6916d5c5920b7e4b9d0575a150f9b36163319c60
[cascardo/linux.git] / drivers / infiniband / core / verbs.c
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47
48 #include <rdma/ib_verbs.h>
49 #include <rdma/ib_cache.h>
50 #include <rdma/ib_addr.h>
51 #include <rdma/rw.h>
52
53 #include "core_priv.h"
54
55 static const char * const ib_events[] = {
56         [IB_EVENT_CQ_ERR]               = "CQ error",
57         [IB_EVENT_QP_FATAL]             = "QP fatal error",
58         [IB_EVENT_QP_REQ_ERR]           = "QP request error",
59         [IB_EVENT_QP_ACCESS_ERR]        = "QP access error",
60         [IB_EVENT_COMM_EST]             = "communication established",
61         [IB_EVENT_SQ_DRAINED]           = "send queue drained",
62         [IB_EVENT_PATH_MIG]             = "path migration successful",
63         [IB_EVENT_PATH_MIG_ERR]         = "path migration error",
64         [IB_EVENT_DEVICE_FATAL]         = "device fatal error",
65         [IB_EVENT_PORT_ACTIVE]          = "port active",
66         [IB_EVENT_PORT_ERR]             = "port error",
67         [IB_EVENT_LID_CHANGE]           = "LID change",
68         [IB_EVENT_PKEY_CHANGE]          = "P_key change",
69         [IB_EVENT_SM_CHANGE]            = "SM change",
70         [IB_EVENT_SRQ_ERR]              = "SRQ error",
71         [IB_EVENT_SRQ_LIMIT_REACHED]    = "SRQ limit reached",
72         [IB_EVENT_QP_LAST_WQE_REACHED]  = "last WQE reached",
73         [IB_EVENT_CLIENT_REREGISTER]    = "client reregister",
74         [IB_EVENT_GID_CHANGE]           = "GID changed",
75 };
76
77 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
78 {
79         size_t index = event;
80
81         return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
82                         ib_events[index] : "unrecognized event";
83 }
84 EXPORT_SYMBOL(ib_event_msg);
85
86 static const char * const wc_statuses[] = {
87         [IB_WC_SUCCESS]                 = "success",
88         [IB_WC_LOC_LEN_ERR]             = "local length error",
89         [IB_WC_LOC_QP_OP_ERR]           = "local QP operation error",
90         [IB_WC_LOC_EEC_OP_ERR]          = "local EE context operation error",
91         [IB_WC_LOC_PROT_ERR]            = "local protection error",
92         [IB_WC_WR_FLUSH_ERR]            = "WR flushed",
93         [IB_WC_MW_BIND_ERR]             = "memory management operation error",
94         [IB_WC_BAD_RESP_ERR]            = "bad response error",
95         [IB_WC_LOC_ACCESS_ERR]          = "local access error",
96         [IB_WC_REM_INV_REQ_ERR]         = "invalid request error",
97         [IB_WC_REM_ACCESS_ERR]          = "remote access error",
98         [IB_WC_REM_OP_ERR]              = "remote operation error",
99         [IB_WC_RETRY_EXC_ERR]           = "transport retry counter exceeded",
100         [IB_WC_RNR_RETRY_EXC_ERR]       = "RNR retry counter exceeded",
101         [IB_WC_LOC_RDD_VIOL_ERR]        = "local RDD violation error",
102         [IB_WC_REM_INV_RD_REQ_ERR]      = "remote invalid RD request",
103         [IB_WC_REM_ABORT_ERR]           = "operation aborted",
104         [IB_WC_INV_EECN_ERR]            = "invalid EE context number",
105         [IB_WC_INV_EEC_STATE_ERR]       = "invalid EE context state",
106         [IB_WC_FATAL_ERR]               = "fatal error",
107         [IB_WC_RESP_TIMEOUT_ERR]        = "response timeout error",
108         [IB_WC_GENERAL_ERR]             = "general error",
109 };
110
111 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
112 {
113         size_t index = status;
114
115         return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
116                         wc_statuses[index] : "unrecognized status";
117 }
118 EXPORT_SYMBOL(ib_wc_status_msg);
119
120 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
121 {
122         switch (rate) {
123         case IB_RATE_2_5_GBPS: return  1;
124         case IB_RATE_5_GBPS:   return  2;
125         case IB_RATE_10_GBPS:  return  4;
126         case IB_RATE_20_GBPS:  return  8;
127         case IB_RATE_30_GBPS:  return 12;
128         case IB_RATE_40_GBPS:  return 16;
129         case IB_RATE_60_GBPS:  return 24;
130         case IB_RATE_80_GBPS:  return 32;
131         case IB_RATE_120_GBPS: return 48;
132         default:               return -1;
133         }
134 }
135 EXPORT_SYMBOL(ib_rate_to_mult);
136
137 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
138 {
139         switch (mult) {
140         case 1:  return IB_RATE_2_5_GBPS;
141         case 2:  return IB_RATE_5_GBPS;
142         case 4:  return IB_RATE_10_GBPS;
143         case 8:  return IB_RATE_20_GBPS;
144         case 12: return IB_RATE_30_GBPS;
145         case 16: return IB_RATE_40_GBPS;
146         case 24: return IB_RATE_60_GBPS;
147         case 32: return IB_RATE_80_GBPS;
148         case 48: return IB_RATE_120_GBPS;
149         default: return IB_RATE_PORT_CURRENT;
150         }
151 }
152 EXPORT_SYMBOL(mult_to_ib_rate);
153
154 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
155 {
156         switch (rate) {
157         case IB_RATE_2_5_GBPS: return 2500;
158         case IB_RATE_5_GBPS:   return 5000;
159         case IB_RATE_10_GBPS:  return 10000;
160         case IB_RATE_20_GBPS:  return 20000;
161         case IB_RATE_30_GBPS:  return 30000;
162         case IB_RATE_40_GBPS:  return 40000;
163         case IB_RATE_60_GBPS:  return 60000;
164         case IB_RATE_80_GBPS:  return 80000;
165         case IB_RATE_120_GBPS: return 120000;
166         case IB_RATE_14_GBPS:  return 14062;
167         case IB_RATE_56_GBPS:  return 56250;
168         case IB_RATE_112_GBPS: return 112500;
169         case IB_RATE_168_GBPS: return 168750;
170         case IB_RATE_25_GBPS:  return 25781;
171         case IB_RATE_100_GBPS: return 103125;
172         case IB_RATE_200_GBPS: return 206250;
173         case IB_RATE_300_GBPS: return 309375;
174         default:               return -1;
175         }
176 }
177 EXPORT_SYMBOL(ib_rate_to_mbps);
178
179 __attribute_const__ enum rdma_transport_type
180 rdma_node_get_transport(enum rdma_node_type node_type)
181 {
182         switch (node_type) {
183         case RDMA_NODE_IB_CA:
184         case RDMA_NODE_IB_SWITCH:
185         case RDMA_NODE_IB_ROUTER:
186                 return RDMA_TRANSPORT_IB;
187         case RDMA_NODE_RNIC:
188                 return RDMA_TRANSPORT_IWARP;
189         case RDMA_NODE_USNIC:
190                 return RDMA_TRANSPORT_USNIC;
191         case RDMA_NODE_USNIC_UDP:
192                 return RDMA_TRANSPORT_USNIC_UDP;
193         default:
194                 BUG();
195                 return 0;
196         }
197 }
198 EXPORT_SYMBOL(rdma_node_get_transport);
199
200 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
201 {
202         if (device->get_link_layer)
203                 return device->get_link_layer(device, port_num);
204
205         switch (rdma_node_get_transport(device->node_type)) {
206         case RDMA_TRANSPORT_IB:
207                 return IB_LINK_LAYER_INFINIBAND;
208         case RDMA_TRANSPORT_IWARP:
209         case RDMA_TRANSPORT_USNIC:
210         case RDMA_TRANSPORT_USNIC_UDP:
211                 return IB_LINK_LAYER_ETHERNET;
212         default:
213                 return IB_LINK_LAYER_UNSPECIFIED;
214         }
215 }
216 EXPORT_SYMBOL(rdma_port_get_link_layer);
217
218 /* Protection domains */
219
220 /**
221  * ib_alloc_pd - Allocates an unused protection domain.
222  * @device: The device on which to allocate the protection domain.
223  *
224  * A protection domain object provides an association between QPs, shared
225  * receive queues, address handles, memory regions, and memory windows.
226  *
227  * Every PD has a local_dma_lkey which can be used as the lkey value for local
228  * memory operations.
229  */
230 struct ib_pd *ib_alloc_pd(struct ib_device *device)
231 {
232         struct ib_pd *pd;
233
234         pd = device->alloc_pd(device, NULL, NULL);
235         if (IS_ERR(pd))
236                 return pd;
237
238         pd->device = device;
239         pd->uobject = NULL;
240         pd->local_mr = NULL;
241         atomic_set(&pd->usecnt, 0);
242
243         if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
244                 pd->local_dma_lkey = device->local_dma_lkey;
245         else {
246                 struct ib_mr *mr;
247
248                 mr = ib_get_dma_mr(pd, IB_ACCESS_LOCAL_WRITE);
249                 if (IS_ERR(mr)) {
250                         ib_dealloc_pd(pd);
251                         return (struct ib_pd *)mr;
252                 }
253
254                 pd->local_mr = mr;
255                 pd->local_dma_lkey = pd->local_mr->lkey;
256         }
257         return pd;
258 }
259 EXPORT_SYMBOL(ib_alloc_pd);
260
261 /**
262  * ib_dealloc_pd - Deallocates a protection domain.
263  * @pd: The protection domain to deallocate.
264  *
265  * It is an error to call this function while any resources in the pd still
266  * exist.  The caller is responsible to synchronously destroy them and
267  * guarantee no new allocations will happen.
268  */
269 void ib_dealloc_pd(struct ib_pd *pd)
270 {
271         int ret;
272
273         if (pd->local_mr) {
274                 ret = ib_dereg_mr(pd->local_mr);
275                 WARN_ON(ret);
276                 pd->local_mr = NULL;
277         }
278
279         /* uverbs manipulates usecnt with proper locking, while the kabi
280            requires the caller to guarantee we can't race here. */
281         WARN_ON(atomic_read(&pd->usecnt));
282
283         /* Making delalloc_pd a void return is a WIP, no driver should return
284            an error here. */
285         ret = pd->device->dealloc_pd(pd);
286         WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
287 }
288 EXPORT_SYMBOL(ib_dealloc_pd);
289
290 /* Address handles */
291
292 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr)
293 {
294         struct ib_ah *ah;
295
296         ah = pd->device->create_ah(pd, ah_attr);
297
298         if (!IS_ERR(ah)) {
299                 ah->device  = pd->device;
300                 ah->pd      = pd;
301                 ah->uobject = NULL;
302                 atomic_inc(&pd->usecnt);
303         }
304
305         return ah;
306 }
307 EXPORT_SYMBOL(ib_create_ah);
308
309 static int ib_get_header_version(const union rdma_network_hdr *hdr)
310 {
311         const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
312         struct iphdr ip4h_checked;
313         const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
314
315         /* If it's IPv6, the version must be 6, otherwise, the first
316          * 20 bytes (before the IPv4 header) are garbled.
317          */
318         if (ip6h->version != 6)
319                 return (ip4h->version == 4) ? 4 : 0;
320         /* version may be 6 or 4 because the first 20 bytes could be garbled */
321
322         /* RoCE v2 requires no options, thus header length
323          * must be 5 words
324          */
325         if (ip4h->ihl != 5)
326                 return 6;
327
328         /* Verify checksum.
329          * We can't write on scattered buffers so we need to copy to
330          * temp buffer.
331          */
332         memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
333         ip4h_checked.check = 0;
334         ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
335         /* if IPv4 header checksum is OK, believe it */
336         if (ip4h->check == ip4h_checked.check)
337                 return 4;
338         return 6;
339 }
340
341 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
342                                                      u8 port_num,
343                                                      const struct ib_grh *grh)
344 {
345         int grh_version;
346
347         if (rdma_protocol_ib(device, port_num))
348                 return RDMA_NETWORK_IB;
349
350         grh_version = ib_get_header_version((union rdma_network_hdr *)grh);
351
352         if (grh_version == 4)
353                 return RDMA_NETWORK_IPV4;
354
355         if (grh->next_hdr == IPPROTO_UDP)
356                 return RDMA_NETWORK_IPV6;
357
358         return RDMA_NETWORK_ROCE_V1;
359 }
360
361 struct find_gid_index_context {
362         u16 vlan_id;
363         enum ib_gid_type gid_type;
364 };
365
366 static bool find_gid_index(const union ib_gid *gid,
367                            const struct ib_gid_attr *gid_attr,
368                            void *context)
369 {
370         struct find_gid_index_context *ctx =
371                 (struct find_gid_index_context *)context;
372
373         if (ctx->gid_type != gid_attr->gid_type)
374                 return false;
375
376         if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
377             (is_vlan_dev(gid_attr->ndev) &&
378              vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
379                 return false;
380
381         return true;
382 }
383
384 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
385                                    u16 vlan_id, const union ib_gid *sgid,
386                                    enum ib_gid_type gid_type,
387                                    u16 *gid_index)
388 {
389         struct find_gid_index_context context = {.vlan_id = vlan_id,
390                                                  .gid_type = gid_type};
391
392         return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
393                                      &context, gid_index);
394 }
395
396 static int get_gids_from_rdma_hdr(union rdma_network_hdr *hdr,
397                                   enum rdma_network_type net_type,
398                                   union ib_gid *sgid, union ib_gid *dgid)
399 {
400         struct sockaddr_in  src_in;
401         struct sockaddr_in  dst_in;
402         __be32 src_saddr, dst_saddr;
403
404         if (!sgid || !dgid)
405                 return -EINVAL;
406
407         if (net_type == RDMA_NETWORK_IPV4) {
408                 memcpy(&src_in.sin_addr.s_addr,
409                        &hdr->roce4grh.saddr, 4);
410                 memcpy(&dst_in.sin_addr.s_addr,
411                        &hdr->roce4grh.daddr, 4);
412                 src_saddr = src_in.sin_addr.s_addr;
413                 dst_saddr = dst_in.sin_addr.s_addr;
414                 ipv6_addr_set_v4mapped(src_saddr,
415                                        (struct in6_addr *)sgid);
416                 ipv6_addr_set_v4mapped(dst_saddr,
417                                        (struct in6_addr *)dgid);
418                 return 0;
419         } else if (net_type == RDMA_NETWORK_IPV6 ||
420                    net_type == RDMA_NETWORK_IB) {
421                 *dgid = hdr->ibgrh.dgid;
422                 *sgid = hdr->ibgrh.sgid;
423                 return 0;
424         } else {
425                 return -EINVAL;
426         }
427 }
428
429 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
430                        const struct ib_wc *wc, const struct ib_grh *grh,
431                        struct ib_ah_attr *ah_attr)
432 {
433         u32 flow_class;
434         u16 gid_index;
435         int ret;
436         enum rdma_network_type net_type = RDMA_NETWORK_IB;
437         enum ib_gid_type gid_type = IB_GID_TYPE_IB;
438         int hoplimit = 0xff;
439         union ib_gid dgid;
440         union ib_gid sgid;
441
442         memset(ah_attr, 0, sizeof *ah_attr);
443         if (rdma_cap_eth_ah(device, port_num)) {
444                 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
445                         net_type = wc->network_hdr_type;
446                 else
447                         net_type = ib_get_net_type_by_grh(device, port_num, grh);
448                 gid_type = ib_network_to_gid_type(net_type);
449         }
450         ret = get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
451                                      &sgid, &dgid);
452         if (ret)
453                 return ret;
454
455         if (rdma_protocol_roce(device, port_num)) {
456                 int if_index = 0;
457                 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
458                                 wc->vlan_id : 0xffff;
459                 struct net_device *idev;
460                 struct net_device *resolved_dev;
461
462                 if (!(wc->wc_flags & IB_WC_GRH))
463                         return -EPROTOTYPE;
464
465                 if (!device->get_netdev)
466                         return -EOPNOTSUPP;
467
468                 idev = device->get_netdev(device, port_num);
469                 if (!idev)
470                         return -ENODEV;
471
472                 ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid,
473                                                    ah_attr->dmac,
474                                                    wc->wc_flags & IB_WC_WITH_VLAN ?
475                                                    NULL : &vlan_id,
476                                                    &if_index, &hoplimit);
477                 if (ret) {
478                         dev_put(idev);
479                         return ret;
480                 }
481
482                 resolved_dev = dev_get_by_index(&init_net, if_index);
483                 if (resolved_dev->flags & IFF_LOOPBACK) {
484                         dev_put(resolved_dev);
485                         resolved_dev = idev;
486                         dev_hold(resolved_dev);
487                 }
488                 rcu_read_lock();
489                 if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev,
490                                                                    resolved_dev))
491                         ret = -EHOSTUNREACH;
492                 rcu_read_unlock();
493                 dev_put(idev);
494                 dev_put(resolved_dev);
495                 if (ret)
496                         return ret;
497
498                 ret = get_sgid_index_from_eth(device, port_num, vlan_id,
499                                               &dgid, gid_type, &gid_index);
500                 if (ret)
501                         return ret;
502         }
503
504         ah_attr->dlid = wc->slid;
505         ah_attr->sl = wc->sl;
506         ah_attr->src_path_bits = wc->dlid_path_bits;
507         ah_attr->port_num = port_num;
508
509         if (wc->wc_flags & IB_WC_GRH) {
510                 ah_attr->ah_flags = IB_AH_GRH;
511                 ah_attr->grh.dgid = sgid;
512
513                 if (!rdma_cap_eth_ah(device, port_num)) {
514                         ret = ib_find_cached_gid_by_port(device, &dgid,
515                                                          IB_GID_TYPE_IB,
516                                                          port_num, NULL,
517                                                          &gid_index);
518                         if (ret)
519                                 return ret;
520                 }
521
522                 ah_attr->grh.sgid_index = (u8) gid_index;
523                 flow_class = be32_to_cpu(grh->version_tclass_flow);
524                 ah_attr->grh.flow_label = flow_class & 0xFFFFF;
525                 ah_attr->grh.hop_limit = hoplimit;
526                 ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF;
527         }
528         return 0;
529 }
530 EXPORT_SYMBOL(ib_init_ah_from_wc);
531
532 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
533                                    const struct ib_grh *grh, u8 port_num)
534 {
535         struct ib_ah_attr ah_attr;
536         int ret;
537
538         ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
539         if (ret)
540                 return ERR_PTR(ret);
541
542         return ib_create_ah(pd, &ah_attr);
543 }
544 EXPORT_SYMBOL(ib_create_ah_from_wc);
545
546 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
547 {
548         return ah->device->modify_ah ?
549                 ah->device->modify_ah(ah, ah_attr) :
550                 -ENOSYS;
551 }
552 EXPORT_SYMBOL(ib_modify_ah);
553
554 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
555 {
556         return ah->device->query_ah ?
557                 ah->device->query_ah(ah, ah_attr) :
558                 -ENOSYS;
559 }
560 EXPORT_SYMBOL(ib_query_ah);
561
562 int ib_destroy_ah(struct ib_ah *ah)
563 {
564         struct ib_pd *pd;
565         int ret;
566
567         pd = ah->pd;
568         ret = ah->device->destroy_ah(ah);
569         if (!ret)
570                 atomic_dec(&pd->usecnt);
571
572         return ret;
573 }
574 EXPORT_SYMBOL(ib_destroy_ah);
575
576 /* Shared receive queues */
577
578 struct ib_srq *ib_create_srq(struct ib_pd *pd,
579                              struct ib_srq_init_attr *srq_init_attr)
580 {
581         struct ib_srq *srq;
582
583         if (!pd->device->create_srq)
584                 return ERR_PTR(-ENOSYS);
585
586         srq = pd->device->create_srq(pd, srq_init_attr, NULL);
587
588         if (!IS_ERR(srq)) {
589                 srq->device        = pd->device;
590                 srq->pd            = pd;
591                 srq->uobject       = NULL;
592                 srq->event_handler = srq_init_attr->event_handler;
593                 srq->srq_context   = srq_init_attr->srq_context;
594                 srq->srq_type      = srq_init_attr->srq_type;
595                 if (srq->srq_type == IB_SRQT_XRC) {
596                         srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
597                         srq->ext.xrc.cq   = srq_init_attr->ext.xrc.cq;
598                         atomic_inc(&srq->ext.xrc.xrcd->usecnt);
599                         atomic_inc(&srq->ext.xrc.cq->usecnt);
600                 }
601                 atomic_inc(&pd->usecnt);
602                 atomic_set(&srq->usecnt, 0);
603         }
604
605         return srq;
606 }
607 EXPORT_SYMBOL(ib_create_srq);
608
609 int ib_modify_srq(struct ib_srq *srq,
610                   struct ib_srq_attr *srq_attr,
611                   enum ib_srq_attr_mask srq_attr_mask)
612 {
613         return srq->device->modify_srq ?
614                 srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
615                 -ENOSYS;
616 }
617 EXPORT_SYMBOL(ib_modify_srq);
618
619 int ib_query_srq(struct ib_srq *srq,
620                  struct ib_srq_attr *srq_attr)
621 {
622         return srq->device->query_srq ?
623                 srq->device->query_srq(srq, srq_attr) : -ENOSYS;
624 }
625 EXPORT_SYMBOL(ib_query_srq);
626
627 int ib_destroy_srq(struct ib_srq *srq)
628 {
629         struct ib_pd *pd;
630         enum ib_srq_type srq_type;
631         struct ib_xrcd *uninitialized_var(xrcd);
632         struct ib_cq *uninitialized_var(cq);
633         int ret;
634
635         if (atomic_read(&srq->usecnt))
636                 return -EBUSY;
637
638         pd = srq->pd;
639         srq_type = srq->srq_type;
640         if (srq_type == IB_SRQT_XRC) {
641                 xrcd = srq->ext.xrc.xrcd;
642                 cq = srq->ext.xrc.cq;
643         }
644
645         ret = srq->device->destroy_srq(srq);
646         if (!ret) {
647                 atomic_dec(&pd->usecnt);
648                 if (srq_type == IB_SRQT_XRC) {
649                         atomic_dec(&xrcd->usecnt);
650                         atomic_dec(&cq->usecnt);
651                 }
652         }
653
654         return ret;
655 }
656 EXPORT_SYMBOL(ib_destroy_srq);
657
658 /* Queue pairs */
659
660 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
661 {
662         struct ib_qp *qp = context;
663         unsigned long flags;
664
665         spin_lock_irqsave(&qp->device->event_handler_lock, flags);
666         list_for_each_entry(event->element.qp, &qp->open_list, open_list)
667                 if (event->element.qp->event_handler)
668                         event->element.qp->event_handler(event, event->element.qp->qp_context);
669         spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
670 }
671
672 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
673 {
674         mutex_lock(&xrcd->tgt_qp_mutex);
675         list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
676         mutex_unlock(&xrcd->tgt_qp_mutex);
677 }
678
679 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
680                                   void (*event_handler)(struct ib_event *, void *),
681                                   void *qp_context)
682 {
683         struct ib_qp *qp;
684         unsigned long flags;
685
686         qp = kzalloc(sizeof *qp, GFP_KERNEL);
687         if (!qp)
688                 return ERR_PTR(-ENOMEM);
689
690         qp->real_qp = real_qp;
691         atomic_inc(&real_qp->usecnt);
692         qp->device = real_qp->device;
693         qp->event_handler = event_handler;
694         qp->qp_context = qp_context;
695         qp->qp_num = real_qp->qp_num;
696         qp->qp_type = real_qp->qp_type;
697
698         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
699         list_add(&qp->open_list, &real_qp->open_list);
700         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
701
702         return qp;
703 }
704
705 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
706                          struct ib_qp_open_attr *qp_open_attr)
707 {
708         struct ib_qp *qp, *real_qp;
709
710         if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
711                 return ERR_PTR(-EINVAL);
712
713         qp = ERR_PTR(-EINVAL);
714         mutex_lock(&xrcd->tgt_qp_mutex);
715         list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
716                 if (real_qp->qp_num == qp_open_attr->qp_num) {
717                         qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
718                                           qp_open_attr->qp_context);
719                         break;
720                 }
721         }
722         mutex_unlock(&xrcd->tgt_qp_mutex);
723         return qp;
724 }
725 EXPORT_SYMBOL(ib_open_qp);
726
727 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
728                 struct ib_qp_init_attr *qp_init_attr)
729 {
730         struct ib_qp *real_qp = qp;
731
732         qp->event_handler = __ib_shared_qp_event_handler;
733         qp->qp_context = qp;
734         qp->pd = NULL;
735         qp->send_cq = qp->recv_cq = NULL;
736         qp->srq = NULL;
737         qp->xrcd = qp_init_attr->xrcd;
738         atomic_inc(&qp_init_attr->xrcd->usecnt);
739         INIT_LIST_HEAD(&qp->open_list);
740
741         qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
742                           qp_init_attr->qp_context);
743         if (!IS_ERR(qp))
744                 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
745         else
746                 real_qp->device->destroy_qp(real_qp);
747         return qp;
748 }
749
750 struct ib_qp *ib_create_qp(struct ib_pd *pd,
751                            struct ib_qp_init_attr *qp_init_attr)
752 {
753         struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
754         struct ib_qp *qp;
755         int ret;
756
757         if (qp_init_attr->rwq_ind_tbl &&
758             (qp_init_attr->recv_cq ||
759             qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
760             qp_init_attr->cap.max_recv_sge))
761                 return ERR_PTR(-EINVAL);
762
763         /*
764          * If the callers is using the RDMA API calculate the resources
765          * needed for the RDMA READ/WRITE operations.
766          *
767          * Note that these callers need to pass in a port number.
768          */
769         if (qp_init_attr->cap.max_rdma_ctxs)
770                 rdma_rw_init_qp(device, qp_init_attr);
771
772         qp = device->create_qp(pd, qp_init_attr, NULL);
773         if (IS_ERR(qp))
774                 return qp;
775
776         qp->device     = device;
777         qp->real_qp    = qp;
778         qp->uobject    = NULL;
779         qp->qp_type    = qp_init_attr->qp_type;
780         qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
781
782         atomic_set(&qp->usecnt, 0);
783         qp->mrs_used = 0;
784         spin_lock_init(&qp->mr_lock);
785         INIT_LIST_HEAD(&qp->rdma_mrs);
786         INIT_LIST_HEAD(&qp->sig_mrs);
787
788         if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
789                 return ib_create_xrc_qp(qp, qp_init_attr);
790
791         qp->event_handler = qp_init_attr->event_handler;
792         qp->qp_context = qp_init_attr->qp_context;
793         if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
794                 qp->recv_cq = NULL;
795                 qp->srq = NULL;
796         } else {
797                 qp->recv_cq = qp_init_attr->recv_cq;
798                 if (qp_init_attr->recv_cq)
799                         atomic_inc(&qp_init_attr->recv_cq->usecnt);
800                 qp->srq = qp_init_attr->srq;
801                 if (qp->srq)
802                         atomic_inc(&qp_init_attr->srq->usecnt);
803         }
804
805         qp->pd      = pd;
806         qp->send_cq = qp_init_attr->send_cq;
807         qp->xrcd    = NULL;
808
809         atomic_inc(&pd->usecnt);
810         if (qp_init_attr->send_cq)
811                 atomic_inc(&qp_init_attr->send_cq->usecnt);
812         if (qp_init_attr->rwq_ind_tbl)
813                 atomic_inc(&qp->rwq_ind_tbl->usecnt);
814
815         if (qp_init_attr->cap.max_rdma_ctxs) {
816                 ret = rdma_rw_init_mrs(qp, qp_init_attr);
817                 if (ret) {
818                         pr_err("failed to init MR pool ret= %d\n", ret);
819                         ib_destroy_qp(qp);
820                         qp = ERR_PTR(ret);
821                 }
822         }
823
824         return qp;
825 }
826 EXPORT_SYMBOL(ib_create_qp);
827
828 static const struct {
829         int                     valid;
830         enum ib_qp_attr_mask    req_param[IB_QPT_MAX];
831         enum ib_qp_attr_mask    opt_param[IB_QPT_MAX];
832 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
833         [IB_QPS_RESET] = {
834                 [IB_QPS_RESET] = { .valid = 1 },
835                 [IB_QPS_INIT]  = {
836                         .valid = 1,
837                         .req_param = {
838                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
839                                                 IB_QP_PORT                      |
840                                                 IB_QP_QKEY),
841                                 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
842                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
843                                                 IB_QP_PORT                      |
844                                                 IB_QP_ACCESS_FLAGS),
845                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
846                                                 IB_QP_PORT                      |
847                                                 IB_QP_ACCESS_FLAGS),
848                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
849                                                 IB_QP_PORT                      |
850                                                 IB_QP_ACCESS_FLAGS),
851                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
852                                                 IB_QP_PORT                      |
853                                                 IB_QP_ACCESS_FLAGS),
854                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
855                                                 IB_QP_QKEY),
856                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
857                                                 IB_QP_QKEY),
858                         }
859                 },
860         },
861         [IB_QPS_INIT]  = {
862                 [IB_QPS_RESET] = { .valid = 1 },
863                 [IB_QPS_ERR] =   { .valid = 1 },
864                 [IB_QPS_INIT]  = {
865                         .valid = 1,
866                         .opt_param = {
867                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
868                                                 IB_QP_PORT                      |
869                                                 IB_QP_QKEY),
870                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
871                                                 IB_QP_PORT                      |
872                                                 IB_QP_ACCESS_FLAGS),
873                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
874                                                 IB_QP_PORT                      |
875                                                 IB_QP_ACCESS_FLAGS),
876                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
877                                                 IB_QP_PORT                      |
878                                                 IB_QP_ACCESS_FLAGS),
879                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
880                                                 IB_QP_PORT                      |
881                                                 IB_QP_ACCESS_FLAGS),
882                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
883                                                 IB_QP_QKEY),
884                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
885                                                 IB_QP_QKEY),
886                         }
887                 },
888                 [IB_QPS_RTR]   = {
889                         .valid = 1,
890                         .req_param = {
891                                 [IB_QPT_UC]  = (IB_QP_AV                        |
892                                                 IB_QP_PATH_MTU                  |
893                                                 IB_QP_DEST_QPN                  |
894                                                 IB_QP_RQ_PSN),
895                                 [IB_QPT_RC]  = (IB_QP_AV                        |
896                                                 IB_QP_PATH_MTU                  |
897                                                 IB_QP_DEST_QPN                  |
898                                                 IB_QP_RQ_PSN                    |
899                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
900                                                 IB_QP_MIN_RNR_TIMER),
901                                 [IB_QPT_XRC_INI] = (IB_QP_AV                    |
902                                                 IB_QP_PATH_MTU                  |
903                                                 IB_QP_DEST_QPN                  |
904                                                 IB_QP_RQ_PSN),
905                                 [IB_QPT_XRC_TGT] = (IB_QP_AV                    |
906                                                 IB_QP_PATH_MTU                  |
907                                                 IB_QP_DEST_QPN                  |
908                                                 IB_QP_RQ_PSN                    |
909                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
910                                                 IB_QP_MIN_RNR_TIMER),
911                         },
912                         .opt_param = {
913                                  [IB_QPT_UD]  = (IB_QP_PKEY_INDEX               |
914                                                  IB_QP_QKEY),
915                                  [IB_QPT_UC]  = (IB_QP_ALT_PATH                 |
916                                                  IB_QP_ACCESS_FLAGS             |
917                                                  IB_QP_PKEY_INDEX),
918                                  [IB_QPT_RC]  = (IB_QP_ALT_PATH                 |
919                                                  IB_QP_ACCESS_FLAGS             |
920                                                  IB_QP_PKEY_INDEX),
921                                  [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH             |
922                                                  IB_QP_ACCESS_FLAGS             |
923                                                  IB_QP_PKEY_INDEX),
924                                  [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH             |
925                                                  IB_QP_ACCESS_FLAGS             |
926                                                  IB_QP_PKEY_INDEX),
927                                  [IB_QPT_SMI] = (IB_QP_PKEY_INDEX               |
928                                                  IB_QP_QKEY),
929                                  [IB_QPT_GSI] = (IB_QP_PKEY_INDEX               |
930                                                  IB_QP_QKEY),
931                          },
932                 },
933         },
934         [IB_QPS_RTR]   = {
935                 [IB_QPS_RESET] = { .valid = 1 },
936                 [IB_QPS_ERR] =   { .valid = 1 },
937                 [IB_QPS_RTS]   = {
938                         .valid = 1,
939                         .req_param = {
940                                 [IB_QPT_UD]  = IB_QP_SQ_PSN,
941                                 [IB_QPT_UC]  = IB_QP_SQ_PSN,
942                                 [IB_QPT_RC]  = (IB_QP_TIMEOUT                   |
943                                                 IB_QP_RETRY_CNT                 |
944                                                 IB_QP_RNR_RETRY                 |
945                                                 IB_QP_SQ_PSN                    |
946                                                 IB_QP_MAX_QP_RD_ATOMIC),
947                                 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT               |
948                                                 IB_QP_RETRY_CNT                 |
949                                                 IB_QP_RNR_RETRY                 |
950                                                 IB_QP_SQ_PSN                    |
951                                                 IB_QP_MAX_QP_RD_ATOMIC),
952                                 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT               |
953                                                 IB_QP_SQ_PSN),
954                                 [IB_QPT_SMI] = IB_QP_SQ_PSN,
955                                 [IB_QPT_GSI] = IB_QP_SQ_PSN,
956                         },
957                         .opt_param = {
958                                  [IB_QPT_UD]  = (IB_QP_CUR_STATE                |
959                                                  IB_QP_QKEY),
960                                  [IB_QPT_UC]  = (IB_QP_CUR_STATE                |
961                                                  IB_QP_ALT_PATH                 |
962                                                  IB_QP_ACCESS_FLAGS             |
963                                                  IB_QP_PATH_MIG_STATE),
964                                  [IB_QPT_RC]  = (IB_QP_CUR_STATE                |
965                                                  IB_QP_ALT_PATH                 |
966                                                  IB_QP_ACCESS_FLAGS             |
967                                                  IB_QP_MIN_RNR_TIMER            |
968                                                  IB_QP_PATH_MIG_STATE),
969                                  [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE            |
970                                                  IB_QP_ALT_PATH                 |
971                                                  IB_QP_ACCESS_FLAGS             |
972                                                  IB_QP_PATH_MIG_STATE),
973                                  [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE            |
974                                                  IB_QP_ALT_PATH                 |
975                                                  IB_QP_ACCESS_FLAGS             |
976                                                  IB_QP_MIN_RNR_TIMER            |
977                                                  IB_QP_PATH_MIG_STATE),
978                                  [IB_QPT_SMI] = (IB_QP_CUR_STATE                |
979                                                  IB_QP_QKEY),
980                                  [IB_QPT_GSI] = (IB_QP_CUR_STATE                |
981                                                  IB_QP_QKEY),
982                          }
983                 }
984         },
985         [IB_QPS_RTS]   = {
986                 [IB_QPS_RESET] = { .valid = 1 },
987                 [IB_QPS_ERR] =   { .valid = 1 },
988                 [IB_QPS_RTS]   = {
989                         .valid = 1,
990                         .opt_param = {
991                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
992                                                 IB_QP_QKEY),
993                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
994                                                 IB_QP_ACCESS_FLAGS              |
995                                                 IB_QP_ALT_PATH                  |
996                                                 IB_QP_PATH_MIG_STATE),
997                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
998                                                 IB_QP_ACCESS_FLAGS              |
999                                                 IB_QP_ALT_PATH                  |
1000                                                 IB_QP_PATH_MIG_STATE            |
1001                                                 IB_QP_MIN_RNR_TIMER),
1002                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1003                                                 IB_QP_ACCESS_FLAGS              |
1004                                                 IB_QP_ALT_PATH                  |
1005                                                 IB_QP_PATH_MIG_STATE),
1006                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1007                                                 IB_QP_ACCESS_FLAGS              |
1008                                                 IB_QP_ALT_PATH                  |
1009                                                 IB_QP_PATH_MIG_STATE            |
1010                                                 IB_QP_MIN_RNR_TIMER),
1011                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1012                                                 IB_QP_QKEY),
1013                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1014                                                 IB_QP_QKEY),
1015                         }
1016                 },
1017                 [IB_QPS_SQD]   = {
1018                         .valid = 1,
1019                         .opt_param = {
1020                                 [IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1021                                 [IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1022                                 [IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1023                                 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1024                                 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1025                                 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1026                                 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1027                         }
1028                 },
1029         },
1030         [IB_QPS_SQD]   = {
1031                 [IB_QPS_RESET] = { .valid = 1 },
1032                 [IB_QPS_ERR] =   { .valid = 1 },
1033                 [IB_QPS_RTS]   = {
1034                         .valid = 1,
1035                         .opt_param = {
1036                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1037                                                 IB_QP_QKEY),
1038                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1039                                                 IB_QP_ALT_PATH                  |
1040                                                 IB_QP_ACCESS_FLAGS              |
1041                                                 IB_QP_PATH_MIG_STATE),
1042                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1043                                                 IB_QP_ALT_PATH                  |
1044                                                 IB_QP_ACCESS_FLAGS              |
1045                                                 IB_QP_MIN_RNR_TIMER             |
1046                                                 IB_QP_PATH_MIG_STATE),
1047                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1048                                                 IB_QP_ALT_PATH                  |
1049                                                 IB_QP_ACCESS_FLAGS              |
1050                                                 IB_QP_PATH_MIG_STATE),
1051                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1052                                                 IB_QP_ALT_PATH                  |
1053                                                 IB_QP_ACCESS_FLAGS              |
1054                                                 IB_QP_MIN_RNR_TIMER             |
1055                                                 IB_QP_PATH_MIG_STATE),
1056                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1057                                                 IB_QP_QKEY),
1058                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1059                                                 IB_QP_QKEY),
1060                         }
1061                 },
1062                 [IB_QPS_SQD]   = {
1063                         .valid = 1,
1064                         .opt_param = {
1065                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1066                                                 IB_QP_QKEY),
1067                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1068                                                 IB_QP_ALT_PATH                  |
1069                                                 IB_QP_ACCESS_FLAGS              |
1070                                                 IB_QP_PKEY_INDEX                |
1071                                                 IB_QP_PATH_MIG_STATE),
1072                                 [IB_QPT_RC]  = (IB_QP_PORT                      |
1073                                                 IB_QP_AV                        |
1074                                                 IB_QP_TIMEOUT                   |
1075                                                 IB_QP_RETRY_CNT                 |
1076                                                 IB_QP_RNR_RETRY                 |
1077                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1078                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1079                                                 IB_QP_ALT_PATH                  |
1080                                                 IB_QP_ACCESS_FLAGS              |
1081                                                 IB_QP_PKEY_INDEX                |
1082                                                 IB_QP_MIN_RNR_TIMER             |
1083                                                 IB_QP_PATH_MIG_STATE),
1084                                 [IB_QPT_XRC_INI] = (IB_QP_PORT                  |
1085                                                 IB_QP_AV                        |
1086                                                 IB_QP_TIMEOUT                   |
1087                                                 IB_QP_RETRY_CNT                 |
1088                                                 IB_QP_RNR_RETRY                 |
1089                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1090                                                 IB_QP_ALT_PATH                  |
1091                                                 IB_QP_ACCESS_FLAGS              |
1092                                                 IB_QP_PKEY_INDEX                |
1093                                                 IB_QP_PATH_MIG_STATE),
1094                                 [IB_QPT_XRC_TGT] = (IB_QP_PORT                  |
1095                                                 IB_QP_AV                        |
1096                                                 IB_QP_TIMEOUT                   |
1097                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1098                                                 IB_QP_ALT_PATH                  |
1099                                                 IB_QP_ACCESS_FLAGS              |
1100                                                 IB_QP_PKEY_INDEX                |
1101                                                 IB_QP_MIN_RNR_TIMER             |
1102                                                 IB_QP_PATH_MIG_STATE),
1103                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1104                                                 IB_QP_QKEY),
1105                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1106                                                 IB_QP_QKEY),
1107                         }
1108                 }
1109         },
1110         [IB_QPS_SQE]   = {
1111                 [IB_QPS_RESET] = { .valid = 1 },
1112                 [IB_QPS_ERR] =   { .valid = 1 },
1113                 [IB_QPS_RTS]   = {
1114                         .valid = 1,
1115                         .opt_param = {
1116                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1117                                                 IB_QP_QKEY),
1118                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1119                                                 IB_QP_ACCESS_FLAGS),
1120                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1121                                                 IB_QP_QKEY),
1122                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1123                                                 IB_QP_QKEY),
1124                         }
1125                 }
1126         },
1127         [IB_QPS_ERR] = {
1128                 [IB_QPS_RESET] = { .valid = 1 },
1129                 [IB_QPS_ERR] =   { .valid = 1 }
1130         }
1131 };
1132
1133 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1134                        enum ib_qp_type type, enum ib_qp_attr_mask mask,
1135                        enum rdma_link_layer ll)
1136 {
1137         enum ib_qp_attr_mask req_param, opt_param;
1138
1139         if (cur_state  < 0 || cur_state  > IB_QPS_ERR ||
1140             next_state < 0 || next_state > IB_QPS_ERR)
1141                 return 0;
1142
1143         if (mask & IB_QP_CUR_STATE  &&
1144             cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1145             cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1146                 return 0;
1147
1148         if (!qp_state_table[cur_state][next_state].valid)
1149                 return 0;
1150
1151         req_param = qp_state_table[cur_state][next_state].req_param[type];
1152         opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1153
1154         if ((mask & req_param) != req_param)
1155                 return 0;
1156
1157         if (mask & ~(req_param | opt_param | IB_QP_STATE))
1158                 return 0;
1159
1160         return 1;
1161 }
1162 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1163
1164 int ib_resolve_eth_dmac(struct ib_qp *qp,
1165                         struct ib_qp_attr *qp_attr, int *qp_attr_mask)
1166 {
1167         int           ret = 0;
1168
1169         if (*qp_attr_mask & IB_QP_AV) {
1170                 if (qp_attr->ah_attr.port_num < rdma_start_port(qp->device) ||
1171                     qp_attr->ah_attr.port_num > rdma_end_port(qp->device))
1172                         return -EINVAL;
1173
1174                 if (!rdma_cap_eth_ah(qp->device, qp_attr->ah_attr.port_num))
1175                         return 0;
1176
1177                 if (rdma_link_local_addr((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw)) {
1178                         rdma_get_ll_mac((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw,
1179                                         qp_attr->ah_attr.dmac);
1180                 } else {
1181                         union ib_gid            sgid;
1182                         struct ib_gid_attr      sgid_attr;
1183                         int                     ifindex;
1184                         int                     hop_limit;
1185
1186                         ret = ib_query_gid(qp->device,
1187                                            qp_attr->ah_attr.port_num,
1188                                            qp_attr->ah_attr.grh.sgid_index,
1189                                            &sgid, &sgid_attr);
1190
1191                         if (ret || !sgid_attr.ndev) {
1192                                 if (!ret)
1193                                         ret = -ENXIO;
1194                                 goto out;
1195                         }
1196
1197                         ifindex = sgid_attr.ndev->ifindex;
1198
1199                         ret = rdma_addr_find_l2_eth_by_grh(&sgid,
1200                                                            &qp_attr->ah_attr.grh.dgid,
1201                                                            qp_attr->ah_attr.dmac,
1202                                                            NULL, &ifindex, &hop_limit);
1203
1204                         dev_put(sgid_attr.ndev);
1205
1206                         qp_attr->ah_attr.grh.hop_limit = hop_limit;
1207                 }
1208         }
1209 out:
1210         return ret;
1211 }
1212 EXPORT_SYMBOL(ib_resolve_eth_dmac);
1213
1214
1215 int ib_modify_qp(struct ib_qp *qp,
1216                  struct ib_qp_attr *qp_attr,
1217                  int qp_attr_mask)
1218 {
1219         int ret;
1220
1221         ret = ib_resolve_eth_dmac(qp, qp_attr, &qp_attr_mask);
1222         if (ret)
1223                 return ret;
1224
1225         return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1226 }
1227 EXPORT_SYMBOL(ib_modify_qp);
1228
1229 int ib_query_qp(struct ib_qp *qp,
1230                 struct ib_qp_attr *qp_attr,
1231                 int qp_attr_mask,
1232                 struct ib_qp_init_attr *qp_init_attr)
1233 {
1234         return qp->device->query_qp ?
1235                 qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1236                 -ENOSYS;
1237 }
1238 EXPORT_SYMBOL(ib_query_qp);
1239
1240 int ib_close_qp(struct ib_qp *qp)
1241 {
1242         struct ib_qp *real_qp;
1243         unsigned long flags;
1244
1245         real_qp = qp->real_qp;
1246         if (real_qp == qp)
1247                 return -EINVAL;
1248
1249         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1250         list_del(&qp->open_list);
1251         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1252
1253         atomic_dec(&real_qp->usecnt);
1254         kfree(qp);
1255
1256         return 0;
1257 }
1258 EXPORT_SYMBOL(ib_close_qp);
1259
1260 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1261 {
1262         struct ib_xrcd *xrcd;
1263         struct ib_qp *real_qp;
1264         int ret;
1265
1266         real_qp = qp->real_qp;
1267         xrcd = real_qp->xrcd;
1268
1269         mutex_lock(&xrcd->tgt_qp_mutex);
1270         ib_close_qp(qp);
1271         if (atomic_read(&real_qp->usecnt) == 0)
1272                 list_del(&real_qp->xrcd_list);
1273         else
1274                 real_qp = NULL;
1275         mutex_unlock(&xrcd->tgt_qp_mutex);
1276
1277         if (real_qp) {
1278                 ret = ib_destroy_qp(real_qp);
1279                 if (!ret)
1280                         atomic_dec(&xrcd->usecnt);
1281                 else
1282                         __ib_insert_xrcd_qp(xrcd, real_qp);
1283         }
1284
1285         return 0;
1286 }
1287
1288 int ib_destroy_qp(struct ib_qp *qp)
1289 {
1290         struct ib_pd *pd;
1291         struct ib_cq *scq, *rcq;
1292         struct ib_srq *srq;
1293         struct ib_rwq_ind_table *ind_tbl;
1294         int ret;
1295
1296         WARN_ON_ONCE(qp->mrs_used > 0);
1297
1298         if (atomic_read(&qp->usecnt))
1299                 return -EBUSY;
1300
1301         if (qp->real_qp != qp)
1302                 return __ib_destroy_shared_qp(qp);
1303
1304         pd   = qp->pd;
1305         scq  = qp->send_cq;
1306         rcq  = qp->recv_cq;
1307         srq  = qp->srq;
1308         ind_tbl = qp->rwq_ind_tbl;
1309
1310         if (!qp->uobject)
1311                 rdma_rw_cleanup_mrs(qp);
1312
1313         ret = qp->device->destroy_qp(qp);
1314         if (!ret) {
1315                 if (pd)
1316                         atomic_dec(&pd->usecnt);
1317                 if (scq)
1318                         atomic_dec(&scq->usecnt);
1319                 if (rcq)
1320                         atomic_dec(&rcq->usecnt);
1321                 if (srq)
1322                         atomic_dec(&srq->usecnt);
1323                 if (ind_tbl)
1324                         atomic_dec(&ind_tbl->usecnt);
1325         }
1326
1327         return ret;
1328 }
1329 EXPORT_SYMBOL(ib_destroy_qp);
1330
1331 /* Completion queues */
1332
1333 struct ib_cq *ib_create_cq(struct ib_device *device,
1334                            ib_comp_handler comp_handler,
1335                            void (*event_handler)(struct ib_event *, void *),
1336                            void *cq_context,
1337                            const struct ib_cq_init_attr *cq_attr)
1338 {
1339         struct ib_cq *cq;
1340
1341         cq = device->create_cq(device, cq_attr, NULL, NULL);
1342
1343         if (!IS_ERR(cq)) {
1344                 cq->device        = device;
1345                 cq->uobject       = NULL;
1346                 cq->comp_handler  = comp_handler;
1347                 cq->event_handler = event_handler;
1348                 cq->cq_context    = cq_context;
1349                 atomic_set(&cq->usecnt, 0);
1350         }
1351
1352         return cq;
1353 }
1354 EXPORT_SYMBOL(ib_create_cq);
1355
1356 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1357 {
1358         return cq->device->modify_cq ?
1359                 cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1360 }
1361 EXPORT_SYMBOL(ib_modify_cq);
1362
1363 int ib_destroy_cq(struct ib_cq *cq)
1364 {
1365         if (atomic_read(&cq->usecnt))
1366                 return -EBUSY;
1367
1368         return cq->device->destroy_cq(cq);
1369 }
1370 EXPORT_SYMBOL(ib_destroy_cq);
1371
1372 int ib_resize_cq(struct ib_cq *cq, int cqe)
1373 {
1374         return cq->device->resize_cq ?
1375                 cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1376 }
1377 EXPORT_SYMBOL(ib_resize_cq);
1378
1379 /* Memory regions */
1380
1381 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags)
1382 {
1383         struct ib_mr *mr;
1384         int err;
1385
1386         err = ib_check_mr_access(mr_access_flags);
1387         if (err)
1388                 return ERR_PTR(err);
1389
1390         mr = pd->device->get_dma_mr(pd, mr_access_flags);
1391
1392         if (!IS_ERR(mr)) {
1393                 mr->device  = pd->device;
1394                 mr->pd      = pd;
1395                 mr->uobject = NULL;
1396                 atomic_inc(&pd->usecnt);
1397                 mr->need_inval = false;
1398         }
1399
1400         return mr;
1401 }
1402 EXPORT_SYMBOL(ib_get_dma_mr);
1403
1404 int ib_dereg_mr(struct ib_mr *mr)
1405 {
1406         struct ib_pd *pd = mr->pd;
1407         int ret;
1408
1409         ret = mr->device->dereg_mr(mr);
1410         if (!ret)
1411                 atomic_dec(&pd->usecnt);
1412
1413         return ret;
1414 }
1415 EXPORT_SYMBOL(ib_dereg_mr);
1416
1417 /**
1418  * ib_alloc_mr() - Allocates a memory region
1419  * @pd:            protection domain associated with the region
1420  * @mr_type:       memory region type
1421  * @max_num_sg:    maximum sg entries available for registration.
1422  *
1423  * Notes:
1424  * Memory registeration page/sg lists must not exceed max_num_sg.
1425  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1426  * max_num_sg * used_page_size.
1427  *
1428  */
1429 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1430                           enum ib_mr_type mr_type,
1431                           u32 max_num_sg)
1432 {
1433         struct ib_mr *mr;
1434
1435         if (!pd->device->alloc_mr)
1436                 return ERR_PTR(-ENOSYS);
1437
1438         mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1439         if (!IS_ERR(mr)) {
1440                 mr->device  = pd->device;
1441                 mr->pd      = pd;
1442                 mr->uobject = NULL;
1443                 atomic_inc(&pd->usecnt);
1444                 mr->need_inval = false;
1445         }
1446
1447         return mr;
1448 }
1449 EXPORT_SYMBOL(ib_alloc_mr);
1450
1451 /* "Fast" memory regions */
1452
1453 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1454                             int mr_access_flags,
1455                             struct ib_fmr_attr *fmr_attr)
1456 {
1457         struct ib_fmr *fmr;
1458
1459         if (!pd->device->alloc_fmr)
1460                 return ERR_PTR(-ENOSYS);
1461
1462         fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1463         if (!IS_ERR(fmr)) {
1464                 fmr->device = pd->device;
1465                 fmr->pd     = pd;
1466                 atomic_inc(&pd->usecnt);
1467         }
1468
1469         return fmr;
1470 }
1471 EXPORT_SYMBOL(ib_alloc_fmr);
1472
1473 int ib_unmap_fmr(struct list_head *fmr_list)
1474 {
1475         struct ib_fmr *fmr;
1476
1477         if (list_empty(fmr_list))
1478                 return 0;
1479
1480         fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1481         return fmr->device->unmap_fmr(fmr_list);
1482 }
1483 EXPORT_SYMBOL(ib_unmap_fmr);
1484
1485 int ib_dealloc_fmr(struct ib_fmr *fmr)
1486 {
1487         struct ib_pd *pd;
1488         int ret;
1489
1490         pd = fmr->pd;
1491         ret = fmr->device->dealloc_fmr(fmr);
1492         if (!ret)
1493                 atomic_dec(&pd->usecnt);
1494
1495         return ret;
1496 }
1497 EXPORT_SYMBOL(ib_dealloc_fmr);
1498
1499 /* Multicast groups */
1500
1501 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1502 {
1503         int ret;
1504
1505         if (!qp->device->attach_mcast)
1506                 return -ENOSYS;
1507         if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
1508                 return -EINVAL;
1509
1510         ret = qp->device->attach_mcast(qp, gid, lid);
1511         if (!ret)
1512                 atomic_inc(&qp->usecnt);
1513         return ret;
1514 }
1515 EXPORT_SYMBOL(ib_attach_mcast);
1516
1517 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1518 {
1519         int ret;
1520
1521         if (!qp->device->detach_mcast)
1522                 return -ENOSYS;
1523         if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
1524                 return -EINVAL;
1525
1526         ret = qp->device->detach_mcast(qp, gid, lid);
1527         if (!ret)
1528                 atomic_dec(&qp->usecnt);
1529         return ret;
1530 }
1531 EXPORT_SYMBOL(ib_detach_mcast);
1532
1533 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
1534 {
1535         struct ib_xrcd *xrcd;
1536
1537         if (!device->alloc_xrcd)
1538                 return ERR_PTR(-ENOSYS);
1539
1540         xrcd = device->alloc_xrcd(device, NULL, NULL);
1541         if (!IS_ERR(xrcd)) {
1542                 xrcd->device = device;
1543                 xrcd->inode = NULL;
1544                 atomic_set(&xrcd->usecnt, 0);
1545                 mutex_init(&xrcd->tgt_qp_mutex);
1546                 INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1547         }
1548
1549         return xrcd;
1550 }
1551 EXPORT_SYMBOL(ib_alloc_xrcd);
1552
1553 int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
1554 {
1555         struct ib_qp *qp;
1556         int ret;
1557
1558         if (atomic_read(&xrcd->usecnt))
1559                 return -EBUSY;
1560
1561         while (!list_empty(&xrcd->tgt_qp_list)) {
1562                 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1563                 ret = ib_destroy_qp(qp);
1564                 if (ret)
1565                         return ret;
1566         }
1567
1568         return xrcd->device->dealloc_xrcd(xrcd);
1569 }
1570 EXPORT_SYMBOL(ib_dealloc_xrcd);
1571
1572 /**
1573  * ib_create_wq - Creates a WQ associated with the specified protection
1574  * domain.
1575  * @pd: The protection domain associated with the WQ.
1576  * @wq_init_attr: A list of initial attributes required to create the
1577  * WQ. If WQ creation succeeds, then the attributes are updated to
1578  * the actual capabilities of the created WQ.
1579  *
1580  * wq_init_attr->max_wr and wq_init_attr->max_sge determine
1581  * the requested size of the WQ, and set to the actual values allocated
1582  * on return.
1583  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
1584  * at least as large as the requested values.
1585  */
1586 struct ib_wq *ib_create_wq(struct ib_pd *pd,
1587                            struct ib_wq_init_attr *wq_attr)
1588 {
1589         struct ib_wq *wq;
1590
1591         if (!pd->device->create_wq)
1592                 return ERR_PTR(-ENOSYS);
1593
1594         wq = pd->device->create_wq(pd, wq_attr, NULL);
1595         if (!IS_ERR(wq)) {
1596                 wq->event_handler = wq_attr->event_handler;
1597                 wq->wq_context = wq_attr->wq_context;
1598                 wq->wq_type = wq_attr->wq_type;
1599                 wq->cq = wq_attr->cq;
1600                 wq->device = pd->device;
1601                 wq->pd = pd;
1602                 wq->uobject = NULL;
1603                 atomic_inc(&pd->usecnt);
1604                 atomic_inc(&wq_attr->cq->usecnt);
1605                 atomic_set(&wq->usecnt, 0);
1606         }
1607         return wq;
1608 }
1609 EXPORT_SYMBOL(ib_create_wq);
1610
1611 /**
1612  * ib_destroy_wq - Destroys the specified WQ.
1613  * @wq: The WQ to destroy.
1614  */
1615 int ib_destroy_wq(struct ib_wq *wq)
1616 {
1617         int err;
1618         struct ib_cq *cq = wq->cq;
1619         struct ib_pd *pd = wq->pd;
1620
1621         if (atomic_read(&wq->usecnt))
1622                 return -EBUSY;
1623
1624         err = wq->device->destroy_wq(wq);
1625         if (!err) {
1626                 atomic_dec(&pd->usecnt);
1627                 atomic_dec(&cq->usecnt);
1628         }
1629         return err;
1630 }
1631 EXPORT_SYMBOL(ib_destroy_wq);
1632
1633 /**
1634  * ib_modify_wq - Modifies the specified WQ.
1635  * @wq: The WQ to modify.
1636  * @wq_attr: On input, specifies the WQ attributes to modify.
1637  * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
1638  *   are being modified.
1639  * On output, the current values of selected WQ attributes are returned.
1640  */
1641 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
1642                  u32 wq_attr_mask)
1643 {
1644         int err;
1645
1646         if (!wq->device->modify_wq)
1647                 return -ENOSYS;
1648
1649         err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
1650         return err;
1651 }
1652 EXPORT_SYMBOL(ib_modify_wq);
1653
1654 /*
1655  * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
1656  * @device: The device on which to create the rwq indirection table.
1657  * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
1658  * create the Indirection Table.
1659  *
1660  * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
1661  *      than the created ib_rwq_ind_table object and the caller is responsible
1662  *      for its memory allocation/free.
1663  */
1664 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
1665                                                  struct ib_rwq_ind_table_init_attr *init_attr)
1666 {
1667         struct ib_rwq_ind_table *rwq_ind_table;
1668         int i;
1669         u32 table_size;
1670
1671         if (!device->create_rwq_ind_table)
1672                 return ERR_PTR(-ENOSYS);
1673
1674         table_size = (1 << init_attr->log_ind_tbl_size);
1675         rwq_ind_table = device->create_rwq_ind_table(device,
1676                                 init_attr, NULL);
1677         if (IS_ERR(rwq_ind_table))
1678                 return rwq_ind_table;
1679
1680         rwq_ind_table->ind_tbl = init_attr->ind_tbl;
1681         rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
1682         rwq_ind_table->device = device;
1683         rwq_ind_table->uobject = NULL;
1684         atomic_set(&rwq_ind_table->usecnt, 0);
1685
1686         for (i = 0; i < table_size; i++)
1687                 atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
1688
1689         return rwq_ind_table;
1690 }
1691 EXPORT_SYMBOL(ib_create_rwq_ind_table);
1692
1693 /*
1694  * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
1695  * @wq_ind_table: The Indirection Table to destroy.
1696 */
1697 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
1698 {
1699         int err, i;
1700         u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
1701         struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
1702
1703         if (atomic_read(&rwq_ind_table->usecnt))
1704                 return -EBUSY;
1705
1706         err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
1707         if (!err) {
1708                 for (i = 0; i < table_size; i++)
1709                         atomic_dec(&ind_tbl[i]->usecnt);
1710         }
1711
1712         return err;
1713 }
1714 EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
1715
1716 struct ib_flow *ib_create_flow(struct ib_qp *qp,
1717                                struct ib_flow_attr *flow_attr,
1718                                int domain)
1719 {
1720         struct ib_flow *flow_id;
1721         if (!qp->device->create_flow)
1722                 return ERR_PTR(-ENOSYS);
1723
1724         flow_id = qp->device->create_flow(qp, flow_attr, domain);
1725         if (!IS_ERR(flow_id))
1726                 atomic_inc(&qp->usecnt);
1727         return flow_id;
1728 }
1729 EXPORT_SYMBOL(ib_create_flow);
1730
1731 int ib_destroy_flow(struct ib_flow *flow_id)
1732 {
1733         int err;
1734         struct ib_qp *qp = flow_id->qp;
1735
1736         err = qp->device->destroy_flow(flow_id);
1737         if (!err)
1738                 atomic_dec(&qp->usecnt);
1739         return err;
1740 }
1741 EXPORT_SYMBOL(ib_destroy_flow);
1742
1743 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1744                        struct ib_mr_status *mr_status)
1745 {
1746         return mr->device->check_mr_status ?
1747                 mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1748 }
1749 EXPORT_SYMBOL(ib_check_mr_status);
1750
1751 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
1752                          int state)
1753 {
1754         if (!device->set_vf_link_state)
1755                 return -ENOSYS;
1756
1757         return device->set_vf_link_state(device, vf, port, state);
1758 }
1759 EXPORT_SYMBOL(ib_set_vf_link_state);
1760
1761 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
1762                      struct ifla_vf_info *info)
1763 {
1764         if (!device->get_vf_config)
1765                 return -ENOSYS;
1766
1767         return device->get_vf_config(device, vf, port, info);
1768 }
1769 EXPORT_SYMBOL(ib_get_vf_config);
1770
1771 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
1772                     struct ifla_vf_stats *stats)
1773 {
1774         if (!device->get_vf_stats)
1775                 return -ENOSYS;
1776
1777         return device->get_vf_stats(device, vf, port, stats);
1778 }
1779 EXPORT_SYMBOL(ib_get_vf_stats);
1780
1781 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
1782                    int type)
1783 {
1784         if (!device->set_vf_guid)
1785                 return -ENOSYS;
1786
1787         return device->set_vf_guid(device, vf, port, guid, type);
1788 }
1789 EXPORT_SYMBOL(ib_set_vf_guid);
1790
1791 /**
1792  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
1793  *     and set it the memory region.
1794  * @mr:            memory region
1795  * @sg:            dma mapped scatterlist
1796  * @sg_nents:      number of entries in sg
1797  * @sg_offset:     offset in bytes into sg
1798  * @page_size:     page vector desired page size
1799  *
1800  * Constraints:
1801  * - The first sg element is allowed to have an offset.
1802  * - Each sg element must be aligned to page_size (or physically
1803  *   contiguous to the previous element). In case an sg element has a
1804  *   non contiguous offset, the mapping prefix will not include it.
1805  * - The last sg element is allowed to have length less than page_size.
1806  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
1807  *   then only max_num_sg entries will be mapped.
1808  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS_REG, non of these
1809  *   constraints holds and the page_size argument is ignored.
1810  *
1811  * Returns the number of sg elements that were mapped to the memory region.
1812  *
1813  * After this completes successfully, the  memory region
1814  * is ready for registration.
1815  */
1816 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
1817                  unsigned int *sg_offset, unsigned int page_size)
1818 {
1819         if (unlikely(!mr->device->map_mr_sg))
1820                 return -ENOSYS;
1821
1822         mr->page_size = page_size;
1823
1824         return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
1825 }
1826 EXPORT_SYMBOL(ib_map_mr_sg);
1827
1828 /**
1829  * ib_sg_to_pages() - Convert the largest prefix of a sg list
1830  *     to a page vector
1831  * @mr:            memory region
1832  * @sgl:           dma mapped scatterlist
1833  * @sg_nents:      number of entries in sg
1834  * @sg_offset_p:   IN:  start offset in bytes into sg
1835  *                 OUT: offset in bytes for element n of the sg of the first
1836  *                      byte that has not been processed where n is the return
1837  *                      value of this function.
1838  * @set_page:      driver page assignment function pointer
1839  *
1840  * Core service helper for drivers to convert the largest
1841  * prefix of given sg list to a page vector. The sg list
1842  * prefix converted is the prefix that meet the requirements
1843  * of ib_map_mr_sg.
1844  *
1845  * Returns the number of sg elements that were assigned to
1846  * a page vector.
1847  */
1848 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
1849                 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
1850 {
1851         struct scatterlist *sg;
1852         u64 last_end_dma_addr = 0;
1853         unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
1854         unsigned int last_page_off = 0;
1855         u64 page_mask = ~((u64)mr->page_size - 1);
1856         int i, ret;
1857
1858         if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
1859                 return -EINVAL;
1860
1861         mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
1862         mr->length = 0;
1863
1864         for_each_sg(sgl, sg, sg_nents, i) {
1865                 u64 dma_addr = sg_dma_address(sg) + sg_offset;
1866                 u64 prev_addr = dma_addr;
1867                 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
1868                 u64 end_dma_addr = dma_addr + dma_len;
1869                 u64 page_addr = dma_addr & page_mask;
1870
1871                 /*
1872                  * For the second and later elements, check whether either the
1873                  * end of element i-1 or the start of element i is not aligned
1874                  * on a page boundary.
1875                  */
1876                 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
1877                         /* Stop mapping if there is a gap. */
1878                         if (last_end_dma_addr != dma_addr)
1879                                 break;
1880
1881                         /*
1882                          * Coalesce this element with the last. If it is small
1883                          * enough just update mr->length. Otherwise start
1884                          * mapping from the next page.
1885                          */
1886                         goto next_page;
1887                 }
1888
1889                 do {
1890                         ret = set_page(mr, page_addr);
1891                         if (unlikely(ret < 0)) {
1892                                 sg_offset = prev_addr - sg_dma_address(sg);
1893                                 mr->length += prev_addr - dma_addr;
1894                                 if (sg_offset_p)
1895                                         *sg_offset_p = sg_offset;
1896                                 return i || sg_offset ? i : ret;
1897                         }
1898                         prev_addr = page_addr;
1899 next_page:
1900                         page_addr += mr->page_size;
1901                 } while (page_addr < end_dma_addr);
1902
1903                 mr->length += dma_len;
1904                 last_end_dma_addr = end_dma_addr;
1905                 last_page_off = end_dma_addr & ~page_mask;
1906
1907                 sg_offset = 0;
1908         }
1909
1910         if (sg_offset_p)
1911                 *sg_offset_p = 0;
1912         return i;
1913 }
1914 EXPORT_SYMBOL(ib_sg_to_pages);
1915
1916 struct ib_drain_cqe {
1917         struct ib_cqe cqe;
1918         struct completion done;
1919 };
1920
1921 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
1922 {
1923         struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
1924                                                 cqe);
1925
1926         complete(&cqe->done);
1927 }
1928
1929 /*
1930  * Post a WR and block until its completion is reaped for the SQ.
1931  */
1932 static void __ib_drain_sq(struct ib_qp *qp)
1933 {
1934         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1935         struct ib_drain_cqe sdrain;
1936         struct ib_send_wr swr = {}, *bad_swr;
1937         int ret;
1938
1939         if (qp->send_cq->poll_ctx == IB_POLL_DIRECT) {
1940                 WARN_ONCE(qp->send_cq->poll_ctx == IB_POLL_DIRECT,
1941                           "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1942                 return;
1943         }
1944
1945         swr.wr_cqe = &sdrain.cqe;
1946         sdrain.cqe.done = ib_drain_qp_done;
1947         init_completion(&sdrain.done);
1948
1949         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1950         if (ret) {
1951                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1952                 return;
1953         }
1954
1955         ret = ib_post_send(qp, &swr, &bad_swr);
1956         if (ret) {
1957                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1958                 return;
1959         }
1960
1961         wait_for_completion(&sdrain.done);
1962 }
1963
1964 /*
1965  * Post a WR and block until its completion is reaped for the RQ.
1966  */
1967 static void __ib_drain_rq(struct ib_qp *qp)
1968 {
1969         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1970         struct ib_drain_cqe rdrain;
1971         struct ib_recv_wr rwr = {}, *bad_rwr;
1972         int ret;
1973
1974         if (qp->recv_cq->poll_ctx == IB_POLL_DIRECT) {
1975                 WARN_ONCE(qp->recv_cq->poll_ctx == IB_POLL_DIRECT,
1976                           "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1977                 return;
1978         }
1979
1980         rwr.wr_cqe = &rdrain.cqe;
1981         rdrain.cqe.done = ib_drain_qp_done;
1982         init_completion(&rdrain.done);
1983
1984         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1985         if (ret) {
1986                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
1987                 return;
1988         }
1989
1990         ret = ib_post_recv(qp, &rwr, &bad_rwr);
1991         if (ret) {
1992                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
1993                 return;
1994         }
1995
1996         wait_for_completion(&rdrain.done);
1997 }
1998
1999 /**
2000  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2001  *                 application.
2002  * @qp:            queue pair to drain
2003  *
2004  * If the device has a provider-specific drain function, then
2005  * call that.  Otherwise call the generic drain function
2006  * __ib_drain_sq().
2007  *
2008  * The caller must:
2009  *
2010  * ensure there is room in the CQ and SQ for the drain work request and
2011  * completion.
2012  *
2013  * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
2014  * IB_POLL_DIRECT.
2015  *
2016  * ensure that there are no other contexts that are posting WRs concurrently.
2017  * Otherwise the drain is not guaranteed.
2018  */
2019 void ib_drain_sq(struct ib_qp *qp)
2020 {
2021         if (qp->device->drain_sq)
2022                 qp->device->drain_sq(qp);
2023         else
2024                 __ib_drain_sq(qp);
2025 }
2026 EXPORT_SYMBOL(ib_drain_sq);
2027
2028 /**
2029  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2030  *                 application.
2031  * @qp:            queue pair to drain
2032  *
2033  * If the device has a provider-specific drain function, then
2034  * call that.  Otherwise call the generic drain function
2035  * __ib_drain_rq().
2036  *
2037  * The caller must:
2038  *
2039  * ensure there is room in the CQ and RQ for the drain work request and
2040  * completion.
2041  *
2042  * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
2043  * IB_POLL_DIRECT.
2044  *
2045  * ensure that there are no other contexts that are posting WRs concurrently.
2046  * Otherwise the drain is not guaranteed.
2047  */
2048 void ib_drain_rq(struct ib_qp *qp)
2049 {
2050         if (qp->device->drain_rq)
2051                 qp->device->drain_rq(qp);
2052         else
2053                 __ib_drain_rq(qp);
2054 }
2055 EXPORT_SYMBOL(ib_drain_rq);
2056
2057 /**
2058  * ib_drain_qp() - Block until all CQEs have been consumed by the
2059  *                 application on both the RQ and SQ.
2060  * @qp:            queue pair to drain
2061  *
2062  * The caller must:
2063  *
2064  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2065  * and completions.
2066  *
2067  * allocate the CQs using ib_alloc_cq() and the CQ poll context cannot be
2068  * IB_POLL_DIRECT.
2069  *
2070  * ensure that there are no other contexts that are posting WRs concurrently.
2071  * Otherwise the drain is not guaranteed.
2072  */
2073 void ib_drain_qp(struct ib_qp *qp)
2074 {
2075         ib_drain_sq(qp);
2076         if (!qp->srq)
2077                 ib_drain_rq(qp);
2078 }
2079 EXPORT_SYMBOL(ib_drain_qp);