Merge tag 'mac80211-for-davem-2016-06-09' of git://git.kernel.org/pub/scm/linux/kerne...
[cascardo/linux.git] / drivers / infiniband / hw / hfi1 / verbs.c
1 /*
2  * Copyright(c) 2015, 2016 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 #include <rdma/ib_mad.h>
49 #include <rdma/ib_user_verbs.h>
50 #include <linux/io.h>
51 #include <linux/module.h>
52 #include <linux/utsname.h>
53 #include <linux/rculist.h>
54 #include <linux/mm.h>
55 #include <linux/vmalloc.h>
56
57 #include "hfi.h"
58 #include "common.h"
59 #include "device.h"
60 #include "trace.h"
61 #include "qp.h"
62 #include "verbs_txreq.h"
63
64 static unsigned int hfi1_lkey_table_size = 16;
65 module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
66                    S_IRUGO);
67 MODULE_PARM_DESC(lkey_table_size,
68                  "LKEY table size in bits (2^n, 1 <= n <= 23)");
69
70 static unsigned int hfi1_max_pds = 0xFFFF;
71 module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
72 MODULE_PARM_DESC(max_pds,
73                  "Maximum number of protection domains to support");
74
75 static unsigned int hfi1_max_ahs = 0xFFFF;
76 module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
77 MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
78
79 unsigned int hfi1_max_cqes = 0x2FFFF;
80 module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
81 MODULE_PARM_DESC(max_cqes,
82                  "Maximum number of completion queue entries to support");
83
84 unsigned int hfi1_max_cqs = 0x1FFFF;
85 module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
86 MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
87
88 unsigned int hfi1_max_qp_wrs = 0x3FFF;
89 module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
90 MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
91
92 unsigned int hfi1_max_qps = 16384;
93 module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
94 MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
95
96 unsigned int hfi1_max_sges = 0x60;
97 module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
98 MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
99
100 unsigned int hfi1_max_mcast_grps = 16384;
101 module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
102 MODULE_PARM_DESC(max_mcast_grps,
103                  "Maximum number of multicast groups to support");
104
105 unsigned int hfi1_max_mcast_qp_attached = 16;
106 module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
107                    uint, S_IRUGO);
108 MODULE_PARM_DESC(max_mcast_qp_attached,
109                  "Maximum number of attached QPs to support");
110
111 unsigned int hfi1_max_srqs = 1024;
112 module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
113 MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
114
115 unsigned int hfi1_max_srq_sges = 128;
116 module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
117 MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
118
119 unsigned int hfi1_max_srq_wrs = 0x1FFFF;
120 module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
121 MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
122
123 unsigned short piothreshold = 256;
124 module_param(piothreshold, ushort, S_IRUGO);
125 MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio");
126
127 #define COPY_CACHELESS 1
128 #define COPY_ADAPTIVE  2
129 static unsigned int sge_copy_mode;
130 module_param(sge_copy_mode, uint, S_IRUGO);
131 MODULE_PARM_DESC(sge_copy_mode,
132                  "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS");
133
134 static void verbs_sdma_complete(
135         struct sdma_txreq *cookie,
136         int status);
137
138 static int pio_wait(struct rvt_qp *qp,
139                     struct send_context *sc,
140                     struct hfi1_pkt_state *ps,
141                     u32 flag);
142
143 /* Length of buffer to create verbs txreq cache name */
144 #define TXREQ_NAME_LEN 24
145
146 static uint wss_threshold;
147 module_param(wss_threshold, uint, S_IRUGO);
148 MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy");
149 static uint wss_clean_period = 256;
150 module_param(wss_clean_period, uint, S_IRUGO);
151 MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned");
152
153 /* memory working set size */
154 struct hfi1_wss {
155         unsigned long *entries;
156         atomic_t total_count;
157         atomic_t clean_counter;
158         atomic_t clean_entry;
159
160         int threshold;
161         int num_entries;
162         long pages_mask;
163 };
164
165 static struct hfi1_wss wss;
166
167 int hfi1_wss_init(void)
168 {
169         long llc_size;
170         long llc_bits;
171         long table_size;
172         long table_bits;
173
174         /* check for a valid percent range - default to 80 if none or invalid */
175         if (wss_threshold < 1 || wss_threshold > 100)
176                 wss_threshold = 80;
177         /* reject a wildly large period */
178         if (wss_clean_period > 1000000)
179                 wss_clean_period = 256;
180         /* reject a zero period */
181         if (wss_clean_period == 0)
182                 wss_clean_period = 1;
183
184         /*
185          * Calculate the table size - the next power of 2 larger than the
186          * LLC size.  LLC size is in KiB.
187          */
188         llc_size = wss_llc_size() * 1024;
189         table_size = roundup_pow_of_two(llc_size);
190
191         /* one bit per page in rounded up table */
192         llc_bits = llc_size / PAGE_SIZE;
193         table_bits = table_size / PAGE_SIZE;
194         wss.pages_mask = table_bits - 1;
195         wss.num_entries = table_bits / BITS_PER_LONG;
196
197         wss.threshold = (llc_bits * wss_threshold) / 100;
198         if (wss.threshold == 0)
199                 wss.threshold = 1;
200
201         atomic_set(&wss.clean_counter, wss_clean_period);
202
203         wss.entries = kcalloc(wss.num_entries, sizeof(*wss.entries),
204                               GFP_KERNEL);
205         if (!wss.entries) {
206                 hfi1_wss_exit();
207                 return -ENOMEM;
208         }
209
210         return 0;
211 }
212
213 void hfi1_wss_exit(void)
214 {
215         /* coded to handle partially initialized and repeat callers */
216         kfree(wss.entries);
217         wss.entries = NULL;
218 }
219
220 /*
221  * Advance the clean counter.  When the clean period has expired,
222  * clean an entry.
223  *
224  * This is implemented in atomics to avoid locking.  Because multiple
225  * variables are involved, it can be racy which can lead to slightly
226  * inaccurate information.  Since this is only a heuristic, this is
227  * OK.  Any innaccuracies will clean themselves out as the counter
228  * advances.  That said, it is unlikely the entry clean operation will
229  * race - the next possible racer will not start until the next clean
230  * period.
231  *
232  * The clean counter is implemented as a decrement to zero.  When zero
233  * is reached an entry is cleaned.
234  */
235 static void wss_advance_clean_counter(void)
236 {
237         int entry;
238         int weight;
239         unsigned long bits;
240
241         /* become the cleaner if we decrement the counter to zero */
242         if (atomic_dec_and_test(&wss.clean_counter)) {
243                 /*
244                  * Set, not add, the clean period.  This avoids an issue
245                  * where the counter could decrement below the clean period.
246                  * Doing a set can result in lost decrements, slowing the
247                  * clean advance.  Since this a heuristic, this possible
248                  * slowdown is OK.
249                  *
250                  * An alternative is to loop, advancing the counter by a
251                  * clean period until the result is > 0. However, this could
252                  * lead to several threads keeping another in the clean loop.
253                  * This could be mitigated by limiting the number of times
254                  * we stay in the loop.
255                  */
256                 atomic_set(&wss.clean_counter, wss_clean_period);
257
258                 /*
259                  * Uniquely grab the entry to clean and move to next.
260                  * The current entry is always the lower bits of
261                  * wss.clean_entry.  The table size, wss.num_entries,
262                  * is always a power-of-2.
263                  */
264                 entry = (atomic_inc_return(&wss.clean_entry) - 1)
265                         & (wss.num_entries - 1);
266
267                 /* clear the entry and count the bits */
268                 bits = xchg(&wss.entries[entry], 0);
269                 weight = hweight64((u64)bits);
270                 /* only adjust the contended total count if needed */
271                 if (weight)
272                         atomic_sub(weight, &wss.total_count);
273         }
274 }
275
276 /*
277  * Insert the given address into the working set array.
278  */
279 static void wss_insert(void *address)
280 {
281         u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss.pages_mask;
282         u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
283         u32 nr = page & (BITS_PER_LONG - 1);
284
285         if (!test_and_set_bit(nr, &wss.entries[entry]))
286                 atomic_inc(&wss.total_count);
287
288         wss_advance_clean_counter();
289 }
290
291 /*
292  * Is the working set larger than the threshold?
293  */
294 static inline int wss_exceeds_threshold(void)
295 {
296         return atomic_read(&wss.total_count) >= wss.threshold;
297 }
298
299 /*
300  * Translate ib_wr_opcode into ib_wc_opcode.
301  */
302 const enum ib_wc_opcode ib_hfi1_wc_opcode[] = {
303         [IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
304         [IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
305         [IB_WR_SEND] = IB_WC_SEND,
306         [IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
307         [IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
308         [IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
309         [IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD
310 };
311
312 /*
313  * Length of header by opcode, 0 --> not supported
314  */
315 const u8 hdr_len_by_opcode[256] = {
316         /* RC */
317         [IB_OPCODE_RC_SEND_FIRST]                     = 12 + 8,
318         [IB_OPCODE_RC_SEND_MIDDLE]                    = 12 + 8,
319         [IB_OPCODE_RC_SEND_LAST]                      = 12 + 8,
320         [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
321         [IB_OPCODE_RC_SEND_ONLY]                      = 12 + 8,
322         [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
323         [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
324         [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = 12 + 8,
325         [IB_OPCODE_RC_RDMA_WRITE_LAST]                = 12 + 8,
326         [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
327         [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
328         [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
329         [IB_OPCODE_RC_RDMA_READ_REQUEST]              = 12 + 8 + 16,
330         [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = 12 + 8 + 4,
331         [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = 12 + 8,
332         [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = 12 + 8 + 4,
333         [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = 12 + 8 + 4,
334         [IB_OPCODE_RC_ACKNOWLEDGE]                    = 12 + 8 + 4,
335         [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = 12 + 8 + 4,
336         [IB_OPCODE_RC_COMPARE_SWAP]                   = 12 + 8 + 28,
337         [IB_OPCODE_RC_FETCH_ADD]                      = 12 + 8 + 28,
338         [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = 12 + 8 + 4,
339         [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = 12 + 8 + 4,
340         /* UC */
341         [IB_OPCODE_UC_SEND_FIRST]                     = 12 + 8,
342         [IB_OPCODE_UC_SEND_MIDDLE]                    = 12 + 8,
343         [IB_OPCODE_UC_SEND_LAST]                      = 12 + 8,
344         [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
345         [IB_OPCODE_UC_SEND_ONLY]                      = 12 + 8,
346         [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
347         [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
348         [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = 12 + 8,
349         [IB_OPCODE_UC_RDMA_WRITE_LAST]                = 12 + 8,
350         [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
351         [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
352         [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
353         /* UD */
354         [IB_OPCODE_UD_SEND_ONLY]                      = 12 + 8 + 8,
355         [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 12
356 };
357
358 static const opcode_handler opcode_handler_tbl[256] = {
359         /* RC */
360         [IB_OPCODE_RC_SEND_FIRST]                     = &hfi1_rc_rcv,
361         [IB_OPCODE_RC_SEND_MIDDLE]                    = &hfi1_rc_rcv,
362         [IB_OPCODE_RC_SEND_LAST]                      = &hfi1_rc_rcv,
363         [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
364         [IB_OPCODE_RC_SEND_ONLY]                      = &hfi1_rc_rcv,
365         [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
366         [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = &hfi1_rc_rcv,
367         [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = &hfi1_rc_rcv,
368         [IB_OPCODE_RC_RDMA_WRITE_LAST]                = &hfi1_rc_rcv,
369         [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
370         [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = &hfi1_rc_rcv,
371         [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
372         [IB_OPCODE_RC_RDMA_READ_REQUEST]              = &hfi1_rc_rcv,
373         [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = &hfi1_rc_rcv,
374         [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = &hfi1_rc_rcv,
375         [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = &hfi1_rc_rcv,
376         [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = &hfi1_rc_rcv,
377         [IB_OPCODE_RC_ACKNOWLEDGE]                    = &hfi1_rc_rcv,
378         [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = &hfi1_rc_rcv,
379         [IB_OPCODE_RC_COMPARE_SWAP]                   = &hfi1_rc_rcv,
380         [IB_OPCODE_RC_FETCH_ADD]                      = &hfi1_rc_rcv,
381         /* UC */
382         [IB_OPCODE_UC_SEND_FIRST]                     = &hfi1_uc_rcv,
383         [IB_OPCODE_UC_SEND_MIDDLE]                    = &hfi1_uc_rcv,
384         [IB_OPCODE_UC_SEND_LAST]                      = &hfi1_uc_rcv,
385         [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
386         [IB_OPCODE_UC_SEND_ONLY]                      = &hfi1_uc_rcv,
387         [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
388         [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = &hfi1_uc_rcv,
389         [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = &hfi1_uc_rcv,
390         [IB_OPCODE_UC_RDMA_WRITE_LAST]                = &hfi1_uc_rcv,
391         [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
392         [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = &hfi1_uc_rcv,
393         [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
394         /* UD */
395         [IB_OPCODE_UD_SEND_ONLY]                      = &hfi1_ud_rcv,
396         [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_ud_rcv,
397         /* CNP */
398         [IB_OPCODE_CNP]                               = &hfi1_cnp_rcv
399 };
400
401 /*
402  * System image GUID.
403  */
404 __be64 ib_hfi1_sys_image_guid;
405
406 /**
407  * hfi1_copy_sge - copy data to SGE memory
408  * @ss: the SGE state
409  * @data: the data to copy
410  * @length: the length of the data
411  * @copy_last: do a separate copy of the last 8 bytes
412  */
413 void hfi1_copy_sge(
414         struct rvt_sge_state *ss,
415         void *data, u32 length,
416         int release,
417         int copy_last)
418 {
419         struct rvt_sge *sge = &ss->sge;
420         int in_last = 0;
421         int i;
422         int cacheless_copy = 0;
423
424         if (sge_copy_mode == COPY_CACHELESS) {
425                 cacheless_copy = length >= PAGE_SIZE;
426         } else if (sge_copy_mode == COPY_ADAPTIVE) {
427                 if (length >= PAGE_SIZE) {
428                         /*
429                          * NOTE: this *assumes*:
430                          * o The first vaddr is the dest.
431                          * o If multiple pages, then vaddr is sequential.
432                          */
433                         wss_insert(sge->vaddr);
434                         if (length >= (2 * PAGE_SIZE))
435                                 wss_insert(sge->vaddr + PAGE_SIZE);
436
437                         cacheless_copy = wss_exceeds_threshold();
438                 } else {
439                         wss_advance_clean_counter();
440                 }
441         }
442         if (copy_last) {
443                 if (length > 8) {
444                         length -= 8;
445                 } else {
446                         copy_last = 0;
447                         in_last = 1;
448                 }
449         }
450
451 again:
452         while (length) {
453                 u32 len = sge->length;
454
455                 if (len > length)
456                         len = length;
457                 if (len > sge->sge_length)
458                         len = sge->sge_length;
459                 WARN_ON_ONCE(len == 0);
460                 if (unlikely(in_last)) {
461                         /* enforce byte transfer ordering */
462                         for (i = 0; i < len; i++)
463                                 ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
464                 } else if (cacheless_copy) {
465                         cacheless_memcpy(sge->vaddr, data, len);
466                 } else {
467                         memcpy(sge->vaddr, data, len);
468                 }
469                 sge->vaddr += len;
470                 sge->length -= len;
471                 sge->sge_length -= len;
472                 if (sge->sge_length == 0) {
473                         if (release)
474                                 rvt_put_mr(sge->mr);
475                         if (--ss->num_sge)
476                                 *sge = *ss->sg_list++;
477                 } else if (sge->length == 0 && sge->mr->lkey) {
478                         if (++sge->n >= RVT_SEGSZ) {
479                                 if (++sge->m >= sge->mr->mapsz)
480                                         break;
481                                 sge->n = 0;
482                         }
483                         sge->vaddr =
484                                 sge->mr->map[sge->m]->segs[sge->n].vaddr;
485                         sge->length =
486                                 sge->mr->map[sge->m]->segs[sge->n].length;
487                 }
488                 data += len;
489                 length -= len;
490         }
491
492         if (copy_last) {
493                 copy_last = 0;
494                 in_last = 1;
495                 length = 8;
496                 goto again;
497         }
498 }
499
500 /**
501  * hfi1_skip_sge - skip over SGE memory
502  * @ss: the SGE state
503  * @length: the number of bytes to skip
504  */
505 void hfi1_skip_sge(struct rvt_sge_state *ss, u32 length, int release)
506 {
507         struct rvt_sge *sge = &ss->sge;
508
509         while (length) {
510                 u32 len = sge->length;
511
512                 if (len > length)
513                         len = length;
514                 if (len > sge->sge_length)
515                         len = sge->sge_length;
516                 WARN_ON_ONCE(len == 0);
517                 sge->vaddr += len;
518                 sge->length -= len;
519                 sge->sge_length -= len;
520                 if (sge->sge_length == 0) {
521                         if (release)
522                                 rvt_put_mr(sge->mr);
523                         if (--ss->num_sge)
524                                 *sge = *ss->sg_list++;
525                 } else if (sge->length == 0 && sge->mr->lkey) {
526                         if (++sge->n >= RVT_SEGSZ) {
527                                 if (++sge->m >= sge->mr->mapsz)
528                                         break;
529                                 sge->n = 0;
530                         }
531                         sge->vaddr =
532                                 sge->mr->map[sge->m]->segs[sge->n].vaddr;
533                         sge->length =
534                                 sge->mr->map[sge->m]->segs[sge->n].length;
535                 }
536                 length -= len;
537         }
538 }
539
540 /*
541  * Make sure the QP is ready and able to accept the given opcode.
542  */
543 static inline int qp_ok(int opcode, struct hfi1_packet *packet)
544 {
545         struct hfi1_ibport *ibp;
546
547         if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
548                 goto dropit;
549         if (((opcode & RVT_OPCODE_QP_MASK) == packet->qp->allowed_ops) ||
550             (opcode == IB_OPCODE_CNP))
551                 return 1;
552 dropit:
553         ibp = &packet->rcd->ppd->ibport_data;
554         ibp->rvp.n_pkt_drops++;
555         return 0;
556 }
557
558 /**
559  * hfi1_ib_rcv - process an incoming packet
560  * @packet: data packet information
561  *
562  * This is called to process an incoming packet at interrupt level.
563  *
564  * Tlen is the length of the header + data + CRC in bytes.
565  */
566 void hfi1_ib_rcv(struct hfi1_packet *packet)
567 {
568         struct hfi1_ctxtdata *rcd = packet->rcd;
569         struct hfi1_ib_header *hdr = packet->hdr;
570         u32 tlen = packet->tlen;
571         struct hfi1_pportdata *ppd = rcd->ppd;
572         struct hfi1_ibport *ibp = &ppd->ibport_data;
573         struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
574         unsigned long flags;
575         u32 qp_num;
576         int lnh;
577         u8 opcode;
578         u16 lid;
579
580         /* Check for GRH */
581         lnh = be16_to_cpu(hdr->lrh[0]) & 3;
582         if (lnh == HFI1_LRH_BTH) {
583                 packet->ohdr = &hdr->u.oth;
584         } else if (lnh == HFI1_LRH_GRH) {
585                 u32 vtf;
586
587                 packet->ohdr = &hdr->u.l.oth;
588                 if (hdr->u.l.grh.next_hdr != IB_GRH_NEXT_HDR)
589                         goto drop;
590                 vtf = be32_to_cpu(hdr->u.l.grh.version_tclass_flow);
591                 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
592                         goto drop;
593                 packet->rcv_flags |= HFI1_HAS_GRH;
594         } else {
595                 goto drop;
596         }
597
598         trace_input_ibhdr(rcd->dd, hdr);
599
600         opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
601         inc_opstats(tlen, &rcd->opstats->stats[opcode]);
602
603         /* Get the destination QP number. */
604         qp_num = be32_to_cpu(packet->ohdr->bth[1]) & RVT_QPN_MASK;
605         lid = be16_to_cpu(hdr->lrh[1]);
606         if (unlikely((lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
607                      (lid != be16_to_cpu(IB_LID_PERMISSIVE)))) {
608                 struct rvt_mcast *mcast;
609                 struct rvt_mcast_qp *p;
610
611                 if (lnh != HFI1_LRH_GRH)
612                         goto drop;
613                 mcast = rvt_mcast_find(&ibp->rvp, &hdr->u.l.grh.dgid);
614                 if (!mcast)
615                         goto drop;
616                 list_for_each_entry_rcu(p, &mcast->qp_list, list) {
617                         packet->qp = p->qp;
618                         spin_lock_irqsave(&packet->qp->r_lock, flags);
619                         if (likely((qp_ok(opcode, packet))))
620                                 opcode_handler_tbl[opcode](packet);
621                         spin_unlock_irqrestore(&packet->qp->r_lock, flags);
622                 }
623                 /*
624                  * Notify rvt_multicast_detach() if it is waiting for us
625                  * to finish.
626                  */
627                 if (atomic_dec_return(&mcast->refcount) <= 1)
628                         wake_up(&mcast->wait);
629         } else {
630                 rcu_read_lock();
631                 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
632                 if (!packet->qp) {
633                         rcu_read_unlock();
634                         goto drop;
635                 }
636                 spin_lock_irqsave(&packet->qp->r_lock, flags);
637                 if (likely((qp_ok(opcode, packet))))
638                         opcode_handler_tbl[opcode](packet);
639                 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
640                 rcu_read_unlock();
641         }
642         return;
643
644 drop:
645         ibp->rvp.n_pkt_drops++;
646 }
647
648 /*
649  * This is called from a timer to check for QPs
650  * which need kernel memory in order to send a packet.
651  */
652 static void mem_timer(unsigned long data)
653 {
654         struct hfi1_ibdev *dev = (struct hfi1_ibdev *)data;
655         struct list_head *list = &dev->memwait;
656         struct rvt_qp *qp = NULL;
657         struct iowait *wait;
658         unsigned long flags;
659         struct hfi1_qp_priv *priv;
660
661         write_seqlock_irqsave(&dev->iowait_lock, flags);
662         if (!list_empty(list)) {
663                 wait = list_first_entry(list, struct iowait, list);
664                 qp = iowait_to_qp(wait);
665                 priv = qp->priv;
666                 list_del_init(&priv->s_iowait.list);
667                 /* refcount held until actual wake up */
668                 if (!list_empty(list))
669                         mod_timer(&dev->mem_timer, jiffies + 1);
670         }
671         write_sequnlock_irqrestore(&dev->iowait_lock, flags);
672
673         if (qp)
674                 hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM);
675 }
676
677 void update_sge(struct rvt_sge_state *ss, u32 length)
678 {
679         struct rvt_sge *sge = &ss->sge;
680
681         sge->vaddr += length;
682         sge->length -= length;
683         sge->sge_length -= length;
684         if (sge->sge_length == 0) {
685                 if (--ss->num_sge)
686                         *sge = *ss->sg_list++;
687         } else if (sge->length == 0 && sge->mr->lkey) {
688                 if (++sge->n >= RVT_SEGSZ) {
689                         if (++sge->m >= sge->mr->mapsz)
690                                 return;
691                         sge->n = 0;
692                 }
693                 sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr;
694                 sge->length = sge->mr->map[sge->m]->segs[sge->n].length;
695         }
696 }
697
698 /*
699  * This is called with progress side lock held.
700  */
701 /* New API */
702 static void verbs_sdma_complete(
703         struct sdma_txreq *cookie,
704         int status)
705 {
706         struct verbs_txreq *tx =
707                 container_of(cookie, struct verbs_txreq, txreq);
708         struct rvt_qp *qp = tx->qp;
709
710         spin_lock(&qp->s_lock);
711         if (tx->wqe) {
712                 hfi1_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
713         } else if (qp->ibqp.qp_type == IB_QPT_RC) {
714                 struct hfi1_ib_header *hdr;
715
716                 hdr = &tx->phdr.hdr;
717                 hfi1_rc_send_complete(qp, hdr);
718         }
719         spin_unlock(&qp->s_lock);
720
721         hfi1_put_txreq(tx);
722 }
723
724 static int wait_kmem(struct hfi1_ibdev *dev,
725                      struct rvt_qp *qp,
726                      struct hfi1_pkt_state *ps)
727 {
728         struct hfi1_qp_priv *priv = qp->priv;
729         unsigned long flags;
730         int ret = 0;
731
732         spin_lock_irqsave(&qp->s_lock, flags);
733         if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
734                 write_seqlock(&dev->iowait_lock);
735                 list_add_tail(&ps->s_txreq->txreq.list,
736                               &priv->s_iowait.tx_head);
737                 if (list_empty(&priv->s_iowait.list)) {
738                         if (list_empty(&dev->memwait))
739                                 mod_timer(&dev->mem_timer, jiffies + 1);
740                         qp->s_flags |= RVT_S_WAIT_KMEM;
741                         list_add_tail(&priv->s_iowait.list, &dev->memwait);
742                         trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM);
743                         atomic_inc(&qp->refcount);
744                 }
745                 write_sequnlock(&dev->iowait_lock);
746                 qp->s_flags &= ~RVT_S_BUSY;
747                 ret = -EBUSY;
748         }
749         spin_unlock_irqrestore(&qp->s_lock, flags);
750
751         return ret;
752 }
753
754 /*
755  * This routine calls txadds for each sg entry.
756  *
757  * Add failures will revert the sge cursor
758  */
759 static noinline int build_verbs_ulp_payload(
760         struct sdma_engine *sde,
761         struct rvt_sge_state *ss,
762         u32 length,
763         struct verbs_txreq *tx)
764 {
765         struct rvt_sge *sg_list = ss->sg_list;
766         struct rvt_sge sge = ss->sge;
767         u8 num_sge = ss->num_sge;
768         u32 len;
769         int ret = 0;
770
771         while (length) {
772                 len = ss->sge.length;
773                 if (len > length)
774                         len = length;
775                 if (len > ss->sge.sge_length)
776                         len = ss->sge.sge_length;
777                 WARN_ON_ONCE(len == 0);
778                 ret = sdma_txadd_kvaddr(
779                         sde->dd,
780                         &tx->txreq,
781                         ss->sge.vaddr,
782                         len);
783                 if (ret)
784                         goto bail_txadd;
785                 update_sge(ss, len);
786                 length -= len;
787         }
788         return ret;
789 bail_txadd:
790         /* unwind cursor */
791         ss->sge = sge;
792         ss->num_sge = num_sge;
793         ss->sg_list = sg_list;
794         return ret;
795 }
796
797 /*
798  * Build the number of DMA descriptors needed to send length bytes of data.
799  *
800  * NOTE: DMA mapping is held in the tx until completed in the ring or
801  *       the tx desc is freed without having been submitted to the ring
802  *
803  * This routine ensures all the helper routine calls succeed.
804  */
805 /* New API */
806 static int build_verbs_tx_desc(
807         struct sdma_engine *sde,
808         struct rvt_sge_state *ss,
809         u32 length,
810         struct verbs_txreq *tx,
811         struct ahg_ib_header *ahdr,
812         u64 pbc)
813 {
814         int ret = 0;
815         struct hfi1_pio_header *phdr = &tx->phdr;
816         u16 hdrbytes = tx->hdr_dwords << 2;
817
818         if (!ahdr->ahgcount) {
819                 ret = sdma_txinit_ahg(
820                         &tx->txreq,
821                         ahdr->tx_flags,
822                         hdrbytes + length,
823                         ahdr->ahgidx,
824                         0,
825                         NULL,
826                         0,
827                         verbs_sdma_complete);
828                 if (ret)
829                         goto bail_txadd;
830                 phdr->pbc = cpu_to_le64(pbc);
831                 ret = sdma_txadd_kvaddr(
832                         sde->dd,
833                         &tx->txreq,
834                         phdr,
835                         hdrbytes);
836                 if (ret)
837                         goto bail_txadd;
838         } else {
839                 ret = sdma_txinit_ahg(
840                         &tx->txreq,
841                         ahdr->tx_flags,
842                         length,
843                         ahdr->ahgidx,
844                         ahdr->ahgcount,
845                         ahdr->ahgdesc,
846                         hdrbytes,
847                         verbs_sdma_complete);
848                 if (ret)
849                         goto bail_txadd;
850         }
851
852         /* add the ulp payload - if any.  ss can be NULL for acks */
853         if (ss)
854                 ret = build_verbs_ulp_payload(sde, ss, length, tx);
855 bail_txadd:
856         return ret;
857 }
858
859 int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
860                         u64 pbc)
861 {
862         struct hfi1_qp_priv *priv = qp->priv;
863         struct ahg_ib_header *ahdr = priv->s_hdr;
864         u32 hdrwords = qp->s_hdrwords;
865         struct rvt_sge_state *ss = qp->s_cur_sge;
866         u32 len = qp->s_cur_size;
867         u32 plen = hdrwords + ((len + 3) >> 2) + 2; /* includes pbc */
868         struct hfi1_ibdev *dev = ps->dev;
869         struct hfi1_pportdata *ppd = ps->ppd;
870         struct verbs_txreq *tx;
871         u64 pbc_flags = 0;
872         u8 sc5 = priv->s_sc;
873
874         int ret;
875
876         tx = ps->s_txreq;
877         if (!sdma_txreq_built(&tx->txreq)) {
878                 if (likely(pbc == 0)) {
879                         u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
880                         /* No vl15 here */
881                         /* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
882                         pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
883
884                         pbc = create_pbc(ppd,
885                                          pbc_flags,
886                                          qp->srate_mbps,
887                                          vl,
888                                          plen);
889                 }
890                 tx->wqe = qp->s_wqe;
891                 ret = build_verbs_tx_desc(tx->sde, ss, len, tx, ahdr, pbc);
892                 if (unlikely(ret))
893                         goto bail_build;
894         }
895         ret =  sdma_send_txreq(tx->sde, &priv->s_iowait, &tx->txreq);
896         if (unlikely(ret < 0)) {
897                 if (ret == -ECOMM)
898                         goto bail_ecomm;
899                 return ret;
900         }
901         trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
902                                 &ps->s_txreq->phdr.hdr);
903         return ret;
904
905 bail_ecomm:
906         /* The current one got "sent" */
907         return 0;
908 bail_build:
909         ret = wait_kmem(dev, qp, ps);
910         if (!ret) {
911                 /* free txreq - bad state */
912                 hfi1_put_txreq(ps->s_txreq);
913                 ps->s_txreq = NULL;
914         }
915         return ret;
916 }
917
918 /*
919  * If we are now in the error state, return zero to flush the
920  * send work request.
921  */
922 static int pio_wait(struct rvt_qp *qp,
923                     struct send_context *sc,
924                     struct hfi1_pkt_state *ps,
925                     u32 flag)
926 {
927         struct hfi1_qp_priv *priv = qp->priv;
928         struct hfi1_devdata *dd = sc->dd;
929         struct hfi1_ibdev *dev = &dd->verbs_dev;
930         unsigned long flags;
931         int ret = 0;
932
933         /*
934          * Note that as soon as want_buffer() is called and
935          * possibly before it returns, sc_piobufavail()
936          * could be called. Therefore, put QP on the I/O wait list before
937          * enabling the PIO avail interrupt.
938          */
939         spin_lock_irqsave(&qp->s_lock, flags);
940         if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
941                 write_seqlock(&dev->iowait_lock);
942                 list_add_tail(&ps->s_txreq->txreq.list,
943                               &priv->s_iowait.tx_head);
944                 if (list_empty(&priv->s_iowait.list)) {
945                         struct hfi1_ibdev *dev = &dd->verbs_dev;
946                         int was_empty;
947
948                         dev->n_piowait += !!(flag & RVT_S_WAIT_PIO);
949                         dev->n_piodrain += !!(flag & RVT_S_WAIT_PIO_DRAIN);
950                         qp->s_flags |= flag;
951                         was_empty = list_empty(&sc->piowait);
952                         list_add_tail(&priv->s_iowait.list, &sc->piowait);
953                         trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO);
954                         atomic_inc(&qp->refcount);
955                         /* counting: only call wantpiobuf_intr if first user */
956                         if (was_empty)
957                                 hfi1_sc_wantpiobuf_intr(sc, 1);
958                 }
959                 write_sequnlock(&dev->iowait_lock);
960                 qp->s_flags &= ~RVT_S_BUSY;
961                 ret = -EBUSY;
962         }
963         spin_unlock_irqrestore(&qp->s_lock, flags);
964         return ret;
965 }
966
967 static void verbs_pio_complete(void *arg, int code)
968 {
969         struct rvt_qp *qp = (struct rvt_qp *)arg;
970         struct hfi1_qp_priv *priv = qp->priv;
971
972         if (iowait_pio_dec(&priv->s_iowait))
973                 iowait_drain_wakeup(&priv->s_iowait);
974 }
975
976 int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
977                         u64 pbc)
978 {
979         struct hfi1_qp_priv *priv = qp->priv;
980         u32 hdrwords = qp->s_hdrwords;
981         struct rvt_sge_state *ss = qp->s_cur_sge;
982         u32 len = qp->s_cur_size;
983         u32 dwords = (len + 3) >> 2;
984         u32 plen = hdrwords + dwords + 2; /* includes pbc */
985         struct hfi1_pportdata *ppd = ps->ppd;
986         u32 *hdr = (u32 *)&ps->s_txreq->phdr.hdr;
987         u64 pbc_flags = 0;
988         u8 sc5;
989         unsigned long flags = 0;
990         struct send_context *sc;
991         struct pio_buf *pbuf;
992         int wc_status = IB_WC_SUCCESS;
993         int ret = 0;
994         pio_release_cb cb = NULL;
995
996         /* only RC/UC use complete */
997         switch (qp->ibqp.qp_type) {
998         case IB_QPT_RC:
999         case IB_QPT_UC:
1000                 cb = verbs_pio_complete;
1001                 break;
1002         default:
1003                 break;
1004         }
1005
1006         /* vl15 special case taken care of in ud.c */
1007         sc5 = priv->s_sc;
1008         sc = ps->s_txreq->psc;
1009
1010         if (likely(pbc == 0)) {
1011                 u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
1012                 /* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
1013                 pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
1014                 pbc = create_pbc(ppd, pbc_flags, qp->srate_mbps, vl, plen);
1015         }
1016         if (cb)
1017                 iowait_pio_inc(&priv->s_iowait);
1018         pbuf = sc_buffer_alloc(sc, plen, cb, qp);
1019         if (unlikely(!pbuf)) {
1020                 if (cb)
1021                         verbs_pio_complete(qp, 0);
1022                 if (ppd->host_link_state != HLS_UP_ACTIVE) {
1023                         /*
1024                          * If we have filled the PIO buffers to capacity and are
1025                          * not in an active state this request is not going to
1026                          * go out to so just complete it with an error or else a
1027                          * ULP or the core may be stuck waiting.
1028                          */
1029                         hfi1_cdbg(
1030                                 PIO,
1031                                 "alloc failed. state not active, completing");
1032                         wc_status = IB_WC_GENERAL_ERR;
1033                         goto pio_bail;
1034                 } else {
1035                         /*
1036                          * This is a normal occurrence. The PIO buffs are full
1037                          * up but we are still happily sending, well we could be
1038                          * so lets continue to queue the request.
1039                          */
1040                         hfi1_cdbg(PIO, "alloc failed. state active, queuing");
1041                         ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO);
1042                         if (!ret)
1043                                 /* txreq not queued - free */
1044                                 goto bail;
1045                         /* tx consumed in wait */
1046                         return ret;
1047                 }
1048         }
1049
1050         if (len == 0) {
1051                 pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
1052         } else {
1053                 if (ss) {
1054                         seg_pio_copy_start(pbuf, pbc, hdr, hdrwords * 4);
1055                         while (len) {
1056                                 void *addr = ss->sge.vaddr;
1057                                 u32 slen = ss->sge.length;
1058
1059                                 if (slen > len)
1060                                         slen = len;
1061                                 update_sge(ss, slen);
1062                                 seg_pio_copy_mid(pbuf, addr, slen);
1063                                 len -= slen;
1064                         }
1065                         seg_pio_copy_end(pbuf);
1066                 }
1067         }
1068
1069         trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
1070                                &ps->s_txreq->phdr.hdr);
1071
1072 pio_bail:
1073         if (qp->s_wqe) {
1074                 spin_lock_irqsave(&qp->s_lock, flags);
1075                 hfi1_send_complete(qp, qp->s_wqe, wc_status);
1076                 spin_unlock_irqrestore(&qp->s_lock, flags);
1077         } else if (qp->ibqp.qp_type == IB_QPT_RC) {
1078                 spin_lock_irqsave(&qp->s_lock, flags);
1079                 hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr);
1080                 spin_unlock_irqrestore(&qp->s_lock, flags);
1081         }
1082
1083         ret = 0;
1084
1085 bail:
1086         hfi1_put_txreq(ps->s_txreq);
1087         return ret;
1088 }
1089
1090 /*
1091  * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1092  * being an entry from the partition key table), return 0
1093  * otherwise. Use the matching criteria for egress partition keys
1094  * specified in the OPAv1 spec., section 9.1l.7.
1095  */
1096 static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
1097 {
1098         u16 mkey = pkey & PKEY_LOW_15_MASK;
1099         u16 mentry = ent & PKEY_LOW_15_MASK;
1100
1101         if (mkey == mentry) {
1102                 /*
1103                  * If pkey[15] is set (full partition member),
1104                  * is bit 15 in the corresponding table element
1105                  * clear (limited member)?
1106                  */
1107                 if (pkey & PKEY_MEMBER_MASK)
1108                         return !!(ent & PKEY_MEMBER_MASK);
1109                 return 1;
1110         }
1111         return 0;
1112 }
1113
1114 /**
1115  * egress_pkey_check - check P_KEY of a packet
1116  * @ppd:    Physical IB port data
1117  * @lrh: Local route header
1118  * @bth: Base transport header
1119  * @sc5:    SC for packet
1120  * @s_pkey_index: It will be used for look up optimization for kernel contexts
1121  * only. If it is negative value, then it means user contexts is calling this
1122  * function.
1123  *
1124  * It checks if hdr's pkey is valid.
1125  *
1126  * Return: 0 on success, otherwise, 1
1127  */
1128 int egress_pkey_check(struct hfi1_pportdata *ppd, __be16 *lrh, __be32 *bth,
1129                       u8 sc5, int8_t s_pkey_index)
1130 {
1131         struct hfi1_devdata *dd;
1132         int i;
1133         u16 pkey;
1134         int is_user_ctxt_mechanism = (s_pkey_index < 0);
1135
1136         if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
1137                 return 0;
1138
1139         pkey = (u16)be32_to_cpu(bth[0]);
1140
1141         /* If SC15, pkey[0:14] must be 0x7fff */
1142         if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1143                 goto bad;
1144
1145         /* Is the pkey = 0x0, or 0x8000? */
1146         if ((pkey & PKEY_LOW_15_MASK) == 0)
1147                 goto bad;
1148
1149         /*
1150          * For the kernel contexts only, if a qp is passed into the function,
1151          * the most likely matching pkey has index qp->s_pkey_index
1152          */
1153         if (!is_user_ctxt_mechanism &&
1154             egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) {
1155                 return 0;
1156         }
1157
1158         for (i = 0; i < MAX_PKEY_VALUES; i++) {
1159                 if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1160                         return 0;
1161         }
1162 bad:
1163         /*
1164          * For the user-context mechanism, the P_KEY check would only happen
1165          * once per SDMA request, not once per packet.  Therefore, there's no
1166          * need to increment the counter for the user-context mechanism.
1167          */
1168         if (!is_user_ctxt_mechanism) {
1169                 incr_cntr64(&ppd->port_xmit_constraint_errors);
1170                 dd = ppd->dd;
1171                 if (!(dd->err_info_xmit_constraint.status &
1172                       OPA_EI_STATUS_SMASK)) {
1173                         u16 slid = be16_to_cpu(lrh[3]);
1174
1175                         dd->err_info_xmit_constraint.status |=
1176                                 OPA_EI_STATUS_SMASK;
1177                         dd->err_info_xmit_constraint.slid = slid;
1178                         dd->err_info_xmit_constraint.pkey = pkey;
1179                 }
1180         }
1181         return 1;
1182 }
1183
1184 /**
1185  * get_send_routine - choose an egress routine
1186  *
1187  * Choose an egress routine based on QP type
1188  * and size
1189  */
1190 static inline send_routine get_send_routine(struct rvt_qp *qp,
1191                                             struct verbs_txreq *tx)
1192 {
1193         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1194         struct hfi1_qp_priv *priv = qp->priv;
1195         struct hfi1_ib_header *h = &tx->phdr.hdr;
1196
1197         if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA)))
1198                 return dd->process_pio_send;
1199         switch (qp->ibqp.qp_type) {
1200         case IB_QPT_SMI:
1201                 return dd->process_pio_send;
1202         case IB_QPT_GSI:
1203         case IB_QPT_UD:
1204                 break;
1205         case IB_QPT_RC:
1206                 if (piothreshold &&
1207                     qp->s_cur_size <= min(piothreshold, qp->pmtu) &&
1208                     (BIT(get_opcode(h) & 0x1f) & rc_only_opcode) &&
1209                     iowait_sdma_pending(&priv->s_iowait) == 0 &&
1210                     !sdma_txreq_built(&tx->txreq))
1211                         return dd->process_pio_send;
1212                 break;
1213         case IB_QPT_UC:
1214                 if (piothreshold &&
1215                     qp->s_cur_size <= min(piothreshold, qp->pmtu) &&
1216                     (BIT(get_opcode(h) & 0x1f) & uc_only_opcode) &&
1217                     iowait_sdma_pending(&priv->s_iowait) == 0 &&
1218                     !sdma_txreq_built(&tx->txreq))
1219                         return dd->process_pio_send;
1220                 break;
1221         default:
1222                 break;
1223         }
1224         return dd->process_dma_send;
1225 }
1226
1227 /**
1228  * hfi1_verbs_send - send a packet
1229  * @qp: the QP to send on
1230  * @ps: the state of the packet to send
1231  *
1232  * Return zero if packet is sent or queued OK.
1233  * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise.
1234  */
1235 int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
1236 {
1237         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1238         struct hfi1_qp_priv *priv = qp->priv;
1239         struct hfi1_other_headers *ohdr;
1240         struct hfi1_ib_header *hdr;
1241         send_routine sr;
1242         int ret;
1243         u8 lnh;
1244
1245         hdr = &ps->s_txreq->phdr.hdr;
1246         /* locate the pkey within the headers */
1247         lnh = be16_to_cpu(hdr->lrh[0]) & 3;
1248         if (lnh == HFI1_LRH_GRH)
1249                 ohdr = &hdr->u.l.oth;
1250         else
1251                 ohdr = &hdr->u.oth;
1252
1253         sr = get_send_routine(qp, ps->s_txreq);
1254         ret = egress_pkey_check(dd->pport,
1255                                 hdr->lrh,
1256                                 ohdr->bth,
1257                                 priv->s_sc,
1258                                 qp->s_pkey_index);
1259         if (unlikely(ret)) {
1260                 /*
1261                  * The value we are returning here does not get propagated to
1262                  * the verbs caller. Thus we need to complete the request with
1263                  * error otherwise the caller could be sitting waiting on the
1264                  * completion event. Only do this for PIO. SDMA has its own
1265                  * mechanism for handling the errors. So for SDMA we can just
1266                  * return.
1267                  */
1268                 if (sr == dd->process_pio_send) {
1269                         unsigned long flags;
1270
1271                         hfi1_cdbg(PIO, "%s() Failed. Completing with err",
1272                                   __func__);
1273                         spin_lock_irqsave(&qp->s_lock, flags);
1274                         hfi1_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
1275                         spin_unlock_irqrestore(&qp->s_lock, flags);
1276                 }
1277                 return -EINVAL;
1278         }
1279         if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait))
1280                 return pio_wait(qp,
1281                                 ps->s_txreq->psc,
1282                                 ps,
1283                                 RVT_S_WAIT_PIO_DRAIN);
1284         return sr(qp, ps, 0);
1285 }
1286
1287 /**
1288  * hfi1_fill_device_attr - Fill in rvt dev info device attributes.
1289  * @dd: the device data structure
1290  */
1291 static void hfi1_fill_device_attr(struct hfi1_devdata *dd)
1292 {
1293         struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
1294
1295         memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props));
1296
1297         rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
1298                         IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
1299                         IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
1300                         IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE;
1301         rdi->dparms.props.page_size_cap = PAGE_SIZE;
1302         rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
1303         rdi->dparms.props.vendor_part_id = dd->pcidev->device;
1304         rdi->dparms.props.hw_ver = dd->minrev;
1305         rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid;
1306         rdi->dparms.props.max_mr_size = ~0ULL;
1307         rdi->dparms.props.max_qp = hfi1_max_qps;
1308         rdi->dparms.props.max_qp_wr = hfi1_max_qp_wrs;
1309         rdi->dparms.props.max_sge = hfi1_max_sges;
1310         rdi->dparms.props.max_sge_rd = hfi1_max_sges;
1311         rdi->dparms.props.max_cq = hfi1_max_cqs;
1312         rdi->dparms.props.max_ah = hfi1_max_ahs;
1313         rdi->dparms.props.max_cqe = hfi1_max_cqes;
1314         rdi->dparms.props.max_mr = rdi->lkey_table.max;
1315         rdi->dparms.props.max_fmr = rdi->lkey_table.max;
1316         rdi->dparms.props.max_map_per_fmr = 32767;
1317         rdi->dparms.props.max_pd = hfi1_max_pds;
1318         rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
1319         rdi->dparms.props.max_qp_init_rd_atom = 255;
1320         rdi->dparms.props.max_srq = hfi1_max_srqs;
1321         rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs;
1322         rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges;
1323         rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB;
1324         rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd);
1325         rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps;
1326         rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
1327         rdi->dparms.props.max_total_mcast_qp_attach =
1328                                         rdi->dparms.props.max_mcast_qp_attach *
1329                                         rdi->dparms.props.max_mcast_grp;
1330 }
1331
1332 static inline u16 opa_speed_to_ib(u16 in)
1333 {
1334         u16 out = 0;
1335
1336         if (in & OPA_LINK_SPEED_25G)
1337                 out |= IB_SPEED_EDR;
1338         if (in & OPA_LINK_SPEED_12_5G)
1339                 out |= IB_SPEED_FDR;
1340
1341         return out;
1342 }
1343
1344 /*
1345  * Convert a single OPA link width (no multiple flags) to an IB value.
1346  * A zero OPA link width means link down, which means the IB width value
1347  * is a don't care.
1348  */
1349 static inline u16 opa_width_to_ib(u16 in)
1350 {
1351         switch (in) {
1352         case OPA_LINK_WIDTH_1X:
1353         /* map 2x and 3x to 1x as they don't exist in IB */
1354         case OPA_LINK_WIDTH_2X:
1355         case OPA_LINK_WIDTH_3X:
1356                 return IB_WIDTH_1X;
1357         default: /* link down or unknown, return our largest width */
1358         case OPA_LINK_WIDTH_4X:
1359                 return IB_WIDTH_4X;
1360         }
1361 }
1362
1363 static int query_port(struct rvt_dev_info *rdi, u8 port_num,
1364                       struct ib_port_attr *props)
1365 {
1366         struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1367         struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1368         struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1369         u16 lid = ppd->lid;
1370
1371         props->lid = lid ? lid : 0;
1372         props->lmc = ppd->lmc;
1373         /* OPA logical states match IB logical states */
1374         props->state = driver_lstate(ppd);
1375         props->phys_state = hfi1_ibphys_portstate(ppd);
1376         props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
1377         props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
1378         /* see rate_show() in ib core/sysfs.c */
1379         props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active);
1380         props->max_vl_num = ppd->vls_supported;
1381
1382         /* Once we are a "first class" citizen and have added the OPA MTUs to
1383          * the core we can advertise the larger MTU enum to the ULPs, for now
1384          * advertise only 4K.
1385          *
1386          * Those applications which are either OPA aware or pass the MTU enum
1387          * from the Path Records to us will get the new 8k MTU.  Those that
1388          * attempt to process the MTU enum may fail in various ways.
1389          */
1390         props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
1391                                       4096 : hfi1_max_mtu), IB_MTU_4096);
1392         props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
1393                 mtu_to_enum(ppd->ibmtu, IB_MTU_2048);
1394
1395         return 0;
1396 }
1397
1398 static int modify_device(struct ib_device *device,
1399                          int device_modify_mask,
1400                          struct ib_device_modify *device_modify)
1401 {
1402         struct hfi1_devdata *dd = dd_from_ibdev(device);
1403         unsigned i;
1404         int ret;
1405
1406         if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
1407                                    IB_DEVICE_MODIFY_NODE_DESC)) {
1408                 ret = -EOPNOTSUPP;
1409                 goto bail;
1410         }
1411
1412         if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
1413                 memcpy(device->node_desc, device_modify->node_desc, 64);
1414                 for (i = 0; i < dd->num_pports; i++) {
1415                         struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1416
1417                         hfi1_node_desc_chg(ibp);
1418                 }
1419         }
1420
1421         if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
1422                 ib_hfi1_sys_image_guid =
1423                         cpu_to_be64(device_modify->sys_image_guid);
1424                 for (i = 0; i < dd->num_pports; i++) {
1425                         struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1426
1427                         hfi1_sys_guid_chg(ibp);
1428                 }
1429         }
1430
1431         ret = 0;
1432
1433 bail:
1434         return ret;
1435 }
1436
1437 static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num)
1438 {
1439         struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1440         struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1441         struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1442         int ret;
1443
1444         set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
1445                              OPA_LINKDOWN_REASON_UNKNOWN);
1446         ret = set_link_state(ppd, HLS_DN_DOWNDEF);
1447         return ret;
1448 }
1449
1450 static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp,
1451                             int guid_index, __be64 *guid)
1452 {
1453         struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp);
1454         struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1455
1456         if (guid_index == 0)
1457                 *guid = cpu_to_be64(ppd->guid);
1458         else if (guid_index < HFI1_GUIDS_PER_PORT)
1459                 *guid = ibp->guids[guid_index - 1];
1460         else
1461                 return -EINVAL;
1462
1463         return 0;
1464 }
1465
1466 /*
1467  * convert ah port,sl to sc
1468  */
1469 u8 ah_to_sc(struct ib_device *ibdev, struct ib_ah_attr *ah)
1470 {
1471         struct hfi1_ibport *ibp = to_iport(ibdev, ah->port_num);
1472
1473         return ibp->sl_to_sc[ah->sl];
1474 }
1475
1476 static int hfi1_check_ah(struct ib_device *ibdev, struct ib_ah_attr *ah_attr)
1477 {
1478         struct hfi1_ibport *ibp;
1479         struct hfi1_pportdata *ppd;
1480         struct hfi1_devdata *dd;
1481         u8 sc5;
1482
1483         /* test the mapping for validity */
1484         ibp = to_iport(ibdev, ah_attr->port_num);
1485         ppd = ppd_from_ibp(ibp);
1486         sc5 = ibp->sl_to_sc[ah_attr->sl];
1487         dd = dd_from_ppd(ppd);
1488         if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
1489                 return -EINVAL;
1490         return 0;
1491 }
1492
1493 static void hfi1_notify_new_ah(struct ib_device *ibdev,
1494                                struct ib_ah_attr *ah_attr,
1495                                struct rvt_ah *ah)
1496 {
1497         struct hfi1_ibport *ibp;
1498         struct hfi1_pportdata *ppd;
1499         struct hfi1_devdata *dd;
1500         u8 sc5;
1501
1502         /*
1503          * Do not trust reading anything from rvt_ah at this point as it is not
1504          * done being setup. We can however modify things which we need to set.
1505          */
1506
1507         ibp = to_iport(ibdev, ah_attr->port_num);
1508         ppd = ppd_from_ibp(ibp);
1509         sc5 = ibp->sl_to_sc[ah->attr.sl];
1510         dd = dd_from_ppd(ppd);
1511         ah->vl = sc_to_vlt(dd, sc5);
1512         if (ah->vl < num_vls || ah->vl == 15)
1513                 ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu);
1514 }
1515
1516 struct ib_ah *hfi1_create_qp0_ah(struct hfi1_ibport *ibp, u16 dlid)
1517 {
1518         struct ib_ah_attr attr;
1519         struct ib_ah *ah = ERR_PTR(-EINVAL);
1520         struct rvt_qp *qp0;
1521
1522         memset(&attr, 0, sizeof(attr));
1523         attr.dlid = dlid;
1524         attr.port_num = ppd_from_ibp(ibp)->port;
1525         rcu_read_lock();
1526         qp0 = rcu_dereference(ibp->rvp.qp[0]);
1527         if (qp0)
1528                 ah = ib_create_ah(qp0->ibqp.pd, &attr);
1529         rcu_read_unlock();
1530         return ah;
1531 }
1532
1533 /**
1534  * hfi1_get_npkeys - return the size of the PKEY table for context 0
1535  * @dd: the hfi1_ib device
1536  */
1537 unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
1538 {
1539         return ARRAY_SIZE(dd->pport[0].pkeys);
1540 }
1541
1542 static void init_ibport(struct hfi1_pportdata *ppd)
1543 {
1544         struct hfi1_ibport *ibp = &ppd->ibport_data;
1545         size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
1546         int i;
1547
1548         for (i = 0; i < sz; i++) {
1549                 ibp->sl_to_sc[i] = i;
1550                 ibp->sc_to_sl[i] = i;
1551         }
1552
1553         spin_lock_init(&ibp->rvp.lock);
1554         /* Set the prefix to the default value (see ch. 4.1.1) */
1555         ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX;
1556         ibp->rvp.sm_lid = 0;
1557         /* Below should only set bits defined in OPA PortInfo.CapabilityMask */
1558         ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
1559                 IB_PORT_CAP_MASK_NOTICE_SUP;
1560         ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
1561         ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
1562         ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
1563         ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
1564         ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
1565
1566         RCU_INIT_POINTER(ibp->rvp.qp[0], NULL);
1567         RCU_INIT_POINTER(ibp->rvp.qp[1], NULL);
1568 }
1569
1570 /**
1571  * hfi1_register_ib_device - register our device with the infiniband core
1572  * @dd: the device data structure
1573  * Return 0 if successful, errno if unsuccessful.
1574  */
1575 int hfi1_register_ib_device(struct hfi1_devdata *dd)
1576 {
1577         struct hfi1_ibdev *dev = &dd->verbs_dev;
1578         struct ib_device *ibdev = &dev->rdi.ibdev;
1579         struct hfi1_pportdata *ppd = dd->pport;
1580         unsigned i;
1581         int ret;
1582         size_t lcpysz = IB_DEVICE_NAME_MAX;
1583
1584         for (i = 0; i < dd->num_pports; i++)
1585                 init_ibport(ppd + i);
1586
1587         /* Only need to initialize non-zero fields. */
1588
1589         setup_timer(&dev->mem_timer, mem_timer, (unsigned long)dev);
1590
1591         seqlock_init(&dev->iowait_lock);
1592         INIT_LIST_HEAD(&dev->txwait);
1593         INIT_LIST_HEAD(&dev->memwait);
1594
1595         ret = verbs_txreq_init(dev);
1596         if (ret)
1597                 goto err_verbs_txreq;
1598
1599         /*
1600          * The system image GUID is supposed to be the same for all
1601          * HFIs in a single system but since there can be other
1602          * device types in the system, we can't be sure this is unique.
1603          */
1604         if (!ib_hfi1_sys_image_guid)
1605                 ib_hfi1_sys_image_guid = cpu_to_be64(ppd->guid);
1606         lcpysz = strlcpy(ibdev->name, class_name(), lcpysz);
1607         strlcpy(ibdev->name + lcpysz, "_%d", IB_DEVICE_NAME_MAX - lcpysz);
1608         ibdev->owner = THIS_MODULE;
1609         ibdev->node_guid = cpu_to_be64(ppd->guid);
1610         ibdev->phys_port_cnt = dd->num_pports;
1611         ibdev->dma_device = &dd->pcidev->dev;
1612         ibdev->modify_device = modify_device;
1613
1614         /* keep process mad in the driver */
1615         ibdev->process_mad = hfi1_process_mad;
1616
1617         strncpy(ibdev->node_desc, init_utsname()->nodename,
1618                 sizeof(ibdev->node_desc));
1619
1620         /*
1621          * Fill in rvt info object.
1622          */
1623         dd->verbs_dev.rdi.driver_f.port_callback = hfi1_create_port_files;
1624         dd->verbs_dev.rdi.driver_f.get_card_name = get_card_name;
1625         dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev;
1626         dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah;
1627         dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah;
1628         dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be;
1629         dd->verbs_dev.rdi.driver_f.query_port_state = query_port;
1630         dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port;
1631         dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg;
1632         /*
1633          * Fill in rvt info device attributes.
1634          */
1635         hfi1_fill_device_attr(dd);
1636
1637         /* queue pair */
1638         dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size;
1639         dd->verbs_dev.rdi.dparms.qpn_start = 0;
1640         dd->verbs_dev.rdi.dparms.qpn_inc = 1;
1641         dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift;
1642         dd->verbs_dev.rdi.dparms.qpn_res_start = kdeth_qp << 16;
1643         dd->verbs_dev.rdi.dparms.qpn_res_end =
1644         dd->verbs_dev.rdi.dparms.qpn_res_start + 65535;
1645         dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC;
1646         dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK;
1647         dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT;
1648         dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK;
1649         dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA;
1650         dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE;
1651
1652         dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc;
1653         dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free;
1654         dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps;
1655         dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset;
1656         dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send;
1657         dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send;
1658         dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send;
1659         dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr;
1660         dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1661         dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters;
1662         dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue;
1663         dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp;
1664         dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1665         dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp;
1666         dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu;
1667         dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp;
1668         dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp;
1669         dd->verbs_dev.rdi.driver_f.check_send_wqe = hfi1_check_send_wqe;
1670
1671         /* completeion queue */
1672         snprintf(dd->verbs_dev.rdi.dparms.cq_name,
1673                  sizeof(dd->verbs_dev.rdi.dparms.cq_name),
1674                  "hfi1_cq%d", dd->unit);
1675         dd->verbs_dev.rdi.dparms.node = dd->node;
1676
1677         /* misc settings */
1678         dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */
1679         dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size;
1680         dd->verbs_dev.rdi.dparms.nports = dd->num_pports;
1681         dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd);
1682
1683         ppd = dd->pport;
1684         for (i = 0; i < dd->num_pports; i++, ppd++)
1685                 rvt_init_port(&dd->verbs_dev.rdi,
1686                               &ppd->ibport_data.rvp,
1687                               i,
1688                               ppd->pkeys);
1689
1690         ret = rvt_register_device(&dd->verbs_dev.rdi);
1691         if (ret)
1692                 goto err_verbs_txreq;
1693
1694         ret = hfi1_verbs_register_sysfs(dd);
1695         if (ret)
1696                 goto err_class;
1697
1698         return ret;
1699
1700 err_class:
1701         rvt_unregister_device(&dd->verbs_dev.rdi);
1702 err_verbs_txreq:
1703         verbs_txreq_exit(dev);
1704         dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
1705         return ret;
1706 }
1707
1708 void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
1709 {
1710         struct hfi1_ibdev *dev = &dd->verbs_dev;
1711
1712         hfi1_verbs_unregister_sysfs(dd);
1713
1714         rvt_unregister_device(&dd->verbs_dev.rdi);
1715
1716         if (!list_empty(&dev->txwait))
1717                 dd_dev_err(dd, "txwait list not empty!\n");
1718         if (!list_empty(&dev->memwait))
1719                 dd_dev_err(dd, "memwait list not empty!\n");
1720
1721         del_timer_sync(&dev->mem_timer);
1722         verbs_txreq_exit(dev);
1723 }
1724
1725 void hfi1_cnp_rcv(struct hfi1_packet *packet)
1726 {
1727         struct hfi1_ibport *ibp = &packet->rcd->ppd->ibport_data;
1728         struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1729         struct hfi1_ib_header *hdr = packet->hdr;
1730         struct rvt_qp *qp = packet->qp;
1731         u32 lqpn, rqpn = 0;
1732         u16 rlid = 0;
1733         u8 sl, sc5, sc4_bit, svc_type;
1734         bool sc4_set = has_sc4_bit(packet);
1735
1736         switch (packet->qp->ibqp.qp_type) {
1737         case IB_QPT_UC:
1738                 rlid = qp->remote_ah_attr.dlid;
1739                 rqpn = qp->remote_qpn;
1740                 svc_type = IB_CC_SVCTYPE_UC;
1741                 break;
1742         case IB_QPT_RC:
1743                 rlid = qp->remote_ah_attr.dlid;
1744                 rqpn = qp->remote_qpn;
1745                 svc_type = IB_CC_SVCTYPE_RC;
1746                 break;
1747         case IB_QPT_SMI:
1748         case IB_QPT_GSI:
1749         case IB_QPT_UD:
1750                 svc_type = IB_CC_SVCTYPE_UD;
1751                 break;
1752         default:
1753                 ibp->rvp.n_pkt_drops++;
1754                 return;
1755         }
1756
1757         sc4_bit = sc4_set << 4;
1758         sc5 = (be16_to_cpu(hdr->lrh[0]) >> 12) & 0xf;
1759         sc5 |= sc4_bit;
1760         sl = ibp->sc_to_sl[sc5];
1761         lqpn = qp->ibqp.qp_num;
1762
1763         process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
1764 }