Merge tag 'mac80211-for-davem-2016-06-09' of git://git.kernel.org/pub/scm/linux/kerne...
[cascardo/linux.git] / drivers / infiniband / hw / hfi1 / sdma.c
1 /*
2  * Copyright(c) 2015, 2016 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 #include <linux/spinlock.h>
49 #include <linux/seqlock.h>
50 #include <linux/netdevice.h>
51 #include <linux/moduleparam.h>
52 #include <linux/bitops.h>
53 #include <linux/timer.h>
54 #include <linux/vmalloc.h>
55 #include <linux/highmem.h>
56
57 #include "hfi.h"
58 #include "common.h"
59 #include "qp.h"
60 #include "sdma.h"
61 #include "iowait.h"
62 #include "trace.h"
63
64 /* must be a power of 2 >= 64 <= 32768 */
65 #define SDMA_DESCQ_CNT 2048
66 #define SDMA_DESC_INTR 64
67 #define INVALID_TAIL 0xffff
68
69 static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
70 module_param(sdma_descq_cnt, uint, S_IRUGO);
71 MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
72
73 static uint sdma_idle_cnt = 250;
74 module_param(sdma_idle_cnt, uint, S_IRUGO);
75 MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
76
77 uint mod_num_sdma;
78 module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
79 MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
80
81 static uint sdma_desct_intr = SDMA_DESC_INTR;
82 module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
83 MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
84
85 #define SDMA_WAIT_BATCH_SIZE 20
86 /* max wait time for a SDMA engine to indicate it has halted */
87 #define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
88 /* all SDMA engine errors that cause a halt */
89
90 #define SD(name) SEND_DMA_##name
91 #define ALL_SDMA_ENG_HALT_ERRS \
92         (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
93         | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
94         | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
95         | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
96         | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
97         | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
98         | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
99         | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
100         | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
101         | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
102         | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
103         | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
104         | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
105         | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
106         | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
107         | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
108         | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
109         | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
110
111 /* sdma_sendctrl operations */
112 #define SDMA_SENDCTRL_OP_ENABLE    BIT(0)
113 #define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
114 #define SDMA_SENDCTRL_OP_HALT      BIT(2)
115 #define SDMA_SENDCTRL_OP_CLEANUP   BIT(3)
116
117 /* handle long defines */
118 #define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
119 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
120 #define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
121 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
122
123 static const char * const sdma_state_names[] = {
124         [sdma_state_s00_hw_down]                = "s00_HwDown",
125         [sdma_state_s10_hw_start_up_halt_wait]  = "s10_HwStartUpHaltWait",
126         [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
127         [sdma_state_s20_idle]                   = "s20_Idle",
128         [sdma_state_s30_sw_clean_up_wait]       = "s30_SwCleanUpWait",
129         [sdma_state_s40_hw_clean_up_wait]       = "s40_HwCleanUpWait",
130         [sdma_state_s50_hw_halt_wait]           = "s50_HwHaltWait",
131         [sdma_state_s60_idle_halt_wait]         = "s60_IdleHaltWait",
132         [sdma_state_s80_hw_freeze]              = "s80_HwFreeze",
133         [sdma_state_s82_freeze_sw_clean]        = "s82_FreezeSwClean",
134         [sdma_state_s99_running]                = "s99_Running",
135 };
136
137 #ifdef CONFIG_SDMA_VERBOSITY
138 static const char * const sdma_event_names[] = {
139         [sdma_event_e00_go_hw_down]   = "e00_GoHwDown",
140         [sdma_event_e10_go_hw_start]  = "e10_GoHwStart",
141         [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
142         [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
143         [sdma_event_e30_go_running]   = "e30_GoRunning",
144         [sdma_event_e40_sw_cleaned]   = "e40_SwCleaned",
145         [sdma_event_e50_hw_cleaned]   = "e50_HwCleaned",
146         [sdma_event_e60_hw_halted]    = "e60_HwHalted",
147         [sdma_event_e70_go_idle]      = "e70_GoIdle",
148         [sdma_event_e80_hw_freeze]    = "e80_HwFreeze",
149         [sdma_event_e81_hw_frozen]    = "e81_HwFrozen",
150         [sdma_event_e82_hw_unfreeze]  = "e82_HwUnfreeze",
151         [sdma_event_e85_link_down]    = "e85_LinkDown",
152         [sdma_event_e90_sw_halted]    = "e90_SwHalted",
153 };
154 #endif
155
156 static const struct sdma_set_state_action sdma_action_table[] = {
157         [sdma_state_s00_hw_down] = {
158                 .go_s99_running_tofalse = 1,
159                 .op_enable = 0,
160                 .op_intenable = 0,
161                 .op_halt = 0,
162                 .op_cleanup = 0,
163         },
164         [sdma_state_s10_hw_start_up_halt_wait] = {
165                 .op_enable = 0,
166                 .op_intenable = 0,
167                 .op_halt = 1,
168                 .op_cleanup = 0,
169         },
170         [sdma_state_s15_hw_start_up_clean_wait] = {
171                 .op_enable = 0,
172                 .op_intenable = 1,
173                 .op_halt = 0,
174                 .op_cleanup = 1,
175         },
176         [sdma_state_s20_idle] = {
177                 .op_enable = 0,
178                 .op_intenable = 1,
179                 .op_halt = 0,
180                 .op_cleanup = 0,
181         },
182         [sdma_state_s30_sw_clean_up_wait] = {
183                 .op_enable = 0,
184                 .op_intenable = 0,
185                 .op_halt = 0,
186                 .op_cleanup = 0,
187         },
188         [sdma_state_s40_hw_clean_up_wait] = {
189                 .op_enable = 0,
190                 .op_intenable = 0,
191                 .op_halt = 0,
192                 .op_cleanup = 1,
193         },
194         [sdma_state_s50_hw_halt_wait] = {
195                 .op_enable = 0,
196                 .op_intenable = 0,
197                 .op_halt = 0,
198                 .op_cleanup = 0,
199         },
200         [sdma_state_s60_idle_halt_wait] = {
201                 .go_s99_running_tofalse = 1,
202                 .op_enable = 0,
203                 .op_intenable = 0,
204                 .op_halt = 1,
205                 .op_cleanup = 0,
206         },
207         [sdma_state_s80_hw_freeze] = {
208                 .op_enable = 0,
209                 .op_intenable = 0,
210                 .op_halt = 0,
211                 .op_cleanup = 0,
212         },
213         [sdma_state_s82_freeze_sw_clean] = {
214                 .op_enable = 0,
215                 .op_intenable = 0,
216                 .op_halt = 0,
217                 .op_cleanup = 0,
218         },
219         [sdma_state_s99_running] = {
220                 .op_enable = 1,
221                 .op_intenable = 1,
222                 .op_halt = 0,
223                 .op_cleanup = 0,
224                 .go_s99_running_totrue = 1,
225         },
226 };
227
228 #define SDMA_TAIL_UPDATE_THRESH 0x1F
229
230 /* declare all statics here rather than keep sorting */
231 static void sdma_complete(struct kref *);
232 static void sdma_finalput(struct sdma_state *);
233 static void sdma_get(struct sdma_state *);
234 static void sdma_hw_clean_up_task(unsigned long);
235 static void sdma_put(struct sdma_state *);
236 static void sdma_set_state(struct sdma_engine *, enum sdma_states);
237 static void sdma_start_hw_clean_up(struct sdma_engine *);
238 static void sdma_sw_clean_up_task(unsigned long);
239 static void sdma_sendctrl(struct sdma_engine *, unsigned);
240 static void init_sdma_regs(struct sdma_engine *, u32, uint);
241 static void sdma_process_event(
242         struct sdma_engine *sde,
243         enum sdma_events event);
244 static void __sdma_process_event(
245         struct sdma_engine *sde,
246         enum sdma_events event);
247 static void dump_sdma_state(struct sdma_engine *sde);
248 static void sdma_make_progress(struct sdma_engine *sde, u64 status);
249 static void sdma_desc_avail(struct sdma_engine *sde, unsigned avail);
250 static void sdma_flush_descq(struct sdma_engine *sde);
251
252 /**
253  * sdma_state_name() - return state string from enum
254  * @state: state
255  */
256 static const char *sdma_state_name(enum sdma_states state)
257 {
258         return sdma_state_names[state];
259 }
260
261 static void sdma_get(struct sdma_state *ss)
262 {
263         kref_get(&ss->kref);
264 }
265
266 static void sdma_complete(struct kref *kref)
267 {
268         struct sdma_state *ss =
269                 container_of(kref, struct sdma_state, kref);
270
271         complete(&ss->comp);
272 }
273
274 static void sdma_put(struct sdma_state *ss)
275 {
276         kref_put(&ss->kref, sdma_complete);
277 }
278
279 static void sdma_finalput(struct sdma_state *ss)
280 {
281         sdma_put(ss);
282         wait_for_completion(&ss->comp);
283 }
284
285 static inline void write_sde_csr(
286         struct sdma_engine *sde,
287         u32 offset0,
288         u64 value)
289 {
290         write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
291 }
292
293 static inline u64 read_sde_csr(
294         struct sdma_engine *sde,
295         u32 offset0)
296 {
297         return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
298 }
299
300 /*
301  * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
302  * sdma engine 'sde' to drop to 0.
303  */
304 static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
305                                         int pause)
306 {
307         u64 off = 8 * sde->this_idx;
308         struct hfi1_devdata *dd = sde->dd;
309         int lcnt = 0;
310         u64 reg_prev;
311         u64 reg = 0;
312
313         while (1) {
314                 reg_prev = reg;
315                 reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
316
317                 reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
318                 reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
319                 if (reg == 0)
320                         break;
321                 /* counter is reest if accupancy count changes */
322                 if (reg != reg_prev)
323                         lcnt = 0;
324                 if (lcnt++ > 500) {
325                         /* timed out - bounce the link */
326                         dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
327                                    __func__, sde->this_idx, (u32)reg);
328                         queue_work(dd->pport->hfi1_wq,
329                                    &dd->pport->link_bounce_work);
330                         break;
331                 }
332                 udelay(1);
333         }
334 }
335
336 /*
337  * sdma_wait() - wait for packet egress to complete for all SDMA engines,
338  * and pause for credit return.
339  */
340 void sdma_wait(struct hfi1_devdata *dd)
341 {
342         int i;
343
344         for (i = 0; i < dd->num_sdma; i++) {
345                 struct sdma_engine *sde = &dd->per_sdma[i];
346
347                 sdma_wait_for_packet_egress(sde, 0);
348         }
349 }
350
351 static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
352 {
353         u64 reg;
354
355         if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
356                 return;
357         reg = cnt;
358         reg &= SD(DESC_CNT_CNT_MASK);
359         reg <<= SD(DESC_CNT_CNT_SHIFT);
360         write_sde_csr(sde, SD(DESC_CNT), reg);
361 }
362
363 static inline void complete_tx(struct sdma_engine *sde,
364                                struct sdma_txreq *tx,
365                                int res)
366 {
367         /* protect against complete modifying */
368         struct iowait *wait = tx->wait;
369         callback_t complete = tx->complete;
370
371 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
372         trace_hfi1_sdma_out_sn(sde, tx->sn);
373         if (WARN_ON_ONCE(sde->head_sn != tx->sn))
374                 dd_dev_err(sde->dd, "expected %llu got %llu\n",
375                            sde->head_sn, tx->sn);
376         sde->head_sn++;
377 #endif
378         sdma_txclean(sde->dd, tx);
379         if (complete)
380                 (*complete)(tx, res);
381         if (wait && iowait_sdma_dec(wait))
382                 iowait_drain_wakeup(wait);
383 }
384
385 /*
386  * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
387  *
388  * Depending on timing there can be txreqs in two places:
389  * - in the descq ring
390  * - in the flush list
391  *
392  * To avoid ordering issues the descq ring needs to be flushed
393  * first followed by the flush list.
394  *
395  * This routine is called from two places
396  * - From a work queue item
397  * - Directly from the state machine just before setting the
398  *   state to running
399  *
400  * Must be called with head_lock held
401  *
402  */
403 static void sdma_flush(struct sdma_engine *sde)
404 {
405         struct sdma_txreq *txp, *txp_next;
406         LIST_HEAD(flushlist);
407         unsigned long flags;
408
409         /* flush from head to tail */
410         sdma_flush_descq(sde);
411         spin_lock_irqsave(&sde->flushlist_lock, flags);
412         /* copy flush list */
413         list_for_each_entry_safe(txp, txp_next, &sde->flushlist, list) {
414                 list_del_init(&txp->list);
415                 list_add_tail(&txp->list, &flushlist);
416         }
417         spin_unlock_irqrestore(&sde->flushlist_lock, flags);
418         /* flush from flush list */
419         list_for_each_entry_safe(txp, txp_next, &flushlist, list)
420                 complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
421 }
422
423 /*
424  * Fields a work request for flushing the descq ring
425  * and the flush list
426  *
427  * If the engine has been brought to running during
428  * the scheduling delay, the flush is ignored, assuming
429  * that the process of bringing the engine to running
430  * would have done this flush prior to going to running.
431  *
432  */
433 static void sdma_field_flush(struct work_struct *work)
434 {
435         unsigned long flags;
436         struct sdma_engine *sde =
437                 container_of(work, struct sdma_engine, flush_worker);
438
439         write_seqlock_irqsave(&sde->head_lock, flags);
440         if (!__sdma_running(sde))
441                 sdma_flush(sde);
442         write_sequnlock_irqrestore(&sde->head_lock, flags);
443 }
444
445 static void sdma_err_halt_wait(struct work_struct *work)
446 {
447         struct sdma_engine *sde = container_of(work, struct sdma_engine,
448                                                 err_halt_worker);
449         u64 statuscsr;
450         unsigned long timeout;
451
452         timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
453         while (1) {
454                 statuscsr = read_sde_csr(sde, SD(STATUS));
455                 statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
456                 if (statuscsr)
457                         break;
458                 if (time_after(jiffies, timeout)) {
459                         dd_dev_err(sde->dd,
460                                    "SDMA engine %d - timeout waiting for engine to halt\n",
461                                    sde->this_idx);
462                         /*
463                          * Continue anyway.  This could happen if there was
464                          * an uncorrectable error in the wrong spot.
465                          */
466                         break;
467                 }
468                 usleep_range(80, 120);
469         }
470
471         sdma_process_event(sde, sdma_event_e15_hw_halt_done);
472 }
473
474 static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
475 {
476         if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
477                 unsigned index;
478                 struct hfi1_devdata *dd = sde->dd;
479
480                 for (index = 0; index < dd->num_sdma; index++) {
481                         struct sdma_engine *curr_sdma = &dd->per_sdma[index];
482
483                         if (curr_sdma != sde)
484                                 curr_sdma->progress_check_head =
485                                                         curr_sdma->descq_head;
486                 }
487                 dd_dev_err(sde->dd,
488                            "SDMA engine %d - check scheduled\n",
489                                 sde->this_idx);
490                 mod_timer(&sde->err_progress_check_timer, jiffies + 10);
491         }
492 }
493
494 static void sdma_err_progress_check(unsigned long data)
495 {
496         unsigned index;
497         struct sdma_engine *sde = (struct sdma_engine *)data;
498
499         dd_dev_err(sde->dd, "SDE progress check event\n");
500         for (index = 0; index < sde->dd->num_sdma; index++) {
501                 struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
502                 unsigned long flags;
503
504                 /* check progress on each engine except the current one */
505                 if (curr_sde == sde)
506                         continue;
507                 /*
508                  * We must lock interrupts when acquiring sde->lock,
509                  * to avoid a deadlock if interrupt triggers and spins on
510                  * the same lock on same CPU
511                  */
512                 spin_lock_irqsave(&curr_sde->tail_lock, flags);
513                 write_seqlock(&curr_sde->head_lock);
514
515                 /* skip non-running queues */
516                 if (curr_sde->state.current_state != sdma_state_s99_running) {
517                         write_sequnlock(&curr_sde->head_lock);
518                         spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
519                         continue;
520                 }
521
522                 if ((curr_sde->descq_head != curr_sde->descq_tail) &&
523                     (curr_sde->descq_head ==
524                                 curr_sde->progress_check_head))
525                         __sdma_process_event(curr_sde,
526                                              sdma_event_e90_sw_halted);
527                 write_sequnlock(&curr_sde->head_lock);
528                 spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
529         }
530         schedule_work(&sde->err_halt_worker);
531 }
532
533 static void sdma_hw_clean_up_task(unsigned long opaque)
534 {
535         struct sdma_engine *sde = (struct sdma_engine *)opaque;
536         u64 statuscsr;
537
538         while (1) {
539 #ifdef CONFIG_SDMA_VERBOSITY
540                 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
541                            sde->this_idx, slashstrip(__FILE__), __LINE__,
542                         __func__);
543 #endif
544                 statuscsr = read_sde_csr(sde, SD(STATUS));
545                 statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
546                 if (statuscsr)
547                         break;
548                 udelay(10);
549         }
550
551         sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
552 }
553
554 static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
555 {
556         smp_read_barrier_depends(); /* see sdma_update_tail() */
557         return sde->tx_ring[sde->tx_head & sde->sdma_mask];
558 }
559
560 /*
561  * flush ring for recovery
562  */
563 static void sdma_flush_descq(struct sdma_engine *sde)
564 {
565         u16 head, tail;
566         int progress = 0;
567         struct sdma_txreq *txp = get_txhead(sde);
568
569         /* The reason for some of the complexity of this code is that
570          * not all descriptors have corresponding txps.  So, we have to
571          * be able to skip over descs until we wander into the range of
572          * the next txp on the list.
573          */
574         head = sde->descq_head & sde->sdma_mask;
575         tail = sde->descq_tail & sde->sdma_mask;
576         while (head != tail) {
577                 /* advance head, wrap if needed */
578                 head = ++sde->descq_head & sde->sdma_mask;
579                 /* if now past this txp's descs, do the callback */
580                 if (txp && txp->next_descq_idx == head) {
581                         /* remove from list */
582                         sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
583                         complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
584                         trace_hfi1_sdma_progress(sde, head, tail, txp);
585                         txp = get_txhead(sde);
586                 }
587                 progress++;
588         }
589         if (progress)
590                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
591 }
592
593 static void sdma_sw_clean_up_task(unsigned long opaque)
594 {
595         struct sdma_engine *sde = (struct sdma_engine *)opaque;
596         unsigned long flags;
597
598         spin_lock_irqsave(&sde->tail_lock, flags);
599         write_seqlock(&sde->head_lock);
600
601         /*
602          * At this point, the following should always be true:
603          * - We are halted, so no more descriptors are getting retired.
604          * - We are not running, so no one is submitting new work.
605          * - Only we can send the e40_sw_cleaned, so we can't start
606          *   running again until we say so.  So, the active list and
607          *   descq are ours to play with.
608          */
609
610         /*
611          * In the error clean up sequence, software clean must be called
612          * before the hardware clean so we can use the hardware head in
613          * the progress routine.  A hardware clean or SPC unfreeze will
614          * reset the hardware head.
615          *
616          * Process all retired requests. The progress routine will use the
617          * latest physical hardware head - we are not running so speed does
618          * not matter.
619          */
620         sdma_make_progress(sde, 0);
621
622         sdma_flush(sde);
623
624         /*
625          * Reset our notion of head and tail.
626          * Note that the HW registers have been reset via an earlier
627          * clean up.
628          */
629         sde->descq_tail = 0;
630         sde->descq_head = 0;
631         sde->desc_avail = sdma_descq_freecnt(sde);
632         *sde->head_dma = 0;
633
634         __sdma_process_event(sde, sdma_event_e40_sw_cleaned);
635
636         write_sequnlock(&sde->head_lock);
637         spin_unlock_irqrestore(&sde->tail_lock, flags);
638 }
639
640 static void sdma_sw_tear_down(struct sdma_engine *sde)
641 {
642         struct sdma_state *ss = &sde->state;
643
644         /* Releasing this reference means the state machine has stopped. */
645         sdma_put(ss);
646
647         /* stop waiting for all unfreeze events to complete */
648         atomic_set(&sde->dd->sdma_unfreeze_count, -1);
649         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
650 }
651
652 static void sdma_start_hw_clean_up(struct sdma_engine *sde)
653 {
654         tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
655 }
656
657 static void sdma_set_state(struct sdma_engine *sde,
658                            enum sdma_states next_state)
659 {
660         struct sdma_state *ss = &sde->state;
661         const struct sdma_set_state_action *action = sdma_action_table;
662         unsigned op = 0;
663
664         trace_hfi1_sdma_state(
665                 sde,
666                 sdma_state_names[ss->current_state],
667                 sdma_state_names[next_state]);
668
669         /* debugging bookkeeping */
670         ss->previous_state = ss->current_state;
671         ss->previous_op = ss->current_op;
672         ss->current_state = next_state;
673
674         if (ss->previous_state != sdma_state_s99_running &&
675             next_state == sdma_state_s99_running)
676                 sdma_flush(sde);
677
678         if (action[next_state].op_enable)
679                 op |= SDMA_SENDCTRL_OP_ENABLE;
680
681         if (action[next_state].op_intenable)
682                 op |= SDMA_SENDCTRL_OP_INTENABLE;
683
684         if (action[next_state].op_halt)
685                 op |= SDMA_SENDCTRL_OP_HALT;
686
687         if (action[next_state].op_cleanup)
688                 op |= SDMA_SENDCTRL_OP_CLEANUP;
689
690         if (action[next_state].go_s99_running_tofalse)
691                 ss->go_s99_running = 0;
692
693         if (action[next_state].go_s99_running_totrue)
694                 ss->go_s99_running = 1;
695
696         ss->current_op = op;
697         sdma_sendctrl(sde, ss->current_op);
698 }
699
700 /**
701  * sdma_get_descq_cnt() - called when device probed
702  *
703  * Return a validated descq count.
704  *
705  * This is currently only used in the verbs initialization to build the tx
706  * list.
707  *
708  * This will probably be deleted in favor of a more scalable approach to
709  * alloc tx's.
710  *
711  */
712 u16 sdma_get_descq_cnt(void)
713 {
714         u16 count = sdma_descq_cnt;
715
716         if (!count)
717                 return SDMA_DESCQ_CNT;
718         /* count must be a power of 2 greater than 64 and less than
719          * 32768.   Otherwise return default.
720          */
721         if (!is_power_of_2(count))
722                 return SDMA_DESCQ_CNT;
723         if (count < 64 || count > 32768)
724                 return SDMA_DESCQ_CNT;
725         return count;
726 }
727
728 /**
729  * sdma_select_engine_vl() - select sdma engine
730  * @dd: devdata
731  * @selector: a spreading factor
732  * @vl: this vl
733  *
734  *
735  * This function returns an engine based on the selector and a vl.  The
736  * mapping fields are protected by RCU.
737  */
738 struct sdma_engine *sdma_select_engine_vl(
739         struct hfi1_devdata *dd,
740         u32 selector,
741         u8 vl)
742 {
743         struct sdma_vl_map *m;
744         struct sdma_map_elem *e;
745         struct sdma_engine *rval;
746
747         /* NOTE This should only happen if SC->VL changed after the initial
748          *      checks on the QP/AH
749          *      Default will return engine 0 below
750          */
751         if (vl >= num_vls) {
752                 rval = NULL;
753                 goto done;
754         }
755
756         rcu_read_lock();
757         m = rcu_dereference(dd->sdma_map);
758         if (unlikely(!m)) {
759                 rcu_read_unlock();
760                 return &dd->per_sdma[0];
761         }
762         e = m->map[vl & m->mask];
763         rval = e->sde[selector & e->mask];
764         rcu_read_unlock();
765
766 done:
767         rval =  !rval ? &dd->per_sdma[0] : rval;
768         trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
769         return rval;
770 }
771
772 /**
773  * sdma_select_engine_sc() - select sdma engine
774  * @dd: devdata
775  * @selector: a spreading factor
776  * @sc5: the 5 bit sc
777  *
778  *
779  * This function returns an engine based on the selector and an sc.
780  */
781 struct sdma_engine *sdma_select_engine_sc(
782         struct hfi1_devdata *dd,
783         u32 selector,
784         u8 sc5)
785 {
786         u8 vl = sc_to_vlt(dd, sc5);
787
788         return sdma_select_engine_vl(dd, selector, vl);
789 }
790
791 /*
792  * Free the indicated map struct
793  */
794 static void sdma_map_free(struct sdma_vl_map *m)
795 {
796         int i;
797
798         for (i = 0; m && i < m->actual_vls; i++)
799                 kfree(m->map[i]);
800         kfree(m);
801 }
802
803 /*
804  * Handle RCU callback
805  */
806 static void sdma_map_rcu_callback(struct rcu_head *list)
807 {
808         struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
809
810         sdma_map_free(m);
811 }
812
813 /**
814  * sdma_map_init - called when # vls change
815  * @dd: hfi1_devdata
816  * @port: port number
817  * @num_vls: number of vls
818  * @vl_engines: per vl engine mapping (optional)
819  *
820  * This routine changes the mapping based on the number of vls.
821  *
822  * vl_engines is used to specify a non-uniform vl/engine loading. NULL
823  * implies auto computing the loading and giving each VLs a uniform
824  * distribution of engines per VL.
825  *
826  * The auto algorithm computes the sde_per_vl and the number of extra
827  * engines.  Any extra engines are added from the last VL on down.
828  *
829  * rcu locking is used here to control access to the mapping fields.
830  *
831  * If either the num_vls or num_sdma are non-power of 2, the array sizes
832  * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
833  * up to the next highest power of 2 and the first entry is reused
834  * in a round robin fashion.
835  *
836  * If an error occurs the map change is not done and the mapping is
837  * not changed.
838  *
839  */
840 int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
841 {
842         int i, j;
843         int extra, sde_per_vl;
844         int engine = 0;
845         u8 lvl_engines[OPA_MAX_VLS];
846         struct sdma_vl_map *oldmap, *newmap;
847
848         if (!(dd->flags & HFI1_HAS_SEND_DMA))
849                 return 0;
850
851         if (!vl_engines) {
852                 /* truncate divide */
853                 sde_per_vl = dd->num_sdma / num_vls;
854                 /* extras */
855                 extra = dd->num_sdma % num_vls;
856                 vl_engines = lvl_engines;
857                 /* add extras from last vl down */
858                 for (i = num_vls - 1; i >= 0; i--, extra--)
859                         vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
860         }
861         /* build new map */
862         newmap = kzalloc(
863                 sizeof(struct sdma_vl_map) +
864                         roundup_pow_of_two(num_vls) *
865                         sizeof(struct sdma_map_elem *),
866                 GFP_KERNEL);
867         if (!newmap)
868                 goto bail;
869         newmap->actual_vls = num_vls;
870         newmap->vls = roundup_pow_of_two(num_vls);
871         newmap->mask = (1 << ilog2(newmap->vls)) - 1;
872         /* initialize back-map */
873         for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++)
874                 newmap->engine_to_vl[i] = -1;
875         for (i = 0; i < newmap->vls; i++) {
876                 /* save for wrap around */
877                 int first_engine = engine;
878
879                 if (i < newmap->actual_vls) {
880                         int sz = roundup_pow_of_two(vl_engines[i]);
881
882                         /* only allocate once */
883                         newmap->map[i] = kzalloc(
884                                 sizeof(struct sdma_map_elem) +
885                                         sz * sizeof(struct sdma_engine *),
886                                 GFP_KERNEL);
887                         if (!newmap->map[i])
888                                 goto bail;
889                         newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
890                         /* assign engines */
891                         for (j = 0; j < sz; j++) {
892                                 newmap->map[i]->sde[j] =
893                                         &dd->per_sdma[engine];
894                                 if (++engine >= first_engine + vl_engines[i])
895                                         /* wrap back to first engine */
896                                         engine = first_engine;
897                         }
898                         /* assign back-map */
899                         for (j = 0; j < vl_engines[i]; j++)
900                                 newmap->engine_to_vl[first_engine + j] = i;
901                 } else {
902                         /* just re-use entry without allocating */
903                         newmap->map[i] = newmap->map[i % num_vls];
904                 }
905                 engine = first_engine + vl_engines[i];
906         }
907         /* newmap in hand, save old map */
908         spin_lock_irq(&dd->sde_map_lock);
909         oldmap = rcu_dereference_protected(dd->sdma_map,
910                                            lockdep_is_held(&dd->sde_map_lock));
911
912         /* publish newmap */
913         rcu_assign_pointer(dd->sdma_map, newmap);
914
915         spin_unlock_irq(&dd->sde_map_lock);
916         /* success, free any old map after grace period */
917         if (oldmap)
918                 call_rcu(&oldmap->list, sdma_map_rcu_callback);
919         return 0;
920 bail:
921         /* free any partial allocation */
922         sdma_map_free(newmap);
923         return -ENOMEM;
924 }
925
926 /*
927  * Clean up allocated memory.
928  *
929  * This routine is can be called regardless of the success of sdma_init()
930  *
931  */
932 static void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
933 {
934         size_t i;
935         struct sdma_engine *sde;
936
937         if (dd->sdma_pad_dma) {
938                 dma_free_coherent(&dd->pcidev->dev, 4,
939                                   (void *)dd->sdma_pad_dma,
940                                   dd->sdma_pad_phys);
941                 dd->sdma_pad_dma = NULL;
942                 dd->sdma_pad_phys = 0;
943         }
944         if (dd->sdma_heads_dma) {
945                 dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
946                                   (void *)dd->sdma_heads_dma,
947                                   dd->sdma_heads_phys);
948                 dd->sdma_heads_dma = NULL;
949                 dd->sdma_heads_phys = 0;
950         }
951         for (i = 0; dd->per_sdma && i < num_engines; ++i) {
952                 sde = &dd->per_sdma[i];
953
954                 sde->head_dma = NULL;
955                 sde->head_phys = 0;
956
957                 if (sde->descq) {
958                         dma_free_coherent(
959                                 &dd->pcidev->dev,
960                                 sde->descq_cnt * sizeof(u64[2]),
961                                 sde->descq,
962                                 sde->descq_phys
963                         );
964                         sde->descq = NULL;
965                         sde->descq_phys = 0;
966                 }
967                 kvfree(sde->tx_ring);
968                 sde->tx_ring = NULL;
969         }
970         spin_lock_irq(&dd->sde_map_lock);
971         sdma_map_free(rcu_access_pointer(dd->sdma_map));
972         RCU_INIT_POINTER(dd->sdma_map, NULL);
973         spin_unlock_irq(&dd->sde_map_lock);
974         synchronize_rcu();
975         kfree(dd->per_sdma);
976         dd->per_sdma = NULL;
977 }
978
979 /**
980  * sdma_init() - called when device probed
981  * @dd: hfi1_devdata
982  * @port: port number (currently only zero)
983  *
984  * sdma_init initializes the specified number of engines.
985  *
986  * The code initializes each sde, its csrs.  Interrupts
987  * are not required to be enabled.
988  *
989  * Returns:
990  * 0 - success, -errno on failure
991  */
992 int sdma_init(struct hfi1_devdata *dd, u8 port)
993 {
994         unsigned this_idx;
995         struct sdma_engine *sde;
996         u16 descq_cnt;
997         void *curr_head;
998         struct hfi1_pportdata *ppd = dd->pport + port;
999         u32 per_sdma_credits;
1000         uint idle_cnt = sdma_idle_cnt;
1001         size_t num_engines = dd->chip_sdma_engines;
1002
1003         if (!HFI1_CAP_IS_KSET(SDMA)) {
1004                 HFI1_CAP_CLEAR(SDMA_AHG);
1005                 return 0;
1006         }
1007         if (mod_num_sdma &&
1008             /* can't exceed chip support */
1009             mod_num_sdma <= dd->chip_sdma_engines &&
1010             /* count must be >= vls */
1011             mod_num_sdma >= num_vls)
1012                 num_engines = mod_num_sdma;
1013
1014         dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
1015         dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", dd->chip_sdma_engines);
1016         dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
1017                     dd->chip_sdma_mem_size);
1018
1019         per_sdma_credits =
1020                 dd->chip_sdma_mem_size / (num_engines * SDMA_BLOCK_SIZE);
1021
1022         /* set up freeze waitqueue */
1023         init_waitqueue_head(&dd->sdma_unfreeze_wq);
1024         atomic_set(&dd->sdma_unfreeze_count, 0);
1025
1026         descq_cnt = sdma_get_descq_cnt();
1027         dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
1028                     num_engines, descq_cnt);
1029
1030         /* alloc memory for array of send engines */
1031         dd->per_sdma = kcalloc(num_engines, sizeof(*dd->per_sdma), GFP_KERNEL);
1032         if (!dd->per_sdma)
1033                 return -ENOMEM;
1034
1035         idle_cnt = ns_to_cclock(dd, idle_cnt);
1036         if (!sdma_desct_intr)
1037                 sdma_desct_intr = SDMA_DESC_INTR;
1038
1039         /* Allocate memory for SendDMA descriptor FIFOs */
1040         for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1041                 sde = &dd->per_sdma[this_idx];
1042                 sde->dd = dd;
1043                 sde->ppd = ppd;
1044                 sde->this_idx = this_idx;
1045                 sde->descq_cnt = descq_cnt;
1046                 sde->desc_avail = sdma_descq_freecnt(sde);
1047                 sde->sdma_shift = ilog2(descq_cnt);
1048                 sde->sdma_mask = (1 << sde->sdma_shift) - 1;
1049
1050                 /* Create a mask specifically for each interrupt source */
1051                 sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES +
1052                                            this_idx);
1053                 sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES +
1054                                                 this_idx);
1055                 sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES +
1056                                             this_idx);
1057                 /* Create a combined mask to cover all 3 interrupt sources */
1058                 sde->imask = sde->int_mask | sde->progress_mask |
1059                              sde->idle_mask;
1060
1061                 spin_lock_init(&sde->tail_lock);
1062                 seqlock_init(&sde->head_lock);
1063                 spin_lock_init(&sde->senddmactrl_lock);
1064                 spin_lock_init(&sde->flushlist_lock);
1065                 /* insure there is always a zero bit */
1066                 sde->ahg_bits = 0xfffffffe00000000ULL;
1067
1068                 sdma_set_state(sde, sdma_state_s00_hw_down);
1069
1070                 /* set up reference counting */
1071                 kref_init(&sde->state.kref);
1072                 init_completion(&sde->state.comp);
1073
1074                 INIT_LIST_HEAD(&sde->flushlist);
1075                 INIT_LIST_HEAD(&sde->dmawait);
1076
1077                 sde->tail_csr =
1078                         get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
1079
1080                 if (idle_cnt)
1081                         dd->default_desc1 =
1082                                 SDMA_DESC1_HEAD_TO_HOST_FLAG;
1083                 else
1084                         dd->default_desc1 =
1085                                 SDMA_DESC1_INT_REQ_FLAG;
1086
1087                 tasklet_init(&sde->sdma_hw_clean_up_task, sdma_hw_clean_up_task,
1088                              (unsigned long)sde);
1089
1090                 tasklet_init(&sde->sdma_sw_clean_up_task, sdma_sw_clean_up_task,
1091                              (unsigned long)sde);
1092                 INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
1093                 INIT_WORK(&sde->flush_worker, sdma_field_flush);
1094
1095                 sde->progress_check_head = 0;
1096
1097                 setup_timer(&sde->err_progress_check_timer,
1098                             sdma_err_progress_check, (unsigned long)sde);
1099
1100                 sde->descq = dma_zalloc_coherent(
1101                         &dd->pcidev->dev,
1102                         descq_cnt * sizeof(u64[2]),
1103                         &sde->descq_phys,
1104                         GFP_KERNEL
1105                 );
1106                 if (!sde->descq)
1107                         goto bail;
1108                 sde->tx_ring =
1109                         kcalloc(descq_cnt, sizeof(struct sdma_txreq *),
1110                                 GFP_KERNEL);
1111                 if (!sde->tx_ring)
1112                         sde->tx_ring =
1113                                 vzalloc(
1114                                         sizeof(struct sdma_txreq *) *
1115                                         descq_cnt);
1116                 if (!sde->tx_ring)
1117                         goto bail;
1118         }
1119
1120         dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
1121         /* Allocate memory for DMA of head registers to memory */
1122         dd->sdma_heads_dma = dma_zalloc_coherent(
1123                 &dd->pcidev->dev,
1124                 dd->sdma_heads_size,
1125                 &dd->sdma_heads_phys,
1126                 GFP_KERNEL
1127         );
1128         if (!dd->sdma_heads_dma) {
1129                 dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
1130                 goto bail;
1131         }
1132
1133         /* Allocate memory for pad */
1134         dd->sdma_pad_dma = dma_zalloc_coherent(
1135                 &dd->pcidev->dev,
1136                 sizeof(u32),
1137                 &dd->sdma_pad_phys,
1138                 GFP_KERNEL
1139         );
1140         if (!dd->sdma_pad_dma) {
1141                 dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
1142                 goto bail;
1143         }
1144
1145         /* assign each engine to different cacheline and init registers */
1146         curr_head = (void *)dd->sdma_heads_dma;
1147         for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1148                 unsigned long phys_offset;
1149
1150                 sde = &dd->per_sdma[this_idx];
1151
1152                 sde->head_dma = curr_head;
1153                 curr_head += L1_CACHE_BYTES;
1154                 phys_offset = (unsigned long)sde->head_dma -
1155                               (unsigned long)dd->sdma_heads_dma;
1156                 sde->head_phys = dd->sdma_heads_phys + phys_offset;
1157                 init_sdma_regs(sde, per_sdma_credits, idle_cnt);
1158         }
1159         dd->flags |= HFI1_HAS_SEND_DMA;
1160         dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
1161         dd->num_sdma = num_engines;
1162         if (sdma_map_init(dd, port, ppd->vls_operational, NULL))
1163                 goto bail;
1164         dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
1165         return 0;
1166
1167 bail:
1168         sdma_clean(dd, num_engines);
1169         return -ENOMEM;
1170 }
1171
1172 /**
1173  * sdma_all_running() - called when the link goes up
1174  * @dd: hfi1_devdata
1175  *
1176  * This routine moves all engines to the running state.
1177  */
1178 void sdma_all_running(struct hfi1_devdata *dd)
1179 {
1180         struct sdma_engine *sde;
1181         unsigned int i;
1182
1183         /* move all engines to running */
1184         for (i = 0; i < dd->num_sdma; ++i) {
1185                 sde = &dd->per_sdma[i];
1186                 sdma_process_event(sde, sdma_event_e30_go_running);
1187         }
1188 }
1189
1190 /**
1191  * sdma_all_idle() - called when the link goes down
1192  * @dd: hfi1_devdata
1193  *
1194  * This routine moves all engines to the idle state.
1195  */
1196 void sdma_all_idle(struct hfi1_devdata *dd)
1197 {
1198         struct sdma_engine *sde;
1199         unsigned int i;
1200
1201         /* idle all engines */
1202         for (i = 0; i < dd->num_sdma; ++i) {
1203                 sde = &dd->per_sdma[i];
1204                 sdma_process_event(sde, sdma_event_e70_go_idle);
1205         }
1206 }
1207
1208 /**
1209  * sdma_start() - called to kick off state processing for all engines
1210  * @dd: hfi1_devdata
1211  *
1212  * This routine is for kicking off the state processing for all required
1213  * sdma engines.  Interrupts need to be working at this point.
1214  *
1215  */
1216 void sdma_start(struct hfi1_devdata *dd)
1217 {
1218         unsigned i;
1219         struct sdma_engine *sde;
1220
1221         /* kick off the engines state processing */
1222         for (i = 0; i < dd->num_sdma; ++i) {
1223                 sde = &dd->per_sdma[i];
1224                 sdma_process_event(sde, sdma_event_e10_go_hw_start);
1225         }
1226 }
1227
1228 /**
1229  * sdma_exit() - used when module is removed
1230  * @dd: hfi1_devdata
1231  */
1232 void sdma_exit(struct hfi1_devdata *dd)
1233 {
1234         unsigned this_idx;
1235         struct sdma_engine *sde;
1236
1237         for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
1238                         ++this_idx) {
1239                 sde = &dd->per_sdma[this_idx];
1240                 if (!list_empty(&sde->dmawait))
1241                         dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
1242                                    sde->this_idx);
1243                 sdma_process_event(sde, sdma_event_e00_go_hw_down);
1244
1245                 del_timer_sync(&sde->err_progress_check_timer);
1246
1247                 /*
1248                  * This waits for the state machine to exit so it is not
1249                  * necessary to kill the sdma_sw_clean_up_task to make sure
1250                  * it is not running.
1251                  */
1252                 sdma_finalput(&sde->state);
1253         }
1254         sdma_clean(dd, dd->num_sdma);
1255 }
1256
1257 /*
1258  * unmap the indicated descriptor
1259  */
1260 static inline void sdma_unmap_desc(
1261         struct hfi1_devdata *dd,
1262         struct sdma_desc *descp)
1263 {
1264         switch (sdma_mapping_type(descp)) {
1265         case SDMA_MAP_SINGLE:
1266                 dma_unmap_single(
1267                         &dd->pcidev->dev,
1268                         sdma_mapping_addr(descp),
1269                         sdma_mapping_len(descp),
1270                         DMA_TO_DEVICE);
1271                 break;
1272         case SDMA_MAP_PAGE:
1273                 dma_unmap_page(
1274                         &dd->pcidev->dev,
1275                         sdma_mapping_addr(descp),
1276                         sdma_mapping_len(descp),
1277                         DMA_TO_DEVICE);
1278                 break;
1279         }
1280 }
1281
1282 /*
1283  * return the mode as indicated by the first
1284  * descriptor in the tx.
1285  */
1286 static inline u8 ahg_mode(struct sdma_txreq *tx)
1287 {
1288         return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1289                 >> SDMA_DESC1_HEADER_MODE_SHIFT;
1290 }
1291
1292 /**
1293  * sdma_txclean() - clean tx of mappings, descp *kmalloc's
1294  * @dd: hfi1_devdata for unmapping
1295  * @tx: tx request to clean
1296  *
1297  * This is used in the progress routine to clean the tx or
1298  * by the ULP to toss an in-process tx build.
1299  *
1300  * The code can be called multiple times without issue.
1301  *
1302  */
1303 void sdma_txclean(
1304         struct hfi1_devdata *dd,
1305         struct sdma_txreq *tx)
1306 {
1307         u16 i;
1308
1309         if (tx->num_desc) {
1310                 u8 skip = 0, mode = ahg_mode(tx);
1311
1312                 /* unmap first */
1313                 sdma_unmap_desc(dd, &tx->descp[0]);
1314                 /* determine number of AHG descriptors to skip */
1315                 if (mode > SDMA_AHG_APPLY_UPDATE1)
1316                         skip = mode >> 1;
1317                 for (i = 1 + skip; i < tx->num_desc; i++)
1318                         sdma_unmap_desc(dd, &tx->descp[i]);
1319                 tx->num_desc = 0;
1320         }
1321         kfree(tx->coalesce_buf);
1322         tx->coalesce_buf = NULL;
1323         /* kmalloc'ed descp */
1324         if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
1325                 tx->desc_limit = ARRAY_SIZE(tx->descs);
1326                 kfree(tx->descp);
1327         }
1328 }
1329
1330 static inline u16 sdma_gethead(struct sdma_engine *sde)
1331 {
1332         struct hfi1_devdata *dd = sde->dd;
1333         int use_dmahead;
1334         u16 hwhead;
1335
1336 #ifdef CONFIG_SDMA_VERBOSITY
1337         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1338                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1339 #endif
1340
1341 retry:
1342         use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
1343                                         (dd->flags & HFI1_HAS_SDMA_TIMEOUT);
1344         hwhead = use_dmahead ?
1345                 (u16)le64_to_cpu(*sde->head_dma) :
1346                 (u16)read_sde_csr(sde, SD(HEAD));
1347
1348         if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
1349                 u16 cnt;
1350                 u16 swtail;
1351                 u16 swhead;
1352                 int sane;
1353
1354                 swhead = sde->descq_head & sde->sdma_mask;
1355                 /* this code is really bad for cache line trading */
1356                 swtail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
1357                 cnt = sde->descq_cnt;
1358
1359                 if (swhead < swtail)
1360                         /* not wrapped */
1361                         sane = (hwhead >= swhead) & (hwhead <= swtail);
1362                 else if (swhead > swtail)
1363                         /* wrapped around */
1364                         sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
1365                                 (hwhead <= swtail);
1366                 else
1367                         /* empty */
1368                         sane = (hwhead == swhead);
1369
1370                 if (unlikely(!sane)) {
1371                         dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n",
1372                                    sde->this_idx,
1373                                    use_dmahead ? "dma" : "kreg",
1374                                    hwhead, swhead, swtail, cnt);
1375                         if (use_dmahead) {
1376                                 /* try one more time, using csr */
1377                                 use_dmahead = 0;
1378                                 goto retry;
1379                         }
1380                         /* proceed as if no progress */
1381                         hwhead = swhead;
1382                 }
1383         }
1384         return hwhead;
1385 }
1386
1387 /*
1388  * This is called when there are send DMA descriptors that might be
1389  * available.
1390  *
1391  * This is called with head_lock held.
1392  */
1393 static void sdma_desc_avail(struct sdma_engine *sde, unsigned avail)
1394 {
1395         struct iowait *wait, *nw;
1396         struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
1397         unsigned i, n = 0, seq;
1398         struct sdma_txreq *stx;
1399         struct hfi1_ibdev *dev = &sde->dd->verbs_dev;
1400
1401 #ifdef CONFIG_SDMA_VERBOSITY
1402         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
1403                    slashstrip(__FILE__), __LINE__, __func__);
1404         dd_dev_err(sde->dd, "avail: %u\n", avail);
1405 #endif
1406
1407         do {
1408                 seq = read_seqbegin(&dev->iowait_lock);
1409                 if (!list_empty(&sde->dmawait)) {
1410                         /* at least one item */
1411                         write_seqlock(&dev->iowait_lock);
1412                         /* Harvest waiters wanting DMA descriptors */
1413                         list_for_each_entry_safe(
1414                                         wait,
1415                                         nw,
1416                                         &sde->dmawait,
1417                                         list) {
1418                                 u16 num_desc = 0;
1419
1420                                 if (!wait->wakeup)
1421                                         continue;
1422                                 if (n == ARRAY_SIZE(waits))
1423                                         break;
1424                                 if (!list_empty(&wait->tx_head)) {
1425                                         stx = list_first_entry(
1426                                                 &wait->tx_head,
1427                                                 struct sdma_txreq,
1428                                                 list);
1429                                         num_desc = stx->num_desc;
1430                                 }
1431                                 if (num_desc > avail)
1432                                         break;
1433                                 avail -= num_desc;
1434                                 list_del_init(&wait->list);
1435                                 waits[n++] = wait;
1436                         }
1437                         write_sequnlock(&dev->iowait_lock);
1438                         break;
1439                 }
1440         } while (read_seqretry(&dev->iowait_lock, seq));
1441
1442         for (i = 0; i < n; i++)
1443                 waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
1444 }
1445
1446 /* head_lock must be held */
1447 static void sdma_make_progress(struct sdma_engine *sde, u64 status)
1448 {
1449         struct sdma_txreq *txp = NULL;
1450         int progress = 0;
1451         u16 hwhead, swhead;
1452         int idle_check_done = 0;
1453
1454         hwhead = sdma_gethead(sde);
1455
1456         /* The reason for some of the complexity of this code is that
1457          * not all descriptors have corresponding txps.  So, we have to
1458          * be able to skip over descs until we wander into the range of
1459          * the next txp on the list.
1460          */
1461
1462 retry:
1463         txp = get_txhead(sde);
1464         swhead = sde->descq_head & sde->sdma_mask;
1465         trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1466         while (swhead != hwhead) {
1467                 /* advance head, wrap if needed */
1468                 swhead = ++sde->descq_head & sde->sdma_mask;
1469
1470                 /* if now past this txp's descs, do the callback */
1471                 if (txp && txp->next_descq_idx == swhead) {
1472                         /* remove from list */
1473                         sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
1474                         complete_tx(sde, txp, SDMA_TXREQ_S_OK);
1475                         /* see if there is another txp */
1476                         txp = get_txhead(sde);
1477                 }
1478                 trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1479                 progress++;
1480         }
1481
1482         /*
1483          * The SDMA idle interrupt is not guaranteed to be ordered with respect
1484          * to updates to the the dma_head location in host memory. The head
1485          * value read might not be fully up to date. If there are pending
1486          * descriptors and the SDMA idle interrupt fired then read from the
1487          * CSR SDMA head instead to get the latest value from the hardware.
1488          * The hardware SDMA head should be read at most once in this invocation
1489          * of sdma_make_progress(..) which is ensured by idle_check_done flag
1490          */
1491         if ((status & sde->idle_mask) && !idle_check_done) {
1492                 u16 swtail;
1493
1494                 swtail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
1495                 if (swtail != hwhead) {
1496                         hwhead = (u16)read_sde_csr(sde, SD(HEAD));
1497                         idle_check_done = 1;
1498                         goto retry;
1499                 }
1500         }
1501
1502         sde->last_status = status;
1503         if (progress)
1504                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
1505 }
1506
1507 /*
1508  * sdma_engine_interrupt() - interrupt handler for engine
1509  * @sde: sdma engine
1510  * @status: sdma interrupt reason
1511  *
1512  * Status is a mask of the 3 possible interrupts for this engine.  It will
1513  * contain bits _only_ for this SDMA engine.  It will contain at least one
1514  * bit, it may contain more.
1515  */
1516 void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
1517 {
1518         trace_hfi1_sdma_engine_interrupt(sde, status);
1519         write_seqlock(&sde->head_lock);
1520         sdma_set_desc_cnt(sde, sdma_desct_intr);
1521         if (status & sde->idle_mask)
1522                 sde->idle_int_cnt++;
1523         else if (status & sde->progress_mask)
1524                 sde->progress_int_cnt++;
1525         else if (status & sde->int_mask)
1526                 sde->sdma_int_cnt++;
1527         sdma_make_progress(sde, status);
1528         write_sequnlock(&sde->head_lock);
1529 }
1530
1531 /**
1532  * sdma_engine_error() - error handler for engine
1533  * @sde: sdma engine
1534  * @status: sdma interrupt reason
1535  */
1536 void sdma_engine_error(struct sdma_engine *sde, u64 status)
1537 {
1538         unsigned long flags;
1539
1540 #ifdef CONFIG_SDMA_VERBOSITY
1541         dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
1542                    sde->this_idx,
1543                    (unsigned long long)status,
1544                    sdma_state_names[sde->state.current_state]);
1545 #endif
1546         spin_lock_irqsave(&sde->tail_lock, flags);
1547         write_seqlock(&sde->head_lock);
1548         if (status & ALL_SDMA_ENG_HALT_ERRS)
1549                 __sdma_process_event(sde, sdma_event_e60_hw_halted);
1550         if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
1551                 dd_dev_err(sde->dd,
1552                            "SDMA (%u) engine error: 0x%llx state %s\n",
1553                            sde->this_idx,
1554                            (unsigned long long)status,
1555                            sdma_state_names[sde->state.current_state]);
1556                 dump_sdma_state(sde);
1557         }
1558         write_sequnlock(&sde->head_lock);
1559         spin_unlock_irqrestore(&sde->tail_lock, flags);
1560 }
1561
1562 static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
1563 {
1564         u64 set_senddmactrl = 0;
1565         u64 clr_senddmactrl = 0;
1566         unsigned long flags;
1567
1568 #ifdef CONFIG_SDMA_VERBOSITY
1569         dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
1570                    sde->this_idx,
1571                    (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
1572                    (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
1573                    (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
1574                    (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
1575 #endif
1576
1577         if (op & SDMA_SENDCTRL_OP_ENABLE)
1578                 set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1579         else
1580                 clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1581
1582         if (op & SDMA_SENDCTRL_OP_INTENABLE)
1583                 set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1584         else
1585                 clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1586
1587         if (op & SDMA_SENDCTRL_OP_HALT)
1588                 set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1589         else
1590                 clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1591
1592         spin_lock_irqsave(&sde->senddmactrl_lock, flags);
1593
1594         sde->p_senddmactrl |= set_senddmactrl;
1595         sde->p_senddmactrl &= ~clr_senddmactrl;
1596
1597         if (op & SDMA_SENDCTRL_OP_CLEANUP)
1598                 write_sde_csr(sde, SD(CTRL),
1599                               sde->p_senddmactrl |
1600                               SD(CTRL_SDMA_CLEANUP_SMASK));
1601         else
1602                 write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
1603
1604         spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
1605
1606 #ifdef CONFIG_SDMA_VERBOSITY
1607         sdma_dumpstate(sde);
1608 #endif
1609 }
1610
1611 static void sdma_setlengen(struct sdma_engine *sde)
1612 {
1613 #ifdef CONFIG_SDMA_VERBOSITY
1614         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1615                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1616 #endif
1617
1618         /*
1619          * Set SendDmaLenGen and clear-then-set the MSB of the generation
1620          * count to enable generation checking and load the internal
1621          * generation counter.
1622          */
1623         write_sde_csr(sde, SD(LEN_GEN),
1624                       (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT));
1625         write_sde_csr(sde, SD(LEN_GEN),
1626                       ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) |
1627                       (4ULL << SD(LEN_GEN_GENERATION_SHIFT)));
1628 }
1629
1630 static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
1631 {
1632         /* Commit writes to memory and advance the tail on the chip */
1633         smp_wmb(); /* see get_txhead() */
1634         writeq(tail, sde->tail_csr);
1635 }
1636
1637 /*
1638  * This is called when changing to state s10_hw_start_up_halt_wait as
1639  * a result of send buffer errors or send DMA descriptor errors.
1640  */
1641 static void sdma_hw_start_up(struct sdma_engine *sde)
1642 {
1643         u64 reg;
1644
1645 #ifdef CONFIG_SDMA_VERBOSITY
1646         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1647                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1648 #endif
1649
1650         sdma_setlengen(sde);
1651         sdma_update_tail(sde, 0); /* Set SendDmaTail */
1652         *sde->head_dma = 0;
1653
1654         reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
1655               SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
1656         write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
1657 }
1658
1659 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
1660 (r &= ~SEND_DMA_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
1661
1662 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
1663 (r |= SEND_DMA_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
1664 /*
1665  * set_sdma_integrity
1666  *
1667  * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
1668  */
1669 static void set_sdma_integrity(struct sdma_engine *sde)
1670 {
1671         struct hfi1_devdata *dd = sde->dd;
1672         u64 reg;
1673
1674         if (unlikely(HFI1_CAP_IS_KSET(NO_INTEGRITY)))
1675                 return;
1676
1677         reg = hfi1_pkt_base_sdma_integrity(dd);
1678
1679         if (HFI1_CAP_IS_KSET(STATIC_RATE_CTRL))
1680                 CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
1681         else
1682                 SET_STATIC_RATE_CONTROL_SMASK(reg);
1683
1684         write_sde_csr(sde, SD(CHECK_ENABLE), reg);
1685 }
1686
1687 static void init_sdma_regs(
1688         struct sdma_engine *sde,
1689         u32 credits,
1690         uint idle_cnt)
1691 {
1692         u8 opval, opmask;
1693 #ifdef CONFIG_SDMA_VERBOSITY
1694         struct hfi1_devdata *dd = sde->dd;
1695
1696         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1697                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1698 #endif
1699
1700         write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
1701         sdma_setlengen(sde);
1702         sdma_update_tail(sde, 0); /* Set SendDmaTail */
1703         write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
1704         write_sde_csr(sde, SD(DESC_CNT), 0);
1705         write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
1706         write_sde_csr(sde, SD(MEMORY),
1707                       ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
1708                       ((u64)(credits * sde->this_idx) <<
1709                        SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
1710         write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
1711         set_sdma_integrity(sde);
1712         opmask = OPCODE_CHECK_MASK_DISABLED;
1713         opval = OPCODE_CHECK_VAL_DISABLED;
1714         write_sde_csr(sde, SD(CHECK_OPCODE),
1715                       (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
1716                       (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
1717 }
1718
1719 #ifdef CONFIG_SDMA_VERBOSITY
1720
1721 #define sdma_dumpstate_helper0(reg) do { \
1722                 csr = read_csr(sde->dd, reg); \
1723                 dd_dev_err(sde->dd, "%36s     0x%016llx\n", #reg, csr); \
1724         } while (0)
1725
1726 #define sdma_dumpstate_helper(reg) do { \
1727                 csr = read_sde_csr(sde, reg); \
1728                 dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
1729                         #reg, sde->this_idx, csr); \
1730         } while (0)
1731
1732 #define sdma_dumpstate_helper2(reg) do { \
1733                 csr = read_csr(sde->dd, reg + (8 * i)); \
1734                 dd_dev_err(sde->dd, "%33s_%02u     0x%016llx\n", \
1735                                 #reg, i, csr); \
1736         } while (0)
1737
1738 void sdma_dumpstate(struct sdma_engine *sde)
1739 {
1740         u64 csr;
1741         unsigned i;
1742
1743         sdma_dumpstate_helper(SD(CTRL));
1744         sdma_dumpstate_helper(SD(STATUS));
1745         sdma_dumpstate_helper0(SD(ERR_STATUS));
1746         sdma_dumpstate_helper0(SD(ERR_MASK));
1747         sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
1748         sdma_dumpstate_helper(SD(ENG_ERR_MASK));
1749
1750         for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
1751                 sdma_dumpstate_helper2(CCE_INT_STATUS);
1752                 sdma_dumpstate_helper2(CCE_INT_MASK);
1753                 sdma_dumpstate_helper2(CCE_INT_BLOCKED);
1754         }
1755
1756         sdma_dumpstate_helper(SD(TAIL));
1757         sdma_dumpstate_helper(SD(HEAD));
1758         sdma_dumpstate_helper(SD(PRIORITY_THLD));
1759         sdma_dumpstate_helper(SD(IDLE_CNT));
1760         sdma_dumpstate_helper(SD(RELOAD_CNT));
1761         sdma_dumpstate_helper(SD(DESC_CNT));
1762         sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
1763         sdma_dumpstate_helper(SD(MEMORY));
1764         sdma_dumpstate_helper0(SD(ENGINES));
1765         sdma_dumpstate_helper0(SD(MEM_SIZE));
1766         /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS);  */
1767         sdma_dumpstate_helper(SD(BASE_ADDR));
1768         sdma_dumpstate_helper(SD(LEN_GEN));
1769         sdma_dumpstate_helper(SD(HEAD_ADDR));
1770         sdma_dumpstate_helper(SD(CHECK_ENABLE));
1771         sdma_dumpstate_helper(SD(CHECK_VL));
1772         sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
1773         sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
1774         sdma_dumpstate_helper(SD(CHECK_SLID));
1775         sdma_dumpstate_helper(SD(CHECK_OPCODE));
1776 }
1777 #endif
1778
1779 static void dump_sdma_state(struct sdma_engine *sde)
1780 {
1781         struct hw_sdma_desc *descq;
1782         struct hw_sdma_desc *descqp;
1783         u64 desc[2];
1784         u64 addr;
1785         u8 gen;
1786         u16 len;
1787         u16 head, tail, cnt;
1788
1789         head = sde->descq_head & sde->sdma_mask;
1790         tail = sde->descq_tail & sde->sdma_mask;
1791         cnt = sdma_descq_freecnt(sde);
1792         descq = sde->descq;
1793
1794         dd_dev_err(sde->dd,
1795                    "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
1796                    sde->this_idx, head, tail, cnt,
1797                    !list_empty(&sde->flushlist));
1798
1799         /* print info for each entry in the descriptor queue */
1800         while (head != tail) {
1801                 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
1802
1803                 descqp = &sde->descq[head];
1804                 desc[0] = le64_to_cpu(descqp->qw[0]);
1805                 desc[1] = le64_to_cpu(descqp->qw[1]);
1806                 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
1807                 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
1808                                 'H' : '-';
1809                 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
1810                 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
1811                 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
1812                         & SDMA_DESC0_PHY_ADDR_MASK;
1813                 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
1814                         & SDMA_DESC1_GENERATION_MASK;
1815                 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
1816                         & SDMA_DESC0_BYTE_COUNT_MASK;
1817                 dd_dev_err(sde->dd,
1818                            "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
1819                            head, flags, addr, gen, len);
1820                 dd_dev_err(sde->dd,
1821                            "\tdesc0:0x%016llx desc1 0x%016llx\n",
1822                            desc[0], desc[1]);
1823                 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
1824                         dd_dev_err(sde->dd,
1825                                    "\taidx: %u amode: %u alen: %u\n",
1826                                    (u8)((desc[1] &
1827                                          SDMA_DESC1_HEADER_INDEX_SMASK) >>
1828                                         SDMA_DESC1_HEADER_INDEX_SHIFT),
1829                                    (u8)((desc[1] &
1830                                          SDMA_DESC1_HEADER_MODE_SMASK) >>
1831                                         SDMA_DESC1_HEADER_MODE_SHIFT),
1832                                    (u8)((desc[1] &
1833                                          SDMA_DESC1_HEADER_DWS_SMASK) >>
1834                                         SDMA_DESC1_HEADER_DWS_SHIFT));
1835                 head++;
1836                 head &= sde->sdma_mask;
1837         }
1838 }
1839
1840 #define SDE_FMT \
1841         "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
1842 /**
1843  * sdma_seqfile_dump_sde() - debugfs dump of sde
1844  * @s: seq file
1845  * @sde: send dma engine to dump
1846  *
1847  * This routine dumps the sde to the indicated seq file.
1848  */
1849 void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
1850 {
1851         u16 head, tail;
1852         struct hw_sdma_desc *descqp;
1853         u64 desc[2];
1854         u64 addr;
1855         u8 gen;
1856         u16 len;
1857
1858         head = sde->descq_head & sde->sdma_mask;
1859         tail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
1860         seq_printf(s, SDE_FMT, sde->this_idx,
1861                    sde->cpu,
1862                    sdma_state_name(sde->state.current_state),
1863                    (unsigned long long)read_sde_csr(sde, SD(CTRL)),
1864                    (unsigned long long)read_sde_csr(sde, SD(STATUS)),
1865                    (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)),
1866                    (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail,
1867                    (unsigned long long)read_sde_csr(sde, SD(HEAD)), head,
1868                    (unsigned long long)le64_to_cpu(*sde->head_dma),
1869                    (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
1870                    (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
1871                    (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
1872                    (unsigned long long)sde->last_status,
1873                    (unsigned long long)sde->ahg_bits,
1874                    sde->tx_tail,
1875                    sde->tx_head,
1876                    sde->descq_tail,
1877                    sde->descq_head,
1878                    !list_empty(&sde->flushlist),
1879                    sde->descq_full_count,
1880                    (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
1881
1882         /* print info for each entry in the descriptor queue */
1883         while (head != tail) {
1884                 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
1885
1886                 descqp = &sde->descq[head];
1887                 desc[0] = le64_to_cpu(descqp->qw[0]);
1888                 desc[1] = le64_to_cpu(descqp->qw[1]);
1889                 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
1890                 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
1891                                 'H' : '-';
1892                 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
1893                 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
1894                 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
1895                         & SDMA_DESC0_PHY_ADDR_MASK;
1896                 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
1897                         & SDMA_DESC1_GENERATION_MASK;
1898                 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
1899                         & SDMA_DESC0_BYTE_COUNT_MASK;
1900                 seq_printf(s,
1901                            "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
1902                            head, flags, addr, gen, len);
1903                 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
1904                         seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
1905                                    (u8)((desc[1] &
1906                                          SDMA_DESC1_HEADER_INDEX_SMASK) >>
1907                                         SDMA_DESC1_HEADER_INDEX_SHIFT),
1908                                    (u8)((desc[1] &
1909                                          SDMA_DESC1_HEADER_MODE_SMASK) >>
1910                                         SDMA_DESC1_HEADER_MODE_SHIFT));
1911                 head = (head + 1) & sde->sdma_mask;
1912         }
1913 }
1914
1915 /*
1916  * add the generation number into
1917  * the qw1 and return
1918  */
1919 static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
1920 {
1921         u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
1922
1923         qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
1924         qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
1925                         << SDMA_DESC1_GENERATION_SHIFT;
1926         return qw1;
1927 }
1928
1929 /*
1930  * This routine submits the indicated tx
1931  *
1932  * Space has already been guaranteed and
1933  * tail side of ring is locked.
1934  *
1935  * The hardware tail update is done
1936  * in the caller and that is facilitated
1937  * by returning the new tail.
1938  *
1939  * There is special case logic for ahg
1940  * to not add the generation number for
1941  * up to 2 descriptors that follow the
1942  * first descriptor.
1943  *
1944  */
1945 static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
1946 {
1947         int i;
1948         u16 tail;
1949         struct sdma_desc *descp = tx->descp;
1950         u8 skip = 0, mode = ahg_mode(tx);
1951
1952         tail = sde->descq_tail & sde->sdma_mask;
1953         sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
1954         sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
1955         trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
1956                                    tail, &sde->descq[tail]);
1957         tail = ++sde->descq_tail & sde->sdma_mask;
1958         descp++;
1959         if (mode > SDMA_AHG_APPLY_UPDATE1)
1960                 skip = mode >> 1;
1961         for (i = 1; i < tx->num_desc; i++, descp++) {
1962                 u64 qw1;
1963
1964                 sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
1965                 if (skip) {
1966                         /* edits don't have generation */
1967                         qw1 = descp->qw[1];
1968                         skip--;
1969                 } else {
1970                         /* replace generation with real one for non-edits */
1971                         qw1 = add_gen(sde, descp->qw[1]);
1972                 }
1973                 sde->descq[tail].qw[1] = cpu_to_le64(qw1);
1974                 trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
1975                                            tail, &sde->descq[tail]);
1976                 tail = ++sde->descq_tail & sde->sdma_mask;
1977         }
1978         tx->next_descq_idx = tail;
1979 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
1980         tx->sn = sde->tail_sn++;
1981         trace_hfi1_sdma_in_sn(sde, tx->sn);
1982         WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
1983 #endif
1984         sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
1985         sde->desc_avail -= tx->num_desc;
1986         return tail;
1987 }
1988
1989 /*
1990  * Check for progress
1991  */
1992 static int sdma_check_progress(
1993         struct sdma_engine *sde,
1994         struct iowait *wait,
1995         struct sdma_txreq *tx)
1996 {
1997         int ret;
1998
1999         sde->desc_avail = sdma_descq_freecnt(sde);
2000         if (tx->num_desc <= sde->desc_avail)
2001                 return -EAGAIN;
2002         /* pulse the head_lock */
2003         if (wait && wait->sleep) {
2004                 unsigned seq;
2005
2006                 seq = raw_seqcount_begin(
2007                         (const seqcount_t *)&sde->head_lock.seqcount);
2008                 ret = wait->sleep(sde, wait, tx, seq);
2009                 if (ret == -EAGAIN)
2010                         sde->desc_avail = sdma_descq_freecnt(sde);
2011         } else {
2012                 ret = -EBUSY;
2013         }
2014         return ret;
2015 }
2016
2017 /**
2018  * sdma_send_txreq() - submit a tx req to ring
2019  * @sde: sdma engine to use
2020  * @wait: wait structure to use when full (may be NULL)
2021  * @tx: sdma_txreq to submit
2022  *
2023  * The call submits the tx into the ring.  If a iowait structure is non-NULL
2024  * the packet will be queued to the list in wait.
2025  *
2026  * Return:
2027  * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
2028  * ring (wait == NULL)
2029  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2030  */
2031 int sdma_send_txreq(struct sdma_engine *sde,
2032                     struct iowait *wait,
2033                     struct sdma_txreq *tx)
2034 {
2035         int ret = 0;
2036         u16 tail;
2037         unsigned long flags;
2038
2039         /* user should have supplied entire packet */
2040         if (unlikely(tx->tlen))
2041                 return -EINVAL;
2042         tx->wait = wait;
2043         spin_lock_irqsave(&sde->tail_lock, flags);
2044 retry:
2045         if (unlikely(!__sdma_running(sde)))
2046                 goto unlock_noconn;
2047         if (unlikely(tx->num_desc > sde->desc_avail))
2048                 goto nodesc;
2049         tail = submit_tx(sde, tx);
2050         if (wait)
2051                 iowait_sdma_inc(wait);
2052         sdma_update_tail(sde, tail);
2053 unlock:
2054         spin_unlock_irqrestore(&sde->tail_lock, flags);
2055         return ret;
2056 unlock_noconn:
2057         if (wait)
2058                 iowait_sdma_inc(wait);
2059         tx->next_descq_idx = 0;
2060 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2061         tx->sn = sde->tail_sn++;
2062         trace_hfi1_sdma_in_sn(sde, tx->sn);
2063 #endif
2064         spin_lock(&sde->flushlist_lock);
2065         list_add_tail(&tx->list, &sde->flushlist);
2066         spin_unlock(&sde->flushlist_lock);
2067         if (wait) {
2068                 wait->tx_count++;
2069                 wait->count += tx->num_desc;
2070         }
2071         schedule_work(&sde->flush_worker);
2072         ret = -ECOMM;
2073         goto unlock;
2074 nodesc:
2075         ret = sdma_check_progress(sde, wait, tx);
2076         if (ret == -EAGAIN) {
2077                 ret = 0;
2078                 goto retry;
2079         }
2080         sde->descq_full_count++;
2081         goto unlock;
2082 }
2083
2084 /**
2085  * sdma_send_txlist() - submit a list of tx req to ring
2086  * @sde: sdma engine to use
2087  * @wait: wait structure to use when full (may be NULL)
2088  * @tx_list: list of sdma_txreqs to submit
2089  *
2090  * The call submits the list into the ring.
2091  *
2092  * If the iowait structure is non-NULL and not equal to the iowait list
2093  * the unprocessed part of the list  will be appended to the list in wait.
2094  *
2095  * In all cases, the tx_list will be updated so the head of the tx_list is
2096  * the list of descriptors that have yet to be transmitted.
2097  *
2098  * The intent of this call is to provide a more efficient
2099  * way of submitting multiple packets to SDMA while holding the tail
2100  * side locking.
2101  *
2102  * Return:
2103  * > 0 - Success (value is number of sdma_txreq's submitted),
2104  * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
2105  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2106  */
2107 int sdma_send_txlist(struct sdma_engine *sde, struct iowait *wait,
2108                      struct list_head *tx_list)
2109 {
2110         struct sdma_txreq *tx, *tx_next;
2111         int ret = 0;
2112         unsigned long flags;
2113         u16 tail = INVALID_TAIL;
2114         int count = 0;
2115
2116         spin_lock_irqsave(&sde->tail_lock, flags);
2117 retry:
2118         list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2119                 tx->wait = wait;
2120                 if (unlikely(!__sdma_running(sde)))
2121                         goto unlock_noconn;
2122                 if (unlikely(tx->num_desc > sde->desc_avail))
2123                         goto nodesc;
2124                 if (unlikely(tx->tlen)) {
2125                         ret = -EINVAL;
2126                         goto update_tail;
2127                 }
2128                 list_del_init(&tx->list);
2129                 tail = submit_tx(sde, tx);
2130                 count++;
2131                 if (tail != INVALID_TAIL &&
2132                     (count & SDMA_TAIL_UPDATE_THRESH) == 0) {
2133                         sdma_update_tail(sde, tail);
2134                         tail = INVALID_TAIL;
2135                 }
2136         }
2137 update_tail:
2138         if (wait)
2139                 iowait_sdma_add(wait, count);
2140         if (tail != INVALID_TAIL)
2141                 sdma_update_tail(sde, tail);
2142         spin_unlock_irqrestore(&sde->tail_lock, flags);
2143         return ret == 0 ? count : ret;
2144 unlock_noconn:
2145         spin_lock(&sde->flushlist_lock);
2146         list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2147                 tx->wait = wait;
2148                 list_del_init(&tx->list);
2149                 if (wait)
2150                         iowait_sdma_inc(wait);
2151                 tx->next_descq_idx = 0;
2152 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2153                 tx->sn = sde->tail_sn++;
2154                 trace_hfi1_sdma_in_sn(sde, tx->sn);
2155 #endif
2156                 list_add_tail(&tx->list, &sde->flushlist);
2157                 if (wait) {
2158                         wait->tx_count++;
2159                         wait->count += tx->num_desc;
2160                 }
2161         }
2162         spin_unlock(&sde->flushlist_lock);
2163         schedule_work(&sde->flush_worker);
2164         ret = -ECOMM;
2165         goto update_tail;
2166 nodesc:
2167         ret = sdma_check_progress(sde, wait, tx);
2168         if (ret == -EAGAIN) {
2169                 ret = 0;
2170                 goto retry;
2171         }
2172         sde->descq_full_count++;
2173         goto update_tail;
2174 }
2175
2176 static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event)
2177 {
2178         unsigned long flags;
2179
2180         spin_lock_irqsave(&sde->tail_lock, flags);
2181         write_seqlock(&sde->head_lock);
2182
2183         __sdma_process_event(sde, event);
2184
2185         if (sde->state.current_state == sdma_state_s99_running)
2186                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
2187
2188         write_sequnlock(&sde->head_lock);
2189         spin_unlock_irqrestore(&sde->tail_lock, flags);
2190 }
2191
2192 static void __sdma_process_event(struct sdma_engine *sde,
2193                                  enum sdma_events event)
2194 {
2195         struct sdma_state *ss = &sde->state;
2196         int need_progress = 0;
2197
2198         /* CONFIG SDMA temporary */
2199 #ifdef CONFIG_SDMA_VERBOSITY
2200         dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
2201                    sdma_state_names[ss->current_state],
2202                    sdma_event_names[event]);
2203 #endif
2204
2205         switch (ss->current_state) {
2206         case sdma_state_s00_hw_down:
2207                 switch (event) {
2208                 case sdma_event_e00_go_hw_down:
2209                         break;
2210                 case sdma_event_e30_go_running:
2211                         /*
2212                          * If down, but running requested (usually result
2213                          * of link up, then we need to start up.
2214                          * This can happen when hw down is requested while
2215                          * bringing the link up with traffic active on
2216                          * 7220, e.g.
2217                          */
2218                         ss->go_s99_running = 1;
2219                         /* fall through and start dma engine */
2220                 case sdma_event_e10_go_hw_start:
2221                         /* This reference means the state machine is started */
2222                         sdma_get(&sde->state);
2223                         sdma_set_state(sde,
2224                                        sdma_state_s10_hw_start_up_halt_wait);
2225                         break;
2226                 case sdma_event_e15_hw_halt_done:
2227                         break;
2228                 case sdma_event_e25_hw_clean_up_done:
2229                         break;
2230                 case sdma_event_e40_sw_cleaned:
2231                         sdma_sw_tear_down(sde);
2232                         break;
2233                 case sdma_event_e50_hw_cleaned:
2234                         break;
2235                 case sdma_event_e60_hw_halted:
2236                         break;
2237                 case sdma_event_e70_go_idle:
2238                         break;
2239                 case sdma_event_e80_hw_freeze:
2240                         break;
2241                 case sdma_event_e81_hw_frozen:
2242                         break;
2243                 case sdma_event_e82_hw_unfreeze:
2244                         break;
2245                 case sdma_event_e85_link_down:
2246                         break;
2247                 case sdma_event_e90_sw_halted:
2248                         break;
2249                 }
2250                 break;
2251
2252         case sdma_state_s10_hw_start_up_halt_wait:
2253                 switch (event) {
2254                 case sdma_event_e00_go_hw_down:
2255                         sdma_set_state(sde, sdma_state_s00_hw_down);
2256                         sdma_sw_tear_down(sde);
2257                         break;
2258                 case sdma_event_e10_go_hw_start:
2259                         break;
2260                 case sdma_event_e15_hw_halt_done:
2261                         sdma_set_state(sde,
2262                                        sdma_state_s15_hw_start_up_clean_wait);
2263                         sdma_start_hw_clean_up(sde);
2264                         break;
2265                 case sdma_event_e25_hw_clean_up_done:
2266                         break;
2267                 case sdma_event_e30_go_running:
2268                         ss->go_s99_running = 1;
2269                         break;
2270                 case sdma_event_e40_sw_cleaned:
2271                         break;
2272                 case sdma_event_e50_hw_cleaned:
2273                         break;
2274                 case sdma_event_e60_hw_halted:
2275                         schedule_work(&sde->err_halt_worker);
2276                         break;
2277                 case sdma_event_e70_go_idle:
2278                         ss->go_s99_running = 0;
2279                         break;
2280                 case sdma_event_e80_hw_freeze:
2281                         break;
2282                 case sdma_event_e81_hw_frozen:
2283                         break;
2284                 case sdma_event_e82_hw_unfreeze:
2285                         break;
2286                 case sdma_event_e85_link_down:
2287                         break;
2288                 case sdma_event_e90_sw_halted:
2289                         break;
2290                 }
2291                 break;
2292
2293         case sdma_state_s15_hw_start_up_clean_wait:
2294                 switch (event) {
2295                 case sdma_event_e00_go_hw_down:
2296                         sdma_set_state(sde, sdma_state_s00_hw_down);
2297                         sdma_sw_tear_down(sde);
2298                         break;
2299                 case sdma_event_e10_go_hw_start:
2300                         break;
2301                 case sdma_event_e15_hw_halt_done:
2302                         break;
2303                 case sdma_event_e25_hw_clean_up_done:
2304                         sdma_hw_start_up(sde);
2305                         sdma_set_state(sde, ss->go_s99_running ?
2306                                        sdma_state_s99_running :
2307                                        sdma_state_s20_idle);
2308                         break;
2309                 case sdma_event_e30_go_running:
2310                         ss->go_s99_running = 1;
2311                         break;
2312                 case sdma_event_e40_sw_cleaned:
2313                         break;
2314                 case sdma_event_e50_hw_cleaned:
2315                         break;
2316                 case sdma_event_e60_hw_halted:
2317                         break;
2318                 case sdma_event_e70_go_idle:
2319                         ss->go_s99_running = 0;
2320                         break;
2321                 case sdma_event_e80_hw_freeze:
2322                         break;
2323                 case sdma_event_e81_hw_frozen:
2324                         break;
2325                 case sdma_event_e82_hw_unfreeze:
2326                         break;
2327                 case sdma_event_e85_link_down:
2328                         break;
2329                 case sdma_event_e90_sw_halted:
2330                         break;
2331                 }
2332                 break;
2333
2334         case sdma_state_s20_idle:
2335                 switch (event) {
2336                 case sdma_event_e00_go_hw_down:
2337                         sdma_set_state(sde, sdma_state_s00_hw_down);
2338                         sdma_sw_tear_down(sde);
2339                         break;
2340                 case sdma_event_e10_go_hw_start:
2341                         break;
2342                 case sdma_event_e15_hw_halt_done:
2343                         break;
2344                 case sdma_event_e25_hw_clean_up_done:
2345                         break;
2346                 case sdma_event_e30_go_running:
2347                         sdma_set_state(sde, sdma_state_s99_running);
2348                         ss->go_s99_running = 1;
2349                         break;
2350                 case sdma_event_e40_sw_cleaned:
2351                         break;
2352                 case sdma_event_e50_hw_cleaned:
2353                         break;
2354                 case sdma_event_e60_hw_halted:
2355                         sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2356                         schedule_work(&sde->err_halt_worker);
2357                         break;
2358                 case sdma_event_e70_go_idle:
2359                         break;
2360                 case sdma_event_e85_link_down:
2361                         /* fall through */
2362                 case sdma_event_e80_hw_freeze:
2363                         sdma_set_state(sde, sdma_state_s80_hw_freeze);
2364                         atomic_dec(&sde->dd->sdma_unfreeze_count);
2365                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2366                         break;
2367                 case sdma_event_e81_hw_frozen:
2368                         break;
2369                 case sdma_event_e82_hw_unfreeze:
2370                         break;
2371                 case sdma_event_e90_sw_halted:
2372                         break;
2373                 }
2374                 break;
2375
2376         case sdma_state_s30_sw_clean_up_wait:
2377                 switch (event) {
2378                 case sdma_event_e00_go_hw_down:
2379                         sdma_set_state(sde, sdma_state_s00_hw_down);
2380                         break;
2381                 case sdma_event_e10_go_hw_start:
2382                         break;
2383                 case sdma_event_e15_hw_halt_done:
2384                         break;
2385                 case sdma_event_e25_hw_clean_up_done:
2386                         break;
2387                 case sdma_event_e30_go_running:
2388                         ss->go_s99_running = 1;
2389                         break;
2390                 case sdma_event_e40_sw_cleaned:
2391                         sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
2392                         sdma_start_hw_clean_up(sde);
2393                         break;
2394                 case sdma_event_e50_hw_cleaned:
2395                         break;
2396                 case sdma_event_e60_hw_halted:
2397                         break;
2398                 case sdma_event_e70_go_idle:
2399                         ss->go_s99_running = 0;
2400                         break;
2401                 case sdma_event_e80_hw_freeze:
2402                         break;
2403                 case sdma_event_e81_hw_frozen:
2404                         break;
2405                 case sdma_event_e82_hw_unfreeze:
2406                         break;
2407                 case sdma_event_e85_link_down:
2408                         ss->go_s99_running = 0;
2409                         break;
2410                 case sdma_event_e90_sw_halted:
2411                         break;
2412                 }
2413                 break;
2414
2415         case sdma_state_s40_hw_clean_up_wait:
2416                 switch (event) {
2417                 case sdma_event_e00_go_hw_down:
2418                         sdma_set_state(sde, sdma_state_s00_hw_down);
2419                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2420                         break;
2421                 case sdma_event_e10_go_hw_start:
2422                         break;
2423                 case sdma_event_e15_hw_halt_done:
2424                         break;
2425                 case sdma_event_e25_hw_clean_up_done:
2426                         sdma_hw_start_up(sde);
2427                         sdma_set_state(sde, ss->go_s99_running ?
2428                                        sdma_state_s99_running :
2429                                        sdma_state_s20_idle);
2430                         break;
2431                 case sdma_event_e30_go_running:
2432                         ss->go_s99_running = 1;
2433                         break;
2434                 case sdma_event_e40_sw_cleaned:
2435                         break;
2436                 case sdma_event_e50_hw_cleaned:
2437                         break;
2438                 case sdma_event_e60_hw_halted:
2439                         break;
2440                 case sdma_event_e70_go_idle:
2441                         ss->go_s99_running = 0;
2442                         break;
2443                 case sdma_event_e80_hw_freeze:
2444                         break;
2445                 case sdma_event_e81_hw_frozen:
2446                         break;
2447                 case sdma_event_e82_hw_unfreeze:
2448                         break;
2449                 case sdma_event_e85_link_down:
2450                         ss->go_s99_running = 0;
2451                         break;
2452                 case sdma_event_e90_sw_halted:
2453                         break;
2454                 }
2455                 break;
2456
2457         case sdma_state_s50_hw_halt_wait:
2458                 switch (event) {
2459                 case sdma_event_e00_go_hw_down:
2460                         sdma_set_state(sde, sdma_state_s00_hw_down);
2461                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2462                         break;
2463                 case sdma_event_e10_go_hw_start:
2464                         break;
2465                 case sdma_event_e15_hw_halt_done:
2466                         sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2467                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2468                         break;
2469                 case sdma_event_e25_hw_clean_up_done:
2470                         break;
2471                 case sdma_event_e30_go_running:
2472                         ss->go_s99_running = 1;
2473                         break;
2474                 case sdma_event_e40_sw_cleaned:
2475                         break;
2476                 case sdma_event_e50_hw_cleaned:
2477                         break;
2478                 case sdma_event_e60_hw_halted:
2479                         schedule_work(&sde->err_halt_worker);
2480                         break;
2481                 case sdma_event_e70_go_idle:
2482                         ss->go_s99_running = 0;
2483                         break;
2484                 case sdma_event_e80_hw_freeze:
2485                         break;
2486                 case sdma_event_e81_hw_frozen:
2487                         break;
2488                 case sdma_event_e82_hw_unfreeze:
2489                         break;
2490                 case sdma_event_e85_link_down:
2491                         ss->go_s99_running = 0;
2492                         break;
2493                 case sdma_event_e90_sw_halted:
2494                         break;
2495                 }
2496                 break;
2497
2498         case sdma_state_s60_idle_halt_wait:
2499                 switch (event) {
2500                 case sdma_event_e00_go_hw_down:
2501                         sdma_set_state(sde, sdma_state_s00_hw_down);
2502                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2503                         break;
2504                 case sdma_event_e10_go_hw_start:
2505                         break;
2506                 case sdma_event_e15_hw_halt_done:
2507                         sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2508                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2509                         break;
2510                 case sdma_event_e25_hw_clean_up_done:
2511                         break;
2512                 case sdma_event_e30_go_running:
2513                         ss->go_s99_running = 1;
2514                         break;
2515                 case sdma_event_e40_sw_cleaned:
2516                         break;
2517                 case sdma_event_e50_hw_cleaned:
2518                         break;
2519                 case sdma_event_e60_hw_halted:
2520                         schedule_work(&sde->err_halt_worker);
2521                         break;
2522                 case sdma_event_e70_go_idle:
2523                         ss->go_s99_running = 0;
2524                         break;
2525                 case sdma_event_e80_hw_freeze:
2526                         break;
2527                 case sdma_event_e81_hw_frozen:
2528                         break;
2529                 case sdma_event_e82_hw_unfreeze:
2530                         break;
2531                 case sdma_event_e85_link_down:
2532                         break;
2533                 case sdma_event_e90_sw_halted:
2534                         break;
2535                 }
2536                 break;
2537
2538         case sdma_state_s80_hw_freeze:
2539                 switch (event) {
2540                 case sdma_event_e00_go_hw_down:
2541                         sdma_set_state(sde, sdma_state_s00_hw_down);
2542                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2543                         break;
2544                 case sdma_event_e10_go_hw_start:
2545                         break;
2546                 case sdma_event_e15_hw_halt_done:
2547                         break;
2548                 case sdma_event_e25_hw_clean_up_done:
2549                         break;
2550                 case sdma_event_e30_go_running:
2551                         ss->go_s99_running = 1;
2552                         break;
2553                 case sdma_event_e40_sw_cleaned:
2554                         break;
2555                 case sdma_event_e50_hw_cleaned:
2556                         break;
2557                 case sdma_event_e60_hw_halted:
2558                         break;
2559                 case sdma_event_e70_go_idle:
2560                         ss->go_s99_running = 0;
2561                         break;
2562                 case sdma_event_e80_hw_freeze:
2563                         break;
2564                 case sdma_event_e81_hw_frozen:
2565                         sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
2566                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2567                         break;
2568                 case sdma_event_e82_hw_unfreeze:
2569                         break;
2570                 case sdma_event_e85_link_down:
2571                         break;
2572                 case sdma_event_e90_sw_halted:
2573                         break;
2574                 }
2575                 break;
2576
2577         case sdma_state_s82_freeze_sw_clean:
2578                 switch (event) {
2579                 case sdma_event_e00_go_hw_down:
2580                         sdma_set_state(sde, sdma_state_s00_hw_down);
2581                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2582                         break;
2583                 case sdma_event_e10_go_hw_start:
2584                         break;
2585                 case sdma_event_e15_hw_halt_done:
2586                         break;
2587                 case sdma_event_e25_hw_clean_up_done:
2588                         break;
2589                 case sdma_event_e30_go_running:
2590                         ss->go_s99_running = 1;
2591                         break;
2592                 case sdma_event_e40_sw_cleaned:
2593                         /* notify caller this engine is done cleaning */
2594                         atomic_dec(&sde->dd->sdma_unfreeze_count);
2595                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2596                         break;
2597                 case sdma_event_e50_hw_cleaned:
2598                         break;
2599                 case sdma_event_e60_hw_halted:
2600                         break;
2601                 case sdma_event_e70_go_idle:
2602                         ss->go_s99_running = 0;
2603                         break;
2604                 case sdma_event_e80_hw_freeze:
2605                         break;
2606                 case sdma_event_e81_hw_frozen:
2607                         break;
2608                 case sdma_event_e82_hw_unfreeze:
2609                         sdma_hw_start_up(sde);
2610                         sdma_set_state(sde, ss->go_s99_running ?
2611                                        sdma_state_s99_running :
2612                                        sdma_state_s20_idle);
2613                         break;
2614                 case sdma_event_e85_link_down:
2615                         break;
2616                 case sdma_event_e90_sw_halted:
2617                         break;
2618                 }
2619                 break;
2620
2621         case sdma_state_s99_running:
2622                 switch (event) {
2623                 case sdma_event_e00_go_hw_down:
2624                         sdma_set_state(sde, sdma_state_s00_hw_down);
2625                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2626                         break;
2627                 case sdma_event_e10_go_hw_start:
2628                         break;
2629                 case sdma_event_e15_hw_halt_done:
2630                         break;
2631                 case sdma_event_e25_hw_clean_up_done:
2632                         break;
2633                 case sdma_event_e30_go_running:
2634                         break;
2635                 case sdma_event_e40_sw_cleaned:
2636                         break;
2637                 case sdma_event_e50_hw_cleaned:
2638                         break;
2639                 case sdma_event_e60_hw_halted:
2640                         need_progress = 1;
2641                         sdma_err_progress_check_schedule(sde);
2642                 case sdma_event_e90_sw_halted:
2643                         /*
2644                         * SW initiated halt does not perform engines
2645                         * progress check
2646                         */
2647                         sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2648                         schedule_work(&sde->err_halt_worker);
2649                         break;
2650                 case sdma_event_e70_go_idle:
2651                         sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
2652                         break;
2653                 case sdma_event_e85_link_down:
2654                         ss->go_s99_running = 0;
2655                         /* fall through */
2656                 case sdma_event_e80_hw_freeze:
2657                         sdma_set_state(sde, sdma_state_s80_hw_freeze);
2658                         atomic_dec(&sde->dd->sdma_unfreeze_count);
2659                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2660                         break;
2661                 case sdma_event_e81_hw_frozen:
2662                         break;
2663                 case sdma_event_e82_hw_unfreeze:
2664                         break;
2665                 }
2666                 break;
2667         }
2668
2669         ss->last_event = event;
2670         if (need_progress)
2671                 sdma_make_progress(sde, 0);
2672 }
2673
2674 /*
2675  * _extend_sdma_tx_descs() - helper to extend txreq
2676  *
2677  * This is called once the initial nominal allocation
2678  * of descriptors in the sdma_txreq is exhausted.
2679  *
2680  * The code will bump the allocation up to the max
2681  * of MAX_DESC (64) descriptors. There doesn't seem
2682  * much point in an interim step. The last descriptor
2683  * is reserved for coalesce buffer in order to support
2684  * cases where input packet has >MAX_DESC iovecs.
2685  *
2686  */
2687 static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
2688 {
2689         int i;
2690
2691         /* Handle last descriptor */
2692         if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
2693                 /* if tlen is 0, it is for padding, release last descriptor */
2694                 if (!tx->tlen) {
2695                         tx->desc_limit = MAX_DESC;
2696                 } else if (!tx->coalesce_buf) {
2697                         /* allocate coalesce buffer with space for padding */
2698                         tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
2699                                                    GFP_ATOMIC);
2700                         if (!tx->coalesce_buf)
2701                                 goto enomem;
2702                         tx->coalesce_idx = 0;
2703                 }
2704                 return 0;
2705         }
2706
2707         if (unlikely(tx->num_desc == MAX_DESC))
2708                 goto enomem;
2709
2710         tx->descp = kmalloc_array(
2711                         MAX_DESC,
2712                         sizeof(struct sdma_desc),
2713                         GFP_ATOMIC);
2714         if (!tx->descp)
2715                 goto enomem;
2716
2717         /* reserve last descriptor for coalescing */
2718         tx->desc_limit = MAX_DESC - 1;
2719         /* copy ones already built */
2720         for (i = 0; i < tx->num_desc; i++)
2721                 tx->descp[i] = tx->descs[i];
2722         return 0;
2723 enomem:
2724         sdma_txclean(dd, tx);
2725         return -ENOMEM;
2726 }
2727
2728 /*
2729  * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
2730  *
2731  * This is called once the initial nominal allocation of descriptors
2732  * in the sdma_txreq is exhausted.
2733  *
2734  * This function calls _extend_sdma_tx_descs to extend or allocate
2735  * coalesce buffer. If there is a allocated coalesce buffer, it will
2736  * copy the input packet data into the coalesce buffer. It also adds
2737  * coalesce buffer descriptor once when whole packet is received.
2738  *
2739  * Return:
2740  * <0 - error
2741  * 0 - coalescing, don't populate descriptor
2742  * 1 - continue with populating descriptor
2743  */
2744 int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
2745                            int type, void *kvaddr, struct page *page,
2746                            unsigned long offset, u16 len)
2747 {
2748         int pad_len, rval;
2749         dma_addr_t addr;
2750
2751         rval = _extend_sdma_tx_descs(dd, tx);
2752         if (rval) {
2753                 sdma_txclean(dd, tx);
2754                 return rval;
2755         }
2756
2757         /* If coalesce buffer is allocated, copy data into it */
2758         if (tx->coalesce_buf) {
2759                 if (type == SDMA_MAP_NONE) {
2760                         sdma_txclean(dd, tx);
2761                         return -EINVAL;
2762                 }
2763
2764                 if (type == SDMA_MAP_PAGE) {
2765                         kvaddr = kmap(page);
2766                         kvaddr += offset;
2767                 } else if (WARN_ON(!kvaddr)) {
2768                         sdma_txclean(dd, tx);
2769                         return -EINVAL;
2770                 }
2771
2772                 memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
2773                 tx->coalesce_idx += len;
2774                 if (type == SDMA_MAP_PAGE)
2775                         kunmap(page);
2776
2777                 /* If there is more data, return */
2778                 if (tx->tlen - tx->coalesce_idx)
2779                         return 0;
2780
2781                 /* Whole packet is received; add any padding */
2782                 pad_len = tx->packet_len & (sizeof(u32) - 1);
2783                 if (pad_len) {
2784                         pad_len = sizeof(u32) - pad_len;
2785                         memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
2786                         /* padding is taken care of for coalescing case */
2787                         tx->packet_len += pad_len;
2788                         tx->tlen += pad_len;
2789                 }
2790
2791                 /* dma map the coalesce buffer */
2792                 addr = dma_map_single(&dd->pcidev->dev,
2793                                       tx->coalesce_buf,
2794                                       tx->tlen,
2795                                       DMA_TO_DEVICE);
2796
2797                 if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
2798                         sdma_txclean(dd, tx);
2799                         return -ENOSPC;
2800                 }
2801
2802                 /* Add descriptor for coalesce buffer */
2803                 tx->desc_limit = MAX_DESC;
2804                 return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
2805                                          addr, tx->tlen);
2806         }
2807
2808         return 1;
2809 }
2810
2811 /* Update sdes when the lmc changes */
2812 void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
2813 {
2814         struct sdma_engine *sde;
2815         int i;
2816         u64 sreg;
2817
2818         sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
2819                 SD(CHECK_SLID_MASK_SHIFT)) |
2820                 (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
2821                 SD(CHECK_SLID_VALUE_SHIFT));
2822
2823         for (i = 0; i < dd->num_sdma; i++) {
2824                 hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
2825                           i, (u32)sreg);
2826                 sde = &dd->per_sdma[i];
2827                 write_sde_csr(sde, SD(CHECK_SLID), sreg);
2828         }
2829 }
2830
2831 /* tx not dword sized - pad */
2832 int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
2833 {
2834         int rval = 0;
2835
2836         tx->num_desc++;
2837         if ((unlikely(tx->num_desc == tx->desc_limit))) {
2838                 rval = _extend_sdma_tx_descs(dd, tx);
2839                 if (rval) {
2840                         sdma_txclean(dd, tx);
2841                         return rval;
2842                 }
2843         }
2844         /* finish the one just added */
2845         make_tx_sdma_desc(
2846                 tx,
2847                 SDMA_MAP_NONE,
2848                 dd->sdma_pad_phys,
2849                 sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
2850         _sdma_close_tx(dd, tx);
2851         return rval;
2852 }
2853
2854 /*
2855  * Add ahg to the sdma_txreq
2856  *
2857  * The logic will consume up to 3
2858  * descriptors at the beginning of
2859  * sdma_txreq.
2860  */
2861 void _sdma_txreq_ahgadd(
2862         struct sdma_txreq *tx,
2863         u8 num_ahg,
2864         u8 ahg_entry,
2865         u32 *ahg,
2866         u8 ahg_hlen)
2867 {
2868         u32 i, shift = 0, desc = 0;
2869         u8 mode;
2870
2871         WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
2872         /* compute mode */
2873         if (num_ahg == 1)
2874                 mode = SDMA_AHG_APPLY_UPDATE1;
2875         else if (num_ahg <= 5)
2876                 mode = SDMA_AHG_APPLY_UPDATE2;
2877         else
2878                 mode = SDMA_AHG_APPLY_UPDATE3;
2879         tx->num_desc++;
2880         /* initialize to consumed descriptors to zero */
2881         switch (mode) {
2882         case SDMA_AHG_APPLY_UPDATE3:
2883                 tx->num_desc++;
2884                 tx->descs[2].qw[0] = 0;
2885                 tx->descs[2].qw[1] = 0;
2886                 /* FALLTHROUGH */
2887         case SDMA_AHG_APPLY_UPDATE2:
2888                 tx->num_desc++;
2889                 tx->descs[1].qw[0] = 0;
2890                 tx->descs[1].qw[1] = 0;
2891                 break;
2892         }
2893         ahg_hlen >>= 2;
2894         tx->descs[0].qw[1] |=
2895                 (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
2896                         << SDMA_DESC1_HEADER_INDEX_SHIFT) |
2897                 (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
2898                         << SDMA_DESC1_HEADER_DWS_SHIFT) |
2899                 (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
2900                         << SDMA_DESC1_HEADER_MODE_SHIFT) |
2901                 (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
2902                         << SDMA_DESC1_HEADER_UPDATE1_SHIFT);
2903         for (i = 0; i < (num_ahg - 1); i++) {
2904                 if (!shift && !(i & 2))
2905                         desc++;
2906                 tx->descs[desc].qw[!!(i & 2)] |=
2907                         (((u64)ahg[i + 1])
2908                                 << shift);
2909                 shift = (shift + 32) & 63;
2910         }
2911 }
2912
2913 /**
2914  * sdma_ahg_alloc - allocate an AHG entry
2915  * @sde: engine to allocate from
2916  *
2917  * Return:
2918  * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
2919  * -ENOSPC if an entry is not available
2920  */
2921 int sdma_ahg_alloc(struct sdma_engine *sde)
2922 {
2923         int nr;
2924         int oldbit;
2925
2926         if (!sde) {
2927                 trace_hfi1_ahg_allocate(sde, -EINVAL);
2928                 return -EINVAL;
2929         }
2930         while (1) {
2931                 nr = ffz(ACCESS_ONCE(sde->ahg_bits));
2932                 if (nr > 31) {
2933                         trace_hfi1_ahg_allocate(sde, -ENOSPC);
2934                         return -ENOSPC;
2935                 }
2936                 oldbit = test_and_set_bit(nr, &sde->ahg_bits);
2937                 if (!oldbit)
2938                         break;
2939                 cpu_relax();
2940         }
2941         trace_hfi1_ahg_allocate(sde, nr);
2942         return nr;
2943 }
2944
2945 /**
2946  * sdma_ahg_free - free an AHG entry
2947  * @sde: engine to return AHG entry
2948  * @ahg_index: index to free
2949  *
2950  * This routine frees the indicate AHG entry.
2951  */
2952 void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
2953 {
2954         if (!sde)
2955                 return;
2956         trace_hfi1_ahg_deallocate(sde, ahg_index);
2957         if (ahg_index < 0 || ahg_index > 31)
2958                 return;
2959         clear_bit(ahg_index, &sde->ahg_bits);
2960 }
2961
2962 /*
2963  * SPC freeze handling for SDMA engines.  Called when the driver knows
2964  * the SPC is going into a freeze but before the freeze is fully
2965  * settled.  Generally an error interrupt.
2966  *
2967  * This event will pull the engine out of running so no more entries can be
2968  * added to the engine's queue.
2969  */
2970 void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
2971 {
2972         int i;
2973         enum sdma_events event = link_down ? sdma_event_e85_link_down :
2974                                              sdma_event_e80_hw_freeze;
2975
2976         /* set up the wait but do not wait here */
2977         atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
2978
2979         /* tell all engines to stop running and wait */
2980         for (i = 0; i < dd->num_sdma; i++)
2981                 sdma_process_event(&dd->per_sdma[i], event);
2982
2983         /* sdma_freeze() will wait for all engines to have stopped */
2984 }
2985
2986 /*
2987  * SPC freeze handling for SDMA engines.  Called when the driver knows
2988  * the SPC is fully frozen.
2989  */
2990 void sdma_freeze(struct hfi1_devdata *dd)
2991 {
2992         int i;
2993         int ret;
2994
2995         /*
2996          * Make sure all engines have moved out of the running state before
2997          * continuing.
2998          */
2999         ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
3000                                        atomic_read(&dd->sdma_unfreeze_count) <=
3001                                        0);
3002         /* interrupted or count is negative, then unloading - just exit */
3003         if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
3004                 return;
3005
3006         /* set up the count for the next wait */
3007         atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3008
3009         /* tell all engines that the SPC is frozen, they can start cleaning */
3010         for (i = 0; i < dd->num_sdma; i++)
3011                 sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
3012
3013         /*
3014          * Wait for everyone to finish software clean before exiting.  The
3015          * software clean will read engine CSRs, so must be completed before
3016          * the next step, which will clear the engine CSRs.
3017          */
3018         (void)wait_event_interruptible(dd->sdma_unfreeze_wq,
3019                                 atomic_read(&dd->sdma_unfreeze_count) <= 0);
3020         /* no need to check results - done no matter what */
3021 }
3022
3023 /*
3024  * SPC freeze handling for the SDMA engines.  Called after the SPC is unfrozen.
3025  *
3026  * The SPC freeze acts like a SDMA halt and a hardware clean combined.  All
3027  * that is left is a software clean.  We could do it after the SPC is fully
3028  * frozen, but then we'd have to add another state to wait for the unfreeze.
3029  * Instead, just defer the software clean until the unfreeze step.
3030  */
3031 void sdma_unfreeze(struct hfi1_devdata *dd)
3032 {
3033         int i;
3034
3035         /* tell all engines start freeze clean up */
3036         for (i = 0; i < dd->num_sdma; i++)
3037                 sdma_process_event(&dd->per_sdma[i],
3038                                    sdma_event_e82_hw_unfreeze);
3039 }
3040
3041 /**
3042  * _sdma_engine_progress_schedule() - schedule progress on engine
3043  * @sde: sdma_engine to schedule progress
3044  *
3045  */
3046 void _sdma_engine_progress_schedule(
3047         struct sdma_engine *sde)
3048 {
3049         trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
3050         /* assume we have selected a good cpu */
3051         write_csr(sde->dd,
3052                   CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)),
3053                   sde->progress_mask);
3054 }