Merge branches 'acpi-button', 'acpi-battery' and 'acpi-doc'
[cascardo/linux.git] / drivers / infiniband / hw / hfi1 / chip.c
1 /*
2  * Copyright(c) 2015, 2016 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 /*
49  * This file contains all of the code that is specific to the HFI chip
50  */
51
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/interrupt.h>
55 #include <linux/module.h>
56
57 #include "hfi.h"
58 #include "trace.h"
59 #include "mad.h"
60 #include "pio.h"
61 #include "sdma.h"
62 #include "eprom.h"
63 #include "efivar.h"
64 #include "platform.h"
65 #include "aspm.h"
66 #include "affinity.h"
67
68 #define NUM_IB_PORTS 1
69
70 uint kdeth_qp;
71 module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
72 MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
73
74 uint num_vls = HFI1_MAX_VLS_SUPPORTED;
75 module_param(num_vls, uint, S_IRUGO);
76 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
77
78 /*
79  * Default time to aggregate two 10K packets from the idle state
80  * (timer not running). The timer starts at the end of the first packet,
81  * so only the time for one 10K packet and header plus a bit extra is needed.
82  * 10 * 1024 + 64 header byte = 10304 byte
83  * 10304 byte / 12.5 GB/s = 824.32ns
84  */
85 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
86 module_param(rcv_intr_timeout, uint, S_IRUGO);
87 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
88
89 uint rcv_intr_count = 16; /* same as qib */
90 module_param(rcv_intr_count, uint, S_IRUGO);
91 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
92
93 ushort link_crc_mask = SUPPORTED_CRCS;
94 module_param(link_crc_mask, ushort, S_IRUGO);
95 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
96
97 uint loopback;
98 module_param_named(loopback, loopback, uint, S_IRUGO);
99 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
100
101 /* Other driver tunables */
102 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
103 static ushort crc_14b_sideband = 1;
104 static uint use_flr = 1;
105 uint quick_linkup; /* skip LNI */
106
107 struct flag_table {
108         u64 flag;       /* the flag */
109         char *str;      /* description string */
110         u16 extra;      /* extra information */
111         u16 unused0;
112         u32 unused1;
113 };
114
115 /* str must be a string constant */
116 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
117 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
118
119 /* Send Error Consequences */
120 #define SEC_WRITE_DROPPED       0x1
121 #define SEC_PACKET_DROPPED      0x2
122 #define SEC_SC_HALTED           0x4     /* per-context only */
123 #define SEC_SPC_FREEZE          0x8     /* per-HFI only */
124
125 #define DEFAULT_KRCVQS            2
126 #define MIN_KERNEL_KCTXTS         2
127 #define FIRST_KERNEL_KCTXT        1
128 /* sizes for both the QP and RSM map tables */
129 #define NUM_MAP_ENTRIES         256
130 #define NUM_MAP_REGS             32
131
132 /* Bit offset into the GUID which carries HFI id information */
133 #define GUID_HFI_INDEX_SHIFT     39
134
135 /* extract the emulation revision */
136 #define emulator_rev(dd) ((dd)->irev >> 8)
137 /* parallel and serial emulation versions are 3 and 4 respectively */
138 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
139 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
140
141 /* RSM fields */
142
143 /* packet type */
144 #define IB_PACKET_TYPE         2ull
145 #define QW_SHIFT               6ull
146 /* QPN[7..1] */
147 #define QPN_WIDTH              7ull
148
149 /* LRH.BTH: QW 0, OFFSET 48 - for match */
150 #define LRH_BTH_QW             0ull
151 #define LRH_BTH_BIT_OFFSET     48ull
152 #define LRH_BTH_OFFSET(off)    ((LRH_BTH_QW << QW_SHIFT) | (off))
153 #define LRH_BTH_MATCH_OFFSET   LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
154 #define LRH_BTH_SELECT
155 #define LRH_BTH_MASK           3ull
156 #define LRH_BTH_VALUE          2ull
157
158 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
159 #define LRH_SC_QW              0ull
160 #define LRH_SC_BIT_OFFSET      56ull
161 #define LRH_SC_OFFSET(off)     ((LRH_SC_QW << QW_SHIFT) | (off))
162 #define LRH_SC_MATCH_OFFSET    LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
163 #define LRH_SC_MASK            128ull
164 #define LRH_SC_VALUE           0ull
165
166 /* SC[n..0] QW 0, OFFSET 60 - for select */
167 #define LRH_SC_SELECT_OFFSET  ((LRH_SC_QW << QW_SHIFT) | (60ull))
168
169 /* QPN[m+n:1] QW 1, OFFSET 1 */
170 #define QPN_SELECT_OFFSET      ((1ull << QW_SHIFT) | (1ull))
171
172 /* defines to build power on SC2VL table */
173 #define SC2VL_VAL( \
174         num, \
175         sc0, sc0val, \
176         sc1, sc1val, \
177         sc2, sc2val, \
178         sc3, sc3val, \
179         sc4, sc4val, \
180         sc5, sc5val, \
181         sc6, sc6val, \
182         sc7, sc7val) \
183 ( \
184         ((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
185         ((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
186         ((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
187         ((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
188         ((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
189         ((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
190         ((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
191         ((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT)   \
192 )
193
194 #define DC_SC_VL_VAL( \
195         range, \
196         e0, e0val, \
197         e1, e1val, \
198         e2, e2val, \
199         e3, e3val, \
200         e4, e4val, \
201         e5, e5val, \
202         e6, e6val, \
203         e7, e7val, \
204         e8, e8val, \
205         e9, e9val, \
206         e10, e10val, \
207         e11, e11val, \
208         e12, e12val, \
209         e13, e13val, \
210         e14, e14val, \
211         e15, e15val) \
212 ( \
213         ((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
214         ((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
215         ((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
216         ((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
217         ((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
218         ((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
219         ((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
220         ((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
221         ((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
222         ((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
223         ((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
224         ((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
225         ((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
226         ((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
227         ((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
228         ((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
229 )
230
231 /* all CceStatus sub-block freeze bits */
232 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
233                         | CCE_STATUS_RXE_FROZE_SMASK \
234                         | CCE_STATUS_TXE_FROZE_SMASK \
235                         | CCE_STATUS_TXE_PIO_FROZE_SMASK)
236 /* all CceStatus sub-block TXE pause bits */
237 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
238                         | CCE_STATUS_TXE_PAUSED_SMASK \
239                         | CCE_STATUS_SDMA_PAUSED_SMASK)
240 /* all CceStatus sub-block RXE pause bits */
241 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
242
243 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
244 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
245
246 /*
247  * CCE Error flags.
248  */
249 static struct flag_table cce_err_status_flags[] = {
250 /* 0*/  FLAG_ENTRY0("CceCsrParityErr",
251                 CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
252 /* 1*/  FLAG_ENTRY0("CceCsrReadBadAddrErr",
253                 CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
254 /* 2*/  FLAG_ENTRY0("CceCsrWriteBadAddrErr",
255                 CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
256 /* 3*/  FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
257                 CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
258 /* 4*/  FLAG_ENTRY0("CceTrgtAccessErr",
259                 CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
260 /* 5*/  FLAG_ENTRY0("CceRspdDataParityErr",
261                 CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
262 /* 6*/  FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
263                 CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
264 /* 7*/  FLAG_ENTRY0("CceCsrCfgBusParityErr",
265                 CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
266 /* 8*/  FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
267                 CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
268 /* 9*/  FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
269             CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
270 /*10*/  FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
271             CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
272 /*11*/  FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
273             CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
274 /*12*/  FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
275                 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
276 /*13*/  FLAG_ENTRY0("PcicRetryMemCorErr",
277                 CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
278 /*14*/  FLAG_ENTRY0("PcicRetryMemCorErr",
279                 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
280 /*15*/  FLAG_ENTRY0("PcicPostHdQCorErr",
281                 CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
282 /*16*/  FLAG_ENTRY0("PcicPostHdQCorErr",
283                 CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
284 /*17*/  FLAG_ENTRY0("PcicPostHdQCorErr",
285                 CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
286 /*18*/  FLAG_ENTRY0("PcicCplDatQCorErr",
287                 CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
288 /*19*/  FLAG_ENTRY0("PcicNPostHQParityErr",
289                 CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
290 /*20*/  FLAG_ENTRY0("PcicNPostDatQParityErr",
291                 CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
292 /*21*/  FLAG_ENTRY0("PcicRetryMemUncErr",
293                 CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
294 /*22*/  FLAG_ENTRY0("PcicRetrySotMemUncErr",
295                 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
296 /*23*/  FLAG_ENTRY0("PcicPostHdQUncErr",
297                 CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
298 /*24*/  FLAG_ENTRY0("PcicPostDatQUncErr",
299                 CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
300 /*25*/  FLAG_ENTRY0("PcicCplHdQUncErr",
301                 CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
302 /*26*/  FLAG_ENTRY0("PcicCplDatQUncErr",
303                 CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
304 /*27*/  FLAG_ENTRY0("PcicTransmitFrontParityErr",
305                 CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
306 /*28*/  FLAG_ENTRY0("PcicTransmitBackParityErr",
307                 CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
308 /*29*/  FLAG_ENTRY0("PcicReceiveParityErr",
309                 CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
310 /*30*/  FLAG_ENTRY0("CceTrgtCplTimeoutErr",
311                 CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
312 /*31*/  FLAG_ENTRY0("LATriggered",
313                 CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
314 /*32*/  FLAG_ENTRY0("CceSegReadBadAddrErr",
315                 CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
316 /*33*/  FLAG_ENTRY0("CceSegWriteBadAddrErr",
317                 CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
318 /*34*/  FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
319                 CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
320 /*35*/  FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
321                 CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
322 /*36*/  FLAG_ENTRY0("CceMsixTableCorErr",
323                 CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
324 /*37*/  FLAG_ENTRY0("CceMsixTableUncErr",
325                 CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
326 /*38*/  FLAG_ENTRY0("CceIntMapCorErr",
327                 CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
328 /*39*/  FLAG_ENTRY0("CceIntMapUncErr",
329                 CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
330 /*40*/  FLAG_ENTRY0("CceMsixCsrParityErr",
331                 CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
332 /*41-63 reserved*/
333 };
334
335 /*
336  * Misc Error flags
337  */
338 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
339 static struct flag_table misc_err_status_flags[] = {
340 /* 0*/  FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
341 /* 1*/  FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
342 /* 2*/  FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
343 /* 3*/  FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
344 /* 4*/  FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
345 /* 5*/  FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
346 /* 6*/  FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
347 /* 7*/  FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
348 /* 8*/  FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
349 /* 9*/  FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
350 /*10*/  FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
351 /*11*/  FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
352 /*12*/  FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
353 };
354
355 /*
356  * TXE PIO Error flags and consequences
357  */
358 static struct flag_table pio_err_status_flags[] = {
359 /* 0*/  FLAG_ENTRY("PioWriteBadCtxt",
360         SEC_WRITE_DROPPED,
361         SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
362 /* 1*/  FLAG_ENTRY("PioWriteAddrParity",
363         SEC_SPC_FREEZE,
364         SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
365 /* 2*/  FLAG_ENTRY("PioCsrParity",
366         SEC_SPC_FREEZE,
367         SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
368 /* 3*/  FLAG_ENTRY("PioSbMemFifo0",
369         SEC_SPC_FREEZE,
370         SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
371 /* 4*/  FLAG_ENTRY("PioSbMemFifo1",
372         SEC_SPC_FREEZE,
373         SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
374 /* 5*/  FLAG_ENTRY("PioPccFifoParity",
375         SEC_SPC_FREEZE,
376         SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
377 /* 6*/  FLAG_ENTRY("PioPecFifoParity",
378         SEC_SPC_FREEZE,
379         SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
380 /* 7*/  FLAG_ENTRY("PioSbrdctlCrrelParity",
381         SEC_SPC_FREEZE,
382         SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
383 /* 8*/  FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
384         SEC_SPC_FREEZE,
385         SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
386 /* 9*/  FLAG_ENTRY("PioPktEvictFifoParityErr",
387         SEC_SPC_FREEZE,
388         SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
389 /*10*/  FLAG_ENTRY("PioSmPktResetParity",
390         SEC_SPC_FREEZE,
391         SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
392 /*11*/  FLAG_ENTRY("PioVlLenMemBank0Unc",
393         SEC_SPC_FREEZE,
394         SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
395 /*12*/  FLAG_ENTRY("PioVlLenMemBank1Unc",
396         SEC_SPC_FREEZE,
397         SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
398 /*13*/  FLAG_ENTRY("PioVlLenMemBank0Cor",
399         0,
400         SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
401 /*14*/  FLAG_ENTRY("PioVlLenMemBank1Cor",
402         0,
403         SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
404 /*15*/  FLAG_ENTRY("PioCreditRetFifoParity",
405         SEC_SPC_FREEZE,
406         SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
407 /*16*/  FLAG_ENTRY("PioPpmcPblFifo",
408         SEC_SPC_FREEZE,
409         SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
410 /*17*/  FLAG_ENTRY("PioInitSmIn",
411         0,
412         SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
413 /*18*/  FLAG_ENTRY("PioPktEvictSmOrArbSm",
414         SEC_SPC_FREEZE,
415         SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
416 /*19*/  FLAG_ENTRY("PioHostAddrMemUnc",
417         SEC_SPC_FREEZE,
418         SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
419 /*20*/  FLAG_ENTRY("PioHostAddrMemCor",
420         0,
421         SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
422 /*21*/  FLAG_ENTRY("PioWriteDataParity",
423         SEC_SPC_FREEZE,
424         SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
425 /*22*/  FLAG_ENTRY("PioStateMachine",
426         SEC_SPC_FREEZE,
427         SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
428 /*23*/  FLAG_ENTRY("PioWriteQwValidParity",
429         SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
430         SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
431 /*24*/  FLAG_ENTRY("PioBlockQwCountParity",
432         SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
433         SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
434 /*25*/  FLAG_ENTRY("PioVlfVlLenParity",
435         SEC_SPC_FREEZE,
436         SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
437 /*26*/  FLAG_ENTRY("PioVlfSopParity",
438         SEC_SPC_FREEZE,
439         SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
440 /*27*/  FLAG_ENTRY("PioVlFifoParity",
441         SEC_SPC_FREEZE,
442         SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
443 /*28*/  FLAG_ENTRY("PioPpmcBqcMemParity",
444         SEC_SPC_FREEZE,
445         SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
446 /*29*/  FLAG_ENTRY("PioPpmcSopLen",
447         SEC_SPC_FREEZE,
448         SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
449 /*30-31 reserved*/
450 /*32*/  FLAG_ENTRY("PioCurrentFreeCntParity",
451         SEC_SPC_FREEZE,
452         SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
453 /*33*/  FLAG_ENTRY("PioLastReturnedCntParity",
454         SEC_SPC_FREEZE,
455         SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
456 /*34*/  FLAG_ENTRY("PioPccSopHeadParity",
457         SEC_SPC_FREEZE,
458         SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
459 /*35*/  FLAG_ENTRY("PioPecSopHeadParityErr",
460         SEC_SPC_FREEZE,
461         SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
462 /*36-63 reserved*/
463 };
464
465 /* TXE PIO errors that cause an SPC freeze */
466 #define ALL_PIO_FREEZE_ERR \
467         (SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
468         | SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
469         | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
470         | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
471         | SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
472         | SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
473         | SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
474         | SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
475         | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
476         | SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
477         | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
478         | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
479         | SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
480         | SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
481         | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
482         | SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
483         | SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
484         | SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
485         | SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
486         | SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
487         | SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
488         | SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
489         | SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
490         | SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
491         | SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
492         | SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
493         | SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
494         | SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
495         | SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
496
497 /*
498  * TXE SDMA Error flags
499  */
500 static struct flag_table sdma_err_status_flags[] = {
501 /* 0*/  FLAG_ENTRY0("SDmaRpyTagErr",
502                 SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
503 /* 1*/  FLAG_ENTRY0("SDmaCsrParityErr",
504                 SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
505 /* 2*/  FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
506                 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
507 /* 3*/  FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
508                 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
509 /*04-63 reserved*/
510 };
511
512 /* TXE SDMA errors that cause an SPC freeze */
513 #define ALL_SDMA_FREEZE_ERR  \
514                 (SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
515                 | SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
516                 | SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
517
518 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
519 #define PORT_DISCARD_EGRESS_ERRS \
520         (SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
521         | SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
522         | SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
523
524 /*
525  * TXE Egress Error flags
526  */
527 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
528 static struct flag_table egress_err_status_flags[] = {
529 /* 0*/  FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
530 /* 1*/  FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
531 /* 2 reserved */
532 /* 3*/  FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
533                 SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
534 /* 4*/  FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
535 /* 5*/  FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
536 /* 6 reserved */
537 /* 7*/  FLAG_ENTRY0("TxPioLaunchIntfParityErr",
538                 SEES(TX_PIO_LAUNCH_INTF_PARITY)),
539 /* 8*/  FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
540                 SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
541 /* 9-10 reserved */
542 /*11*/  FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
543                 SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
544 /*12*/  FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
545 /*13*/  FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
546 /*14*/  FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
547 /*15*/  FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
548 /*16*/  FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
549                 SEES(TX_SDMA0_DISALLOWED_PACKET)),
550 /*17*/  FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
551                 SEES(TX_SDMA1_DISALLOWED_PACKET)),
552 /*18*/  FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
553                 SEES(TX_SDMA2_DISALLOWED_PACKET)),
554 /*19*/  FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
555                 SEES(TX_SDMA3_DISALLOWED_PACKET)),
556 /*20*/  FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
557                 SEES(TX_SDMA4_DISALLOWED_PACKET)),
558 /*21*/  FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
559                 SEES(TX_SDMA5_DISALLOWED_PACKET)),
560 /*22*/  FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
561                 SEES(TX_SDMA6_DISALLOWED_PACKET)),
562 /*23*/  FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
563                 SEES(TX_SDMA7_DISALLOWED_PACKET)),
564 /*24*/  FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
565                 SEES(TX_SDMA8_DISALLOWED_PACKET)),
566 /*25*/  FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
567                 SEES(TX_SDMA9_DISALLOWED_PACKET)),
568 /*26*/  FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
569                 SEES(TX_SDMA10_DISALLOWED_PACKET)),
570 /*27*/  FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
571                 SEES(TX_SDMA11_DISALLOWED_PACKET)),
572 /*28*/  FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
573                 SEES(TX_SDMA12_DISALLOWED_PACKET)),
574 /*29*/  FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
575                 SEES(TX_SDMA13_DISALLOWED_PACKET)),
576 /*30*/  FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
577                 SEES(TX_SDMA14_DISALLOWED_PACKET)),
578 /*31*/  FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
579                 SEES(TX_SDMA15_DISALLOWED_PACKET)),
580 /*32*/  FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
581                 SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
582 /*33*/  FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
583                 SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
584 /*34*/  FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
585                 SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
586 /*35*/  FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
587                 SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
588 /*36*/  FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
589                 SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
590 /*37*/  FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
591                 SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
592 /*38*/  FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
593                 SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
594 /*39*/  FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
595                 SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
596 /*40*/  FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
597                 SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
598 /*41*/  FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
599 /*42*/  FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
600 /*43*/  FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
601 /*44*/  FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
602 /*45*/  FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
603 /*46*/  FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
604 /*47*/  FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
605 /*48*/  FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
606 /*49*/  FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
607 /*50*/  FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
608 /*51*/  FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
609 /*52*/  FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
610 /*53*/  FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
611 /*54*/  FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
612 /*55*/  FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
613 /*56*/  FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
614 /*57*/  FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
615 /*58*/  FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
616 /*59*/  FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
617 /*60*/  FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
618 /*61*/  FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
619 /*62*/  FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
620                 SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
621 /*63*/  FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
622                 SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
623 };
624
625 /*
626  * TXE Egress Error Info flags
627  */
628 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
629 static struct flag_table egress_err_info_flags[] = {
630 /* 0*/  FLAG_ENTRY0("Reserved", 0ull),
631 /* 1*/  FLAG_ENTRY0("VLErr", SEEI(VL)),
632 /* 2*/  FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
633 /* 3*/  FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
634 /* 4*/  FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
635 /* 5*/  FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
636 /* 6*/  FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
637 /* 7*/  FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
638 /* 8*/  FLAG_ENTRY0("RawErr", SEEI(RAW)),
639 /* 9*/  FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
640 /*10*/  FLAG_ENTRY0("GRHErr", SEEI(GRH)),
641 /*11*/  FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
642 /*12*/  FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
643 /*13*/  FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
644 /*14*/  FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
645 /*15*/  FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
646 /*16*/  FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
647 /*17*/  FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
648 /*18*/  FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
649 /*19*/  FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
650 /*20*/  FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
651 /*21*/  FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
652 };
653
654 /* TXE Egress errors that cause an SPC freeze */
655 #define ALL_TXE_EGRESS_FREEZE_ERR \
656         (SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
657         | SEES(TX_PIO_LAUNCH_INTF_PARITY) \
658         | SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
659         | SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
660         | SEES(TX_LAUNCH_CSR_PARITY) \
661         | SEES(TX_SBRD_CTL_CSR_PARITY) \
662         | SEES(TX_CONFIG_PARITY) \
663         | SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
664         | SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
665         | SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
666         | SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
667         | SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
668         | SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
669         | SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
670         | SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
671         | SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
672         | SEES(TX_CREDIT_RETURN_PARITY))
673
674 /*
675  * TXE Send error flags
676  */
677 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
678 static struct flag_table send_err_status_flags[] = {
679 /* 0*/  FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
680 /* 1*/  FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
681 /* 2*/  FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
682 };
683
684 /*
685  * TXE Send Context Error flags and consequences
686  */
687 static struct flag_table sc_err_status_flags[] = {
688 /* 0*/  FLAG_ENTRY("InconsistentSop",
689                 SEC_PACKET_DROPPED | SEC_SC_HALTED,
690                 SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
691 /* 1*/  FLAG_ENTRY("DisallowedPacket",
692                 SEC_PACKET_DROPPED | SEC_SC_HALTED,
693                 SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
694 /* 2*/  FLAG_ENTRY("WriteCrossesBoundary",
695                 SEC_WRITE_DROPPED | SEC_SC_HALTED,
696                 SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
697 /* 3*/  FLAG_ENTRY("WriteOverflow",
698                 SEC_WRITE_DROPPED | SEC_SC_HALTED,
699                 SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
700 /* 4*/  FLAG_ENTRY("WriteOutOfBounds",
701                 SEC_WRITE_DROPPED | SEC_SC_HALTED,
702                 SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
703 /* 5-63 reserved*/
704 };
705
706 /*
707  * RXE Receive Error flags
708  */
709 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
710 static struct flag_table rxe_err_status_flags[] = {
711 /* 0*/  FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
712 /* 1*/  FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
713 /* 2*/  FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
714 /* 3*/  FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
715 /* 4*/  FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
716 /* 5*/  FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
717 /* 6*/  FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
718 /* 7*/  FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
719 /* 8*/  FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
720 /* 9*/  FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
721 /*10*/  FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
722 /*11*/  FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
723 /*12*/  FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
724 /*13*/  FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
725 /*14*/  FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
726 /*15*/  FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
727 /*16*/  FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
728                 RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
729 /*17*/  FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
730 /*18*/  FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
731 /*19*/  FLAG_ENTRY0("RxRbufBlockListReadUncErr",
732                 RXES(RBUF_BLOCK_LIST_READ_UNC)),
733 /*20*/  FLAG_ENTRY0("RxRbufBlockListReadCorErr",
734                 RXES(RBUF_BLOCK_LIST_READ_COR)),
735 /*21*/  FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
736                 RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
737 /*22*/  FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
738                 RXES(RBUF_CSR_QENT_CNT_PARITY)),
739 /*23*/  FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
740                 RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
741 /*24*/  FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
742                 RXES(RBUF_CSR_QVLD_BIT_PARITY)),
743 /*25*/  FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
744 /*26*/  FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
745 /*27*/  FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
746                 RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
747 /*28*/  FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
748 /*29*/  FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
749 /*30*/  FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
750 /*31*/  FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
751 /*32*/  FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
752 /*33*/  FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
753 /*34*/  FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
754 /*35*/  FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
755                 RXES(RBUF_FL_INITDONE_PARITY)),
756 /*36*/  FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
757                 RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
758 /*37*/  FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
759 /*38*/  FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
760 /*39*/  FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
761 /*40*/  FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
762                 RXES(LOOKUP_DES_PART1_UNC_COR)),
763 /*41*/  FLAG_ENTRY0("RxLookupDesPart2ParityErr",
764                 RXES(LOOKUP_DES_PART2_PARITY)),
765 /*42*/  FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
766 /*43*/  FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
767 /*44*/  FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
768 /*45*/  FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
769 /*46*/  FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
770 /*47*/  FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
771 /*48*/  FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
772 /*49*/  FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
773 /*50*/  FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
774 /*51*/  FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
775 /*52*/  FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
776 /*53*/  FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
777 /*54*/  FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
778 /*55*/  FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
779 /*56*/  FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
780 /*57*/  FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
781 /*58*/  FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
782 /*59*/  FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
783 /*60*/  FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
784 /*61*/  FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
785 /*62*/  FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
786 /*63*/  FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
787 };
788
789 /* RXE errors that will trigger an SPC freeze */
790 #define ALL_RXE_FREEZE_ERR  \
791         (RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
792         | RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
793         | RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
794         | RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
795         | RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
796         | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
797         | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
798         | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
799         | RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
800         | RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
801         | RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
802         | RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
803         | RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
804         | RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
805         | RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
806         | RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
807         | RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
808         | RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
809         | RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
810         | RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
811         | RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
812         | RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
813         | RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
814         | RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
815         | RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
816         | RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
817         | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
818         | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
819         | RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
820         | RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
821         | RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
822         | RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
823         | RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
824         | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
825         | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
826         | RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
827         | RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
828         | RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
829         | RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
830         | RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
831         | RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
832         | RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
833         | RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
834         | RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
835
836 #define RXE_FREEZE_ABORT_MASK \
837         (RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
838         RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
839         RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
840
841 /*
842  * DCC Error Flags
843  */
844 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
845 static struct flag_table dcc_err_flags[] = {
846         FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
847         FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
848         FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
849         FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
850         FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
851         FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
852         FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
853         FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
854         FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
855         FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
856         FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
857         FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
858         FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
859         FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
860         FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
861         FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
862         FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
863         FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
864         FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
865         FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
866         FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
867         FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
868         FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
869         FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
870         FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
871         FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
872         FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
873         FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
874         FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
875         FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
876         FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
877         FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
878         FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
879         FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
880         FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
881         FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
882         FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
883         FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
884         FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
885         FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
886         FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
887         FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
888         FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
889         FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
890         FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
891         FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
892 };
893
894 /*
895  * LCB error flags
896  */
897 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
898 static struct flag_table lcb_err_flags[] = {
899 /* 0*/  FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
900 /* 1*/  FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
901 /* 2*/  FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
902 /* 3*/  FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
903                 LCBE(ALL_LNS_FAILED_REINIT_TEST)),
904 /* 4*/  FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
905 /* 5*/  FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
906 /* 6*/  FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
907 /* 7*/  FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
908 /* 8*/  FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
909 /* 9*/  FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
910 /*10*/  FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
911 /*11*/  FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
912 /*12*/  FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
913 /*13*/  FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
914                 LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
915 /*14*/  FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
916 /*15*/  FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
917 /*16*/  FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
918 /*17*/  FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
919 /*18*/  FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
920 /*19*/  FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
921                 LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
922 /*20*/  FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
923 /*21*/  FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
924 /*22*/  FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
925 /*23*/  FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
926 /*24*/  FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
927 /*25*/  FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
928 /*26*/  FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
929                 LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
930 /*27*/  FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
931 /*28*/  FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
932                 LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
933 /*29*/  FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
934                 LCBE(REDUNDANT_FLIT_PARITY_ERR))
935 };
936
937 /*
938  * DC8051 Error Flags
939  */
940 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
941 static struct flag_table dc8051_err_flags[] = {
942         FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
943         FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
944         FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
945         FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
946         FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
947         FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
948         FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
949         FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
950         FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
951                     D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
952         FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
953 };
954
955 /*
956  * DC8051 Information Error flags
957  *
958  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
959  */
960 static struct flag_table dc8051_info_err_flags[] = {
961         FLAG_ENTRY0("Spico ROM check failed",  SPICO_ROM_FAILED),
962         FLAG_ENTRY0("Unknown frame received",  UNKNOWN_FRAME),
963         FLAG_ENTRY0("Target BER not met",      TARGET_BER_NOT_MET),
964         FLAG_ENTRY0("Serdes internal loopback failure",
965                     FAILED_SERDES_INTERNAL_LOOPBACK),
966         FLAG_ENTRY0("Failed SerDes init",      FAILED_SERDES_INIT),
967         FLAG_ENTRY0("Failed LNI(Polling)",     FAILED_LNI_POLLING),
968         FLAG_ENTRY0("Failed LNI(Debounce)",    FAILED_LNI_DEBOUNCE),
969         FLAG_ENTRY0("Failed LNI(EstbComm)",    FAILED_LNI_ESTBCOMM),
970         FLAG_ENTRY0("Failed LNI(OptEq)",       FAILED_LNI_OPTEQ),
971         FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
972         FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
973         FLAG_ENTRY0("Failed LNI(ConfigLT)",    FAILED_LNI_CONFIGLT),
974         FLAG_ENTRY0("Host Handshake Timeout",  HOST_HANDSHAKE_TIMEOUT)
975 };
976
977 /*
978  * DC8051 Information Host Information flags
979  *
980  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
981  */
982 static struct flag_table dc8051_info_host_msg_flags[] = {
983         FLAG_ENTRY0("Host request done", 0x0001),
984         FLAG_ENTRY0("BC SMA message", 0x0002),
985         FLAG_ENTRY0("BC PWR_MGM message", 0x0004),
986         FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
987         FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
988         FLAG_ENTRY0("External device config request", 0x0020),
989         FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
990         FLAG_ENTRY0("LinkUp achieved", 0x0080),
991         FLAG_ENTRY0("Link going down", 0x0100),
992 };
993
994 static u32 encoded_size(u32 size);
995 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
996 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
997 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
998                                u8 *continuous);
999 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1000                                   u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1001 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1002                                       u8 *remote_tx_rate, u16 *link_widths);
1003 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
1004                                      u8 *flag_bits, u16 *link_widths);
1005 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1006                                   u8 *device_rev);
1007 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed);
1008 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1009 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1010                             u8 *tx_polarity_inversion,
1011                             u8 *rx_polarity_inversion, u8 *max_rate);
1012 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1013                                 unsigned int context, u64 err_status);
1014 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1015 static void handle_dcc_err(struct hfi1_devdata *dd,
1016                            unsigned int context, u64 err_status);
1017 static void handle_lcb_err(struct hfi1_devdata *dd,
1018                            unsigned int context, u64 err_status);
1019 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1020 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1021 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1022 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1023 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1024 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1025 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1026 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1027 static void set_partition_keys(struct hfi1_pportdata *);
1028 static const char *link_state_name(u32 state);
1029 static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1030                                           u32 state);
1031 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1032                            u64 *out_data);
1033 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1034 static int thermal_init(struct hfi1_devdata *dd);
1035
1036 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1037                                   int msecs);
1038 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1039 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1040 static void handle_temp_err(struct hfi1_devdata *);
1041 static void dc_shutdown(struct hfi1_devdata *);
1042 static void dc_start(struct hfi1_devdata *);
1043 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
1044                            unsigned int *np);
1045 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1046
1047 /*
1048  * Error interrupt table entry.  This is used as input to the interrupt
1049  * "clear down" routine used for all second tier error interrupt register.
1050  * Second tier interrupt registers have a single bit representing them
1051  * in the top-level CceIntStatus.
1052  */
1053 struct err_reg_info {
1054         u32 status;             /* status CSR offset */
1055         u32 clear;              /* clear CSR offset */
1056         u32 mask;               /* mask CSR offset */
1057         void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1058         const char *desc;
1059 };
1060
1061 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
1062 #define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
1063 #define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
1064
1065 /*
1066  * Helpers for building HFI and DC error interrupt table entries.  Different
1067  * helpers are needed because of inconsistent register names.
1068  */
1069 #define EE(reg, handler, desc) \
1070         { reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1071                 handler, desc }
1072 #define DC_EE1(reg, handler, desc) \
1073         { reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1074 #define DC_EE2(reg, handler, desc) \
1075         { reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1076
1077 /*
1078  * Table of the "misc" grouping of error interrupts.  Each entry refers to
1079  * another register containing more information.
1080  */
1081 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1082 /* 0*/  EE(CCE_ERR,             handle_cce_err,    "CceErr"),
1083 /* 1*/  EE(RCV_ERR,             handle_rxe_err,    "RxeErr"),
1084 /* 2*/  EE(MISC_ERR,    handle_misc_err,   "MiscErr"),
1085 /* 3*/  { 0, 0, 0, NULL }, /* reserved */
1086 /* 4*/  EE(SEND_PIO_ERR,    handle_pio_err,    "PioErr"),
1087 /* 5*/  EE(SEND_DMA_ERR,    handle_sdma_err,   "SDmaErr"),
1088 /* 6*/  EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1089 /* 7*/  EE(SEND_ERR,    handle_txe_err,    "TxeErr")
1090         /* the rest are reserved */
1091 };
1092
1093 /*
1094  * Index into the Various section of the interrupt sources
1095  * corresponding to the Critical Temperature interrupt.
1096  */
1097 #define TCRIT_INT_SOURCE 4
1098
1099 /*
1100  * SDMA error interrupt entry - refers to another register containing more
1101  * information.
1102  */
1103 static const struct err_reg_info sdma_eng_err =
1104         EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1105
1106 static const struct err_reg_info various_err[NUM_VARIOUS] = {
1107 /* 0*/  { 0, 0, 0, NULL }, /* PbcInt */
1108 /* 1*/  { 0, 0, 0, NULL }, /* GpioAssertInt */
1109 /* 2*/  EE(ASIC_QSFP1,  handle_qsfp_int,        "QSFP1"),
1110 /* 3*/  EE(ASIC_QSFP2,  handle_qsfp_int,        "QSFP2"),
1111 /* 4*/  { 0, 0, 0, NULL }, /* TCritInt */
1112         /* rest are reserved */
1113 };
1114
1115 /*
1116  * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1117  * register can not be derived from the MTU value because 10K is not
1118  * a power of 2. Therefore, we need a constant. Everything else can
1119  * be calculated.
1120  */
1121 #define DCC_CFG_PORT_MTU_CAP_10240 7
1122
1123 /*
1124  * Table of the DC grouping of error interrupts.  Each entry refers to
1125  * another register containing more information.
1126  */
1127 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1128 /* 0*/  DC_EE1(DCC_ERR,         handle_dcc_err,        "DCC Err"),
1129 /* 1*/  DC_EE2(DC_LCB_ERR,      handle_lcb_err,        "LCB Err"),
1130 /* 2*/  DC_EE2(DC_DC8051_ERR,   handle_8051_interrupt, "DC8051 Interrupt"),
1131 /* 3*/  /* dc_lbm_int - special, see is_dc_int() */
1132         /* the rest are reserved */
1133 };
1134
1135 struct cntr_entry {
1136         /*
1137          * counter name
1138          */
1139         char *name;
1140
1141         /*
1142          * csr to read for name (if applicable)
1143          */
1144         u64 csr;
1145
1146         /*
1147          * offset into dd or ppd to store the counter's value
1148          */
1149         int offset;
1150
1151         /*
1152          * flags
1153          */
1154         u8 flags;
1155
1156         /*
1157          * accessor for stat element, context either dd or ppd
1158          */
1159         u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1160                        int mode, u64 data);
1161 };
1162
1163 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1164 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1165
1166 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1167 { \
1168         name, \
1169         csr, \
1170         offset, \
1171         flags, \
1172         accessor \
1173 }
1174
1175 /* 32bit RXE */
1176 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1177 CNTR_ELEM(#name, \
1178           (counter * 8 + RCV_COUNTER_ARRAY32), \
1179           0, flags | CNTR_32BIT, \
1180           port_access_u32_csr)
1181
1182 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1183 CNTR_ELEM(#name, \
1184           (counter * 8 + RCV_COUNTER_ARRAY32), \
1185           0, flags | CNTR_32BIT, \
1186           dev_access_u32_csr)
1187
1188 /* 64bit RXE */
1189 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1190 CNTR_ELEM(#name, \
1191           (counter * 8 + RCV_COUNTER_ARRAY64), \
1192           0, flags, \
1193           port_access_u64_csr)
1194
1195 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1196 CNTR_ELEM(#name, \
1197           (counter * 8 + RCV_COUNTER_ARRAY64), \
1198           0, flags, \
1199           dev_access_u64_csr)
1200
1201 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1202 #define OVR_ELM(ctx) \
1203 CNTR_ELEM("RcvHdrOvr" #ctx, \
1204           (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1205           0, CNTR_NORMAL, port_access_u64_csr)
1206
1207 /* 32bit TXE */
1208 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1209 CNTR_ELEM(#name, \
1210           (counter * 8 + SEND_COUNTER_ARRAY32), \
1211           0, flags | CNTR_32BIT, \
1212           port_access_u32_csr)
1213
1214 /* 64bit TXE */
1215 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1216 CNTR_ELEM(#name, \
1217           (counter * 8 + SEND_COUNTER_ARRAY64), \
1218           0, flags, \
1219           port_access_u64_csr)
1220
1221 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1222 CNTR_ELEM(#name,\
1223           counter * 8 + SEND_COUNTER_ARRAY64, \
1224           0, \
1225           flags, \
1226           dev_access_u64_csr)
1227
1228 /* CCE */
1229 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1230 CNTR_ELEM(#name, \
1231           (counter * 8 + CCE_COUNTER_ARRAY32), \
1232           0, flags | CNTR_32BIT, \
1233           dev_access_u32_csr)
1234
1235 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1236 CNTR_ELEM(#name, \
1237           (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1238           0, flags | CNTR_32BIT, \
1239           dev_access_u32_csr)
1240
1241 /* DC */
1242 #define DC_PERF_CNTR(name, counter, flags) \
1243 CNTR_ELEM(#name, \
1244           counter, \
1245           0, \
1246           flags, \
1247           dev_access_u64_csr)
1248
1249 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1250 CNTR_ELEM(#name, \
1251           counter, \
1252           0, \
1253           flags, \
1254           dc_access_lcb_cntr)
1255
1256 /* ibp counters */
1257 #define SW_IBP_CNTR(name, cntr) \
1258 CNTR_ELEM(#name, \
1259           0, \
1260           0, \
1261           CNTR_SYNTH, \
1262           access_ibp_##cntr)
1263
1264 u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1265 {
1266         if (dd->flags & HFI1_PRESENT) {
1267                 return readq((void __iomem *)dd->kregbase + offset);
1268         }
1269         return -1;
1270 }
1271
1272 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1273 {
1274         if (dd->flags & HFI1_PRESENT)
1275                 writeq(value, (void __iomem *)dd->kregbase + offset);
1276 }
1277
1278 void __iomem *get_csr_addr(
1279         struct hfi1_devdata *dd,
1280         u32 offset)
1281 {
1282         return (void __iomem *)dd->kregbase + offset;
1283 }
1284
1285 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1286                                  int mode, u64 value)
1287 {
1288         u64 ret;
1289
1290         if (mode == CNTR_MODE_R) {
1291                 ret = read_csr(dd, csr);
1292         } else if (mode == CNTR_MODE_W) {
1293                 write_csr(dd, csr, value);
1294                 ret = value;
1295         } else {
1296                 dd_dev_err(dd, "Invalid cntr register access mode");
1297                 return 0;
1298         }
1299
1300         hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1301         return ret;
1302 }
1303
1304 /* Dev Access */
1305 static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1306                               void *context, int vl, int mode, u64 data)
1307 {
1308         struct hfi1_devdata *dd = context;
1309         u64 csr = entry->csr;
1310
1311         if (entry->flags & CNTR_SDMA) {
1312                 if (vl == CNTR_INVALID_VL)
1313                         return 0;
1314                 csr += 0x100 * vl;
1315         } else {
1316                 if (vl != CNTR_INVALID_VL)
1317                         return 0;
1318         }
1319         return read_write_csr(dd, csr, mode, data);
1320 }
1321
1322 static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1323                               void *context, int idx, int mode, u64 data)
1324 {
1325         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1326
1327         if (dd->per_sdma && idx < dd->num_sdma)
1328                 return dd->per_sdma[idx].err_cnt;
1329         return 0;
1330 }
1331
1332 static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1333                               void *context, int idx, int mode, u64 data)
1334 {
1335         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1336
1337         if (dd->per_sdma && idx < dd->num_sdma)
1338                 return dd->per_sdma[idx].sdma_int_cnt;
1339         return 0;
1340 }
1341
1342 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1343                                    void *context, int idx, int mode, u64 data)
1344 {
1345         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1346
1347         if (dd->per_sdma && idx < dd->num_sdma)
1348                 return dd->per_sdma[idx].idle_int_cnt;
1349         return 0;
1350 }
1351
1352 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1353                                        void *context, int idx, int mode,
1354                                        u64 data)
1355 {
1356         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1357
1358         if (dd->per_sdma && idx < dd->num_sdma)
1359                 return dd->per_sdma[idx].progress_int_cnt;
1360         return 0;
1361 }
1362
1363 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1364                               int vl, int mode, u64 data)
1365 {
1366         struct hfi1_devdata *dd = context;
1367
1368         u64 val = 0;
1369         u64 csr = entry->csr;
1370
1371         if (entry->flags & CNTR_VL) {
1372                 if (vl == CNTR_INVALID_VL)
1373                         return 0;
1374                 csr += 8 * vl;
1375         } else {
1376                 if (vl != CNTR_INVALID_VL)
1377                         return 0;
1378         }
1379
1380         val = read_write_csr(dd, csr, mode, data);
1381         return val;
1382 }
1383
1384 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1385                               int vl, int mode, u64 data)
1386 {
1387         struct hfi1_devdata *dd = context;
1388         u32 csr = entry->csr;
1389         int ret = 0;
1390
1391         if (vl != CNTR_INVALID_VL)
1392                 return 0;
1393         if (mode == CNTR_MODE_R)
1394                 ret = read_lcb_csr(dd, csr, &data);
1395         else if (mode == CNTR_MODE_W)
1396                 ret = write_lcb_csr(dd, csr, data);
1397
1398         if (ret) {
1399                 dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1400                 return 0;
1401         }
1402
1403         hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1404         return data;
1405 }
1406
1407 /* Port Access */
1408 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1409                                int vl, int mode, u64 data)
1410 {
1411         struct hfi1_pportdata *ppd = context;
1412
1413         if (vl != CNTR_INVALID_VL)
1414                 return 0;
1415         return read_write_csr(ppd->dd, entry->csr, mode, data);
1416 }
1417
1418 static u64 port_access_u64_csr(const struct cntr_entry *entry,
1419                                void *context, int vl, int mode, u64 data)
1420 {
1421         struct hfi1_pportdata *ppd = context;
1422         u64 val;
1423         u64 csr = entry->csr;
1424
1425         if (entry->flags & CNTR_VL) {
1426                 if (vl == CNTR_INVALID_VL)
1427                         return 0;
1428                 csr += 8 * vl;
1429         } else {
1430                 if (vl != CNTR_INVALID_VL)
1431                         return 0;
1432         }
1433         val = read_write_csr(ppd->dd, csr, mode, data);
1434         return val;
1435 }
1436
1437 /* Software defined */
1438 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1439                                 u64 data)
1440 {
1441         u64 ret;
1442
1443         if (mode == CNTR_MODE_R) {
1444                 ret = *cntr;
1445         } else if (mode == CNTR_MODE_W) {
1446                 *cntr = data;
1447                 ret = data;
1448         } else {
1449                 dd_dev_err(dd, "Invalid cntr sw access mode");
1450                 return 0;
1451         }
1452
1453         hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1454
1455         return ret;
1456 }
1457
1458 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1459                                  int vl, int mode, u64 data)
1460 {
1461         struct hfi1_pportdata *ppd = context;
1462
1463         if (vl != CNTR_INVALID_VL)
1464                 return 0;
1465         return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1466 }
1467
1468 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1469                                  int vl, int mode, u64 data)
1470 {
1471         struct hfi1_pportdata *ppd = context;
1472
1473         if (vl != CNTR_INVALID_VL)
1474                 return 0;
1475         return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1476 }
1477
1478 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1479                                        void *context, int vl, int mode,
1480                                        u64 data)
1481 {
1482         struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1483
1484         if (vl != CNTR_INVALID_VL)
1485                 return 0;
1486         return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1487 }
1488
1489 static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1490                                    void *context, int vl, int mode, u64 data)
1491 {
1492         struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1493         u64 zero = 0;
1494         u64 *counter;
1495
1496         if (vl == CNTR_INVALID_VL)
1497                 counter = &ppd->port_xmit_discards;
1498         else if (vl >= 0 && vl < C_VL_COUNT)
1499                 counter = &ppd->port_xmit_discards_vl[vl];
1500         else
1501                 counter = &zero;
1502
1503         return read_write_sw(ppd->dd, counter, mode, data);
1504 }
1505
1506 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1507                                        void *context, int vl, int mode,
1508                                        u64 data)
1509 {
1510         struct hfi1_pportdata *ppd = context;
1511
1512         if (vl != CNTR_INVALID_VL)
1513                 return 0;
1514
1515         return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1516                              mode, data);
1517 }
1518
1519 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1520                                       void *context, int vl, int mode, u64 data)
1521 {
1522         struct hfi1_pportdata *ppd = context;
1523
1524         if (vl != CNTR_INVALID_VL)
1525                 return 0;
1526
1527         return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1528                              mode, data);
1529 }
1530
1531 u64 get_all_cpu_total(u64 __percpu *cntr)
1532 {
1533         int cpu;
1534         u64 counter = 0;
1535
1536         for_each_possible_cpu(cpu)
1537                 counter += *per_cpu_ptr(cntr, cpu);
1538         return counter;
1539 }
1540
1541 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1542                           u64 __percpu *cntr,
1543                           int vl, int mode, u64 data)
1544 {
1545         u64 ret = 0;
1546
1547         if (vl != CNTR_INVALID_VL)
1548                 return 0;
1549
1550         if (mode == CNTR_MODE_R) {
1551                 ret = get_all_cpu_total(cntr) - *z_val;
1552         } else if (mode == CNTR_MODE_W) {
1553                 /* A write can only zero the counter */
1554                 if (data == 0)
1555                         *z_val = get_all_cpu_total(cntr);
1556                 else
1557                         dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1558         } else {
1559                 dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1560                 return 0;
1561         }
1562
1563         return ret;
1564 }
1565
1566 static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1567                               void *context, int vl, int mode, u64 data)
1568 {
1569         struct hfi1_devdata *dd = context;
1570
1571         return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1572                               mode, data);
1573 }
1574
1575 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1576                                    void *context, int vl, int mode, u64 data)
1577 {
1578         struct hfi1_devdata *dd = context;
1579
1580         return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1581                               mode, data);
1582 }
1583
1584 static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1585                               void *context, int vl, int mode, u64 data)
1586 {
1587         struct hfi1_devdata *dd = context;
1588
1589         return dd->verbs_dev.n_piowait;
1590 }
1591
1592 static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1593                                void *context, int vl, int mode, u64 data)
1594 {
1595         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1596
1597         return dd->verbs_dev.n_piodrain;
1598 }
1599
1600 static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1601                               void *context, int vl, int mode, u64 data)
1602 {
1603         struct hfi1_devdata *dd = context;
1604
1605         return dd->verbs_dev.n_txwait;
1606 }
1607
1608 static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1609                                void *context, int vl, int mode, u64 data)
1610 {
1611         struct hfi1_devdata *dd = context;
1612
1613         return dd->verbs_dev.n_kmem_wait;
1614 }
1615
1616 static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1617                                    void *context, int vl, int mode, u64 data)
1618 {
1619         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1620
1621         return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1622                               mode, data);
1623 }
1624
1625 /* Software counters for the error status bits within MISC_ERR_STATUS */
1626 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1627                                              void *context, int vl, int mode,
1628                                              u64 data)
1629 {
1630         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1631
1632         return dd->misc_err_status_cnt[12];
1633 }
1634
1635 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1636                                           void *context, int vl, int mode,
1637                                           u64 data)
1638 {
1639         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1640
1641         return dd->misc_err_status_cnt[11];
1642 }
1643
1644 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1645                                                void *context, int vl, int mode,
1646                                                u64 data)
1647 {
1648         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1649
1650         return dd->misc_err_status_cnt[10];
1651 }
1652
1653 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1654                                                  void *context, int vl,
1655                                                  int mode, u64 data)
1656 {
1657         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1658
1659         return dd->misc_err_status_cnt[9];
1660 }
1661
1662 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1663                                            void *context, int vl, int mode,
1664                                            u64 data)
1665 {
1666         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1667
1668         return dd->misc_err_status_cnt[8];
1669 }
1670
1671 static u64 access_misc_efuse_read_bad_addr_err_cnt(
1672                                 const struct cntr_entry *entry,
1673                                 void *context, int vl, int mode, u64 data)
1674 {
1675         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1676
1677         return dd->misc_err_status_cnt[7];
1678 }
1679
1680 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1681                                                 void *context, int vl,
1682                                                 int mode, u64 data)
1683 {
1684         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1685
1686         return dd->misc_err_status_cnt[6];
1687 }
1688
1689 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1690                                               void *context, int vl, int mode,
1691                                               u64 data)
1692 {
1693         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1694
1695         return dd->misc_err_status_cnt[5];
1696 }
1697
1698 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1699                                             void *context, int vl, int mode,
1700                                             u64 data)
1701 {
1702         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1703
1704         return dd->misc_err_status_cnt[4];
1705 }
1706
1707 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1708                                                  void *context, int vl,
1709                                                  int mode, u64 data)
1710 {
1711         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1712
1713         return dd->misc_err_status_cnt[3];
1714 }
1715
1716 static u64 access_misc_csr_write_bad_addr_err_cnt(
1717                                 const struct cntr_entry *entry,
1718                                 void *context, int vl, int mode, u64 data)
1719 {
1720         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1721
1722         return dd->misc_err_status_cnt[2];
1723 }
1724
1725 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1726                                                  void *context, int vl,
1727                                                  int mode, u64 data)
1728 {
1729         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1730
1731         return dd->misc_err_status_cnt[1];
1732 }
1733
1734 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1735                                           void *context, int vl, int mode,
1736                                           u64 data)
1737 {
1738         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1739
1740         return dd->misc_err_status_cnt[0];
1741 }
1742
1743 /*
1744  * Software counter for the aggregate of
1745  * individual CceErrStatus counters
1746  */
1747 static u64 access_sw_cce_err_status_aggregated_cnt(
1748                                 const struct cntr_entry *entry,
1749                                 void *context, int vl, int mode, u64 data)
1750 {
1751         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1752
1753         return dd->sw_cce_err_status_aggregate;
1754 }
1755
1756 /*
1757  * Software counters corresponding to each of the
1758  * error status bits within CceErrStatus
1759  */
1760 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1761                                               void *context, int vl, int mode,
1762                                               u64 data)
1763 {
1764         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1765
1766         return dd->cce_err_status_cnt[40];
1767 }
1768
1769 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1770                                           void *context, int vl, int mode,
1771                                           u64 data)
1772 {
1773         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1774
1775         return dd->cce_err_status_cnt[39];
1776 }
1777
1778 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1779                                           void *context, int vl, int mode,
1780                                           u64 data)
1781 {
1782         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1783
1784         return dd->cce_err_status_cnt[38];
1785 }
1786
1787 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1788                                              void *context, int vl, int mode,
1789                                              u64 data)
1790 {
1791         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1792
1793         return dd->cce_err_status_cnt[37];
1794 }
1795
1796 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1797                                              void *context, int vl, int mode,
1798                                              u64 data)
1799 {
1800         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1801
1802         return dd->cce_err_status_cnt[36];
1803 }
1804
1805 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1806                                 const struct cntr_entry *entry,
1807                                 void *context, int vl, int mode, u64 data)
1808 {
1809         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1810
1811         return dd->cce_err_status_cnt[35];
1812 }
1813
1814 static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1815                                 const struct cntr_entry *entry,
1816                                 void *context, int vl, int mode, u64 data)
1817 {
1818         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1819
1820         return dd->cce_err_status_cnt[34];
1821 }
1822
1823 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1824                                                  void *context, int vl,
1825                                                  int mode, u64 data)
1826 {
1827         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1828
1829         return dd->cce_err_status_cnt[33];
1830 }
1831
1832 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1833                                                 void *context, int vl, int mode,
1834                                                 u64 data)
1835 {
1836         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1837
1838         return dd->cce_err_status_cnt[32];
1839 }
1840
1841 static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1842                                    void *context, int vl, int mode, u64 data)
1843 {
1844         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1845
1846         return dd->cce_err_status_cnt[31];
1847 }
1848
1849 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1850                                                void *context, int vl, int mode,
1851                                                u64 data)
1852 {
1853         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1854
1855         return dd->cce_err_status_cnt[30];
1856 }
1857
1858 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1859                                               void *context, int vl, int mode,
1860                                               u64 data)
1861 {
1862         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1863
1864         return dd->cce_err_status_cnt[29];
1865 }
1866
1867 static u64 access_pcic_transmit_back_parity_err_cnt(
1868                                 const struct cntr_entry *entry,
1869                                 void *context, int vl, int mode, u64 data)
1870 {
1871         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1872
1873         return dd->cce_err_status_cnt[28];
1874 }
1875
1876 static u64 access_pcic_transmit_front_parity_err_cnt(
1877                                 const struct cntr_entry *entry,
1878                                 void *context, int vl, int mode, u64 data)
1879 {
1880         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1881
1882         return dd->cce_err_status_cnt[27];
1883 }
1884
1885 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1886                                              void *context, int vl, int mode,
1887                                              u64 data)
1888 {
1889         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1890
1891         return dd->cce_err_status_cnt[26];
1892 }
1893
1894 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1895                                             void *context, int vl, int mode,
1896                                             u64 data)
1897 {
1898         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1899
1900         return dd->cce_err_status_cnt[25];
1901 }
1902
1903 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1904                                               void *context, int vl, int mode,
1905                                               u64 data)
1906 {
1907         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1908
1909         return dd->cce_err_status_cnt[24];
1910 }
1911
1912 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1913                                              void *context, int vl, int mode,
1914                                              u64 data)
1915 {
1916         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1917
1918         return dd->cce_err_status_cnt[23];
1919 }
1920
1921 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
1922                                                  void *context, int vl,
1923                                                  int mode, u64 data)
1924 {
1925         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1926
1927         return dd->cce_err_status_cnt[22];
1928 }
1929
1930 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
1931                                          void *context, int vl, int mode,
1932                                          u64 data)
1933 {
1934         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1935
1936         return dd->cce_err_status_cnt[21];
1937 }
1938
1939 static u64 access_pcic_n_post_dat_q_parity_err_cnt(
1940                                 const struct cntr_entry *entry,
1941                                 void *context, int vl, int mode, u64 data)
1942 {
1943         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1944
1945         return dd->cce_err_status_cnt[20];
1946 }
1947
1948 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
1949                                                  void *context, int vl,
1950                                                  int mode, u64 data)
1951 {
1952         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1953
1954         return dd->cce_err_status_cnt[19];
1955 }
1956
1957 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
1958                                              void *context, int vl, int mode,
1959                                              u64 data)
1960 {
1961         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1962
1963         return dd->cce_err_status_cnt[18];
1964 }
1965
1966 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
1967                                             void *context, int vl, int mode,
1968                                             u64 data)
1969 {
1970         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1971
1972         return dd->cce_err_status_cnt[17];
1973 }
1974
1975 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
1976                                               void *context, int vl, int mode,
1977                                               u64 data)
1978 {
1979         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1980
1981         return dd->cce_err_status_cnt[16];
1982 }
1983
1984 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
1985                                              void *context, int vl, int mode,
1986                                              u64 data)
1987 {
1988         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1989
1990         return dd->cce_err_status_cnt[15];
1991 }
1992
1993 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
1994                                                  void *context, int vl,
1995                                                  int mode, u64 data)
1996 {
1997         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1998
1999         return dd->cce_err_status_cnt[14];
2000 }
2001
2002 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2003                                              void *context, int vl, int mode,
2004                                              u64 data)
2005 {
2006         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2007
2008         return dd->cce_err_status_cnt[13];
2009 }
2010
2011 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2012                                 const struct cntr_entry *entry,
2013                                 void *context, int vl, int mode, u64 data)
2014 {
2015         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2016
2017         return dd->cce_err_status_cnt[12];
2018 }
2019
2020 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2021                                 const struct cntr_entry *entry,
2022                                 void *context, int vl, int mode, u64 data)
2023 {
2024         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2025
2026         return dd->cce_err_status_cnt[11];
2027 }
2028
2029 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2030                                 const struct cntr_entry *entry,
2031                                 void *context, int vl, int mode, u64 data)
2032 {
2033         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2034
2035         return dd->cce_err_status_cnt[10];
2036 }
2037
2038 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2039                                 const struct cntr_entry *entry,
2040                                 void *context, int vl, int mode, u64 data)
2041 {
2042         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2043
2044         return dd->cce_err_status_cnt[9];
2045 }
2046
2047 static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2048                                 const struct cntr_entry *entry,
2049                                 void *context, int vl, int mode, u64 data)
2050 {
2051         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2052
2053         return dd->cce_err_status_cnt[8];
2054 }
2055
2056 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2057                                                  void *context, int vl,
2058                                                  int mode, u64 data)
2059 {
2060         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2061
2062         return dd->cce_err_status_cnt[7];
2063 }
2064
2065 static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2066                                 const struct cntr_entry *entry,
2067                                 void *context, int vl, int mode, u64 data)
2068 {
2069         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2070
2071         return dd->cce_err_status_cnt[6];
2072 }
2073
2074 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2075                                                void *context, int vl, int mode,
2076                                                u64 data)
2077 {
2078         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2079
2080         return dd->cce_err_status_cnt[5];
2081 }
2082
2083 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2084                                           void *context, int vl, int mode,
2085                                           u64 data)
2086 {
2087         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2088
2089         return dd->cce_err_status_cnt[4];
2090 }
2091
2092 static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2093                                 const struct cntr_entry *entry,
2094                                 void *context, int vl, int mode, u64 data)
2095 {
2096         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2097
2098         return dd->cce_err_status_cnt[3];
2099 }
2100
2101 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2102                                                  void *context, int vl,
2103                                                  int mode, u64 data)
2104 {
2105         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2106
2107         return dd->cce_err_status_cnt[2];
2108 }
2109
2110 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2111                                                 void *context, int vl,
2112                                                 int mode, u64 data)
2113 {
2114         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2115
2116         return dd->cce_err_status_cnt[1];
2117 }
2118
2119 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2120                                          void *context, int vl, int mode,
2121                                          u64 data)
2122 {
2123         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2124
2125         return dd->cce_err_status_cnt[0];
2126 }
2127
2128 /*
2129  * Software counters corresponding to each of the
2130  * error status bits within RcvErrStatus
2131  */
2132 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2133                                         void *context, int vl, int mode,
2134                                         u64 data)
2135 {
2136         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2137
2138         return dd->rcv_err_status_cnt[63];
2139 }
2140
2141 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2142                                                 void *context, int vl,
2143                                                 int mode, u64 data)
2144 {
2145         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2146
2147         return dd->rcv_err_status_cnt[62];
2148 }
2149
2150 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2151                                                void *context, int vl, int mode,
2152                                                u64 data)
2153 {
2154         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2155
2156         return dd->rcv_err_status_cnt[61];
2157 }
2158
2159 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2160                                          void *context, int vl, int mode,
2161                                          u64 data)
2162 {
2163         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2164
2165         return dd->rcv_err_status_cnt[60];
2166 }
2167
2168 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2169                                                  void *context, int vl,
2170                                                  int mode, u64 data)
2171 {
2172         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2173
2174         return dd->rcv_err_status_cnt[59];
2175 }
2176
2177 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2178                                                  void *context, int vl,
2179                                                  int mode, u64 data)
2180 {
2181         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2182
2183         return dd->rcv_err_status_cnt[58];
2184 }
2185
2186 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2187                                             void *context, int vl, int mode,
2188                                             u64 data)
2189 {
2190         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2191
2192         return dd->rcv_err_status_cnt[57];
2193 }
2194
2195 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2196                                            void *context, int vl, int mode,
2197                                            u64 data)
2198 {
2199         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2200
2201         return dd->rcv_err_status_cnt[56];
2202 }
2203
2204 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2205                                            void *context, int vl, int mode,
2206                                            u64 data)
2207 {
2208         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2209
2210         return dd->rcv_err_status_cnt[55];
2211 }
2212
2213 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2214                                 const struct cntr_entry *entry,
2215                                 void *context, int vl, int mode, u64 data)
2216 {
2217         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2218
2219         return dd->rcv_err_status_cnt[54];
2220 }
2221
2222 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2223                                 const struct cntr_entry *entry,
2224                                 void *context, int vl, int mode, u64 data)
2225 {
2226         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2227
2228         return dd->rcv_err_status_cnt[53];
2229 }
2230
2231 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2232                                                  void *context, int vl,
2233                                                  int mode, u64 data)
2234 {
2235         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2236
2237         return dd->rcv_err_status_cnt[52];
2238 }
2239
2240 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2241                                                  void *context, int vl,
2242                                                  int mode, u64 data)
2243 {
2244         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2245
2246         return dd->rcv_err_status_cnt[51];
2247 }
2248
2249 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2250                                                  void *context, int vl,
2251                                                  int mode, u64 data)
2252 {
2253         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2254
2255         return dd->rcv_err_status_cnt[50];
2256 }
2257
2258 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2259                                                  void *context, int vl,
2260                                                  int mode, u64 data)
2261 {
2262         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2263
2264         return dd->rcv_err_status_cnt[49];
2265 }
2266
2267 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2268                                                  void *context, int vl,
2269                                                  int mode, u64 data)
2270 {
2271         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2272
2273         return dd->rcv_err_status_cnt[48];
2274 }
2275
2276 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2277                                                  void *context, int vl,
2278                                                  int mode, u64 data)
2279 {
2280         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2281
2282         return dd->rcv_err_status_cnt[47];
2283 }
2284
2285 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2286                                          void *context, int vl, int mode,
2287                                          u64 data)
2288 {
2289         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2290
2291         return dd->rcv_err_status_cnt[46];
2292 }
2293
2294 static u64 access_rx_hq_intr_csr_parity_err_cnt(
2295                                 const struct cntr_entry *entry,
2296                                 void *context, int vl, int mode, u64 data)
2297 {
2298         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2299
2300         return dd->rcv_err_status_cnt[45];
2301 }
2302
2303 static u64 access_rx_lookup_csr_parity_err_cnt(
2304                                 const struct cntr_entry *entry,
2305                                 void *context, int vl, int mode, u64 data)
2306 {
2307         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2308
2309         return dd->rcv_err_status_cnt[44];
2310 }
2311
2312 static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2313                                 const struct cntr_entry *entry,
2314                                 void *context, int vl, int mode, u64 data)
2315 {
2316         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2317
2318         return dd->rcv_err_status_cnt[43];
2319 }
2320
2321 static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2322                                 const struct cntr_entry *entry,
2323                                 void *context, int vl, int mode, u64 data)
2324 {
2325         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2326
2327         return dd->rcv_err_status_cnt[42];
2328 }
2329
2330 static u64 access_rx_lookup_des_part2_parity_err_cnt(
2331                                 const struct cntr_entry *entry,
2332                                 void *context, int vl, int mode, u64 data)
2333 {
2334         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2335
2336         return dd->rcv_err_status_cnt[41];
2337 }
2338
2339 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2340                                 const struct cntr_entry *entry,
2341                                 void *context, int vl, int mode, u64 data)
2342 {
2343         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2344
2345         return dd->rcv_err_status_cnt[40];
2346 }
2347
2348 static u64 access_rx_lookup_des_part1_unc_err_cnt(
2349                                 const struct cntr_entry *entry,
2350                                 void *context, int vl, int mode, u64 data)
2351 {
2352         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2353
2354         return dd->rcv_err_status_cnt[39];
2355 }
2356
2357 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2358                                 const struct cntr_entry *entry,
2359                                 void *context, int vl, int mode, u64 data)
2360 {
2361         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2362
2363         return dd->rcv_err_status_cnt[38];
2364 }
2365
2366 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2367                                 const struct cntr_entry *entry,
2368                                 void *context, int vl, int mode, u64 data)
2369 {
2370         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2371
2372         return dd->rcv_err_status_cnt[37];
2373 }
2374
2375 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2376                                 const struct cntr_entry *entry,
2377                                 void *context, int vl, int mode, u64 data)
2378 {
2379         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2380
2381         return dd->rcv_err_status_cnt[36];
2382 }
2383
2384 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2385                                 const struct cntr_entry *entry,
2386                                 void *context, int vl, int mode, u64 data)
2387 {
2388         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2389
2390         return dd->rcv_err_status_cnt[35];
2391 }
2392
2393 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2394                                 const struct cntr_entry *entry,
2395                                 void *context, int vl, int mode, u64 data)
2396 {
2397         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2398
2399         return dd->rcv_err_status_cnt[34];
2400 }
2401
2402 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2403                                 const struct cntr_entry *entry,
2404                                 void *context, int vl, int mode, u64 data)
2405 {
2406         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2407
2408         return dd->rcv_err_status_cnt[33];
2409 }
2410
2411 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2412                                         void *context, int vl, int mode,
2413                                         u64 data)
2414 {
2415         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2416
2417         return dd->rcv_err_status_cnt[32];
2418 }
2419
2420 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2421                                        void *context, int vl, int mode,
2422                                        u64 data)
2423 {
2424         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2425
2426         return dd->rcv_err_status_cnt[31];
2427 }
2428
2429 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2430                                           void *context, int vl, int mode,
2431                                           u64 data)
2432 {
2433         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2434
2435         return dd->rcv_err_status_cnt[30];
2436 }
2437
2438 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2439                                              void *context, int vl, int mode,
2440                                              u64 data)
2441 {
2442         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2443
2444         return dd->rcv_err_status_cnt[29];
2445 }
2446
2447 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2448                                                  void *context, int vl,
2449                                                  int mode, u64 data)
2450 {
2451         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2452
2453         return dd->rcv_err_status_cnt[28];
2454 }
2455
2456 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2457                                 const struct cntr_entry *entry,
2458                                 void *context, int vl, int mode, u64 data)
2459 {
2460         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2461
2462         return dd->rcv_err_status_cnt[27];
2463 }
2464
2465 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2466                                 const struct cntr_entry *entry,
2467                                 void *context, int vl, int mode, u64 data)
2468 {
2469         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2470
2471         return dd->rcv_err_status_cnt[26];
2472 }
2473
2474 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2475                                 const struct cntr_entry *entry,
2476                                 void *context, int vl, int mode, u64 data)
2477 {
2478         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2479
2480         return dd->rcv_err_status_cnt[25];
2481 }
2482
2483 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2484                                 const struct cntr_entry *entry,
2485                                 void *context, int vl, int mode, u64 data)
2486 {
2487         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2488
2489         return dd->rcv_err_status_cnt[24];
2490 }
2491
2492 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2493                                 const struct cntr_entry *entry,
2494                                 void *context, int vl, int mode, u64 data)
2495 {
2496         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2497
2498         return dd->rcv_err_status_cnt[23];
2499 }
2500
2501 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2502                                 const struct cntr_entry *entry,
2503                                 void *context, int vl, int mode, u64 data)
2504 {
2505         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2506
2507         return dd->rcv_err_status_cnt[22];
2508 }
2509
2510 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2511                                 const struct cntr_entry *entry,
2512                                 void *context, int vl, int mode, u64 data)
2513 {
2514         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2515
2516         return dd->rcv_err_status_cnt[21];
2517 }
2518
2519 static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2520                                 const struct cntr_entry *entry,
2521                                 void *context, int vl, int mode, u64 data)
2522 {
2523         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2524
2525         return dd->rcv_err_status_cnt[20];
2526 }
2527
2528 static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2529                                 const struct cntr_entry *entry,
2530                                 void *context, int vl, int mode, u64 data)
2531 {
2532         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2533
2534         return dd->rcv_err_status_cnt[19];
2535 }
2536
2537 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2538                                                  void *context, int vl,
2539                                                  int mode, u64 data)
2540 {
2541         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2542
2543         return dd->rcv_err_status_cnt[18];
2544 }
2545
2546 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2547                                                  void *context, int vl,
2548                                                  int mode, u64 data)
2549 {
2550         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2551
2552         return dd->rcv_err_status_cnt[17];
2553 }
2554
2555 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2556                                 const struct cntr_entry *entry,
2557                                 void *context, int vl, int mode, u64 data)
2558 {
2559         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2560
2561         return dd->rcv_err_status_cnt[16];
2562 }
2563
2564 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2565                                 const struct cntr_entry *entry,
2566                                 void *context, int vl, int mode, u64 data)
2567 {
2568         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2569
2570         return dd->rcv_err_status_cnt[15];
2571 }
2572
2573 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2574                                                 void *context, int vl,
2575                                                 int mode, u64 data)
2576 {
2577         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2578
2579         return dd->rcv_err_status_cnt[14];
2580 }
2581
2582 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2583                                                 void *context, int vl,
2584                                                 int mode, u64 data)
2585 {
2586         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2587
2588         return dd->rcv_err_status_cnt[13];
2589 }
2590
2591 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2592                                               void *context, int vl, int mode,
2593                                               u64 data)
2594 {
2595         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2596
2597         return dd->rcv_err_status_cnt[12];
2598 }
2599
2600 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2601                                           void *context, int vl, int mode,
2602                                           u64 data)
2603 {
2604         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2605
2606         return dd->rcv_err_status_cnt[11];
2607 }
2608
2609 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2610                                           void *context, int vl, int mode,
2611                                           u64 data)
2612 {
2613         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2614
2615         return dd->rcv_err_status_cnt[10];
2616 }
2617
2618 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2619                                                void *context, int vl, int mode,
2620                                                u64 data)
2621 {
2622         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2623
2624         return dd->rcv_err_status_cnt[9];
2625 }
2626
2627 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2628                                             void *context, int vl, int mode,
2629                                             u64 data)
2630 {
2631         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2632
2633         return dd->rcv_err_status_cnt[8];
2634 }
2635
2636 static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2637                                 const struct cntr_entry *entry,
2638                                 void *context, int vl, int mode, u64 data)
2639 {
2640         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2641
2642         return dd->rcv_err_status_cnt[7];
2643 }
2644
2645 static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2646                                 const struct cntr_entry *entry,
2647                                 void *context, int vl, int mode, u64 data)
2648 {
2649         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2650
2651         return dd->rcv_err_status_cnt[6];
2652 }
2653
2654 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2655                                           void *context, int vl, int mode,
2656                                           u64 data)
2657 {
2658         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2659
2660         return dd->rcv_err_status_cnt[5];
2661 }
2662
2663 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2664                                           void *context, int vl, int mode,
2665                                           u64 data)
2666 {
2667         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2668
2669         return dd->rcv_err_status_cnt[4];
2670 }
2671
2672 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2673                                          void *context, int vl, int mode,
2674                                          u64 data)
2675 {
2676         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2677
2678         return dd->rcv_err_status_cnt[3];
2679 }
2680
2681 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2682                                          void *context, int vl, int mode,
2683                                          u64 data)
2684 {
2685         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2686
2687         return dd->rcv_err_status_cnt[2];
2688 }
2689
2690 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2691                                             void *context, int vl, int mode,
2692                                             u64 data)
2693 {
2694         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2695
2696         return dd->rcv_err_status_cnt[1];
2697 }
2698
2699 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2700                                          void *context, int vl, int mode,
2701                                          u64 data)
2702 {
2703         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2704
2705         return dd->rcv_err_status_cnt[0];
2706 }
2707
2708 /*
2709  * Software counters corresponding to each of the
2710  * error status bits within SendPioErrStatus
2711  */
2712 static u64 access_pio_pec_sop_head_parity_err_cnt(
2713                                 const struct cntr_entry *entry,
2714                                 void *context, int vl, int mode, u64 data)
2715 {
2716         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2717
2718         return dd->send_pio_err_status_cnt[35];
2719 }
2720
2721 static u64 access_pio_pcc_sop_head_parity_err_cnt(
2722                                 const struct cntr_entry *entry,
2723                                 void *context, int vl, int mode, u64 data)
2724 {
2725         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2726
2727         return dd->send_pio_err_status_cnt[34];
2728 }
2729
2730 static u64 access_pio_last_returned_cnt_parity_err_cnt(
2731                                 const struct cntr_entry *entry,
2732                                 void *context, int vl, int mode, u64 data)
2733 {
2734         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2735
2736         return dd->send_pio_err_status_cnt[33];
2737 }
2738
2739 static u64 access_pio_current_free_cnt_parity_err_cnt(
2740                                 const struct cntr_entry *entry,
2741                                 void *context, int vl, int mode, u64 data)
2742 {
2743         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2744
2745         return dd->send_pio_err_status_cnt[32];
2746 }
2747
2748 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2749                                           void *context, int vl, int mode,
2750                                           u64 data)
2751 {
2752         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2753
2754         return dd->send_pio_err_status_cnt[31];
2755 }
2756
2757 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2758                                           void *context, int vl, int mode,
2759                                           u64 data)
2760 {
2761         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2762
2763         return dd->send_pio_err_status_cnt[30];
2764 }
2765
2766 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2767                                            void *context, int vl, int mode,
2768                                            u64 data)
2769 {
2770         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2771
2772         return dd->send_pio_err_status_cnt[29];
2773 }
2774
2775 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2776                                 const struct cntr_entry *entry,
2777                                 void *context, int vl, int mode, u64 data)
2778 {
2779         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2780
2781         return dd->send_pio_err_status_cnt[28];
2782 }
2783
2784 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2785                                              void *context, int vl, int mode,
2786                                              u64 data)
2787 {
2788         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2789
2790         return dd->send_pio_err_status_cnt[27];
2791 }
2792
2793 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2794                                              void *context, int vl, int mode,
2795                                              u64 data)
2796 {
2797         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2798
2799         return dd->send_pio_err_status_cnt[26];
2800 }
2801
2802 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2803                                                 void *context, int vl,
2804                                                 int mode, u64 data)
2805 {
2806         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2807
2808         return dd->send_pio_err_status_cnt[25];
2809 }
2810
2811 static u64 access_pio_block_qw_count_parity_err_cnt(
2812                                 const struct cntr_entry *entry,
2813                                 void *context, int vl, int mode, u64 data)
2814 {
2815         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2816
2817         return dd->send_pio_err_status_cnt[24];
2818 }
2819
2820 static u64 access_pio_write_qw_valid_parity_err_cnt(
2821                                 const struct cntr_entry *entry,
2822                                 void *context, int vl, int mode, u64 data)
2823 {
2824         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2825
2826         return dd->send_pio_err_status_cnt[23];
2827 }
2828
2829 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2830                                             void *context, int vl, int mode,
2831                                             u64 data)
2832 {
2833         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2834
2835         return dd->send_pio_err_status_cnt[22];
2836 }
2837
2838 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2839                                                 void *context, int vl,
2840                                                 int mode, u64 data)
2841 {
2842         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2843
2844         return dd->send_pio_err_status_cnt[21];
2845 }
2846
2847 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2848                                                 void *context, int vl,
2849                                                 int mode, u64 data)
2850 {
2851         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2852
2853         return dd->send_pio_err_status_cnt[20];
2854 }
2855
2856 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2857                                                 void *context, int vl,
2858                                                 int mode, u64 data)
2859 {
2860         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2861
2862         return dd->send_pio_err_status_cnt[19];
2863 }
2864
2865 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2866                                 const struct cntr_entry *entry,
2867                                 void *context, int vl, int mode, u64 data)
2868 {
2869         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2870
2871         return dd->send_pio_err_status_cnt[18];
2872 }
2873
2874 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2875                                          void *context, int vl, int mode,
2876                                          u64 data)
2877 {
2878         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2879
2880         return dd->send_pio_err_status_cnt[17];
2881 }
2882
2883 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2884                                             void *context, int vl, int mode,
2885                                             u64 data)
2886 {
2887         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2888
2889         return dd->send_pio_err_status_cnt[16];
2890 }
2891
2892 static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2893                                 const struct cntr_entry *entry,
2894                                 void *context, int vl, int mode, u64 data)
2895 {
2896         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2897
2898         return dd->send_pio_err_status_cnt[15];
2899 }
2900
2901 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2902                                 const struct cntr_entry *entry,
2903                                 void *context, int vl, int mode, u64 data)
2904 {
2905         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2906
2907         return dd->send_pio_err_status_cnt[14];
2908 }
2909
2910 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2911                                 const struct cntr_entry *entry,
2912                                 void *context, int vl, int mode, u64 data)
2913 {
2914         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2915
2916         return dd->send_pio_err_status_cnt[13];
2917 }
2918
2919 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
2920                                 const struct cntr_entry *entry,
2921                                 void *context, int vl, int mode, u64 data)
2922 {
2923         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2924
2925         return dd->send_pio_err_status_cnt[12];
2926 }
2927
2928 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
2929                                 const struct cntr_entry *entry,
2930                                 void *context, int vl, int mode, u64 data)
2931 {
2932         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2933
2934         return dd->send_pio_err_status_cnt[11];
2935 }
2936
2937 static u64 access_pio_sm_pkt_reset_parity_err_cnt(
2938                                 const struct cntr_entry *entry,
2939                                 void *context, int vl, int mode, u64 data)
2940 {
2941         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2942
2943         return dd->send_pio_err_status_cnt[10];
2944 }
2945
2946 static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
2947                                 const struct cntr_entry *entry,
2948                                 void *context, int vl, int mode, u64 data)
2949 {
2950         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2951
2952         return dd->send_pio_err_status_cnt[9];
2953 }
2954
2955 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
2956                                 const struct cntr_entry *entry,
2957                                 void *context, int vl, int mode, u64 data)
2958 {
2959         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2960
2961         return dd->send_pio_err_status_cnt[8];
2962 }
2963
2964 static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
2965                                 const struct cntr_entry *entry,
2966                                 void *context, int vl, int mode, u64 data)
2967 {
2968         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2969
2970         return dd->send_pio_err_status_cnt[7];
2971 }
2972
2973 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
2974                                               void *context, int vl, int mode,
2975                                               u64 data)
2976 {
2977         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2978
2979         return dd->send_pio_err_status_cnt[6];
2980 }
2981
2982 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
2983                                               void *context, int vl, int mode,
2984                                               u64 data)
2985 {
2986         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2987
2988         return dd->send_pio_err_status_cnt[5];
2989 }
2990
2991 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
2992                                            void *context, int vl, int mode,
2993                                            u64 data)
2994 {
2995         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2996
2997         return dd->send_pio_err_status_cnt[4];
2998 }
2999
3000 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3001                                            void *context, int vl, int mode,
3002                                            u64 data)
3003 {
3004         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3005
3006         return dd->send_pio_err_status_cnt[3];
3007 }
3008
3009 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3010                                          void *context, int vl, int mode,
3011                                          u64 data)
3012 {
3013         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3014
3015         return dd->send_pio_err_status_cnt[2];
3016 }
3017
3018 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3019                                                 void *context, int vl,
3020                                                 int mode, u64 data)
3021 {
3022         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3023
3024         return dd->send_pio_err_status_cnt[1];
3025 }
3026
3027 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3028                                              void *context, int vl, int mode,
3029                                              u64 data)
3030 {
3031         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3032
3033         return dd->send_pio_err_status_cnt[0];
3034 }
3035
3036 /*
3037  * Software counters corresponding to each of the
3038  * error status bits within SendDmaErrStatus
3039  */
3040 static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3041                                 const struct cntr_entry *entry,
3042                                 void *context, int vl, int mode, u64 data)
3043 {
3044         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3045
3046         return dd->send_dma_err_status_cnt[3];
3047 }
3048
3049 static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3050                                 const struct cntr_entry *entry,
3051                                 void *context, int vl, int mode, u64 data)
3052 {
3053         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3054
3055         return dd->send_dma_err_status_cnt[2];
3056 }
3057
3058 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3059                                           void *context, int vl, int mode,
3060                                           u64 data)
3061 {
3062         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3063
3064         return dd->send_dma_err_status_cnt[1];
3065 }
3066
3067 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3068                                        void *context, int vl, int mode,
3069                                        u64 data)
3070 {
3071         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3072
3073         return dd->send_dma_err_status_cnt[0];
3074 }
3075
3076 /*
3077  * Software counters corresponding to each of the
3078  * error status bits within SendEgressErrStatus
3079  */
3080 static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3081                                 const struct cntr_entry *entry,
3082                                 void *context, int vl, int mode, u64 data)
3083 {
3084         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3085
3086         return dd->send_egress_err_status_cnt[63];
3087 }
3088
3089 static u64 access_tx_read_sdma_memory_csr_err_cnt(
3090                                 const struct cntr_entry *entry,
3091                                 void *context, int vl, int mode, u64 data)
3092 {
3093         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3094
3095         return dd->send_egress_err_status_cnt[62];
3096 }
3097
3098 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3099                                              void *context, int vl, int mode,
3100                                              u64 data)
3101 {
3102         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3103
3104         return dd->send_egress_err_status_cnt[61];
3105 }
3106
3107 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3108                                                  void *context, int vl,
3109                                                  int mode, u64 data)
3110 {
3111         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3112
3113         return dd->send_egress_err_status_cnt[60];
3114 }
3115
3116 static u64 access_tx_read_sdma_memory_cor_err_cnt(
3117                                 const struct cntr_entry *entry,
3118                                 void *context, int vl, int mode, u64 data)
3119 {
3120         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3121
3122         return dd->send_egress_err_status_cnt[59];
3123 }
3124
3125 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3126                                         void *context, int vl, int mode,
3127                                         u64 data)
3128 {
3129         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3130
3131         return dd->send_egress_err_status_cnt[58];
3132 }
3133
3134 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3135                                             void *context, int vl, int mode,
3136                                             u64 data)
3137 {
3138         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3139
3140         return dd->send_egress_err_status_cnt[57];
3141 }
3142
3143 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3144                                               void *context, int vl, int mode,
3145                                               u64 data)
3146 {
3147         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3148
3149         return dd->send_egress_err_status_cnt[56];
3150 }
3151
3152 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3153                                               void *context, int vl, int mode,
3154                                               u64 data)
3155 {
3156         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3157
3158         return dd->send_egress_err_status_cnt[55];
3159 }
3160
3161 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3162                                               void *context, int vl, int mode,
3163                                               u64 data)
3164 {
3165         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3166
3167         return dd->send_egress_err_status_cnt[54];
3168 }
3169
3170 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3171                                               void *context, int vl, int mode,
3172                                               u64 data)
3173 {
3174         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3175
3176         return dd->send_egress_err_status_cnt[53];
3177 }
3178
3179 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3180                                               void *context, int vl, int mode,
3181                                               u64 data)
3182 {
3183         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3184
3185         return dd->send_egress_err_status_cnt[52];
3186 }
3187
3188 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3189                                               void *context, int vl, int mode,
3190                                               u64 data)
3191 {
3192         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3193
3194         return dd->send_egress_err_status_cnt[51];
3195 }
3196
3197 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3198                                               void *context, int vl, int mode,
3199                                               u64 data)
3200 {
3201         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3202
3203         return dd->send_egress_err_status_cnt[50];
3204 }
3205
3206 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3207                                               void *context, int vl, int mode,
3208                                               u64 data)
3209 {
3210         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3211
3212         return dd->send_egress_err_status_cnt[49];
3213 }
3214
3215 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3216                                               void *context, int vl, int mode,
3217                                               u64 data)
3218 {
3219         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3220
3221         return dd->send_egress_err_status_cnt[48];
3222 }
3223
3224 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3225                                               void *context, int vl, int mode,
3226                                               u64 data)
3227 {
3228         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3229
3230         return dd->send_egress_err_status_cnt[47];
3231 }
3232
3233 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3234                                             void *context, int vl, int mode,
3235                                             u64 data)
3236 {
3237         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3238
3239         return dd->send_egress_err_status_cnt[46];
3240 }
3241
3242 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3243                                              void *context, int vl, int mode,
3244                                              u64 data)
3245 {
3246         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3247
3248         return dd->send_egress_err_status_cnt[45];
3249 }
3250
3251 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3252                                                  void *context, int vl,
3253                                                  int mode, u64 data)
3254 {
3255         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3256
3257         return dd->send_egress_err_status_cnt[44];
3258 }
3259
3260 static u64 access_tx_read_sdma_memory_unc_err_cnt(
3261                                 const struct cntr_entry *entry,
3262                                 void *context, int vl, int mode, u64 data)
3263 {
3264         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3265
3266         return dd->send_egress_err_status_cnt[43];
3267 }
3268
3269 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3270                                         void *context, int vl, int mode,
3271                                         u64 data)
3272 {
3273         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3274
3275         return dd->send_egress_err_status_cnt[42];
3276 }
3277
3278 static u64 access_tx_credit_return_partiy_err_cnt(
3279                                 const struct cntr_entry *entry,
3280                                 void *context, int vl, int mode, u64 data)
3281 {
3282         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3283
3284         return dd->send_egress_err_status_cnt[41];
3285 }
3286
3287 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3288                                 const struct cntr_entry *entry,
3289                                 void *context, int vl, int mode, u64 data)
3290 {
3291         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3292
3293         return dd->send_egress_err_status_cnt[40];
3294 }
3295
3296 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3297                                 const struct cntr_entry *entry,
3298                                 void *context, int vl, int mode, u64 data)
3299 {
3300         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3301
3302         return dd->send_egress_err_status_cnt[39];
3303 }
3304
3305 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3306                                 const struct cntr_entry *entry,
3307                                 void *context, int vl, int mode, u64 data)
3308 {
3309         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3310
3311         return dd->send_egress_err_status_cnt[38];
3312 }
3313
3314 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3315                                 const struct cntr_entry *entry,
3316                                 void *context, int vl, int mode, u64 data)
3317 {
3318         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3319
3320         return dd->send_egress_err_status_cnt[37];
3321 }
3322
3323 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3324                                 const struct cntr_entry *entry,
3325                                 void *context, int vl, int mode, u64 data)
3326 {
3327         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3328
3329         return dd->send_egress_err_status_cnt[36];
3330 }
3331
3332 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3333                                 const struct cntr_entry *entry,
3334                                 void *context, int vl, int mode, u64 data)
3335 {
3336         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3337
3338         return dd->send_egress_err_status_cnt[35];
3339 }
3340
3341 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3342                                 const struct cntr_entry *entry,
3343                                 void *context, int vl, int mode, u64 data)
3344 {
3345         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3346
3347         return dd->send_egress_err_status_cnt[34];
3348 }
3349
3350 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3351                                 const struct cntr_entry *entry,
3352                                 void *context, int vl, int mode, u64 data)
3353 {
3354         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3355
3356         return dd->send_egress_err_status_cnt[33];
3357 }
3358
3359 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3360                                 const struct cntr_entry *entry,
3361                                 void *context, int vl, int mode, u64 data)
3362 {
3363         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3364
3365         return dd->send_egress_err_status_cnt[32];
3366 }
3367
3368 static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3369                                 const struct cntr_entry *entry,
3370                                 void *context, int vl, int mode, u64 data)
3371 {
3372         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3373
3374         return dd->send_egress_err_status_cnt[31];
3375 }
3376
3377 static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3378                                 const struct cntr_entry *entry,
3379                                 void *context, int vl, int mode, u64 data)
3380 {
3381         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3382
3383         return dd->send_egress_err_status_cnt[30];
3384 }
3385
3386 static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3387                                 const struct cntr_entry *entry,
3388                                 void *context, int vl, int mode, u64 data)
3389 {
3390         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3391
3392         return dd->send_egress_err_status_cnt[29];
3393 }
3394
3395 static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3396                                 const struct cntr_entry *entry,
3397                                 void *context, int vl, int mode, u64 data)
3398 {
3399         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3400
3401         return dd->send_egress_err_status_cnt[28];
3402 }
3403
3404 static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3405                                 const struct cntr_entry *entry,
3406                                 void *context, int vl, int mode, u64 data)
3407 {
3408         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3409
3410         return dd->send_egress_err_status_cnt[27];
3411 }
3412
3413 static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3414                                 const struct cntr_entry *entry,
3415                                 void *context, int vl, int mode, u64 data)
3416 {
3417         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3418
3419         return dd->send_egress_err_status_cnt[26];
3420 }
3421
3422 static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3423                                 const struct cntr_entry *entry,
3424                                 void *context, int vl, int mode, u64 data)
3425 {
3426         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3427
3428         return dd->send_egress_err_status_cnt[25];
3429 }
3430
3431 static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3432                                 const struct cntr_entry *entry,
3433                                 void *context, int vl, int mode, u64 data)
3434 {
3435         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3436
3437         return dd->send_egress_err_status_cnt[24];
3438 }
3439
3440 static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3441                                 const struct cntr_entry *entry,
3442                                 void *context, int vl, int mode, u64 data)
3443 {
3444         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3445
3446         return dd->send_egress_err_status_cnt[23];
3447 }
3448
3449 static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3450                                 const struct cntr_entry *entry,
3451                                 void *context, int vl, int mode, u64 data)
3452 {
3453         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3454
3455         return dd->send_egress_err_status_cnt[22];
3456 }
3457
3458 static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3459                                 const struct cntr_entry *entry,
3460                                 void *context, int vl, int mode, u64 data)
3461 {
3462         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3463
3464         return dd->send_egress_err_status_cnt[21];
3465 }
3466
3467 static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3468                                 const struct cntr_entry *entry,
3469                                 void *context, int vl, int mode, u64 data)
3470 {
3471         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3472
3473         return dd->send_egress_err_status_cnt[20];
3474 }
3475
3476 static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3477                                 const struct cntr_entry *entry,
3478                                 void *context, int vl, int mode, u64 data)
3479 {
3480         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3481
3482         return dd->send_egress_err_status_cnt[19];
3483 }
3484
3485 static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3486                                 const struct cntr_entry *entry,
3487                                 void *context, int vl, int mode, u64 data)
3488 {
3489         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3490
3491         return dd->send_egress_err_status_cnt[18];
3492 }
3493
3494 static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3495                                 const struct cntr_entry *entry,
3496                                 void *context, int vl, int mode, u64 data)
3497 {
3498         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3499
3500         return dd->send_egress_err_status_cnt[17];
3501 }
3502
3503 static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3504                                 const struct cntr_entry *entry,
3505                                 void *context, int vl, int mode, u64 data)
3506 {
3507         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3508
3509         return dd->send_egress_err_status_cnt[16];
3510 }
3511
3512 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3513                                            void *context, int vl, int mode,
3514                                            u64 data)
3515 {
3516         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3517
3518         return dd->send_egress_err_status_cnt[15];
3519 }
3520
3521 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3522                                                  void *context, int vl,
3523                                                  int mode, u64 data)
3524 {
3525         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3526
3527         return dd->send_egress_err_status_cnt[14];
3528 }
3529
3530 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3531                                                void *context, int vl, int mode,
3532                                                u64 data)
3533 {
3534         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3535
3536         return dd->send_egress_err_status_cnt[13];
3537 }
3538
3539 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3540                                         void *context, int vl, int mode,
3541                                         u64 data)
3542 {
3543         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3544
3545         return dd->send_egress_err_status_cnt[12];
3546 }
3547
3548 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3549                                 const struct cntr_entry *entry,
3550                                 void *context, int vl, int mode, u64 data)
3551 {
3552         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3553
3554         return dd->send_egress_err_status_cnt[11];
3555 }
3556
3557 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3558                                              void *context, int vl, int mode,
3559                                              u64 data)
3560 {
3561         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3562
3563         return dd->send_egress_err_status_cnt[10];
3564 }
3565
3566 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3567                                             void *context, int vl, int mode,
3568                                             u64 data)
3569 {
3570         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3571
3572         return dd->send_egress_err_status_cnt[9];
3573 }
3574
3575 static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3576                                 const struct cntr_entry *entry,
3577                                 void *context, int vl, int mode, u64 data)
3578 {
3579         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3580
3581         return dd->send_egress_err_status_cnt[8];
3582 }
3583
3584 static u64 access_tx_pio_launch_intf_parity_err_cnt(
3585                                 const struct cntr_entry *entry,
3586                                 void *context, int vl, int mode, u64 data)
3587 {
3588         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3589
3590         return dd->send_egress_err_status_cnt[7];
3591 }
3592
3593 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3594                                             void *context, int vl, int mode,
3595                                             u64 data)
3596 {
3597         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3598
3599         return dd->send_egress_err_status_cnt[6];
3600 }
3601
3602 static u64 access_tx_incorrect_link_state_err_cnt(
3603                                 const struct cntr_entry *entry,
3604                                 void *context, int vl, int mode, u64 data)
3605 {
3606         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3607
3608         return dd->send_egress_err_status_cnt[5];
3609 }
3610
3611 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3612                                       void *context, int vl, int mode,
3613                                       u64 data)
3614 {
3615         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3616
3617         return dd->send_egress_err_status_cnt[4];
3618 }
3619
3620 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3621                                 const struct cntr_entry *entry,
3622                                 void *context, int vl, int mode, u64 data)
3623 {
3624         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3625
3626         return dd->send_egress_err_status_cnt[3];
3627 }
3628
3629 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3630                                             void *context, int vl, int mode,
3631                                             u64 data)
3632 {
3633         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3634
3635         return dd->send_egress_err_status_cnt[2];
3636 }
3637
3638 static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3639                                 const struct cntr_entry *entry,
3640                                 void *context, int vl, int mode, u64 data)
3641 {
3642         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3643
3644         return dd->send_egress_err_status_cnt[1];
3645 }
3646
3647 static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3648                                 const struct cntr_entry *entry,
3649                                 void *context, int vl, int mode, u64 data)
3650 {
3651         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3652
3653         return dd->send_egress_err_status_cnt[0];
3654 }
3655
3656 /*
3657  * Software counters corresponding to each of the
3658  * error status bits within SendErrStatus
3659  */
3660 static u64 access_send_csr_write_bad_addr_err_cnt(
3661                                 const struct cntr_entry *entry,
3662                                 void *context, int vl, int mode, u64 data)
3663 {
3664         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3665
3666         return dd->send_err_status_cnt[2];
3667 }
3668
3669 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3670                                                  void *context, int vl,
3671                                                  int mode, u64 data)
3672 {
3673         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3674
3675         return dd->send_err_status_cnt[1];
3676 }
3677
3678 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3679                                       void *context, int vl, int mode,
3680                                       u64 data)
3681 {
3682         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3683
3684         return dd->send_err_status_cnt[0];
3685 }
3686
3687 /*
3688  * Software counters corresponding to each of the
3689  * error status bits within SendCtxtErrStatus
3690  */
3691 static u64 access_pio_write_out_of_bounds_err_cnt(
3692                                 const struct cntr_entry *entry,
3693                                 void *context, int vl, int mode, u64 data)
3694 {
3695         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3696
3697         return dd->sw_ctxt_err_status_cnt[4];
3698 }
3699
3700 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3701                                              void *context, int vl, int mode,
3702                                              u64 data)
3703 {
3704         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3705
3706         return dd->sw_ctxt_err_status_cnt[3];
3707 }
3708
3709 static u64 access_pio_write_crosses_boundary_err_cnt(
3710                                 const struct cntr_entry *entry,
3711                                 void *context, int vl, int mode, u64 data)
3712 {
3713         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3714
3715         return dd->sw_ctxt_err_status_cnt[2];
3716 }
3717
3718 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3719                                                 void *context, int vl,
3720                                                 int mode, u64 data)
3721 {
3722         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3723
3724         return dd->sw_ctxt_err_status_cnt[1];
3725 }
3726
3727 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3728                                                void *context, int vl, int mode,
3729                                                u64 data)
3730 {
3731         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3732
3733         return dd->sw_ctxt_err_status_cnt[0];
3734 }
3735
3736 /*
3737  * Software counters corresponding to each of the
3738  * error status bits within SendDmaEngErrStatus
3739  */
3740 static u64 access_sdma_header_request_fifo_cor_err_cnt(
3741                                 const struct cntr_entry *entry,
3742                                 void *context, int vl, int mode, u64 data)
3743 {
3744         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3745
3746         return dd->sw_send_dma_eng_err_status_cnt[23];
3747 }
3748
3749 static u64 access_sdma_header_storage_cor_err_cnt(
3750                                 const struct cntr_entry *entry,
3751                                 void *context, int vl, int mode, u64 data)
3752 {
3753         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3754
3755         return dd->sw_send_dma_eng_err_status_cnt[22];
3756 }
3757
3758 static u64 access_sdma_packet_tracking_cor_err_cnt(
3759                                 const struct cntr_entry *entry,
3760                                 void *context, int vl, int mode, u64 data)
3761 {
3762         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3763
3764         return dd->sw_send_dma_eng_err_status_cnt[21];
3765 }
3766
3767 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3768                                             void *context, int vl, int mode,
3769                                             u64 data)
3770 {
3771         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3772
3773         return dd->sw_send_dma_eng_err_status_cnt[20];
3774 }
3775
3776 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3777                                               void *context, int vl, int mode,
3778                                               u64 data)
3779 {
3780         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3781
3782         return dd->sw_send_dma_eng_err_status_cnt[19];
3783 }
3784
3785 static u64 access_sdma_header_request_fifo_unc_err_cnt(
3786                                 const struct cntr_entry *entry,
3787                                 void *context, int vl, int mode, u64 data)
3788 {
3789         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3790
3791         return dd->sw_send_dma_eng_err_status_cnt[18];
3792 }
3793
3794 static u64 access_sdma_header_storage_unc_err_cnt(
3795                                 const struct cntr_entry *entry,
3796                                 void *context, int vl, int mode, u64 data)
3797 {
3798         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3799
3800         return dd->sw_send_dma_eng_err_status_cnt[17];
3801 }
3802
3803 static u64 access_sdma_packet_tracking_unc_err_cnt(
3804                                 const struct cntr_entry *entry,
3805                                 void *context, int vl, int mode, u64 data)
3806 {
3807         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3808
3809         return dd->sw_send_dma_eng_err_status_cnt[16];
3810 }
3811
3812 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3813                                             void *context, int vl, int mode,
3814                                             u64 data)
3815 {
3816         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3817
3818         return dd->sw_send_dma_eng_err_status_cnt[15];
3819 }
3820
3821 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3822                                               void *context, int vl, int mode,
3823                                               u64 data)
3824 {
3825         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3826
3827         return dd->sw_send_dma_eng_err_status_cnt[14];
3828 }
3829
3830 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3831                                        void *context, int vl, int mode,
3832                                        u64 data)
3833 {
3834         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3835
3836         return dd->sw_send_dma_eng_err_status_cnt[13];
3837 }
3838
3839 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3840                                              void *context, int vl, int mode,
3841                                              u64 data)
3842 {
3843         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3844
3845         return dd->sw_send_dma_eng_err_status_cnt[12];
3846 }
3847
3848 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3849                                               void *context, int vl, int mode,
3850                                               u64 data)
3851 {
3852         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3853
3854         return dd->sw_send_dma_eng_err_status_cnt[11];
3855 }
3856
3857 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3858                                              void *context, int vl, int mode,
3859                                              u64 data)
3860 {
3861         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3862
3863         return dd->sw_send_dma_eng_err_status_cnt[10];
3864 }
3865
3866 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3867                                           void *context, int vl, int mode,
3868                                           u64 data)
3869 {
3870         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3871
3872         return dd->sw_send_dma_eng_err_status_cnt[9];
3873 }
3874
3875 static u64 access_sdma_packet_desc_overflow_err_cnt(
3876                                 const struct cntr_entry *entry,
3877                                 void *context, int vl, int mode, u64 data)
3878 {
3879         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3880
3881         return dd->sw_send_dma_eng_err_status_cnt[8];
3882 }
3883
3884 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3885                                                void *context, int vl,
3886                                                int mode, u64 data)
3887 {
3888         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3889
3890         return dd->sw_send_dma_eng_err_status_cnt[7];
3891 }
3892
3893 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3894                                     void *context, int vl, int mode, u64 data)
3895 {
3896         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3897
3898         return dd->sw_send_dma_eng_err_status_cnt[6];
3899 }
3900
3901 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3902                                         void *context, int vl, int mode,
3903                                         u64 data)
3904 {
3905         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3906
3907         return dd->sw_send_dma_eng_err_status_cnt[5];
3908 }
3909
3910 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3911                                           void *context, int vl, int mode,
3912                                           u64 data)
3913 {
3914         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3915
3916         return dd->sw_send_dma_eng_err_status_cnt[4];
3917 }
3918
3919 static u64 access_sdma_tail_out_of_bounds_err_cnt(
3920                                 const struct cntr_entry *entry,
3921                                 void *context, int vl, int mode, u64 data)
3922 {
3923         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3924
3925         return dd->sw_send_dma_eng_err_status_cnt[3];
3926 }
3927
3928 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
3929                                         void *context, int vl, int mode,
3930                                         u64 data)
3931 {
3932         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3933
3934         return dd->sw_send_dma_eng_err_status_cnt[2];
3935 }
3936
3937 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
3938                                             void *context, int vl, int mode,
3939                                             u64 data)
3940 {
3941         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3942
3943         return dd->sw_send_dma_eng_err_status_cnt[1];
3944 }
3945
3946 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
3947                                         void *context, int vl, int mode,
3948                                         u64 data)
3949 {
3950         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3951
3952         return dd->sw_send_dma_eng_err_status_cnt[0];
3953 }
3954
3955 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
3956                                  void *context, int vl, int mode,
3957                                  u64 data)
3958 {
3959         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3960
3961         u64 val = 0;
3962         u64 csr = entry->csr;
3963
3964         val = read_write_csr(dd, csr, mode, data);
3965         if (mode == CNTR_MODE_R) {
3966                 val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
3967                         CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
3968         } else if (mode == CNTR_MODE_W) {
3969                 dd->sw_rcv_bypass_packet_errors = 0;
3970         } else {
3971                 dd_dev_err(dd, "Invalid cntr register access mode");
3972                 return 0;
3973         }
3974         return val;
3975 }
3976
3977 #define def_access_sw_cpu(cntr) \
3978 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry,               \
3979                               void *context, int vl, int mode, u64 data)      \
3980 {                                                                             \
3981         struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;        \
3982         return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr,       \
3983                               ppd->ibport_data.rvp.cntr, vl,                  \
3984                               mode, data);                                    \
3985 }
3986
3987 def_access_sw_cpu(rc_acks);
3988 def_access_sw_cpu(rc_qacks);
3989 def_access_sw_cpu(rc_delayed_comp);
3990
3991 #define def_access_ibp_counter(cntr) \
3992 static u64 access_ibp_##cntr(const struct cntr_entry *entry,                  \
3993                                 void *context, int vl, int mode, u64 data)    \
3994 {                                                                             \
3995         struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;        \
3996                                                                               \
3997         if (vl != CNTR_INVALID_VL)                                            \
3998                 return 0;                                                     \
3999                                                                               \
4000         return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr,        \
4001                              mode, data);                                     \
4002 }
4003
4004 def_access_ibp_counter(loop_pkts);
4005 def_access_ibp_counter(rc_resends);
4006 def_access_ibp_counter(rnr_naks);
4007 def_access_ibp_counter(other_naks);
4008 def_access_ibp_counter(rc_timeouts);
4009 def_access_ibp_counter(pkt_drops);
4010 def_access_ibp_counter(dmawait);
4011 def_access_ibp_counter(rc_seqnak);
4012 def_access_ibp_counter(rc_dupreq);
4013 def_access_ibp_counter(rdma_seq);
4014 def_access_ibp_counter(unaligned);
4015 def_access_ibp_counter(seq_naks);
4016
4017 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4018 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4019 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4020                         CNTR_NORMAL),
4021 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4022                         CNTR_NORMAL),
4023 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4024                         RCV_TID_FLOW_GEN_MISMATCH_CNT,
4025                         CNTR_NORMAL),
4026 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4027                         CNTR_NORMAL),
4028 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4029                         RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4030 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4031                         CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4032 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4033                         CNTR_NORMAL),
4034 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4035                         CNTR_NORMAL),
4036 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4037                         CNTR_NORMAL),
4038 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4039                         CNTR_NORMAL),
4040 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4041                         CNTR_NORMAL),
4042 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4043                         CNTR_NORMAL),
4044 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4045                         CCE_RCV_URGENT_INT_CNT, CNTR_NORMAL),
4046 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4047                         CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4048 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4049                               CNTR_SYNTH),
4050 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4051                             access_dc_rcv_err_cnt),
4052 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4053                                  CNTR_SYNTH),
4054 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4055                                   CNTR_SYNTH),
4056 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4057                                   CNTR_SYNTH),
4058 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4059                                    DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4060 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4061                                   DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4062                                   CNTR_SYNTH),
4063 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4064                                 DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4065 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4066                                CNTR_SYNTH),
4067 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4068                               CNTR_SYNTH),
4069 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4070                                CNTR_SYNTH),
4071 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4072                                  CNTR_SYNTH),
4073 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4074                                 CNTR_SYNTH),
4075 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4076                                 CNTR_SYNTH),
4077 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4078                                CNTR_SYNTH),
4079 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4080                                  CNTR_SYNTH | CNTR_VL),
4081 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4082                                 CNTR_SYNTH | CNTR_VL),
4083 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4084 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4085                                  CNTR_SYNTH | CNTR_VL),
4086 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4087 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4088                                  CNTR_SYNTH | CNTR_VL),
4089 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4090                               CNTR_SYNTH),
4091 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4092                                  CNTR_SYNTH | CNTR_VL),
4093 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4094                                 CNTR_SYNTH),
4095 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4096                                    CNTR_SYNTH | CNTR_VL),
4097 [C_DC_TOTAL_CRC] =
4098         DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4099                          CNTR_SYNTH),
4100 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4101                                   CNTR_SYNTH),
4102 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4103                                   CNTR_SYNTH),
4104 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4105                                   CNTR_SYNTH),
4106 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4107                                   CNTR_SYNTH),
4108 [C_DC_CRC_MULT_LN] =
4109         DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4110                          CNTR_SYNTH),
4111 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4112                                     CNTR_SYNTH),
4113 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4114                                     CNTR_SYNTH),
4115 [C_DC_SEQ_CRC_CNT] =
4116         DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4117                          CNTR_SYNTH),
4118 [C_DC_ESC0_ONLY_CNT] =
4119         DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4120                          CNTR_SYNTH),
4121 [C_DC_ESC0_PLUS1_CNT] =
4122         DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4123                          CNTR_SYNTH),
4124 [C_DC_ESC0_PLUS2_CNT] =
4125         DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4126                          CNTR_SYNTH),
4127 [C_DC_REINIT_FROM_PEER_CNT] =
4128         DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4129                          CNTR_SYNTH),
4130 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4131                                   CNTR_SYNTH),
4132 [C_DC_MISC_FLG_CNT] =
4133         DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4134                          CNTR_SYNTH),
4135 [C_DC_PRF_GOOD_LTP_CNT] =
4136         DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4137 [C_DC_PRF_ACCEPTED_LTP_CNT] =
4138         DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4139                          CNTR_SYNTH),
4140 [C_DC_PRF_RX_FLIT_CNT] =
4141         DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4142 [C_DC_PRF_TX_FLIT_CNT] =
4143         DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4144 [C_DC_PRF_CLK_CNTR] =
4145         DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4146 [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4147         DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4148 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4149         DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4150                          CNTR_SYNTH),
4151 [C_DC_PG_STS_TX_SBE_CNT] =
4152         DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4153 [C_DC_PG_STS_TX_MBE_CNT] =
4154         DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4155                          CNTR_SYNTH),
4156 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4157                             access_sw_cpu_intr),
4158 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4159                             access_sw_cpu_rcv_limit),
4160 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4161                             access_sw_vtx_wait),
4162 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4163                             access_sw_pio_wait),
4164 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4165                             access_sw_pio_drain),
4166 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4167                             access_sw_kmem_wait),
4168 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4169                             access_sw_send_schedule),
4170 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4171                                       SEND_DMA_DESC_FETCHED_CNT, 0,
4172                                       CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4173                                       dev_access_u32_csr),
4174 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4175                              CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4176                              access_sde_int_cnt),
4177 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4178                              CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4179                              access_sde_err_cnt),
4180 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4181                                   CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4182                                   access_sde_idle_int_cnt),
4183 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4184                                       CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4185                                       access_sde_progress_int_cnt),
4186 /* MISC_ERR_STATUS */
4187 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4188                                 CNTR_NORMAL,
4189                                 access_misc_pll_lock_fail_err_cnt),
4190 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4191                                 CNTR_NORMAL,
4192                                 access_misc_mbist_fail_err_cnt),
4193 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4194                                 CNTR_NORMAL,
4195                                 access_misc_invalid_eep_cmd_err_cnt),
4196 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4197                                 CNTR_NORMAL,
4198                                 access_misc_efuse_done_parity_err_cnt),
4199 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4200                                 CNTR_NORMAL,
4201                                 access_misc_efuse_write_err_cnt),
4202 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4203                                 0, CNTR_NORMAL,
4204                                 access_misc_efuse_read_bad_addr_err_cnt),
4205 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4206                                 CNTR_NORMAL,
4207                                 access_misc_efuse_csr_parity_err_cnt),
4208 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4209                                 CNTR_NORMAL,
4210                                 access_misc_fw_auth_failed_err_cnt),
4211 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4212                                 CNTR_NORMAL,
4213                                 access_misc_key_mismatch_err_cnt),
4214 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4215                                 CNTR_NORMAL,
4216                                 access_misc_sbus_write_failed_err_cnt),
4217 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4218                                 CNTR_NORMAL,
4219                                 access_misc_csr_write_bad_addr_err_cnt),
4220 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4221                                 CNTR_NORMAL,
4222                                 access_misc_csr_read_bad_addr_err_cnt),
4223 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4224                                 CNTR_NORMAL,
4225                                 access_misc_csr_parity_err_cnt),
4226 /* CceErrStatus */
4227 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4228                                 CNTR_NORMAL,
4229                                 access_sw_cce_err_status_aggregated_cnt),
4230 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4231                                 CNTR_NORMAL,
4232                                 access_cce_msix_csr_parity_err_cnt),
4233 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4234                                 CNTR_NORMAL,
4235                                 access_cce_int_map_unc_err_cnt),
4236 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4237                                 CNTR_NORMAL,
4238                                 access_cce_int_map_cor_err_cnt),
4239 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4240                                 CNTR_NORMAL,
4241                                 access_cce_msix_table_unc_err_cnt),
4242 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4243                                 CNTR_NORMAL,
4244                                 access_cce_msix_table_cor_err_cnt),
4245 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4246                                 0, CNTR_NORMAL,
4247                                 access_cce_rxdma_conv_fifo_parity_err_cnt),
4248 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4249                                 0, CNTR_NORMAL,
4250                                 access_cce_rcpl_async_fifo_parity_err_cnt),
4251 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4252                                 CNTR_NORMAL,
4253                                 access_cce_seg_write_bad_addr_err_cnt),
4254 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4255                                 CNTR_NORMAL,
4256                                 access_cce_seg_read_bad_addr_err_cnt),
4257 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4258                                 CNTR_NORMAL,
4259                                 access_la_triggered_cnt),
4260 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4261                                 CNTR_NORMAL,
4262                                 access_cce_trgt_cpl_timeout_err_cnt),
4263 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4264                                 CNTR_NORMAL,
4265                                 access_pcic_receive_parity_err_cnt),
4266 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4267                                 CNTR_NORMAL,
4268                                 access_pcic_transmit_back_parity_err_cnt),
4269 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4270                                 0, CNTR_NORMAL,
4271                                 access_pcic_transmit_front_parity_err_cnt),
4272 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4273                                 CNTR_NORMAL,
4274                                 access_pcic_cpl_dat_q_unc_err_cnt),
4275 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4276                                 CNTR_NORMAL,
4277                                 access_pcic_cpl_hd_q_unc_err_cnt),
4278 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4279                                 CNTR_NORMAL,
4280                                 access_pcic_post_dat_q_unc_err_cnt),
4281 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4282                                 CNTR_NORMAL,
4283                                 access_pcic_post_hd_q_unc_err_cnt),
4284 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4285                                 CNTR_NORMAL,
4286                                 access_pcic_retry_sot_mem_unc_err_cnt),
4287 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4288                                 CNTR_NORMAL,
4289                                 access_pcic_retry_mem_unc_err),
4290 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4291                                 CNTR_NORMAL,
4292                                 access_pcic_n_post_dat_q_parity_err_cnt),
4293 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4294                                 CNTR_NORMAL,
4295                                 access_pcic_n_post_h_q_parity_err_cnt),
4296 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4297                                 CNTR_NORMAL,
4298                                 access_pcic_cpl_dat_q_cor_err_cnt),
4299 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4300                                 CNTR_NORMAL,
4301                                 access_pcic_cpl_hd_q_cor_err_cnt),
4302 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4303                                 CNTR_NORMAL,
4304                                 access_pcic_post_dat_q_cor_err_cnt),
4305 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4306                                 CNTR_NORMAL,
4307                                 access_pcic_post_hd_q_cor_err_cnt),
4308 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4309                                 CNTR_NORMAL,
4310                                 access_pcic_retry_sot_mem_cor_err_cnt),
4311 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4312                                 CNTR_NORMAL,
4313                                 access_pcic_retry_mem_cor_err_cnt),
4314 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4315                                 "CceCli1AsyncFifoDbgParityError", 0, 0,
4316                                 CNTR_NORMAL,
4317                                 access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4318 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4319                                 "CceCli1AsyncFifoRxdmaParityError", 0, 0,
4320                                 CNTR_NORMAL,
4321                                 access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4322                                 ),
4323 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4324                         "CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4325                         CNTR_NORMAL,
4326                         access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4327 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4328                         "CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4329                         CNTR_NORMAL,
4330                         access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4331 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4332                         0, CNTR_NORMAL,
4333                         access_cce_cli2_async_fifo_parity_err_cnt),
4334 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4335                         CNTR_NORMAL,
4336                         access_cce_csr_cfg_bus_parity_err_cnt),
4337 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4338                         0, CNTR_NORMAL,
4339                         access_cce_cli0_async_fifo_parity_err_cnt),
4340 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4341                         CNTR_NORMAL,
4342                         access_cce_rspd_data_parity_err_cnt),
4343 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4344                         CNTR_NORMAL,
4345                         access_cce_trgt_access_err_cnt),
4346 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4347                         0, CNTR_NORMAL,
4348                         access_cce_trgt_async_fifo_parity_err_cnt),
4349 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4350                         CNTR_NORMAL,
4351                         access_cce_csr_write_bad_addr_err_cnt),
4352 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4353                         CNTR_NORMAL,
4354                         access_cce_csr_read_bad_addr_err_cnt),
4355 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4356                         CNTR_NORMAL,
4357                         access_ccs_csr_parity_err_cnt),
4358
4359 /* RcvErrStatus */
4360 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4361                         CNTR_NORMAL,
4362                         access_rx_csr_parity_err_cnt),
4363 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4364                         CNTR_NORMAL,
4365                         access_rx_csr_write_bad_addr_err_cnt),
4366 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4367                         CNTR_NORMAL,
4368                         access_rx_csr_read_bad_addr_err_cnt),
4369 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4370                         CNTR_NORMAL,
4371                         access_rx_dma_csr_unc_err_cnt),
4372 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4373                         CNTR_NORMAL,
4374                         access_rx_dma_dq_fsm_encoding_err_cnt),
4375 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4376                         CNTR_NORMAL,
4377                         access_rx_dma_eq_fsm_encoding_err_cnt),
4378 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4379                         CNTR_NORMAL,
4380                         access_rx_dma_csr_parity_err_cnt),
4381 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4382                         CNTR_NORMAL,
4383                         access_rx_rbuf_data_cor_err_cnt),
4384 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4385                         CNTR_NORMAL,
4386                         access_rx_rbuf_data_unc_err_cnt),
4387 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4388                         CNTR_NORMAL,
4389                         access_rx_dma_data_fifo_rd_cor_err_cnt),
4390 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4391                         CNTR_NORMAL,
4392                         access_rx_dma_data_fifo_rd_unc_err_cnt),
4393 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4394                         CNTR_NORMAL,
4395                         access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4396 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4397                         CNTR_NORMAL,
4398                         access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4399 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4400                         CNTR_NORMAL,
4401                         access_rx_rbuf_desc_part2_cor_err_cnt),
4402 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4403                         CNTR_NORMAL,
4404                         access_rx_rbuf_desc_part2_unc_err_cnt),
4405 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4406                         CNTR_NORMAL,
4407                         access_rx_rbuf_desc_part1_cor_err_cnt),
4408 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4409                         CNTR_NORMAL,
4410                         access_rx_rbuf_desc_part1_unc_err_cnt),
4411 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4412                         CNTR_NORMAL,
4413                         access_rx_hq_intr_fsm_err_cnt),
4414 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4415                         CNTR_NORMAL,
4416                         access_rx_hq_intr_csr_parity_err_cnt),
4417 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4418                         CNTR_NORMAL,
4419                         access_rx_lookup_csr_parity_err_cnt),
4420 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4421                         CNTR_NORMAL,
4422                         access_rx_lookup_rcv_array_cor_err_cnt),
4423 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4424                         CNTR_NORMAL,
4425                         access_rx_lookup_rcv_array_unc_err_cnt),
4426 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4427                         0, CNTR_NORMAL,
4428                         access_rx_lookup_des_part2_parity_err_cnt),
4429 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4430                         0, CNTR_NORMAL,
4431                         access_rx_lookup_des_part1_unc_cor_err_cnt),
4432 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4433                         CNTR_NORMAL,
4434                         access_rx_lookup_des_part1_unc_err_cnt),
4435 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4436                         CNTR_NORMAL,
4437                         access_rx_rbuf_next_free_buf_cor_err_cnt),
4438 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4439                         CNTR_NORMAL,
4440                         access_rx_rbuf_next_free_buf_unc_err_cnt),
4441 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4442                         "RxRbufFlInitWrAddrParityErr", 0, 0,
4443                         CNTR_NORMAL,
4444                         access_rbuf_fl_init_wr_addr_parity_err_cnt),
4445 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4446                         0, CNTR_NORMAL,
4447                         access_rx_rbuf_fl_initdone_parity_err_cnt),
4448 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4449                         0, CNTR_NORMAL,
4450                         access_rx_rbuf_fl_write_addr_parity_err_cnt),
4451 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4452                         CNTR_NORMAL,
4453                         access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4454 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4455                         CNTR_NORMAL,
4456                         access_rx_rbuf_empty_err_cnt),
4457 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4458                         CNTR_NORMAL,
4459                         access_rx_rbuf_full_err_cnt),
4460 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4461                         CNTR_NORMAL,
4462                         access_rbuf_bad_lookup_err_cnt),
4463 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4464                         CNTR_NORMAL,
4465                         access_rbuf_ctx_id_parity_err_cnt),
4466 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4467                         CNTR_NORMAL,
4468                         access_rbuf_csr_qeopdw_parity_err_cnt),
4469 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4470                         "RxRbufCsrQNumOfPktParityErr", 0, 0,
4471                         CNTR_NORMAL,
4472                         access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4473 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4474                         "RxRbufCsrQTlPtrParityErr", 0, 0,
4475                         CNTR_NORMAL,
4476                         access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4477 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4478                         0, CNTR_NORMAL,
4479                         access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4480 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4481                         0, CNTR_NORMAL,
4482                         access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4483 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4484                         0, 0, CNTR_NORMAL,
4485                         access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4486 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4487                         0, CNTR_NORMAL,
4488                         access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4489 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4490                         "RxRbufCsrQHeadBufNumParityErr", 0, 0,
4491                         CNTR_NORMAL,
4492                         access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4493 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4494                         0, CNTR_NORMAL,
4495                         access_rx_rbuf_block_list_read_cor_err_cnt),
4496 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4497                         0, CNTR_NORMAL,
4498                         access_rx_rbuf_block_list_read_unc_err_cnt),
4499 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4500                         CNTR_NORMAL,
4501                         access_rx_rbuf_lookup_des_cor_err_cnt),
4502 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4503                         CNTR_NORMAL,
4504                         access_rx_rbuf_lookup_des_unc_err_cnt),
4505 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4506                         "RxRbufLookupDesRegUncCorErr", 0, 0,
4507                         CNTR_NORMAL,
4508                         access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4509 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4510                         CNTR_NORMAL,
4511                         access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4512 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4513                         CNTR_NORMAL,
4514                         access_rx_rbuf_free_list_cor_err_cnt),
4515 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4516                         CNTR_NORMAL,
4517                         access_rx_rbuf_free_list_unc_err_cnt),
4518 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4519                         CNTR_NORMAL,
4520                         access_rx_rcv_fsm_encoding_err_cnt),
4521 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4522                         CNTR_NORMAL,
4523                         access_rx_dma_flag_cor_err_cnt),
4524 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4525                         CNTR_NORMAL,
4526                         access_rx_dma_flag_unc_err_cnt),
4527 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4528                         CNTR_NORMAL,
4529                         access_rx_dc_sop_eop_parity_err_cnt),
4530 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4531                         CNTR_NORMAL,
4532                         access_rx_rcv_csr_parity_err_cnt),
4533 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4534                         CNTR_NORMAL,
4535                         access_rx_rcv_qp_map_table_cor_err_cnt),
4536 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4537                         CNTR_NORMAL,
4538                         access_rx_rcv_qp_map_table_unc_err_cnt),
4539 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4540                         CNTR_NORMAL,
4541                         access_rx_rcv_data_cor_err_cnt),
4542 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4543                         CNTR_NORMAL,
4544                         access_rx_rcv_data_unc_err_cnt),
4545 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4546                         CNTR_NORMAL,
4547                         access_rx_rcv_hdr_cor_err_cnt),
4548 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4549                         CNTR_NORMAL,
4550                         access_rx_rcv_hdr_unc_err_cnt),
4551 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4552                         CNTR_NORMAL,
4553                         access_rx_dc_intf_parity_err_cnt),
4554 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4555                         CNTR_NORMAL,
4556                         access_rx_dma_csr_cor_err_cnt),
4557 /* SendPioErrStatus */
4558 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4559                         CNTR_NORMAL,
4560                         access_pio_pec_sop_head_parity_err_cnt),
4561 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4562                         CNTR_NORMAL,
4563                         access_pio_pcc_sop_head_parity_err_cnt),
4564 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4565                         0, 0, CNTR_NORMAL,
4566                         access_pio_last_returned_cnt_parity_err_cnt),
4567 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4568                         0, CNTR_NORMAL,
4569                         access_pio_current_free_cnt_parity_err_cnt),
4570 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4571                         CNTR_NORMAL,
4572                         access_pio_reserved_31_err_cnt),
4573 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4574                         CNTR_NORMAL,
4575                         access_pio_reserved_30_err_cnt),
4576 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4577                         CNTR_NORMAL,
4578                         access_pio_ppmc_sop_len_err_cnt),
4579 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4580                         CNTR_NORMAL,
4581                         access_pio_ppmc_bqc_mem_parity_err_cnt),
4582 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4583                         CNTR_NORMAL,
4584                         access_pio_vl_fifo_parity_err_cnt),
4585 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4586                         CNTR_NORMAL,
4587                         access_pio_vlf_sop_parity_err_cnt),
4588 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4589                         CNTR_NORMAL,
4590                         access_pio_vlf_v1_len_parity_err_cnt),
4591 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4592                         CNTR_NORMAL,
4593                         access_pio_block_qw_count_parity_err_cnt),
4594 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4595                         CNTR_NORMAL,
4596                         access_pio_write_qw_valid_parity_err_cnt),
4597 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4598                         CNTR_NORMAL,
4599                         access_pio_state_machine_err_cnt),
4600 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4601                         CNTR_NORMAL,
4602                         access_pio_write_data_parity_err_cnt),
4603 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4604                         CNTR_NORMAL,
4605                         access_pio_host_addr_mem_cor_err_cnt),
4606 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4607                         CNTR_NORMAL,
4608                         access_pio_host_addr_mem_unc_err_cnt),
4609 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4610                         CNTR_NORMAL,
4611                         access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4612 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4613                         CNTR_NORMAL,
4614                         access_pio_init_sm_in_err_cnt),
4615 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4616                         CNTR_NORMAL,
4617                         access_pio_ppmc_pbl_fifo_err_cnt),
4618 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4619                         0, CNTR_NORMAL,
4620                         access_pio_credit_ret_fifo_parity_err_cnt),
4621 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4622                         CNTR_NORMAL,
4623                         access_pio_v1_len_mem_bank1_cor_err_cnt),
4624 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4625                         CNTR_NORMAL,
4626                         access_pio_v1_len_mem_bank0_cor_err_cnt),
4627 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4628                         CNTR_NORMAL,
4629                         access_pio_v1_len_mem_bank1_unc_err_cnt),
4630 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4631                         CNTR_NORMAL,
4632                         access_pio_v1_len_mem_bank0_unc_err_cnt),
4633 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4634                         CNTR_NORMAL,
4635                         access_pio_sm_pkt_reset_parity_err_cnt),
4636 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4637                         CNTR_NORMAL,
4638                         access_pio_pkt_evict_fifo_parity_err_cnt),
4639 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4640                         "PioSbrdctrlCrrelFifoParityErr", 0, 0,
4641                         CNTR_NORMAL,
4642                         access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4643 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4644                         CNTR_NORMAL,
4645                         access_pio_sbrdctl_crrel_parity_err_cnt),
4646 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4647                         CNTR_NORMAL,
4648                         access_pio_pec_fifo_parity_err_cnt),
4649 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4650                         CNTR_NORMAL,
4651                         access_pio_pcc_fifo_parity_err_cnt),
4652 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4653                         CNTR_NORMAL,
4654                         access_pio_sb_mem_fifo1_err_cnt),
4655 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4656                         CNTR_NORMAL,
4657                         access_pio_sb_mem_fifo0_err_cnt),
4658 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4659                         CNTR_NORMAL,
4660                         access_pio_csr_parity_err_cnt),
4661 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4662                         CNTR_NORMAL,
4663                         access_pio_write_addr_parity_err_cnt),
4664 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4665                         CNTR_NORMAL,
4666                         access_pio_write_bad_ctxt_err_cnt),
4667 /* SendDmaErrStatus */
4668 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4669                         0, CNTR_NORMAL,
4670                         access_sdma_pcie_req_tracking_cor_err_cnt),
4671 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4672                         0, CNTR_NORMAL,
4673                         access_sdma_pcie_req_tracking_unc_err_cnt),
4674 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4675                         CNTR_NORMAL,
4676                         access_sdma_csr_parity_err_cnt),
4677 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4678                         CNTR_NORMAL,
4679                         access_sdma_rpy_tag_err_cnt),
4680 /* SendEgressErrStatus */
4681 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4682                         CNTR_NORMAL,
4683                         access_tx_read_pio_memory_csr_unc_err_cnt),
4684 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4685                         0, CNTR_NORMAL,
4686                         access_tx_read_sdma_memory_csr_err_cnt),
4687 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4688                         CNTR_NORMAL,
4689                         access_tx_egress_fifo_cor_err_cnt),
4690 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4691                         CNTR_NORMAL,
4692                         access_tx_read_pio_memory_cor_err_cnt),
4693 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4694                         CNTR_NORMAL,
4695                         access_tx_read_sdma_memory_cor_err_cnt),
4696 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4697                         CNTR_NORMAL,
4698                         access_tx_sb_hdr_cor_err_cnt),
4699 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4700                         CNTR_NORMAL,
4701                         access_tx_credit_overrun_err_cnt),
4702 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4703                         CNTR_NORMAL,
4704                         access_tx_launch_fifo8_cor_err_cnt),
4705 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4706                         CNTR_NORMAL,
4707                         access_tx_launch_fifo7_cor_err_cnt),
4708 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4709                         CNTR_NORMAL,
4710                         access_tx_launch_fifo6_cor_err_cnt),
4711 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4712                         CNTR_NORMAL,
4713                         access_tx_launch_fifo5_cor_err_cnt),
4714 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4715                         CNTR_NORMAL,
4716                         access_tx_launch_fifo4_cor_err_cnt),
4717 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4718                         CNTR_NORMAL,
4719                         access_tx_launch_fifo3_cor_err_cnt),
4720 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4721                         CNTR_NORMAL,
4722                         access_tx_launch_fifo2_cor_err_cnt),
4723 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4724                         CNTR_NORMAL,
4725                         access_tx_launch_fifo1_cor_err_cnt),
4726 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4727                         CNTR_NORMAL,
4728                         access_tx_launch_fifo0_cor_err_cnt),
4729 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4730                         CNTR_NORMAL,
4731                         access_tx_credit_return_vl_err_cnt),
4732 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4733                         CNTR_NORMAL,
4734                         access_tx_hcrc_insertion_err_cnt),
4735 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4736                         CNTR_NORMAL,
4737                         access_tx_egress_fifo_unc_err_cnt),
4738 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4739                         CNTR_NORMAL,
4740                         access_tx_read_pio_memory_unc_err_cnt),
4741 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4742                         CNTR_NORMAL,
4743                         access_tx_read_sdma_memory_unc_err_cnt),
4744 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4745                         CNTR_NORMAL,
4746                         access_tx_sb_hdr_unc_err_cnt),
4747 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4748                         CNTR_NORMAL,
4749                         access_tx_credit_return_partiy_err_cnt),
4750 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4751                         0, 0, CNTR_NORMAL,
4752                         access_tx_launch_fifo8_unc_or_parity_err_cnt),
4753 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4754                         0, 0, CNTR_NORMAL,
4755                         access_tx_launch_fifo7_unc_or_parity_err_cnt),
4756 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4757                         0, 0, CNTR_NORMAL,
4758                         access_tx_launch_fifo6_unc_or_parity_err_cnt),
4759 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4760                         0, 0, CNTR_NORMAL,
4761                         access_tx_launch_fifo5_unc_or_parity_err_cnt),
4762 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4763                         0, 0, CNTR_NORMAL,
4764                         access_tx_launch_fifo4_unc_or_parity_err_cnt),
4765 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4766                         0, 0, CNTR_NORMAL,
4767                         access_tx_launch_fifo3_unc_or_parity_err_cnt),
4768 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4769                         0, 0, CNTR_NORMAL,
4770                         access_tx_launch_fifo2_unc_or_parity_err_cnt),
4771 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4772                         0, 0, CNTR_NORMAL,
4773                         access_tx_launch_fifo1_unc_or_parity_err_cnt),
4774 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4775                         0, 0, CNTR_NORMAL,
4776                         access_tx_launch_fifo0_unc_or_parity_err_cnt),
4777 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4778                         0, 0, CNTR_NORMAL,
4779                         access_tx_sdma15_disallowed_packet_err_cnt),
4780 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4781                         0, 0, CNTR_NORMAL,
4782                         access_tx_sdma14_disallowed_packet_err_cnt),
4783 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4784                         0, 0, CNTR_NORMAL,
4785                         access_tx_sdma13_disallowed_packet_err_cnt),
4786 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4787                         0, 0, CNTR_NORMAL,
4788                         access_tx_sdma12_disallowed_packet_err_cnt),
4789 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4790                         0, 0, CNTR_NORMAL,
4791                         access_tx_sdma11_disallowed_packet_err_cnt),
4792 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4793                         0, 0, CNTR_NORMAL,
4794                         access_tx_sdma10_disallowed_packet_err_cnt),
4795 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4796                         0, 0, CNTR_NORMAL,
4797                         access_tx_sdma9_disallowed_packet_err_cnt),
4798 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4799                         0, 0, CNTR_NORMAL,
4800                         access_tx_sdma8_disallowed_packet_err_cnt),
4801 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4802                         0, 0, CNTR_NORMAL,
4803                         access_tx_sdma7_disallowed_packet_err_cnt),
4804 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4805                         0, 0, CNTR_NORMAL,
4806                         access_tx_sdma6_disallowed_packet_err_cnt),
4807 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4808                         0, 0, CNTR_NORMAL,
4809                         access_tx_sdma5_disallowed_packet_err_cnt),
4810 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4811                         0, 0, CNTR_NORMAL,
4812                         access_tx_sdma4_disallowed_packet_err_cnt),
4813 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4814                         0, 0, CNTR_NORMAL,
4815                         access_tx_sdma3_disallowed_packet_err_cnt),
4816 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4817                         0, 0, CNTR_NORMAL,
4818                         access_tx_sdma2_disallowed_packet_err_cnt),
4819 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4820                         0, 0, CNTR_NORMAL,
4821                         access_tx_sdma1_disallowed_packet_err_cnt),
4822 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4823                         0, 0, CNTR_NORMAL,
4824                         access_tx_sdma0_disallowed_packet_err_cnt),
4825 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4826                         CNTR_NORMAL,
4827                         access_tx_config_parity_err_cnt),
4828 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4829                         CNTR_NORMAL,
4830                         access_tx_sbrd_ctl_csr_parity_err_cnt),
4831 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4832                         CNTR_NORMAL,
4833                         access_tx_launch_csr_parity_err_cnt),
4834 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4835                         CNTR_NORMAL,
4836                         access_tx_illegal_vl_err_cnt),
4837 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4838                         "TxSbrdCtlStateMachineParityErr", 0, 0,
4839                         CNTR_NORMAL,
4840                         access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4841 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4842                         CNTR_NORMAL,
4843                         access_egress_reserved_10_err_cnt),
4844 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4845                         CNTR_NORMAL,
4846                         access_egress_reserved_9_err_cnt),
4847 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4848                         0, 0, CNTR_NORMAL,
4849                         access_tx_sdma_launch_intf_parity_err_cnt),
4850 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4851                         CNTR_NORMAL,
4852                         access_tx_pio_launch_intf_parity_err_cnt),
4853 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4854                         CNTR_NORMAL,
4855                         access_egress_reserved_6_err_cnt),
4856 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4857                         CNTR_NORMAL,
4858                         access_tx_incorrect_link_state_err_cnt),
4859 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4860                         CNTR_NORMAL,
4861                         access_tx_linkdown_err_cnt),
4862 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4863                         "EgressFifoUnderrunOrParityErr", 0, 0,
4864                         CNTR_NORMAL,
4865                         access_tx_egress_fifi_underrun_or_parity_err_cnt),
4866 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4867                         CNTR_NORMAL,
4868                         access_egress_reserved_2_err_cnt),
4869 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4870                         CNTR_NORMAL,
4871                         access_tx_pkt_integrity_mem_unc_err_cnt),
4872 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4873                         CNTR_NORMAL,
4874                         access_tx_pkt_integrity_mem_cor_err_cnt),
4875 /* SendErrStatus */
4876 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4877                         CNTR_NORMAL,
4878                         access_send_csr_write_bad_addr_err_cnt),
4879 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4880                         CNTR_NORMAL,
4881                         access_send_csr_read_bad_addr_err_cnt),
4882 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4883                         CNTR_NORMAL,
4884                         access_send_csr_parity_cnt),
4885 /* SendCtxtErrStatus */
4886 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4887                         CNTR_NORMAL,
4888                         access_pio_write_out_of_bounds_err_cnt),
4889 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4890                         CNTR_NORMAL,
4891                         access_pio_write_overflow_err_cnt),
4892 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4893                         0, 0, CNTR_NORMAL,
4894                         access_pio_write_crosses_boundary_err_cnt),
4895 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4896                         CNTR_NORMAL,
4897                         access_pio_disallowed_packet_err_cnt),
4898 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4899                         CNTR_NORMAL,
4900                         access_pio_inconsistent_sop_err_cnt),
4901 /* SendDmaEngErrStatus */
4902 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4903                         0, 0, CNTR_NORMAL,
4904                         access_sdma_header_request_fifo_cor_err_cnt),
4905 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4906                         CNTR_NORMAL,
4907                         access_sdma_header_storage_cor_err_cnt),
4908 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4909                         CNTR_NORMAL,
4910                         access_sdma_packet_tracking_cor_err_cnt),
4911 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
4912                         CNTR_NORMAL,
4913                         access_sdma_assembly_cor_err_cnt),
4914 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
4915                         CNTR_NORMAL,
4916                         access_sdma_desc_table_cor_err_cnt),
4917 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
4918                         0, 0, CNTR_NORMAL,
4919                         access_sdma_header_request_fifo_unc_err_cnt),
4920 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
4921                         CNTR_NORMAL,
4922                         access_sdma_header_storage_unc_err_cnt),
4923 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
4924                         CNTR_NORMAL,
4925                         access_sdma_packet_tracking_unc_err_cnt),
4926 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
4927                         CNTR_NORMAL,
4928                         access_sdma_assembly_unc_err_cnt),
4929 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
4930                         CNTR_NORMAL,
4931                         access_sdma_desc_table_unc_err_cnt),
4932 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
4933                         CNTR_NORMAL,
4934                         access_sdma_timeout_err_cnt),
4935 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
4936                         CNTR_NORMAL,
4937                         access_sdma_header_length_err_cnt),
4938 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
4939                         CNTR_NORMAL,
4940                         access_sdma_header_address_err_cnt),
4941 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
4942                         CNTR_NORMAL,
4943                         access_sdma_header_select_err_cnt),
4944 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
4945                         CNTR_NORMAL,
4946                         access_sdma_reserved_9_err_cnt),
4947 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
4948                         CNTR_NORMAL,
4949                         access_sdma_packet_desc_overflow_err_cnt),
4950 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
4951                         CNTR_NORMAL,
4952                         access_sdma_length_mismatch_err_cnt),
4953 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
4954                         CNTR_NORMAL,
4955                         access_sdma_halt_err_cnt),
4956 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
4957                         CNTR_NORMAL,
4958                         access_sdma_mem_read_err_cnt),
4959 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
4960                         CNTR_NORMAL,
4961                         access_sdma_first_desc_err_cnt),
4962 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
4963                         CNTR_NORMAL,
4964                         access_sdma_tail_out_of_bounds_err_cnt),
4965 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
4966                         CNTR_NORMAL,
4967                         access_sdma_too_long_err_cnt),
4968 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
4969                         CNTR_NORMAL,
4970                         access_sdma_gen_mismatch_err_cnt),
4971 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
4972                         CNTR_NORMAL,
4973                         access_sdma_wrong_dw_err_cnt),
4974 };
4975
4976 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
4977 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
4978                         CNTR_NORMAL),
4979 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
4980                         CNTR_NORMAL),
4981 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
4982                         CNTR_NORMAL),
4983 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
4984                         CNTR_NORMAL),
4985 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
4986                         CNTR_NORMAL),
4987 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
4988                         CNTR_NORMAL),
4989 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
4990                         CNTR_NORMAL),
4991 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
4992 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
4993 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
4994 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
4995                                       CNTR_SYNTH | CNTR_VL),
4996 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
4997                                      CNTR_SYNTH | CNTR_VL),
4998 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
4999                                       CNTR_SYNTH | CNTR_VL),
5000 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5001 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5002 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5003                              access_sw_link_dn_cnt),
5004 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5005                            access_sw_link_up_cnt),
5006 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5007                                  access_sw_unknown_frame_cnt),
5008 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5009                              access_sw_xmit_discards),
5010 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5011                                 CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5012                                 access_sw_xmit_discards),
5013 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5014                                  access_xmit_constraint_errs),
5015 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5016                                 access_rcv_constraint_errs),
5017 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5018 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5019 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5020 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5021 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5022 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5023 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5024 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5025 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5026 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5027 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5028 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5029 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5030                                access_sw_cpu_rc_acks),
5031 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5032                                 access_sw_cpu_rc_qacks),
5033 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5034                                        access_sw_cpu_rc_delayed_comp),
5035 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5036 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5037 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5038 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5039 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5040 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5041 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5042 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5043 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5044 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5045 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5046 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5047 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5048 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5049 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5050 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5051 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5052 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5053 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5054 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5055 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5056 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5057 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5058 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5059 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5060 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5061 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5062 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5063 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5064 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5065 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5066 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5067 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5068 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5069 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5070 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5071 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5072 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5073 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5074 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5075 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5076 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5077 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5078 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5079 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5080 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5081 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5082 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5083 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5084 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5085 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5086 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5087 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5088 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5089 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5090 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5091 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5092 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5093 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5094 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5095 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5096 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5097 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5098 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5099 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5100 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5101 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5102 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5103 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5104 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5105 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5106 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5107 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5108 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5109 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5110 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5111 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5112 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5113 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5114 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5115 };
5116
5117 /* ======================================================================== */
5118
5119 /* return true if this is chip revision revision a */
5120 int is_ax(struct hfi1_devdata *dd)
5121 {
5122         u8 chip_rev_minor =
5123                 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5124                         & CCE_REVISION_CHIP_REV_MINOR_MASK;
5125         return (chip_rev_minor & 0xf0) == 0;
5126 }
5127
5128 /* return true if this is chip revision revision b */
5129 int is_bx(struct hfi1_devdata *dd)
5130 {
5131         u8 chip_rev_minor =
5132                 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5133                         & CCE_REVISION_CHIP_REV_MINOR_MASK;
5134         return (chip_rev_minor & 0xF0) == 0x10;
5135 }
5136
5137 /*
5138  * Append string s to buffer buf.  Arguments curp and len are the current
5139  * position and remaining length, respectively.
5140  *
5141  * return 0 on success, 1 on out of room
5142  */
5143 static int append_str(char *buf, char **curp, int *lenp, const char *s)
5144 {
5145         char *p = *curp;
5146         int len = *lenp;
5147         int result = 0; /* success */
5148         char c;
5149
5150         /* add a comma, if first in the buffer */
5151         if (p != buf) {
5152                 if (len == 0) {
5153                         result = 1; /* out of room */
5154                         goto done;
5155                 }
5156                 *p++ = ',';
5157                 len--;
5158         }
5159
5160         /* copy the string */
5161         while ((c = *s++) != 0) {
5162                 if (len == 0) {
5163                         result = 1; /* out of room */
5164                         goto done;
5165                 }
5166                 *p++ = c;
5167                 len--;
5168         }
5169
5170 done:
5171         /* write return values */
5172         *curp = p;
5173         *lenp = len;
5174
5175         return result;
5176 }
5177
5178 /*
5179  * Using the given flag table, print a comma separated string into
5180  * the buffer.  End in '*' if the buffer is too short.
5181  */
5182 static char *flag_string(char *buf, int buf_len, u64 flags,
5183                          struct flag_table *table, int table_size)
5184 {
5185         char extra[32];
5186         char *p = buf;
5187         int len = buf_len;
5188         int no_room = 0;
5189         int i;
5190
5191         /* make sure there is at least 2 so we can form "*" */
5192         if (len < 2)
5193                 return "";
5194
5195         len--;  /* leave room for a nul */
5196         for (i = 0; i < table_size; i++) {
5197                 if (flags & table[i].flag) {
5198                         no_room = append_str(buf, &p, &len, table[i].str);
5199                         if (no_room)
5200                                 break;
5201                         flags &= ~table[i].flag;
5202                 }
5203         }
5204
5205         /* any undocumented bits left? */
5206         if (!no_room && flags) {
5207                 snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5208                 no_room = append_str(buf, &p, &len, extra);
5209         }
5210
5211         /* add * if ran out of room */
5212         if (no_room) {
5213                 /* may need to back up to add space for a '*' */
5214                 if (len == 0)
5215                         --p;
5216                 *p++ = '*';
5217         }
5218
5219         /* add final nul - space already allocated above */
5220         *p = 0;
5221         return buf;
5222 }
5223
5224 /* first 8 CCE error interrupt source names */
5225 static const char * const cce_misc_names[] = {
5226         "CceErrInt",            /* 0 */
5227         "RxeErrInt",            /* 1 */
5228         "MiscErrInt",           /* 2 */
5229         "Reserved3",            /* 3 */
5230         "PioErrInt",            /* 4 */
5231         "SDmaErrInt",           /* 5 */
5232         "EgressErrInt",         /* 6 */
5233         "TxeErrInt"             /* 7 */
5234 };
5235
5236 /*
5237  * Return the miscellaneous error interrupt name.
5238  */
5239 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5240 {
5241         if (source < ARRAY_SIZE(cce_misc_names))
5242                 strncpy(buf, cce_misc_names[source], bsize);
5243         else
5244                 snprintf(buf, bsize, "Reserved%u",
5245                          source + IS_GENERAL_ERR_START);
5246
5247         return buf;
5248 }
5249
5250 /*
5251  * Return the SDMA engine error interrupt name.
5252  */
5253 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5254 {
5255         snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5256         return buf;
5257 }
5258
5259 /*
5260  * Return the send context error interrupt name.
5261  */
5262 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5263 {
5264         snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5265         return buf;
5266 }
5267
5268 static const char * const various_names[] = {
5269         "PbcInt",
5270         "GpioAssertInt",
5271         "Qsfp1Int",
5272         "Qsfp2Int",
5273         "TCritInt"
5274 };
5275
5276 /*
5277  * Return the various interrupt name.
5278  */
5279 static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5280 {
5281         if (source < ARRAY_SIZE(various_names))
5282                 strncpy(buf, various_names[source], bsize);
5283         else
5284                 snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5285         return buf;
5286 }
5287
5288 /*
5289  * Return the DC interrupt name.
5290  */
5291 static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5292 {
5293         static const char * const dc_int_names[] = {
5294                 "common",
5295                 "lcb",
5296                 "8051",
5297                 "lbm"   /* local block merge */
5298         };
5299
5300         if (source < ARRAY_SIZE(dc_int_names))
5301                 snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5302         else
5303                 snprintf(buf, bsize, "DCInt%u", source);
5304         return buf;
5305 }
5306
5307 static const char * const sdma_int_names[] = {
5308         "SDmaInt",
5309         "SdmaIdleInt",
5310         "SdmaProgressInt",
5311 };
5312
5313 /*
5314  * Return the SDMA engine interrupt name.
5315  */
5316 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5317 {
5318         /* what interrupt */
5319         unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
5320         /* which engine */
5321         unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5322
5323         if (likely(what < 3))
5324                 snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5325         else
5326                 snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5327         return buf;
5328 }
5329
5330 /*
5331  * Return the receive available interrupt name.
5332  */
5333 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5334 {
5335         snprintf(buf, bsize, "RcvAvailInt%u", source);
5336         return buf;
5337 }
5338
5339 /*
5340  * Return the receive urgent interrupt name.
5341  */
5342 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5343 {
5344         snprintf(buf, bsize, "RcvUrgentInt%u", source);
5345         return buf;
5346 }
5347
5348 /*
5349  * Return the send credit interrupt name.
5350  */
5351 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5352 {
5353         snprintf(buf, bsize, "SendCreditInt%u", source);
5354         return buf;
5355 }
5356
5357 /*
5358  * Return the reserved interrupt name.
5359  */
5360 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5361 {
5362         snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5363         return buf;
5364 }
5365
5366 static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5367 {
5368         return flag_string(buf, buf_len, flags,
5369                            cce_err_status_flags,
5370                            ARRAY_SIZE(cce_err_status_flags));
5371 }
5372
5373 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5374 {
5375         return flag_string(buf, buf_len, flags,
5376                            rxe_err_status_flags,
5377                            ARRAY_SIZE(rxe_err_status_flags));
5378 }
5379
5380 static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5381 {
5382         return flag_string(buf, buf_len, flags, misc_err_status_flags,
5383                            ARRAY_SIZE(misc_err_status_flags));
5384 }
5385
5386 static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5387 {
5388         return flag_string(buf, buf_len, flags,
5389                            pio_err_status_flags,
5390                            ARRAY_SIZE(pio_err_status_flags));
5391 }
5392
5393 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5394 {
5395         return flag_string(buf, buf_len, flags,
5396                            sdma_err_status_flags,
5397                            ARRAY_SIZE(sdma_err_status_flags));
5398 }
5399
5400 static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5401 {
5402         return flag_string(buf, buf_len, flags,
5403                            egress_err_status_flags,
5404                            ARRAY_SIZE(egress_err_status_flags));
5405 }
5406
5407 static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5408 {
5409         return flag_string(buf, buf_len, flags,
5410                            egress_err_info_flags,
5411                            ARRAY_SIZE(egress_err_info_flags));
5412 }
5413
5414 static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5415 {
5416         return flag_string(buf, buf_len, flags,
5417                            send_err_status_flags,
5418                            ARRAY_SIZE(send_err_status_flags));
5419 }
5420
5421 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5422 {
5423         char buf[96];
5424         int i = 0;
5425
5426         /*
5427          * For most these errors, there is nothing that can be done except
5428          * report or record it.
5429          */
5430         dd_dev_info(dd, "CCE Error: %s\n",
5431                     cce_err_status_string(buf, sizeof(buf), reg));
5432
5433         if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5434             is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5435                 /* this error requires a manual drop into SPC freeze mode */
5436                 /* then a fix up */
5437                 start_freeze_handling(dd->pport, FREEZE_SELF);
5438         }
5439
5440         for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5441                 if (reg & (1ull << i)) {
5442                         incr_cntr64(&dd->cce_err_status_cnt[i]);
5443                         /* maintain a counter over all cce_err_status errors */
5444                         incr_cntr64(&dd->sw_cce_err_status_aggregate);
5445                 }
5446         }
5447 }
5448
5449 /*
5450  * Check counters for receive errors that do not have an interrupt
5451  * associated with them.
5452  */
5453 #define RCVERR_CHECK_TIME 10
5454 static void update_rcverr_timer(unsigned long opaque)
5455 {
5456         struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
5457         struct hfi1_pportdata *ppd = dd->pport;
5458         u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5459
5460         if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5461             ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5462                 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5463                 set_link_down_reason(
5464                 ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5465                 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5466                 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
5467         }
5468         dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5469
5470         mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5471 }
5472
5473 static int init_rcverr(struct hfi1_devdata *dd)
5474 {
5475         setup_timer(&dd->rcverr_timer, update_rcverr_timer, (unsigned long)dd);
5476         /* Assume the hardware counter has been reset */
5477         dd->rcv_ovfl_cnt = 0;
5478         return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5479 }
5480
5481 static void free_rcverr(struct hfi1_devdata *dd)
5482 {
5483         if (dd->rcverr_timer.data)
5484                 del_timer_sync(&dd->rcverr_timer);
5485         dd->rcverr_timer.data = 0;
5486 }
5487
5488 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5489 {
5490         char buf[96];
5491         int i = 0;
5492
5493         dd_dev_info(dd, "Receive Error: %s\n",
5494                     rxe_err_status_string(buf, sizeof(buf), reg));
5495
5496         if (reg & ALL_RXE_FREEZE_ERR) {
5497                 int flags = 0;
5498
5499                 /*
5500                  * Freeze mode recovery is disabled for the errors
5501                  * in RXE_FREEZE_ABORT_MASK
5502                  */
5503                 if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5504                         flags = FREEZE_ABORT;
5505
5506                 start_freeze_handling(dd->pport, flags);
5507         }
5508
5509         for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5510                 if (reg & (1ull << i))
5511                         incr_cntr64(&dd->rcv_err_status_cnt[i]);
5512         }
5513 }
5514
5515 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5516 {
5517         char buf[96];
5518         int i = 0;
5519
5520         dd_dev_info(dd, "Misc Error: %s",
5521                     misc_err_status_string(buf, sizeof(buf), reg));
5522         for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5523                 if (reg & (1ull << i))
5524                         incr_cntr64(&dd->misc_err_status_cnt[i]);
5525         }
5526 }
5527
5528 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5529 {
5530         char buf[96];
5531         int i = 0;
5532
5533         dd_dev_info(dd, "PIO Error: %s\n",
5534                     pio_err_status_string(buf, sizeof(buf), reg));
5535
5536         if (reg & ALL_PIO_FREEZE_ERR)
5537                 start_freeze_handling(dd->pport, 0);
5538
5539         for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5540                 if (reg & (1ull << i))
5541                         incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5542         }
5543 }
5544
5545 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5546 {
5547         char buf[96];
5548         int i = 0;
5549
5550         dd_dev_info(dd, "SDMA Error: %s\n",
5551                     sdma_err_status_string(buf, sizeof(buf), reg));
5552
5553         if (reg & ALL_SDMA_FREEZE_ERR)
5554                 start_freeze_handling(dd->pport, 0);
5555
5556         for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5557                 if (reg & (1ull << i))
5558                         incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5559         }
5560 }
5561
5562 static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5563 {
5564         incr_cntr64(&ppd->port_xmit_discards);
5565 }
5566
5567 static void count_port_inactive(struct hfi1_devdata *dd)
5568 {
5569         __count_port_discards(dd->pport);
5570 }
5571
5572 /*
5573  * We have had a "disallowed packet" error during egress. Determine the
5574  * integrity check which failed, and update relevant error counter, etc.
5575  *
5576  * Note that the SEND_EGRESS_ERR_INFO register has only a single
5577  * bit of state per integrity check, and so we can miss the reason for an
5578  * egress error if more than one packet fails the same integrity check
5579  * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5580  */
5581 static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5582                                         int vl)
5583 {
5584         struct hfi1_pportdata *ppd = dd->pport;
5585         u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5586         u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5587         char buf[96];
5588
5589         /* clear down all observed info as quickly as possible after read */
5590         write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5591
5592         dd_dev_info(dd,
5593                     "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5594                     info, egress_err_info_string(buf, sizeof(buf), info), src);
5595
5596         /* Eventually add other counters for each bit */
5597         if (info & PORT_DISCARD_EGRESS_ERRS) {
5598                 int weight, i;
5599
5600                 /*
5601                  * Count all applicable bits as individual errors and
5602                  * attribute them to the packet that triggered this handler.
5603                  * This may not be completely accurate due to limitations
5604                  * on the available hardware error information.  There is
5605                  * a single information register and any number of error
5606                  * packets may have occurred and contributed to it before
5607                  * this routine is called.  This means that:
5608                  * a) If multiple packets with the same error occur before
5609                  *    this routine is called, earlier packets are missed.
5610                  *    There is only a single bit for each error type.
5611                  * b) Errors may not be attributed to the correct VL.
5612                  *    The driver is attributing all bits in the info register
5613                  *    to the packet that triggered this call, but bits
5614                  *    could be an accumulation of different packets with
5615                  *    different VLs.
5616                  * c) A single error packet may have multiple counts attached
5617                  *    to it.  There is no way for the driver to know if
5618                  *    multiple bits set in the info register are due to a
5619                  *    single packet or multiple packets.  The driver assumes
5620                  *    multiple packets.
5621                  */
5622                 weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5623                 for (i = 0; i < weight; i++) {
5624                         __count_port_discards(ppd);
5625                         if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5626                                 incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5627                         else if (vl == 15)
5628                                 incr_cntr64(&ppd->port_xmit_discards_vl
5629                                             [C_VL_15]);
5630                 }
5631         }
5632 }
5633
5634 /*
5635  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5636  * register. Does it represent a 'port inactive' error?
5637  */
5638 static inline int port_inactive_err(u64 posn)
5639 {
5640         return (posn >= SEES(TX_LINKDOWN) &&
5641                 posn <= SEES(TX_INCORRECT_LINK_STATE));
5642 }
5643
5644 /*
5645  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5646  * register. Does it represent a 'disallowed packet' error?
5647  */
5648 static inline int disallowed_pkt_err(int posn)
5649 {
5650         return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5651                 posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5652 }
5653
5654 /*
5655  * Input value is a bit position of one of the SDMA engine disallowed
5656  * packet errors.  Return which engine.  Use of this must be guarded by
5657  * disallowed_pkt_err().
5658  */
5659 static inline int disallowed_pkt_engine(int posn)
5660 {
5661         return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5662 }
5663
5664 /*
5665  * Translate an SDMA engine to a VL.  Return -1 if the tranlation cannot
5666  * be done.
5667  */
5668 static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5669 {
5670         struct sdma_vl_map *m;
5671         int vl;
5672
5673         /* range check */
5674         if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5675                 return -1;
5676
5677         rcu_read_lock();
5678         m = rcu_dereference(dd->sdma_map);
5679         vl = m->engine_to_vl[engine];
5680         rcu_read_unlock();
5681
5682         return vl;
5683 }
5684
5685 /*
5686  * Translate the send context (sofware index) into a VL.  Return -1 if the
5687  * translation cannot be done.
5688  */
5689 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5690 {
5691         struct send_context_info *sci;
5692         struct send_context *sc;
5693         int i;
5694
5695         sci = &dd->send_contexts[sw_index];
5696
5697         /* there is no information for user (PSM) and ack contexts */
5698         if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5699                 return -1;
5700
5701         sc = sci->sc;
5702         if (!sc)
5703                 return -1;
5704         if (dd->vld[15].sc == sc)
5705                 return 15;
5706         for (i = 0; i < num_vls; i++)
5707                 if (dd->vld[i].sc == sc)
5708                         return i;
5709
5710         return -1;
5711 }
5712
5713 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5714 {
5715         u64 reg_copy = reg, handled = 0;
5716         char buf[96];
5717         int i = 0;
5718
5719         if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5720                 start_freeze_handling(dd->pport, 0);
5721         else if (is_ax(dd) &&
5722                  (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5723                  (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5724                 start_freeze_handling(dd->pport, 0);
5725
5726         while (reg_copy) {
5727                 int posn = fls64(reg_copy);
5728                 /* fls64() returns a 1-based offset, we want it zero based */
5729                 int shift = posn - 1;
5730                 u64 mask = 1ULL << shift;
5731
5732                 if (port_inactive_err(shift)) {
5733                         count_port_inactive(dd);
5734                         handled |= mask;
5735                 } else if (disallowed_pkt_err(shift)) {
5736                         int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5737
5738                         handle_send_egress_err_info(dd, vl);
5739                         handled |= mask;
5740                 }
5741                 reg_copy &= ~mask;
5742         }
5743
5744         reg &= ~handled;
5745
5746         if (reg)
5747                 dd_dev_info(dd, "Egress Error: %s\n",
5748                             egress_err_status_string(buf, sizeof(buf), reg));
5749
5750         for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5751                 if (reg & (1ull << i))
5752                         incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5753         }
5754 }
5755
5756 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5757 {
5758         char buf[96];
5759         int i = 0;
5760
5761         dd_dev_info(dd, "Send Error: %s\n",
5762                     send_err_status_string(buf, sizeof(buf), reg));
5763
5764         for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5765                 if (reg & (1ull << i))
5766                         incr_cntr64(&dd->send_err_status_cnt[i]);
5767         }
5768 }
5769
5770 /*
5771  * The maximum number of times the error clear down will loop before
5772  * blocking a repeating error.  This value is arbitrary.
5773  */
5774 #define MAX_CLEAR_COUNT 20
5775
5776 /*
5777  * Clear and handle an error register.  All error interrupts are funneled
5778  * through here to have a central location to correctly handle single-
5779  * or multi-shot errors.
5780  *
5781  * For non per-context registers, call this routine with a context value
5782  * of 0 so the per-context offset is zero.
5783  *
5784  * If the handler loops too many times, assume that something is wrong
5785  * and can't be fixed, so mask the error bits.
5786  */
5787 static void interrupt_clear_down(struct hfi1_devdata *dd,
5788                                  u32 context,
5789                                  const struct err_reg_info *eri)
5790 {
5791         u64 reg;
5792         u32 count;
5793
5794         /* read in a loop until no more errors are seen */
5795         count = 0;
5796         while (1) {
5797                 reg = read_kctxt_csr(dd, context, eri->status);
5798                 if (reg == 0)
5799                         break;
5800                 write_kctxt_csr(dd, context, eri->clear, reg);
5801                 if (likely(eri->handler))
5802                         eri->handler(dd, context, reg);
5803                 count++;
5804                 if (count > MAX_CLEAR_COUNT) {
5805                         u64 mask;
5806
5807                         dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5808                                    eri->desc, reg);
5809                         /*
5810                          * Read-modify-write so any other masked bits
5811                          * remain masked.
5812                          */
5813                         mask = read_kctxt_csr(dd, context, eri->mask);
5814                         mask &= ~reg;
5815                         write_kctxt_csr(dd, context, eri->mask, mask);
5816                         break;
5817                 }
5818         }
5819 }
5820
5821 /*
5822  * CCE block "misc" interrupt.  Source is < 16.
5823  */
5824 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5825 {
5826         const struct err_reg_info *eri = &misc_errs[source];
5827
5828         if (eri->handler) {
5829                 interrupt_clear_down(dd, 0, eri);
5830         } else {
5831                 dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5832                            source);
5833         }
5834 }
5835
5836 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5837 {
5838         return flag_string(buf, buf_len, flags,
5839                            sc_err_status_flags,
5840                            ARRAY_SIZE(sc_err_status_flags));
5841 }
5842
5843 /*
5844  * Send context error interrupt.  Source (hw_context) is < 160.
5845  *
5846  * All send context errors cause the send context to halt.  The normal
5847  * clear-down mechanism cannot be used because we cannot clear the
5848  * error bits until several other long-running items are done first.
5849  * This is OK because with the context halted, nothing else is going
5850  * to happen on it anyway.
5851  */
5852 static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5853                                 unsigned int hw_context)
5854 {
5855         struct send_context_info *sci;
5856         struct send_context *sc;
5857         char flags[96];
5858         u64 status;
5859         u32 sw_index;
5860         int i = 0;
5861
5862         sw_index = dd->hw_to_sw[hw_context];
5863         if (sw_index >= dd->num_send_contexts) {
5864                 dd_dev_err(dd,
5865                            "out of range sw index %u for send context %u\n",
5866                            sw_index, hw_context);
5867                 return;
5868         }
5869         sci = &dd->send_contexts[sw_index];
5870         sc = sci->sc;
5871         if (!sc) {
5872                 dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5873                            sw_index, hw_context);
5874                 return;
5875         }
5876
5877         /* tell the software that a halt has begun */
5878         sc_stop(sc, SCF_HALTED);
5879
5880         status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5881
5882         dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5883                     send_context_err_status_string(flags, sizeof(flags),
5884                                                    status));
5885
5886         if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
5887                 handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
5888
5889         /*
5890          * Automatically restart halted kernel contexts out of interrupt
5891          * context.  User contexts must ask the driver to restart the context.
5892          */
5893         if (sc->type != SC_USER)
5894                 queue_work(dd->pport->hfi1_wq, &sc->halt_work);
5895
5896         /*
5897          * Update the counters for the corresponding status bits.
5898          * Note that these particular counters are aggregated over all
5899          * 160 contexts.
5900          */
5901         for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
5902                 if (status & (1ull << i))
5903                         incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
5904         }
5905 }
5906
5907 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
5908                                 unsigned int source, u64 status)
5909 {
5910         struct sdma_engine *sde;
5911         int i = 0;
5912
5913         sde = &dd->per_sdma[source];
5914 #ifdef CONFIG_SDMA_VERBOSITY
5915         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
5916                    slashstrip(__FILE__), __LINE__, __func__);
5917         dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
5918                    sde->this_idx, source, (unsigned long long)status);
5919 #endif
5920         sde->err_cnt++;
5921         sdma_engine_error(sde, status);
5922
5923         /*
5924         * Update the counters for the corresponding status bits.
5925         * Note that these particular counters are aggregated over
5926         * all 16 DMA engines.
5927         */
5928         for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
5929                 if (status & (1ull << i))
5930                         incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
5931         }
5932 }
5933
5934 /*
5935  * CCE block SDMA error interrupt.  Source is < 16.
5936  */
5937 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
5938 {
5939 #ifdef CONFIG_SDMA_VERBOSITY
5940         struct sdma_engine *sde = &dd->per_sdma[source];
5941
5942         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
5943                    slashstrip(__FILE__), __LINE__, __func__);
5944         dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
5945                    source);
5946         sdma_dumpstate(sde);
5947 #endif
5948         interrupt_clear_down(dd, source, &sdma_eng_err);
5949 }
5950
5951 /*
5952  * CCE block "various" interrupt.  Source is < 8.
5953  */
5954 static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
5955 {
5956         const struct err_reg_info *eri = &various_err[source];
5957
5958         /*
5959          * TCritInt cannot go through interrupt_clear_down()
5960          * because it is not a second tier interrupt. The handler
5961          * should be called directly.
5962          */
5963         if (source == TCRIT_INT_SOURCE)
5964                 handle_temp_err(dd);
5965         else if (eri->handler)
5966                 interrupt_clear_down(dd, 0, eri);
5967         else
5968                 dd_dev_info(dd,
5969                             "%s: Unimplemented/reserved interrupt %d\n",
5970                             __func__, source);
5971 }
5972
5973 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
5974 {
5975         /* src_ctx is always zero */
5976         struct hfi1_pportdata *ppd = dd->pport;
5977         unsigned long flags;
5978         u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
5979
5980         if (reg & QSFP_HFI0_MODPRST_N) {
5981                 if (!qsfp_mod_present(ppd)) {
5982                         dd_dev_info(dd, "%s: QSFP module removed\n",
5983                                     __func__);
5984
5985                         ppd->driver_link_ready = 0;
5986                         /*
5987                          * Cable removed, reset all our information about the
5988                          * cache and cable capabilities
5989                          */
5990
5991                         spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
5992                         /*
5993                          * We don't set cache_refresh_required here as we expect
5994                          * an interrupt when a cable is inserted
5995                          */
5996                         ppd->qsfp_info.cache_valid = 0;
5997                         ppd->qsfp_info.reset_needed = 0;
5998                         ppd->qsfp_info.limiting_active = 0;
5999                         spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6000                                                flags);
6001                         /* Invert the ModPresent pin now to detect plug-in */
6002                         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6003                                   ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6004
6005                         if ((ppd->offline_disabled_reason >
6006                           HFI1_ODR_MASK(
6007                           OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6008                           (ppd->offline_disabled_reason ==
6009                           HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6010                                 ppd->offline_disabled_reason =
6011                                 HFI1_ODR_MASK(
6012                                 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6013
6014                         if (ppd->host_link_state == HLS_DN_POLL) {
6015                                 /*
6016                                  * The link is still in POLL. This means
6017                                  * that the normal link down processing
6018                                  * will not happen. We have to do it here
6019                                  * before turning the DC off.
6020                                  */
6021                                 queue_work(ppd->hfi1_wq, &ppd->link_down_work);
6022                         }
6023                 } else {
6024                         dd_dev_info(dd, "%s: QSFP module inserted\n",
6025                                     __func__);
6026
6027                         spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6028                         ppd->qsfp_info.cache_valid = 0;
6029                         ppd->qsfp_info.cache_refresh_required = 1;
6030                         spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6031                                                flags);
6032
6033                         /*
6034                          * Stop inversion of ModPresent pin to detect
6035                          * removal of the cable
6036                          */
6037                         qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6038                         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6039                                   ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6040
6041                         ppd->offline_disabled_reason =
6042                                 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6043                 }
6044         }
6045
6046         if (reg & QSFP_HFI0_INT_N) {
6047                 dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6048                             __func__);
6049                 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6050                 ppd->qsfp_info.check_interrupt_flags = 1;
6051                 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6052         }
6053
6054         /* Schedule the QSFP work only if there is a cable attached. */
6055         if (qsfp_mod_present(ppd))
6056                 queue_work(ppd->hfi1_wq, &ppd->qsfp_info.qsfp_work);
6057 }
6058
6059 static int request_host_lcb_access(struct hfi1_devdata *dd)
6060 {
6061         int ret;
6062
6063         ret = do_8051_command(dd, HCMD_MISC,
6064                               (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6065                               LOAD_DATA_FIELD_ID_SHIFT, NULL);
6066         if (ret != HCMD_SUCCESS) {
6067                 dd_dev_err(dd, "%s: command failed with error %d\n",
6068                            __func__, ret);
6069         }
6070         return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6071 }
6072
6073 static int request_8051_lcb_access(struct hfi1_devdata *dd)
6074 {
6075         int ret;
6076
6077         ret = do_8051_command(dd, HCMD_MISC,
6078                               (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6079                               LOAD_DATA_FIELD_ID_SHIFT, NULL);
6080         if (ret != HCMD_SUCCESS) {
6081                 dd_dev_err(dd, "%s: command failed with error %d\n",
6082                            __func__, ret);
6083         }
6084         return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6085 }
6086
6087 /*
6088  * Set the LCB selector - allow host access.  The DCC selector always
6089  * points to the host.
6090  */
6091 static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6092 {
6093         write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6094                   DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6095                   DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6096 }
6097
6098 /*
6099  * Clear the LCB selector - allow 8051 access.  The DCC selector always
6100  * points to the host.
6101  */
6102 static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6103 {
6104         write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6105                   DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6106 }
6107
6108 /*
6109  * Acquire LCB access from the 8051.  If the host already has access,
6110  * just increment a counter.  Otherwise, inform the 8051 that the
6111  * host is taking access.
6112  *
6113  * Returns:
6114  *      0 on success
6115  *      -EBUSY if the 8051 has control and cannot be disturbed
6116  *      -errno if unable to acquire access from the 8051
6117  */
6118 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6119 {
6120         struct hfi1_pportdata *ppd = dd->pport;
6121         int ret = 0;
6122
6123         /*
6124          * Use the host link state lock so the operation of this routine
6125          * { link state check, selector change, count increment } can occur
6126          * as a unit against a link state change.  Otherwise there is a
6127          * race between the state change and the count increment.
6128          */
6129         if (sleep_ok) {
6130                 mutex_lock(&ppd->hls_lock);
6131         } else {
6132                 while (!mutex_trylock(&ppd->hls_lock))
6133                         udelay(1);
6134         }
6135
6136         /* this access is valid only when the link is up */
6137         if (ppd->host_link_state & HLS_DOWN) {
6138                 dd_dev_info(dd, "%s: link state %s not up\n",
6139                             __func__, link_state_name(ppd->host_link_state));
6140                 ret = -EBUSY;
6141                 goto done;
6142         }
6143
6144         if (dd->lcb_access_count == 0) {
6145                 ret = request_host_lcb_access(dd);
6146                 if (ret) {
6147                         dd_dev_err(dd,
6148                                    "%s: unable to acquire LCB access, err %d\n",
6149                                    __func__, ret);
6150                         goto done;
6151                 }
6152                 set_host_lcb_access(dd);
6153         }
6154         dd->lcb_access_count++;
6155 done:
6156         mutex_unlock(&ppd->hls_lock);
6157         return ret;
6158 }
6159
6160 /*
6161  * Release LCB access by decrementing the use count.  If the count is moving
6162  * from 1 to 0, inform 8051 that it has control back.
6163  *
6164  * Returns:
6165  *      0 on success
6166  *      -errno if unable to release access to the 8051
6167  */
6168 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6169 {
6170         int ret = 0;
6171
6172         /*
6173          * Use the host link state lock because the acquire needed it.
6174          * Here, we only need to keep { selector change, count decrement }
6175          * as a unit.
6176          */
6177         if (sleep_ok) {
6178                 mutex_lock(&dd->pport->hls_lock);
6179         } else {
6180                 while (!mutex_trylock(&dd->pport->hls_lock))
6181                         udelay(1);
6182         }
6183
6184         if (dd->lcb_access_count == 0) {
6185                 dd_dev_err(dd, "%s: LCB access count is zero.  Skipping.\n",
6186                            __func__);
6187                 goto done;
6188         }
6189
6190         if (dd->lcb_access_count == 1) {
6191                 set_8051_lcb_access(dd);
6192                 ret = request_8051_lcb_access(dd);
6193                 if (ret) {
6194                         dd_dev_err(dd,
6195                                    "%s: unable to release LCB access, err %d\n",
6196                                    __func__, ret);
6197                         /* restore host access if the grant didn't work */
6198                         set_host_lcb_access(dd);
6199                         goto done;
6200                 }
6201         }
6202         dd->lcb_access_count--;
6203 done:
6204         mutex_unlock(&dd->pport->hls_lock);
6205         return ret;
6206 }
6207
6208 /*
6209  * Initialize LCB access variables and state.  Called during driver load,
6210  * after most of the initialization is finished.
6211  *
6212  * The DC default is LCB access on for the host.  The driver defaults to
6213  * leaving access to the 8051.  Assign access now - this constrains the call
6214  * to this routine to be after all LCB set-up is done.  In particular, after
6215  * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6216  */
6217 static void init_lcb_access(struct hfi1_devdata *dd)
6218 {
6219         dd->lcb_access_count = 0;
6220 }
6221
6222 /*
6223  * Write a response back to a 8051 request.
6224  */
6225 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6226 {
6227         write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6228                   DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6229                   (u64)return_code <<
6230                   DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6231                   (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6232 }
6233
6234 /*
6235  * Handle host requests from the 8051.
6236  */
6237 static void handle_8051_request(struct hfi1_pportdata *ppd)
6238 {
6239         struct hfi1_devdata *dd = ppd->dd;
6240         u64 reg;
6241         u16 data = 0;
6242         u8 type;
6243
6244         reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6245         if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6246                 return; /* no request */
6247
6248         /* zero out COMPLETED so the response is seen */
6249         write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6250
6251         /* extract request details */
6252         type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6253                         & DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6254         data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6255                         & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6256
6257         switch (type) {
6258         case HREQ_LOAD_CONFIG:
6259         case HREQ_SAVE_CONFIG:
6260         case HREQ_READ_CONFIG:
6261         case HREQ_SET_TX_EQ_ABS:
6262         case HREQ_SET_TX_EQ_REL:
6263         case HREQ_ENABLE:
6264                 dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6265                             type);
6266                 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6267                 break;
6268         case HREQ_CONFIG_DONE:
6269                 hreq_response(dd, HREQ_SUCCESS, 0);
6270                 break;
6271
6272         case HREQ_INTERFACE_TEST:
6273                 hreq_response(dd, HREQ_SUCCESS, data);
6274                 break;
6275         default:
6276                 dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6277                 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6278                 break;
6279         }
6280 }
6281
6282 static void write_global_credit(struct hfi1_devdata *dd,
6283                                 u8 vau, u16 total, u16 shared)
6284 {
6285         write_csr(dd, SEND_CM_GLOBAL_CREDIT,
6286                   ((u64)total <<
6287                    SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT) |
6288                   ((u64)shared <<
6289                    SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT) |
6290                   ((u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT));
6291 }
6292
6293 /*
6294  * Set up initial VL15 credits of the remote.  Assumes the rest of
6295  * the CM credit registers are zero from a previous global or credit reset .
6296  */
6297 void set_up_vl15(struct hfi1_devdata *dd, u8 vau, u16 vl15buf)
6298 {
6299         /* leave shared count at zero for both global and VL15 */
6300         write_global_credit(dd, vau, vl15buf, 0);
6301
6302         /* We may need some credits for another VL when sending packets
6303          * with the snoop interface. Dividing it down the middle for VL15
6304          * and VL0 should suffice.
6305          */
6306         if (unlikely(dd->hfi1_snoop.mode_flag == HFI1_PORT_SNOOP_MODE)) {
6307                 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)(vl15buf >> 1)
6308                     << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6309                 write_csr(dd, SEND_CM_CREDIT_VL, (u64)(vl15buf >> 1)
6310                     << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT);
6311         } else {
6312                 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6313                         << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6314         }
6315 }
6316
6317 /*
6318  * Zero all credit details from the previous connection and
6319  * reset the CM manager's internal counters.
6320  */
6321 void reset_link_credits(struct hfi1_devdata *dd)
6322 {
6323         int i;
6324
6325         /* remove all previous VL credit limits */
6326         for (i = 0; i < TXE_NUM_DATA_VL; i++)
6327                 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6328         write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6329         write_global_credit(dd, 0, 0, 0);
6330         /* reset the CM block */
6331         pio_send_control(dd, PSC_CM_RESET);
6332 }
6333
6334 /* convert a vCU to a CU */
6335 static u32 vcu_to_cu(u8 vcu)
6336 {
6337         return 1 << vcu;
6338 }
6339
6340 /* convert a CU to a vCU */
6341 static u8 cu_to_vcu(u32 cu)
6342 {
6343         return ilog2(cu);
6344 }
6345
6346 /* convert a vAU to an AU */
6347 static u32 vau_to_au(u8 vau)
6348 {
6349         return 8 * (1 << vau);
6350 }
6351
6352 static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6353 {
6354         ppd->sm_trap_qp = 0x0;
6355         ppd->sa_qp = 0x1;
6356 }
6357
6358 /*
6359  * Graceful LCB shutdown.  This leaves the LCB FIFOs in reset.
6360  */
6361 static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6362 {
6363         u64 reg;
6364
6365         /* clear lcb run: LCB_CFG_RUN.EN = 0 */
6366         write_csr(dd, DC_LCB_CFG_RUN, 0);
6367         /* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6368         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6369                   1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6370         /* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6371         dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6372         reg = read_csr(dd, DCC_CFG_RESET);
6373         write_csr(dd, DCC_CFG_RESET, reg |
6374                   (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT) |
6375                   (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT));
6376         (void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6377         if (!abort) {
6378                 udelay(1);    /* must hold for the longer of 16cclks or 20ns */
6379                 write_csr(dd, DCC_CFG_RESET, reg);
6380                 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6381         }
6382 }
6383
6384 /*
6385  * This routine should be called after the link has been transitioned to
6386  * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6387  * reset).
6388  *
6389  * The expectation is that the caller of this routine would have taken
6390  * care of properly transitioning the link into the correct state.
6391  */
6392 static void dc_shutdown(struct hfi1_devdata *dd)
6393 {
6394         unsigned long flags;
6395
6396         spin_lock_irqsave(&dd->dc8051_lock, flags);
6397         if (dd->dc_shutdown) {
6398                 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6399                 return;
6400         }
6401         dd->dc_shutdown = 1;
6402         spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6403         /* Shutdown the LCB */
6404         lcb_shutdown(dd, 1);
6405         /*
6406          * Going to OFFLINE would have causes the 8051 to put the
6407          * SerDes into reset already. Just need to shut down the 8051,
6408          * itself.
6409          */
6410         write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6411 }
6412
6413 /*
6414  * Calling this after the DC has been brought out of reset should not
6415  * do any damage.
6416  */
6417 static void dc_start(struct hfi1_devdata *dd)
6418 {
6419         unsigned long flags;
6420         int ret;
6421
6422         spin_lock_irqsave(&dd->dc8051_lock, flags);
6423         if (!dd->dc_shutdown)
6424                 goto done;
6425         spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6426         /* Take the 8051 out of reset */
6427         write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6428         /* Wait until 8051 is ready */
6429         ret = wait_fm_ready(dd, TIMEOUT_8051_START);
6430         if (ret) {
6431                 dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6432                            __func__);
6433         }
6434         /* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6435         write_csr(dd, DCC_CFG_RESET, 0x10);
6436         /* lcb_shutdown() with abort=1 does not restore these */
6437         write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6438         spin_lock_irqsave(&dd->dc8051_lock, flags);
6439         dd->dc_shutdown = 0;
6440 done:
6441         spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6442 }
6443
6444 /*
6445  * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6446  */
6447 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6448 {
6449         u64 rx_radr, tx_radr;
6450         u32 version;
6451
6452         if (dd->icode != ICODE_FPGA_EMULATION)
6453                 return;
6454
6455         /*
6456          * These LCB defaults on emulator _s are good, nothing to do here:
6457          *      LCB_CFG_TX_FIFOS_RADR
6458          *      LCB_CFG_RX_FIFOS_RADR
6459          *      LCB_CFG_LN_DCLK
6460          *      LCB_CFG_IGNORE_LOST_RCLK
6461          */
6462         if (is_emulator_s(dd))
6463                 return;
6464         /* else this is _p */
6465
6466         version = emulator_rev(dd);
6467         if (!is_ax(dd))
6468                 version = 0x2d; /* all B0 use 0x2d or higher settings */
6469
6470         if (version <= 0x12) {
6471                 /* release 0x12 and below */
6472
6473                 /*
6474                  * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6475                  * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6476                  * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6477                  */
6478                 rx_radr =
6479                       0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6480                     | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6481                     | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6482                 /*
6483                  * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6484                  * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6485                  */
6486                 tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6487         } else if (version <= 0x18) {
6488                 /* release 0x13 up to 0x18 */
6489                 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6490                 rx_radr =
6491                       0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6492                     | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6493                     | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6494                 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6495         } else if (version == 0x19) {
6496                 /* release 0x19 */
6497                 /* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6498                 rx_radr =
6499                       0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6500                     | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6501                     | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6502                 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6503         } else if (version == 0x1a) {
6504                 /* release 0x1a */
6505                 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6506                 rx_radr =
6507                       0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6508                     | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6509                     | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6510                 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6511                 write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6512         } else {
6513                 /* release 0x1b and higher */
6514                 /* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6515                 rx_radr =
6516                       0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6517                     | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6518                     | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6519                 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6520         }
6521
6522         write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6523         /* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6524         write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6525                   DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6526         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6527 }
6528
6529 /*
6530  * Handle a SMA idle message
6531  *
6532  * This is a work-queue function outside of the interrupt.
6533  */
6534 void handle_sma_message(struct work_struct *work)
6535 {
6536         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6537                                                         sma_message_work);
6538         struct hfi1_devdata *dd = ppd->dd;
6539         u64 msg;
6540         int ret;
6541
6542         /*
6543          * msg is bytes 1-4 of the 40-bit idle message - the command code
6544          * is stripped off
6545          */
6546         ret = read_idle_sma(dd, &msg);
6547         if (ret)
6548                 return;
6549         dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6550         /*
6551          * React to the SMA message.  Byte[1] (0 for us) is the command.
6552          */
6553         switch (msg & 0xff) {
6554         case SMA_IDLE_ARM:
6555                 /*
6556                  * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6557                  * State Transitions
6558                  *
6559                  * Only expected in INIT or ARMED, discard otherwise.
6560                  */
6561                 if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6562                         ppd->neighbor_normal = 1;
6563                 break;
6564         case SMA_IDLE_ACTIVE:
6565                 /*
6566                  * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6567                  * State Transitions
6568                  *
6569                  * Can activate the node.  Discard otherwise.
6570                  */
6571                 if (ppd->host_link_state == HLS_UP_ARMED &&
6572                     ppd->is_active_optimize_enabled) {
6573                         ppd->neighbor_normal = 1;
6574                         ret = set_link_state(ppd, HLS_UP_ACTIVE);
6575                         if (ret)
6576                                 dd_dev_err(
6577                                         dd,
6578                                         "%s: received Active SMA idle message, couldn't set link to Active\n",
6579                                         __func__);
6580                 }
6581                 break;
6582         default:
6583                 dd_dev_err(dd,
6584                            "%s: received unexpected SMA idle message 0x%llx\n",
6585                            __func__, msg);
6586                 break;
6587         }
6588 }
6589
6590 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6591 {
6592         u64 rcvctrl;
6593         unsigned long flags;
6594
6595         spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6596         rcvctrl = read_csr(dd, RCV_CTRL);
6597         rcvctrl |= add;
6598         rcvctrl &= ~clear;
6599         write_csr(dd, RCV_CTRL, rcvctrl);
6600         spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6601 }
6602
6603 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6604 {
6605         adjust_rcvctrl(dd, add, 0);
6606 }
6607
6608 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6609 {
6610         adjust_rcvctrl(dd, 0, clear);
6611 }
6612
6613 /*
6614  * Called from all interrupt handlers to start handling an SPC freeze.
6615  */
6616 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6617 {
6618         struct hfi1_devdata *dd = ppd->dd;
6619         struct send_context *sc;
6620         int i;
6621
6622         if (flags & FREEZE_SELF)
6623                 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6624
6625         /* enter frozen mode */
6626         dd->flags |= HFI1_FROZEN;
6627
6628         /* notify all SDMA engines that they are going into a freeze */
6629         sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6630
6631         /* do halt pre-handling on all enabled send contexts */
6632         for (i = 0; i < dd->num_send_contexts; i++) {
6633                 sc = dd->send_contexts[i].sc;
6634                 if (sc && (sc->flags & SCF_ENABLED))
6635                         sc_stop(sc, SCF_FROZEN | SCF_HALTED);
6636         }
6637
6638         /* Send context are frozen. Notify user space */
6639         hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6640
6641         if (flags & FREEZE_ABORT) {
6642                 dd_dev_err(dd,
6643                            "Aborted freeze recovery. Please REBOOT system\n");
6644                 return;
6645         }
6646         /* queue non-interrupt handler */
6647         queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6648 }
6649
6650 /*
6651  * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6652  * depending on the "freeze" parameter.
6653  *
6654  * No need to return an error if it times out, our only option
6655  * is to proceed anyway.
6656  */
6657 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6658 {
6659         unsigned long timeout;
6660         u64 reg;
6661
6662         timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6663         while (1) {
6664                 reg = read_csr(dd, CCE_STATUS);
6665                 if (freeze) {
6666                         /* waiting until all indicators are set */
6667                         if ((reg & ALL_FROZE) == ALL_FROZE)
6668                                 return; /* all done */
6669                 } else {
6670                         /* waiting until all indicators are clear */
6671                         if ((reg & ALL_FROZE) == 0)
6672                                 return; /* all done */
6673                 }
6674
6675                 if (time_after(jiffies, timeout)) {
6676                         dd_dev_err(dd,
6677                                    "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6678                                    freeze ? "" : "un", reg & ALL_FROZE,
6679                                    freeze ? ALL_FROZE : 0ull);
6680                         return;
6681                 }
6682                 usleep_range(80, 120);
6683         }
6684 }
6685
6686 /*
6687  * Do all freeze handling for the RXE block.
6688  */
6689 static void rxe_freeze(struct hfi1_devdata *dd)
6690 {
6691         int i;
6692
6693         /* disable port */
6694         clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6695
6696         /* disable all receive contexts */
6697         for (i = 0; i < dd->num_rcv_contexts; i++)
6698                 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, i);
6699 }
6700
6701 /*
6702  * Unfreeze handling for the RXE block - kernel contexts only.
6703  * This will also enable the port.  User contexts will do unfreeze
6704  * handling on a per-context basis as they call into the driver.
6705  *
6706  */
6707 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6708 {
6709         u32 rcvmask;
6710         int i;
6711
6712         /* enable all kernel contexts */
6713         for (i = 0; i < dd->n_krcv_queues; i++) {
6714                 rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6715                 /* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6716                 rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ?
6717                         HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6718                 hfi1_rcvctrl(dd, rcvmask, i);
6719         }
6720
6721         /* enable port */
6722         add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6723 }
6724
6725 /*
6726  * Non-interrupt SPC freeze handling.
6727  *
6728  * This is a work-queue function outside of the triggering interrupt.
6729  */
6730 void handle_freeze(struct work_struct *work)
6731 {
6732         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6733                                                                 freeze_work);
6734         struct hfi1_devdata *dd = ppd->dd;
6735
6736         /* wait for freeze indicators on all affected blocks */
6737         wait_for_freeze_status(dd, 1);
6738
6739         /* SPC is now frozen */
6740
6741         /* do send PIO freeze steps */
6742         pio_freeze(dd);
6743
6744         /* do send DMA freeze steps */
6745         sdma_freeze(dd);
6746
6747         /* do send egress freeze steps - nothing to do */
6748
6749         /* do receive freeze steps */
6750         rxe_freeze(dd);
6751
6752         /*
6753          * Unfreeze the hardware - clear the freeze, wait for each
6754          * block's frozen bit to clear, then clear the frozen flag.
6755          */
6756         write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6757         wait_for_freeze_status(dd, 0);
6758
6759         if (is_ax(dd)) {
6760                 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6761                 wait_for_freeze_status(dd, 1);
6762                 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6763                 wait_for_freeze_status(dd, 0);
6764         }
6765
6766         /* do send PIO unfreeze steps for kernel contexts */
6767         pio_kernel_unfreeze(dd);
6768
6769         /* do send DMA unfreeze steps */
6770         sdma_unfreeze(dd);
6771
6772         /* do send egress unfreeze steps - nothing to do */
6773
6774         /* do receive unfreeze steps for kernel contexts */
6775         rxe_kernel_unfreeze(dd);
6776
6777         /*
6778          * The unfreeze procedure touches global device registers when
6779          * it disables and re-enables RXE. Mark the device unfrozen
6780          * after all that is done so other parts of the driver waiting
6781          * for the device to unfreeze don't do things out of order.
6782          *
6783          * The above implies that the meaning of HFI1_FROZEN flag is
6784          * "Device has gone into freeze mode and freeze mode handling
6785          * is still in progress."
6786          *
6787          * The flag will be removed when freeze mode processing has
6788          * completed.
6789          */
6790         dd->flags &= ~HFI1_FROZEN;
6791         wake_up(&dd->event_queue);
6792
6793         /* no longer frozen */
6794 }
6795
6796 /*
6797  * Handle a link up interrupt from the 8051.
6798  *
6799  * This is a work-queue function outside of the interrupt.
6800  */
6801 void handle_link_up(struct work_struct *work)
6802 {
6803         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6804                                                   link_up_work);
6805         set_link_state(ppd, HLS_UP_INIT);
6806
6807         /* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6808         read_ltp_rtt(ppd->dd);
6809         /*
6810          * OPA specifies that certain counters are cleared on a transition
6811          * to link up, so do that.
6812          */
6813         clear_linkup_counters(ppd->dd);
6814         /*
6815          * And (re)set link up default values.
6816          */
6817         set_linkup_defaults(ppd);
6818
6819         /* enforce link speed enabled */
6820         if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6821                 /* oops - current speed is not enabled, bounce */
6822                 dd_dev_err(ppd->dd,
6823                            "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
6824                            ppd->link_speed_active, ppd->link_speed_enabled);
6825                 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
6826                                      OPA_LINKDOWN_REASON_SPEED_POLICY);
6827                 set_link_state(ppd, HLS_DN_OFFLINE);
6828                 tune_serdes(ppd);
6829                 start_link(ppd);
6830         }
6831 }
6832
6833 /*
6834  * Several pieces of LNI information were cached for SMA in ppd.
6835  * Reset these on link down
6836  */
6837 static void reset_neighbor_info(struct hfi1_pportdata *ppd)
6838 {
6839         ppd->neighbor_guid = 0;
6840         ppd->neighbor_port_number = 0;
6841         ppd->neighbor_type = 0;
6842         ppd->neighbor_fm_security = 0;
6843 }
6844
6845 static const char * const link_down_reason_strs[] = {
6846         [OPA_LINKDOWN_REASON_NONE] = "None",
6847         [OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Recive error 0",
6848         [OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
6849         [OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
6850         [OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
6851         [OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
6852         [OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
6853         [OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
6854         [OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
6855         [OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
6856         [OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
6857         [OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
6858         [OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
6859         [OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
6860         [OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
6861         [OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
6862         [OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
6863         [OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
6864         [OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
6865         [OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
6866         [OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
6867         [OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
6868         [OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
6869         [OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
6870         [OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
6871         [OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
6872         [OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
6873         [OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
6874         [OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
6875         [OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
6876         [OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
6877         [OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
6878         [OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
6879                                         "Excessive buffer overrun",
6880         [OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
6881         [OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
6882         [OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
6883         [OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
6884         [OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
6885         [OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
6886         [OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
6887         [OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
6888                                         "Local media not installed",
6889         [OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
6890         [OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
6891         [OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
6892                                         "End to end not installed",
6893         [OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
6894         [OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
6895         [OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
6896         [OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
6897         [OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
6898         [OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
6899 };
6900
6901 /* return the neighbor link down reason string */
6902 static const char *link_down_reason_str(u8 reason)
6903 {
6904         const char *str = NULL;
6905
6906         if (reason < ARRAY_SIZE(link_down_reason_strs))
6907                 str = link_down_reason_strs[reason];
6908         if (!str)
6909                 str = "(invalid)";
6910
6911         return str;
6912 }
6913
6914 /*
6915  * Handle a link down interrupt from the 8051.
6916  *
6917  * This is a work-queue function outside of the interrupt.
6918  */
6919 void handle_link_down(struct work_struct *work)
6920 {
6921         u8 lcl_reason, neigh_reason = 0;
6922         u8 link_down_reason;
6923         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6924                                                   link_down_work);
6925         int was_up;
6926         static const char ldr_str[] = "Link down reason: ";
6927
6928         if ((ppd->host_link_state &
6929              (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
6930              ppd->port_type == PORT_TYPE_FIXED)
6931                 ppd->offline_disabled_reason =
6932                         HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
6933
6934         /* Go offline first, then deal with reading/writing through 8051 */
6935         was_up = !!(ppd->host_link_state & HLS_UP);
6936         set_link_state(ppd, HLS_DN_OFFLINE);
6937
6938         if (was_up) {
6939                 lcl_reason = 0;
6940                 /* link down reason is only valid if the link was up */
6941                 read_link_down_reason(ppd->dd, &link_down_reason);
6942                 switch (link_down_reason) {
6943                 case LDR_LINK_TRANSFER_ACTIVE_LOW:
6944                         /* the link went down, no idle message reason */
6945                         dd_dev_info(ppd->dd, "%sUnexpected link down\n",
6946                                     ldr_str);
6947                         break;
6948                 case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
6949                         /*
6950                          * The neighbor reason is only valid if an idle message
6951                          * was received for it.
6952                          */
6953                         read_planned_down_reason_code(ppd->dd, &neigh_reason);
6954                         dd_dev_info(ppd->dd,
6955                                     "%sNeighbor link down message %d, %s\n",
6956                                     ldr_str, neigh_reason,
6957                                     link_down_reason_str(neigh_reason));
6958                         break;
6959                 case LDR_RECEIVED_HOST_OFFLINE_REQ:
6960                         dd_dev_info(ppd->dd,
6961                                     "%sHost requested link to go offline\n",
6962                                     ldr_str);
6963                         break;
6964                 default:
6965                         dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
6966                                     ldr_str, link_down_reason);
6967                         break;
6968                 }
6969
6970                 /*
6971                  * If no reason, assume peer-initiated but missed
6972                  * LinkGoingDown idle flits.
6973                  */
6974                 if (neigh_reason == 0)
6975                         lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
6976         } else {
6977                 /* went down while polling or going up */
6978                 lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
6979         }
6980
6981         set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
6982
6983         /* inform the SMA when the link transitions from up to down */
6984         if (was_up && ppd->local_link_down_reason.sma == 0 &&
6985             ppd->neigh_link_down_reason.sma == 0) {
6986                 ppd->local_link_down_reason.sma =
6987                                         ppd->local_link_down_reason.latest;
6988                 ppd->neigh_link_down_reason.sma =
6989                                         ppd->neigh_link_down_reason.latest;
6990         }
6991
6992         reset_neighbor_info(ppd);
6993
6994         /* disable the port */
6995         clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6996
6997         /*
6998          * If there is no cable attached, turn the DC off. Otherwise,
6999          * start the link bring up.
7000          */
7001         if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd)) {
7002                 dc_shutdown(ppd->dd);
7003         } else {
7004                 tune_serdes(ppd);
7005                 start_link(ppd);
7006         }
7007 }
7008
7009 void handle_link_bounce(struct work_struct *work)
7010 {
7011         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7012                                                         link_bounce_work);
7013
7014         /*
7015          * Only do something if the link is currently up.
7016          */
7017         if (ppd->host_link_state & HLS_UP) {
7018                 set_link_state(ppd, HLS_DN_OFFLINE);
7019                 tune_serdes(ppd);
7020                 start_link(ppd);
7021         } else {
7022                 dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7023                             __func__, link_state_name(ppd->host_link_state));
7024         }
7025 }
7026
7027 /*
7028  * Mask conversion: Capability exchange to Port LTP.  The capability
7029  * exchange has an implicit 16b CRC that is mandatory.
7030  */
7031 static int cap_to_port_ltp(int cap)
7032 {
7033         int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7034
7035         if (cap & CAP_CRC_14B)
7036                 port_ltp |= PORT_LTP_CRC_MODE_14;
7037         if (cap & CAP_CRC_48B)
7038                 port_ltp |= PORT_LTP_CRC_MODE_48;
7039         if (cap & CAP_CRC_12B_16B_PER_LANE)
7040                 port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7041
7042         return port_ltp;
7043 }
7044
7045 /*
7046  * Convert an OPA Port LTP mask to capability mask
7047  */
7048 int port_ltp_to_cap(int port_ltp)
7049 {
7050         int cap_mask = 0;
7051
7052         if (port_ltp & PORT_LTP_CRC_MODE_14)
7053                 cap_mask |= CAP_CRC_14B;
7054         if (port_ltp & PORT_LTP_CRC_MODE_48)
7055                 cap_mask |= CAP_CRC_48B;
7056         if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7057                 cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7058
7059         return cap_mask;
7060 }
7061
7062 /*
7063  * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7064  */
7065 static int lcb_to_port_ltp(int lcb_crc)
7066 {
7067         int port_ltp = 0;
7068
7069         if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7070                 port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7071         else if (lcb_crc == LCB_CRC_48B)
7072                 port_ltp = PORT_LTP_CRC_MODE_48;
7073         else if (lcb_crc == LCB_CRC_14B)
7074                 port_ltp = PORT_LTP_CRC_MODE_14;
7075         else
7076                 port_ltp = PORT_LTP_CRC_MODE_16;
7077
7078         return port_ltp;
7079 }
7080
7081 /*
7082  * Our neighbor has indicated that we are allowed to act as a fabric
7083  * manager, so place the full management partition key in the second
7084  * (0-based) pkey array position (see OPAv1, section 20.2.2.6.8). Note
7085  * that we should already have the limited management partition key in
7086  * array element 1, and also that the port is not yet up when
7087  * add_full_mgmt_pkey() is invoked.
7088  */
7089 static void add_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7090 {
7091         struct hfi1_devdata *dd = ppd->dd;
7092
7093         /* Sanity check - ppd->pkeys[2] should be 0, or already initalized */
7094         if (!((ppd->pkeys[2] == 0) || (ppd->pkeys[2] == FULL_MGMT_P_KEY)))
7095                 dd_dev_warn(dd, "%s pkey[2] already set to 0x%x, resetting it to 0x%x\n",
7096                             __func__, ppd->pkeys[2], FULL_MGMT_P_KEY);
7097         ppd->pkeys[2] = FULL_MGMT_P_KEY;
7098         (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7099         hfi1_event_pkey_change(ppd->dd, ppd->port);
7100 }
7101
7102 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7103 {
7104         if (ppd->pkeys[2] != 0) {
7105                 ppd->pkeys[2] = 0;
7106                 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7107                 hfi1_event_pkey_change(ppd->dd, ppd->port);
7108         }
7109 }
7110
7111 /*
7112  * Convert the given link width to the OPA link width bitmask.
7113  */
7114 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7115 {
7116         switch (width) {
7117         case 0:
7118                 /*
7119                  * Simulator and quick linkup do not set the width.
7120                  * Just set it to 4x without complaint.
7121                  */
7122                 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7123                         return OPA_LINK_WIDTH_4X;
7124                 return 0; /* no lanes up */
7125         case 1: return OPA_LINK_WIDTH_1X;
7126         case 2: return OPA_LINK_WIDTH_2X;
7127         case 3: return OPA_LINK_WIDTH_3X;
7128         default:
7129                 dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7130                             __func__, width);
7131                 /* fall through */
7132         case 4: return OPA_LINK_WIDTH_4X;
7133         }
7134 }
7135
7136 /*
7137  * Do a population count on the bottom nibble.
7138  */
7139 static const u8 bit_counts[16] = {
7140         0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7141 };
7142
7143 static inline u8 nibble_to_count(u8 nibble)
7144 {
7145         return bit_counts[nibble & 0xf];
7146 }
7147
7148 /*
7149  * Read the active lane information from the 8051 registers and return
7150  * their widths.
7151  *
7152  * Active lane information is found in these 8051 registers:
7153  *      enable_lane_tx
7154  *      enable_lane_rx
7155  */
7156 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7157                             u16 *rx_width)
7158 {
7159         u16 tx, rx;
7160         u8 enable_lane_rx;
7161         u8 enable_lane_tx;
7162         u8 tx_polarity_inversion;
7163         u8 rx_polarity_inversion;
7164         u8 max_rate;
7165
7166         /* read the active lanes */
7167         read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7168                          &rx_polarity_inversion, &max_rate);
7169         read_local_lni(dd, &enable_lane_rx);
7170
7171         /* convert to counts */
7172         tx = nibble_to_count(enable_lane_tx);
7173         rx = nibble_to_count(enable_lane_rx);
7174
7175         /*
7176          * Set link_speed_active here, overriding what was set in
7177          * handle_verify_cap().  The ASIC 8051 firmware does not correctly
7178          * set the max_rate field in handle_verify_cap until v0.19.
7179          */
7180         if ((dd->icode == ICODE_RTL_SILICON) &&
7181             (dd->dc8051_ver < dc8051_ver(0, 19))) {
7182                 /* max_rate: 0 = 12.5G, 1 = 25G */
7183                 switch (max_rate) {
7184                 case 0:
7185                         dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7186                         break;
7187                 default:
7188                         dd_dev_err(dd,
7189                                    "%s: unexpected max rate %d, using 25Gb\n",
7190                                    __func__, (int)max_rate);
7191                         /* fall through */
7192                 case 1:
7193                         dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7194                         break;
7195                 }
7196         }
7197
7198         dd_dev_info(dd,
7199                     "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7200                     enable_lane_tx, tx, enable_lane_rx, rx);
7201         *tx_width = link_width_to_bits(dd, tx);
7202         *rx_width = link_width_to_bits(dd, rx);
7203 }
7204
7205 /*
7206  * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7207  * Valid after the end of VerifyCap and during LinkUp.  Does not change
7208  * after link up.  I.e. look elsewhere for downgrade information.
7209  *
7210  * Bits are:
7211  *      + bits [7:4] contain the number of active transmitters
7212  *      + bits [3:0] contain the number of active receivers
7213  * These are numbers 1 through 4 and can be different values if the
7214  * link is asymmetric.
7215  *
7216  * verify_cap_local_fm_link_width[0] retains its original value.
7217  */
7218 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7219                               u16 *rx_width)
7220 {
7221         u16 widths, tx, rx;
7222         u8 misc_bits, local_flags;
7223         u16 active_tx, active_rx;
7224
7225         read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths);
7226         tx = widths >> 12;
7227         rx = (widths >> 8) & 0xf;
7228
7229         *tx_width = link_width_to_bits(dd, tx);
7230         *rx_width = link_width_to_bits(dd, rx);
7231
7232         /* print the active widths */
7233         get_link_widths(dd, &active_tx, &active_rx);
7234 }
7235
7236 /*
7237  * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7238  * hardware information when the link first comes up.
7239  *
7240  * The link width is not available until after VerifyCap.AllFramesReceived
7241  * (the trigger for handle_verify_cap), so this is outside that routine
7242  * and should be called when the 8051 signals linkup.
7243  */
7244 void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7245 {
7246         u16 tx_width, rx_width;
7247
7248         /* get end-of-LNI link widths */
7249         get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7250
7251         /* use tx_width as the link is supposed to be symmetric on link up */
7252         ppd->link_width_active = tx_width;
7253         /* link width downgrade active (LWD.A) starts out matching LW.A */
7254         ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7255         ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7256         /* per OPA spec, on link up LWD.E resets to LWD.S */
7257         ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7258         /* cache the active egress rate (units {10^6 bits/sec]) */
7259         ppd->current_egress_rate = active_egress_rate(ppd);
7260 }
7261
7262 /*
7263  * Handle a verify capabilities interrupt from the 8051.
7264  *
7265  * This is a work-queue function outside of the interrupt.
7266  */
7267 void handle_verify_cap(struct work_struct *work)
7268 {
7269         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7270                                                                 link_vc_work);
7271         struct hfi1_devdata *dd = ppd->dd;
7272         u64 reg;
7273         u8 power_management;
7274         u8 continious;
7275         u8 vcu;
7276         u8 vau;
7277         u8 z;
7278         u16 vl15buf;
7279         u16 link_widths;
7280         u16 crc_mask;
7281         u16 crc_val;
7282         u16 device_id;
7283         u16 active_tx, active_rx;
7284         u8 partner_supported_crc;
7285         u8 remote_tx_rate;
7286         u8 device_rev;
7287
7288         set_link_state(ppd, HLS_VERIFY_CAP);
7289
7290         lcb_shutdown(dd, 0);
7291         adjust_lcb_for_fpga_serdes(dd);
7292
7293         /*
7294          * These are now valid:
7295          *      remote VerifyCap fields in the general LNI config
7296          *      CSR DC8051_STS_REMOTE_GUID
7297          *      CSR DC8051_STS_REMOTE_NODE_TYPE
7298          *      CSR DC8051_STS_REMOTE_FM_SECURITY
7299          *      CSR DC8051_STS_REMOTE_PORT_NO
7300          */
7301
7302         read_vc_remote_phy(dd, &power_management, &continious);
7303         read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7304                               &partner_supported_crc);
7305         read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7306         read_remote_device_id(dd, &device_id, &device_rev);
7307         /*
7308          * And the 'MgmtAllowed' information, which is exchanged during
7309          * LNI, is also be available at this point.
7310          */
7311         read_mgmt_allowed(dd, &ppd->mgmt_allowed);
7312         /* print the active widths */
7313         get_link_widths(dd, &active_tx, &active_rx);
7314         dd_dev_info(dd,
7315                     "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7316                     (int)power_management, (int)continious);
7317         dd_dev_info(dd,
7318                     "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7319                     (int)vau, (int)z, (int)vcu, (int)vl15buf,
7320                     (int)partner_supported_crc);
7321         dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7322                     (u32)remote_tx_rate, (u32)link_widths);
7323         dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7324                     (u32)device_id, (u32)device_rev);
7325         /*
7326          * The peer vAU value just read is the peer receiver value.  HFI does
7327          * not support a transmit vAU of 0 (AU == 8).  We advertised that
7328          * with Z=1 in the fabric capabilities sent to the peer.  The peer
7329          * will see our Z=1, and, if it advertised a vAU of 0, will move its
7330          * receive to vAU of 1 (AU == 16).  Do the same here.  We do not care
7331          * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7332          * subject to the Z value exception.
7333          */
7334         if (vau == 0)
7335                 vau = 1;
7336         set_up_vl15(dd, vau, vl15buf);
7337
7338         /* set up the LCB CRC mode */
7339         crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7340
7341         /* order is important: use the lowest bit in common */
7342         if (crc_mask & CAP_CRC_14B)
7343                 crc_val = LCB_CRC_14B;
7344         else if (crc_mask & CAP_CRC_48B)
7345                 crc_val = LCB_CRC_48B;
7346         else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7347                 crc_val = LCB_CRC_12B_16B_PER_LANE;
7348         else
7349                 crc_val = LCB_CRC_16B;
7350
7351         dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7352         write_csr(dd, DC_LCB_CFG_CRC_MODE,
7353                   (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7354
7355         /* set (14b only) or clear sideband credit */
7356         reg = read_csr(dd, SEND_CM_CTRL);
7357         if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7358                 write_csr(dd, SEND_CM_CTRL,
7359                           reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7360         } else {
7361                 write_csr(dd, SEND_CM_CTRL,
7362                           reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7363         }
7364
7365         ppd->link_speed_active = 0;     /* invalid value */
7366         if (dd->dc8051_ver < dc8051_ver(0, 20)) {
7367                 /* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7368                 switch (remote_tx_rate) {
7369                 case 0:
7370                         ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7371                         break;
7372                 case 1:
7373                         ppd->link_speed_active = OPA_LINK_SPEED_25G;
7374                         break;
7375                 }
7376         } else {
7377                 /* actual rate is highest bit of the ANDed rates */
7378                 u8 rate = remote_tx_rate & ppd->local_tx_rate;
7379
7380                 if (rate & 2)
7381                         ppd->link_speed_active = OPA_LINK_SPEED_25G;
7382                 else if (rate & 1)
7383                         ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7384         }
7385         if (ppd->link_speed_active == 0) {
7386                 dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7387                            __func__, (int)remote_tx_rate);
7388                 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7389         }
7390
7391         /*
7392          * Cache the values of the supported, enabled, and active
7393          * LTP CRC modes to return in 'portinfo' queries. But the bit
7394          * flags that are returned in the portinfo query differ from
7395          * what's in the link_crc_mask, crc_sizes, and crc_val
7396          * variables. Convert these here.
7397          */
7398         ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7399                 /* supported crc modes */
7400         ppd->port_ltp_crc_mode |=
7401                 cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7402                 /* enabled crc modes */
7403         ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7404                 /* active crc mode */
7405
7406         /* set up the remote credit return table */
7407         assign_remote_cm_au_table(dd, vcu);
7408
7409         /*
7410          * The LCB is reset on entry to handle_verify_cap(), so this must
7411          * be applied on every link up.
7412          *
7413          * Adjust LCB error kill enable to kill the link if
7414          * these RBUF errors are seen:
7415          *      REPLAY_BUF_MBE_SMASK
7416          *      FLIT_INPUT_BUF_MBE_SMASK
7417          */
7418         if (is_ax(dd)) {                        /* fixed in B0 */
7419                 reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7420                 reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7421                         | DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7422                 write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7423         }
7424
7425         /* pull LCB fifos out of reset - all fifo clocks must be stable */
7426         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7427
7428         /* give 8051 access to the LCB CSRs */
7429         write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7430         set_8051_lcb_access(dd);
7431
7432         ppd->neighbor_guid =
7433                 read_csr(dd, DC_DC8051_STS_REMOTE_GUID);
7434         ppd->neighbor_port_number = read_csr(dd, DC_DC8051_STS_REMOTE_PORT_NO) &
7435                                         DC_DC8051_STS_REMOTE_PORT_NO_VAL_SMASK;
7436         ppd->neighbor_type =
7437                 read_csr(dd, DC_DC8051_STS_REMOTE_NODE_TYPE) &
7438                 DC_DC8051_STS_REMOTE_NODE_TYPE_VAL_MASK;
7439         ppd->neighbor_fm_security =
7440                 read_csr(dd, DC_DC8051_STS_REMOTE_FM_SECURITY) &
7441                 DC_DC8051_STS_LOCAL_FM_SECURITY_DISABLED_MASK;
7442         dd_dev_info(dd,
7443                     "Neighbor Guid: %llx Neighbor type %d MgmtAllowed %d FM security bypass %d\n",
7444                     ppd->neighbor_guid, ppd->neighbor_type,
7445                     ppd->mgmt_allowed, ppd->neighbor_fm_security);
7446         if (ppd->mgmt_allowed)
7447                 add_full_mgmt_pkey(ppd);
7448
7449         /* tell the 8051 to go to LinkUp */
7450         set_link_state(ppd, HLS_GOING_UP);
7451 }
7452
7453 /*
7454  * Apply the link width downgrade enabled policy against the current active
7455  * link widths.
7456  *
7457  * Called when the enabled policy changes or the active link widths change.
7458  */
7459 void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths)
7460 {
7461         int do_bounce = 0;
7462         int tries;
7463         u16 lwde;
7464         u16 tx, rx;
7465
7466         /* use the hls lock to avoid a race with actual link up */
7467         tries = 0;
7468 retry:
7469         mutex_lock(&ppd->hls_lock);
7470         /* only apply if the link is up */
7471         if (ppd->host_link_state & HLS_DOWN) {
7472                 /* still going up..wait and retry */
7473                 if (ppd->host_link_state & HLS_GOING_UP) {
7474                         if (++tries < 1000) {
7475                                 mutex_unlock(&ppd->hls_lock);
7476                                 usleep_range(100, 120); /* arbitrary */
7477                                 goto retry;
7478                         }
7479                         dd_dev_err(ppd->dd,
7480                                    "%s: giving up waiting for link state change\n",
7481                                    __func__);
7482                 }
7483                 goto done;
7484         }
7485
7486         lwde = ppd->link_width_downgrade_enabled;
7487
7488         if (refresh_widths) {
7489                 get_link_widths(ppd->dd, &tx, &rx);
7490                 ppd->link_width_downgrade_tx_active = tx;
7491                 ppd->link_width_downgrade_rx_active = rx;
7492         }
7493
7494         if (ppd->link_width_downgrade_tx_active == 0 ||
7495             ppd->link_width_downgrade_rx_active == 0) {
7496                 /* the 8051 reported a dead link as a downgrade */
7497                 dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7498         } else if (lwde == 0) {
7499                 /* downgrade is disabled */
7500
7501                 /* bounce if not at starting active width */
7502                 if ((ppd->link_width_active !=
7503                      ppd->link_width_downgrade_tx_active) ||
7504                     (ppd->link_width_active !=
7505                      ppd->link_width_downgrade_rx_active)) {
7506                         dd_dev_err(ppd->dd,
7507                                    "Link downgrade is disabled and link has downgraded, downing link\n");
7508                         dd_dev_err(ppd->dd,
7509                                    "  original 0x%x, tx active 0x%x, rx active 0x%x\n",
7510                                    ppd->link_width_active,
7511                                    ppd->link_width_downgrade_tx_active,
7512                                    ppd->link_width_downgrade_rx_active);
7513                         do_bounce = 1;
7514                 }
7515         } else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7516                    (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7517                 /* Tx or Rx is outside the enabled policy */
7518                 dd_dev_err(ppd->dd,
7519                            "Link is outside of downgrade allowed, downing link\n");
7520                 dd_dev_err(ppd->dd,
7521                            "  enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7522                            lwde, ppd->link_width_downgrade_tx_active,
7523                            ppd->link_width_downgrade_rx_active);
7524                 do_bounce = 1;
7525         }
7526
7527 done:
7528         mutex_unlock(&ppd->hls_lock);
7529
7530         if (do_bounce) {
7531                 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7532                                      OPA_LINKDOWN_REASON_WIDTH_POLICY);
7533                 set_link_state(ppd, HLS_DN_OFFLINE);
7534                 tune_serdes(ppd);
7535                 start_link(ppd);
7536         }
7537 }
7538
7539 /*
7540  * Handle a link downgrade interrupt from the 8051.
7541  *
7542  * This is a work-queue function outside of the interrupt.
7543  */
7544 void handle_link_downgrade(struct work_struct *work)
7545 {
7546         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7547                                                         link_downgrade_work);
7548
7549         dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7550         apply_link_downgrade_policy(ppd, 1);
7551 }
7552
7553 static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7554 {
7555         return flag_string(buf, buf_len, flags, dcc_err_flags,
7556                 ARRAY_SIZE(dcc_err_flags));
7557 }
7558
7559 static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7560 {
7561         return flag_string(buf, buf_len, flags, lcb_err_flags,
7562                 ARRAY_SIZE(lcb_err_flags));
7563 }
7564
7565 static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7566 {
7567         return flag_string(buf, buf_len, flags, dc8051_err_flags,
7568                 ARRAY_SIZE(dc8051_err_flags));
7569 }
7570
7571 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7572 {
7573         return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7574                 ARRAY_SIZE(dc8051_info_err_flags));
7575 }
7576
7577 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7578 {
7579         return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7580                 ARRAY_SIZE(dc8051_info_host_msg_flags));
7581 }
7582
7583 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7584 {
7585         struct hfi1_pportdata *ppd = dd->pport;
7586         u64 info, err, host_msg;
7587         int queue_link_down = 0;
7588         char buf[96];
7589
7590         /* look at the flags */
7591         if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7592                 /* 8051 information set by firmware */
7593                 /* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7594                 info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7595                 err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7596                         & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7597                 host_msg = (info >>
7598                         DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7599                         & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7600
7601                 /*
7602                  * Handle error flags.
7603                  */
7604                 if (err & FAILED_LNI) {
7605                         /*
7606                          * LNI error indications are cleared by the 8051
7607                          * only when starting polling.  Only pay attention
7608                          * to them when in the states that occur during
7609                          * LNI.
7610                          */
7611                         if (ppd->host_link_state
7612                             & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7613                                 queue_link_down = 1;
7614                                 dd_dev_info(dd, "Link error: %s\n",
7615                                             dc8051_info_err_string(buf,
7616                                                                    sizeof(buf),
7617                                                                    err &
7618                                                                    FAILED_LNI));
7619                         }
7620                         err &= ~(u64)FAILED_LNI;
7621                 }
7622                 /* unknown frames can happen durning LNI, just count */
7623                 if (err & UNKNOWN_FRAME) {
7624                         ppd->unknown_frame_count++;
7625                         err &= ~(u64)UNKNOWN_FRAME;
7626                 }
7627                 if (err) {
7628                         /* report remaining errors, but do not do anything */
7629                         dd_dev_err(dd, "8051 info error: %s\n",
7630                                    dc8051_info_err_string(buf, sizeof(buf),
7631                                                           err));
7632                 }
7633
7634                 /*
7635                  * Handle host message flags.
7636                  */
7637                 if (host_msg & HOST_REQ_DONE) {
7638                         /*
7639                          * Presently, the driver does a busy wait for
7640                          * host requests to complete.  This is only an
7641                          * informational message.
7642                          * NOTE: The 8051 clears the host message
7643                          * information *on the next 8051 command*.
7644                          * Therefore, when linkup is achieved,
7645                          * this flag will still be set.
7646                          */
7647                         host_msg &= ~(u64)HOST_REQ_DONE;
7648                 }
7649                 if (host_msg & BC_SMA_MSG) {
7650                         queue_work(ppd->hfi1_wq, &ppd->sma_message_work);
7651                         host_msg &= ~(u64)BC_SMA_MSG;
7652                 }
7653                 if (host_msg & LINKUP_ACHIEVED) {
7654                         dd_dev_info(dd, "8051: Link up\n");
7655                         queue_work(ppd->hfi1_wq, &ppd->link_up_work);
7656                         host_msg &= ~(u64)LINKUP_ACHIEVED;
7657                 }
7658                 if (host_msg & EXT_DEVICE_CFG_REQ) {
7659                         handle_8051_request(ppd);
7660                         host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7661                 }
7662                 if (host_msg & VERIFY_CAP_FRAME) {
7663                         queue_work(ppd->hfi1_wq, &ppd->link_vc_work);
7664                         host_msg &= ~(u64)VERIFY_CAP_FRAME;
7665                 }
7666                 if (host_msg & LINK_GOING_DOWN) {
7667                         const char *extra = "";
7668                         /* no downgrade action needed if going down */
7669                         if (host_msg & LINK_WIDTH_DOWNGRADED) {
7670                                 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7671                                 extra = " (ignoring downgrade)";
7672                         }
7673                         dd_dev_info(dd, "8051: Link down%s\n", extra);
7674                         queue_link_down = 1;
7675                         host_msg &= ~(u64)LINK_GOING_DOWN;
7676                 }
7677                 if (host_msg & LINK_WIDTH_DOWNGRADED) {
7678                         queue_work(ppd->hfi1_wq, &ppd->link_downgrade_work);
7679                         host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7680                 }
7681                 if (host_msg) {
7682                         /* report remaining messages, but do not do anything */
7683                         dd_dev_info(dd, "8051 info host message: %s\n",
7684                                     dc8051_info_host_msg_string(buf,
7685                                                                 sizeof(buf),
7686                                                                 host_msg));
7687                 }
7688
7689                 reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7690         }
7691         if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7692                 /*
7693                  * Lost the 8051 heartbeat.  If this happens, we
7694                  * receive constant interrupts about it.  Disable
7695                  * the interrupt after the first.
7696                  */
7697                 dd_dev_err(dd, "Lost 8051 heartbeat\n");
7698                 write_csr(dd, DC_DC8051_ERR_EN,
7699                           read_csr(dd, DC_DC8051_ERR_EN) &
7700                           ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7701
7702                 reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7703         }
7704         if (reg) {
7705                 /* report the error, but do not do anything */
7706                 dd_dev_err(dd, "8051 error: %s\n",
7707                            dc8051_err_string(buf, sizeof(buf), reg));
7708         }
7709
7710         if (queue_link_down) {
7711                 /*
7712                  * if the link is already going down or disabled, do not
7713                  * queue another
7714                  */
7715                 if ((ppd->host_link_state &
7716                     (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7717                     ppd->link_enabled == 0) {
7718                         dd_dev_info(dd, "%s: not queuing link down\n",
7719                                     __func__);
7720                 } else {
7721                         queue_work(ppd->hfi1_wq, &ppd->link_down_work);
7722                 }
7723         }
7724 }
7725
7726 static const char * const fm_config_txt[] = {
7727 [0] =
7728         "BadHeadDist: Distance violation between two head flits",
7729 [1] =
7730         "BadTailDist: Distance violation between two tail flits",
7731 [2] =
7732         "BadCtrlDist: Distance violation between two credit control flits",
7733 [3] =
7734         "BadCrdAck: Credits return for unsupported VL",
7735 [4] =
7736         "UnsupportedVLMarker: Received VL Marker",
7737 [5] =
7738         "BadPreempt: Exceeded the preemption nesting level",
7739 [6] =
7740         "BadControlFlit: Received unsupported control flit",
7741 /* no 7 */
7742 [8] =
7743         "UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7744 };
7745
7746 static const char * const port_rcv_txt[] = {
7747 [1] =
7748         "BadPktLen: Illegal PktLen",
7749 [2] =
7750         "PktLenTooLong: Packet longer than PktLen",
7751 [3] =
7752         "PktLenTooShort: Packet shorter than PktLen",
7753 [4] =
7754         "BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7755 [5] =
7756         "BadDLID: Illegal DLID (0, doesn't match HFI)",
7757 [6] =
7758         "BadL2: Illegal L2 opcode",
7759 [7] =
7760         "BadSC: Unsupported SC",
7761 [9] =
7762         "BadRC: Illegal RC",
7763 [11] =
7764         "PreemptError: Preempting with same VL",
7765 [12] =
7766         "PreemptVL15: Preempting a VL15 packet",
7767 };
7768
7769 #define OPA_LDR_FMCONFIG_OFFSET 16
7770 #define OPA_LDR_PORTRCV_OFFSET 0
7771 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7772 {
7773         u64 info, hdr0, hdr1;
7774         const char *extra;
7775         char buf[96];
7776         struct hfi1_pportdata *ppd = dd->pport;
7777         u8 lcl_reason = 0;
7778         int do_bounce = 0;
7779
7780         if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7781                 if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7782                         info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7783                         dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7784                         /* set status bit */
7785                         dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7786                 }
7787                 reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7788         }
7789
7790         if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7791                 struct hfi1_pportdata *ppd = dd->pport;
7792                 /* this counter saturates at (2^32) - 1 */
7793                 if (ppd->link_downed < (u32)UINT_MAX)
7794                         ppd->link_downed++;
7795                 reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7796         }
7797
7798         if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7799                 u8 reason_valid = 1;
7800
7801                 info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7802                 if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7803                         dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7804                         /* set status bit */
7805                         dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7806                 }
7807                 switch (info) {
7808                 case 0:
7809                 case 1:
7810                 case 2:
7811                 case 3:
7812                 case 4:
7813                 case 5:
7814                 case 6:
7815                         extra = fm_config_txt[info];
7816                         break;
7817                 case 8:
7818                         extra = fm_config_txt[info];
7819                         if (ppd->port_error_action &
7820                             OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7821                                 do_bounce = 1;
7822                                 /*
7823                                  * lcl_reason cannot be derived from info
7824                                  * for this error
7825                                  */
7826                                 lcl_reason =
7827                                   OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7828                         }
7829                         break;
7830                 default:
7831                         reason_valid = 0;
7832                         snprintf(buf, sizeof(buf), "reserved%lld", info);
7833                         extra = buf;
7834                         break;
7835                 }
7836
7837                 if (reason_valid && !do_bounce) {
7838                         do_bounce = ppd->port_error_action &
7839                                         (1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7840                         lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7841                 }
7842
7843                 /* just report this */
7844                 dd_dev_info(dd, "DCC Error: fmconfig error: %s\n", extra);
7845                 reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
7846         }
7847
7848         if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
7849                 u8 reason_valid = 1;
7850
7851                 info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
7852                 hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
7853                 hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
7854                 if (!(dd->err_info_rcvport.status_and_code &
7855                       OPA_EI_STATUS_SMASK)) {
7856                         dd->err_info_rcvport.status_and_code =
7857                                 info & OPA_EI_CODE_SMASK;
7858                         /* set status bit */
7859                         dd->err_info_rcvport.status_and_code |=
7860                                 OPA_EI_STATUS_SMASK;
7861                         /*
7862                          * save first 2 flits in the packet that caused
7863                          * the error
7864                          */
7865                         dd->err_info_rcvport.packet_flit1 = hdr0;
7866                         dd->err_info_rcvport.packet_flit2 = hdr1;
7867                 }
7868                 switch (info) {
7869                 case 1:
7870                 case 2:
7871                 case 3:
7872                 case 4:
7873                 case 5:
7874                 case 6:
7875                 case 7:
7876                 case 9:
7877                 case 11:
7878                 case 12:
7879                         extra = port_rcv_txt[info];
7880                         break;
7881                 default:
7882                         reason_valid = 0;
7883                         snprintf(buf, sizeof(buf), "reserved%lld", info);
7884                         extra = buf;
7885                         break;
7886                 }
7887
7888                 if (reason_valid && !do_bounce) {
7889                         do_bounce = ppd->port_error_action &
7890                                         (1 << (OPA_LDR_PORTRCV_OFFSET + info));
7891                         lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
7892                 }
7893
7894                 /* just report this */
7895                 dd_dev_info(dd, "DCC Error: PortRcv error: %s\n", extra);
7896                 dd_dev_info(dd, "           hdr0 0x%llx, hdr1 0x%llx\n",
7897                             hdr0, hdr1);
7898
7899                 reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
7900         }
7901
7902         if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
7903                 /* informative only */
7904                 dd_dev_info(dd, "8051 access to LCB blocked\n");
7905                 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
7906         }
7907         if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
7908                 /* informative only */
7909                 dd_dev_info(dd, "host access to LCB blocked\n");
7910                 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
7911         }
7912
7913         /* report any remaining errors */
7914         if (reg)
7915                 dd_dev_info(dd, "DCC Error: %s\n",
7916                             dcc_err_string(buf, sizeof(buf), reg));
7917
7918         if (lcl_reason == 0)
7919                 lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
7920
7921         if (do_bounce) {
7922                 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
7923                 set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
7924                 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
7925         }
7926 }
7927
7928 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7929 {
7930         char buf[96];
7931
7932         dd_dev_info(dd, "LCB Error: %s\n",
7933                     lcb_err_string(buf, sizeof(buf), reg));
7934 }
7935
7936 /*
7937  * CCE block DC interrupt.  Source is < 8.
7938  */
7939 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
7940 {
7941         const struct err_reg_info *eri = &dc_errs[source];
7942
7943         if (eri->handler) {
7944                 interrupt_clear_down(dd, 0, eri);
7945         } else if (source == 3 /* dc_lbm_int */) {
7946                 /*
7947                  * This indicates that a parity error has occurred on the
7948                  * address/control lines presented to the LBM.  The error
7949                  * is a single pulse, there is no associated error flag,
7950                  * and it is non-maskable.  This is because if a parity
7951                  * error occurs on the request the request is dropped.
7952                  * This should never occur, but it is nice to know if it
7953                  * ever does.
7954                  */
7955                 dd_dev_err(dd, "Parity error in DC LBM block\n");
7956         } else {
7957                 dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
7958         }
7959 }
7960
7961 /*
7962  * TX block send credit interrupt.  Source is < 160.
7963  */
7964 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
7965 {
7966         sc_group_release_update(dd, source);
7967 }
7968
7969 /*
7970  * TX block SDMA interrupt.  Source is < 48.
7971  *
7972  * SDMA interrupts are grouped by type:
7973  *
7974  *       0 -  N-1 = SDma
7975  *       N - 2N-1 = SDmaProgress
7976  *      2N - 3N-1 = SDmaIdle
7977  */
7978 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
7979 {
7980         /* what interrupt */
7981         unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
7982         /* which engine */
7983         unsigned int which = source % TXE_NUM_SDMA_ENGINES;
7984
7985 #ifdef CONFIG_SDMA_VERBOSITY
7986         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
7987                    slashstrip(__FILE__), __LINE__, __func__);
7988         sdma_dumpstate(&dd->per_sdma[which]);
7989 #endif
7990
7991         if (likely(what < 3 && which < dd->num_sdma)) {
7992                 sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
7993         } else {
7994                 /* should not happen */
7995                 dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
7996         }
7997 }
7998
7999 /*
8000  * RX block receive available interrupt.  Source is < 160.
8001  */
8002 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8003 {
8004         struct hfi1_ctxtdata *rcd;
8005         char *err_detail;
8006
8007         if (likely(source < dd->num_rcv_contexts)) {
8008                 rcd = dd->rcd[source];
8009                 if (rcd) {
8010                         if (source < dd->first_user_ctxt)
8011                                 rcd->do_interrupt(rcd, 0);
8012                         else
8013                                 handle_user_interrupt(rcd);
8014                         return; /* OK */
8015                 }
8016                 /* received an interrupt, but no rcd */
8017                 err_detail = "dataless";
8018         } else {
8019                 /* received an interrupt, but are not using that context */
8020                 err_detail = "out of range";
8021         }
8022         dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8023                    err_detail, source);
8024 }
8025
8026 /*
8027  * RX block receive urgent interrupt.  Source is < 160.
8028  */
8029 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8030 {
8031         struct hfi1_ctxtdata *rcd;
8032         char *err_detail;
8033
8034         if (likely(source < dd->num_rcv_contexts)) {
8035                 rcd = dd->rcd[source];
8036                 if (rcd) {
8037                         /* only pay attention to user urgent interrupts */
8038                         if (source >= dd->first_user_ctxt)
8039                                 handle_user_interrupt(rcd);
8040                         return; /* OK */
8041                 }
8042                 /* received an interrupt, but no rcd */
8043                 err_detail = "dataless";
8044         } else {
8045                 /* received an interrupt, but are not using that context */
8046                 err_detail = "out of range";
8047         }
8048         dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8049                    err_detail, source);
8050 }
8051
8052 /*
8053  * Reserved range interrupt.  Should not be called in normal operation.
8054  */
8055 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8056 {
8057         char name[64];
8058
8059         dd_dev_err(dd, "unexpected %s interrupt\n",
8060                    is_reserved_name(name, sizeof(name), source));
8061 }
8062
8063 static const struct is_table is_table[] = {
8064 /*
8065  * start                 end
8066  *                              name func               interrupt func
8067  */
8068 { IS_GENERAL_ERR_START,  IS_GENERAL_ERR_END,
8069                                 is_misc_err_name,       is_misc_err_int },
8070 { IS_SDMAENG_ERR_START,  IS_SDMAENG_ERR_END,
8071                                 is_sdma_eng_err_name,   is_sdma_eng_err_int },
8072 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8073                                 is_sendctxt_err_name,   is_sendctxt_err_int },
8074 { IS_SDMA_START,             IS_SDMA_END,
8075                                 is_sdma_eng_name,       is_sdma_eng_int },
8076 { IS_VARIOUS_START,          IS_VARIOUS_END,
8077                                 is_various_name,        is_various_int },
8078 { IS_DC_START,       IS_DC_END,
8079                                 is_dc_name,             is_dc_int },
8080 { IS_RCVAVAIL_START,     IS_RCVAVAIL_END,
8081                                 is_rcv_avail_name,      is_rcv_avail_int },
8082 { IS_RCVURGENT_START,    IS_RCVURGENT_END,
8083                                 is_rcv_urgent_name,     is_rcv_urgent_int },
8084 { IS_SENDCREDIT_START,   IS_SENDCREDIT_END,
8085                                 is_send_credit_name,    is_send_credit_int},
8086 { IS_RESERVED_START,     IS_RESERVED_END,
8087                                 is_reserved_name,       is_reserved_int},
8088 };
8089
8090 /*
8091  * Interrupt source interrupt - called when the given source has an interrupt.
8092  * Source is a bit index into an array of 64-bit integers.
8093  */
8094 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8095 {
8096         const struct is_table *entry;
8097
8098         /* avoids a double compare by walking the table in-order */
8099         for (entry = &is_table[0]; entry->is_name; entry++) {
8100                 if (source < entry->end) {
8101                         trace_hfi1_interrupt(dd, entry, source);
8102                         entry->is_int(dd, source - entry->start);
8103                         return;
8104                 }
8105         }
8106         /* fell off the end */
8107         dd_dev_err(dd, "invalid interrupt source %u\n", source);
8108 }
8109
8110 /*
8111  * General interrupt handler.  This is able to correctly handle
8112  * all interrupts in case INTx is used.
8113  */
8114 static irqreturn_t general_interrupt(int irq, void *data)
8115 {
8116         struct hfi1_devdata *dd = data;
8117         u64 regs[CCE_NUM_INT_CSRS];
8118         u32 bit;
8119         int i;
8120
8121         this_cpu_inc(*dd->int_counter);
8122
8123         /* phase 1: scan and clear all handled interrupts */
8124         for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8125                 if (dd->gi_mask[i] == 0) {
8126                         regs[i] = 0;    /* used later */
8127                         continue;
8128                 }
8129                 regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8130                                 dd->gi_mask[i];
8131                 /* only clear if anything is set */
8132                 if (regs[i])
8133                         write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8134         }
8135
8136         /* phase 2: call the appropriate handler */
8137         for_each_set_bit(bit, (unsigned long *)&regs[0],
8138                          CCE_NUM_INT_CSRS * 64) {
8139                 is_interrupt(dd, bit);
8140         }
8141
8142         return IRQ_HANDLED;
8143 }
8144
8145 static irqreturn_t sdma_interrupt(int irq, void *data)
8146 {
8147         struct sdma_engine *sde = data;
8148         struct hfi1_devdata *dd = sde->dd;
8149         u64 status;
8150
8151 #ifdef CONFIG_SDMA_VERBOSITY
8152         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8153                    slashstrip(__FILE__), __LINE__, __func__);
8154         sdma_dumpstate(sde);
8155 #endif
8156
8157         this_cpu_inc(*dd->int_counter);
8158
8159         /* This read_csr is really bad in the hot path */
8160         status = read_csr(dd,
8161                           CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8162                           & sde->imask;
8163         if (likely(status)) {
8164                 /* clear the interrupt(s) */
8165                 write_csr(dd,
8166                           CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8167                           status);
8168
8169                 /* handle the interrupt(s) */
8170                 sdma_engine_interrupt(sde, status);
8171         } else
8172                 dd_dev_err(dd, "SDMA engine %u interrupt, but no status bits set\n",
8173                            sde->this_idx);
8174
8175         return IRQ_HANDLED;
8176 }
8177
8178 /*
8179  * Clear the receive interrupt.  Use a read of the interrupt clear CSR
8180  * to insure that the write completed.  This does NOT guarantee that
8181  * queued DMA writes to memory from the chip are pushed.
8182  */
8183 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8184 {
8185         struct hfi1_devdata *dd = rcd->dd;
8186         u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8187
8188         mmiowb();       /* make sure everything before is written */
8189         write_csr(dd, addr, rcd->imask);
8190         /* force the above write on the chip and get a value back */
8191         (void)read_csr(dd, addr);
8192 }
8193
8194 /* force the receive interrupt */
8195 void force_recv_intr(struct hfi1_ctxtdata *rcd)
8196 {
8197         write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8198 }
8199
8200 /*
8201  * Return non-zero if a packet is present.
8202  *
8203  * This routine is called when rechecking for packets after the RcvAvail
8204  * interrupt has been cleared down.  First, do a quick check of memory for
8205  * a packet present.  If not found, use an expensive CSR read of the context
8206  * tail to determine the actual tail.  The CSR read is necessary because there
8207  * is no method to push pending DMAs to memory other than an interrupt and we
8208  * are trying to determine if we need to force an interrupt.
8209  */
8210 static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8211 {
8212         u32 tail;
8213         int present;
8214
8215         if (!HFI1_CAP_IS_KSET(DMA_RTAIL))
8216                 present = (rcd->seq_cnt ==
8217                                 rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
8218         else /* is RDMA rtail */
8219                 present = (rcd->head != get_rcvhdrtail(rcd));
8220
8221         if (present)
8222                 return 1;
8223
8224         /* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8225         tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8226         return rcd->head != tail;
8227 }
8228
8229 /*
8230  * Receive packet IRQ handler.  This routine expects to be on its own IRQ.
8231  * This routine will try to handle packets immediately (latency), but if
8232  * it finds too many, it will invoke the thread handler (bandwitdh).  The
8233  * chip receive interrupt is *not* cleared down until this or the thread (if
8234  * invoked) is finished.  The intent is to avoid extra interrupts while we
8235  * are processing packets anyway.
8236  */
8237 static irqreturn_t receive_context_interrupt(int irq, void *data)
8238 {
8239         struct hfi1_ctxtdata *rcd = data;
8240         struct hfi1_devdata *dd = rcd->dd;
8241         int disposition;
8242         int present;
8243
8244         trace_hfi1_receive_interrupt(dd, rcd->ctxt);
8245         this_cpu_inc(*dd->int_counter);
8246         aspm_ctx_disable(rcd);
8247
8248         /* receive interrupt remains blocked while processing packets */
8249         disposition = rcd->do_interrupt(rcd, 0);
8250
8251         /*
8252          * Too many packets were seen while processing packets in this
8253          * IRQ handler.  Invoke the handler thread.  The receive interrupt
8254          * remains blocked.
8255          */
8256         if (disposition == RCV_PKT_LIMIT)
8257                 return IRQ_WAKE_THREAD;
8258
8259         /*
8260          * The packet processor detected no more packets.  Clear the receive
8261          * interrupt and recheck for a packet packet that may have arrived
8262          * after the previous check and interrupt clear.  If a packet arrived,
8263          * force another interrupt.
8264          */
8265         clear_recv_intr(rcd);
8266         present = check_packet_present(rcd);
8267         if (present)
8268                 force_recv_intr(rcd);
8269
8270         return IRQ_HANDLED;
8271 }
8272
8273 /*
8274  * Receive packet thread handler.  This expects to be invoked with the
8275  * receive interrupt still blocked.
8276  */
8277 static irqreturn_t receive_context_thread(int irq, void *data)
8278 {
8279         struct hfi1_ctxtdata *rcd = data;
8280         int present;
8281
8282         /* receive interrupt is still blocked from the IRQ handler */
8283         (void)rcd->do_interrupt(rcd, 1);
8284
8285         /*
8286          * The packet processor will only return if it detected no more
8287          * packets.  Hold IRQs here so we can safely clear the interrupt and
8288          * recheck for a packet that may have arrived after the previous
8289          * check and the interrupt clear.  If a packet arrived, force another
8290          * interrupt.
8291          */
8292         local_irq_disable();
8293         clear_recv_intr(rcd);
8294         present = check_packet_present(rcd);
8295         if (present)
8296                 force_recv_intr(rcd);
8297         local_irq_enable();
8298
8299         return IRQ_HANDLED;
8300 }
8301
8302 /* ========================================================================= */
8303
8304 u32 read_physical_state(struct hfi1_devdata *dd)
8305 {
8306         u64 reg;
8307
8308         reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8309         return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8310                                 & DC_DC8051_STS_CUR_STATE_PORT_MASK;
8311 }
8312
8313 u32 read_logical_state(struct hfi1_devdata *dd)
8314 {
8315         u64 reg;
8316
8317         reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8318         return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8319                                 & DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8320 }
8321
8322 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8323 {
8324         u64 reg;
8325
8326         reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8327         /* clear current state, set new state */
8328         reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8329         reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8330         write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8331 }
8332
8333 /*
8334  * Use the 8051 to read a LCB CSR.
8335  */
8336 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8337 {
8338         u32 regno;
8339         int ret;
8340
8341         if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8342                 if (acquire_lcb_access(dd, 0) == 0) {
8343                         *data = read_csr(dd, addr);
8344                         release_lcb_access(dd, 0);
8345                         return 0;
8346                 }
8347                 return -EBUSY;
8348         }
8349
8350         /* register is an index of LCB registers: (offset - base) / 8 */
8351         regno = (addr - DC_LCB_CFG_RUN) >> 3;
8352         ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8353         if (ret != HCMD_SUCCESS)
8354                 return -EBUSY;
8355         return 0;
8356 }
8357
8358 /*
8359  * Read an LCB CSR.  Access may not be in host control, so check.
8360  * Return 0 on success, -EBUSY on failure.
8361  */
8362 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8363 {
8364         struct hfi1_pportdata *ppd = dd->pport;
8365
8366         /* if up, go through the 8051 for the value */
8367         if (ppd->host_link_state & HLS_UP)
8368                 return read_lcb_via_8051(dd, addr, data);
8369         /* if going up or down, no access */
8370         if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8371                 return -EBUSY;
8372         /* otherwise, host has access */
8373         *data = read_csr(dd, addr);
8374         return 0;
8375 }
8376
8377 /*
8378  * Use the 8051 to write a LCB CSR.
8379  */
8380 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8381 {
8382         u32 regno;
8383         int ret;
8384
8385         if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8386             (dd->dc8051_ver < dc8051_ver(0, 20))) {
8387                 if (acquire_lcb_access(dd, 0) == 0) {
8388                         write_csr(dd, addr, data);
8389                         release_lcb_access(dd, 0);
8390                         return 0;
8391                 }
8392                 return -EBUSY;
8393         }
8394
8395         /* register is an index of LCB registers: (offset - base) / 8 */
8396         regno = (addr - DC_LCB_CFG_RUN) >> 3;
8397         ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8398         if (ret != HCMD_SUCCESS)
8399                 return -EBUSY;
8400         return 0;
8401 }
8402
8403 /*
8404  * Write an LCB CSR.  Access may not be in host control, so check.
8405  * Return 0 on success, -EBUSY on failure.
8406  */
8407 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8408 {
8409         struct hfi1_pportdata *ppd = dd->pport;
8410
8411         /* if up, go through the 8051 for the value */
8412         if (ppd->host_link_state & HLS_UP)
8413                 return write_lcb_via_8051(dd, addr, data);
8414         /* if going up or down, no access */
8415         if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8416                 return -EBUSY;
8417         /* otherwise, host has access */
8418         write_csr(dd, addr, data);
8419         return 0;
8420 }
8421
8422 /*
8423  * Returns:
8424  *      < 0 = Linux error, not able to get access
8425  *      > 0 = 8051 command RETURN_CODE
8426  */
8427 static int do_8051_command(
8428         struct hfi1_devdata *dd,
8429         u32 type,
8430         u64 in_data,
8431         u64 *out_data)
8432 {
8433         u64 reg, completed;
8434         int return_code;
8435         unsigned long flags;
8436         unsigned long timeout;
8437
8438         hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8439
8440         /*
8441          * Alternative to holding the lock for a long time:
8442          * - keep busy wait - have other users bounce off
8443          */
8444         spin_lock_irqsave(&dd->dc8051_lock, flags);
8445
8446         /* We can't send any commands to the 8051 if it's in reset */
8447         if (dd->dc_shutdown) {
8448                 return_code = -ENODEV;
8449                 goto fail;
8450         }
8451
8452         /*
8453          * If an 8051 host command timed out previously, then the 8051 is
8454          * stuck.
8455          *
8456          * On first timeout, attempt to reset and restart the entire DC
8457          * block (including 8051). (Is this too big of a hammer?)
8458          *
8459          * If the 8051 times out a second time, the reset did not bring it
8460          * back to healthy life. In that case, fail any subsequent commands.
8461          */
8462         if (dd->dc8051_timed_out) {
8463                 if (dd->dc8051_timed_out > 1) {
8464                         dd_dev_err(dd,
8465                                    "Previous 8051 host command timed out, skipping command %u\n",
8466                                    type);
8467                         return_code = -ENXIO;
8468                         goto fail;
8469                 }
8470                 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
8471                 dc_shutdown(dd);
8472                 dc_start(dd);
8473                 spin_lock_irqsave(&dd->dc8051_lock, flags);
8474         }
8475
8476         /*
8477          * If there is no timeout, then the 8051 command interface is
8478          * waiting for a command.
8479          */
8480
8481         /*
8482          * When writing a LCB CSR, out_data contains the full value to
8483          * to be written, while in_data contains the relative LCB
8484          * address in 7:0.  Do the work here, rather than the caller,
8485          * of distrubting the write data to where it needs to go:
8486          *
8487          * Write data
8488          *   39:00 -> in_data[47:8]
8489          *   47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8490          *   63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8491          */
8492         if (type == HCMD_WRITE_LCB_CSR) {
8493                 in_data |= ((*out_data) & 0xffffffffffull) << 8;
8494                 reg = ((((*out_data) >> 40) & 0xff) <<
8495                                 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8496                       | ((((*out_data) >> 48) & 0xffff) <<
8497                                 DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8498                 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8499         }
8500
8501         /*
8502          * Do two writes: the first to stabilize the type and req_data, the
8503          * second to activate.
8504          */
8505         reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8506                         << DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8507                 | (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8508                         << DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8509         write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8510         reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8511         write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8512
8513         /* wait for completion, alternate: interrupt */
8514         timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8515         while (1) {
8516                 reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8517                 completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8518                 if (completed)
8519                         break;
8520                 if (time_after(jiffies, timeout)) {
8521                         dd->dc8051_timed_out++;
8522                         dd_dev_err(dd, "8051 host command %u timeout\n", type);
8523                         if (out_data)
8524                                 *out_data = 0;
8525                         return_code = -ETIMEDOUT;
8526                         goto fail;
8527                 }
8528                 udelay(2);
8529         }
8530
8531         if (out_data) {
8532                 *out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8533                                 & DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8534                 if (type == HCMD_READ_LCB_CSR) {
8535                         /* top 16 bits are in a different register */
8536                         *out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8537                                 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8538                                 << (48
8539                                     - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8540                 }
8541         }
8542         return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8543                                 & DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8544         dd->dc8051_timed_out = 0;
8545         /*
8546          * Clear command for next user.
8547          */
8548         write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8549
8550 fail:
8551         spin_unlock_irqrestore(&dd->dc8051_lock, flags);
8552
8553         return return_code;
8554 }
8555
8556 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8557 {
8558         return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8559 }
8560
8561 int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8562                      u8 lane_id, u32 config_data)
8563 {
8564         u64 data;
8565         int ret;
8566
8567         data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8568                 | (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8569                 | (u64)config_data << LOAD_DATA_DATA_SHIFT;
8570         ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8571         if (ret != HCMD_SUCCESS) {
8572                 dd_dev_err(dd,
8573                            "load 8051 config: field id %d, lane %d, err %d\n",
8574                            (int)field_id, (int)lane_id, ret);
8575         }
8576         return ret;
8577 }
8578
8579 /*
8580  * Read the 8051 firmware "registers".  Use the RAM directly.  Always
8581  * set the result, even on error.
8582  * Return 0 on success, -errno on failure
8583  */
8584 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8585                      u32 *result)
8586 {
8587         u64 big_data;
8588         u32 addr;
8589         int ret;
8590
8591         /* address start depends on the lane_id */
8592         if (lane_id < 4)
8593                 addr = (4 * NUM_GENERAL_FIELDS)
8594                         + (lane_id * 4 * NUM_LANE_FIELDS);
8595         else
8596                 addr = 0;
8597         addr += field_id * 4;
8598
8599         /* read is in 8-byte chunks, hardware will truncate the address down */
8600         ret = read_8051_data(dd, addr, 8, &big_data);
8601
8602         if (ret == 0) {
8603                 /* extract the 4 bytes we want */
8604                 if (addr & 0x4)
8605                         *result = (u32)(big_data >> 32);
8606                 else
8607                         *result = (u32)big_data;
8608         } else {
8609                 *result = 0;
8610                 dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8611                            __func__, lane_id, field_id);
8612         }
8613
8614         return ret;
8615 }
8616
8617 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8618                               u8 continuous)
8619 {
8620         u32 frame;
8621
8622         frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8623                 | power_management << POWER_MANAGEMENT_SHIFT;
8624         return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8625                                 GENERAL_CONFIG, frame);
8626 }
8627
8628 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8629                                  u16 vl15buf, u8 crc_sizes)
8630 {
8631         u32 frame;
8632
8633         frame = (u32)vau << VAU_SHIFT
8634                 | (u32)z << Z_SHIFT
8635                 | (u32)vcu << VCU_SHIFT
8636                 | (u32)vl15buf << VL15BUF_SHIFT
8637                 | (u32)crc_sizes << CRC_SIZES_SHIFT;
8638         return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8639                                 GENERAL_CONFIG, frame);
8640 }
8641
8642 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
8643                                      u8 *flag_bits, u16 *link_widths)
8644 {
8645         u32 frame;
8646
8647         read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8648                          &frame);
8649         *misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8650         *flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8651         *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8652 }
8653
8654 static int write_vc_local_link_width(struct hfi1_devdata *dd,
8655                                      u8 misc_bits,
8656                                      u8 flag_bits,
8657                                      u16 link_widths)
8658 {
8659         u32 frame;
8660
8661         frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8662                 | (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8663                 | (u32)link_widths << LINK_WIDTH_SHIFT;
8664         return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8665                      frame);
8666 }
8667
8668 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8669                                  u8 device_rev)
8670 {
8671         u32 frame;
8672
8673         frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8674                 | ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8675         return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8676 }
8677
8678 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8679                                   u8 *device_rev)
8680 {
8681         u32 frame;
8682
8683         read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8684         *device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8685         *device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8686                         & REMOTE_DEVICE_REV_MASK;
8687 }
8688
8689 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_a, u8 *ver_b)
8690 {
8691         u32 frame;
8692
8693         read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8694         *ver_a = (frame >> STS_FM_VERSION_A_SHIFT) & STS_FM_VERSION_A_MASK;
8695         *ver_b = (frame >> STS_FM_VERSION_B_SHIFT) & STS_FM_VERSION_B_MASK;
8696 }
8697
8698 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8699                                u8 *continuous)
8700 {
8701         u32 frame;
8702
8703         read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8704         *power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8705                                         & POWER_MANAGEMENT_MASK;
8706         *continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8707                                         & CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8708 }
8709
8710 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8711                                   u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8712 {
8713         u32 frame;
8714
8715         read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8716         *vau = (frame >> VAU_SHIFT) & VAU_MASK;
8717         *z = (frame >> Z_SHIFT) & Z_MASK;
8718         *vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8719         *vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8720         *crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8721 }
8722
8723 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8724                                       u8 *remote_tx_rate,
8725                                       u16 *link_widths)
8726 {
8727         u32 frame;
8728
8729         read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
8730                          &frame);
8731         *remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
8732                                 & REMOTE_TX_RATE_MASK;
8733         *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8734 }
8735
8736 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
8737 {
8738         u32 frame;
8739
8740         read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
8741         *enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
8742 }
8743
8744 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed)
8745 {
8746         u32 frame;
8747
8748         read_8051_config(dd, REMOTE_LNI_INFO, GENERAL_CONFIG, &frame);
8749         *mgmt_allowed = (frame >> MGMT_ALLOWED_SHIFT) & MGMT_ALLOWED_MASK;
8750 }
8751
8752 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
8753 {
8754         read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
8755 }
8756
8757 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
8758 {
8759         read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
8760 }
8761
8762 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
8763 {
8764         u32 frame;
8765         int ret;
8766
8767         *link_quality = 0;
8768         if (dd->pport->host_link_state & HLS_UP) {
8769                 ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
8770                                        &frame);
8771                 if (ret == 0)
8772                         *link_quality = (frame >> LINK_QUALITY_SHIFT)
8773                                                 & LINK_QUALITY_MASK;
8774         }
8775 }
8776
8777 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
8778 {
8779         u32 frame;
8780
8781         read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
8782         *pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
8783 }
8784
8785 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
8786 {
8787         u32 frame;
8788
8789         read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
8790         *ldr = (frame & 0xff);
8791 }
8792
8793 static int read_tx_settings(struct hfi1_devdata *dd,
8794                             u8 *enable_lane_tx,
8795                             u8 *tx_polarity_inversion,
8796                             u8 *rx_polarity_inversion,
8797                             u8 *max_rate)
8798 {
8799         u32 frame;
8800         int ret;
8801
8802         ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
8803         *enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
8804                                 & ENABLE_LANE_TX_MASK;
8805         *tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
8806                                 & TX_POLARITY_INVERSION_MASK;
8807         *rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
8808                                 & RX_POLARITY_INVERSION_MASK;
8809         *max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
8810         return ret;
8811 }
8812
8813 static int write_tx_settings(struct hfi1_devdata *dd,
8814                              u8 enable_lane_tx,
8815                              u8 tx_polarity_inversion,
8816                              u8 rx_polarity_inversion,
8817                              u8 max_rate)
8818 {
8819         u32 frame;
8820
8821         /* no need to mask, all variable sizes match field widths */
8822         frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
8823                 | tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
8824                 | rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
8825                 | max_rate << MAX_RATE_SHIFT;
8826         return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
8827 }
8828
8829 /*
8830  * Read an idle LCB message.
8831  *
8832  * Returns 0 on success, -EINVAL on error
8833  */
8834 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
8835 {
8836         int ret;
8837
8838         ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
8839         if (ret != HCMD_SUCCESS) {
8840                 dd_dev_err(dd, "read idle message: type %d, err %d\n",
8841                            (u32)type, ret);
8842                 return -EINVAL;
8843         }
8844         dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
8845         /* return only the payload as we already know the type */
8846         *data_out >>= IDLE_PAYLOAD_SHIFT;
8847         return 0;
8848 }
8849
8850 /*
8851  * Read an idle SMA message.  To be done in response to a notification from
8852  * the 8051.
8853  *
8854  * Returns 0 on success, -EINVAL on error
8855  */
8856 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
8857 {
8858         return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
8859                                  data);
8860 }
8861
8862 /*
8863  * Send an idle LCB message.
8864  *
8865  * Returns 0 on success, -EINVAL on error
8866  */
8867 static int send_idle_message(struct hfi1_devdata *dd, u64 data)
8868 {
8869         int ret;
8870
8871         dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
8872         ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
8873         if (ret != HCMD_SUCCESS) {
8874                 dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
8875                            data, ret);
8876                 return -EINVAL;
8877         }
8878         return 0;
8879 }
8880
8881 /*
8882  * Send an idle SMA message.
8883  *
8884  * Returns 0 on success, -EINVAL on error
8885  */
8886 int send_idle_sma(struct hfi1_devdata *dd, u64 message)
8887 {
8888         u64 data;
8889
8890         data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
8891                 ((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
8892         return send_idle_message(dd, data);
8893 }
8894
8895 /*
8896  * Initialize the LCB then do a quick link up.  This may or may not be
8897  * in loopback.
8898  *
8899  * return 0 on success, -errno on error
8900  */
8901 static int do_quick_linkup(struct hfi1_devdata *dd)
8902 {
8903         u64 reg;
8904         unsigned long timeout;
8905         int ret;
8906
8907         lcb_shutdown(dd, 0);
8908
8909         if (loopback) {
8910                 /* LCB_CFG_LOOPBACK.VAL = 2 */
8911                 /* LCB_CFG_LANE_WIDTH.VAL = 0 */
8912                 write_csr(dd, DC_LCB_CFG_LOOPBACK,
8913                           IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
8914                 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
8915         }
8916
8917         /* start the LCBs */
8918         /* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
8919         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
8920
8921         /* simulator only loopback steps */
8922         if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8923                 /* LCB_CFG_RUN.EN = 1 */
8924                 write_csr(dd, DC_LCB_CFG_RUN,
8925                           1ull << DC_LCB_CFG_RUN_EN_SHIFT);
8926
8927                 /* watch LCB_STS_LINK_TRANSFER_ACTIVE */
8928                 timeout = jiffies + msecs_to_jiffies(10);
8929                 while (1) {
8930                         reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
8931                         if (reg)
8932                                 break;
8933                         if (time_after(jiffies, timeout)) {
8934                                 dd_dev_err(dd,
8935                                            "timeout waiting for LINK_TRANSFER_ACTIVE\n");
8936                                 return -ETIMEDOUT;
8937                         }
8938                         udelay(2);
8939                 }
8940
8941                 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
8942                           1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
8943         }
8944
8945         if (!loopback) {
8946                 /*
8947                  * When doing quick linkup and not in loopback, both
8948                  * sides must be done with LCB set-up before either
8949                  * starts the quick linkup.  Put a delay here so that
8950                  * both sides can be started and have a chance to be
8951                  * done with LCB set up before resuming.
8952                  */
8953                 dd_dev_err(dd,
8954                            "Pausing for peer to be finished with LCB set up\n");
8955                 msleep(5000);
8956                 dd_dev_err(dd, "Continuing with quick linkup\n");
8957         }
8958
8959         write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
8960         set_8051_lcb_access(dd);
8961
8962         /*
8963          * State "quick" LinkUp request sets the physical link state to
8964          * LinkUp without a verify capability sequence.
8965          * This state is in simulator v37 and later.
8966          */
8967         ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
8968         if (ret != HCMD_SUCCESS) {
8969                 dd_dev_err(dd,
8970                            "%s: set physical link state to quick LinkUp failed with return %d\n",
8971                            __func__, ret);
8972
8973                 set_host_lcb_access(dd);
8974                 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
8975
8976                 if (ret >= 0)
8977                         ret = -EINVAL;
8978                 return ret;
8979         }
8980
8981         return 0; /* success */
8982 }
8983
8984 /*
8985  * Set the SerDes to internal loopback mode.
8986  * Returns 0 on success, -errno on error.
8987  */
8988 static int set_serdes_loopback_mode(struct hfi1_devdata *dd)
8989 {
8990         int ret;
8991
8992         ret = set_physical_link_state(dd, PLS_INTERNAL_SERDES_LOOPBACK);
8993         if (ret == HCMD_SUCCESS)
8994                 return 0;
8995         dd_dev_err(dd,
8996                    "Set physical link state to SerDes Loopback failed with return %d\n",
8997                    ret);
8998         if (ret >= 0)
8999                 ret = -EINVAL;
9000         return ret;
9001 }
9002
9003 /*
9004  * Do all special steps to set up loopback.
9005  */
9006 static int init_loopback(struct hfi1_devdata *dd)
9007 {
9008         dd_dev_info(dd, "Entering loopback mode\n");
9009
9010         /* all loopbacks should disable self GUID check */
9011         write_csr(dd, DC_DC8051_CFG_MODE,
9012                   (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9013
9014         /*
9015          * The simulator has only one loopback option - LCB.  Switch
9016          * to that option, which includes quick link up.
9017          *
9018          * Accept all valid loopback values.
9019          */
9020         if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9021             (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9022              loopback == LOOPBACK_CABLE)) {
9023                 loopback = LOOPBACK_LCB;
9024                 quick_linkup = 1;
9025                 return 0;
9026         }
9027
9028         /* handle serdes loopback */
9029         if (loopback == LOOPBACK_SERDES) {
9030                 /* internal serdes loopack needs quick linkup on RTL */
9031                 if (dd->icode == ICODE_RTL_SILICON)
9032                         quick_linkup = 1;
9033                 return set_serdes_loopback_mode(dd);
9034         }
9035
9036         /* LCB loopback - handled at poll time */
9037         if (loopback == LOOPBACK_LCB) {
9038                 quick_linkup = 1; /* LCB is always quick linkup */
9039
9040                 /* not supported in emulation due to emulation RTL changes */
9041                 if (dd->icode == ICODE_FPGA_EMULATION) {
9042                         dd_dev_err(dd,
9043                                    "LCB loopback not supported in emulation\n");
9044                         return -EINVAL;
9045                 }
9046                 return 0;
9047         }
9048
9049         /* external cable loopback requires no extra steps */
9050         if (loopback == LOOPBACK_CABLE)
9051                 return 0;
9052
9053         dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9054         return -EINVAL;
9055 }
9056
9057 /*
9058  * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9059  * used in the Verify Capability link width attribute.
9060  */
9061 static u16 opa_to_vc_link_widths(u16 opa_widths)
9062 {
9063         int i;
9064         u16 result = 0;
9065
9066         static const struct link_bits {
9067                 u16 from;
9068                 u16 to;
9069         } opa_link_xlate[] = {
9070                 { OPA_LINK_WIDTH_1X, 1 << (1 - 1)  },
9071                 { OPA_LINK_WIDTH_2X, 1 << (2 - 1)  },
9072                 { OPA_LINK_WIDTH_3X, 1 << (3 - 1)  },
9073                 { OPA_LINK_WIDTH_4X, 1 << (4 - 1)  },
9074         };
9075
9076         for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9077                 if (opa_widths & opa_link_xlate[i].from)
9078                         result |= opa_link_xlate[i].to;
9079         }
9080         return result;
9081 }
9082
9083 /*
9084  * Set link attributes before moving to polling.
9085  */
9086 static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9087 {
9088         struct hfi1_devdata *dd = ppd->dd;
9089         u8 enable_lane_tx;
9090         u8 tx_polarity_inversion;
9091         u8 rx_polarity_inversion;
9092         int ret;
9093
9094         /* reset our fabric serdes to clear any lingering problems */
9095         fabric_serdes_reset(dd);
9096
9097         /* set the local tx rate - need to read-modify-write */
9098         ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9099                                &rx_polarity_inversion, &ppd->local_tx_rate);
9100         if (ret)
9101                 goto set_local_link_attributes_fail;
9102
9103         if (dd->dc8051_ver < dc8051_ver(0, 20)) {
9104                 /* set the tx rate to the fastest enabled */
9105                 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9106                         ppd->local_tx_rate = 1;
9107                 else
9108                         ppd->local_tx_rate = 0;
9109         } else {
9110                 /* set the tx rate to all enabled */
9111                 ppd->local_tx_rate = 0;
9112                 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9113                         ppd->local_tx_rate |= 2;
9114                 if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9115                         ppd->local_tx_rate |= 1;
9116         }
9117
9118         enable_lane_tx = 0xF; /* enable all four lanes */
9119         ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9120                                 rx_polarity_inversion, ppd->local_tx_rate);
9121         if (ret != HCMD_SUCCESS)
9122                 goto set_local_link_attributes_fail;
9123
9124         /*
9125          * DC supports continuous updates.
9126          */
9127         ret = write_vc_local_phy(dd,
9128                                  0 /* no power management */,
9129                                  1 /* continuous updates */);
9130         if (ret != HCMD_SUCCESS)
9131                 goto set_local_link_attributes_fail;
9132
9133         /* z=1 in the next call: AU of 0 is not supported by the hardware */
9134         ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9135                                     ppd->port_crc_mode_enabled);
9136         if (ret != HCMD_SUCCESS)
9137                 goto set_local_link_attributes_fail;
9138
9139         ret = write_vc_local_link_width(dd, 0, 0,
9140                                         opa_to_vc_link_widths(
9141                                                 ppd->link_width_enabled));
9142         if (ret != HCMD_SUCCESS)
9143                 goto set_local_link_attributes_fail;
9144
9145         /* let peer know who we are */
9146         ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9147         if (ret == HCMD_SUCCESS)
9148                 return 0;
9149
9150 set_local_link_attributes_fail:
9151         dd_dev_err(dd,
9152                    "Failed to set local link attributes, return 0x%x\n",
9153                    ret);
9154         return ret;
9155 }
9156
9157 /*
9158  * Call this to start the link.
9159  * Do not do anything if the link is disabled.
9160  * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9161  */
9162 int start_link(struct hfi1_pportdata *ppd)
9163 {
9164         if (!ppd->link_enabled) {
9165                 dd_dev_info(ppd->dd,
9166                             "%s: stopping link start because link is disabled\n",
9167                             __func__);
9168                 return 0;
9169         }
9170         if (!ppd->driver_link_ready) {
9171                 dd_dev_info(ppd->dd,
9172                             "%s: stopping link start because driver is not ready\n",
9173                             __func__);
9174                 return 0;
9175         }
9176
9177         /*
9178          * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9179          * pkey table can be configured properly if the HFI unit is connected
9180          * to switch port with MgmtAllowed=NO
9181          */
9182         clear_full_mgmt_pkey(ppd);
9183
9184         return set_link_state(ppd, HLS_DN_POLL);
9185 }
9186
9187 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9188 {
9189         struct hfi1_devdata *dd = ppd->dd;
9190         u64 mask;
9191         unsigned long timeout;
9192
9193         /*
9194          * Some QSFP cables have a quirk that asserts the IntN line as a side
9195          * effect of power up on plug-in. We ignore this false positive
9196          * interrupt until the module has finished powering up by waiting for
9197          * a minimum timeout of the module inrush initialization time of
9198          * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9199          * module have stabilized.
9200          */
9201         msleep(500);
9202
9203         /*
9204          * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9205          */
9206         timeout = jiffies + msecs_to_jiffies(2000);
9207         while (1) {
9208                 mask = read_csr(dd, dd->hfi1_id ?
9209                                 ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9210                 if (!(mask & QSFP_HFI0_INT_N))
9211                         break;
9212                 if (time_after(jiffies, timeout)) {
9213                         dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9214                                     __func__);
9215                         break;
9216                 }
9217                 udelay(2);
9218         }
9219 }
9220
9221 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9222 {
9223         struct hfi1_devdata *dd = ppd->dd;
9224         u64 mask;
9225
9226         mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9227         if (enable) {
9228                 /*
9229                  * Clear the status register to avoid an immediate interrupt
9230                  * when we re-enable the IntN pin
9231                  */
9232                 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9233                           QSFP_HFI0_INT_N);
9234                 mask |= (u64)QSFP_HFI0_INT_N;
9235         } else {
9236                 mask &= ~(u64)QSFP_HFI0_INT_N;
9237         }
9238         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9239 }
9240
9241 void reset_qsfp(struct hfi1_pportdata *ppd)
9242 {
9243         struct hfi1_devdata *dd = ppd->dd;
9244         u64 mask, qsfp_mask;
9245
9246         /* Disable INT_N from triggering QSFP interrupts */
9247         set_qsfp_int_n(ppd, 0);
9248
9249         /* Reset the QSFP */
9250         mask = (u64)QSFP_HFI0_RESET_N;
9251
9252         qsfp_mask = read_csr(dd,
9253                              dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9254         qsfp_mask &= ~mask;
9255         write_csr(dd,
9256                   dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9257
9258         udelay(10);
9259
9260         qsfp_mask |= mask;
9261         write_csr(dd,
9262                   dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9263
9264         wait_for_qsfp_init(ppd);
9265
9266         /*
9267          * Allow INT_N to trigger the QSFP interrupt to watch
9268          * for alarms and warnings
9269          */
9270         set_qsfp_int_n(ppd, 1);
9271 }
9272
9273 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9274                                         u8 *qsfp_interrupt_status)
9275 {
9276         struct hfi1_devdata *dd = ppd->dd;
9277
9278         if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9279             (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9280                 dd_dev_info(dd, "%s: QSFP cable on fire\n",
9281                             __func__);
9282
9283         if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9284             (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9285                 dd_dev_info(dd, "%s: QSFP cable temperature too low\n",
9286                             __func__);
9287
9288         /*
9289          * The remaining alarms/warnings don't matter if the link is down.
9290          */
9291         if (ppd->host_link_state & HLS_DOWN)
9292                 return 0;
9293
9294         if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9295             (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9296                 dd_dev_info(dd, "%s: QSFP supply voltage too high\n",
9297                             __func__);
9298
9299         if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9300             (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9301                 dd_dev_info(dd, "%s: QSFP supply voltage too low\n",
9302                             __func__);
9303
9304         /* Byte 2 is vendor specific */
9305
9306         if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9307             (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9308                 dd_dev_info(dd, "%s: Cable RX channel 1/2 power too high\n",
9309                             __func__);
9310
9311         if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9312             (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9313                 dd_dev_info(dd, "%s: Cable RX channel 1/2 power too low\n",
9314                             __func__);
9315
9316         if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9317             (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9318                 dd_dev_info(dd, "%s: Cable RX channel 3/4 power too high\n",
9319                             __func__);
9320
9321         if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9322             (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9323                 dd_dev_info(dd, "%s: Cable RX channel 3/4 power too low\n",
9324                             __func__);
9325
9326         if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9327             (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9328                 dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too high\n",
9329                             __func__);
9330
9331         if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9332             (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9333                 dd_dev_info(dd, "%s: Cable TX channel 1/2 bias too low\n",
9334                             __func__);
9335
9336         if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9337             (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9338                 dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too high\n",
9339                             __func__);
9340
9341         if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9342             (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9343                 dd_dev_info(dd, "%s: Cable TX channel 3/4 bias too low\n",
9344                             __func__);
9345
9346         if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9347             (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9348                 dd_dev_info(dd, "%s: Cable TX channel 1/2 power too high\n",
9349                             __func__);
9350
9351         if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9352             (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9353                 dd_dev_info(dd, "%s: Cable TX channel 1/2 power too low\n",
9354                             __func__);
9355
9356         if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9357             (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9358                 dd_dev_info(dd, "%s: Cable TX channel 3/4 power too high\n",
9359                             __func__);
9360
9361         if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9362             (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9363                 dd_dev_info(dd, "%s: Cable TX channel 3/4 power too low\n",
9364                             __func__);
9365
9366         /* Bytes 9-10 and 11-12 are reserved */
9367         /* Bytes 13-15 are vendor specific */
9368
9369         return 0;
9370 }
9371
9372 /* This routine will only be scheduled if the QSFP module present is asserted */
9373 void qsfp_event(struct work_struct *work)
9374 {
9375         struct qsfp_data *qd;
9376         struct hfi1_pportdata *ppd;
9377         struct hfi1_devdata *dd;
9378
9379         qd = container_of(work, struct qsfp_data, qsfp_work);
9380         ppd = qd->ppd;
9381         dd = ppd->dd;
9382
9383         /* Sanity check */
9384         if (!qsfp_mod_present(ppd))
9385                 return;
9386
9387         /*
9388          * Turn DC back on after cable has been re-inserted. Up until
9389          * now, the DC has been in reset to save power.
9390          */
9391         dc_start(dd);
9392
9393         if (qd->cache_refresh_required) {
9394                 set_qsfp_int_n(ppd, 0);
9395
9396                 wait_for_qsfp_init(ppd);
9397
9398                 /*
9399                  * Allow INT_N to trigger the QSFP interrupt to watch
9400                  * for alarms and warnings
9401                  */
9402                 set_qsfp_int_n(ppd, 1);
9403
9404                 tune_serdes(ppd);
9405
9406                 start_link(ppd);
9407         }
9408
9409         if (qd->check_interrupt_flags) {
9410                 u8 qsfp_interrupt_status[16] = {0,};
9411
9412                 if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9413                                   &qsfp_interrupt_status[0], 16) != 16) {
9414                         dd_dev_info(dd,
9415                                     "%s: Failed to read status of QSFP module\n",
9416                                     __func__);
9417                 } else {
9418                         unsigned long flags;
9419
9420                         handle_qsfp_error_conditions(
9421                                         ppd, qsfp_interrupt_status);
9422                         spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9423                         ppd->qsfp_info.check_interrupt_flags = 0;
9424                         spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9425                                                flags);
9426                 }
9427         }
9428 }
9429
9430 static void init_qsfp_int(struct hfi1_devdata *dd)
9431 {
9432         struct hfi1_pportdata *ppd = dd->pport;
9433         u64 qsfp_mask, cce_int_mask;
9434         const int qsfp1_int_smask = QSFP1_INT % 64;
9435         const int qsfp2_int_smask = QSFP2_INT % 64;
9436
9437         /*
9438          * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
9439          * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
9440          * therefore just one of QSFP1_INT/QSFP2_INT can be used to find
9441          * the index of the appropriate CSR in the CCEIntMask CSR array
9442          */
9443         cce_int_mask = read_csr(dd, CCE_INT_MASK +
9444                                 (8 * (QSFP1_INT / 64)));
9445         if (dd->hfi1_id) {
9446                 cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
9447                 write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)),
9448                           cce_int_mask);
9449         } else {
9450                 cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
9451                 write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)),
9452                           cce_int_mask);
9453         }
9454
9455         qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9456         /* Clear current status to avoid spurious interrupts */
9457         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9458                   qsfp_mask);
9459         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9460                   qsfp_mask);
9461
9462         set_qsfp_int_n(ppd, 0);
9463
9464         /* Handle active low nature of INT_N and MODPRST_N pins */
9465         if (qsfp_mod_present(ppd))
9466                 qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9467         write_csr(dd,
9468                   dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9469                   qsfp_mask);
9470 }
9471
9472 /*
9473  * Do a one-time initialize of the LCB block.
9474  */
9475 static void init_lcb(struct hfi1_devdata *dd)
9476 {
9477         /* simulator does not correctly handle LCB cclk loopback, skip */
9478         if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9479                 return;
9480
9481         /* the DC has been reset earlier in the driver load */
9482
9483         /* set LCB for cclk loopback on the port */
9484         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9485         write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9486         write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9487         write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9488         write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9489         write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9490         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9491 }
9492
9493 /*
9494  * Perform a test read on the QSFP.  Return 0 on success, -ERRNO
9495  * on error.
9496  */
9497 static int test_qsfp_read(struct hfi1_pportdata *ppd)
9498 {
9499         int ret;
9500         u8 status;
9501
9502         /* report success if not a QSFP */
9503         if (ppd->port_type != PORT_TYPE_QSFP)
9504                 return 0;
9505
9506         /* read byte 2, the status byte */
9507         ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9508         if (ret < 0)
9509                 return ret;
9510         if (ret != 1)
9511                 return -EIO;
9512
9513         return 0; /* success */
9514 }
9515
9516 /*
9517  * Values for QSFP retry.
9518  *
9519  * Give up after 10s (20 x 500ms).  The overall timeout was empirically
9520  * arrived at from experience on a large cluster.
9521  */
9522 #define MAX_QSFP_RETRIES 20
9523 #define QSFP_RETRY_WAIT 500 /* msec */
9524
9525 /*
9526  * Try a QSFP read.  If it fails, schedule a retry for later.
9527  * Called on first link activation after driver load.
9528  */
9529 static void try_start_link(struct hfi1_pportdata *ppd)
9530 {
9531         if (test_qsfp_read(ppd)) {
9532                 /* read failed */
9533                 if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9534                         dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9535                         return;
9536                 }
9537                 dd_dev_info(ppd->dd,
9538                             "QSFP not responding, waiting and retrying %d\n",
9539                             (int)ppd->qsfp_retry_count);
9540                 ppd->qsfp_retry_count++;
9541                 queue_delayed_work(ppd->hfi1_wq, &ppd->start_link_work,
9542                                    msecs_to_jiffies(QSFP_RETRY_WAIT));
9543                 return;
9544         }
9545         ppd->qsfp_retry_count = 0;
9546
9547         /*
9548          * Tune the SerDes to a ballpark setting for optimal signal and bit
9549          * error rate.  Needs to be done before starting the link.
9550          */
9551         tune_serdes(ppd);
9552         start_link(ppd);
9553 }
9554
9555 /*
9556  * Workqueue function to start the link after a delay.
9557  */
9558 void handle_start_link(struct work_struct *work)
9559 {
9560         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9561                                                   start_link_work.work);
9562         try_start_link(ppd);
9563 }
9564
9565 int bringup_serdes(struct hfi1_pportdata *ppd)
9566 {
9567         struct hfi1_devdata *dd = ppd->dd;
9568         u64 guid;
9569         int ret;
9570
9571         if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9572                 add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9573
9574         guid = ppd->guid;
9575         if (!guid) {
9576                 if (dd->base_guid)
9577                         guid = dd->base_guid + ppd->port - 1;
9578                 ppd->guid = guid;
9579         }
9580
9581         /* Set linkinit_reason on power up per OPA spec */
9582         ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9583
9584         /* one-time init of the LCB */
9585         init_lcb(dd);
9586
9587         if (loopback) {
9588                 ret = init_loopback(dd);
9589                 if (ret < 0)
9590                         return ret;
9591         }
9592
9593         get_port_type(ppd);
9594         if (ppd->port_type == PORT_TYPE_QSFP) {
9595                 set_qsfp_int_n(ppd, 0);
9596                 wait_for_qsfp_init(ppd);
9597                 set_qsfp_int_n(ppd, 1);
9598         }
9599
9600         try_start_link(ppd);
9601         return 0;
9602 }
9603
9604 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9605 {
9606         struct hfi1_devdata *dd = ppd->dd;
9607
9608         /*
9609          * Shut down the link and keep it down.   First turn off that the
9610          * driver wants to allow the link to be up (driver_link_ready).
9611          * Then make sure the link is not automatically restarted
9612          * (link_enabled).  Cancel any pending restart.  And finally
9613          * go offline.
9614          */
9615         ppd->driver_link_ready = 0;
9616         ppd->link_enabled = 0;
9617
9618         ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9619         flush_delayed_work(&ppd->start_link_work);
9620         cancel_delayed_work_sync(&ppd->start_link_work);
9621
9622         ppd->offline_disabled_reason =
9623                         HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED);
9624         set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SMA_DISABLED, 0,
9625                              OPA_LINKDOWN_REASON_SMA_DISABLED);
9626         set_link_state(ppd, HLS_DN_OFFLINE);
9627
9628         /* disable the port */
9629         clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9630 }
9631
9632 static inline int init_cpu_counters(struct hfi1_devdata *dd)
9633 {
9634         struct hfi1_pportdata *ppd;
9635         int i;
9636
9637         ppd = (struct hfi1_pportdata *)(dd + 1);
9638         for (i = 0; i < dd->num_pports; i++, ppd++) {
9639                 ppd->ibport_data.rvp.rc_acks = NULL;
9640                 ppd->ibport_data.rvp.rc_qacks = NULL;
9641                 ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9642                 ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9643                 ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9644                 if (!ppd->ibport_data.rvp.rc_acks ||
9645                     !ppd->ibport_data.rvp.rc_delayed_comp ||
9646                     !ppd->ibport_data.rvp.rc_qacks)
9647                         return -ENOMEM;
9648         }
9649
9650         return 0;
9651 }
9652
9653 static const char * const pt_names[] = {
9654         "expected",
9655         "eager",
9656         "invalid"
9657 };
9658
9659 static const char *pt_name(u32 type)
9660 {
9661         return type >= ARRAY_SIZE(pt_names) ? "unknown" : pt_names[type];
9662 }
9663
9664 /*
9665  * index is the index into the receive array
9666  */
9667 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9668                   u32 type, unsigned long pa, u16 order)
9669 {
9670         u64 reg;
9671         void __iomem *base = (dd->rcvarray_wc ? dd->rcvarray_wc :
9672                               (dd->kregbase + RCV_ARRAY));
9673
9674         if (!(dd->flags & HFI1_PRESENT))
9675                 goto done;
9676
9677         if (type == PT_INVALID) {
9678                 pa = 0;
9679         } else if (type > PT_INVALID) {
9680                 dd_dev_err(dd,
9681                            "unexpected receive array type %u for index %u, not handled\n",
9682                            type, index);
9683                 goto done;
9684         }
9685
9686         hfi1_cdbg(TID, "type %s, index 0x%x, pa 0x%lx, bsize 0x%lx",
9687                   pt_name(type), index, pa, (unsigned long)order);
9688
9689 #define RT_ADDR_SHIFT 12        /* 4KB kernel address boundary */
9690         reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9691                 | (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9692                 | ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9693                                         << RCV_ARRAY_RT_ADDR_SHIFT;
9694         writeq(reg, base + (index * 8));
9695
9696         if (type == PT_EAGER)
9697                 /*
9698                  * Eager entries are written one-by-one so we have to push them
9699                  * after we write the entry.
9700                  */
9701                 flush_wc();
9702 done:
9703         return;
9704 }
9705
9706 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9707 {
9708         struct hfi1_devdata *dd = rcd->dd;
9709         u32 i;
9710
9711         /* this could be optimized */
9712         for (i = rcd->eager_base; i < rcd->eager_base +
9713                      rcd->egrbufs.alloced; i++)
9714                 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9715
9716         for (i = rcd->expected_base;
9717                         i < rcd->expected_base + rcd->expected_count; i++)
9718                 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9719 }
9720
9721 struct hfi1_message_header *hfi1_get_msgheader(
9722                                 struct hfi1_devdata *dd, __le32 *rhf_addr)
9723 {
9724         u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
9725
9726         return (struct hfi1_message_header *)
9727                 (rhf_addr - dd->rhf_offset + offset);
9728 }
9729
9730 static const char * const ib_cfg_name_strings[] = {
9731         "HFI1_IB_CFG_LIDLMC",
9732         "HFI1_IB_CFG_LWID_DG_ENB",
9733         "HFI1_IB_CFG_LWID_ENB",
9734         "HFI1_IB_CFG_LWID",
9735         "HFI1_IB_CFG_SPD_ENB",
9736         "HFI1_IB_CFG_SPD",
9737         "HFI1_IB_CFG_RXPOL_ENB",
9738         "HFI1_IB_CFG_LREV_ENB",
9739         "HFI1_IB_CFG_LINKLATENCY",
9740         "HFI1_IB_CFG_HRTBT",
9741         "HFI1_IB_CFG_OP_VLS",
9742         "HFI1_IB_CFG_VL_HIGH_CAP",
9743         "HFI1_IB_CFG_VL_LOW_CAP",
9744         "HFI1_IB_CFG_OVERRUN_THRESH",
9745         "HFI1_IB_CFG_PHYERR_THRESH",
9746         "HFI1_IB_CFG_LINKDEFAULT",
9747         "HFI1_IB_CFG_PKEYS",
9748         "HFI1_IB_CFG_MTU",
9749         "HFI1_IB_CFG_LSTATE",
9750         "HFI1_IB_CFG_VL_HIGH_LIMIT",
9751         "HFI1_IB_CFG_PMA_TICKS",
9752         "HFI1_IB_CFG_PORT"
9753 };
9754
9755 static const char *ib_cfg_name(int which)
9756 {
9757         if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9758                 return "invalid";
9759         return ib_cfg_name_strings[which];
9760 }
9761
9762 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9763 {
9764         struct hfi1_devdata *dd = ppd->dd;
9765         int val = 0;
9766
9767         switch (which) {
9768         case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
9769                 val = ppd->link_width_enabled;
9770                 break;
9771         case HFI1_IB_CFG_LWID: /* currently active Link-width */
9772                 val = ppd->link_width_active;
9773                 break;
9774         case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
9775                 val = ppd->link_speed_enabled;
9776                 break;
9777         case HFI1_IB_CFG_SPD: /* current Link speed */
9778                 val = ppd->link_speed_active;
9779                 break;
9780
9781         case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
9782         case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
9783         case HFI1_IB_CFG_LINKLATENCY:
9784                 goto unimplemented;
9785
9786         case HFI1_IB_CFG_OP_VLS:
9787                 val = ppd->vls_operational;
9788                 break;
9789         case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
9790                 val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
9791                 break;
9792         case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
9793                 val = VL_ARB_LOW_PRIO_TABLE_SIZE;
9794                 break;
9795         case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
9796                 val = ppd->overrun_threshold;
9797                 break;
9798         case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
9799                 val = ppd->phy_error_threshold;
9800                 break;
9801         case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
9802                 val = dd->link_default;
9803                 break;
9804
9805         case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
9806         case HFI1_IB_CFG_PMA_TICKS:
9807         default:
9808 unimplemented:
9809                 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
9810                         dd_dev_info(
9811                                 dd,
9812                                 "%s: which %s: not implemented\n",
9813                                 __func__,
9814                                 ib_cfg_name(which));
9815                 break;
9816         }
9817
9818         return val;
9819 }
9820
9821 /*
9822  * The largest MAD packet size.
9823  */
9824 #define MAX_MAD_PACKET 2048
9825
9826 /*
9827  * Return the maximum header bytes that can go on the _wire_
9828  * for this device. This count includes the ICRC which is
9829  * not part of the packet held in memory but it is appended
9830  * by the HW.
9831  * This is dependent on the device's receive header entry size.
9832  * HFI allows this to be set per-receive context, but the
9833  * driver presently enforces a global value.
9834  */
9835 u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
9836 {
9837         /*
9838          * The maximum non-payload (MTU) bytes in LRH.PktLen are
9839          * the Receive Header Entry Size minus the PBC (or RHF) size
9840          * plus one DW for the ICRC appended by HW.
9841          *
9842          * dd->rcd[0].rcvhdrqentsize is in DW.
9843          * We use rcd[0] as all context will have the same value. Also,
9844          * the first kernel context would have been allocated by now so
9845          * we are guaranteed a valid value.
9846          */
9847         return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
9848 }
9849
9850 /*
9851  * Set Send Length
9852  * @ppd - per port data
9853  *
9854  * Set the MTU by limiting how many DWs may be sent.  The SendLenCheck*
9855  * registers compare against LRH.PktLen, so use the max bytes included
9856  * in the LRH.
9857  *
9858  * This routine changes all VL values except VL15, which it maintains at
9859  * the same value.
9860  */
9861 static void set_send_length(struct hfi1_pportdata *ppd)
9862 {
9863         struct hfi1_devdata *dd = ppd->dd;
9864         u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
9865         u32 maxvlmtu = dd->vld[15].mtu;
9866         u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
9867                               & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
9868                 SEND_LEN_CHECK1_LEN_VL15_SHIFT;
9869         int i, j;
9870         u32 thres;
9871
9872         for (i = 0; i < ppd->vls_supported; i++) {
9873                 if (dd->vld[i].mtu > maxvlmtu)
9874                         maxvlmtu = dd->vld[i].mtu;
9875                 if (i <= 3)
9876                         len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
9877                                  & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
9878                                 ((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
9879                 else
9880                         len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
9881                                  & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
9882                                 ((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
9883         }
9884         write_csr(dd, SEND_LEN_CHECK0, len1);
9885         write_csr(dd, SEND_LEN_CHECK1, len2);
9886         /* adjust kernel credit return thresholds based on new MTUs */
9887         /* all kernel receive contexts have the same hdrqentsize */
9888         for (i = 0; i < ppd->vls_supported; i++) {
9889                 thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
9890                             sc_mtu_to_threshold(dd->vld[i].sc,
9891                                                 dd->vld[i].mtu,
9892                                                 dd->rcd[0]->rcvhdrqentsize));
9893                 for (j = 0; j < INIT_SC_PER_VL; j++)
9894                         sc_set_cr_threshold(
9895                                         pio_select_send_context_vl(dd, j, i),
9896                                             thres);
9897         }
9898         thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
9899                     sc_mtu_to_threshold(dd->vld[15].sc,
9900                                         dd->vld[15].mtu,
9901                                         dd->rcd[0]->rcvhdrqentsize));
9902         sc_set_cr_threshold(dd->vld[15].sc, thres);
9903
9904         /* Adjust maximum MTU for the port in DC */
9905         dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
9906                 (ilog2(maxvlmtu >> 8) + 1);
9907         len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
9908         len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
9909         len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
9910                 DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
9911         write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
9912 }
9913
9914 static void set_lidlmc(struct hfi1_pportdata *ppd)
9915 {
9916         int i;
9917         u64 sreg = 0;
9918         struct hfi1_devdata *dd = ppd->dd;
9919         u32 mask = ~((1U << ppd->lmc) - 1);
9920         u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
9921
9922         if (dd->hfi1_snoop.mode_flag)
9923                 dd_dev_info(dd, "Set lid/lmc while snooping");
9924
9925         c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
9926                 | DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
9927         c1 |= ((ppd->lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
9928                         << DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
9929               ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
9930                         << DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
9931         write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
9932
9933         /*
9934          * Iterate over all the send contexts and set their SLID check
9935          */
9936         sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
9937                         SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
9938                (((ppd->lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
9939                         SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
9940
9941         for (i = 0; i < dd->chip_send_contexts; i++) {
9942                 hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
9943                           i, (u32)sreg);
9944                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
9945         }
9946
9947         /* Now we have to do the same thing for the sdma engines */
9948         sdma_update_lmc(dd, mask, ppd->lid);
9949 }
9950
9951 static int wait_phy_linkstate(struct hfi1_devdata *dd, u32 state, u32 msecs)
9952 {
9953         unsigned long timeout;
9954         u32 curr_state;
9955
9956         timeout = jiffies + msecs_to_jiffies(msecs);
9957         while (1) {
9958                 curr_state = read_physical_state(dd);
9959                 if (curr_state == state)
9960                         break;
9961                 if (time_after(jiffies, timeout)) {
9962                         dd_dev_err(dd,
9963                                    "timeout waiting for phy link state 0x%x, current state is 0x%x\n",
9964                                    state, curr_state);
9965                         return -ETIMEDOUT;
9966                 }
9967                 usleep_range(1950, 2050); /* sleep 2ms-ish */
9968         }
9969
9970         return 0;
9971 }
9972
9973 static const char *state_completed_string(u32 completed)
9974 {
9975         static const char * const state_completed[] = {
9976                 "EstablishComm",
9977                 "OptimizeEQ",
9978                 "VerifyCap"
9979         };
9980
9981         if (completed < ARRAY_SIZE(state_completed))
9982                 return state_completed[completed];
9983
9984         return "unknown";
9985 }
9986
9987 static const char all_lanes_dead_timeout_expired[] =
9988         "All lanes were inactive â€“ was the interconnect media removed?";
9989 static const char tx_out_of_policy[] =
9990         "Passing lanes on local port do not meet the local link width policy";
9991 static const char no_state_complete[] =
9992         "State timeout occurred before link partner completed the state";
9993 static const char * const state_complete_reasons[] = {
9994         [0x00] = "Reason unknown",
9995         [0x01] = "Link was halted by driver, refer to LinkDownReason",
9996         [0x02] = "Link partner reported failure",
9997         [0x10] = "Unable to achieve frame sync on any lane",
9998         [0x11] =
9999           "Unable to find a common bit rate with the link partner",
10000         [0x12] =
10001           "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10002         [0x13] =
10003           "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10004         [0x14] = no_state_complete,
10005         [0x15] =
10006           "State timeout occurred before link partner identified equalization presets",
10007         [0x16] =
10008           "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10009         [0x17] = tx_out_of_policy,
10010         [0x20] = all_lanes_dead_timeout_expired,
10011         [0x21] =
10012           "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10013         [0x22] = no_state_complete,
10014         [0x23] =
10015           "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10016         [0x24] = tx_out_of_policy,
10017         [0x30] = all_lanes_dead_timeout_expired,
10018         [0x31] =
10019           "State timeout occurred waiting for host to process received frames",
10020         [0x32] = no_state_complete,
10021         [0x33] =
10022           "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10023         [0x34] = tx_out_of_policy,
10024 };
10025
10026 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10027                                                      u32 code)
10028 {
10029         const char *str = NULL;
10030
10031         if (code < ARRAY_SIZE(state_complete_reasons))
10032                 str = state_complete_reasons[code];
10033
10034         if (str)
10035                 return str;
10036         return "Reserved";
10037 }
10038
10039 /* describe the given last state complete frame */
10040 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10041                                   const char *prefix)
10042 {
10043         struct hfi1_devdata *dd = ppd->dd;
10044         u32 success;
10045         u32 state;
10046         u32 reason;
10047         u32 lanes;
10048
10049         /*
10050          * Decode frame:
10051          *  [ 0: 0] - success
10052          *  [ 3: 1] - state
10053          *  [ 7: 4] - next state timeout
10054          *  [15: 8] - reason code
10055          *  [31:16] - lanes
10056          */
10057         success = frame & 0x1;
10058         state = (frame >> 1) & 0x7;
10059         reason = (frame >> 8) & 0xff;
10060         lanes = (frame >> 16) & 0xffff;
10061
10062         dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10063                    prefix, frame);
10064         dd_dev_err(dd, "    last reported state state: %s (0x%x)\n",
10065                    state_completed_string(state), state);
10066         dd_dev_err(dd, "    state successfully completed: %s\n",
10067                    success ? "yes" : "no");
10068         dd_dev_err(dd, "    fail reason 0x%x: %s\n",
10069                    reason, state_complete_reason_code_string(ppd, reason));
10070         dd_dev_err(dd, "    passing lane mask: 0x%x", lanes);
10071 }
10072
10073 /*
10074  * Read the last state complete frames and explain them.  This routine
10075  * expects to be called if the link went down during link negotiation
10076  * and initialization (LNI).  That is, anywhere between polling and link up.
10077  */
10078 static void check_lni_states(struct hfi1_pportdata *ppd)
10079 {
10080         u32 last_local_state;
10081         u32 last_remote_state;
10082
10083         read_last_local_state(ppd->dd, &last_local_state);
10084         read_last_remote_state(ppd->dd, &last_remote_state);
10085
10086         /*
10087          * Don't report anything if there is nothing to report.  A value of
10088          * 0 means the link was taken down while polling and there was no
10089          * training in-process.
10090          */
10091         if (last_local_state == 0 && last_remote_state == 0)
10092                 return;
10093
10094         decode_state_complete(ppd, last_local_state, "transmitted");
10095         decode_state_complete(ppd, last_remote_state, "received");
10096 }
10097
10098 /*
10099  * Helper for set_link_state().  Do not call except from that routine.
10100  * Expects ppd->hls_mutex to be held.
10101  *
10102  * @rem_reason value to be sent to the neighbor
10103  *
10104  * LinkDownReasons only set if transition succeeds.
10105  */
10106 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10107 {
10108         struct hfi1_devdata *dd = ppd->dd;
10109         u32 pstate, previous_state;
10110         int ret;
10111         int do_transition;
10112         int do_wait;
10113
10114         previous_state = ppd->host_link_state;
10115         ppd->host_link_state = HLS_GOING_OFFLINE;
10116         pstate = read_physical_state(dd);
10117         if (pstate == PLS_OFFLINE) {
10118                 do_transition = 0;      /* in right state */
10119                 do_wait = 0;            /* ...no need to wait */
10120         } else if ((pstate & 0xff) == PLS_OFFLINE) {
10121                 do_transition = 0;      /* in an offline transient state */
10122                 do_wait = 1;            /* ...wait for it to settle */
10123         } else {
10124                 do_transition = 1;      /* need to move to offline */
10125                 do_wait = 1;            /* ...will need to wait */
10126         }
10127
10128         if (do_transition) {
10129                 ret = set_physical_link_state(dd,
10130                                               (rem_reason << 8) | PLS_OFFLINE);
10131
10132                 if (ret != HCMD_SUCCESS) {
10133                         dd_dev_err(dd,
10134                                    "Failed to transition to Offline link state, return %d\n",
10135                                    ret);
10136                         return -EINVAL;
10137                 }
10138                 if (ppd->offline_disabled_reason ==
10139                                 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10140                         ppd->offline_disabled_reason =
10141                         HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10142         }
10143
10144         if (do_wait) {
10145                 /* it can take a while for the link to go down */
10146                 ret = wait_phy_linkstate(dd, PLS_OFFLINE, 10000);
10147                 if (ret < 0)
10148                         return ret;
10149         }
10150
10151         /* make sure the logical state is also down */
10152         wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10153
10154         /*
10155          * Now in charge of LCB - must be after the physical state is
10156          * offline.quiet and before host_link_state is changed.
10157          */
10158         set_host_lcb_access(dd);
10159         write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10160         ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10161
10162         if (ppd->port_type == PORT_TYPE_QSFP &&
10163             ppd->qsfp_info.limiting_active &&
10164             qsfp_mod_present(ppd)) {
10165                 int ret;
10166
10167                 ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10168                 if (ret == 0) {
10169                         set_qsfp_tx(ppd, 0);
10170                         release_chip_resource(dd, qsfp_resource(dd));
10171                 } else {
10172                         /* not fatal, but should warn */
10173                         dd_dev_err(dd,
10174                                    "Unable to acquire lock to turn off QSFP TX\n");
10175                 }
10176         }
10177
10178         /*
10179          * The LNI has a mandatory wait time after the physical state
10180          * moves to Offline.Quiet.  The wait time may be different
10181          * depending on how the link went down.  The 8051 firmware
10182          * will observe the needed wait time and only move to ready
10183          * when that is completed.  The largest of the quiet timeouts
10184          * is 6s, so wait that long and then at least 0.5s more for
10185          * other transitions, and another 0.5s for a buffer.
10186          */
10187         ret = wait_fm_ready(dd, 7000);
10188         if (ret) {
10189                 dd_dev_err(dd,
10190                            "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10191                 /* state is really offline, so make it so */
10192                 ppd->host_link_state = HLS_DN_OFFLINE;
10193                 return ret;
10194         }
10195
10196         /*
10197          * The state is now offline and the 8051 is ready to accept host
10198          * requests.
10199          *      - change our state
10200          *      - notify others if we were previously in a linkup state
10201          */
10202         ppd->host_link_state = HLS_DN_OFFLINE;
10203         if (previous_state & HLS_UP) {
10204                 /* went down while link was up */
10205                 handle_linkup_change(dd, 0);
10206         } else if (previous_state
10207                         & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10208                 /* went down while attempting link up */
10209                 check_lni_states(ppd);
10210         }
10211
10212         /* the active link width (downgrade) is 0 on link down */
10213         ppd->link_width_active = 0;
10214         ppd->link_width_downgrade_tx_active = 0;
10215         ppd->link_width_downgrade_rx_active = 0;
10216         ppd->current_egress_rate = 0;
10217         return 0;
10218 }
10219
10220 /* return the link state name */
10221 static const char *link_state_name(u32 state)
10222 {
10223         const char *name;
10224         int n = ilog2(state);
10225         static const char * const names[] = {
10226                 [__HLS_UP_INIT_BP]       = "INIT",
10227                 [__HLS_UP_ARMED_BP]      = "ARMED",
10228                 [__HLS_UP_ACTIVE_BP]     = "ACTIVE",
10229                 [__HLS_DN_DOWNDEF_BP]    = "DOWNDEF",
10230                 [__HLS_DN_POLL_BP]       = "POLL",
10231                 [__HLS_DN_DISABLE_BP]    = "DISABLE",
10232                 [__HLS_DN_OFFLINE_BP]    = "OFFLINE",
10233                 [__HLS_VERIFY_CAP_BP]    = "VERIFY_CAP",
10234                 [__HLS_GOING_UP_BP]      = "GOING_UP",
10235                 [__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10236                 [__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10237         };
10238
10239         name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10240         return name ? name : "unknown";
10241 }
10242
10243 /* return the link state reason name */
10244 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10245 {
10246         if (state == HLS_UP_INIT) {
10247                 switch (ppd->linkinit_reason) {
10248                 case OPA_LINKINIT_REASON_LINKUP:
10249                         return "(LINKUP)";
10250                 case OPA_LINKINIT_REASON_FLAPPING:
10251                         return "(FLAPPING)";
10252                 case OPA_LINKINIT_OUTSIDE_POLICY:
10253                         return "(OUTSIDE_POLICY)";
10254                 case OPA_LINKINIT_QUARANTINED:
10255                         return "(QUARANTINED)";
10256                 case OPA_LINKINIT_INSUFIC_CAPABILITY:
10257                         return "(INSUFIC_CAPABILITY)";
10258                 default:
10259                         break;
10260                 }
10261         }
10262         return "";
10263 }
10264
10265 /*
10266  * driver_physical_state - convert the driver's notion of a port's
10267  * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10268  * Return -1 (converted to a u32) to indicate error.
10269  */
10270 u32 driver_physical_state(struct hfi1_pportdata *ppd)
10271 {
10272         switch (ppd->host_link_state) {
10273         case HLS_UP_INIT:
10274         case HLS_UP_ARMED:
10275         case HLS_UP_ACTIVE:
10276                 return IB_PORTPHYSSTATE_LINKUP;
10277         case HLS_DN_POLL:
10278                 return IB_PORTPHYSSTATE_POLLING;
10279         case HLS_DN_DISABLE:
10280                 return IB_PORTPHYSSTATE_DISABLED;
10281         case HLS_DN_OFFLINE:
10282                 return OPA_PORTPHYSSTATE_OFFLINE;
10283         case HLS_VERIFY_CAP:
10284                 return IB_PORTPHYSSTATE_POLLING;
10285         case HLS_GOING_UP:
10286                 return IB_PORTPHYSSTATE_POLLING;
10287         case HLS_GOING_OFFLINE:
10288                 return OPA_PORTPHYSSTATE_OFFLINE;
10289         case HLS_LINK_COOLDOWN:
10290                 return OPA_PORTPHYSSTATE_OFFLINE;
10291         case HLS_DN_DOWNDEF:
10292         default:
10293                 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10294                            ppd->host_link_state);
10295                 return  -1;
10296         }
10297 }
10298
10299 /*
10300  * driver_logical_state - convert the driver's notion of a port's
10301  * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10302  * (converted to a u32) to indicate error.
10303  */
10304 u32 driver_logical_state(struct hfi1_pportdata *ppd)
10305 {
10306         if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10307                 return IB_PORT_DOWN;
10308
10309         switch (ppd->host_link_state & HLS_UP) {
10310         case HLS_UP_INIT:
10311                 return IB_PORT_INIT;
10312         case HLS_UP_ARMED:
10313                 return IB_PORT_ARMED;
10314         case HLS_UP_ACTIVE:
10315                 return IB_PORT_ACTIVE;
10316         default:
10317                 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10318                            ppd->host_link_state);
10319         return -1;
10320         }
10321 }
10322
10323 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10324                           u8 neigh_reason, u8 rem_reason)
10325 {
10326         if (ppd->local_link_down_reason.latest == 0 &&
10327             ppd->neigh_link_down_reason.latest == 0) {
10328                 ppd->local_link_down_reason.latest = lcl_reason;
10329                 ppd->neigh_link_down_reason.latest = neigh_reason;
10330                 ppd->remote_link_down_reason = rem_reason;
10331         }
10332 }
10333
10334 /*
10335  * Change the physical and/or logical link state.
10336  *
10337  * Do not call this routine while inside an interrupt.  It contains
10338  * calls to routines that can take multiple seconds to finish.
10339  *
10340  * Returns 0 on success, -errno on failure.
10341  */
10342 int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10343 {
10344         struct hfi1_devdata *dd = ppd->dd;
10345         struct ib_event event = {.device = NULL};
10346         int ret1, ret = 0;
10347         int orig_new_state, poll_bounce;
10348
10349         mutex_lock(&ppd->hls_lock);
10350
10351         orig_new_state = state;
10352         if (state == HLS_DN_DOWNDEF)
10353                 state = dd->link_default;
10354
10355         /* interpret poll -> poll as a link bounce */
10356         poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10357                       state == HLS_DN_POLL;
10358
10359         dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10360                     link_state_name(ppd->host_link_state),
10361                     link_state_name(orig_new_state),
10362                     poll_bounce ? "(bounce) " : "",
10363                     link_state_reason_name(ppd, state));
10364
10365         /*
10366          * If we're going to a (HLS_*) link state that implies the logical
10367          * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10368          * reset is_sm_config_started to 0.
10369          */
10370         if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10371                 ppd->is_sm_config_started = 0;
10372
10373         /*
10374          * Do nothing if the states match.  Let a poll to poll link bounce
10375          * go through.
10376          */
10377         if (ppd->host_link_state == state && !poll_bounce)
10378                 goto done;
10379
10380         switch (state) {
10381         case HLS_UP_INIT:
10382                 if (ppd->host_link_state == HLS_DN_POLL &&
10383                     (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10384                         /*
10385                          * Quick link up jumps from polling to here.
10386                          *
10387                          * Whether in normal or loopback mode, the
10388                          * simulator jumps from polling to link up.
10389                          * Accept that here.
10390                          */
10391                         /* OK */
10392                 } else if (ppd->host_link_state != HLS_GOING_UP) {
10393                         goto unexpected;
10394                 }
10395
10396                 ppd->host_link_state = HLS_UP_INIT;
10397                 ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10398                 if (ret) {
10399                         /* logical state didn't change, stay at going_up */
10400                         ppd->host_link_state = HLS_GOING_UP;
10401                         dd_dev_err(dd,
10402                                    "%s: logical state did not change to INIT\n",
10403                                    __func__);
10404                 } else {
10405                         /* clear old transient LINKINIT_REASON code */
10406                         if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10407                                 ppd->linkinit_reason =
10408                                         OPA_LINKINIT_REASON_LINKUP;
10409
10410                         /* enable the port */
10411                         add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10412
10413                         handle_linkup_change(dd, 1);
10414                 }
10415                 break;
10416         case HLS_UP_ARMED:
10417                 if (ppd->host_link_state != HLS_UP_INIT)
10418                         goto unexpected;
10419
10420                 ppd->host_link_state = HLS_UP_ARMED;
10421                 set_logical_state(dd, LSTATE_ARMED);
10422                 ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10423                 if (ret) {
10424                         /* logical state didn't change, stay at init */
10425                         ppd->host_link_state = HLS_UP_INIT;
10426                         dd_dev_err(dd,
10427                                    "%s: logical state did not change to ARMED\n",
10428                                    __func__);
10429                 }
10430                 /*
10431                  * The simulator does not currently implement SMA messages,
10432                  * so neighbor_normal is not set.  Set it here when we first
10433                  * move to Armed.
10434                  */
10435                 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10436                         ppd->neighbor_normal = 1;
10437                 break;
10438         case HLS_UP_ACTIVE:
10439                 if (ppd->host_link_state != HLS_UP_ARMED)
10440                         goto unexpected;
10441
10442                 ppd->host_link_state = HLS_UP_ACTIVE;
10443                 set_logical_state(dd, LSTATE_ACTIVE);
10444                 ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10445                 if (ret) {
10446                         /* logical state didn't change, stay at armed */
10447                         ppd->host_link_state = HLS_UP_ARMED;
10448                         dd_dev_err(dd,
10449                                    "%s: logical state did not change to ACTIVE\n",
10450                                    __func__);
10451                 } else {
10452                         /* tell all engines to go running */
10453                         sdma_all_running(dd);
10454
10455                         /* Signal the IB layer that the port has went active */
10456                         event.device = &dd->verbs_dev.rdi.ibdev;
10457                         event.element.port_num = ppd->port;
10458                         event.event = IB_EVENT_PORT_ACTIVE;
10459                 }
10460                 break;
10461         case HLS_DN_POLL:
10462                 if ((ppd->host_link_state == HLS_DN_DISABLE ||
10463                      ppd->host_link_state == HLS_DN_OFFLINE) &&
10464                     dd->dc_shutdown)
10465                         dc_start(dd);
10466                 /* Hand LED control to the DC */
10467                 write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10468
10469                 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10470                         u8 tmp = ppd->link_enabled;
10471
10472                         ret = goto_offline(ppd, ppd->remote_link_down_reason);
10473                         if (ret) {
10474                                 ppd->link_enabled = tmp;
10475                                 break;
10476                         }
10477                         ppd->remote_link_down_reason = 0;
10478
10479                         if (ppd->driver_link_ready)
10480                                 ppd->link_enabled = 1;
10481                 }
10482
10483                 set_all_slowpath(ppd->dd);
10484                 ret = set_local_link_attributes(ppd);
10485                 if (ret)
10486                         break;
10487
10488                 ppd->port_error_action = 0;
10489                 ppd->host_link_state = HLS_DN_POLL;
10490
10491                 if (quick_linkup) {
10492                         /* quick linkup does not go into polling */
10493                         ret = do_quick_linkup(dd);
10494                 } else {
10495                         ret1 = set_physical_link_state(dd, PLS_POLLING);
10496                         if (ret1 != HCMD_SUCCESS) {
10497                                 dd_dev_err(dd,
10498                                            "Failed to transition to Polling link state, return 0x%x\n",
10499                                            ret1);
10500                                 ret = -EINVAL;
10501                         }
10502                 }
10503                 ppd->offline_disabled_reason =
10504                         HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10505                 /*
10506                  * If an error occurred above, go back to offline.  The
10507                  * caller may reschedule another attempt.
10508                  */
10509                 if (ret)
10510                         goto_offline(ppd, 0);
10511                 break;
10512         case HLS_DN_DISABLE:
10513                 /* link is disabled */
10514                 ppd->link_enabled = 0;
10515
10516                 /* allow any state to transition to disabled */
10517
10518                 /* must transition to offline first */
10519                 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10520                         ret = goto_offline(ppd, ppd->remote_link_down_reason);
10521                         if (ret)
10522                                 break;
10523                         ppd->remote_link_down_reason = 0;
10524                 }
10525
10526                 ret1 = set_physical_link_state(dd, PLS_DISABLED);
10527                 if (ret1 != HCMD_SUCCESS) {
10528                         dd_dev_err(dd,
10529                                    "Failed to transition to Disabled link state, return 0x%x\n",
10530                                    ret1);
10531                         ret = -EINVAL;
10532                         break;
10533                 }
10534                 ppd->host_link_state = HLS_DN_DISABLE;
10535                 dc_shutdown(dd);
10536                 break;
10537         case HLS_DN_OFFLINE:
10538                 if (ppd->host_link_state == HLS_DN_DISABLE)
10539                         dc_start(dd);
10540
10541                 /* allow any state to transition to offline */
10542                 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10543                 if (!ret)
10544                         ppd->remote_link_down_reason = 0;
10545                 break;
10546         case HLS_VERIFY_CAP:
10547                 if (ppd->host_link_state != HLS_DN_POLL)
10548                         goto unexpected;
10549                 ppd->host_link_state = HLS_VERIFY_CAP;
10550                 break;
10551         case HLS_GOING_UP:
10552                 if (ppd->host_link_state != HLS_VERIFY_CAP)
10553                         goto unexpected;
10554
10555                 ret1 = set_physical_link_state(dd, PLS_LINKUP);
10556                 if (ret1 != HCMD_SUCCESS) {
10557                         dd_dev_err(dd,
10558                                    "Failed to transition to link up state, return 0x%x\n",
10559                                    ret1);
10560                         ret = -EINVAL;
10561                         break;
10562                 }
10563                 ppd->host_link_state = HLS_GOING_UP;
10564                 break;
10565
10566         case HLS_GOING_OFFLINE:         /* transient within goto_offline() */
10567         case HLS_LINK_COOLDOWN:         /* transient within goto_offline() */
10568         default:
10569                 dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10570                             __func__, state);
10571                 ret = -EINVAL;
10572                 break;
10573         }
10574
10575         goto done;
10576
10577 unexpected:
10578         dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10579                    __func__, link_state_name(ppd->host_link_state),
10580                    link_state_name(state));
10581         ret = -EINVAL;
10582
10583 done:
10584         mutex_unlock(&ppd->hls_lock);
10585
10586         if (event.device)
10587                 ib_dispatch_event(&event);
10588
10589         return ret;
10590 }
10591
10592 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10593 {
10594         u64 reg;
10595         int ret = 0;
10596
10597         switch (which) {
10598         case HFI1_IB_CFG_LIDLMC:
10599                 set_lidlmc(ppd);
10600                 break;
10601         case HFI1_IB_CFG_VL_HIGH_LIMIT:
10602                 /*
10603                  * The VL Arbitrator high limit is sent in units of 4k
10604                  * bytes, while HFI stores it in units of 64 bytes.
10605                  */
10606                 val *= 4096 / 64;
10607                 reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10608                         << SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10609                 write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10610                 break;
10611         case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10612                 /* HFI only supports POLL as the default link down state */
10613                 if (val != HLS_DN_POLL)
10614                         ret = -EINVAL;
10615                 break;
10616         case HFI1_IB_CFG_OP_VLS:
10617                 if (ppd->vls_operational != val) {
10618                         ppd->vls_operational = val;
10619                         if (!ppd->port)
10620                                 ret = -EINVAL;
10621                 }
10622                 break;
10623         /*
10624          * For link width, link width downgrade, and speed enable, always AND
10625          * the setting with what is actually supported.  This has two benefits.
10626          * First, enabled can't have unsupported values, no matter what the
10627          * SM or FM might want.  Second, the ALL_SUPPORTED wildcards that mean
10628          * "fill in with your supported value" have all the bits in the
10629          * field set, so simply ANDing with supported has the desired result.
10630          */
10631         case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10632                 ppd->link_width_enabled = val & ppd->link_width_supported;
10633                 break;
10634         case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10635                 ppd->link_width_downgrade_enabled =
10636                                 val & ppd->link_width_downgrade_supported;
10637                 break;
10638         case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10639                 ppd->link_speed_enabled = val & ppd->link_speed_supported;
10640                 break;
10641         case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10642                 /*
10643                  * HFI does not follow IB specs, save this value
10644                  * so we can report it, if asked.
10645                  */
10646                 ppd->overrun_threshold = val;
10647                 break;
10648         case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10649                 /*
10650                  * HFI does not follow IB specs, save this value
10651                  * so we can report it, if asked.
10652                  */
10653                 ppd->phy_error_threshold = val;
10654                 break;
10655
10656         case HFI1_IB_CFG_MTU:
10657                 set_send_length(ppd);
10658                 break;
10659
10660         case HFI1_IB_CFG_PKEYS:
10661                 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10662                         set_partition_keys(ppd);
10663                 break;
10664
10665         default:
10666                 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10667                         dd_dev_info(ppd->dd,
10668                                     "%s: which %s, val 0x%x: not implemented\n",
10669                                     __func__, ib_cfg_name(which), val);
10670                 break;
10671         }
10672         return ret;
10673 }
10674
10675 /* begin functions related to vl arbitration table caching */
10676 static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
10677 {
10678         int i;
10679
10680         BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10681                         VL_ARB_LOW_PRIO_TABLE_SIZE);
10682         BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10683                         VL_ARB_HIGH_PRIO_TABLE_SIZE);
10684
10685         /*
10686          * Note that we always return values directly from the
10687          * 'vl_arb_cache' (and do no CSR reads) in response to a
10688          * 'Get(VLArbTable)'. This is obviously correct after a
10689          * 'Set(VLArbTable)', since the cache will then be up to
10690          * date. But it's also correct prior to any 'Set(VLArbTable)'
10691          * since then both the cache, and the relevant h/w registers
10692          * will be zeroed.
10693          */
10694
10695         for (i = 0; i < MAX_PRIO_TABLE; i++)
10696                 spin_lock_init(&ppd->vl_arb_cache[i].lock);
10697 }
10698
10699 /*
10700  * vl_arb_lock_cache
10701  *
10702  * All other vl_arb_* functions should be called only after locking
10703  * the cache.
10704  */
10705 static inline struct vl_arb_cache *
10706 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
10707 {
10708         if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
10709                 return NULL;
10710         spin_lock(&ppd->vl_arb_cache[idx].lock);
10711         return &ppd->vl_arb_cache[idx];
10712 }
10713
10714 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
10715 {
10716         spin_unlock(&ppd->vl_arb_cache[idx].lock);
10717 }
10718
10719 static void vl_arb_get_cache(struct vl_arb_cache *cache,
10720                              struct ib_vl_weight_elem *vl)
10721 {
10722         memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
10723 }
10724
10725 static void vl_arb_set_cache(struct vl_arb_cache *cache,
10726                              struct ib_vl_weight_elem *vl)
10727 {
10728         memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10729 }
10730
10731 static int vl_arb_match_cache(struct vl_arb_cache *cache,
10732                               struct ib_vl_weight_elem *vl)
10733 {
10734         return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10735 }
10736
10737 /* end functions related to vl arbitration table caching */
10738
10739 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
10740                           u32 size, struct ib_vl_weight_elem *vl)
10741 {
10742         struct hfi1_devdata *dd = ppd->dd;
10743         u64 reg;
10744         unsigned int i, is_up = 0;
10745         int drain, ret = 0;
10746
10747         mutex_lock(&ppd->hls_lock);
10748
10749         if (ppd->host_link_state & HLS_UP)
10750                 is_up = 1;
10751
10752         drain = !is_ax(dd) && is_up;
10753
10754         if (drain)
10755                 /*
10756                  * Before adjusting VL arbitration weights, empty per-VL
10757                  * FIFOs, otherwise a packet whose VL weight is being
10758                  * set to 0 could get stuck in a FIFO with no chance to
10759                  * egress.
10760                  */
10761                 ret = stop_drain_data_vls(dd);
10762
10763         if (ret) {
10764                 dd_dev_err(
10765                         dd,
10766                         "%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
10767                         __func__);
10768                 goto err;
10769         }
10770
10771         for (i = 0; i < size; i++, vl++) {
10772                 /*
10773                  * NOTE: The low priority shift and mask are used here, but
10774                  * they are the same for both the low and high registers.
10775                  */
10776                 reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
10777                                 << SEND_LOW_PRIORITY_LIST_VL_SHIFT)
10778                       | (((u64)vl->weight
10779                                 & SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
10780                                 << SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
10781                 write_csr(dd, target + (i * 8), reg);
10782         }
10783         pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
10784
10785         if (drain)
10786                 open_fill_data_vls(dd); /* reopen all VLs */
10787
10788 err:
10789         mutex_unlock(&ppd->hls_lock);
10790
10791         return ret;
10792 }
10793
10794 /*
10795  * Read one credit merge VL register.
10796  */
10797 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
10798                            struct vl_limit *vll)
10799 {
10800         u64 reg = read_csr(dd, csr);
10801
10802         vll->dedicated = cpu_to_be16(
10803                 (reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
10804                 & SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
10805         vll->shared = cpu_to_be16(
10806                 (reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
10807                 & SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
10808 }
10809
10810 /*
10811  * Read the current credit merge limits.
10812  */
10813 static int get_buffer_control(struct hfi1_devdata *dd,
10814                               struct buffer_control *bc, u16 *overall_limit)
10815 {
10816         u64 reg;
10817         int i;
10818
10819         /* not all entries are filled in */
10820         memset(bc, 0, sizeof(*bc));
10821
10822         /* OPA and HFI have a 1-1 mapping */
10823         for (i = 0; i < TXE_NUM_DATA_VL; i++)
10824                 read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
10825
10826         /* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
10827         read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
10828
10829         reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10830         bc->overall_shared_limit = cpu_to_be16(
10831                 (reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
10832                 & SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
10833         if (overall_limit)
10834                 *overall_limit = (reg
10835                         >> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
10836                         & SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
10837         return sizeof(struct buffer_control);
10838 }
10839
10840 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
10841 {
10842         u64 reg;
10843         int i;
10844
10845         /* each register contains 16 SC->VLnt mappings, 4 bits each */
10846         reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
10847         for (i = 0; i < sizeof(u64); i++) {
10848                 u8 byte = *(((u8 *)&reg) + i);
10849
10850                 dp->vlnt[2 * i] = byte & 0xf;
10851                 dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
10852         }
10853
10854         reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
10855         for (i = 0; i < sizeof(u64); i++) {
10856                 u8 byte = *(((u8 *)&reg) + i);
10857
10858                 dp->vlnt[16 + (2 * i)] = byte & 0xf;
10859                 dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
10860         }
10861         return sizeof(struct sc2vlnt);
10862 }
10863
10864 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
10865                               struct ib_vl_weight_elem *vl)
10866 {
10867         unsigned int i;
10868
10869         for (i = 0; i < nelems; i++, vl++) {
10870                 vl->vl = 0xf;
10871                 vl->weight = 0;
10872         }
10873 }
10874
10875 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
10876 {
10877         write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
10878                   DC_SC_VL_VAL(15_0,
10879                                0, dp->vlnt[0] & 0xf,
10880                                1, dp->vlnt[1] & 0xf,
10881                                2, dp->vlnt[2] & 0xf,
10882                                3, dp->vlnt[3] & 0xf,
10883                                4, dp->vlnt[4] & 0xf,
10884                                5, dp->vlnt[5] & 0xf,
10885                                6, dp->vlnt[6] & 0xf,
10886                                7, dp->vlnt[7] & 0xf,
10887                                8, dp->vlnt[8] & 0xf,
10888                                9, dp->vlnt[9] & 0xf,
10889                                10, dp->vlnt[10] & 0xf,
10890                                11, dp->vlnt[11] & 0xf,
10891                                12, dp->vlnt[12] & 0xf,
10892                                13, dp->vlnt[13] & 0xf,
10893                                14, dp->vlnt[14] & 0xf,
10894                                15, dp->vlnt[15] & 0xf));
10895         write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
10896                   DC_SC_VL_VAL(31_16,
10897                                16, dp->vlnt[16] & 0xf,
10898                                17, dp->vlnt[17] & 0xf,
10899                                18, dp->vlnt[18] & 0xf,
10900                                19, dp->vlnt[19] & 0xf,
10901                                20, dp->vlnt[20] & 0xf,
10902                                21, dp->vlnt[21] & 0xf,
10903                                22, dp->vlnt[22] & 0xf,
10904                                23, dp->vlnt[23] & 0xf,
10905                                24, dp->vlnt[24] & 0xf,
10906                                25, dp->vlnt[25] & 0xf,
10907                                26, dp->vlnt[26] & 0xf,
10908                                27, dp->vlnt[27] & 0xf,
10909                                28, dp->vlnt[28] & 0xf,
10910                                29, dp->vlnt[29] & 0xf,
10911                                30, dp->vlnt[30] & 0xf,
10912                                31, dp->vlnt[31] & 0xf));
10913 }
10914
10915 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
10916                         u16 limit)
10917 {
10918         if (limit != 0)
10919                 dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
10920                             what, (int)limit, idx);
10921 }
10922
10923 /* change only the shared limit portion of SendCmGLobalCredit */
10924 static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
10925 {
10926         u64 reg;
10927
10928         reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10929         reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
10930         reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
10931         write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
10932 }
10933
10934 /* change only the total credit limit portion of SendCmGLobalCredit */
10935 static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
10936 {
10937         u64 reg;
10938
10939         reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10940         reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
10941         reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
10942         write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
10943 }
10944
10945 /* set the given per-VL shared limit */
10946 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
10947 {
10948         u64 reg;
10949         u32 addr;
10950
10951         if (vl < TXE_NUM_DATA_VL)
10952                 addr = SEND_CM_CREDIT_VL + (8 * vl);
10953         else
10954                 addr = SEND_CM_CREDIT_VL15;
10955
10956         reg = read_csr(dd, addr);
10957         reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
10958         reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
10959         write_csr(dd, addr, reg);
10960 }
10961
10962 /* set the given per-VL dedicated limit */
10963 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
10964 {
10965         u64 reg;
10966         u32 addr;
10967
10968         if (vl < TXE_NUM_DATA_VL)
10969                 addr = SEND_CM_CREDIT_VL + (8 * vl);
10970         else
10971                 addr = SEND_CM_CREDIT_VL15;
10972
10973         reg = read_csr(dd, addr);
10974         reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
10975         reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
10976         write_csr(dd, addr, reg);
10977 }
10978
10979 /* spin until the given per-VL status mask bits clear */
10980 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
10981                                      const char *which)
10982 {
10983         unsigned long timeout;
10984         u64 reg;
10985
10986         timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
10987         while (1) {
10988                 reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
10989
10990                 if (reg == 0)
10991                         return; /* success */
10992                 if (time_after(jiffies, timeout))
10993                         break;          /* timed out */
10994                 udelay(1);
10995         }
10996
10997         dd_dev_err(dd,
10998                    "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
10999                    which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
11000         /*
11001          * If this occurs, it is likely there was a credit loss on the link.
11002          * The only recovery from that is a link bounce.
11003          */
11004         dd_dev_err(dd,
11005                    "Continuing anyway.  A credit loss may occur.  Suggest a link bounce\n");
11006 }
11007
11008 /*
11009  * The number of credits on the VLs may be changed while everything
11010  * is "live", but the following algorithm must be followed due to
11011  * how the hardware is actually implemented.  In particular,
11012  * Return_Credit_Status[] is the only correct status check.
11013  *
11014  * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11015  *     set Global_Shared_Credit_Limit = 0
11016  *     use_all_vl = 1
11017  * mask0 = all VLs that are changing either dedicated or shared limits
11018  * set Shared_Limit[mask0] = 0
11019  * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11020  * if (changing any dedicated limit)
11021  *     mask1 = all VLs that are lowering dedicated limits
11022  *     lower Dedicated_Limit[mask1]
11023  *     spin until Return_Credit_Status[mask1] == 0
11024  *     raise Dedicated_Limits
11025  * raise Shared_Limits
11026  * raise Global_Shared_Credit_Limit
11027  *
11028  * lower = if the new limit is lower, set the limit to the new value
11029  * raise = if the new limit is higher than the current value (may be changed
11030  *      earlier in the algorithm), set the new limit to the new value
11031  */
11032 int set_buffer_control(struct hfi1_pportdata *ppd,
11033                        struct buffer_control *new_bc)
11034 {
11035         struct hfi1_devdata *dd = ppd->dd;
11036         u64 changing_mask, ld_mask, stat_mask;
11037         int change_count;
11038         int i, use_all_mask;
11039         int this_shared_changing;
11040         int vl_count = 0, ret;
11041         /*
11042          * A0: add the variable any_shared_limit_changing below and in the
11043          * algorithm above.  If removing A0 support, it can be removed.
11044          */
11045         int any_shared_limit_changing;
11046         struct buffer_control cur_bc;
11047         u8 changing[OPA_MAX_VLS];
11048         u8 lowering_dedicated[OPA_MAX_VLS];
11049         u16 cur_total;
11050         u32 new_total = 0;
11051         const u64 all_mask =
11052         SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11053          | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11054          | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11055          | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11056          | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11057          | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11058          | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11059          | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11060          | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11061
11062 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11063 #define NUM_USABLE_VLS 16       /* look at VL15 and less */
11064
11065         /* find the new total credits, do sanity check on unused VLs */
11066         for (i = 0; i < OPA_MAX_VLS; i++) {
11067                 if (valid_vl(i)) {
11068                         new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11069                         continue;
11070                 }
11071                 nonzero_msg(dd, i, "dedicated",
11072                             be16_to_cpu(new_bc->vl[i].dedicated));
11073                 nonzero_msg(dd, i, "shared",
11074                             be16_to_cpu(new_bc->vl[i].shared));
11075                 new_bc->vl[i].dedicated = 0;
11076                 new_bc->vl[i].shared = 0;
11077         }
11078         new_total += be16_to_cpu(new_bc->overall_shared_limit);
11079
11080         /* fetch the current values */
11081         get_buffer_control(dd, &cur_bc, &cur_total);
11082
11083         /*
11084          * Create the masks we will use.
11085          */
11086         memset(changing, 0, sizeof(changing));
11087         memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11088         /*
11089          * NOTE: Assumes that the individual VL bits are adjacent and in
11090          * increasing order
11091          */
11092         stat_mask =
11093                 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11094         changing_mask = 0;
11095         ld_mask = 0;
11096         change_count = 0;
11097         any_shared_limit_changing = 0;
11098         for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11099                 if (!valid_vl(i))
11100                         continue;
11101                 this_shared_changing = new_bc->vl[i].shared
11102                                                 != cur_bc.vl[i].shared;
11103                 if (this_shared_changing)
11104                         any_shared_limit_changing = 1;
11105                 if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11106                     this_shared_changing) {
11107                         changing[i] = 1;
11108                         changing_mask |= stat_mask;
11109                         change_count++;
11110                 }
11111                 if (be16_to_cpu(new_bc->vl[i].dedicated) <
11112                                         be16_to_cpu(cur_bc.vl[i].dedicated)) {
11113                         lowering_dedicated[i] = 1;
11114                         ld_mask |= stat_mask;
11115                 }
11116         }
11117
11118         /* bracket the credit change with a total adjustment */
11119         if (new_total > cur_total)
11120                 set_global_limit(dd, new_total);
11121
11122         /*
11123          * Start the credit change algorithm.
11124          */
11125         use_all_mask = 0;
11126         if ((be16_to_cpu(new_bc->overall_shared_limit) <
11127              be16_to_cpu(cur_bc.overall_shared_limit)) ||
11128             (is_ax(dd) && any_shared_limit_changing)) {
11129                 set_global_shared(dd, 0);
11130                 cur_bc.overall_shared_limit = 0;
11131                 use_all_mask = 1;
11132         }
11133
11134         for (i = 0; i < NUM_USABLE_VLS; i++) {
11135                 if (!valid_vl(i))
11136                         continue;
11137
11138                 if (changing[i]) {
11139                         set_vl_shared(dd, i, 0);
11140                         cur_bc.vl[i].shared = 0;
11141                 }
11142         }
11143
11144         wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11145                                  "shared");
11146
11147         if (change_count > 0) {
11148                 for (i = 0; i < NUM_USABLE_VLS; i++) {
11149                         if (!valid_vl(i))
11150                                 continue;
11151
11152                         if (lowering_dedicated[i]) {
11153                                 set_vl_dedicated(dd, i,
11154                                                  be16_to_cpu(new_bc->
11155                                                              vl[i].dedicated));
11156                                 cur_bc.vl[i].dedicated =
11157                                                 new_bc->vl[i].dedicated;
11158                         }
11159                 }
11160
11161                 wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11162
11163                 /* now raise all dedicated that are going up */
11164                 for (i = 0; i < NUM_USABLE_VLS; i++) {
11165                         if (!valid_vl(i))
11166                                 continue;
11167
11168                         if (be16_to_cpu(new_bc->vl[i].dedicated) >
11169                                         be16_to_cpu(cur_bc.vl[i].dedicated))
11170                                 set_vl_dedicated(dd, i,
11171                                                  be16_to_cpu(new_bc->
11172                                                              vl[i].dedicated));
11173                 }
11174         }
11175
11176         /* next raise all shared that are going up */
11177         for (i = 0; i < NUM_USABLE_VLS; i++) {
11178                 if (!valid_vl(i))
11179                         continue;
11180
11181                 if (be16_to_cpu(new_bc->vl[i].shared) >
11182                                 be16_to_cpu(cur_bc.vl[i].shared))
11183                         set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11184         }
11185
11186         /* finally raise the global shared */
11187         if (be16_to_cpu(new_bc->overall_shared_limit) >
11188             be16_to_cpu(cur_bc.overall_shared_limit))
11189                 set_global_shared(dd,
11190                                   be16_to_cpu(new_bc->overall_shared_limit));
11191
11192         /* bracket the credit change with a total adjustment */
11193         if (new_total < cur_total)
11194                 set_global_limit(dd, new_total);
11195
11196         /*
11197          * Determine the actual number of operational VLS using the number of
11198          * dedicated and shared credits for each VL.
11199          */
11200         if (change_count > 0) {
11201                 for (i = 0; i < TXE_NUM_DATA_VL; i++)
11202                         if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11203                             be16_to_cpu(new_bc->vl[i].shared) > 0)
11204                                 vl_count++;
11205                 ppd->actual_vls_operational = vl_count;
11206                 ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11207                                     ppd->actual_vls_operational :
11208                                     ppd->vls_operational,
11209                                     NULL);
11210                 if (ret == 0)
11211                         ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11212                                            ppd->actual_vls_operational :
11213                                            ppd->vls_operational, NULL);
11214                 if (ret)
11215                         return ret;
11216         }
11217         return 0;
11218 }
11219
11220 /*
11221  * Read the given fabric manager table. Return the size of the
11222  * table (in bytes) on success, and a negative error code on
11223  * failure.
11224  */
11225 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11226
11227 {
11228         int size;
11229         struct vl_arb_cache *vlc;
11230
11231         switch (which) {
11232         case FM_TBL_VL_HIGH_ARB:
11233                 size = 256;
11234                 /*
11235                  * OPA specifies 128 elements (of 2 bytes each), though
11236                  * HFI supports only 16 elements in h/w.
11237                  */
11238                 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11239                 vl_arb_get_cache(vlc, t);
11240                 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11241                 break;
11242         case FM_TBL_VL_LOW_ARB:
11243                 size = 256;
11244                 /*
11245                  * OPA specifies 128 elements (of 2 bytes each), though
11246                  * HFI supports only 16 elements in h/w.
11247                  */
11248                 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11249                 vl_arb_get_cache(vlc, t);
11250                 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11251                 break;
11252         case FM_TBL_BUFFER_CONTROL:
11253                 size = get_buffer_control(ppd->dd, t, NULL);
11254                 break;
11255         case FM_TBL_SC2VLNT:
11256                 size = get_sc2vlnt(ppd->dd, t);
11257                 break;
11258         case FM_TBL_VL_PREEMPT_ELEMS:
11259                 size = 256;
11260                 /* OPA specifies 128 elements, of 2 bytes each */
11261                 get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11262                 break;
11263         case FM_TBL_VL_PREEMPT_MATRIX:
11264                 size = 256;
11265                 /*
11266                  * OPA specifies that this is the same size as the VL
11267                  * arbitration tables (i.e., 256 bytes).
11268                  */
11269                 break;
11270         default:
11271                 return -EINVAL;
11272         }
11273         return size;
11274 }
11275
11276 /*
11277  * Write the given fabric manager table.
11278  */
11279 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11280 {
11281         int ret = 0;
11282         struct vl_arb_cache *vlc;
11283
11284         switch (which) {
11285         case FM_TBL_VL_HIGH_ARB:
11286                 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11287                 if (vl_arb_match_cache(vlc, t)) {
11288                         vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11289                         break;
11290                 }
11291                 vl_arb_set_cache(vlc, t);
11292                 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11293                 ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11294                                      VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11295                 break;
11296         case FM_TBL_VL_LOW_ARB:
11297                 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11298                 if (vl_arb_match_cache(vlc, t)) {
11299                         vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11300                         break;
11301                 }
11302                 vl_arb_set_cache(vlc, t);
11303                 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11304                 ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11305                                      VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11306                 break;
11307         case FM_TBL_BUFFER_CONTROL:
11308                 ret = set_buffer_control(ppd, t);
11309                 break;
11310         case FM_TBL_SC2VLNT:
11311                 set_sc2vlnt(ppd->dd, t);
11312                 break;
11313         default:
11314                 ret = -EINVAL;
11315         }
11316         return ret;
11317 }
11318
11319 /*
11320  * Disable all data VLs.
11321  *
11322  * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11323  */
11324 static int disable_data_vls(struct hfi1_devdata *dd)
11325 {
11326         if (is_ax(dd))
11327                 return 1;
11328
11329         pio_send_control(dd, PSC_DATA_VL_DISABLE);
11330
11331         return 0;
11332 }
11333
11334 /*
11335  * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11336  * Just re-enables all data VLs (the "fill" part happens
11337  * automatically - the name was chosen for symmetry with
11338  * stop_drain_data_vls()).
11339  *
11340  * Return 0 if successful, non-zero if the VLs cannot be enabled.
11341  */
11342 int open_fill_data_vls(struct hfi1_devdata *dd)
11343 {
11344         if (is_ax(dd))
11345                 return 1;
11346
11347         pio_send_control(dd, PSC_DATA_VL_ENABLE);
11348
11349         return 0;
11350 }
11351
11352 /*
11353  * drain_data_vls() - assumes that disable_data_vls() has been called,
11354  * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11355  * engines to drop to 0.
11356  */
11357 static void drain_data_vls(struct hfi1_devdata *dd)
11358 {
11359         sc_wait(dd);
11360         sdma_wait(dd);
11361         pause_for_credit_return(dd);
11362 }
11363
11364 /*
11365  * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11366  *
11367  * Use open_fill_data_vls() to resume using data VLs.  This pair is
11368  * meant to be used like this:
11369  *
11370  * stop_drain_data_vls(dd);
11371  * // do things with per-VL resources
11372  * open_fill_data_vls(dd);
11373  */
11374 int stop_drain_data_vls(struct hfi1_devdata *dd)
11375 {
11376         int ret;
11377
11378         ret = disable_data_vls(dd);
11379         if (ret == 0)
11380                 drain_data_vls(dd);
11381
11382         return ret;
11383 }
11384
11385 /*
11386  * Convert a nanosecond time to a cclock count.  No matter how slow
11387  * the cclock, a non-zero ns will always have a non-zero result.
11388  */
11389 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11390 {
11391         u32 cclocks;
11392
11393         if (dd->icode == ICODE_FPGA_EMULATION)
11394                 cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11395         else  /* simulation pretends to be ASIC */
11396                 cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11397         if (ns && !cclocks)     /* if ns nonzero, must be at least 1 */
11398                 cclocks = 1;
11399         return cclocks;
11400 }
11401
11402 /*
11403  * Convert a cclock count to nanoseconds. Not matter how slow
11404  * the cclock, a non-zero cclocks will always have a non-zero result.
11405  */
11406 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11407 {
11408         u32 ns;
11409
11410         if (dd->icode == ICODE_FPGA_EMULATION)
11411                 ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11412         else  /* simulation pretends to be ASIC */
11413                 ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11414         if (cclocks && !ns)
11415                 ns = 1;
11416         return ns;
11417 }
11418
11419 /*
11420  * Dynamically adjust the receive interrupt timeout for a context based on
11421  * incoming packet rate.
11422  *
11423  * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11424  */
11425 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11426 {
11427         struct hfi1_devdata *dd = rcd->dd;
11428         u32 timeout = rcd->rcvavail_timeout;
11429
11430         /*
11431          * This algorithm doubles or halves the timeout depending on whether
11432          * the number of packets received in this interrupt were less than or
11433          * greater equal the interrupt count.
11434          *
11435          * The calculations below do not allow a steady state to be achieved.
11436          * Only at the endpoints it is possible to have an unchanging
11437          * timeout.
11438          */
11439         if (npkts < rcv_intr_count) {
11440                 /*
11441                  * Not enough packets arrived before the timeout, adjust
11442                  * timeout downward.
11443                  */
11444                 if (timeout < 2) /* already at minimum? */
11445                         return;
11446                 timeout >>= 1;
11447         } else {
11448                 /*
11449                  * More than enough packets arrived before the timeout, adjust
11450                  * timeout upward.
11451                  */
11452                 if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11453                         return;
11454                 timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11455         }
11456
11457         rcd->rcvavail_timeout = timeout;
11458         /*
11459          * timeout cannot be larger than rcv_intr_timeout_csr which has already
11460          * been verified to be in range
11461          */
11462         write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11463                         (u64)timeout <<
11464                         RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11465 }
11466
11467 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11468                     u32 intr_adjust, u32 npkts)
11469 {
11470         struct hfi1_devdata *dd = rcd->dd;
11471         u64 reg;
11472         u32 ctxt = rcd->ctxt;
11473
11474         /*
11475          * Need to write timeout register before updating RcvHdrHead to ensure
11476          * that a new value is used when the HW decides to restart counting.
11477          */
11478         if (intr_adjust)
11479                 adjust_rcv_timeout(rcd, npkts);
11480         if (updegr) {
11481                 reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11482                         << RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11483                 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11484         }
11485         mmiowb();
11486         reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11487                 (((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11488                         << RCV_HDR_HEAD_HEAD_SHIFT);
11489         write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11490         mmiowb();
11491 }
11492
11493 u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11494 {
11495         u32 head, tail;
11496
11497         head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11498                 & RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11499
11500         if (rcd->rcvhdrtail_kvaddr)
11501                 tail = get_rcvhdrtail(rcd);
11502         else
11503                 tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11504
11505         return head == tail;
11506 }
11507
11508 /*
11509  * Context Control and Receive Array encoding for buffer size:
11510  *      0x0 invalid
11511  *      0x1   4 KB
11512  *      0x2   8 KB
11513  *      0x3  16 KB
11514  *      0x4  32 KB
11515  *      0x5  64 KB
11516  *      0x6 128 KB
11517  *      0x7 256 KB
11518  *      0x8 512 KB (Receive Array only)
11519  *      0x9   1 MB (Receive Array only)
11520  *      0xa   2 MB (Receive Array only)
11521  *
11522  *      0xB-0xF - reserved (Receive Array only)
11523  *
11524  *
11525  * This routine assumes that the value has already been sanity checked.
11526  */
11527 static u32 encoded_size(u32 size)
11528 {
11529         switch (size) {
11530         case   4 * 1024: return 0x1;
11531         case   8 * 1024: return 0x2;
11532         case  16 * 1024: return 0x3;
11533         case  32 * 1024: return 0x4;
11534         case  64 * 1024: return 0x5;
11535         case 128 * 1024: return 0x6;
11536         case 256 * 1024: return 0x7;
11537         case 512 * 1024: return 0x8;
11538         case   1 * 1024 * 1024: return 0x9;
11539         case   2 * 1024 * 1024: return 0xa;
11540         }
11541         return 0x1;     /* if invalid, go with the minimum size */
11542 }
11543
11544 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op, int ctxt)
11545 {
11546         struct hfi1_ctxtdata *rcd;
11547         u64 rcvctrl, reg;
11548         int did_enable = 0;
11549
11550         rcd = dd->rcd[ctxt];
11551         if (!rcd)
11552                 return;
11553
11554         hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
11555
11556         rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
11557         /* if the context already enabled, don't do the extra steps */
11558         if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
11559             !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
11560                 /* reset the tail and hdr addresses, and sequence count */
11561                 write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
11562                                 rcd->rcvhdrq_phys);
11563                 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
11564                         write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11565                                         rcd->rcvhdrqtailaddr_phys);
11566                 rcd->seq_cnt = 1;
11567
11568                 /* reset the cached receive header queue head value */
11569                 rcd->head = 0;
11570
11571                 /*
11572                  * Zero the receive header queue so we don't get false
11573                  * positives when checking the sequence number.  The
11574                  * sequence numbers could land exactly on the same spot.
11575                  * E.g. a rcd restart before the receive header wrapped.
11576                  */
11577                 memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size);
11578
11579                 /* starting timeout */
11580                 rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
11581
11582                 /* enable the context */
11583                 rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
11584
11585                 /* clean the egr buffer size first */
11586                 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11587                 rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
11588                                 & RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
11589                                         << RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
11590
11591                 /* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
11592                 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
11593                 did_enable = 1;
11594
11595                 /* zero RcvEgrIndexHead */
11596                 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
11597
11598                 /* set eager count and base index */
11599                 reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
11600                         & RCV_EGR_CTRL_EGR_CNT_MASK)
11601                        << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
11602                         (((rcd->eager_base >> RCV_SHIFT)
11603                           & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
11604                          << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
11605                 write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
11606
11607                 /*
11608                  * Set TID (expected) count and base index.
11609                  * rcd->expected_count is set to individual RcvArray entries,
11610                  * not pairs, and the CSR takes a pair-count in groups of
11611                  * four, so divide by 8.
11612                  */
11613                 reg = (((rcd->expected_count >> RCV_SHIFT)
11614                                         & RCV_TID_CTRL_TID_PAIR_CNT_MASK)
11615                                 << RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
11616                       (((rcd->expected_base >> RCV_SHIFT)
11617                                         & RCV_TID_CTRL_TID_BASE_INDEX_MASK)
11618                                 << RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
11619                 write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
11620                 if (ctxt == HFI1_CTRL_CTXT)
11621                         write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
11622         }
11623         if (op & HFI1_RCVCTRL_CTXT_DIS) {
11624                 write_csr(dd, RCV_VL15, 0);
11625                 /*
11626                  * When receive context is being disabled turn on tail
11627                  * update with a dummy tail address and then disable
11628                  * receive context.
11629                  */
11630                 if (dd->rcvhdrtail_dummy_physaddr) {
11631                         write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11632                                         dd->rcvhdrtail_dummy_physaddr);
11633                         /* Enabling RcvCtxtCtrl.TailUpd is intentional. */
11634                         rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11635                 }
11636
11637                 rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
11638         }
11639         if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
11640                 rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11641         if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
11642                 rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11643         if (op & HFI1_RCVCTRL_TAILUPD_ENB && rcd->rcvhdrqtailaddr_phys)
11644                 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11645         if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
11646                 /* See comment on RcvCtxtCtrl.TailUpd above */
11647                 if (!(op & HFI1_RCVCTRL_CTXT_DIS))
11648                         rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11649         }
11650         if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
11651                 rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11652         if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
11653                 rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11654         if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
11655                 /*
11656                  * In one-packet-per-eager mode, the size comes from
11657                  * the RcvArray entry.
11658                  */
11659                 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11660                 rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11661         }
11662         if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
11663                 rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11664         if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
11665                 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11666         if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
11667                 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11668         if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
11669                 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11670         if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
11671                 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11672         rcd->rcvctrl = rcvctrl;
11673         hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
11674         write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl);
11675
11676         /* work around sticky RcvCtxtStatus.BlockedRHQFull */
11677         if (did_enable &&
11678             (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
11679                 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11680                 if (reg != 0) {
11681                         dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
11682                                     ctxt, reg);
11683                         read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11684                         write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
11685                         write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
11686                         read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11687                         reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11688                         dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
11689                                     ctxt, reg, reg == 0 ? "not" : "still");
11690                 }
11691         }
11692
11693         if (did_enable) {
11694                 /*
11695                  * The interrupt timeout and count must be set after
11696                  * the context is enabled to take effect.
11697                  */
11698                 /* set interrupt timeout */
11699                 write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
11700                                 (u64)rcd->rcvavail_timeout <<
11701                                 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11702
11703                 /* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
11704                 reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
11705                 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11706         }
11707
11708         if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
11709                 /*
11710                  * If the context has been disabled and the Tail Update has
11711                  * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
11712                  * so it doesn't contain an address that is invalid.
11713                  */
11714                 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11715                                 dd->rcvhdrtail_dummy_physaddr);
11716 }
11717
11718 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
11719 {
11720         int ret;
11721         u64 val = 0;
11722
11723         if (namep) {
11724                 ret = dd->cntrnameslen;
11725                 *namep = dd->cntrnames;
11726         } else {
11727                 const struct cntr_entry *entry;
11728                 int i, j;
11729
11730                 ret = (dd->ndevcntrs) * sizeof(u64);
11731
11732                 /* Get the start of the block of counters */
11733                 *cntrp = dd->cntrs;
11734
11735                 /*
11736                  * Now go and fill in each counter in the block.
11737                  */
11738                 for (i = 0; i < DEV_CNTR_LAST; i++) {
11739                         entry = &dev_cntrs[i];
11740                         hfi1_cdbg(CNTR, "reading %s", entry->name);
11741                         if (entry->flags & CNTR_DISABLED) {
11742                                 /* Nothing */
11743                                 hfi1_cdbg(CNTR, "\tDisabled\n");
11744                         } else {
11745                                 if (entry->flags & CNTR_VL) {
11746                                         hfi1_cdbg(CNTR, "\tPer VL\n");
11747                                         for (j = 0; j < C_VL_COUNT; j++) {
11748                                                 val = entry->rw_cntr(entry,
11749                                                                   dd, j,
11750                                                                   CNTR_MODE_R,
11751                                                                   0);
11752                                                 hfi1_cdbg(
11753                                                    CNTR,
11754                                                    "\t\tRead 0x%llx for %d\n",
11755                                                    val, j);
11756                                                 dd->cntrs[entry->offset + j] =
11757                                                                             val;
11758                                         }
11759                                 } else if (entry->flags & CNTR_SDMA) {
11760                                         hfi1_cdbg(CNTR,
11761                                                   "\t Per SDMA Engine\n");
11762                                         for (j = 0; j < dd->chip_sdma_engines;
11763                                              j++) {
11764                                                 val =
11765                                                 entry->rw_cntr(entry, dd, j,
11766                                                                CNTR_MODE_R, 0);
11767                                                 hfi1_cdbg(CNTR,
11768                                                           "\t\tRead 0x%llx for %d\n",
11769                                                           val, j);
11770                                                 dd->cntrs[entry->offset + j] =
11771                                                                         val;
11772                                         }
11773                                 } else {
11774                                         val = entry->rw_cntr(entry, dd,
11775                                                         CNTR_INVALID_VL,
11776                                                         CNTR_MODE_R, 0);
11777                                         dd->cntrs[entry->offset] = val;
11778                                         hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
11779                                 }
11780                         }
11781                 }
11782         }
11783         return ret;
11784 }
11785
11786 /*
11787  * Used by sysfs to create files for hfi stats to read
11788  */
11789 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
11790 {
11791         int ret;
11792         u64 val = 0;
11793
11794         if (namep) {
11795                 ret = ppd->dd->portcntrnameslen;
11796                 *namep = ppd->dd->portcntrnames;
11797         } else {
11798                 const struct cntr_entry *entry;
11799                 int i, j;
11800
11801                 ret = ppd->dd->nportcntrs * sizeof(u64);
11802                 *cntrp = ppd->cntrs;
11803
11804                 for (i = 0; i < PORT_CNTR_LAST; i++) {
11805                         entry = &port_cntrs[i];
11806                         hfi1_cdbg(CNTR, "reading %s", entry->name);
11807                         if (entry->flags & CNTR_DISABLED) {
11808                                 /* Nothing */
11809                                 hfi1_cdbg(CNTR, "\tDisabled\n");
11810                                 continue;
11811                         }
11812
11813                         if (entry->flags & CNTR_VL) {
11814                                 hfi1_cdbg(CNTR, "\tPer VL");
11815                                 for (j = 0; j < C_VL_COUNT; j++) {
11816                                         val = entry->rw_cntr(entry, ppd, j,
11817                                                                CNTR_MODE_R,
11818                                                                0);
11819                                         hfi1_cdbg(
11820                                            CNTR,
11821                                            "\t\tRead 0x%llx for %d",
11822                                            val, j);
11823                                         ppd->cntrs[entry->offset + j] = val;
11824                                 }
11825                         } else {
11826                                 val = entry->rw_cntr(entry, ppd,
11827                                                        CNTR_INVALID_VL,
11828                                                        CNTR_MODE_R,
11829                                                        0);
11830                                 ppd->cntrs[entry->offset] = val;
11831                                 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
11832                         }
11833                 }
11834         }
11835         return ret;
11836 }
11837
11838 static void free_cntrs(struct hfi1_devdata *dd)
11839 {
11840         struct hfi1_pportdata *ppd;
11841         int i;
11842
11843         if (dd->synth_stats_timer.data)
11844                 del_timer_sync(&dd->synth_stats_timer);
11845         dd->synth_stats_timer.data = 0;
11846         ppd = (struct hfi1_pportdata *)(dd + 1);
11847         for (i = 0; i < dd->num_pports; i++, ppd++) {
11848                 kfree(ppd->cntrs);
11849                 kfree(ppd->scntrs);
11850                 free_percpu(ppd->ibport_data.rvp.rc_acks);
11851                 free_percpu(ppd->ibport_data.rvp.rc_qacks);
11852                 free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
11853                 ppd->cntrs = NULL;
11854                 ppd->scntrs = NULL;
11855                 ppd->ibport_data.rvp.rc_acks = NULL;
11856                 ppd->ibport_data.rvp.rc_qacks = NULL;
11857                 ppd->ibport_data.rvp.rc_delayed_comp = NULL;
11858         }
11859         kfree(dd->portcntrnames);
11860         dd->portcntrnames = NULL;
11861         kfree(dd->cntrs);
11862         dd->cntrs = NULL;
11863         kfree(dd->scntrs);
11864         dd->scntrs = NULL;
11865         kfree(dd->cntrnames);
11866         dd->cntrnames = NULL;
11867 }
11868
11869 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
11870                               u64 *psval, void *context, int vl)
11871 {
11872         u64 val;
11873         u64 sval = *psval;
11874
11875         if (entry->flags & CNTR_DISABLED) {
11876                 dd_dev_err(dd, "Counter %s not enabled", entry->name);
11877                 return 0;
11878         }
11879
11880         hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
11881
11882         val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
11883
11884         /* If its a synthetic counter there is more work we need to do */
11885         if (entry->flags & CNTR_SYNTH) {
11886                 if (sval == CNTR_MAX) {
11887                         /* No need to read already saturated */
11888                         return CNTR_MAX;
11889                 }
11890
11891                 if (entry->flags & CNTR_32BIT) {
11892                         /* 32bit counters can wrap multiple times */
11893                         u64 upper = sval >> 32;
11894                         u64 lower = (sval << 32) >> 32;
11895
11896                         if (lower > val) { /* hw wrapped */
11897                                 if (upper == CNTR_32BIT_MAX)
11898                                         val = CNTR_MAX;
11899                                 else
11900                                         upper++;
11901                         }
11902
11903                         if (val != CNTR_MAX)
11904                                 val = (upper << 32) | val;
11905
11906                 } else {
11907                         /* If we rolled we are saturated */
11908                         if ((val < sval) || (val > CNTR_MAX))
11909                                 val = CNTR_MAX;
11910                 }
11911         }
11912
11913         *psval = val;
11914
11915         hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
11916
11917         return val;
11918 }
11919
11920 static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
11921                                struct cntr_entry *entry,
11922                                u64 *psval, void *context, int vl, u64 data)
11923 {
11924         u64 val;
11925
11926         if (entry->flags & CNTR_DISABLED) {
11927                 dd_dev_err(dd, "Counter %s not enabled", entry->name);
11928                 return 0;
11929         }
11930
11931         hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
11932
11933         if (entry->flags & CNTR_SYNTH) {
11934                 *psval = data;
11935                 if (entry->flags & CNTR_32BIT) {
11936                         val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
11937                                              (data << 32) >> 32);
11938                         val = data; /* return the full 64bit value */
11939                 } else {
11940                         val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
11941                                              data);
11942                 }
11943         } else {
11944                 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
11945         }
11946
11947         *psval = val;
11948
11949         hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
11950
11951         return val;
11952 }
11953
11954 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
11955 {
11956         struct cntr_entry *entry;
11957         u64 *sval;
11958
11959         entry = &dev_cntrs[index];
11960         sval = dd->scntrs + entry->offset;
11961
11962         if (vl != CNTR_INVALID_VL)
11963                 sval += vl;
11964
11965         return read_dev_port_cntr(dd, entry, sval, dd, vl);
11966 }
11967
11968 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
11969 {
11970         struct cntr_entry *entry;
11971         u64 *sval;
11972
11973         entry = &dev_cntrs[index];
11974         sval = dd->scntrs + entry->offset;
11975
11976         if (vl != CNTR_INVALID_VL)
11977                 sval += vl;
11978
11979         return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
11980 }
11981
11982 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
11983 {
11984         struct cntr_entry *entry;
11985         u64 *sval;
11986
11987         entry = &port_cntrs[index];
11988         sval = ppd->scntrs + entry->offset;
11989
11990         if (vl != CNTR_INVALID_VL)
11991                 sval += vl;
11992
11993         if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
11994             (index <= C_RCV_HDR_OVF_LAST)) {
11995                 /* We do not want to bother for disabled contexts */
11996                 return 0;
11997         }
11998
11999         return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
12000 }
12001
12002 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
12003 {
12004         struct cntr_entry *entry;
12005         u64 *sval;
12006
12007         entry = &port_cntrs[index];
12008         sval = ppd->scntrs + entry->offset;
12009
12010         if (vl != CNTR_INVALID_VL)
12011                 sval += vl;
12012
12013         if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12014             (index <= C_RCV_HDR_OVF_LAST)) {
12015                 /* We do not want to bother for disabled contexts */
12016                 return 0;
12017         }
12018
12019         return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12020 }
12021
12022 static void update_synth_timer(unsigned long opaque)
12023 {
12024         u64 cur_tx;
12025         u64 cur_rx;
12026         u64 total_flits;
12027         u8 update = 0;
12028         int i, j, vl;
12029         struct hfi1_pportdata *ppd;
12030         struct cntr_entry *entry;
12031
12032         struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
12033
12034         /*
12035          * Rather than keep beating on the CSRs pick a minimal set that we can
12036          * check to watch for potential roll over. We can do this by looking at
12037          * the number of flits sent/recv. If the total flits exceeds 32bits then
12038          * we have to iterate all the counters and update.
12039          */
12040         entry = &dev_cntrs[C_DC_RCV_FLITS];
12041         cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12042
12043         entry = &dev_cntrs[C_DC_XMIT_FLITS];
12044         cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12045
12046         hfi1_cdbg(
12047             CNTR,
12048             "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12049             dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12050
12051         if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12052                 /*
12053                  * May not be strictly necessary to update but it won't hurt and
12054                  * simplifies the logic here.
12055                  */
12056                 update = 1;
12057                 hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12058                           dd->unit);
12059         } else {
12060                 total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12061                 hfi1_cdbg(CNTR,
12062                           "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12063                           total_flits, (u64)CNTR_32BIT_MAX);
12064                 if (total_flits >= CNTR_32BIT_MAX) {
12065                         hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12066                                   dd->unit);
12067                         update = 1;
12068                 }
12069         }
12070
12071         if (update) {
12072                 hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12073                 for (i = 0; i < DEV_CNTR_LAST; i++) {
12074                         entry = &dev_cntrs[i];
12075                         if (entry->flags & CNTR_VL) {
12076                                 for (vl = 0; vl < C_VL_COUNT; vl++)
12077                                         read_dev_cntr(dd, i, vl);
12078                         } else {
12079                                 read_dev_cntr(dd, i, CNTR_INVALID_VL);
12080                         }
12081                 }
12082                 ppd = (struct hfi1_pportdata *)(dd + 1);
12083                 for (i = 0; i < dd->num_pports; i++, ppd++) {
12084                         for (j = 0; j < PORT_CNTR_LAST; j++) {
12085                                 entry = &port_cntrs[j];
12086                                 if (entry->flags & CNTR_VL) {
12087                                         for (vl = 0; vl < C_VL_COUNT; vl++)
12088                                                 read_port_cntr(ppd, j, vl);
12089                                 } else {
12090                                         read_port_cntr(ppd, j, CNTR_INVALID_VL);
12091                                 }
12092                         }
12093                 }
12094
12095                 /*
12096                  * We want the value in the register. The goal is to keep track
12097                  * of the number of "ticks" not the counter value. In other
12098                  * words if the register rolls we want to notice it and go ahead
12099                  * and force an update.
12100                  */
12101                 entry = &dev_cntrs[C_DC_XMIT_FLITS];
12102                 dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12103                                                 CNTR_MODE_R, 0);
12104
12105                 entry = &dev_cntrs[C_DC_RCV_FLITS];
12106                 dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12107                                                 CNTR_MODE_R, 0);
12108
12109                 hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12110                           dd->unit, dd->last_tx, dd->last_rx);
12111
12112         } else {
12113                 hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12114         }
12115
12116         mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12117 }
12118
12119 #define C_MAX_NAME 13 /* 12 chars + one for /0 */
12120 static int init_cntrs(struct hfi1_devdata *dd)
12121 {
12122         int i, rcv_ctxts, j;
12123         size_t sz;
12124         char *p;
12125         char name[C_MAX_NAME];
12126         struct hfi1_pportdata *ppd;
12127         const char *bit_type_32 = ",32";
12128         const int bit_type_32_sz = strlen(bit_type_32);
12129
12130         /* set up the stats timer; the add_timer is done at the end */
12131         setup_timer(&dd->synth_stats_timer, update_synth_timer,
12132                     (unsigned long)dd);
12133
12134         /***********************/
12135         /* per device counters */
12136         /***********************/
12137
12138         /* size names and determine how many we have*/
12139         dd->ndevcntrs = 0;
12140         sz = 0;
12141
12142         for (i = 0; i < DEV_CNTR_LAST; i++) {
12143                 if (dev_cntrs[i].flags & CNTR_DISABLED) {
12144                         hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12145                         continue;
12146                 }
12147
12148                 if (dev_cntrs[i].flags & CNTR_VL) {
12149                         dev_cntrs[i].offset = dd->ndevcntrs;
12150                         for (j = 0; j < C_VL_COUNT; j++) {
12151                                 snprintf(name, C_MAX_NAME, "%s%d",
12152                                          dev_cntrs[i].name, vl_from_idx(j));
12153                                 sz += strlen(name);
12154                                 /* Add ",32" for 32-bit counters */
12155                                 if (dev_cntrs[i].flags & CNTR_32BIT)
12156                                         sz += bit_type_32_sz;
12157                                 sz++;
12158                                 dd->ndevcntrs++;
12159                         }
12160                 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
12161                         dev_cntrs[i].offset = dd->ndevcntrs;
12162                         for (j = 0; j < dd->chip_sdma_engines; j++) {
12163                                 snprintf(name, C_MAX_NAME, "%s%d",
12164                                          dev_cntrs[i].name, j);
12165                                 sz += strlen(name);
12166                                 /* Add ",32" for 32-bit counters */
12167                                 if (dev_cntrs[i].flags & CNTR_32BIT)
12168                                         sz += bit_type_32_sz;
12169                                 sz++;
12170                                 dd->ndevcntrs++;
12171                         }
12172                 } else {
12173                         /* +1 for newline. */
12174                         sz += strlen(dev_cntrs[i].name) + 1;
12175                         /* Add ",32" for 32-bit counters */
12176                         if (dev_cntrs[i].flags & CNTR_32BIT)
12177                                 sz += bit_type_32_sz;
12178                         dev_cntrs[i].offset = dd->ndevcntrs;
12179                         dd->ndevcntrs++;
12180                 }
12181         }
12182
12183         /* allocate space for the counter values */
12184         dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12185         if (!dd->cntrs)
12186                 goto bail;
12187
12188         dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12189         if (!dd->scntrs)
12190                 goto bail;
12191
12192         /* allocate space for the counter names */
12193         dd->cntrnameslen = sz;
12194         dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12195         if (!dd->cntrnames)
12196                 goto bail;
12197
12198         /* fill in the names */
12199         for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12200                 if (dev_cntrs[i].flags & CNTR_DISABLED) {
12201                         /* Nothing */
12202                 } else if (dev_cntrs[i].flags & CNTR_VL) {
12203                         for (j = 0; j < C_VL_COUNT; j++) {
12204                                 snprintf(name, C_MAX_NAME, "%s%d",
12205                                          dev_cntrs[i].name,
12206                                          vl_from_idx(j));
12207                                 memcpy(p, name, strlen(name));
12208                                 p += strlen(name);
12209
12210                                 /* Counter is 32 bits */
12211                                 if (dev_cntrs[i].flags & CNTR_32BIT) {
12212                                         memcpy(p, bit_type_32, bit_type_32_sz);
12213                                         p += bit_type_32_sz;
12214                                 }
12215
12216                                 *p++ = '\n';
12217                         }
12218                 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
12219                         for (j = 0; j < dd->chip_sdma_engines; j++) {
12220                                 snprintf(name, C_MAX_NAME, "%s%d",
12221                                          dev_cntrs[i].name, j);
12222                                 memcpy(p, name, strlen(name));
12223                                 p += strlen(name);
12224
12225                                 /* Counter is 32 bits */
12226                                 if (dev_cntrs[i].flags & CNTR_32BIT) {
12227                                         memcpy(p, bit_type_32, bit_type_32_sz);
12228                                         p += bit_type_32_sz;
12229                                 }
12230
12231                                 *p++ = '\n';
12232                         }
12233                 } else {
12234                         memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12235                         p += strlen(dev_cntrs[i].name);
12236
12237                         /* Counter is 32 bits */
12238                         if (dev_cntrs[i].flags & CNTR_32BIT) {
12239                                 memcpy(p, bit_type_32, bit_type_32_sz);
12240                                 p += bit_type_32_sz;
12241                         }
12242
12243                         *p++ = '\n';
12244                 }
12245         }
12246
12247         /*********************/
12248         /* per port counters */
12249         /*********************/
12250
12251         /*
12252          * Go through the counters for the overflows and disable the ones we
12253          * don't need. This varies based on platform so we need to do it
12254          * dynamically here.
12255          */
12256         rcv_ctxts = dd->num_rcv_contexts;
12257         for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12258              i <= C_RCV_HDR_OVF_LAST; i++) {
12259                 port_cntrs[i].flags |= CNTR_DISABLED;
12260         }
12261
12262         /* size port counter names and determine how many we have*/
12263         sz = 0;
12264         dd->nportcntrs = 0;
12265         for (i = 0; i < PORT_CNTR_LAST; i++) {
12266                 if (port_cntrs[i].flags & CNTR_DISABLED) {
12267                         hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12268                         continue;
12269                 }
12270
12271                 if (port_cntrs[i].flags & CNTR_VL) {
12272                         port_cntrs[i].offset = dd->nportcntrs;
12273                         for (j = 0; j < C_VL_COUNT; j++) {
12274                                 snprintf(name, C_MAX_NAME, "%s%d",
12275                                          port_cntrs[i].name, vl_from_idx(j));
12276                                 sz += strlen(name);
12277                                 /* Add ",32" for 32-bit counters */
12278                                 if (port_cntrs[i].flags & CNTR_32BIT)
12279                                         sz += bit_type_32_sz;
12280                                 sz++;
12281                                 dd->nportcntrs++;
12282                         }
12283                 } else {
12284                         /* +1 for newline */
12285                         sz += strlen(port_cntrs[i].name) + 1;
12286                         /* Add ",32" for 32-bit counters */
12287                         if (port_cntrs[i].flags & CNTR_32BIT)
12288                                 sz += bit_type_32_sz;
12289                         port_cntrs[i].offset = dd->nportcntrs;
12290                         dd->nportcntrs++;
12291                 }
12292         }
12293
12294         /* allocate space for the counter names */
12295         dd->portcntrnameslen = sz;
12296         dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12297         if (!dd->portcntrnames)
12298                 goto bail;
12299
12300         /* fill in port cntr names */
12301         for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12302                 if (port_cntrs[i].flags & CNTR_DISABLED)
12303                         continue;
12304
12305                 if (port_cntrs[i].flags & CNTR_VL) {
12306                         for (j = 0; j < C_VL_COUNT; j++) {
12307                                 snprintf(name, C_MAX_NAME, "%s%d",
12308                                          port_cntrs[i].name, vl_from_idx(j));
12309                                 memcpy(p, name, strlen(name));
12310                                 p += strlen(name);
12311
12312                                 /* Counter is 32 bits */
12313                                 if (port_cntrs[i].flags & CNTR_32BIT) {
12314                                         memcpy(p, bit_type_32, bit_type_32_sz);
12315                                         p += bit_type_32_sz;
12316                                 }
12317
12318                                 *p++ = '\n';
12319                         }
12320                 } else {
12321                         memcpy(p, port_cntrs[i].name,
12322                                strlen(port_cntrs[i].name));
12323                         p += strlen(port_cntrs[i].name);
12324
12325                         /* Counter is 32 bits */
12326                         if (port_cntrs[i].flags & CNTR_32BIT) {
12327                                 memcpy(p, bit_type_32, bit_type_32_sz);
12328                                 p += bit_type_32_sz;
12329                         }
12330
12331                         *p++ = '\n';
12332                 }
12333         }
12334
12335         /* allocate per port storage for counter values */
12336         ppd = (struct hfi1_pportdata *)(dd + 1);
12337         for (i = 0; i < dd->num_pports; i++, ppd++) {
12338                 ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12339                 if (!ppd->cntrs)
12340                         goto bail;
12341
12342                 ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12343                 if (!ppd->scntrs)
12344                         goto bail;
12345         }
12346
12347         /* CPU counters need to be allocated and zeroed */
12348         if (init_cpu_counters(dd))
12349                 goto bail;
12350
12351         mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12352         return 0;
12353 bail:
12354         free_cntrs(dd);
12355         return -ENOMEM;
12356 }
12357
12358 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12359 {
12360         switch (chip_lstate) {
12361         default:
12362                 dd_dev_err(dd,
12363                            "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12364                            chip_lstate);
12365                 /* fall through */
12366         case LSTATE_DOWN:
12367                 return IB_PORT_DOWN;
12368         case LSTATE_INIT:
12369                 return IB_PORT_INIT;
12370         case LSTATE_ARMED:
12371                 return IB_PORT_ARMED;
12372         case LSTATE_ACTIVE:
12373                 return IB_PORT_ACTIVE;
12374         }
12375 }
12376
12377 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12378 {
12379         /* look at the HFI meta-states only */
12380         switch (chip_pstate & 0xf0) {
12381         default:
12382                 dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12383                            chip_pstate);
12384                 /* fall through */
12385         case PLS_DISABLED:
12386                 return IB_PORTPHYSSTATE_DISABLED;
12387         case PLS_OFFLINE:
12388                 return OPA_PORTPHYSSTATE_OFFLINE;
12389         case PLS_POLLING:
12390                 return IB_PORTPHYSSTATE_POLLING;
12391         case PLS_CONFIGPHY:
12392                 return IB_PORTPHYSSTATE_TRAINING;
12393         case PLS_LINKUP:
12394                 return IB_PORTPHYSSTATE_LINKUP;
12395         case PLS_PHYTEST:
12396                 return IB_PORTPHYSSTATE_PHY_TEST;
12397         }
12398 }
12399
12400 /* return the OPA port logical state name */
12401 const char *opa_lstate_name(u32 lstate)
12402 {
12403         static const char * const port_logical_names[] = {
12404                 "PORT_NOP",
12405                 "PORT_DOWN",
12406                 "PORT_INIT",
12407                 "PORT_ARMED",
12408                 "PORT_ACTIVE",
12409                 "PORT_ACTIVE_DEFER",
12410         };
12411         if (lstate < ARRAY_SIZE(port_logical_names))
12412                 return port_logical_names[lstate];
12413         return "unknown";
12414 }
12415
12416 /* return the OPA port physical state name */
12417 const char *opa_pstate_name(u32 pstate)
12418 {
12419         static const char * const port_physical_names[] = {
12420                 "PHYS_NOP",
12421                 "reserved1",
12422                 "PHYS_POLL",
12423                 "PHYS_DISABLED",
12424                 "PHYS_TRAINING",
12425                 "PHYS_LINKUP",
12426                 "PHYS_LINK_ERR_RECOVER",
12427                 "PHYS_PHY_TEST",
12428                 "reserved8",
12429                 "PHYS_OFFLINE",
12430                 "PHYS_GANGED",
12431                 "PHYS_TEST",
12432         };
12433         if (pstate < ARRAY_SIZE(port_physical_names))
12434                 return port_physical_names[pstate];
12435         return "unknown";
12436 }
12437
12438 /*
12439  * Read the hardware link state and set the driver's cached value of it.
12440  * Return the (new) current value.
12441  */
12442 u32 get_logical_state(struct hfi1_pportdata *ppd)
12443 {
12444         u32 new_state;
12445
12446         new_state = chip_to_opa_lstate(ppd->dd, read_logical_state(ppd->dd));
12447         if (new_state != ppd->lstate) {
12448                 dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12449                             opa_lstate_name(new_state), new_state);
12450                 ppd->lstate = new_state;
12451         }
12452         /*
12453          * Set port status flags in the page mapped into userspace
12454          * memory. Do it here to ensure a reliable state - this is
12455          * the only function called by all state handling code.
12456          * Always set the flags due to the fact that the cache value
12457          * might have been changed explicitly outside of this
12458          * function.
12459          */
12460         if (ppd->statusp) {
12461                 switch (ppd->lstate) {
12462                 case IB_PORT_DOWN:
12463                 case IB_PORT_INIT:
12464                         *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12465                                            HFI1_STATUS_IB_READY);
12466                         break;
12467                 case IB_PORT_ARMED:
12468                         *ppd->statusp |= HFI1_STATUS_IB_CONF;
12469                         break;
12470                 case IB_PORT_ACTIVE:
12471                         *ppd->statusp |= HFI1_STATUS_IB_READY;
12472                         break;
12473                 }
12474         }
12475         return ppd->lstate;
12476 }
12477
12478 /**
12479  * wait_logical_linkstate - wait for an IB link state change to occur
12480  * @ppd: port device
12481  * @state: the state to wait for
12482  * @msecs: the number of milliseconds to wait
12483  *
12484  * Wait up to msecs milliseconds for IB link state change to occur.
12485  * For now, take the easy polling route.
12486  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12487  */
12488 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12489                                   int msecs)
12490 {
12491         unsigned long timeout;
12492
12493         timeout = jiffies + msecs_to_jiffies(msecs);
12494         while (1) {
12495                 if (get_logical_state(ppd) == state)
12496                         return 0;
12497                 if (time_after(jiffies, timeout))
12498                         break;
12499                 msleep(20);
12500         }
12501         dd_dev_err(ppd->dd, "timeout waiting for link state 0x%x\n", state);
12502
12503         return -ETIMEDOUT;
12504 }
12505
12506 u8 hfi1_ibphys_portstate(struct hfi1_pportdata *ppd)
12507 {
12508         u32 pstate;
12509         u32 ib_pstate;
12510
12511         pstate = read_physical_state(ppd->dd);
12512         ib_pstate = chip_to_opa_pstate(ppd->dd, pstate);
12513         if (ppd->last_pstate != ib_pstate) {
12514                 dd_dev_info(ppd->dd,
12515                             "%s: physical state changed to %s (0x%x), phy 0x%x\n",
12516                             __func__, opa_pstate_name(ib_pstate), ib_pstate,
12517                             pstate);
12518                 ppd->last_pstate = ib_pstate;
12519         }
12520         return ib_pstate;
12521 }
12522
12523 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
12524 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12525
12526 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
12527 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12528
12529 int hfi1_init_ctxt(struct send_context *sc)
12530 {
12531         if (sc) {
12532                 struct hfi1_devdata *dd = sc->dd;
12533                 u64 reg;
12534                 u8 set = (sc->type == SC_USER ?
12535                           HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
12536                           HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
12537                 reg = read_kctxt_csr(dd, sc->hw_context,
12538                                      SEND_CTXT_CHECK_ENABLE);
12539                 if (set)
12540                         CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
12541                 else
12542                         SET_STATIC_RATE_CONTROL_SMASK(reg);
12543                 write_kctxt_csr(dd, sc->hw_context,
12544                                 SEND_CTXT_CHECK_ENABLE, reg);
12545         }
12546         return 0;
12547 }
12548
12549 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
12550 {
12551         int ret = 0;
12552         u64 reg;
12553
12554         if (dd->icode != ICODE_RTL_SILICON) {
12555                 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
12556                         dd_dev_info(dd, "%s: tempsense not supported by HW\n",
12557                                     __func__);
12558                 return -EINVAL;
12559         }
12560         reg = read_csr(dd, ASIC_STS_THERM);
12561         temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
12562                       ASIC_STS_THERM_CURR_TEMP_MASK);
12563         temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
12564                         ASIC_STS_THERM_LO_TEMP_MASK);
12565         temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
12566                         ASIC_STS_THERM_HI_TEMP_MASK);
12567         temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
12568                           ASIC_STS_THERM_CRIT_TEMP_MASK);
12569         /* triggers is a 3-bit value - 1 bit per trigger. */
12570         temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
12571
12572         return ret;
12573 }
12574
12575 /* ========================================================================= */
12576
12577 /*
12578  * Enable/disable chip from delivering interrupts.
12579  */
12580 void set_intr_state(struct hfi1_devdata *dd, u32 enable)
12581 {
12582         int i;
12583
12584         /*
12585          * In HFI, the mask needs to be 1 to allow interrupts.
12586          */
12587         if (enable) {
12588                 /* enable all interrupts */
12589                 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12590                         write_csr(dd, CCE_INT_MASK + (8 * i), ~(u64)0);
12591
12592                 init_qsfp_int(dd);
12593         } else {
12594                 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12595                         write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
12596         }
12597 }
12598
12599 /*
12600  * Clear all interrupt sources on the chip.
12601  */
12602 static void clear_all_interrupts(struct hfi1_devdata *dd)
12603 {
12604         int i;
12605
12606         for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12607                 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
12608
12609         write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
12610         write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
12611         write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
12612         write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
12613         write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
12614         write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
12615         write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
12616         for (i = 0; i < dd->chip_send_contexts; i++)
12617                 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
12618         for (i = 0; i < dd->chip_sdma_engines; i++)
12619                 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
12620
12621         write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
12622         write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
12623         write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
12624 }
12625
12626 /* Move to pcie.c? */
12627 static void disable_intx(struct pci_dev *pdev)
12628 {
12629         pci_intx(pdev, 0);
12630 }
12631
12632 static void clean_up_interrupts(struct hfi1_devdata *dd)
12633 {
12634         int i;
12635
12636         /* remove irqs - must happen before disabling/turning off */
12637         if (dd->num_msix_entries) {
12638                 /* MSI-X */
12639                 struct hfi1_msix_entry *me = dd->msix_entries;
12640
12641                 for (i = 0; i < dd->num_msix_entries; i++, me++) {
12642                         if (!me->arg) /* => no irq, no affinity */
12643                                 continue;
12644                         hfi1_put_irq_affinity(dd, &dd->msix_entries[i]);
12645                         free_irq(me->msix.vector, me->arg);
12646                 }
12647         } else {
12648                 /* INTx */
12649                 if (dd->requested_intx_irq) {
12650                         free_irq(dd->pcidev->irq, dd);
12651                         dd->requested_intx_irq = 0;
12652                 }
12653         }
12654
12655         /* turn off interrupts */
12656         if (dd->num_msix_entries) {
12657                 /* MSI-X */
12658                 pci_disable_msix(dd->pcidev);
12659         } else {
12660                 /* INTx */
12661                 disable_intx(dd->pcidev);
12662         }
12663
12664         /* clean structures */
12665         kfree(dd->msix_entries);
12666         dd->msix_entries = NULL;
12667         dd->num_msix_entries = 0;
12668 }
12669
12670 /*
12671  * Remap the interrupt source from the general handler to the given MSI-X
12672  * interrupt.
12673  */
12674 static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
12675 {
12676         u64 reg;
12677         int m, n;
12678
12679         /* clear from the handled mask of the general interrupt */
12680         m = isrc / 64;
12681         n = isrc % 64;
12682         dd->gi_mask[m] &= ~((u64)1 << n);
12683
12684         /* direct the chip source to the given MSI-X interrupt */
12685         m = isrc / 8;
12686         n = isrc % 8;
12687         reg = read_csr(dd, CCE_INT_MAP + (8 * m));
12688         reg &= ~((u64)0xff << (8 * n));
12689         reg |= ((u64)msix_intr & 0xff) << (8 * n);
12690         write_csr(dd, CCE_INT_MAP + (8 * m), reg);
12691 }
12692
12693 static void remap_sdma_interrupts(struct hfi1_devdata *dd,
12694                                   int engine, int msix_intr)
12695 {
12696         /*
12697          * SDMA engine interrupt sources grouped by type, rather than
12698          * engine.  Per-engine interrupts are as follows:
12699          *      SDMA
12700          *      SDMAProgress
12701          *      SDMAIdle
12702          */
12703         remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine,
12704                    msix_intr);
12705         remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine,
12706                    msix_intr);
12707         remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine,
12708                    msix_intr);
12709 }
12710
12711 static int request_intx_irq(struct hfi1_devdata *dd)
12712 {
12713         int ret;
12714
12715         snprintf(dd->intx_name, sizeof(dd->intx_name), DRIVER_NAME "_%d",
12716                  dd->unit);
12717         ret = request_irq(dd->pcidev->irq, general_interrupt,
12718                           IRQF_SHARED, dd->intx_name, dd);
12719         if (ret)
12720                 dd_dev_err(dd, "unable to request INTx interrupt, err %d\n",
12721                            ret);
12722         else
12723                 dd->requested_intx_irq = 1;
12724         return ret;
12725 }
12726
12727 static int request_msix_irqs(struct hfi1_devdata *dd)
12728 {
12729         int first_general, last_general;
12730         int first_sdma, last_sdma;
12731         int first_rx, last_rx;
12732         int i, ret = 0;
12733
12734         /* calculate the ranges we are going to use */
12735         first_general = 0;
12736         last_general = first_general + 1;
12737         first_sdma = last_general;
12738         last_sdma = first_sdma + dd->num_sdma;
12739         first_rx = last_sdma;
12740         last_rx = first_rx + dd->n_krcv_queues;
12741
12742         /*
12743          * Sanity check - the code expects all SDMA chip source
12744          * interrupts to be in the same CSR, starting at bit 0.  Verify
12745          * that this is true by checking the bit location of the start.
12746          */
12747         BUILD_BUG_ON(IS_SDMA_START % 64);
12748
12749         for (i = 0; i < dd->num_msix_entries; i++) {
12750                 struct hfi1_msix_entry *me = &dd->msix_entries[i];
12751                 const char *err_info;
12752                 irq_handler_t handler;
12753                 irq_handler_t thread = NULL;
12754                 void *arg;
12755                 int idx;
12756                 struct hfi1_ctxtdata *rcd = NULL;
12757                 struct sdma_engine *sde = NULL;
12758
12759                 /* obtain the arguments to request_irq */
12760                 if (first_general <= i && i < last_general) {
12761                         idx = i - first_general;
12762                         handler = general_interrupt;
12763                         arg = dd;
12764                         snprintf(me->name, sizeof(me->name),
12765                                  DRIVER_NAME "_%d", dd->unit);
12766                         err_info = "general";
12767                         me->type = IRQ_GENERAL;
12768                 } else if (first_sdma <= i && i < last_sdma) {
12769                         idx = i - first_sdma;
12770                         sde = &dd->per_sdma[idx];
12771                         handler = sdma_interrupt;
12772                         arg = sde;
12773                         snprintf(me->name, sizeof(me->name),
12774                                  DRIVER_NAME "_%d sdma%d", dd->unit, idx);
12775                         err_info = "sdma";
12776                         remap_sdma_interrupts(dd, idx, i);
12777                         me->type = IRQ_SDMA;
12778                 } else if (first_rx <= i && i < last_rx) {
12779                         idx = i - first_rx;
12780                         rcd = dd->rcd[idx];
12781                         /* no interrupt if no rcd */
12782                         if (!rcd)
12783                                 continue;
12784                         /*
12785                          * Set the interrupt register and mask for this
12786                          * context's interrupt.
12787                          */
12788                         rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
12789                         rcd->imask = ((u64)1) <<
12790                                         ((IS_RCVAVAIL_START + idx) % 64);
12791                         handler = receive_context_interrupt;
12792                         thread = receive_context_thread;
12793                         arg = rcd;
12794                         snprintf(me->name, sizeof(me->name),
12795                                  DRIVER_NAME "_%d kctxt%d", dd->unit, idx);
12796                         err_info = "receive context";
12797                         remap_intr(dd, IS_RCVAVAIL_START + idx, i);
12798                         me->type = IRQ_RCVCTXT;
12799                 } else {
12800                         /* not in our expected range - complain, then
12801                          * ignore it
12802                          */
12803                         dd_dev_err(dd,
12804                                    "Unexpected extra MSI-X interrupt %d\n", i);
12805                         continue;
12806                 }
12807                 /* no argument, no interrupt */
12808                 if (!arg)
12809                         continue;
12810                 /* make sure the name is terminated */
12811                 me->name[sizeof(me->name) - 1] = 0;
12812
12813                 ret = request_threaded_irq(me->msix.vector, handler, thread, 0,
12814                                            me->name, arg);
12815                 if (ret) {
12816                         dd_dev_err(dd,
12817                                    "unable to allocate %s interrupt, vector %d, index %d, err %d\n",
12818                                    err_info, me->msix.vector, idx, ret);
12819                         return ret;
12820                 }
12821                 /*
12822                  * assign arg after request_irq call, so it will be
12823                  * cleaned up
12824                  */
12825                 me->arg = arg;
12826
12827                 ret = hfi1_get_irq_affinity(dd, me);
12828                 if (ret)
12829                         dd_dev_err(dd,
12830                                    "unable to pin IRQ %d\n", ret);
12831         }
12832
12833         return ret;
12834 }
12835
12836 /*
12837  * Set the general handler to accept all interrupts, remap all
12838  * chip interrupts back to MSI-X 0.
12839  */
12840 static void reset_interrupts(struct hfi1_devdata *dd)
12841 {
12842         int i;
12843
12844         /* all interrupts handled by the general handler */
12845         for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12846                 dd->gi_mask[i] = ~(u64)0;
12847
12848         /* all chip interrupts map to MSI-X 0 */
12849         for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
12850                 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
12851 }
12852
12853 static int set_up_interrupts(struct hfi1_devdata *dd)
12854 {
12855         struct hfi1_msix_entry *entries;
12856         u32 total, request;
12857         int i, ret;
12858         int single_interrupt = 0; /* we expect to have all the interrupts */
12859
12860         /*
12861          * Interrupt count:
12862          *      1 general, "slow path" interrupt (includes the SDMA engines
12863          *              slow source, SDMACleanupDone)
12864          *      N interrupts - one per used SDMA engine
12865          *      M interrupt - one per kernel receive context
12866          */
12867         total = 1 + dd->num_sdma + dd->n_krcv_queues;
12868
12869         entries = kcalloc(total, sizeof(*entries), GFP_KERNEL);
12870         if (!entries) {
12871                 ret = -ENOMEM;
12872                 goto fail;
12873         }
12874         /* 1-1 MSI-X entry assignment */
12875         for (i = 0; i < total; i++)
12876                 entries[i].msix.entry = i;
12877
12878         /* ask for MSI-X interrupts */
12879         request = total;
12880         request_msix(dd, &request, entries);
12881
12882         if (request == 0) {
12883                 /* using INTx */
12884                 /* dd->num_msix_entries already zero */
12885                 kfree(entries);
12886                 single_interrupt = 1;
12887                 dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n");
12888         } else {
12889                 /* using MSI-X */
12890                 dd->num_msix_entries = request;
12891                 dd->msix_entries = entries;
12892
12893                 if (request != total) {
12894                         /* using MSI-X, with reduced interrupts */
12895                         dd_dev_err(
12896                                 dd,
12897                                 "cannot handle reduced interrupt case, want %u, got %u\n",
12898                                 total, request);
12899                         ret = -EINVAL;
12900                         goto fail;
12901                 }
12902                 dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
12903         }
12904
12905         /* mask all interrupts */
12906         set_intr_state(dd, 0);
12907         /* clear all pending interrupts */
12908         clear_all_interrupts(dd);
12909
12910         /* reset general handler mask, chip MSI-X mappings */
12911         reset_interrupts(dd);
12912
12913         if (single_interrupt)
12914                 ret = request_intx_irq(dd);
12915         else
12916                 ret = request_msix_irqs(dd);
12917         if (ret)
12918                 goto fail;
12919
12920         return 0;
12921
12922 fail:
12923         clean_up_interrupts(dd);
12924         return ret;
12925 }
12926
12927 /*
12928  * Set up context values in dd.  Sets:
12929  *
12930  *      num_rcv_contexts - number of contexts being used
12931  *      n_krcv_queues - number of kernel contexts
12932  *      first_user_ctxt - first non-kernel context in array of contexts
12933  *      freectxts  - number of free user contexts
12934  *      num_send_contexts - number of PIO send contexts being used
12935  */
12936 static int set_up_context_variables(struct hfi1_devdata *dd)
12937 {
12938         unsigned long num_kernel_contexts;
12939         int total_contexts;
12940         int ret;
12941         unsigned ngroups;
12942         int qos_rmt_count;
12943         int user_rmt_reduced;
12944
12945         /*
12946          * Kernel receive contexts:
12947          * - Context 0 - control context (VL15/multicast/error)
12948          * - Context 1 - first kernel context
12949          * - Context 2 - second kernel context
12950          * ...
12951          */
12952         if (n_krcvqs)
12953                 /*
12954                  * n_krcvqs is the sum of module parameter kernel receive
12955                  * contexts, krcvqs[].  It does not include the control
12956                  * context, so add that.
12957                  */
12958                 num_kernel_contexts = n_krcvqs + 1;
12959         else
12960                 num_kernel_contexts = DEFAULT_KRCVQS + 1;
12961         /*
12962          * Every kernel receive context needs an ACK send context.
12963          * one send context is allocated for each VL{0-7} and VL15
12964          */
12965         if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) {
12966                 dd_dev_err(dd,
12967                            "Reducing # kernel rcv contexts to: %d, from %lu\n",
12968                            (int)(dd->chip_send_contexts - num_vls - 1),
12969                            num_kernel_contexts);
12970                 num_kernel_contexts = dd->chip_send_contexts - num_vls - 1;
12971         }
12972         /*
12973          * User contexts:
12974          *      - default to 1 user context per real (non-HT) CPU core if
12975          *        num_user_contexts is negative
12976          */
12977         if (num_user_contexts < 0)
12978                 num_user_contexts =
12979                         cpumask_weight(&node_affinity.real_cpu_mask);
12980
12981         total_contexts = num_kernel_contexts + num_user_contexts;
12982
12983         /*
12984          * Adjust the counts given a global max.
12985          */
12986         if (total_contexts > dd->chip_rcv_contexts) {
12987                 dd_dev_err(dd,
12988                            "Reducing # user receive contexts to: %d, from %d\n",
12989                            (int)(dd->chip_rcv_contexts - num_kernel_contexts),
12990                            (int)num_user_contexts);
12991                 num_user_contexts = dd->chip_rcv_contexts - num_kernel_contexts;
12992                 /* recalculate */
12993                 total_contexts = num_kernel_contexts + num_user_contexts;
12994         }
12995
12996         /* each user context requires an entry in the RMT */
12997         qos_rmt_count = qos_rmt_entries(dd, NULL, NULL);
12998         if (qos_rmt_count + num_user_contexts > NUM_MAP_ENTRIES) {
12999                 user_rmt_reduced = NUM_MAP_ENTRIES - qos_rmt_count;
13000                 dd_dev_err(dd,
13001                            "RMT size is reducing the number of user receive contexts from %d to %d\n",
13002                            (int)num_user_contexts,
13003                            user_rmt_reduced);
13004                 /* recalculate */
13005                 num_user_contexts = user_rmt_reduced;
13006                 total_contexts = num_kernel_contexts + num_user_contexts;
13007         }
13008
13009         /* the first N are kernel contexts, the rest are user contexts */
13010         dd->num_rcv_contexts = total_contexts;
13011         dd->n_krcv_queues = num_kernel_contexts;
13012         dd->first_user_ctxt = num_kernel_contexts;
13013         dd->num_user_contexts = num_user_contexts;
13014         dd->freectxts = num_user_contexts;
13015         dd_dev_info(dd,
13016                     "rcv contexts: chip %d, used %d (kernel %d, user %d)\n",
13017                     (int)dd->chip_rcv_contexts,
13018                     (int)dd->num_rcv_contexts,
13019                     (int)dd->n_krcv_queues,
13020                     (int)dd->num_rcv_contexts - dd->n_krcv_queues);
13021
13022         /*
13023          * Receive array allocation:
13024          *   All RcvArray entries are divided into groups of 8. This
13025          *   is required by the hardware and will speed up writes to
13026          *   consecutive entries by using write-combining of the entire
13027          *   cacheline.
13028          *
13029          *   The number of groups are evenly divided among all contexts.
13030          *   any left over groups will be given to the first N user
13031          *   contexts.
13032          */
13033         dd->rcv_entries.group_size = RCV_INCREMENT;
13034         ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size;
13035         dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13036         dd->rcv_entries.nctxt_extra = ngroups -
13037                 (dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13038         dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13039                     dd->rcv_entries.ngroups,
13040                     dd->rcv_entries.nctxt_extra);
13041         if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13042             MAX_EAGER_ENTRIES * 2) {
13043                 dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13044                         dd->rcv_entries.group_size;
13045                 dd_dev_info(dd,
13046                             "RcvArray group count too high, change to %u\n",
13047                             dd->rcv_entries.ngroups);
13048                 dd->rcv_entries.nctxt_extra = 0;
13049         }
13050         /*
13051          * PIO send contexts
13052          */
13053         ret = init_sc_pools_and_sizes(dd);
13054         if (ret >= 0) { /* success */
13055                 dd->num_send_contexts = ret;
13056                 dd_dev_info(
13057                         dd,
13058                         "send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13059                         dd->chip_send_contexts,
13060                         dd->num_send_contexts,
13061                         dd->sc_sizes[SC_KERNEL].count,
13062                         dd->sc_sizes[SC_ACK].count,
13063                         dd->sc_sizes[SC_USER].count,
13064                         dd->sc_sizes[SC_VL15].count);
13065                 ret = 0;        /* success */
13066         }
13067
13068         return ret;
13069 }
13070
13071 /*
13072  * Set the device/port partition key table. The MAD code
13073  * will ensure that, at least, the partial management
13074  * partition key is present in the table.
13075  */
13076 static void set_partition_keys(struct hfi1_pportdata *ppd)
13077 {
13078         struct hfi1_devdata *dd = ppd->dd;
13079         u64 reg = 0;
13080         int i;
13081
13082         dd_dev_info(dd, "Setting partition keys\n");
13083         for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13084                 reg |= (ppd->pkeys[i] &
13085                         RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13086                         ((i % 4) *
13087                          RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13088                 /* Each register holds 4 PKey values. */
13089                 if ((i % 4) == 3) {
13090                         write_csr(dd, RCV_PARTITION_KEY +
13091                                   ((i - 3) * 2), reg);
13092                         reg = 0;
13093                 }
13094         }
13095
13096         /* Always enable HW pkeys check when pkeys table is set */
13097         add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13098 }
13099
13100 /*
13101  * These CSRs and memories are uninitialized on reset and must be
13102  * written before reading to set the ECC/parity bits.
13103  *
13104  * NOTE: All user context CSRs that are not mmaped write-only
13105  * (e.g. the TID flows) must be initialized even if the driver never
13106  * reads them.
13107  */
13108 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13109 {
13110         int i, j;
13111
13112         /* CceIntMap */
13113         for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13114                 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13115
13116         /* SendCtxtCreditReturnAddr */
13117         for (i = 0; i < dd->chip_send_contexts; i++)
13118                 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13119
13120         /* PIO Send buffers */
13121         /* SDMA Send buffers */
13122         /*
13123          * These are not normally read, and (presently) have no method
13124          * to be read, so are not pre-initialized
13125          */
13126
13127         /* RcvHdrAddr */
13128         /* RcvHdrTailAddr */
13129         /* RcvTidFlowTable */
13130         for (i = 0; i < dd->chip_rcv_contexts; i++) {
13131                 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13132                 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13133                 for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13134                         write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13135         }
13136
13137         /* RcvArray */
13138         for (i = 0; i < dd->chip_rcv_array_count; i++)
13139                 write_csr(dd, RCV_ARRAY + (8 * i),
13140                           RCV_ARRAY_RT_WRITE_ENABLE_SMASK);
13141
13142         /* RcvQPMapTable */
13143         for (i = 0; i < 32; i++)
13144                 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13145 }
13146
13147 /*
13148  * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13149  */
13150 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13151                              u64 ctrl_bits)
13152 {
13153         unsigned long timeout;
13154         u64 reg;
13155
13156         /* is the condition present? */
13157         reg = read_csr(dd, CCE_STATUS);
13158         if ((reg & status_bits) == 0)
13159                 return;
13160
13161         /* clear the condition */
13162         write_csr(dd, CCE_CTRL, ctrl_bits);
13163
13164         /* wait for the condition to clear */
13165         timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13166         while (1) {
13167                 reg = read_csr(dd, CCE_STATUS);
13168                 if ((reg & status_bits) == 0)
13169                         return;
13170                 if (time_after(jiffies, timeout)) {
13171                         dd_dev_err(dd,
13172                                    "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13173                                    status_bits, reg & status_bits);
13174                         return;
13175                 }
13176                 udelay(1);
13177         }
13178 }
13179
13180 /* set CCE CSRs to chip reset defaults */
13181 static void reset_cce_csrs(struct hfi1_devdata *dd)
13182 {
13183         int i;
13184
13185         /* CCE_REVISION read-only */
13186         /* CCE_REVISION2 read-only */
13187         /* CCE_CTRL - bits clear automatically */
13188         /* CCE_STATUS read-only, use CceCtrl to clear */
13189         clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13190         clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13191         clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13192         for (i = 0; i < CCE_NUM_SCRATCH; i++)
13193                 write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13194         /* CCE_ERR_STATUS read-only */
13195         write_csr(dd, CCE_ERR_MASK, 0);
13196         write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13197         /* CCE_ERR_FORCE leave alone */
13198         for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13199                 write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13200         write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13201         /* CCE_PCIE_CTRL leave alone */
13202         for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13203                 write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13204                 write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13205                           CCE_MSIX_TABLE_UPPER_RESETCSR);
13206         }
13207         for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13208                 /* CCE_MSIX_PBA read-only */
13209                 write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13210                 write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13211         }
13212         for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13213                 write_csr(dd, CCE_INT_MAP, 0);
13214         for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13215                 /* CCE_INT_STATUS read-only */
13216                 write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13217                 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13218                 /* CCE_INT_FORCE leave alone */
13219                 /* CCE_INT_BLOCKED read-only */
13220         }
13221         for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13222                 write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13223 }
13224
13225 /* set MISC CSRs to chip reset defaults */
13226 static void reset_misc_csrs(struct hfi1_devdata *dd)
13227 {
13228         int i;
13229
13230         for (i = 0; i < 32; i++) {
13231                 write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13232                 write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13233                 write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13234         }
13235         /*
13236          * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13237          * only be written 128-byte chunks
13238          */
13239         /* init RSA engine to clear lingering errors */
13240         write_csr(dd, MISC_CFG_RSA_CMD, 1);
13241         write_csr(dd, MISC_CFG_RSA_MU, 0);
13242         write_csr(dd, MISC_CFG_FW_CTRL, 0);
13243         /* MISC_STS_8051_DIGEST read-only */
13244         /* MISC_STS_SBM_DIGEST read-only */
13245         /* MISC_STS_PCIE_DIGEST read-only */
13246         /* MISC_STS_FAB_DIGEST read-only */
13247         /* MISC_ERR_STATUS read-only */
13248         write_csr(dd, MISC_ERR_MASK, 0);
13249         write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13250         /* MISC_ERR_FORCE leave alone */
13251 }
13252
13253 /* set TXE CSRs to chip reset defaults */
13254 static void reset_txe_csrs(struct hfi1_devdata *dd)
13255 {
13256         int i;
13257
13258         /*
13259          * TXE Kernel CSRs
13260          */
13261         write_csr(dd, SEND_CTRL, 0);
13262         __cm_reset(dd, 0);      /* reset CM internal state */
13263         /* SEND_CONTEXTS read-only */
13264         /* SEND_DMA_ENGINES read-only */
13265         /* SEND_PIO_MEM_SIZE read-only */
13266         /* SEND_DMA_MEM_SIZE read-only */
13267         write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13268         pio_reset_all(dd);      /* SEND_PIO_INIT_CTXT */
13269         /* SEND_PIO_ERR_STATUS read-only */
13270         write_csr(dd, SEND_PIO_ERR_MASK, 0);
13271         write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13272         /* SEND_PIO_ERR_FORCE leave alone */
13273         /* SEND_DMA_ERR_STATUS read-only */
13274         write_csr(dd, SEND_DMA_ERR_MASK, 0);
13275         write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13276         /* SEND_DMA_ERR_FORCE leave alone */
13277         /* SEND_EGRESS_ERR_STATUS read-only */
13278         write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13279         write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13280         /* SEND_EGRESS_ERR_FORCE leave alone */
13281         write_csr(dd, SEND_BTH_QP, 0);
13282         write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13283         write_csr(dd, SEND_SC2VLT0, 0);
13284         write_csr(dd, SEND_SC2VLT1, 0);
13285         write_csr(dd, SEND_SC2VLT2, 0);
13286         write_csr(dd, SEND_SC2VLT3, 0);
13287         write_csr(dd, SEND_LEN_CHECK0, 0);
13288         write_csr(dd, SEND_LEN_CHECK1, 0);
13289         /* SEND_ERR_STATUS read-only */
13290         write_csr(dd, SEND_ERR_MASK, 0);
13291         write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13292         /* SEND_ERR_FORCE read-only */
13293         for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13294                 write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13295         for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13296                 write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13297         for (i = 0; i < dd->chip_send_contexts / NUM_CONTEXTS_PER_SET; i++)
13298                 write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13299         for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13300                 write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13301         for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13302                 write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13303         write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13304         write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13305         /* SEND_CM_CREDIT_USED_STATUS read-only */
13306         write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13307         write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13308         write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13309         write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13310         write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13311         for (i = 0; i < TXE_NUM_DATA_VL; i++)
13312                 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13313         write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13314         /* SEND_CM_CREDIT_USED_VL read-only */
13315         /* SEND_CM_CREDIT_USED_VL15 read-only */
13316         /* SEND_EGRESS_CTXT_STATUS read-only */
13317         /* SEND_EGRESS_SEND_DMA_STATUS read-only */
13318         write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13319         /* SEND_EGRESS_ERR_INFO read-only */
13320         /* SEND_EGRESS_ERR_SOURCE read-only */
13321
13322         /*
13323          * TXE Per-Context CSRs
13324          */
13325         for (i = 0; i < dd->chip_send_contexts; i++) {
13326                 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13327                 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13328                 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13329                 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13330                 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13331                 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13332                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13333                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13334                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13335                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13336                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13337                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13338         }
13339
13340         /*
13341          * TXE Per-SDMA CSRs
13342          */
13343         for (i = 0; i < dd->chip_sdma_engines; i++) {
13344                 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13345                 /* SEND_DMA_STATUS read-only */
13346                 write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13347                 write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13348                 write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13349                 /* SEND_DMA_HEAD read-only */
13350                 write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13351                 write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13352                 /* SEND_DMA_IDLE_CNT read-only */
13353                 write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13354                 write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13355                 /* SEND_DMA_DESC_FETCHED_CNT read-only */
13356                 /* SEND_DMA_ENG_ERR_STATUS read-only */
13357                 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13358                 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13359                 /* SEND_DMA_ENG_ERR_FORCE leave alone */
13360                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13361                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13362                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13363                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13364                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13365                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13366                 write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13367         }
13368 }
13369
13370 /*
13371  * Expect on entry:
13372  * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13373  */
13374 static void init_rbufs(struct hfi1_devdata *dd)
13375 {
13376         u64 reg;
13377         int count;
13378
13379         /*
13380          * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13381          * clear.
13382          */
13383         count = 0;
13384         while (1) {
13385                 reg = read_csr(dd, RCV_STATUS);
13386                 if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13387                             | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13388                         break;
13389                 /*
13390                  * Give up after 1ms - maximum wait time.
13391                  *
13392                  * RBuf size is 148KiB.  Slowest possible is PCIe Gen1 x1 at
13393                  * 250MB/s bandwidth.  Lower rate to 66% for overhead to get:
13394                  *      148 KB / (66% * 250MB/s) = 920us
13395                  */
13396                 if (count++ > 500) {
13397                         dd_dev_err(dd,
13398                                    "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13399                                    __func__, reg);
13400                         break;
13401                 }
13402                 udelay(2); /* do not busy-wait the CSR */
13403         }
13404
13405         /* start the init - expect RcvCtrl to be 0 */
13406         write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13407
13408         /*
13409          * Read to force the write of Rcvtrl.RxRbufInit.  There is a brief
13410          * period after the write before RcvStatus.RxRbufInitDone is valid.
13411          * The delay in the first run through the loop below is sufficient and
13412          * required before the first read of RcvStatus.RxRbufInintDone.
13413          */
13414         read_csr(dd, RCV_CTRL);
13415
13416         /* wait for the init to finish */
13417         count = 0;
13418         while (1) {
13419                 /* delay is required first time through - see above */
13420                 udelay(2); /* do not busy-wait the CSR */
13421                 reg = read_csr(dd, RCV_STATUS);
13422                 if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13423                         break;
13424
13425                 /* give up after 100us - slowest possible at 33MHz is 73us */
13426                 if (count++ > 50) {
13427                         dd_dev_err(dd,
13428                                    "%s: RcvStatus.RxRbufInit not set, continuing\n",
13429                                    __func__);
13430                         break;
13431                 }
13432         }
13433 }
13434
13435 /* set RXE CSRs to chip reset defaults */
13436 static void reset_rxe_csrs(struct hfi1_devdata *dd)
13437 {
13438         int i, j;
13439
13440         /*
13441          * RXE Kernel CSRs
13442          */
13443         write_csr(dd, RCV_CTRL, 0);
13444         init_rbufs(dd);
13445         /* RCV_STATUS read-only */
13446         /* RCV_CONTEXTS read-only */
13447         /* RCV_ARRAY_CNT read-only */
13448         /* RCV_BUF_SIZE read-only */
13449         write_csr(dd, RCV_BTH_QP, 0);
13450         write_csr(dd, RCV_MULTICAST, 0);
13451         write_csr(dd, RCV_BYPASS, 0);
13452         write_csr(dd, RCV_VL15, 0);
13453         /* this is a clear-down */
13454         write_csr(dd, RCV_ERR_INFO,
13455                   RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13456         /* RCV_ERR_STATUS read-only */
13457         write_csr(dd, RCV_ERR_MASK, 0);
13458         write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13459         /* RCV_ERR_FORCE leave alone */
13460         for (i = 0; i < 32; i++)
13461                 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13462         for (i = 0; i < 4; i++)
13463                 write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13464         for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13465                 write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13466         for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13467                 write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13468         for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++) {
13469                 write_csr(dd, RCV_RSM_CFG + (8 * i), 0);
13470                 write_csr(dd, RCV_RSM_SELECT + (8 * i), 0);
13471                 write_csr(dd, RCV_RSM_MATCH + (8 * i), 0);
13472         }
13473         for (i = 0; i < 32; i++)
13474                 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13475
13476         /*
13477          * RXE Kernel and User Per-Context CSRs
13478          */
13479         for (i = 0; i < dd->chip_rcv_contexts; i++) {
13480                 /* kernel */
13481                 write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13482                 /* RCV_CTXT_STATUS read-only */
13483                 write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13484                 write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13485                 write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13486                 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13487                 write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13488                 write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13489                 write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13490                 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13491                 write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13492                 write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13493
13494                 /* user */
13495                 /* RCV_HDR_TAIL read-only */
13496                 write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13497                 /* RCV_EGR_INDEX_TAIL read-only */
13498                 write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13499                 /* RCV_EGR_OFFSET_TAIL read-only */
13500                 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13501                         write_uctxt_csr(dd, i,
13502                                         RCV_TID_FLOW_TABLE + (8 * j), 0);
13503                 }
13504         }
13505 }
13506
13507 /*
13508  * Set sc2vl tables.
13509  *
13510  * They power on to zeros, so to avoid send context errors
13511  * they need to be set:
13512  *
13513  * SC 0-7 -> VL 0-7 (respectively)
13514  * SC 15  -> VL 15
13515  * otherwise
13516  *        -> VL 0
13517  */
13518 static void init_sc2vl_tables(struct hfi1_devdata *dd)
13519 {
13520         int i;
13521         /* init per architecture spec, constrained by hardware capability */
13522
13523         /* HFI maps sent packets */
13524         write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13525                 0,
13526                 0, 0, 1, 1,
13527                 2, 2, 3, 3,
13528                 4, 4, 5, 5,
13529                 6, 6, 7, 7));
13530         write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13531                 1,
13532                 8, 0, 9, 0,
13533                 10, 0, 11, 0,
13534                 12, 0, 13, 0,
13535                 14, 0, 15, 15));
13536         write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13537                 2,
13538                 16, 0, 17, 0,
13539                 18, 0, 19, 0,
13540                 20, 0, 21, 0,
13541                 22, 0, 23, 0));
13542         write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13543                 3,
13544                 24, 0, 25, 0,
13545                 26, 0, 27, 0,
13546                 28, 0, 29, 0,
13547                 30, 0, 31, 0));
13548
13549         /* DC maps received packets */
13550         write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
13551                 15_0,
13552                 0, 0, 1, 1,  2, 2,  3, 3,  4, 4,  5, 5,  6, 6,  7,  7,
13553                 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
13554         write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
13555                 31_16,
13556                 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
13557                 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
13558
13559         /* initialize the cached sc2vl values consistently with h/w */
13560         for (i = 0; i < 32; i++) {
13561                 if (i < 8 || i == 15)
13562                         *((u8 *)(dd->sc2vl) + i) = (u8)i;
13563                 else
13564                         *((u8 *)(dd->sc2vl) + i) = 0;
13565         }
13566 }
13567
13568 /*
13569  * Read chip sizes and then reset parts to sane, disabled, values.  We cannot
13570  * depend on the chip going through a power-on reset - a driver may be loaded
13571  * and unloaded many times.
13572  *
13573  * Do not write any CSR values to the chip in this routine - there may be
13574  * a reset following the (possible) FLR in this routine.
13575  *
13576  */
13577 static void init_chip(struct hfi1_devdata *dd)
13578 {
13579         int i;
13580
13581         /*
13582          * Put the HFI CSRs in a known state.
13583          * Combine this with a DC reset.
13584          *
13585          * Stop the device from doing anything while we do a
13586          * reset.  We know there are no other active users of
13587          * the device since we are now in charge.  Turn off
13588          * off all outbound and inbound traffic and make sure
13589          * the device does not generate any interrupts.
13590          */
13591
13592         /* disable send contexts and SDMA engines */
13593         write_csr(dd, SEND_CTRL, 0);
13594         for (i = 0; i < dd->chip_send_contexts; i++)
13595                 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13596         for (i = 0; i < dd->chip_sdma_engines; i++)
13597                 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13598         /* disable port (turn off RXE inbound traffic) and contexts */
13599         write_csr(dd, RCV_CTRL, 0);
13600         for (i = 0; i < dd->chip_rcv_contexts; i++)
13601                 write_csr(dd, RCV_CTXT_CTRL, 0);
13602         /* mask all interrupt sources */
13603         for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13604                 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
13605
13606         /*
13607          * DC Reset: do a full DC reset before the register clear.
13608          * A recommended length of time to hold is one CSR read,
13609          * so reread the CceDcCtrl.  Then, hold the DC in reset
13610          * across the clear.
13611          */
13612         write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
13613         (void)read_csr(dd, CCE_DC_CTRL);
13614
13615         if (use_flr) {
13616                 /*
13617                  * A FLR will reset the SPC core and part of the PCIe.
13618                  * The parts that need to be restored have already been
13619                  * saved.
13620                  */
13621                 dd_dev_info(dd, "Resetting CSRs with FLR\n");
13622
13623                 /* do the FLR, the DC reset will remain */
13624                 hfi1_pcie_flr(dd);
13625
13626                 /* restore command and BARs */
13627                 restore_pci_variables(dd);
13628
13629                 if (is_ax(dd)) {
13630                         dd_dev_info(dd, "Resetting CSRs with FLR\n");
13631                         hfi1_pcie_flr(dd);
13632                         restore_pci_variables(dd);
13633                 }
13634         } else {
13635                 dd_dev_info(dd, "Resetting CSRs with writes\n");
13636                 reset_cce_csrs(dd);
13637                 reset_txe_csrs(dd);
13638                 reset_rxe_csrs(dd);
13639                 reset_misc_csrs(dd);
13640         }
13641         /* clear the DC reset */
13642         write_csr(dd, CCE_DC_CTRL, 0);
13643
13644         /* Set the LED off */
13645         setextled(dd, 0);
13646
13647         /*
13648          * Clear the QSFP reset.
13649          * An FLR enforces a 0 on all out pins. The driver does not touch
13650          * ASIC_QSFPn_OUT otherwise.  This leaves RESET_N low and
13651          * anything plugged constantly in reset, if it pays attention
13652          * to RESET_N.
13653          * Prime examples of this are optical cables. Set all pins high.
13654          * I2CCLK and I2CDAT will change per direction, and INT_N and
13655          * MODPRS_N are input only and their value is ignored.
13656          */
13657         write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
13658         write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
13659         init_chip_resources(dd);
13660 }
13661
13662 static void init_early_variables(struct hfi1_devdata *dd)
13663 {
13664         int i;
13665
13666         /* assign link credit variables */
13667         dd->vau = CM_VAU;
13668         dd->link_credits = CM_GLOBAL_CREDITS;
13669         if (is_ax(dd))
13670                 dd->link_credits--;
13671         dd->vcu = cu_to_vcu(hfi1_cu);
13672         /* enough room for 8 MAD packets plus header - 17K */
13673         dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
13674         if (dd->vl15_init > dd->link_credits)
13675                 dd->vl15_init = dd->link_credits;
13676
13677         write_uninitialized_csrs_and_memories(dd);
13678
13679         if (HFI1_CAP_IS_KSET(PKEY_CHECK))
13680                 for (i = 0; i < dd->num_pports; i++) {
13681                         struct hfi1_pportdata *ppd = &dd->pport[i];
13682
13683                         set_partition_keys(ppd);
13684                 }
13685         init_sc2vl_tables(dd);
13686 }
13687
13688 static void init_kdeth_qp(struct hfi1_devdata *dd)
13689 {
13690         /* user changed the KDETH_QP */
13691         if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
13692                 /* out of range or illegal value */
13693                 dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
13694                 kdeth_qp = 0;
13695         }
13696         if (kdeth_qp == 0)      /* not set, or failed range check */
13697                 kdeth_qp = DEFAULT_KDETH_QP;
13698
13699         write_csr(dd, SEND_BTH_QP,
13700                   (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) <<
13701                   SEND_BTH_QP_KDETH_QP_SHIFT);
13702
13703         write_csr(dd, RCV_BTH_QP,
13704                   (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) <<
13705                   RCV_BTH_QP_KDETH_QP_SHIFT);
13706 }
13707
13708 /**
13709  * init_qpmap_table
13710  * @dd - device data
13711  * @first_ctxt - first context
13712  * @last_ctxt - first context
13713  *
13714  * This return sets the qpn mapping table that
13715  * is indexed by qpn[8:1].
13716  *
13717  * The routine will round robin the 256 settings
13718  * from first_ctxt to last_ctxt.
13719  *
13720  * The first/last looks ahead to having specialized
13721  * receive contexts for mgmt and bypass.  Normal
13722  * verbs traffic will assumed to be on a range
13723  * of receive contexts.
13724  */
13725 static void init_qpmap_table(struct hfi1_devdata *dd,
13726                              u32 first_ctxt,
13727                              u32 last_ctxt)
13728 {
13729         u64 reg = 0;
13730         u64 regno = RCV_QP_MAP_TABLE;
13731         int i;
13732         u64 ctxt = first_ctxt;
13733
13734         for (i = 0; i < 256; i++) {
13735                 reg |= ctxt << (8 * (i % 8));
13736                 ctxt++;
13737                 if (ctxt > last_ctxt)
13738                         ctxt = first_ctxt;
13739                 if (i % 8 == 7) {
13740                         write_csr(dd, regno, reg);
13741                         reg = 0;
13742                         regno += 8;
13743                 }
13744         }
13745
13746         add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
13747                         | RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
13748 }
13749
13750 struct rsm_map_table {
13751         u64 map[NUM_MAP_REGS];
13752         unsigned int used;
13753 };
13754
13755 struct rsm_rule_data {
13756         u8 offset;
13757         u8 pkt_type;
13758         u32 field1_off;
13759         u32 field2_off;
13760         u32 index1_off;
13761         u32 index1_width;
13762         u32 index2_off;
13763         u32 index2_width;
13764         u32 mask1;
13765         u32 value1;
13766         u32 mask2;
13767         u32 value2;
13768 };
13769
13770 /*
13771  * Return an initialized RMT map table for users to fill in.  OK if it
13772  * returns NULL, indicating no table.
13773  */
13774 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
13775 {
13776         struct rsm_map_table *rmt;
13777         u8 rxcontext = is_ax(dd) ? 0 : 0xff;  /* 0 is default if a0 ver. */
13778
13779         rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
13780         if (rmt) {
13781                 memset(rmt->map, rxcontext, sizeof(rmt->map));
13782                 rmt->used = 0;
13783         }
13784
13785         return rmt;
13786 }
13787
13788 /*
13789  * Write the final RMT map table to the chip and free the table.  OK if
13790  * table is NULL.
13791  */
13792 static void complete_rsm_map_table(struct hfi1_devdata *dd,
13793                                    struct rsm_map_table *rmt)
13794 {
13795         int i;
13796
13797         if (rmt) {
13798                 /* write table to chip */
13799                 for (i = 0; i < NUM_MAP_REGS; i++)
13800                         write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
13801
13802                 /* enable RSM */
13803                 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
13804         }
13805 }
13806
13807 /*
13808  * Add a receive side mapping rule.
13809  */
13810 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
13811                          struct rsm_rule_data *rrd)
13812 {
13813         write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
13814                   (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
13815                   1ull << rule_index | /* enable bit */
13816                   (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
13817         write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
13818                   (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
13819                   (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
13820                   (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
13821                   (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
13822                   (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
13823                   (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
13824         write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
13825                   (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
13826                   (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
13827                   (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
13828                   (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
13829 }
13830
13831 /* return the number of RSM map table entries that will be used for QOS */
13832 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
13833                            unsigned int *np)
13834 {
13835         int i;
13836         unsigned int m, n;
13837         u8 max_by_vl = 0;
13838
13839         /* is QOS active at all? */
13840         if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
13841             num_vls == 1 ||
13842             krcvqsset <= 1)
13843                 goto no_qos;
13844
13845         /* determine bits for qpn */
13846         for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
13847                 if (krcvqs[i] > max_by_vl)
13848                         max_by_vl = krcvqs[i];
13849         if (max_by_vl > 32)
13850                 goto no_qos;
13851         m = ilog2(__roundup_pow_of_two(max_by_vl));
13852
13853         /* determine bits for vl */
13854         n = ilog2(__roundup_pow_of_two(num_vls));
13855
13856         /* reject if too much is used */
13857         if ((m + n) > 7)
13858                 goto no_qos;
13859
13860         if (mp)
13861                 *mp = m;
13862         if (np)
13863                 *np = n;
13864
13865         return 1 << (m + n);
13866
13867 no_qos:
13868         if (mp)
13869                 *mp = 0;
13870         if (np)
13871                 *np = 0;
13872         return 0;
13873 }
13874
13875 /**
13876  * init_qos - init RX qos
13877  * @dd - device data
13878  * @rmt - RSM map table
13879  *
13880  * This routine initializes Rule 0 and the RSM map table to implement
13881  * quality of service (qos).
13882  *
13883  * If all of the limit tests succeed, qos is applied based on the array
13884  * interpretation of krcvqs where entry 0 is VL0.
13885  *
13886  * The number of vl bits (n) and the number of qpn bits (m) are computed to
13887  * feed both the RSM map table and the single rule.
13888  */
13889 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
13890 {
13891         struct rsm_rule_data rrd;
13892         unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
13893         unsigned int rmt_entries;
13894         u64 reg;
13895
13896         if (!rmt)
13897                 goto bail;
13898         rmt_entries = qos_rmt_entries(dd, &m, &n);
13899         if (rmt_entries == 0)
13900                 goto bail;
13901         qpns_per_vl = 1 << m;
13902
13903         /* enough room in the map table? */
13904         rmt_entries = 1 << (m + n);
13905         if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
13906                 goto bail;
13907
13908         /* add qos entries to the the RSM map table */
13909         for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
13910                 unsigned tctxt;
13911
13912                 for (qpn = 0, tctxt = ctxt;
13913                      krcvqs[i] && qpn < qpns_per_vl; qpn++) {
13914                         unsigned idx, regoff, regidx;
13915
13916                         /* generate the index the hardware will produce */
13917                         idx = rmt->used + ((qpn << n) ^ i);
13918                         regoff = (idx % 8) * 8;
13919                         regidx = idx / 8;
13920                         /* replace default with context number */
13921                         reg = rmt->map[regidx];
13922                         reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
13923                                 << regoff);
13924                         reg |= (u64)(tctxt++) << regoff;
13925                         rmt->map[regidx] = reg;
13926                         if (tctxt == ctxt + krcvqs[i])
13927                                 tctxt = ctxt;
13928                 }
13929                 ctxt += krcvqs[i];
13930         }
13931
13932         rrd.offset = rmt->used;
13933         rrd.pkt_type = 2;
13934         rrd.field1_off = LRH_BTH_MATCH_OFFSET;
13935         rrd.field2_off = LRH_SC_MATCH_OFFSET;
13936         rrd.index1_off = LRH_SC_SELECT_OFFSET;
13937         rrd.index1_width = n;
13938         rrd.index2_off = QPN_SELECT_OFFSET;
13939         rrd.index2_width = m + n;
13940         rrd.mask1 = LRH_BTH_MASK;
13941         rrd.value1 = LRH_BTH_VALUE;
13942         rrd.mask2 = LRH_SC_MASK;
13943         rrd.value2 = LRH_SC_VALUE;
13944
13945         /* add rule 0 */
13946         add_rsm_rule(dd, 0, &rrd);
13947
13948         /* mark RSM map entries as used */
13949         rmt->used += rmt_entries;
13950         /* map everything else to the mcast/err/vl15 context */
13951         init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
13952         dd->qos_shift = n + 1;
13953         return;
13954 bail:
13955         dd->qos_shift = 1;
13956         init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
13957 }
13958
13959 static void init_user_fecn_handling(struct hfi1_devdata *dd,
13960                                     struct rsm_map_table *rmt)
13961 {
13962         struct rsm_rule_data rrd;
13963         u64 reg;
13964         int i, idx, regoff, regidx;
13965         u8 offset;
13966
13967         /* there needs to be enough room in the map table */
13968         if (rmt->used + dd->num_user_contexts >= NUM_MAP_ENTRIES) {
13969                 dd_dev_err(dd, "User FECN handling disabled - too many user contexts allocated\n");
13970                 return;
13971         }
13972
13973         /*
13974          * RSM will extract the destination context as an index into the
13975          * map table.  The destination contexts are a sequential block
13976          * in the range first_user_ctxt...num_rcv_contexts-1 (inclusive).
13977          * Map entries are accessed as offset + extracted value.  Adjust
13978          * the added offset so this sequence can be placed anywhere in
13979          * the table - as long as the entries themselves do not wrap.
13980          * There are only enough bits in offset for the table size, so
13981          * start with that to allow for a "negative" offset.
13982          */
13983         offset = (u8)(NUM_MAP_ENTRIES + (int)rmt->used -
13984                                                 (int)dd->first_user_ctxt);
13985
13986         for (i = dd->first_user_ctxt, idx = rmt->used;
13987                                 i < dd->num_rcv_contexts; i++, idx++) {
13988                 /* replace with identity mapping */
13989                 regoff = (idx % 8) * 8;
13990                 regidx = idx / 8;
13991                 reg = rmt->map[regidx];
13992                 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
13993                 reg |= (u64)i << regoff;
13994                 rmt->map[regidx] = reg;
13995         }
13996
13997         /*
13998          * For RSM intercept of Expected FECN packets:
13999          * o packet type 0 - expected
14000          * o match on F (bit 95), using select/match 1, and
14001          * o match on SH (bit 133), using select/match 2.
14002          *
14003          * Use index 1 to extract the 8-bit receive context from DestQP
14004          * (start at bit 64).  Use that as the RSM map table index.
14005          */
14006         rrd.offset = offset;
14007         rrd.pkt_type = 0;
14008         rrd.field1_off = 95;
14009         rrd.field2_off = 133;
14010         rrd.index1_off = 64;
14011         rrd.index1_width = 8;
14012         rrd.index2_off = 0;
14013         rrd.index2_width = 0;
14014         rrd.mask1 = 1;
14015         rrd.value1 = 1;
14016         rrd.mask2 = 1;
14017         rrd.value2 = 1;
14018
14019         /* add rule 1 */
14020         add_rsm_rule(dd, 1, &rrd);
14021
14022         rmt->used += dd->num_user_contexts;
14023 }
14024
14025 static void init_rxe(struct hfi1_devdata *dd)
14026 {
14027         struct rsm_map_table *rmt;
14028
14029         /* enable all receive errors */
14030         write_csr(dd, RCV_ERR_MASK, ~0ull);
14031
14032         rmt = alloc_rsm_map_table(dd);
14033         /* set up QOS, including the QPN map table */
14034         init_qos(dd, rmt);
14035         init_user_fecn_handling(dd, rmt);
14036         complete_rsm_map_table(dd, rmt);
14037         kfree(rmt);
14038
14039         /*
14040          * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14041          * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14042          * space, PciCfgCap2.MaxPayloadSize in HFI).  There is only one
14043          * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14044          * Max_PayLoad_Size set to its minimum of 128.
14045          *
14046          * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14047          * (64 bytes).  Max_Payload_Size is possibly modified upward in
14048          * tune_pcie_caps() which is called after this routine.
14049          */
14050 }
14051
14052 static void init_other(struct hfi1_devdata *dd)
14053 {
14054         /* enable all CCE errors */
14055         write_csr(dd, CCE_ERR_MASK, ~0ull);
14056         /* enable *some* Misc errors */
14057         write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14058         /* enable all DC errors, except LCB */
14059         write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14060         write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14061 }
14062
14063 /*
14064  * Fill out the given AU table using the given CU.  A CU is defined in terms
14065  * AUs.  The table is a an encoding: given the index, how many AUs does that
14066  * represent?
14067  *
14068  * NOTE: Assumes that the register layout is the same for the
14069  * local and remote tables.
14070  */
14071 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14072                                u32 csr0to3, u32 csr4to7)
14073 {
14074         write_csr(dd, csr0to3,
14075                   0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14076                   1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14077                   2ull * cu <<
14078                   SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14079                   4ull * cu <<
14080                   SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14081         write_csr(dd, csr4to7,
14082                   8ull * cu <<
14083                   SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14084                   16ull * cu <<
14085                   SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14086                   32ull * cu <<
14087                   SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14088                   64ull * cu <<
14089                   SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14090 }
14091
14092 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14093 {
14094         assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14095                            SEND_CM_LOCAL_AU_TABLE4_TO7);
14096 }
14097
14098 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14099 {
14100         assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14101                            SEND_CM_REMOTE_AU_TABLE4_TO7);
14102 }
14103
14104 static void init_txe(struct hfi1_devdata *dd)
14105 {
14106         int i;
14107
14108         /* enable all PIO, SDMA, general, and Egress errors */
14109         write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14110         write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14111         write_csr(dd, SEND_ERR_MASK, ~0ull);
14112         write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14113
14114         /* enable all per-context and per-SDMA engine errors */
14115         for (i = 0; i < dd->chip_send_contexts; i++)
14116                 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14117         for (i = 0; i < dd->chip_sdma_engines; i++)
14118                 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14119
14120         /* set the local CU to AU mapping */
14121         assign_local_cm_au_table(dd, dd->vcu);
14122
14123         /*
14124          * Set reasonable default for Credit Return Timer
14125          * Don't set on Simulator - causes it to choke.
14126          */
14127         if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14128                 write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14129 }
14130
14131 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt, u16 jkey)
14132 {
14133         struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
14134         unsigned sctxt;
14135         int ret = 0;
14136         u64 reg;
14137
14138         if (!rcd || !rcd->sc) {
14139                 ret = -EINVAL;
14140                 goto done;
14141         }
14142         sctxt = rcd->sc->hw_context;
14143         reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14144                 ((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14145                  SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14146         /* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14147         if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14148                 reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14149         write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14150         /*
14151          * Enable send-side J_KEY integrity check, unless this is A0 h/w
14152          */
14153         if (!is_ax(dd)) {
14154                 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14155                 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14156                 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14157         }
14158
14159         /* Enable J_KEY check on receive context. */
14160         reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14161                 ((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14162                  RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14163         write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, reg);
14164 done:
14165         return ret;
14166 }
14167
14168 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt)
14169 {
14170         struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
14171         unsigned sctxt;
14172         int ret = 0;
14173         u64 reg;
14174
14175         if (!rcd || !rcd->sc) {
14176                 ret = -EINVAL;
14177                 goto done;
14178         }
14179         sctxt = rcd->sc->hw_context;
14180         write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14181         /*
14182          * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14183          * This check would not have been enabled for A0 h/w, see
14184          * set_ctxt_jkey().
14185          */
14186         if (!is_ax(dd)) {
14187                 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14188                 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14189                 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14190         }
14191         /* Turn off the J_KEY on the receive side */
14192         write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, 0);
14193 done:
14194         return ret;
14195 }
14196
14197 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt, u16 pkey)
14198 {
14199         struct hfi1_ctxtdata *rcd;
14200         unsigned sctxt;
14201         int ret = 0;
14202         u64 reg;
14203
14204         if (ctxt < dd->num_rcv_contexts) {
14205                 rcd = dd->rcd[ctxt];
14206         } else {
14207                 ret = -EINVAL;
14208                 goto done;
14209         }
14210         if (!rcd || !rcd->sc) {
14211                 ret = -EINVAL;
14212                 goto done;
14213         }
14214         sctxt = rcd->sc->hw_context;
14215         reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14216                 SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14217         write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14218         reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14219         reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14220         reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14221         write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14222 done:
14223         return ret;
14224 }
14225
14226 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt)
14227 {
14228         struct hfi1_ctxtdata *rcd;
14229         unsigned sctxt;
14230         int ret = 0;
14231         u64 reg;
14232
14233         if (ctxt < dd->num_rcv_contexts) {
14234                 rcd = dd->rcd[ctxt];
14235         } else {
14236                 ret = -EINVAL;
14237                 goto done;
14238         }
14239         if (!rcd || !rcd->sc) {
14240                 ret = -EINVAL;
14241                 goto done;
14242         }
14243         sctxt = rcd->sc->hw_context;
14244         reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
14245         reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14246         write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
14247         write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14248 done:
14249         return ret;
14250 }
14251
14252 /*
14253  * Start doing the clean up the the chip. Our clean up happens in multiple
14254  * stages and this is just the first.
14255  */
14256 void hfi1_start_cleanup(struct hfi1_devdata *dd)
14257 {
14258         aspm_exit(dd);
14259         free_cntrs(dd);
14260         free_rcverr(dd);
14261         clean_up_interrupts(dd);
14262         finish_chip_resources(dd);
14263 }
14264
14265 #define HFI_BASE_GUID(dev) \
14266         ((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14267
14268 /*
14269  * Information can be shared between the two HFIs on the same ASIC
14270  * in the same OS.  This function finds the peer device and sets
14271  * up a shared structure.
14272  */
14273 static int init_asic_data(struct hfi1_devdata *dd)
14274 {
14275         unsigned long flags;
14276         struct hfi1_devdata *tmp, *peer = NULL;
14277         struct hfi1_asic_data *asic_data;
14278         int ret = 0;
14279
14280         /* pre-allocate the asic structure in case we are the first device */
14281         asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14282         if (!asic_data)
14283                 return -ENOMEM;
14284
14285         spin_lock_irqsave(&hfi1_devs_lock, flags);
14286         /* Find our peer device */
14287         list_for_each_entry(tmp, &hfi1_dev_list, list) {
14288                 if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
14289                     dd->unit != tmp->unit) {
14290                         peer = tmp;
14291                         break;
14292                 }
14293         }
14294
14295         if (peer) {
14296                 /* use already allocated structure */
14297                 dd->asic_data = peer->asic_data;
14298                 kfree(asic_data);
14299         } else {
14300                 dd->asic_data = asic_data;
14301                 mutex_init(&dd->asic_data->asic_resource_mutex);
14302         }
14303         dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14304         spin_unlock_irqrestore(&hfi1_devs_lock, flags);
14305
14306         /* first one through - set up i2c devices */
14307         if (!peer)
14308                 ret = set_up_i2c(dd, dd->asic_data);
14309
14310         return ret;
14311 }
14312
14313 /*
14314  * Set dd->boardname.  Use a generic name if a name is not returned from
14315  * EFI variable space.
14316  *
14317  * Return 0 on success, -ENOMEM if space could not be allocated.
14318  */
14319 static int obtain_boardname(struct hfi1_devdata *dd)
14320 {
14321         /* generic board description */
14322         const char generic[] =
14323                 "Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14324         unsigned long size;
14325         int ret;
14326
14327         ret = read_hfi1_efi_var(dd, "description", &size,
14328                                 (void **)&dd->boardname);
14329         if (ret) {
14330                 dd_dev_info(dd, "Board description not found\n");
14331                 /* use generic description */
14332                 dd->boardname = kstrdup(generic, GFP_KERNEL);
14333                 if (!dd->boardname)
14334                         return -ENOMEM;
14335         }
14336         return 0;
14337 }
14338
14339 /*
14340  * Check the interrupt registers to make sure that they are mapped correctly.
14341  * It is intended to help user identify any mismapping by VMM when the driver
14342  * is running in a VM. This function should only be called before interrupt
14343  * is set up properly.
14344  *
14345  * Return 0 on success, -EINVAL on failure.
14346  */
14347 static int check_int_registers(struct hfi1_devdata *dd)
14348 {
14349         u64 reg;
14350         u64 all_bits = ~(u64)0;
14351         u64 mask;
14352
14353         /* Clear CceIntMask[0] to avoid raising any interrupts */
14354         mask = read_csr(dd, CCE_INT_MASK);
14355         write_csr(dd, CCE_INT_MASK, 0ull);
14356         reg = read_csr(dd, CCE_INT_MASK);
14357         if (reg)
14358                 goto err_exit;
14359
14360         /* Clear all interrupt status bits */
14361         write_csr(dd, CCE_INT_CLEAR, all_bits);
14362         reg = read_csr(dd, CCE_INT_STATUS);
14363         if (reg)
14364                 goto err_exit;
14365
14366         /* Set all interrupt status bits */
14367         write_csr(dd, CCE_INT_FORCE, all_bits);
14368         reg = read_csr(dd, CCE_INT_STATUS);
14369         if (reg != all_bits)
14370                 goto err_exit;
14371
14372         /* Restore the interrupt mask */
14373         write_csr(dd, CCE_INT_CLEAR, all_bits);
14374         write_csr(dd, CCE_INT_MASK, mask);
14375
14376         return 0;
14377 err_exit:
14378         write_csr(dd, CCE_INT_MASK, mask);
14379         dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
14380         return -EINVAL;
14381 }
14382
14383 /**
14384  * Allocate and initialize the device structure for the hfi.
14385  * @dev: the pci_dev for hfi1_ib device
14386  * @ent: pci_device_id struct for this dev
14387  *
14388  * Also allocates, initializes, and returns the devdata struct for this
14389  * device instance
14390  *
14391  * This is global, and is called directly at init to set up the
14392  * chip-specific function pointers for later use.
14393  */
14394 struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
14395                                   const struct pci_device_id *ent)
14396 {
14397         struct hfi1_devdata *dd;
14398         struct hfi1_pportdata *ppd;
14399         u64 reg;
14400         int i, ret;
14401         static const char * const inames[] = { /* implementation names */
14402                 "RTL silicon",
14403                 "RTL VCS simulation",
14404                 "RTL FPGA emulation",
14405                 "Functional simulator"
14406         };
14407         struct pci_dev *parent = pdev->bus->self;
14408
14409         dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
14410                                 sizeof(struct hfi1_pportdata));
14411         if (IS_ERR(dd))
14412                 goto bail;
14413         ppd = dd->pport;
14414         for (i = 0; i < dd->num_pports; i++, ppd++) {
14415                 int vl;
14416                 /* init common fields */
14417                 hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
14418                 /* DC supports 4 link widths */
14419                 ppd->link_width_supported =
14420                         OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
14421                         OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
14422                 ppd->link_width_downgrade_supported =
14423                         ppd->link_width_supported;
14424                 /* start out enabling only 4X */
14425                 ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
14426                 ppd->link_width_downgrade_enabled =
14427                                         ppd->link_width_downgrade_supported;
14428                 /* link width active is 0 when link is down */
14429                 /* link width downgrade active is 0 when link is down */
14430
14431                 if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
14432                     num_vls > HFI1_MAX_VLS_SUPPORTED) {
14433                         hfi1_early_err(&pdev->dev,
14434                                        "Invalid num_vls %u, using %u VLs\n",
14435                                     num_vls, HFI1_MAX_VLS_SUPPORTED);
14436                         num_vls = HFI1_MAX_VLS_SUPPORTED;
14437                 }
14438                 ppd->vls_supported = num_vls;
14439                 ppd->vls_operational = ppd->vls_supported;
14440                 ppd->actual_vls_operational = ppd->vls_supported;
14441                 /* Set the default MTU. */
14442                 for (vl = 0; vl < num_vls; vl++)
14443                         dd->vld[vl].mtu = hfi1_max_mtu;
14444                 dd->vld[15].mtu = MAX_MAD_PACKET;
14445                 /*
14446                  * Set the initial values to reasonable default, will be set
14447                  * for real when link is up.
14448                  */
14449                 ppd->lstate = IB_PORT_DOWN;
14450                 ppd->overrun_threshold = 0x4;
14451                 ppd->phy_error_threshold = 0xf;
14452                 ppd->port_crc_mode_enabled = link_crc_mask;
14453                 /* initialize supported LTP CRC mode */
14454                 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
14455                 /* initialize enabled LTP CRC mode */
14456                 ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
14457                 /* start in offline */
14458                 ppd->host_link_state = HLS_DN_OFFLINE;
14459                 init_vl_arb_caches(ppd);
14460                 ppd->last_pstate = 0xff; /* invalid value */
14461         }
14462
14463         dd->link_default = HLS_DN_POLL;
14464
14465         /*
14466          * Do remaining PCIe setup and save PCIe values in dd.
14467          * Any error printing is already done by the init code.
14468          * On return, we have the chip mapped.
14469          */
14470         ret = hfi1_pcie_ddinit(dd, pdev, ent);
14471         if (ret < 0)
14472                 goto bail_free;
14473
14474         /* verify that reads actually work, save revision for reset check */
14475         dd->revision = read_csr(dd, CCE_REVISION);
14476         if (dd->revision == ~(u64)0) {
14477                 dd_dev_err(dd, "cannot read chip CSRs\n");
14478                 ret = -EINVAL;
14479                 goto bail_cleanup;
14480         }
14481         dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
14482                         & CCE_REVISION_CHIP_REV_MAJOR_MASK;
14483         dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
14484                         & CCE_REVISION_CHIP_REV_MINOR_MASK;
14485
14486         /*
14487          * Check interrupt registers mapping if the driver has no access to
14488          * the upstream component. In this case, it is likely that the driver
14489          * is running in a VM.
14490          */
14491         if (!parent) {
14492                 ret = check_int_registers(dd);
14493                 if (ret)
14494                         goto bail_cleanup;
14495         }
14496
14497         /*
14498          * obtain the hardware ID - NOT related to unit, which is a
14499          * software enumeration
14500          */
14501         reg = read_csr(dd, CCE_REVISION2);
14502         dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
14503                                         & CCE_REVISION2_HFI_ID_MASK;
14504         /* the variable size will remove unwanted bits */
14505         dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
14506         dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
14507         dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
14508                     dd->icode < ARRAY_SIZE(inames) ?
14509                     inames[dd->icode] : "unknown", (int)dd->irev);
14510
14511         /* speeds the hardware can support */
14512         dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
14513         /* speeds allowed to run at */
14514         dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
14515         /* give a reasonable active value, will be set on link up */
14516         dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
14517
14518         dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS);
14519         dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS);
14520         dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES);
14521         dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE);
14522         dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE);
14523         /* fix up link widths for emulation _p */
14524         ppd = dd->pport;
14525         if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
14526                 ppd->link_width_supported =
14527                         ppd->link_width_enabled =
14528                         ppd->link_width_downgrade_supported =
14529                         ppd->link_width_downgrade_enabled =
14530                                 OPA_LINK_WIDTH_1X;
14531         }
14532         /* insure num_vls isn't larger than number of sdma engines */
14533         if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) {
14534                 dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
14535                            num_vls, dd->chip_sdma_engines);
14536                 num_vls = dd->chip_sdma_engines;
14537                 ppd->vls_supported = dd->chip_sdma_engines;
14538                 ppd->vls_operational = ppd->vls_supported;
14539         }
14540
14541         /*
14542          * Convert the ns parameter to the 64 * cclocks used in the CSR.
14543          * Limit the max if larger than the field holds.  If timeout is
14544          * non-zero, then the calculated field will be at least 1.
14545          *
14546          * Must be after icode is set up - the cclock rate depends
14547          * on knowing the hardware being used.
14548          */
14549         dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
14550         if (dd->rcv_intr_timeout_csr >
14551                         RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
14552                 dd->rcv_intr_timeout_csr =
14553                         RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
14554         else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
14555                 dd->rcv_intr_timeout_csr = 1;
14556
14557         /* needs to be done before we look for the peer device */
14558         read_guid(dd);
14559
14560         /* set up shared ASIC data with peer device */
14561         ret = init_asic_data(dd);
14562         if (ret)
14563                 goto bail_cleanup;
14564
14565         /* obtain chip sizes, reset chip CSRs */
14566         init_chip(dd);
14567
14568         /* read in the PCIe link speed information */
14569         ret = pcie_speeds(dd);
14570         if (ret)
14571                 goto bail_cleanup;
14572
14573         /* Needs to be called before hfi1_firmware_init */
14574         get_platform_config(dd);
14575
14576         /* read in firmware */
14577         ret = hfi1_firmware_init(dd);
14578         if (ret)
14579                 goto bail_cleanup;
14580
14581         /*
14582          * In general, the PCIe Gen3 transition must occur after the
14583          * chip has been idled (so it won't initiate any PCIe transactions
14584          * e.g. an interrupt) and before the driver changes any registers
14585          * (the transition will reset the registers).
14586          *
14587          * In particular, place this call after:
14588          * - init_chip()     - the chip will not initiate any PCIe transactions
14589          * - pcie_speeds()   - reads the current link speed
14590          * - hfi1_firmware_init() - the needed firmware is ready to be
14591          *                          downloaded
14592          */
14593         ret = do_pcie_gen3_transition(dd);
14594         if (ret)
14595                 goto bail_cleanup;
14596
14597         /* start setting dd values and adjusting CSRs */
14598         init_early_variables(dd);
14599
14600         parse_platform_config(dd);
14601
14602         ret = obtain_boardname(dd);
14603         if (ret)
14604                 goto bail_cleanup;
14605
14606         snprintf(dd->boardversion, BOARD_VERS_MAX,
14607                  "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
14608                  HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
14609                  (u32)dd->majrev,
14610                  (u32)dd->minrev,
14611                  (dd->revision >> CCE_REVISION_SW_SHIFT)
14612                     & CCE_REVISION_SW_MASK);
14613
14614         ret = set_up_context_variables(dd);
14615         if (ret)
14616                 goto bail_cleanup;
14617
14618         /* set initial RXE CSRs */
14619         init_rxe(dd);
14620         /* set initial TXE CSRs */
14621         init_txe(dd);
14622         /* set initial non-RXE, non-TXE CSRs */
14623         init_other(dd);
14624         /* set up KDETH QP prefix in both RX and TX CSRs */
14625         init_kdeth_qp(dd);
14626
14627         ret = hfi1_dev_affinity_init(dd);
14628         if (ret)
14629                 goto bail_cleanup;
14630
14631         /* send contexts must be set up before receive contexts */
14632         ret = init_send_contexts(dd);
14633         if (ret)
14634                 goto bail_cleanup;
14635
14636         ret = hfi1_create_ctxts(dd);
14637         if (ret)
14638                 goto bail_cleanup;
14639
14640         dd->rcvhdrsize = DEFAULT_RCVHDRSIZE;
14641         /*
14642          * rcd[0] is guaranteed to be valid by this point. Also, all
14643          * context are using the same value, as per the module parameter.
14644          */
14645         dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
14646
14647         ret = init_pervl_scs(dd);
14648         if (ret)
14649                 goto bail_cleanup;
14650
14651         /* sdma init */
14652         for (i = 0; i < dd->num_pports; ++i) {
14653                 ret = sdma_init(dd, i);
14654                 if (ret)
14655                         goto bail_cleanup;
14656         }
14657
14658         /* use contexts created by hfi1_create_ctxts */
14659         ret = set_up_interrupts(dd);
14660         if (ret)
14661                 goto bail_cleanup;
14662
14663         /* set up LCB access - must be after set_up_interrupts() */
14664         init_lcb_access(dd);
14665
14666         /*
14667          * Serial number is created from the base guid:
14668          * [27:24] = base guid [38:35]
14669          * [23: 0] = base guid [23: 0]
14670          */
14671         snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
14672                  (dd->base_guid & 0xFFFFFF) |
14673                      ((dd->base_guid >> 11) & 0xF000000));
14674
14675         dd->oui1 = dd->base_guid >> 56 & 0xFF;
14676         dd->oui2 = dd->base_guid >> 48 & 0xFF;
14677         dd->oui3 = dd->base_guid >> 40 & 0xFF;
14678
14679         ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
14680         if (ret)
14681                 goto bail_clear_intr;
14682
14683         thermal_init(dd);
14684
14685         ret = init_cntrs(dd);
14686         if (ret)
14687                 goto bail_clear_intr;
14688
14689         ret = init_rcverr(dd);
14690         if (ret)
14691                 goto bail_free_cntrs;
14692
14693         ret = eprom_init(dd);
14694         if (ret)
14695                 goto bail_free_rcverr;
14696
14697         goto bail;
14698
14699 bail_free_rcverr:
14700         free_rcverr(dd);
14701 bail_free_cntrs:
14702         free_cntrs(dd);
14703 bail_clear_intr:
14704         clean_up_interrupts(dd);
14705 bail_cleanup:
14706         hfi1_pcie_ddcleanup(dd);
14707 bail_free:
14708         hfi1_free_devdata(dd);
14709         dd = ERR_PTR(ret);
14710 bail:
14711         return dd;
14712 }
14713
14714 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
14715                         u32 dw_len)
14716 {
14717         u32 delta_cycles;
14718         u32 current_egress_rate = ppd->current_egress_rate;
14719         /* rates here are in units of 10^6 bits/sec */
14720
14721         if (desired_egress_rate == -1)
14722                 return 0; /* shouldn't happen */
14723
14724         if (desired_egress_rate >= current_egress_rate)
14725                 return 0; /* we can't help go faster, only slower */
14726
14727         delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
14728                         egress_cycles(dw_len * 4, current_egress_rate);
14729
14730         return (u16)delta_cycles;
14731 }
14732
14733 /**
14734  * create_pbc - build a pbc for transmission
14735  * @flags: special case flags or-ed in built pbc
14736  * @srate: static rate
14737  * @vl: vl
14738  * @dwlen: dword length (header words + data words + pbc words)
14739  *
14740  * Create a PBC with the given flags, rate, VL, and length.
14741  *
14742  * NOTE: The PBC created will not insert any HCRC - all callers but one are
14743  * for verbs, which does not use this PSM feature.  The lone other caller
14744  * is for the diagnostic interface which calls this if the user does not
14745  * supply their own PBC.
14746  */
14747 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
14748                u32 dw_len)
14749 {
14750         u64 pbc, delay = 0;
14751
14752         if (unlikely(srate_mbs))
14753                 delay = delay_cycles(ppd, srate_mbs, dw_len);
14754
14755         pbc = flags
14756                 | (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
14757                 | ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
14758                 | (vl & PBC_VL_MASK) << PBC_VL_SHIFT
14759                 | (dw_len & PBC_LENGTH_DWS_MASK)
14760                         << PBC_LENGTH_DWS_SHIFT;
14761
14762         return pbc;
14763 }
14764
14765 #define SBUS_THERMAL    0x4f
14766 #define SBUS_THERM_MONITOR_MODE 0x1
14767
14768 #define THERM_FAILURE(dev, ret, reason) \
14769         dd_dev_err((dd),                                                \
14770                    "Thermal sensor initialization failed: %s (%d)\n",   \
14771                    (reason), (ret))
14772
14773 /*
14774  * Initialize the thermal sensor.
14775  *
14776  * After initialization, enable polling of thermal sensor through
14777  * SBus interface. In order for this to work, the SBus Master
14778  * firmware has to be loaded due to the fact that the HW polling
14779  * logic uses SBus interrupts, which are not supported with
14780  * default firmware. Otherwise, no data will be returned through
14781  * the ASIC_STS_THERM CSR.
14782  */
14783 static int thermal_init(struct hfi1_devdata *dd)
14784 {
14785         int ret = 0;
14786
14787         if (dd->icode != ICODE_RTL_SILICON ||
14788             check_chip_resource(dd, CR_THERM_INIT, NULL))
14789                 return ret;
14790
14791         ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
14792         if (ret) {
14793                 THERM_FAILURE(dd, ret, "Acquire SBus");
14794                 return ret;
14795         }
14796
14797         dd_dev_info(dd, "Initializing thermal sensor\n");
14798         /* Disable polling of thermal readings */
14799         write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
14800         msleep(100);
14801         /* Thermal Sensor Initialization */
14802         /*    Step 1: Reset the Thermal SBus Receiver */
14803         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14804                                 RESET_SBUS_RECEIVER, 0);
14805         if (ret) {
14806                 THERM_FAILURE(dd, ret, "Bus Reset");
14807                 goto done;
14808         }
14809         /*    Step 2: Set Reset bit in Thermal block */
14810         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14811                                 WRITE_SBUS_RECEIVER, 0x1);
14812         if (ret) {
14813                 THERM_FAILURE(dd, ret, "Therm Block Reset");
14814                 goto done;
14815         }
14816         /*    Step 3: Write clock divider value (100MHz -> 2MHz) */
14817         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
14818                                 WRITE_SBUS_RECEIVER, 0x32);
14819         if (ret) {
14820                 THERM_FAILURE(dd, ret, "Write Clock Div");
14821                 goto done;
14822         }
14823         /*    Step 4: Select temperature mode */
14824         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
14825                                 WRITE_SBUS_RECEIVER,
14826                                 SBUS_THERM_MONITOR_MODE);
14827         if (ret) {
14828                 THERM_FAILURE(dd, ret, "Write Mode Sel");
14829                 goto done;
14830         }
14831         /*    Step 5: De-assert block reset and start conversion */
14832         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14833                                 WRITE_SBUS_RECEIVER, 0x2);
14834         if (ret) {
14835                 THERM_FAILURE(dd, ret, "Write Reset Deassert");
14836                 goto done;
14837         }
14838         /*    Step 5.1: Wait for first conversion (21.5ms per spec) */
14839         msleep(22);
14840
14841         /* Enable polling of thermal readings */
14842         write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
14843
14844         /* Set initialized flag */
14845         ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
14846         if (ret)
14847                 THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
14848
14849 done:
14850         release_chip_resource(dd, CR_SBUS);
14851         return ret;
14852 }
14853
14854 static void handle_temp_err(struct hfi1_devdata *dd)
14855 {
14856         struct hfi1_pportdata *ppd = &dd->pport[0];
14857         /*
14858          * Thermal Critical Interrupt
14859          * Put the device into forced freeze mode, take link down to
14860          * offline, and put DC into reset.
14861          */
14862         dd_dev_emerg(dd,
14863                      "Critical temperature reached! Forcing device into freeze mode!\n");
14864         dd->flags |= HFI1_FORCED_FREEZE;
14865         start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
14866         /*
14867          * Shut DC down as much and as quickly as possible.
14868          *
14869          * Step 1: Take the link down to OFFLINE. This will cause the
14870          *         8051 to put the Serdes in reset. However, we don't want to
14871          *         go through the entire link state machine since we want to
14872          *         shutdown ASAP. Furthermore, this is not a graceful shutdown
14873          *         but rather an attempt to save the chip.
14874          *         Code below is almost the same as quiet_serdes() but avoids
14875          *         all the extra work and the sleeps.
14876          */
14877         ppd->driver_link_ready = 0;
14878         ppd->link_enabled = 0;
14879         set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
14880                                 PLS_OFFLINE);
14881         /*
14882          * Step 2: Shutdown LCB and 8051
14883          *         After shutdown, do not restore DC_CFG_RESET value.
14884          */
14885         dc_shutdown(dd);
14886 }