOSYS);
1564
1565         flow_id = qp->device->create_flow(qp, flow_attr, domain);
1566         if (!IS_ERR(flow_id))
1567                 atomic_inc(&qp->usecnt);
1568         return flow_id;
1569 }
1570 EXPORT_SYMBOL(ib_create_flow);
1571
1572 int ib_destroy_flow(struct ib_flow *flow_id)
1573 {
1574         int err;
1575         struct ib_qp *qp = flow_id->qp;
1576
1577         err = qp->device->destroy_flow(flow_id);
1578         if (!err)
1579                 atomic_dec(&qp->usecnt);
1580         return err;
1581 }
1582 EXPORT_SYMBOL(ib_destroy_flow);
1583
1584 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1585                        struct ib_mr_status *mr_status)
1586 {
1587         return mr->device->check_mr_status ?
1588                 mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1589 }
1590 EXPORT_SYMBOL(ib_check_mr_status);
1591
1592 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
1593                          int state)
1594 {
1595         if (!device->set_vf_link_state)
1596                 return -ENOSYS;
1597
1598         return device->set_vf_link_state(device, vf, port, state);
1599 }
1600 EXPORT_SYMBOL(ib_set_vf_link_state);
1601
1602 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
1603                      struct ifla_vf_info *info)
1604 {
1605         if (!device->get_vf_config)
1606                 return -ENOSYS;
1607
1608         return device->get_vf_config(device, vf, port, info);
1609 }
1610 EXPORT_SYMBOL(ib_get_vf_config);
1611
1612 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
1613                     struct ifla_vf_stats *stats)
1614 {
1615         if (!device->get_vf_stats)
1616                 return -ENOSYS;
1617
1618         return device->get_vf_stats(device, vf, port, stats);
1619 }
1620 EXPORT_SYMBOL(ib_get_vf_stats);
1621
1622 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
1623                    int type)
1624 {
1625         if (!device->set_vf_guid)
1626                 return -ENOSYS;
1627
1628         return device->set_vf_guid(device, vf, port, guid, type);
1629 }
1630 EXPORT_SYMBOL(ib_set_vf_guid);
1631
1632 /**
1633  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
1634  *     and set it the memory region.
1635  * @mr:            memory region
1636  * @sg:            dma mapped scatterlist
1637  * @sg_nents:      number of entries in sg
1638  * @sg_offset:     offset in bytes into sg
1639  * @page_size:     page vector desired page size
1640  *
1641  * Constraints:
1642  * - The first sg element is allowed to have an offset.
1643  * - Each sg element must be aligned to page_size (or physically
1644  *   contiguous to the previous element). In case an sg element has a
1645  *   non contiguous offset, the mapping prefix will not include it.
1646  * - The last sg element is allowed to have length less than page_size.
1647  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
1648  *   then only max_num_sg entries will be mapped.
1649  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS_REG, non of these
1650  *   constraints holds and the page_size argument is ignored.
1651  *
1652  * Returns the number of sg elements that were mapped to the memory region.
1653  *
1654  * After this completes successfully, the  memory region
1655  * is ready for registration.
1656  */
1657 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
1658                  unsigned int *sg_offset, unsigned int page_size)
1659 {
1660         if (unlikely(!mr->device->map_mr_sg))
1661                 return -ENOSYS;
1662
1663         mr->page_size = page_size;
1664
1665         return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
1666 }
1667 EXPORT_SYMBOL(ib_map_mr_sg);
1668
1669 /**
1670  * ib_sg_to_pages() - Convert the largest prefix of a sg list
1671  *     to a page vector
1672  * @mr:            memory region
1673  * @sgl:           dma mapped scatterlist
1674  * @sg_nents:      number of entries in sg
1675  * @sg_offset_p:   IN:  start offset in bytes into sg
1676  *                 OUT: offset in bytes for element n of the sg of the first
1677  *                      byte that has not been processed where n is the return
1678  *                      value of this function.
1679  * @set_page:      driver page assignment function pointer
1680  *
1681  * Core service helper for drivers to convert the largest
1682  * prefix of given sg list to a page vector. The sg list
1683  * prefix converted is the prefix that meet the requirements
1684  * of ib_map_mr_sg.
1685  *
1686  * Returns the number of sg elements that were assigned to
1687  * a page vector.
1688  */
1689 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
1690                 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
1691 {
1692         struct scatterlist *sg;
1693         u64 last_end_dma_addr = 0;
1694         unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
1695         unsigned int last_page_off = 0;
1696         u64 page_mask = ~((u64)mr->page_size - 1);
1697         int i, ret;
1698
1699         if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
1700                 return -EINVAL;
1701
1702         mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
1703         mr->length = 0;
1704
1705         for_each_sg(sgl, sg, sg_nents, i) {
1706                 u64 dma_addr = sg_dma_address(sg) + sg_offset;
1707                 u64 prev_addr = dma_addr;
1708                 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
1709                 u64 end_dma_addr = dma_addr + dma_len;
1710                 u64 page_addr = dma_addr & page_mask;
1711
1712                 /*
1713                  * For the second and later elements, check whether either the
1714                  * end of element i-1 or the start of element i is not aligned
1715                  * on a page boundary.
1716                  */
1717                 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
1718                         /* Stop mapping if there is a gap. */
1719                         if (last_end_dma_addr != dma_addr)
1720                                 break;
1721
1722                         /*
1723                          * Coalesce this element with the last. If it is small
1724                          * enough just update mr->length. Otherwise start
1725                          * mapping from the next page.
1726                          */
1727                         goto next_page;
1728                 }
1729
1730                 do {
1731                         ret = set_page(mr, page_addr);
1732                         if (unlikely(ret < 0)) {
1733                                 sg_offset = prev_addr - sg_dma_address(sg);
1734                                 mr->length += prev_addr - dma_addr;
1735                                 if (sg_offset_p)
1736                                         *sg_offset_p = sg_offset;
1737                                 return i || sg_offset ? i : ret;
1738                         }
1739                         prev_addr = page_addr;
1740 next_page:
1741                         page_addr += mr->page_size;
1742                 } while (page_addr < end_dma_addr);
1743
1744                 mr->length += dma_len;
1745                 last_end_dma_addr = end_dma_addr;
1746                 last_page_off = end_dma_addr & ~page_mask;
1747
1748                 sg_offset = 0;
1749         }
1750
1751         if (sg_offset_p)
1752                 *sg_offset_p = 0;
1753         return i;
1754 }
1755 EXPORT_SYMBOL(ib_sg_to_pages);
1756
1757 struct ib_drain_cqe {
1758         struct ib_cqe cqe;
1759         struct completion done;
1760 };
1761
1762 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
1763 {
1764         struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
1765                                                 cqe);
1766
1767         complete(&cqe->done);
1768 }
1769
1770 /*
1771  * Post a WR and block until its completion is reaped for the SQ.
1772  */
1773 static void __ib_drain_sq(struct ib_qp *qp)
1774 {
1775         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1776         struct ib_drain_cqe sdrain;
1777         struct ib_send_wr swr = {}, *bad_swr;
1778         int ret;
1779
1780         if (qp->send_cq->poll_ctx == IB_POLL_DIRECT) {
1781                 WARN_ONCE(qp->send_cq->poll_ctx == IB_POLL_DIRECT,
1782                           "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1783                 return;
1784         }
1785
1786         swr.wr_cqe = &sdrain.cqe;
1787         sdrain.cqe.done = ib_drain_qp_done;
1788         init_completion(&sdrain.done);
1789
1790         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1791         if (ret) {
1792                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1793                 return;
1794         }
1795
1796         ret = ib_post_send(qp, &swr, &bad_swr);
1797         if (ret) {
1798                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1799                 return;
1800         }
1801
1802         wait_for_completion(&sdrain.done);
1803 }
1804
1805 /*
1806  * Post a WR and block until its completion is reaped for the RQ.
1807  */
1808 static void __ib_drain_rq(struct ib_qp *qp)
1809 {
1810         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1811         struct ib_drain_cqe rdrain;
1812         struct ib_recv_wr rwr = {}, *bad_rwr;
1813         int ret;
1814
1815         if (qp->recv_cq->poll_ctx == IB_POLL_DIRECT) {
1816                 WARN_ONCE(qp->recv_cq->poll_ctx == IB_POLL_DIRECT,
1817                           "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1818                 return;
1819         }
1820
1821         rwr.wr_cqe = &rdrain.cqe;
1822         rdrain.cqe.done = ib_drain_qp_done;
1823         init_completion(&rdrain.done);
1824
1825         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1826         if (ret) {
1827                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
1828                 return;
1829         }
1830
1831         ret = ib_post_recv(qp, &rwr, &bad_rwr);
1832         if (ret) {
1833                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
1834                 return;
1835         }
1836
1837         wait_for_completion(&rdrain.done);
1838 }
1839
1840 /**
1841  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
1842  *                 application.
1843  * @qp:            queue pair to drain
1844  *
1845  * If the device has a provider-specific drain function, then
1846  * call that.  Otherwise call the generic drain function
1847  * __ib_drain_sq().
1848  *
1849  * The caller must:
1850  *
1851  * ensure there is room in the CQ and SQ for the drain work request and
1852  * completion.
1853  *
1854  * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
1855  * IB_POLL_DIRECT.
1856  *
1857  * ensure that there are no other contexts that are posting WRs concurrently.
1858  * Otherwise the drain is not guaranteed.
1859  */
1860 void ib_drain_sq(struct ib_qp *qp)
1861 {
1862         if (qp->device->drain_sq)
1863                 qp->device->drain_sq(qp);
1864         else
1865                 __ib_drain_sq(qp);
1866 }
1867 EXPORT_SYMBOL(ib_drain_sq);
1868
1869 /**
1870  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
1871  *                 application.
1872  * @qp:            queue pair to drain
1873  *
1874  * If the device has a provider-specific drain function, then
1875  * call that.  Otherwise call the generic drain function
1876  * __ib_drain_rq().
1877  *
1878  * The caller must:
1879  *
1880  * ensure there is room in the CQ and RQ for the drain work request and
1881  * completion.
1882  *
1883  * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
1884  * IB_POLL_DIRECT.
1885  *
1886  * ensure that there are no other contexts that are posting WRs concurrently.
1887  * Otherwise the drain is not guaranteed.
1888  */
1889 void ib_drain_rq(struct ib_qp *qp)
1890 {
1891         if (qp->device->drain_rq)
1892                 qp->device->drain_rq(qp);
1893         else
1894                 __ib_drain_rq(qp);
1895 }
1896 EXPORT_SYMBOL(ib_drain_rq);
1897
1898 /**
1899  * ib_drain_qp() - Block until all CQEs have been consumed by the
1900  *                 application on both the RQ and SQ.
1901  * @qp:            queue pair to drain
1902  *
1903  * The caller must:
1904  *
1905  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
1906  * and completions.
1907  *
1908  * allocate the CQs using ib_alloc_cq() and the CQ poll context cannot be
1909  * IB_POLL_DIRECT.
1910  *
1911  * ensure that there are no other contexts that are posting WRs concurrently.
1912  * Otherwise the drain is not guaranteed.
1913  */
1914 void ib_drain_qp(struct ib_qp *qp)
1915 {
1916         ib_drain_sq(qp);
1917         if (!qp->srq)
1918                 ib_drain_rq(qp);
1919 }
1920 EXPORT_SYMBOL(ib_drain_qp);