03ae72e338c0da2fc2b1294dcb44316af8d77e06
[cascardo/linux.git] / drivers / infiniband / ulp / srp / ib_srp.c
1 /*
2  * Copyright (c) 2005 Cisco Systems.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/string.h>
40 #include <linux/parser.h>
41 #include <linux/random.h>
42 #include <linux/jiffies.h>
43 #include <rdma/ib_cache.h>
44
45 #include <linux/atomic.h>
46
47 #include <scsi/scsi.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_dbg.h>
50 #include <scsi/scsi_tcq.h>
51 #include <scsi/srp.h>
52 #include <scsi/scsi_transport_srp.h>
53
54 #include "ib_srp.h"
55
56 #define DRV_NAME        "ib_srp"
57 #define PFX             DRV_NAME ": "
58 #define DRV_VERSION     "2.0"
59 #define DRV_RELDATE     "July 26, 2015"
60
61 MODULE_AUTHOR("Roland Dreier");
62 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol initiator");
63 MODULE_LICENSE("Dual BSD/GPL");
64 MODULE_VERSION(DRV_VERSION);
65 MODULE_INFO(release_date, DRV_RELDATE);
66
67 static unsigned int srp_sg_tablesize;
68 static unsigned int cmd_sg_entries;
69 static unsigned int indirect_sg_entries;
70 static bool allow_ext_sg;
71 static bool prefer_fr;
72 static bool register_always;
73 static int topspin_workarounds = 1;
74
75 module_param(srp_sg_tablesize, uint, 0444);
76 MODULE_PARM_DESC(srp_sg_tablesize, "Deprecated name for cmd_sg_entries");
77
78 module_param(cmd_sg_entries, uint, 0444);
79 MODULE_PARM_DESC(cmd_sg_entries,
80                  "Default number of gather/scatter entries in the SRP command (default is 12, max 255)");
81
82 module_param(indirect_sg_entries, uint, 0444);
83 MODULE_PARM_DESC(indirect_sg_entries,
84                  "Default max number of gather/scatter entries (default is 12, max is " __stringify(SCSI_MAX_SG_CHAIN_SEGMENTS) ")");
85
86 module_param(allow_ext_sg, bool, 0444);
87 MODULE_PARM_DESC(allow_ext_sg,
88                   "Default behavior when there are more than cmd_sg_entries S/G entries after mapping; fails the request when false (default false)");
89
90 module_param(topspin_workarounds, int, 0444);
91 MODULE_PARM_DESC(topspin_workarounds,
92                  "Enable workarounds for Topspin/Cisco SRP target bugs if != 0");
93
94 module_param(prefer_fr, bool, 0444);
95 MODULE_PARM_DESC(prefer_fr,
96 "Whether to use fast registration if both FMR and fast registration are supported");
97
98 module_param(register_always, bool, 0444);
99 MODULE_PARM_DESC(register_always,
100                  "Use memory registration even for contiguous memory regions");
101
102 static const struct kernel_param_ops srp_tmo_ops;
103
104 static int srp_reconnect_delay = 10;
105 module_param_cb(reconnect_delay, &srp_tmo_ops, &srp_reconnect_delay,
106                 S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(reconnect_delay, "Time between successive reconnect attempts");
108
109 static int srp_fast_io_fail_tmo = 15;
110 module_param_cb(fast_io_fail_tmo, &srp_tmo_ops, &srp_fast_io_fail_tmo,
111                 S_IRUGO | S_IWUSR);
112 MODULE_PARM_DESC(fast_io_fail_tmo,
113                  "Number of seconds between the observation of a transport"
114                  " layer error and failing all I/O. \"off\" means that this"
115                  " functionality is disabled.");
116
117 static int srp_dev_loss_tmo = 600;
118 module_param_cb(dev_loss_tmo, &srp_tmo_ops, &srp_dev_loss_tmo,
119                 S_IRUGO | S_IWUSR);
120 MODULE_PARM_DESC(dev_loss_tmo,
121                  "Maximum number of seconds that the SRP transport should"
122                  " insulate transport layer errors. After this time has been"
123                  " exceeded the SCSI host is removed. Should be"
124                  " between 1 and " __stringify(SCSI_DEVICE_BLOCK_MAX_TIMEOUT)
125                  " if fast_io_fail_tmo has not been set. \"off\" means that"
126                  " this functionality is disabled.");
127
128 static unsigned ch_count;
129 module_param(ch_count, uint, 0444);
130 MODULE_PARM_DESC(ch_count,
131                  "Number of RDMA channels to use for communication with an SRP target. Using more than one channel improves performance if the HCA supports multiple completion vectors. The default value is the minimum of four times the number of online CPU sockets and the number of completion vectors supported by the HCA.");
132
133 static void srp_add_one(struct ib_device *device);
134 static void srp_remove_one(struct ib_device *device, void *client_data);
135 static void srp_recv_completion(struct ib_cq *cq, void *ch_ptr);
136 static void srp_send_completion(struct ib_cq *cq, void *ch_ptr);
137 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event);
138
139 static struct scsi_transport_template *ib_srp_transport_template;
140 static struct workqueue_struct *srp_remove_wq;
141
142 static struct ib_client srp_client = {
143         .name   = "srp",
144         .add    = srp_add_one,
145         .remove = srp_remove_one
146 };
147
148 static struct ib_sa_client srp_sa_client;
149
150 static int srp_tmo_get(char *buffer, const struct kernel_param *kp)
151 {
152         int tmo = *(int *)kp->arg;
153
154         if (tmo >= 0)
155                 return sprintf(buffer, "%d", tmo);
156         else
157                 return sprintf(buffer, "off");
158 }
159
160 static int srp_tmo_set(const char *val, const struct kernel_param *kp)
161 {
162         int tmo, res;
163
164         res = srp_parse_tmo(&tmo, val);
165         if (res)
166                 goto out;
167
168         if (kp->arg == &srp_reconnect_delay)
169                 res = srp_tmo_valid(tmo, srp_fast_io_fail_tmo,
170                                     srp_dev_loss_tmo);
171         else if (kp->arg == &srp_fast_io_fail_tmo)
172                 res = srp_tmo_valid(srp_reconnect_delay, tmo, srp_dev_loss_tmo);
173         else
174                 res = srp_tmo_valid(srp_reconnect_delay, srp_fast_io_fail_tmo,
175                                     tmo);
176         if (res)
177                 goto out;
178         *(int *)kp->arg = tmo;
179
180 out:
181         return res;
182 }
183
184 static const struct kernel_param_ops srp_tmo_ops = {
185         .get = srp_tmo_get,
186         .set = srp_tmo_set,
187 };
188
189 static inline struct srp_target_port *host_to_target(struct Scsi_Host *host)
190 {
191         return (struct srp_target_port *) host->hostdata;
192 }
193
194 static const char *srp_target_info(struct Scsi_Host *host)
195 {
196         return host_to_target(host)->target_name;
197 }
198
199 static int srp_target_is_topspin(struct srp_target_port *target)
200 {
201         static const u8 topspin_oui[3] = { 0x00, 0x05, 0xad };
202         static const u8 cisco_oui[3]   = { 0x00, 0x1b, 0x0d };
203
204         return topspin_workarounds &&
205                 (!memcmp(&target->ioc_guid, topspin_oui, sizeof topspin_oui) ||
206                  !memcmp(&target->ioc_guid, cisco_oui, sizeof cisco_oui));
207 }
208
209 static struct srp_iu *srp_alloc_iu(struct srp_host *host, size_t size,
210                                    gfp_t gfp_mask,
211                                    enum dma_data_direction direction)
212 {
213         struct srp_iu *iu;
214
215         iu = kmalloc(sizeof *iu, gfp_mask);
216         if (!iu)
217                 goto out;
218
219         iu->buf = kzalloc(size, gfp_mask);
220         if (!iu->buf)
221                 goto out_free_iu;
222
223         iu->dma = ib_dma_map_single(host->srp_dev->dev, iu->buf, size,
224                                     direction);
225         if (ib_dma_mapping_error(host->srp_dev->dev, iu->dma))
226                 goto out_free_buf;
227
228         iu->size      = size;
229         iu->direction = direction;
230
231         return iu;
232
233 out_free_buf:
234         kfree(iu->buf);
235 out_free_iu:
236         kfree(iu);
237 out:
238         return NULL;
239 }
240
241 static void srp_free_iu(struct srp_host *host, struct srp_iu *iu)
242 {
243         if (!iu)
244                 return;
245
246         ib_dma_unmap_single(host->srp_dev->dev, iu->dma, iu->size,
247                             iu->direction);
248         kfree(iu->buf);
249         kfree(iu);
250 }
251
252 static void srp_qp_event(struct ib_event *event, void *context)
253 {
254         pr_debug("QP event %s (%d)\n",
255                  ib_event_msg(event->event), event->event);
256 }
257
258 static int srp_init_qp(struct srp_target_port *target,
259                        struct ib_qp *qp)
260 {
261         struct ib_qp_attr *attr;
262         int ret;
263
264         attr = kmalloc(sizeof *attr, GFP_KERNEL);
265         if (!attr)
266                 return -ENOMEM;
267
268         ret = ib_find_cached_pkey(target->srp_host->srp_dev->dev,
269                                   target->srp_host->port,
270                                   be16_to_cpu(target->pkey),
271                                   &attr->pkey_index);
272         if (ret)
273                 goto out;
274
275         attr->qp_state        = IB_QPS_INIT;
276         attr->qp_access_flags = (IB_ACCESS_REMOTE_READ |
277                                     IB_ACCESS_REMOTE_WRITE);
278         attr->port_num        = target->srp_host->port;
279
280         ret = ib_modify_qp(qp, attr,
281                            IB_QP_STATE          |
282                            IB_QP_PKEY_INDEX     |
283                            IB_QP_ACCESS_FLAGS   |
284                            IB_QP_PORT);
285
286 out:
287         kfree(attr);
288         return ret;
289 }
290
291 static int srp_new_cm_id(struct srp_rdma_ch *ch)
292 {
293         struct srp_target_port *target = ch->target;
294         struct ib_cm_id *new_cm_id;
295
296         new_cm_id = ib_create_cm_id(target->srp_host->srp_dev->dev,
297                                     srp_cm_handler, ch);
298         if (IS_ERR(new_cm_id))
299                 return PTR_ERR(new_cm_id);
300
301         if (ch->cm_id)
302                 ib_destroy_cm_id(ch->cm_id);
303         ch->cm_id = new_cm_id;
304         ch->path.sgid = target->sgid;
305         ch->path.dgid = target->orig_dgid;
306         ch->path.pkey = target->pkey;
307         ch->path.service_id = target->service_id;
308
309         return 0;
310 }
311
312 static struct ib_fmr_pool *srp_alloc_fmr_pool(struct srp_target_port *target)
313 {
314         struct srp_device *dev = target->srp_host->srp_dev;
315         struct ib_fmr_pool_param fmr_param;
316
317         memset(&fmr_param, 0, sizeof(fmr_param));
318         fmr_param.pool_size         = target->scsi_host->can_queue;
319         fmr_param.dirty_watermark   = fmr_param.pool_size / 4;
320         fmr_param.cache             = 1;
321         fmr_param.max_pages_per_fmr = dev->max_pages_per_mr;
322         fmr_param.page_shift        = ilog2(dev->mr_page_size);
323         fmr_param.access            = (IB_ACCESS_LOCAL_WRITE |
324                                        IB_ACCESS_REMOTE_WRITE |
325                                        IB_ACCESS_REMOTE_READ);
326
327         return ib_create_fmr_pool(dev->pd, &fmr_param);
328 }
329
330 /**
331  * srp_destroy_fr_pool() - free the resources owned by a pool
332  * @pool: Fast registration pool to be destroyed.
333  */
334 static void srp_destroy_fr_pool(struct srp_fr_pool *pool)
335 {
336         int i;
337         struct srp_fr_desc *d;
338
339         if (!pool)
340                 return;
341
342         for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
343                 if (d->frpl)
344                         ib_free_fast_reg_page_list(d->frpl);
345                 if (d->mr)
346                         ib_dereg_mr(d->mr);
347         }
348         kfree(pool);
349 }
350
351 /**
352  * srp_create_fr_pool() - allocate and initialize a pool for fast registration
353  * @device:            IB device to allocate fast registration descriptors for.
354  * @pd:                Protection domain associated with the FR descriptors.
355  * @pool_size:         Number of descriptors to allocate.
356  * @max_page_list_len: Maximum fast registration work request page list length.
357  */
358 static struct srp_fr_pool *srp_create_fr_pool(struct ib_device *device,
359                                               struct ib_pd *pd, int pool_size,
360                                               int max_page_list_len)
361 {
362         struct srp_fr_pool *pool;
363         struct srp_fr_desc *d;
364         struct ib_mr *mr;
365         struct ib_fast_reg_page_list *frpl;
366         int i, ret = -EINVAL;
367
368         if (pool_size <= 0)
369                 goto err;
370         ret = -ENOMEM;
371         pool = kzalloc(sizeof(struct srp_fr_pool) +
372                        pool_size * sizeof(struct srp_fr_desc), GFP_KERNEL);
373         if (!pool)
374                 goto err;
375         pool->size = pool_size;
376         pool->max_page_list_len = max_page_list_len;
377         spin_lock_init(&pool->lock);
378         INIT_LIST_HEAD(&pool->free_list);
379
380         for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
381                 mr = ib_alloc_mr(pd, IB_MR_TYPE_MEM_REG,
382                                  max_page_list_len);
383                 if (IS_ERR(mr)) {
384                         ret = PTR_ERR(mr);
385                         goto destroy_pool;
386                 }
387                 d->mr = mr;
388                 frpl = ib_alloc_fast_reg_page_list(device, max_page_list_len);
389                 if (IS_ERR(frpl)) {
390                         ret = PTR_ERR(frpl);
391                         goto destroy_pool;
392                 }
393                 d->frpl = frpl;
394                 list_add_tail(&d->entry, &pool->free_list);
395         }
396
397 out:
398         return pool;
399
400 destroy_pool:
401         srp_destroy_fr_pool(pool);
402
403 err:
404         pool = ERR_PTR(ret);
405         goto out;
406 }
407
408 /**
409  * srp_fr_pool_get() - obtain a descriptor suitable for fast registration
410  * @pool: Pool to obtain descriptor from.
411  */
412 static struct srp_fr_desc *srp_fr_pool_get(struct srp_fr_pool *pool)
413 {
414         struct srp_fr_desc *d = NULL;
415         unsigned long flags;
416
417         spin_lock_irqsave(&pool->lock, flags);
418         if (!list_empty(&pool->free_list)) {
419                 d = list_first_entry(&pool->free_list, typeof(*d), entry);
420                 list_del(&d->entry);
421         }
422         spin_unlock_irqrestore(&pool->lock, flags);
423
424         return d;
425 }
426
427 /**
428  * srp_fr_pool_put() - put an FR descriptor back in the free list
429  * @pool: Pool the descriptor was allocated from.
430  * @desc: Pointer to an array of fast registration descriptor pointers.
431  * @n:    Number of descriptors to put back.
432  *
433  * Note: The caller must already have queued an invalidation request for
434  * desc->mr->rkey before calling this function.
435  */
436 static void srp_fr_pool_put(struct srp_fr_pool *pool, struct srp_fr_desc **desc,
437                             int n)
438 {
439         unsigned long flags;
440         int i;
441
442         spin_lock_irqsave(&pool->lock, flags);
443         for (i = 0; i < n; i++)
444                 list_add(&desc[i]->entry, &pool->free_list);
445         spin_unlock_irqrestore(&pool->lock, flags);
446 }
447
448 static struct srp_fr_pool *srp_alloc_fr_pool(struct srp_target_port *target)
449 {
450         struct srp_device *dev = target->srp_host->srp_dev;
451
452         return srp_create_fr_pool(dev->dev, dev->pd,
453                                   target->scsi_host->can_queue,
454                                   dev->max_pages_per_mr);
455 }
456
457 /**
458  * srp_destroy_qp() - destroy an RDMA queue pair
459  * @ch: SRP RDMA channel.
460  *
461  * Change a queue pair into the error state and wait until all receive
462  * completions have been processed before destroying it. This avoids that
463  * the receive completion handler can access the queue pair while it is
464  * being destroyed.
465  */
466 static void srp_destroy_qp(struct srp_rdma_ch *ch)
467 {
468         static struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
469         static struct ib_recv_wr wr = { .wr_id = SRP_LAST_WR_ID };
470         struct ib_recv_wr *bad_wr;
471         int ret;
472
473         /* Destroying a QP and reusing ch->done is only safe if not connected */
474         WARN_ON_ONCE(ch->connected);
475
476         ret = ib_modify_qp(ch->qp, &attr, IB_QP_STATE);
477         WARN_ONCE(ret, "ib_cm_init_qp_attr() returned %d\n", ret);
478         if (ret)
479                 goto out;
480
481         init_completion(&ch->done);
482         ret = ib_post_recv(ch->qp, &wr, &bad_wr);
483         WARN_ONCE(ret, "ib_post_recv() returned %d\n", ret);
484         if (ret == 0)
485                 wait_for_completion(&ch->done);
486
487 out:
488         ib_destroy_qp(ch->qp);
489 }
490
491 static int srp_create_ch_ib(struct srp_rdma_ch *ch)
492 {
493         struct srp_target_port *target = ch->target;
494         struct srp_device *dev = target->srp_host->srp_dev;
495         struct ib_qp_init_attr *init_attr;
496         struct ib_cq *recv_cq, *send_cq;
497         struct ib_qp *qp;
498         struct ib_fmr_pool *fmr_pool = NULL;
499         struct srp_fr_pool *fr_pool = NULL;
500         const int m = 1 + dev->use_fast_reg;
501         struct ib_cq_init_attr cq_attr = {};
502         int ret;
503
504         init_attr = kzalloc(sizeof *init_attr, GFP_KERNEL);
505         if (!init_attr)
506                 return -ENOMEM;
507
508         /* + 1 for SRP_LAST_WR_ID */
509         cq_attr.cqe = target->queue_size + 1;
510         cq_attr.comp_vector = ch->comp_vector;
511         recv_cq = ib_create_cq(dev->dev, srp_recv_completion, NULL, ch,
512                                &cq_attr);
513         if (IS_ERR(recv_cq)) {
514                 ret = PTR_ERR(recv_cq);
515                 goto err;
516         }
517
518         cq_attr.cqe = m * target->queue_size;
519         cq_attr.comp_vector = ch->comp_vector;
520         send_cq = ib_create_cq(dev->dev, srp_send_completion, NULL, ch,
521                                &cq_attr);
522         if (IS_ERR(send_cq)) {
523                 ret = PTR_ERR(send_cq);
524                 goto err_recv_cq;
525         }
526
527         ib_req_notify_cq(recv_cq, IB_CQ_NEXT_COMP);
528
529         init_attr->event_handler       = srp_qp_event;
530         init_attr->cap.max_send_wr     = m * target->queue_size;
531         init_attr->cap.max_recv_wr     = target->queue_size + 1;
532         init_attr->cap.max_recv_sge    = 1;
533         init_attr->cap.max_send_sge    = 1;
534         init_attr->sq_sig_type         = IB_SIGNAL_REQ_WR;
535         init_attr->qp_type             = IB_QPT_RC;
536         init_attr->send_cq             = send_cq;
537         init_attr->recv_cq             = recv_cq;
538
539         qp = ib_create_qp(dev->pd, init_attr);
540         if (IS_ERR(qp)) {
541                 ret = PTR_ERR(qp);
542                 goto err_send_cq;
543         }
544
545         ret = srp_init_qp(target, qp);
546         if (ret)
547                 goto err_qp;
548
549         if (dev->use_fast_reg && dev->has_fr) {
550                 fr_pool = srp_alloc_fr_pool(target);
551                 if (IS_ERR(fr_pool)) {
552                         ret = PTR_ERR(fr_pool);
553                         shost_printk(KERN_WARNING, target->scsi_host, PFX
554                                      "FR pool allocation failed (%d)\n", ret);
555                         goto err_qp;
556                 }
557                 if (ch->fr_pool)
558                         srp_destroy_fr_pool(ch->fr_pool);
559                 ch->fr_pool = fr_pool;
560         } else if (!dev->use_fast_reg && dev->has_fmr) {
561                 fmr_pool = srp_alloc_fmr_pool(target);
562                 if (IS_ERR(fmr_pool)) {
563                         ret = PTR_ERR(fmr_pool);
564                         shost_printk(KERN_WARNING, target->scsi_host, PFX
565                                      "FMR pool allocation failed (%d)\n", ret);
566                         goto err_qp;
567                 }
568                 if (ch->fmr_pool)
569                         ib_destroy_fmr_pool(ch->fmr_pool);
570                 ch->fmr_pool = fmr_pool;
571         }
572
573         if (ch->qp)
574                 srp_destroy_qp(ch);
575         if (ch->recv_cq)
576                 ib_destroy_cq(ch->recv_cq);
577         if (ch->send_cq)
578                 ib_destroy_cq(ch->send_cq);
579
580         ch->qp = qp;
581         ch->recv_cq = recv_cq;
582         ch->send_cq = send_cq;
583
584         kfree(init_attr);
585         return 0;
586
587 err_qp:
588         ib_destroy_qp(qp);
589
590 err_send_cq:
591         ib_destroy_cq(send_cq);
592
593 err_recv_cq:
594         ib_destroy_cq(recv_cq);
595
596 err:
597         kfree(init_attr);
598         return ret;
599 }
600
601 /*
602  * Note: this function may be called without srp_alloc_iu_bufs() having been
603  * invoked. Hence the ch->[rt]x_ring checks.
604  */
605 static void srp_free_ch_ib(struct srp_target_port *target,
606                            struct srp_rdma_ch *ch)
607 {
608         struct srp_device *dev = target->srp_host->srp_dev;
609         int i;
610
611         if (!ch->target)
612                 return;
613
614         if (ch->cm_id) {
615                 ib_destroy_cm_id(ch->cm_id);
616                 ch->cm_id = NULL;
617         }
618
619         /* If srp_new_cm_id() succeeded but srp_create_ch_ib() not, return. */
620         if (!ch->qp)
621                 return;
622
623         if (dev->use_fast_reg) {
624                 if (ch->fr_pool)
625                         srp_destroy_fr_pool(ch->fr_pool);
626         } else {
627                 if (ch->fmr_pool)
628                         ib_destroy_fmr_pool(ch->fmr_pool);
629         }
630         srp_destroy_qp(ch);
631         ib_destroy_cq(ch->send_cq);
632         ib_destroy_cq(ch->recv_cq);
633
634         /*
635          * Avoid that the SCSI error handler tries to use this channel after
636          * it has been freed. The SCSI error handler can namely continue
637          * trying to perform recovery actions after scsi_remove_host()
638          * returned.
639          */
640         ch->target = NULL;
641
642         ch->qp = NULL;
643         ch->send_cq = ch->recv_cq = NULL;
644
645         if (ch->rx_ring) {
646                 for (i = 0; i < target->queue_size; ++i)
647                         srp_free_iu(target->srp_host, ch->rx_ring[i]);
648                 kfree(ch->rx_ring);
649                 ch->rx_ring = NULL;
650         }
651         if (ch->tx_ring) {
652                 for (i = 0; i < target->queue_size; ++i)
653                         srp_free_iu(target->srp_host, ch->tx_ring[i]);
654                 kfree(ch->tx_ring);
655                 ch->tx_ring = NULL;
656         }
657 }
658
659 static void srp_path_rec_completion(int status,
660                                     struct ib_sa_path_rec *pathrec,
661                                     void *ch_ptr)
662 {
663         struct srp_rdma_ch *ch = ch_ptr;
664         struct srp_target_port *target = ch->target;
665
666         ch->status = status;
667         if (status)
668                 shost_printk(KERN_ERR, target->scsi_host,
669                              PFX "Got failed path rec status %d\n", status);
670         else
671                 ch->path = *pathrec;
672         complete(&ch->done);
673 }
674
675 static int srp_lookup_path(struct srp_rdma_ch *ch)
676 {
677         struct srp_target_port *target = ch->target;
678         int ret;
679
680         ch->path.numb_path = 1;
681
682         init_completion(&ch->done);
683
684         ch->path_query_id = ib_sa_path_rec_get(&srp_sa_client,
685                                                target->srp_host->srp_dev->dev,
686                                                target->srp_host->port,
687                                                &ch->path,
688                                                IB_SA_PATH_REC_SERVICE_ID |
689                                                IB_SA_PATH_REC_DGID       |
690                                                IB_SA_PATH_REC_SGID       |
691                                                IB_SA_PATH_REC_NUMB_PATH  |
692                                                IB_SA_PATH_REC_PKEY,
693                                                SRP_PATH_REC_TIMEOUT_MS,
694                                                GFP_KERNEL,
695                                                srp_path_rec_completion,
696                                                ch, &ch->path_query);
697         if (ch->path_query_id < 0)
698                 return ch->path_query_id;
699
700         ret = wait_for_completion_interruptible(&ch->done);
701         if (ret < 0)
702                 return ret;
703
704         if (ch->status < 0)
705                 shost_printk(KERN_WARNING, target->scsi_host,
706                              PFX "Path record query failed\n");
707
708         return ch->status;
709 }
710
711 static int srp_send_req(struct srp_rdma_ch *ch, bool multich)
712 {
713         struct srp_target_port *target = ch->target;
714         struct {
715                 struct ib_cm_req_param param;
716                 struct srp_login_req   priv;
717         } *req = NULL;
718         int status;
719
720         req = kzalloc(sizeof *req, GFP_KERNEL);
721         if (!req)
722                 return -ENOMEM;
723
724         req->param.primary_path               = &ch->path;
725         req->param.alternate_path             = NULL;
726         req->param.service_id                 = target->service_id;
727         req->param.qp_num                     = ch->qp->qp_num;
728         req->param.qp_type                    = ch->qp->qp_type;
729         req->param.private_data               = &req->priv;
730         req->param.private_data_len           = sizeof req->priv;
731         req->param.flow_control               = 1;
732
733         get_random_bytes(&req->param.starting_psn, 4);
734         req->param.starting_psn              &= 0xffffff;
735
736         /*
737          * Pick some arbitrary defaults here; we could make these
738          * module parameters if anyone cared about setting them.
739          */
740         req->param.responder_resources        = 4;
741         req->param.remote_cm_response_timeout = 20;
742         req->param.local_cm_response_timeout  = 20;
743         req->param.retry_count                = target->tl_retry_count;
744         req->param.rnr_retry_count            = 7;
745         req->param.max_cm_retries             = 15;
746
747         req->priv.opcode        = SRP_LOGIN_REQ;
748         req->priv.tag           = 0;
749         req->priv.req_it_iu_len = cpu_to_be32(target->max_iu_len);
750         req->priv.req_buf_fmt   = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
751                                               SRP_BUF_FORMAT_INDIRECT);
752         req->priv.req_flags     = (multich ? SRP_MULTICHAN_MULTI :
753                                    SRP_MULTICHAN_SINGLE);
754         /*
755          * In the published SRP specification (draft rev. 16a), the
756          * port identifier format is 8 bytes of ID extension followed
757          * by 8 bytes of GUID.  Older drafts put the two halves in the
758          * opposite order, so that the GUID comes first.
759          *
760          * Targets conforming to these obsolete drafts can be
761          * recognized by the I/O Class they report.
762          */
763         if (target->io_class == SRP_REV10_IB_IO_CLASS) {
764                 memcpy(req->priv.initiator_port_id,
765                        &target->sgid.global.interface_id, 8);
766                 memcpy(req->priv.initiator_port_id + 8,
767                        &target->initiator_ext, 8);
768                 memcpy(req->priv.target_port_id,     &target->ioc_guid, 8);
769                 memcpy(req->priv.target_port_id + 8, &target->id_ext, 8);
770         } else {
771                 memcpy(req->priv.initiator_port_id,
772                        &target->initiator_ext, 8);
773                 memcpy(req->priv.initiator_port_id + 8,
774                        &target->sgid.global.interface_id, 8);
775                 memcpy(req->priv.target_port_id,     &target->id_ext, 8);
776                 memcpy(req->priv.target_port_id + 8, &target->ioc_guid, 8);
777         }
778
779         /*
780          * Topspin/Cisco SRP targets will reject our login unless we
781          * zero out the first 8 bytes of our initiator port ID and set
782          * the second 8 bytes to the local node GUID.
783          */
784         if (srp_target_is_topspin(target)) {
785                 shost_printk(KERN_DEBUG, target->scsi_host,
786                              PFX "Topspin/Cisco initiator port ID workaround "
787                              "activated for target GUID %016llx\n",
788                              be64_to_cpu(target->ioc_guid));
789                 memset(req->priv.initiator_port_id, 0, 8);
790                 memcpy(req->priv.initiator_port_id + 8,
791                        &target->srp_host->srp_dev->dev->node_guid, 8);
792         }
793
794         status = ib_send_cm_req(ch->cm_id, &req->param);
795
796         kfree(req);
797
798         return status;
799 }
800
801 static bool srp_queue_remove_work(struct srp_target_port *target)
802 {
803         bool changed = false;
804
805         spin_lock_irq(&target->lock);
806         if (target->state != SRP_TARGET_REMOVED) {
807                 target->state = SRP_TARGET_REMOVED;
808                 changed = true;
809         }
810         spin_unlock_irq(&target->lock);
811
812         if (changed)
813                 queue_work(srp_remove_wq, &target->remove_work);
814
815         return changed;
816 }
817
818 static void srp_disconnect_target(struct srp_target_port *target)
819 {
820         struct srp_rdma_ch *ch;
821         int i;
822
823         /* XXX should send SRP_I_LOGOUT request */
824
825         for (i = 0; i < target->ch_count; i++) {
826                 ch = &target->ch[i];
827                 ch->connected = false;
828                 if (ch->cm_id && ib_send_cm_dreq(ch->cm_id, NULL, 0)) {
829                         shost_printk(KERN_DEBUG, target->scsi_host,
830                                      PFX "Sending CM DREQ failed\n");
831                 }
832         }
833 }
834
835 static void srp_free_req_data(struct srp_target_port *target,
836                               struct srp_rdma_ch *ch)
837 {
838         struct srp_device *dev = target->srp_host->srp_dev;
839         struct ib_device *ibdev = dev->dev;
840         struct srp_request *req;
841         int i;
842
843         if (!ch->req_ring)
844                 return;
845
846         for (i = 0; i < target->req_ring_size; ++i) {
847                 req = &ch->req_ring[i];
848                 if (dev->use_fast_reg)
849                         kfree(req->fr_list);
850                 else
851                         kfree(req->fmr_list);
852                 kfree(req->map_page);
853                 if (req->indirect_dma_addr) {
854                         ib_dma_unmap_single(ibdev, req->indirect_dma_addr,
855                                             target->indirect_size,
856                                             DMA_TO_DEVICE);
857                 }
858                 kfree(req->indirect_desc);
859         }
860
861         kfree(ch->req_ring);
862         ch->req_ring = NULL;
863 }
864
865 static int srp_alloc_req_data(struct srp_rdma_ch *ch)
866 {
867         struct srp_target_port *target = ch->target;
868         struct srp_device *srp_dev = target->srp_host->srp_dev;
869         struct ib_device *ibdev = srp_dev->dev;
870         struct srp_request *req;
871         void *mr_list;
872         dma_addr_t dma_addr;
873         int i, ret = -ENOMEM;
874
875         ch->req_ring = kcalloc(target->req_ring_size, sizeof(*ch->req_ring),
876                                GFP_KERNEL);
877         if (!ch->req_ring)
878                 goto out;
879
880         for (i = 0; i < target->req_ring_size; ++i) {
881                 req = &ch->req_ring[i];
882                 mr_list = kmalloc(target->cmd_sg_cnt * sizeof(void *),
883                                   GFP_KERNEL);
884                 if (!mr_list)
885                         goto out;
886                 if (srp_dev->use_fast_reg)
887                         req->fr_list = mr_list;
888                 else
889                         req->fmr_list = mr_list;
890                 req->map_page = kmalloc(srp_dev->max_pages_per_mr *
891                                         sizeof(void *), GFP_KERNEL);
892                 if (!req->map_page)
893                         goto out;
894                 req->indirect_desc = kmalloc(target->indirect_size, GFP_KERNEL);
895                 if (!req->indirect_desc)
896                         goto out;
897
898                 dma_addr = ib_dma_map_single(ibdev, req->indirect_desc,
899                                              target->indirect_size,
900                                              DMA_TO_DEVICE);
901                 if (ib_dma_mapping_error(ibdev, dma_addr))
902                         goto out;
903
904                 req->indirect_dma_addr = dma_addr;
905         }
906         ret = 0;
907
908 out:
909         return ret;
910 }
911
912 /**
913  * srp_del_scsi_host_attr() - Remove attributes defined in the host template.
914  * @shost: SCSI host whose attributes to remove from sysfs.
915  *
916  * Note: Any attributes defined in the host template and that did not exist
917  * before invocation of this function will be ignored.
918  */
919 static void srp_del_scsi_host_attr(struct Scsi_Host *shost)
920 {
921         struct device_attribute **attr;
922
923         for (attr = shost->hostt->shost_attrs; attr && *attr; ++attr)
924                 device_remove_file(&shost->shost_dev, *attr);
925 }
926
927 static void srp_remove_target(struct srp_target_port *target)
928 {
929         struct srp_rdma_ch *ch;
930         int i;
931
932         WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
933
934         srp_del_scsi_host_attr(target->scsi_host);
935         srp_rport_get(target->rport);
936         srp_remove_host(target->scsi_host);
937         scsi_remove_host(target->scsi_host);
938         srp_stop_rport_timers(target->rport);
939         srp_disconnect_target(target);
940         for (i = 0; i < target->ch_count; i++) {
941                 ch = &target->ch[i];
942                 srp_free_ch_ib(target, ch);
943         }
944         cancel_work_sync(&target->tl_err_work);
945         srp_rport_put(target->rport);
946         for (i = 0; i < target->ch_count; i++) {
947                 ch = &target->ch[i];
948                 srp_free_req_data(target, ch);
949         }
950         kfree(target->ch);
951         target->ch = NULL;
952
953         spin_lock(&target->srp_host->target_lock);
954         list_del(&target->list);
955         spin_unlock(&target->srp_host->target_lock);
956
957         scsi_host_put(target->scsi_host);
958 }
959
960 static void srp_remove_work(struct work_struct *work)
961 {
962         struct srp_target_port *target =
963                 container_of(work, struct srp_target_port, remove_work);
964
965         WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
966
967         srp_remove_target(target);
968 }
969
970 static void srp_rport_delete(struct srp_rport *rport)
971 {
972         struct srp_target_port *target = rport->lld_data;
973
974         srp_queue_remove_work(target);
975 }
976
977 /**
978  * srp_connected_ch() - number of connected channels
979  * @target: SRP target port.
980  */
981 static int srp_connected_ch(struct srp_target_port *target)
982 {
983         int i, c = 0;
984
985         for (i = 0; i < target->ch_count; i++)
986                 c += target->ch[i].connected;
987
988         return c;
989 }
990
991 static int srp_connect_ch(struct srp_rdma_ch *ch, bool multich)
992 {
993         struct srp_target_port *target = ch->target;
994         int ret;
995
996         WARN_ON_ONCE(!multich && srp_connected_ch(target) > 0);
997
998         ret = srp_lookup_path(ch);
999         if (ret)
1000                 return ret;
1001
1002         while (1) {
1003                 init_completion(&ch->done);
1004                 ret = srp_send_req(ch, multich);
1005                 if (ret)
1006                         return ret;
1007                 ret = wait_for_completion_interruptible(&ch->done);
1008                 if (ret < 0)
1009                         return ret;
1010
1011                 /*
1012                  * The CM event handling code will set status to
1013                  * SRP_PORT_REDIRECT if we get a port redirect REJ
1014                  * back, or SRP_DLID_REDIRECT if we get a lid/qp
1015                  * redirect REJ back.
1016                  */
1017                 switch (ch->status) {
1018                 case 0:
1019                         ch->connected = true;
1020                         return 0;
1021
1022                 case SRP_PORT_REDIRECT:
1023                         ret = srp_lookup_path(ch);
1024                         if (ret)
1025                                 return ret;
1026                         break;
1027
1028                 case SRP_DLID_REDIRECT:
1029                         break;
1030
1031                 case SRP_STALE_CONN:
1032                         shost_printk(KERN_ERR, target->scsi_host, PFX
1033                                      "giving up on stale connection\n");
1034                         ch->status = -ECONNRESET;
1035                         return ch->status;
1036
1037                 default:
1038                         return ch->status;
1039                 }
1040         }
1041 }
1042
1043 static int srp_inv_rkey(struct srp_rdma_ch *ch, u32 rkey)
1044 {
1045         struct ib_send_wr *bad_wr;
1046         struct ib_send_wr wr = {
1047                 .opcode             = IB_WR_LOCAL_INV,
1048                 .wr_id              = LOCAL_INV_WR_ID_MASK,
1049                 .next               = NULL,
1050                 .num_sge            = 0,
1051                 .send_flags         = 0,
1052                 .ex.invalidate_rkey = rkey,
1053         };
1054
1055         return ib_post_send(ch->qp, &wr, &bad_wr);
1056 }
1057
1058 static void srp_unmap_data(struct scsi_cmnd *scmnd,
1059                            struct srp_rdma_ch *ch,
1060                            struct srp_request *req)
1061 {
1062         struct srp_target_port *target = ch->target;
1063         struct srp_device *dev = target->srp_host->srp_dev;
1064         struct ib_device *ibdev = dev->dev;
1065         int i, res;
1066
1067         if (!scsi_sglist(scmnd) ||
1068             (scmnd->sc_data_direction != DMA_TO_DEVICE &&
1069              scmnd->sc_data_direction != DMA_FROM_DEVICE))
1070                 return;
1071
1072         if (dev->use_fast_reg) {
1073                 struct srp_fr_desc **pfr;
1074
1075                 for (i = req->nmdesc, pfr = req->fr_list; i > 0; i--, pfr++) {
1076                         res = srp_inv_rkey(ch, (*pfr)->mr->rkey);
1077                         if (res < 0) {
1078                                 shost_printk(KERN_ERR, target->scsi_host, PFX
1079                                   "Queueing INV WR for rkey %#x failed (%d)\n",
1080                                   (*pfr)->mr->rkey, res);
1081                                 queue_work(system_long_wq,
1082                                            &target->tl_err_work);
1083                         }
1084                 }
1085                 if (req->nmdesc)
1086                         srp_fr_pool_put(ch->fr_pool, req->fr_list,
1087                                         req->nmdesc);
1088         } else {
1089                 struct ib_pool_fmr **pfmr;
1090
1091                 for (i = req->nmdesc, pfmr = req->fmr_list; i > 0; i--, pfmr++)
1092                         ib_fmr_pool_unmap(*pfmr);
1093         }
1094
1095         ib_dma_unmap_sg(ibdev, scsi_sglist(scmnd), scsi_sg_count(scmnd),
1096                         scmnd->sc_data_direction);
1097 }
1098
1099 /**
1100  * srp_claim_req - Take ownership of the scmnd associated with a request.
1101  * @ch: SRP RDMA channel.
1102  * @req: SRP request.
1103  * @sdev: If not NULL, only take ownership for this SCSI device.
1104  * @scmnd: If NULL, take ownership of @req->scmnd. If not NULL, only take
1105  *         ownership of @req->scmnd if it equals @scmnd.
1106  *
1107  * Return value:
1108  * Either NULL or a pointer to the SCSI command the caller became owner of.
1109  */
1110 static struct scsi_cmnd *srp_claim_req(struct srp_rdma_ch *ch,
1111                                        struct srp_request *req,
1112                                        struct scsi_device *sdev,
1113                                        struct scsi_cmnd *scmnd)
1114 {
1115         unsigned long flags;
1116
1117         spin_lock_irqsave(&ch->lock, flags);
1118         if (req->scmnd &&
1119             (!sdev || req->scmnd->device == sdev) &&
1120             (!scmnd || req->scmnd == scmnd)) {
1121                 scmnd = req->scmnd;
1122                 req->scmnd = NULL;
1123         } else {
1124                 scmnd = NULL;
1125         }
1126         spin_unlock_irqrestore(&ch->lock, flags);
1127
1128         return scmnd;
1129 }
1130
1131 /**
1132  * srp_free_req() - Unmap data and add request to the free request list.
1133  * @ch:     SRP RDMA channel.
1134  * @req:    Request to be freed.
1135  * @scmnd:  SCSI command associated with @req.
1136  * @req_lim_delta: Amount to be added to @target->req_lim.
1137  */
1138 static void srp_free_req(struct srp_rdma_ch *ch, struct srp_request *req,
1139                          struct scsi_cmnd *scmnd, s32 req_lim_delta)
1140 {
1141         unsigned long flags;
1142
1143         srp_unmap_data(scmnd, ch, req);
1144
1145         spin_lock_irqsave(&ch->lock, flags);
1146         ch->req_lim += req_lim_delta;
1147         spin_unlock_irqrestore(&ch->lock, flags);
1148 }
1149
1150 static void srp_finish_req(struct srp_rdma_ch *ch, struct srp_request *req,
1151                            struct scsi_device *sdev, int result)
1152 {
1153         struct scsi_cmnd *scmnd = srp_claim_req(ch, req, sdev, NULL);
1154
1155         if (scmnd) {
1156                 srp_free_req(ch, req, scmnd, 0);
1157                 scmnd->result = result;
1158                 scmnd->scsi_done(scmnd);
1159         }
1160 }
1161
1162 static void srp_terminate_io(struct srp_rport *rport)
1163 {
1164         struct srp_target_port *target = rport->lld_data;
1165         struct srp_rdma_ch *ch;
1166         struct Scsi_Host *shost = target->scsi_host;
1167         struct scsi_device *sdev;
1168         int i, j;
1169
1170         /*
1171          * Invoking srp_terminate_io() while srp_queuecommand() is running
1172          * is not safe. Hence the warning statement below.
1173          */
1174         shost_for_each_device(sdev, shost)
1175                 WARN_ON_ONCE(sdev->request_queue->request_fn_active);
1176
1177         for (i = 0; i < target->ch_count; i++) {
1178                 ch = &target->ch[i];
1179
1180                 for (j = 0; j < target->req_ring_size; ++j) {
1181                         struct srp_request *req = &ch->req_ring[j];
1182
1183                         srp_finish_req(ch, req, NULL,
1184                                        DID_TRANSPORT_FAILFAST << 16);
1185                 }
1186         }
1187 }
1188
1189 /*
1190  * It is up to the caller to ensure that srp_rport_reconnect() calls are
1191  * serialized and that no concurrent srp_queuecommand(), srp_abort(),
1192  * srp_reset_device() or srp_reset_host() calls will occur while this function
1193  * is in progress. One way to realize that is not to call this function
1194  * directly but to call srp_reconnect_rport() instead since that last function
1195  * serializes calls of this function via rport->mutex and also blocks
1196  * srp_queuecommand() calls before invoking this function.
1197  */
1198 static int srp_rport_reconnect(struct srp_rport *rport)
1199 {
1200         struct srp_target_port *target = rport->lld_data;
1201         struct srp_rdma_ch *ch;
1202         int i, j, ret = 0;
1203         bool multich = false;
1204
1205         srp_disconnect_target(target);
1206
1207         if (target->state == SRP_TARGET_SCANNING)
1208                 return -ENODEV;
1209
1210         /*
1211          * Now get a new local CM ID so that we avoid confusing the target in
1212          * case things are really fouled up. Doing so also ensures that all CM
1213          * callbacks will have finished before a new QP is allocated.
1214          */
1215         for (i = 0; i < target->ch_count; i++) {
1216                 ch = &target->ch[i];
1217                 ret += srp_new_cm_id(ch);
1218         }
1219         for (i = 0; i < target->ch_count; i++) {
1220                 ch = &target->ch[i];
1221                 for (j = 0; j < target->req_ring_size; ++j) {
1222                         struct srp_request *req = &ch->req_ring[j];
1223
1224                         srp_finish_req(ch, req, NULL, DID_RESET << 16);
1225                 }
1226         }
1227         for (i = 0; i < target->ch_count; i++) {
1228                 ch = &target->ch[i];
1229                 /*
1230                  * Whether or not creating a new CM ID succeeded, create a new
1231                  * QP. This guarantees that all completion callback function
1232                  * invocations have finished before request resetting starts.
1233                  */
1234                 ret += srp_create_ch_ib(ch);
1235
1236                 INIT_LIST_HEAD(&ch->free_tx);
1237                 for (j = 0; j < target->queue_size; ++j)
1238                         list_add(&ch->tx_ring[j]->list, &ch->free_tx);
1239         }
1240
1241         target->qp_in_error = false;
1242
1243         for (i = 0; i < target->ch_count; i++) {
1244                 ch = &target->ch[i];
1245                 if (ret)
1246                         break;
1247                 ret = srp_connect_ch(ch, multich);
1248                 multich = true;
1249         }
1250
1251         if (ret == 0)
1252                 shost_printk(KERN_INFO, target->scsi_host,
1253                              PFX "reconnect succeeded\n");
1254
1255         return ret;
1256 }
1257
1258 static void srp_map_desc(struct srp_map_state *state, dma_addr_t dma_addr,
1259                          unsigned int dma_len, u32 rkey)
1260 {
1261         struct srp_direct_buf *desc = state->desc;
1262
1263         desc->va = cpu_to_be64(dma_addr);
1264         desc->key = cpu_to_be32(rkey);
1265         desc->len = cpu_to_be32(dma_len);
1266
1267         state->total_len += dma_len;
1268         state->desc++;
1269         state->ndesc++;
1270 }
1271
1272 static int srp_map_finish_fmr(struct srp_map_state *state,
1273                               struct srp_rdma_ch *ch)
1274 {
1275         struct srp_target_port *target = ch->target;
1276         struct srp_device *dev = target->srp_host->srp_dev;
1277         struct ib_pool_fmr *fmr;
1278         u64 io_addr = 0;
1279
1280         fmr = ib_fmr_pool_map_phys(ch->fmr_pool, state->pages,
1281                                    state->npages, io_addr);
1282         if (IS_ERR(fmr))
1283                 return PTR_ERR(fmr);
1284
1285         *state->next_fmr++ = fmr;
1286         state->nmdesc++;
1287
1288         srp_map_desc(state, state->base_dma_addr & ~dev->mr_page_mask,
1289                      state->dma_len, fmr->fmr->rkey);
1290
1291         return 0;
1292 }
1293
1294 static int srp_map_finish_fr(struct srp_map_state *state,
1295                              struct srp_rdma_ch *ch)
1296 {
1297         struct srp_target_port *target = ch->target;
1298         struct srp_device *dev = target->srp_host->srp_dev;
1299         struct ib_send_wr *bad_wr;
1300         struct ib_send_wr wr;
1301         struct srp_fr_desc *desc;
1302         u32 rkey;
1303
1304         desc = srp_fr_pool_get(ch->fr_pool);
1305         if (!desc)
1306                 return -ENOMEM;
1307
1308         rkey = ib_inc_rkey(desc->mr->rkey);
1309         ib_update_fast_reg_key(desc->mr, rkey);
1310
1311         memcpy(desc->frpl->page_list, state->pages,
1312                sizeof(state->pages[0]) * state->npages);
1313
1314         memset(&wr, 0, sizeof(wr));
1315         wr.opcode = IB_WR_FAST_REG_MR;
1316         wr.wr_id = FAST_REG_WR_ID_MASK;
1317         wr.wr.fast_reg.iova_start = state->base_dma_addr;
1318         wr.wr.fast_reg.page_list = desc->frpl;
1319         wr.wr.fast_reg.page_list_len = state->npages;
1320         wr.wr.fast_reg.page_shift = ilog2(dev->mr_page_size);
1321         wr.wr.fast_reg.length = state->dma_len;
1322         wr.wr.fast_reg.access_flags = (IB_ACCESS_LOCAL_WRITE |
1323                                        IB_ACCESS_REMOTE_READ |
1324                                        IB_ACCESS_REMOTE_WRITE);
1325         wr.wr.fast_reg.rkey = desc->mr->lkey;
1326
1327         *state->next_fr++ = desc;
1328         state->nmdesc++;
1329
1330         srp_map_desc(state, state->base_dma_addr, state->dma_len,
1331                      desc->mr->rkey);
1332
1333         return ib_post_send(ch->qp, &wr, &bad_wr);
1334 }
1335
1336 static int srp_finish_mapping(struct srp_map_state *state,
1337                               struct srp_rdma_ch *ch)
1338 {
1339         struct srp_target_port *target = ch->target;
1340         int ret = 0;
1341
1342         if (state->npages == 0)
1343                 return 0;
1344
1345         if (state->npages == 1 && !register_always)
1346                 srp_map_desc(state, state->base_dma_addr, state->dma_len,
1347                              target->rkey);
1348         else
1349                 ret = target->srp_host->srp_dev->use_fast_reg ?
1350                         srp_map_finish_fr(state, ch) :
1351                         srp_map_finish_fmr(state, ch);
1352
1353         if (ret == 0) {
1354                 state->npages = 0;
1355                 state->dma_len = 0;
1356         }
1357
1358         return ret;
1359 }
1360
1361 static void srp_map_update_start(struct srp_map_state *state,
1362                                  struct scatterlist *sg, int sg_index,
1363                                  dma_addr_t dma_addr)
1364 {
1365         state->unmapped_sg = sg;
1366         state->unmapped_index = sg_index;
1367         state->unmapped_addr = dma_addr;
1368 }
1369
1370 static int srp_map_sg_entry(struct srp_map_state *state,
1371                             struct srp_rdma_ch *ch,
1372                             struct scatterlist *sg, int sg_index,
1373                             bool use_mr)
1374 {
1375         struct srp_target_port *target = ch->target;
1376         struct srp_device *dev = target->srp_host->srp_dev;
1377         struct ib_device *ibdev = dev->dev;
1378         dma_addr_t dma_addr = ib_sg_dma_address(ibdev, sg);
1379         unsigned int dma_len = ib_sg_dma_len(ibdev, sg);
1380         unsigned int len;
1381         int ret;
1382
1383         if (!dma_len)
1384                 return 0;
1385
1386         if (!use_mr) {
1387                 /*
1388                  * Once we're in direct map mode for a request, we don't
1389                  * go back to FMR or FR mode, so no need to update anything
1390                  * other than the descriptor.
1391                  */
1392                 srp_map_desc(state, dma_addr, dma_len, target->rkey);
1393                 return 0;
1394         }
1395
1396         /*
1397          * If this is the first sg that will be mapped via FMR or via FR, save
1398          * our position. We need to know the first unmapped entry, its index,
1399          * and the first unmapped address within that entry to be able to
1400          * restart mapping after an error.
1401          */
1402         if (!state->unmapped_sg)
1403                 srp_map_update_start(state, sg, sg_index, dma_addr);
1404
1405         while (dma_len) {
1406                 unsigned offset = dma_addr & ~dev->mr_page_mask;
1407                 if (state->npages == dev->max_pages_per_mr || offset != 0) {
1408                         ret = srp_finish_mapping(state, ch);
1409                         if (ret)
1410                                 return ret;
1411
1412                         srp_map_update_start(state, sg, sg_index, dma_addr);
1413                 }
1414
1415                 len = min_t(unsigned int, dma_len, dev->mr_page_size - offset);
1416
1417                 if (!state->npages)
1418                         state->base_dma_addr = dma_addr;
1419                 state->pages[state->npages++] = dma_addr & dev->mr_page_mask;
1420                 state->dma_len += len;
1421                 dma_addr += len;
1422                 dma_len -= len;
1423         }
1424
1425         /*
1426          * If the last entry of the MR wasn't a full page, then we need to
1427          * close it out and start a new one -- we can only merge at page
1428          * boundries.
1429          */
1430         ret = 0;
1431         if (len != dev->mr_page_size) {
1432                 ret = srp_finish_mapping(state, ch);
1433                 if (!ret)
1434                         srp_map_update_start(state, NULL, 0, 0);
1435         }
1436         return ret;
1437 }
1438
1439 static int srp_map_sg(struct srp_map_state *state, struct srp_rdma_ch *ch,
1440                       struct srp_request *req, struct scatterlist *scat,
1441                       int count)
1442 {
1443         struct srp_target_port *target = ch->target;
1444         struct srp_device *dev = target->srp_host->srp_dev;
1445         struct ib_device *ibdev = dev->dev;
1446         struct scatterlist *sg;
1447         int i;
1448         bool use_mr;
1449
1450         state->desc     = req->indirect_desc;
1451         state->pages    = req->map_page;
1452         if (dev->use_fast_reg) {
1453                 state->next_fr = req->fr_list;
1454                 use_mr = !!ch->fr_pool;
1455         } else {
1456                 state->next_fmr = req->fmr_list;
1457                 use_mr = !!ch->fmr_pool;
1458         }
1459
1460         for_each_sg(scat, sg, count, i) {
1461                 if (srp_map_sg_entry(state, ch, sg, i, use_mr)) {
1462                         /*
1463                          * Memory registration failed, so backtrack to the
1464                          * first unmapped entry and continue on without using
1465                          * memory registration.
1466                          */
1467                         dma_addr_t dma_addr;
1468                         unsigned int dma_len;
1469
1470 backtrack:
1471                         sg = state->unmapped_sg;
1472                         i = state->unmapped_index;
1473
1474                         dma_addr = ib_sg_dma_address(ibdev, sg);
1475                         dma_len = ib_sg_dma_len(ibdev, sg);
1476                         dma_len -= (state->unmapped_addr - dma_addr);
1477                         dma_addr = state->unmapped_addr;
1478                         use_mr = false;
1479                         srp_map_desc(state, dma_addr, dma_len, target->rkey);
1480                 }
1481         }
1482
1483         if (use_mr && srp_finish_mapping(state, ch))
1484                 goto backtrack;
1485
1486         req->nmdesc = state->nmdesc;
1487
1488         return 0;
1489 }
1490
1491 static int srp_map_data(struct scsi_cmnd *scmnd, struct srp_rdma_ch *ch,
1492                         struct srp_request *req)
1493 {
1494         struct srp_target_port *target = ch->target;
1495         struct scatterlist *scat;
1496         struct srp_cmd *cmd = req->cmd->buf;
1497         int len, nents, count;
1498         struct srp_device *dev;
1499         struct ib_device *ibdev;
1500         struct srp_map_state state;
1501         struct srp_indirect_buf *indirect_hdr;
1502         u32 table_len;
1503         u8 fmt;
1504
1505         if (!scsi_sglist(scmnd) || scmnd->sc_data_direction == DMA_NONE)
1506                 return sizeof (struct srp_cmd);
1507
1508         if (scmnd->sc_data_direction != DMA_FROM_DEVICE &&
1509             scmnd->sc_data_direction != DMA_TO_DEVICE) {
1510                 shost_printk(KERN_WARNING, target->scsi_host,
1511                              PFX "Unhandled data direction %d\n",
1512                              scmnd->sc_data_direction);
1513                 return -EINVAL;
1514         }
1515
1516         nents = scsi_sg_count(scmnd);
1517         scat  = scsi_sglist(scmnd);
1518
1519         dev = target->srp_host->srp_dev;
1520         ibdev = dev->dev;
1521
1522         count = ib_dma_map_sg(ibdev, scat, nents, scmnd->sc_data_direction);
1523         if (unlikely(count == 0))
1524                 return -EIO;
1525
1526         fmt = SRP_DATA_DESC_DIRECT;
1527         len = sizeof (struct srp_cmd) + sizeof (struct srp_direct_buf);
1528
1529         if (count == 1 && !register_always) {
1530                 /*
1531                  * The midlayer only generated a single gather/scatter
1532                  * entry, or DMA mapping coalesced everything to a
1533                  * single entry.  So a direct descriptor along with
1534                  * the DMA MR suffices.
1535                  */
1536                 struct srp_direct_buf *buf = (void *) cmd->add_data;
1537
1538                 buf->va  = cpu_to_be64(ib_sg_dma_address(ibdev, scat));
1539                 buf->key = cpu_to_be32(target->rkey);
1540                 buf->len = cpu_to_be32(ib_sg_dma_len(ibdev, scat));
1541
1542                 req->nmdesc = 0;
1543                 goto map_complete;
1544         }
1545
1546         /*
1547          * We have more than one scatter/gather entry, so build our indirect
1548          * descriptor table, trying to merge as many entries as we can.
1549          */
1550         indirect_hdr = (void *) cmd->add_data;
1551
1552         ib_dma_sync_single_for_cpu(ibdev, req->indirect_dma_addr,
1553                                    target->indirect_size, DMA_TO_DEVICE);
1554
1555         memset(&state, 0, sizeof(state));
1556         srp_map_sg(&state, ch, req, scat, count);
1557
1558         /* We've mapped the request, now pull as much of the indirect
1559          * descriptor table as we can into the command buffer. If this
1560          * target is not using an external indirect table, we are
1561          * guaranteed to fit into the command, as the SCSI layer won't
1562          * give us more S/G entries than we allow.
1563          */
1564         if (state.ndesc == 1) {
1565                 /*
1566                  * Memory registration collapsed the sg-list into one entry,
1567                  * so use a direct descriptor.
1568                  */
1569                 struct srp_direct_buf *buf = (void *) cmd->add_data;
1570
1571                 *buf = req->indirect_desc[0];
1572                 goto map_complete;
1573         }
1574
1575         if (unlikely(target->cmd_sg_cnt < state.ndesc &&
1576                                                 !target->allow_ext_sg)) {
1577                 shost_printk(KERN_ERR, target->scsi_host,
1578                              "Could not fit S/G list into SRP_CMD\n");
1579                 return -EIO;
1580         }
1581
1582         count = min(state.ndesc, target->cmd_sg_cnt);
1583         table_len = state.ndesc * sizeof (struct srp_direct_buf);
1584
1585         fmt = SRP_DATA_DESC_INDIRECT;
1586         len = sizeof(struct srp_cmd) + sizeof (struct srp_indirect_buf);
1587         len += count * sizeof (struct srp_direct_buf);
1588
1589         memcpy(indirect_hdr->desc_list, req->indirect_desc,
1590                count * sizeof (struct srp_direct_buf));
1591
1592         indirect_hdr->table_desc.va = cpu_to_be64(req->indirect_dma_addr);
1593         indirect_hdr->table_desc.key = cpu_to_be32(target->rkey);
1594         indirect_hdr->table_desc.len = cpu_to_be32(table_len);
1595         indirect_hdr->len = cpu_to_be32(state.total_len);
1596
1597         if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1598                 cmd->data_out_desc_cnt = count;
1599         else
1600                 cmd->data_in_desc_cnt = count;
1601
1602         ib_dma_sync_single_for_device(ibdev, req->indirect_dma_addr, table_len,
1603                                       DMA_TO_DEVICE);
1604
1605 map_complete:
1606         if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1607                 cmd->buf_fmt = fmt << 4;
1608         else
1609                 cmd->buf_fmt = fmt;
1610
1611         return len;
1612 }
1613
1614 /*
1615  * Return an IU and possible credit to the free pool
1616  */
1617 static void srp_put_tx_iu(struct srp_rdma_ch *ch, struct srp_iu *iu,
1618                           enum srp_iu_type iu_type)
1619 {
1620         unsigned long flags;
1621
1622         spin_lock_irqsave(&ch->lock, flags);
1623         list_add(&iu->list, &ch->free_tx);
1624         if (iu_type != SRP_IU_RSP)
1625                 ++ch->req_lim;
1626         spin_unlock_irqrestore(&ch->lock, flags);
1627 }
1628
1629 /*
1630  * Must be called with ch->lock held to protect req_lim and free_tx.
1631  * If IU is not sent, it must be returned using srp_put_tx_iu().
1632  *
1633  * Note:
1634  * An upper limit for the number of allocated information units for each
1635  * request type is:
1636  * - SRP_IU_CMD: SRP_CMD_SQ_SIZE, since the SCSI mid-layer never queues
1637  *   more than Scsi_Host.can_queue requests.
1638  * - SRP_IU_TSK_MGMT: SRP_TSK_MGMT_SQ_SIZE.
1639  * - SRP_IU_RSP: 1, since a conforming SRP target never sends more than
1640  *   one unanswered SRP request to an initiator.
1641  */
1642 static struct srp_iu *__srp_get_tx_iu(struct srp_rdma_ch *ch,
1643                                       enum srp_iu_type iu_type)
1644 {
1645         struct srp_target_port *target = ch->target;
1646         s32 rsv = (iu_type == SRP_IU_TSK_MGMT) ? 0 : SRP_TSK_MGMT_SQ_SIZE;
1647         struct srp_iu *iu;
1648
1649         srp_send_completion(ch->send_cq, ch);
1650
1651         if (list_empty(&ch->free_tx))
1652                 return NULL;
1653
1654         /* Initiator responses to target requests do not consume credits */
1655         if (iu_type != SRP_IU_RSP) {
1656                 if (ch->req_lim <= rsv) {
1657                         ++target->zero_req_lim;
1658                         return NULL;
1659                 }
1660
1661                 --ch->req_lim;
1662         }
1663
1664         iu = list_first_entry(&ch->free_tx, struct srp_iu, list);
1665         list_del(&iu->list);
1666         return iu;
1667 }
1668
1669 static int srp_post_send(struct srp_rdma_ch *ch, struct srp_iu *iu, int len)
1670 {
1671         struct srp_target_port *target = ch->target;
1672         struct ib_sge list;
1673         struct ib_send_wr wr, *bad_wr;
1674
1675         list.addr   = iu->dma;
1676         list.length = len;
1677         list.lkey   = target->lkey;
1678
1679         wr.next       = NULL;
1680         wr.wr_id      = (uintptr_t) iu;
1681         wr.sg_list    = &list;
1682         wr.num_sge    = 1;
1683         wr.opcode     = IB_WR_SEND;
1684         wr.send_flags = IB_SEND_SIGNALED;
1685
1686         return ib_post_send(ch->qp, &wr, &bad_wr);
1687 }
1688
1689 static int srp_post_recv(struct srp_rdma_ch *ch, struct srp_iu *iu)
1690 {
1691         struct srp_target_port *target = ch->target;
1692         struct ib_recv_wr wr, *bad_wr;
1693         struct ib_sge list;
1694
1695         list.addr   = iu->dma;
1696         list.length = iu->size;
1697         list.lkey   = target->lkey;
1698
1699         wr.next     = NULL;
1700         wr.wr_id    = (uintptr_t) iu;
1701         wr.sg_list  = &list;
1702         wr.num_sge  = 1;
1703
1704         return ib_post_recv(ch->qp, &wr, &bad_wr);
1705 }
1706
1707 static void srp_process_rsp(struct srp_rdma_ch *ch, struct srp_rsp *rsp)
1708 {
1709         struct srp_target_port *target = ch->target;
1710         struct srp_request *req;
1711         struct scsi_cmnd *scmnd;
1712         unsigned long flags;
1713
1714         if (unlikely(rsp->tag & SRP_TAG_TSK_MGMT)) {
1715                 spin_lock_irqsave(&ch->lock, flags);
1716                 ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1717                 spin_unlock_irqrestore(&ch->lock, flags);
1718
1719                 ch->tsk_mgmt_status = -1;
1720                 if (be32_to_cpu(rsp->resp_data_len) >= 4)
1721                         ch->tsk_mgmt_status = rsp->data[3];
1722                 complete(&ch->tsk_mgmt_done);
1723         } else {
1724                 scmnd = scsi_host_find_tag(target->scsi_host, rsp->tag);
1725                 if (scmnd) {
1726                         req = (void *)scmnd->host_scribble;
1727                         scmnd = srp_claim_req(ch, req, NULL, scmnd);
1728                 }
1729                 if (!scmnd) {
1730                         shost_printk(KERN_ERR, target->scsi_host,
1731                                      "Null scmnd for RSP w/tag %#016llx received on ch %td / QP %#x\n",
1732                                      rsp->tag, ch - target->ch, ch->qp->qp_num);
1733
1734                         spin_lock_irqsave(&ch->lock, flags);
1735                         ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1736                         spin_unlock_irqrestore(&ch->lock, flags);
1737
1738                         return;
1739                 }
1740                 scmnd->result = rsp->status;
1741
1742                 if (rsp->flags & SRP_RSP_FLAG_SNSVALID) {
1743                         memcpy(scmnd->sense_buffer, rsp->data +
1744                                be32_to_cpu(rsp->resp_data_len),
1745                                min_t(int, be32_to_cpu(rsp->sense_data_len),
1746                                      SCSI_SENSE_BUFFERSIZE));
1747                 }
1748
1749                 if (unlikely(rsp->flags & SRP_RSP_FLAG_DIUNDER))
1750                         scsi_set_resid(scmnd, be32_to_cpu(rsp->data_in_res_cnt));
1751                 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DIOVER))
1752                         scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_in_res_cnt));
1753                 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOUNDER))
1754                         scsi_set_resid(scmnd, be32_to_cpu(rsp->data_out_res_cnt));
1755                 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOOVER))
1756                         scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_out_res_cnt));
1757
1758                 srp_free_req(ch, req, scmnd,
1759                              be32_to_cpu(rsp->req_lim_delta));
1760
1761                 scmnd->host_scribble = NULL;
1762                 scmnd->scsi_done(scmnd);
1763         }
1764 }
1765
1766 static int srp_response_common(struct srp_rdma_ch *ch, s32 req_delta,
1767                                void *rsp, int len)
1768 {
1769         struct srp_target_port *target = ch->target;
1770         struct ib_device *dev = target->srp_host->srp_dev->dev;
1771         unsigned long flags;
1772         struct srp_iu *iu;
1773         int err;
1774
1775         spin_lock_irqsave(&ch->lock, flags);
1776         ch->req_lim += req_delta;
1777         iu = __srp_get_tx_iu(ch, SRP_IU_RSP);
1778         spin_unlock_irqrestore(&ch->lock, flags);
1779
1780         if (!iu) {
1781                 shost_printk(KERN_ERR, target->scsi_host, PFX
1782                              "no IU available to send response\n");
1783                 return 1;
1784         }
1785
1786         ib_dma_sync_single_for_cpu(dev, iu->dma, len, DMA_TO_DEVICE);
1787         memcpy(iu->buf, rsp, len);
1788         ib_dma_sync_single_for_device(dev, iu->dma, len, DMA_TO_DEVICE);
1789
1790         err = srp_post_send(ch, iu, len);
1791         if (err) {
1792                 shost_printk(KERN_ERR, target->scsi_host, PFX
1793                              "unable to post response: %d\n", err);
1794                 srp_put_tx_iu(ch, iu, SRP_IU_RSP);
1795         }
1796
1797         return err;
1798 }
1799
1800 static void srp_process_cred_req(struct srp_rdma_ch *ch,
1801                                  struct srp_cred_req *req)
1802 {
1803         struct srp_cred_rsp rsp = {
1804                 .opcode = SRP_CRED_RSP,
1805                 .tag = req->tag,
1806         };
1807         s32 delta = be32_to_cpu(req->req_lim_delta);
1808
1809         if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
1810                 shost_printk(KERN_ERR, ch->target->scsi_host, PFX
1811                              "problems processing SRP_CRED_REQ\n");
1812 }
1813
1814 static void srp_process_aer_req(struct srp_rdma_ch *ch,
1815                                 struct srp_aer_req *req)
1816 {
1817         struct srp_target_port *target = ch->target;
1818         struct srp_aer_rsp rsp = {
1819                 .opcode = SRP_AER_RSP,
1820                 .tag = req->tag,
1821         };
1822         s32 delta = be32_to_cpu(req->req_lim_delta);
1823
1824         shost_printk(KERN_ERR, target->scsi_host, PFX
1825                      "ignoring AER for LUN %llu\n", scsilun_to_int(&req->lun));
1826
1827         if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
1828                 shost_printk(KERN_ERR, target->scsi_host, PFX
1829                              "problems processing SRP_AER_REQ\n");
1830 }
1831
1832 static void srp_handle_recv(struct srp_rdma_ch *ch, struct ib_wc *wc)
1833 {
1834         struct srp_target_port *target = ch->target;
1835         struct ib_device *dev = target->srp_host->srp_dev->dev;
1836         struct srp_iu *iu = (struct srp_iu *) (uintptr_t) wc->wr_id;
1837         int res;
1838         u8 opcode;
1839
1840         ib_dma_sync_single_for_cpu(dev, iu->dma, ch->max_ti_iu_len,
1841                                    DMA_FROM_DEVICE);
1842
1843         opcode = *(u8 *) iu->buf;
1844
1845         if (0) {
1846                 shost_printk(KERN_ERR, target->scsi_host,
1847                              PFX "recv completion, opcode 0x%02x\n", opcode);
1848                 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 8, 1,
1849                                iu->buf, wc->byte_len, true);
1850         }
1851
1852         switch (opcode) {
1853         case SRP_RSP:
1854                 srp_process_rsp(ch, iu->buf);
1855                 break;
1856
1857         case SRP_CRED_REQ:
1858                 srp_process_cred_req(ch, iu->buf);
1859                 break;
1860
1861         case SRP_AER_REQ:
1862                 srp_process_aer_req(ch, iu->buf);
1863                 break;
1864
1865         case SRP_T_LOGOUT:
1866                 /* XXX Handle target logout */
1867                 shost_printk(KERN_WARNING, target->scsi_host,
1868                              PFX "Got target logout request\n");
1869                 break;
1870
1871         default:
1872                 shost_printk(KERN_WARNING, target->scsi_host,
1873                              PFX "Unhandled SRP opcode 0x%02x\n", opcode);
1874                 break;
1875         }
1876
1877         ib_dma_sync_single_for_device(dev, iu->dma, ch->max_ti_iu_len,
1878                                       DMA_FROM_DEVICE);
1879
1880         res = srp_post_recv(ch, iu);
1881         if (res != 0)
1882                 shost_printk(KERN_ERR, target->scsi_host,
1883                              PFX "Recv failed with error code %d\n", res);
1884 }
1885
1886 /**
1887  * srp_tl_err_work() - handle a transport layer error
1888  * @work: Work structure embedded in an SRP target port.
1889  *
1890  * Note: This function may get invoked before the rport has been created,
1891  * hence the target->rport test.
1892  */
1893 static void srp_tl_err_work(struct work_struct *work)
1894 {
1895         struct srp_target_port *target;
1896
1897         target = container_of(work, struct srp_target_port, tl_err_work);
1898         if (target->rport)
1899                 srp_start_tl_fail_timers(target->rport);
1900 }
1901
1902 static void srp_handle_qp_err(u64 wr_id, enum ib_wc_status wc_status,
1903                               bool send_err, struct srp_rdma_ch *ch)
1904 {
1905         struct srp_target_port *target = ch->target;
1906
1907         if (wr_id == SRP_LAST_WR_ID) {
1908                 complete(&ch->done);
1909                 return;
1910         }
1911
1912         if (ch->connected && !target->qp_in_error) {
1913                 if (wr_id & LOCAL_INV_WR_ID_MASK) {
1914                         shost_printk(KERN_ERR, target->scsi_host, PFX
1915                                      "LOCAL_INV failed with status %s (%d)\n",
1916                                      ib_wc_status_msg(wc_status), wc_status);
1917                 } else if (wr_id & FAST_REG_WR_ID_MASK) {
1918                         shost_printk(KERN_ERR, target->scsi_host, PFX
1919                                      "FAST_REG_MR failed status %s (%d)\n",
1920                                      ib_wc_status_msg(wc_status), wc_status);
1921                 } else {
1922                         shost_printk(KERN_ERR, target->scsi_host,
1923                                      PFX "failed %s status %s (%d) for iu %p\n",
1924                                      send_err ? "send" : "receive",
1925                                      ib_wc_status_msg(wc_status), wc_status,
1926                                      (void *)(uintptr_t)wr_id);
1927                 }
1928                 queue_work(system_long_wq, &target->tl_err_work);
1929         }
1930         target->qp_in_error = true;
1931 }
1932
1933 static void srp_recv_completion(struct ib_cq *cq, void *ch_ptr)
1934 {
1935         struct srp_rdma_ch *ch = ch_ptr;
1936         struct ib_wc wc;
1937
1938         ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1939         while (ib_poll_cq(cq, 1, &wc) > 0) {
1940                 if (likely(wc.status == IB_WC_SUCCESS)) {
1941                         srp_handle_recv(ch, &wc);
1942                 } else {
1943                         srp_handle_qp_err(wc.wr_id, wc.status, false, ch);
1944                 }
1945         }
1946 }
1947
1948 static void srp_send_completion(struct ib_cq *cq, void *ch_ptr)
1949 {
1950         struct srp_rdma_ch *ch = ch_ptr;
1951         struct ib_wc wc;
1952         struct srp_iu *iu;
1953
1954         while (ib_poll_cq(cq, 1, &wc) > 0) {
1955                 if (likely(wc.status == IB_WC_SUCCESS)) {
1956                         iu = (struct srp_iu *) (uintptr_t) wc.wr_id;
1957                         list_add(&iu->list, &ch->free_tx);
1958                 } else {
1959                         srp_handle_qp_err(wc.wr_id, wc.status, true, ch);
1960                 }
1961         }
1962 }
1963
1964 static int srp_queuecommand(struct Scsi_Host *shost, struct scsi_cmnd *scmnd)
1965 {
1966         struct srp_target_port *target = host_to_target(shost);
1967         struct srp_rport *rport = target->rport;
1968         struct srp_rdma_ch *ch;
1969         struct srp_request *req;
1970         struct srp_iu *iu;
1971         struct srp_cmd *cmd;
1972         struct ib_device *dev;
1973         unsigned long flags;
1974         u32 tag;
1975         u16 idx;
1976         int len, ret;
1977         const bool in_scsi_eh = !in_interrupt() && current == shost->ehandler;
1978
1979         /*
1980          * The SCSI EH thread is the only context from which srp_queuecommand()
1981          * can get invoked for blocked devices (SDEV_BLOCK /
1982          * SDEV_CREATED_BLOCK). Avoid racing with srp_reconnect_rport() by
1983          * locking the rport mutex if invoked from inside the SCSI EH.
1984          */
1985         if (in_scsi_eh)
1986                 mutex_lock(&rport->mutex);
1987
1988         scmnd->result = srp_chkready(target->rport);
1989         if (unlikely(scmnd->result))
1990                 goto err;
1991
1992         WARN_ON_ONCE(scmnd->request->tag < 0);
1993         tag = blk_mq_unique_tag(scmnd->request);
1994         ch = &target->ch[blk_mq_unique_tag_to_hwq(tag)];
1995         idx = blk_mq_unique_tag_to_tag(tag);
1996         WARN_ONCE(idx >= target->req_ring_size, "%s: tag %#x: idx %d >= %d\n",
1997                   dev_name(&shost->shost_gendev), tag, idx,
1998                   target->req_ring_size);
1999
2000         spin_lock_irqsave(&ch->lock, flags);
2001         iu = __srp_get_tx_iu(ch, SRP_IU_CMD);
2002         spin_unlock_irqrestore(&ch->lock, flags);
2003
2004         if (!iu)
2005                 goto err;
2006
2007         req = &ch->req_ring[idx];
2008         dev = target->srp_host->srp_dev->dev;
2009         ib_dma_sync_single_for_cpu(dev, iu->dma, target->max_iu_len,
2010                                    DMA_TO_DEVICE);
2011
2012         scmnd->host_scribble = (void *) req;
2013
2014         cmd = iu->buf;
2015         memset(cmd, 0, sizeof *cmd);
2016
2017         cmd->opcode = SRP_CMD;
2018         int_to_scsilun(scmnd->device->lun, &cmd->lun);
2019         cmd->tag    = tag;
2020         memcpy(cmd->cdb, scmnd->cmnd, scmnd->cmd_len);
2021
2022         req->scmnd    = scmnd;
2023         req->cmd      = iu;
2024
2025         len = srp_map_data(scmnd, ch, req);
2026         if (len < 0) {
2027                 shost_printk(KERN_ERR, target->scsi_host,
2028                              PFX "Failed to map data (%d)\n", len);
2029                 /*
2030                  * If we ran out of memory descriptors (-ENOMEM) because an
2031                  * application is queuing many requests with more than
2032                  * max_pages_per_mr sg-list elements, tell the SCSI mid-layer
2033                  * to reduce queue depth temporarily.
2034                  */
2035                 scmnd->result = len == -ENOMEM ?
2036                         DID_OK << 16 | QUEUE_FULL << 1 : DID_ERROR << 16;
2037                 goto err_iu;
2038         }
2039
2040         ib_dma_sync_single_for_device(dev, iu->dma, target->max_iu_len,
2041                                       DMA_TO_DEVICE);
2042
2043         if (srp_post_send(ch, iu, len)) {
2044                 shost_printk(KERN_ERR, target->scsi_host, PFX "Send failed\n");
2045                 goto err_unmap;
2046         }
2047
2048         ret = 0;
2049
2050 unlock_rport:
2051         if (in_scsi_eh)
2052                 mutex_unlock(&rport->mutex);
2053
2054         return ret;
2055
2056 err_unmap:
2057         srp_unmap_data(scmnd, ch, req);
2058
2059 err_iu:
2060         srp_put_tx_iu(ch, iu, SRP_IU_CMD);
2061
2062         /*
2063          * Avoid that the loops that iterate over the request ring can
2064          * encounter a dangling SCSI command pointer.
2065          */
2066         req->scmnd = NULL;
2067
2068 err:
2069         if (scmnd->result) {
2070                 scmnd->scsi_done(scmnd);
2071                 ret = 0;
2072         } else {
2073                 ret = SCSI_MLQUEUE_HOST_BUSY;
2074         }
2075
2076         goto unlock_rport;
2077 }
2078
2079 /*
2080  * Note: the resources allocated in this function are freed in
2081  * srp_free_ch_ib().
2082  */
2083 static int srp_alloc_iu_bufs(struct srp_rdma_ch *ch)
2084 {
2085         struct srp_target_port *target = ch->target;
2086         int i;
2087
2088         ch->rx_ring = kcalloc(target->queue_size, sizeof(*ch->rx_ring),
2089                               GFP_KERNEL);
2090         if (!ch->rx_ring)
2091                 goto err_no_ring;
2092         ch->tx_ring = kcalloc(target->queue_size, sizeof(*ch->tx_ring),
2093                               GFP_KERNEL);
2094         if (!ch->tx_ring)
2095                 goto err_no_ring;
2096
2097         for (i = 0; i < target->queue_size; ++i) {
2098                 ch->rx_ring[i] = srp_alloc_iu(target->srp_host,
2099                                               ch->max_ti_iu_len,
2100                                               GFP_KERNEL, DMA_FROM_DEVICE);
2101                 if (!ch->rx_ring[i])
2102                         goto err;
2103         }
2104
2105         for (i = 0; i < target->queue_size; ++i) {
2106                 ch->tx_ring[i] = srp_alloc_iu(target->srp_host,
2107                                               target->max_iu_len,
2108                                               GFP_KERNEL, DMA_TO_DEVICE);
2109                 if (!ch->tx_ring[i])
2110                         goto err;
2111
2112                 list_add(&ch->tx_ring[i]->list, &ch->free_tx);
2113         }
2114
2115         return 0;
2116
2117 err:
2118         for (i = 0; i < target->queue_size; ++i) {
2119                 srp_free_iu(target->srp_host, ch->rx_ring[i]);
2120                 srp_free_iu(target->srp_host, ch->tx_ring[i]);
2121         }
2122
2123
2124 err_no_ring:
2125         kfree(ch->tx_ring);
2126         ch->tx_ring = NULL;
2127         kfree(ch->rx_ring);
2128         ch->rx_ring = NULL;
2129
2130         return -ENOMEM;
2131 }
2132
2133 static uint32_t srp_compute_rq_tmo(struct ib_qp_attr *qp_attr, int attr_mask)
2134 {
2135         uint64_t T_tr_ns, max_compl_time_ms;
2136         uint32_t rq_tmo_jiffies;
2137
2138         /*
2139          * According to section 11.2.4.2 in the IBTA spec (Modify Queue Pair,
2140          * table 91), both the QP timeout and the retry count have to be set
2141          * for RC QP's during the RTR to RTS transition.
2142          */
2143         WARN_ON_ONCE((attr_mask & (IB_QP_TIMEOUT | IB_QP_RETRY_CNT)) !=
2144                      (IB_QP_TIMEOUT | IB_QP_RETRY_CNT));
2145
2146         /*
2147          * Set target->rq_tmo_jiffies to one second more than the largest time
2148          * it can take before an error completion is generated. See also
2149          * C9-140..142 in the IBTA spec for more information about how to
2150          * convert the QP Local ACK Timeout value to nanoseconds.
2151          */
2152         T_tr_ns = 4096 * (1ULL << qp_attr->timeout);
2153         max_compl_time_ms = qp_attr->retry_cnt * 4 * T_tr_ns;
2154         do_div(max_compl_time_ms, NSEC_PER_MSEC);
2155         rq_tmo_jiffies = msecs_to_jiffies(max_compl_time_ms + 1000);
2156
2157         return rq_tmo_jiffies;
2158 }
2159
2160 static void srp_cm_rep_handler(struct ib_cm_id *cm_id,
2161                                const struct srp_login_rsp *lrsp,
2162                                struct srp_rdma_ch *ch)
2163 {
2164         struct srp_target_port *target = ch->target;
2165         struct ib_qp_attr *qp_attr = NULL;
2166         int attr_mask = 0;
2167         int ret;
2168         int i;
2169
2170         if (lrsp->opcode == SRP_LOGIN_RSP) {
2171                 ch->max_ti_iu_len = be32_to_cpu(lrsp->max_ti_iu_len);
2172                 ch->req_lim       = be32_to_cpu(lrsp->req_lim_delta);
2173
2174                 /*
2175                  * Reserve credits for task management so we don't
2176                  * bounce requests back to the SCSI mid-layer.
2177                  */
2178                 target->scsi_host->can_queue
2179                         = min(ch->req_lim - SRP_TSK_MGMT_SQ_SIZE,
2180                               target->scsi_host->can_queue);
2181                 target->scsi_host->cmd_per_lun
2182                         = min_t(int, target->scsi_host->can_queue,
2183                                 target->scsi_host->cmd_per_lun);
2184         } else {
2185                 shost_printk(KERN_WARNING, target->scsi_host,
2186                              PFX "Unhandled RSP opcode %#x\n", lrsp->opcode);
2187                 ret = -ECONNRESET;
2188                 goto error;
2189         }
2190
2191         if (!ch->rx_ring) {
2192                 ret = srp_alloc_iu_bufs(ch);
2193                 if (ret)
2194                         goto error;
2195         }
2196
2197         ret = -ENOMEM;
2198         qp_attr = kmalloc(sizeof *qp_attr, GFP_KERNEL);
2199         if (!qp_attr)
2200                 goto error;
2201
2202         qp_attr->qp_state = IB_QPS_RTR;
2203         ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2204         if (ret)
2205                 goto error_free;
2206
2207         ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2208         if (ret)
2209                 goto error_free;
2210
2211         for (i = 0; i < target->queue_size; i++) {
2212                 struct srp_iu *iu = ch->rx_ring[i];
2213
2214                 ret = srp_post_recv(ch, iu);
2215                 if (ret)
2216                         goto error_free;
2217         }
2218
2219         qp_attr->qp_state = IB_QPS_RTS;
2220         ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2221         if (ret)
2222                 goto error_free;
2223
2224         target->rq_tmo_jiffies = srp_compute_rq_tmo(qp_attr, attr_mask);
2225
2226         ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2227         if (ret)
2228                 goto error_free;
2229
2230         ret = ib_send_cm_rtu(cm_id, NULL, 0);
2231
2232 error_free:
2233         kfree(qp_attr);
2234
2235 error:
2236         ch->status = ret;
2237 }
2238
2239 static void srp_cm_rej_handler(struct ib_cm_id *cm_id,
2240                                struct ib_cm_event *event,
2241                                struct srp_rdma_ch *ch)
2242 {
2243         struct srp_target_port *target = ch->target;
2244         struct Scsi_Host *shost = target->scsi_host;
2245         struct ib_class_port_info *cpi;
2246         int opcode;
2247
2248         switch (event->param.rej_rcvd.reason) {
2249         case IB_CM_REJ_PORT_CM_REDIRECT:
2250                 cpi = event->param.rej_rcvd.ari;
2251                 ch->path.dlid = cpi->redirect_lid;
2252                 ch->path.pkey = cpi->redirect_pkey;
2253                 cm_id->remote_cm_qpn = be32_to_cpu(cpi->redirect_qp) & 0x00ffffff;
2254                 memcpy(ch->path.dgid.raw, cpi->redirect_gid, 16);
2255
2256                 ch->status = ch->path.dlid ?
2257                         SRP_DLID_REDIRECT : SRP_PORT_REDIRECT;
2258                 break;
2259
2260         case IB_CM_REJ_PORT_REDIRECT:
2261                 if (srp_target_is_topspin(target)) {
2262                         /*
2263                          * Topspin/Cisco SRP gateways incorrectly send
2264                          * reject reason code 25 when they mean 24
2265                          * (port redirect).
2266                          */
2267                         memcpy(ch->path.dgid.raw,
2268                                event->param.rej_rcvd.ari, 16);
2269
2270                         shost_printk(KERN_DEBUG, shost,
2271                                      PFX "Topspin/Cisco redirect to target port GID %016llx%016llx\n",
2272                                      be64_to_cpu(ch->path.dgid.global.subnet_prefix),
2273                                      be64_to_cpu(ch->path.dgid.global.interface_id));
2274
2275                         ch->status = SRP_PORT_REDIRECT;
2276                 } else {
2277                         shost_printk(KERN_WARNING, shost,
2278                                      "  REJ reason: IB_CM_REJ_PORT_REDIRECT\n");
2279                         ch->status = -ECONNRESET;
2280                 }
2281                 break;
2282
2283         case IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID:
2284                 shost_printk(KERN_WARNING, shost,
2285                             "  REJ reason: IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID\n");
2286                 ch->status = -ECONNRESET;
2287                 break;
2288
2289         case IB_CM_REJ_CONSUMER_DEFINED:
2290                 opcode = *(u8 *) event->private_data;
2291                 if (opcode == SRP_LOGIN_REJ) {
2292                         struct srp_login_rej *rej = event->private_data;
2293                         u32 reason = be32_to_cpu(rej->reason);
2294
2295                         if (reason == SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE)
2296                                 shost_printk(KERN_WARNING, shost,
2297                                              PFX "SRP_LOGIN_REJ: requested max_it_iu_len too large\n");
2298                         else
2299                                 shost_printk(KERN_WARNING, shost, PFX
2300                                              "SRP LOGIN from %pI6 to %pI6 REJECTED, reason 0x%08x\n",
2301                                              target->sgid.raw,
2302                                              target->orig_dgid.raw, reason);
2303                 } else
2304                         shost_printk(KERN_WARNING, shost,
2305                                      "  REJ reason: IB_CM_REJ_CONSUMER_DEFINED,"
2306                                      " opcode 0x%02x\n", opcode);
2307                 ch->status = -ECONNRESET;
2308                 break;
2309
2310         case IB_CM_REJ_STALE_CONN:
2311                 shost_printk(KERN_WARNING, shost, "  REJ reason: stale connection\n");
2312                 ch->status = SRP_STALE_CONN;
2313                 break;
2314
2315         default:
2316                 shost_printk(KERN_WARNING, shost, "  REJ reason 0x%x\n",
2317                              event->param.rej_rcvd.reason);
2318                 ch->status = -ECONNRESET;
2319         }
2320 }
2321
2322 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2323 {
2324         struct srp_rdma_ch *ch = cm_id->context;
2325         struct srp_target_port *target = ch->target;
2326         int comp = 0;
2327
2328         switch (event->event) {
2329         case IB_CM_REQ_ERROR:
2330                 shost_printk(KERN_DEBUG, target->scsi_host,
2331                              PFX "Sending CM REQ failed\n");
2332                 comp = 1;
2333                 ch->status = -ECONNRESET;
2334                 break;
2335
2336         case IB_CM_REP_RECEIVED:
2337                 comp = 1;
2338                 srp_cm_rep_handler(cm_id, event->private_data, ch);
2339                 break;
2340
2341         case IB_CM_REJ_RECEIVED:
2342                 shost_printk(KERN_DEBUG, target->scsi_host, PFX "REJ received\n");
2343                 comp = 1;
2344
2345                 srp_cm_rej_handler(cm_id, event, ch);
2346                 break;
2347
2348         case IB_CM_DREQ_RECEIVED:
2349                 shost_printk(KERN_WARNING, target->scsi_host,
2350                              PFX "DREQ received - connection closed\n");
2351                 ch->connected = false;
2352                 if (ib_send_cm_drep(cm_id, NULL, 0))
2353                         shost_printk(KERN_ERR, target->scsi_host,
2354                                      PFX "Sending CM DREP failed\n");
2355                 queue_work(system_long_wq, &target->tl_err_work);
2356                 break;
2357
2358         case IB_CM_TIMEWAIT_EXIT:
2359                 shost_printk(KERN_ERR, target->scsi_host,
2360                              PFX "connection closed\n");
2361                 comp = 1;
2362
2363                 ch->status = 0;
2364                 break;
2365
2366         case IB_CM_MRA_RECEIVED:
2367         case IB_CM_DREQ_ERROR:
2368         case IB_CM_DREP_RECEIVED:
2369                 break;
2370
2371         default:
2372                 shost_printk(KERN_WARNING, target->scsi_host,
2373                              PFX "Unhandled CM event %d\n", event->event);
2374                 break;
2375         }
2376
2377         if (comp)
2378                 complete(&ch->done);
2379
2380         return 0;
2381 }
2382
2383 /**
2384  * srp_change_queue_depth - setting device queue depth
2385  * @sdev: scsi device struct
2386  * @qdepth: requested queue depth
2387  *
2388  * Returns queue depth.
2389  */
2390 static int
2391 srp_change_queue_depth(struct scsi_device *sdev, int qdepth)
2392 {
2393         if (!sdev->tagged_supported)
2394                 qdepth = 1;
2395         return scsi_change_queue_depth(sdev, qdepth);
2396 }
2397
2398 static int srp_send_tsk_mgmt(struct srp_rdma_ch *ch, u64 req_tag, u64 lun,
2399                              u8 func)
2400 {
2401         struct srp_target_port *target = ch->target;
2402         struct srp_rport *rport = target->rport;
2403         struct ib_device *dev = target->srp_host->srp_dev->dev;
2404         struct srp_iu *iu;
2405         struct srp_tsk_mgmt *tsk_mgmt;
2406
2407         if (!ch->connected || target->qp_in_error)
2408                 return -1;
2409
2410         init_completion(&ch->tsk_mgmt_done);
2411
2412         /*
2413          * Lock the rport mutex to avoid that srp_create_ch_ib() is
2414          * invoked while a task management function is being sent.
2415          */
2416         mutex_lock(&rport->mutex);
2417         spin_lock_irq(&ch->lock);
2418         iu = __srp_get_tx_iu(ch, SRP_IU_TSK_MGMT);
2419         spin_unlock_irq(&ch->lock);
2420
2421         if (!iu) {
2422                 mutex_unlock(&rport->mutex);
2423
2424                 return -1;
2425         }
2426
2427         ib_dma_sync_single_for_cpu(dev, iu->dma, sizeof *tsk_mgmt,
2428                                    DMA_TO_DEVICE);
2429         tsk_mgmt = iu->buf;
2430         memset(tsk_mgmt, 0, sizeof *tsk_mgmt);
2431
2432         tsk_mgmt->opcode        = SRP_TSK_MGMT;
2433         int_to_scsilun(lun, &tsk_mgmt->lun);
2434         tsk_mgmt->tag           = req_tag | SRP_TAG_TSK_MGMT;
2435         tsk_mgmt->tsk_mgmt_func = func;
2436         tsk_mgmt->task_tag      = req_tag;
2437
2438         ib_dma_sync_single_for_device(dev, iu->dma, sizeof *tsk_mgmt,
2439                                       DMA_TO_DEVICE);
2440         if (srp_post_send(ch, iu, sizeof(*tsk_mgmt))) {
2441                 srp_put_tx_iu(ch, iu, SRP_IU_TSK_MGMT);
2442                 mutex_unlock(&rport->mutex);
2443
2444                 return -1;
2445         }
2446         mutex_unlock(&rport->mutex);
2447
2448         if (!wait_for_completion_timeout(&ch->tsk_mgmt_done,
2449                                          msecs_to_jiffies(SRP_ABORT_TIMEOUT_MS)))
2450                 return -1;
2451
2452         return 0;
2453 }
2454
2455 static int srp_abort(struct scsi_cmnd *scmnd)
2456 {
2457         struct srp_target_port *target = host_to_target(scmnd->device->host);
2458         struct srp_request *req = (struct srp_request *) scmnd->host_scribble;
2459         u32 tag;
2460         u16 ch_idx;
2461         struct srp_rdma_ch *ch;
2462         int ret;
2463
2464         shost_printk(KERN_ERR, target->scsi_host, "SRP abort called\n");
2465
2466         if (!req)
2467                 return SUCCESS;
2468         tag = blk_mq_unique_tag(scmnd->request);
2469         ch_idx = blk_mq_unique_tag_to_hwq(tag);
2470         if (WARN_ON_ONCE(ch_idx >= target->ch_count))
2471                 return SUCCESS;
2472         ch = &target->ch[ch_idx];
2473         if (!srp_claim_req(ch, req, NULL, scmnd))
2474                 return SUCCESS;
2475         shost_printk(KERN_ERR, target->scsi_host,
2476                      "Sending SRP abort for tag %#x\n", tag);
2477         if (srp_send_tsk_mgmt(ch, tag, scmnd->device->lun,
2478                               SRP_TSK_ABORT_TASK) == 0)
2479                 ret = SUCCESS;
2480         else if (target->rport->state == SRP_RPORT_LOST)
2481                 ret = FAST_IO_FAIL;
2482         else
2483                 ret = FAILED;
2484         srp_free_req(ch, req, scmnd, 0);
2485         scmnd->result = DID_ABORT << 16;
2486         scmnd->scsi_done(scmnd);
2487
2488         return ret;
2489 }
2490
2491 static int srp_reset_device(struct scsi_cmnd *scmnd)
2492 {
2493         struct srp_target_port *target = host_to_target(scmnd->device->host);
2494         struct srp_rdma_ch *ch;
2495         int i;
2496
2497         shost_printk(KERN_ERR, target->scsi_host, "SRP reset_device called\n");
2498
2499         ch = &target->ch[0];
2500         if (srp_send_tsk_mgmt(ch, SRP_TAG_NO_REQ, scmnd->device->lun,
2501                               SRP_TSK_LUN_RESET))
2502                 return FAILED;
2503         if (ch->tsk_mgmt_status)
2504                 return FAILED;
2505
2506         for (i = 0; i < target->ch_count; i++) {
2507                 ch = &target->ch[i];
2508                 for (i = 0; i < target->req_ring_size; ++i) {
2509                         struct srp_request *req = &ch->req_ring[i];
2510
2511                         srp_finish_req(ch, req, scmnd->device, DID_RESET << 16);
2512                 }
2513         }
2514
2515         return SUCCESS;
2516 }
2517
2518 static int srp_reset_host(struct scsi_cmnd *scmnd)
2519 {
2520         struct srp_target_port *target = host_to_target(scmnd->device->host);
2521
2522         shost_printk(KERN_ERR, target->scsi_host, PFX "SRP reset_host called\n");
2523
2524         return srp_reconnect_rport(target->rport) == 0 ? SUCCESS : FAILED;
2525 }
2526
2527 static int srp_slave_configure(struct scsi_device *sdev)
2528 {
2529         struct Scsi_Host *shost = sdev->host;
2530         struct srp_target_port *target = host_to_target(shost);
2531         struct request_queue *q = sdev->request_queue;
2532         unsigned long timeout;
2533
2534         if (sdev->type == TYPE_DISK) {
2535                 timeout = max_t(unsigned, 30 * HZ, target->rq_tmo_jiffies);
2536                 blk_queue_rq_timeout(q, timeout);
2537         }
2538
2539         return 0;
2540 }
2541
2542 static ssize_t show_id_ext(struct device *dev, struct device_attribute *attr,
2543                            char *buf)
2544 {
2545         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2546
2547         return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->id_ext));
2548 }
2549
2550 static ssize_t show_ioc_guid(struct device *dev, struct device_attribute *attr,
2551                              char *buf)
2552 {
2553         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2554
2555         return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->ioc_guid));
2556 }
2557
2558 static ssize_t show_service_id(struct device *dev,
2559                                struct device_attribute *attr, char *buf)
2560 {
2561         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2562
2563         return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->service_id));
2564 }
2565
2566 static ssize_t show_pkey(struct device *dev, struct device_attribute *attr,
2567                          char *buf)
2568 {
2569         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2570
2571         return sprintf(buf, "0x%04x\n", be16_to_cpu(target->pkey));
2572 }
2573
2574 static ssize_t show_sgid(struct device *dev, struct device_attribute *attr,
2575                          char *buf)
2576 {
2577         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2578
2579         return sprintf(buf, "%pI6\n", target->sgid.raw);
2580 }
2581
2582 static ssize_t show_dgid(struct device *dev, struct device_attribute *attr,
2583                          char *buf)
2584 {
2585         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2586         struct srp_rdma_ch *ch = &target->ch[0];
2587
2588         return sprintf(buf, "%pI6\n", ch->path.dgid.raw);
2589 }
2590
2591 static ssize_t show_orig_dgid(struct device *dev,
2592                               struct device_attribute *attr, char *buf)
2593 {
2594         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2595
2596         return sprintf(buf, "%pI6\n", target->orig_dgid.raw);
2597 }
2598
2599 static ssize_t show_req_lim(struct device *dev,
2600                             struct device_attribute *attr, char *buf)
2601 {
2602         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2603         struct srp_rdma_ch *ch;
2604         int i, req_lim = INT_MAX;
2605
2606         for (i = 0; i < target->ch_count; i++) {
2607                 ch = &target->ch[i];
2608                 req_lim = min(req_lim, ch->req_lim);
2609         }
2610         return sprintf(buf, "%d\n", req_lim);
2611 }
2612
2613 static ssize_t show_zero_req_lim(struct device *dev,
2614                                  struct device_attribute *attr, char *buf)
2615 {
2616         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2617
2618         return sprintf(buf, "%d\n", target->zero_req_lim);
2619 }
2620
2621 static ssize_t show_local_ib_port(struct device *dev,
2622                                   struct device_attribute *attr, char *buf)
2623 {
2624         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2625
2626         return sprintf(buf, "%d\n", target->srp_host->port);
2627 }
2628
2629 static ssize_t show_local_ib_device(struct device *dev,
2630                                     struct device_attribute *attr, char *buf)
2631 {
2632         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2633
2634         return sprintf(buf, "%s\n", target->srp_host->srp_dev->dev->name);
2635 }
2636
2637 static ssize_t show_ch_count(struct device *dev, struct device_attribute *attr,
2638                              char *buf)
2639 {
2640         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2641
2642         return sprintf(buf, "%d\n", target->ch_count);
2643 }
2644
2645 static ssize_t show_comp_vector(struct device *dev,
2646                                 struct device_attribute *attr, char *buf)
2647 {
2648         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2649
2650         return sprintf(buf, "%d\n", target->comp_vector);
2651 }
2652
2653 static ssize_t show_tl_retry_count(struct device *dev,
2654                                    struct device_attribute *attr, char *buf)
2655 {
2656         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2657
2658         return sprintf(buf, "%d\n", target->tl_retry_count);
2659 }
2660
2661 static ssize_t show_cmd_sg_entries(struct device *dev,
2662                                    struct device_attribute *attr, char *buf)
2663 {
2664         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2665
2666         return sprintf(buf, "%u\n", target->cmd_sg_cnt);
2667 }
2668
2669 static ssize_t show_allow_ext_sg(struct device *dev,
2670                                  struct device_attribute *attr, char *buf)
2671 {
2672         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2673
2674         return sprintf(buf, "%s\n", target->allow_ext_sg ? "true" : "false");
2675 }
2676
2677 static DEVICE_ATTR(id_ext,          S_IRUGO, show_id_ext,          NULL);
2678 static DEVICE_ATTR(ioc_guid,        S_IRUGO, show_ioc_guid,        NULL);
2679 static DEVICE_ATTR(service_id,      S_IRUGO, show_service_id,      NULL);
2680 static DEVICE_ATTR(pkey,            S_IRUGO, show_pkey,            NULL);
2681 static DEVICE_ATTR(sgid,            S_IRUGO, show_sgid,            NULL);
2682 static DEVICE_ATTR(dgid,            S_IRUGO, show_dgid,            NULL);
2683 static DEVICE_ATTR(orig_dgid,       S_IRUGO, show_orig_dgid,       NULL);
2684 static DEVICE_ATTR(req_lim,         S_IRUGO, show_req_lim,         NULL);
2685 static DEVICE_ATTR(zero_req_lim,    S_IRUGO, show_zero_req_lim,    NULL);
2686 static DEVICE_ATTR(local_ib_port,   S_IRUGO, show_local_ib_port,   NULL);
2687 static DEVICE_ATTR(local_ib_device, S_IRUGO, show_local_ib_device, NULL);
2688 static DEVICE_ATTR(ch_count,        S_IRUGO, show_ch_count,        NULL);
2689 static DEVICE_ATTR(comp_vector,     S_IRUGO, show_comp_vector,     NULL);
2690 static DEVICE_ATTR(tl_retry_count,  S_IRUGO, show_tl_retry_count,  NULL);
2691 static DEVICE_ATTR(cmd_sg_entries,  S_IRUGO, show_cmd_sg_entries,  NULL);
2692 static DEVICE_ATTR(allow_ext_sg,    S_IRUGO, show_allow_ext_sg,    NULL);
2693
2694 static struct device_attribute *srp_host_attrs[] = {
2695         &dev_attr_id_ext,
2696         &dev_attr_ioc_guid,
2697         &dev_attr_service_id,
2698         &dev_attr_pkey,
2699         &dev_attr_sgid,
2700         &dev_attr_dgid,
2701         &dev_attr_orig_dgid,
2702         &dev_attr_req_lim,
2703         &dev_attr_zero_req_lim,
2704         &dev_attr_local_ib_port,
2705         &dev_attr_local_ib_device,
2706         &dev_attr_ch_count,
2707         &dev_attr_comp_vector,
2708         &dev_attr_tl_retry_count,
2709         &dev_attr_cmd_sg_entries,
2710         &dev_attr_allow_ext_sg,
2711         NULL
2712 };
2713
2714 static struct scsi_host_template srp_template = {
2715         .module                         = THIS_MODULE,
2716         .name                           = "InfiniBand SRP initiator",
2717         .proc_name                      = DRV_NAME,
2718         .slave_configure                = srp_slave_configure,
2719         .info                           = srp_target_info,
2720         .queuecommand                   = srp_queuecommand,
2721         .change_queue_depth             = srp_change_queue_depth,
2722         .eh_abort_handler               = srp_abort,
2723         .eh_device_reset_handler        = srp_reset_device,
2724         .eh_host_reset_handler          = srp_reset_host,
2725         .skip_settle_delay              = true,
2726         .sg_tablesize                   = SRP_DEF_SG_TABLESIZE,
2727         .can_queue                      = SRP_DEFAULT_CMD_SQ_SIZE,
2728         .this_id                        = -1,
2729         .cmd_per_lun                    = SRP_DEFAULT_CMD_SQ_SIZE,
2730         .use_clustering                 = ENABLE_CLUSTERING,
2731         .shost_attrs                    = srp_host_attrs,
2732         .use_blk_tags                   = 1,
2733         .track_queue_depth              = 1,
2734 };
2735
2736 static int srp_sdev_count(struct Scsi_Host *host)
2737 {
2738         struct scsi_device *sdev;
2739         int c = 0;
2740
2741         shost_for_each_device(sdev, host)
2742                 c++;
2743
2744         return c;
2745 }
2746
2747 /*
2748  * Return values:
2749  * < 0 upon failure. Caller is responsible for SRP target port cleanup.
2750  * 0 and target->state == SRP_TARGET_REMOVED if asynchronous target port
2751  *    removal has been scheduled.
2752  * 0 and target->state != SRP_TARGET_REMOVED upon success.
2753  */
2754 static int srp_add_target(struct srp_host *host, struct srp_target_port *target)
2755 {
2756         struct srp_rport_identifiers ids;
2757         struct srp_rport *rport;
2758
2759         target->state = SRP_TARGET_SCANNING;
2760         sprintf(target->target_name, "SRP.T10:%016llX",
2761                 be64_to_cpu(target->id_ext));
2762
2763         if (scsi_add_host(target->scsi_host, host->srp_dev->dev->dma_device))
2764                 return -ENODEV;
2765
2766         memcpy(ids.port_id, &target->id_ext, 8);
2767         memcpy(ids.port_id + 8, &target->ioc_guid, 8);
2768         ids.roles = SRP_RPORT_ROLE_TARGET;
2769         rport = srp_rport_add(target->scsi_host, &ids);
2770         if (IS_ERR(rport)) {
2771                 scsi_remove_host(target->scsi_host);
2772                 return PTR_ERR(rport);
2773         }
2774
2775         rport->lld_data = target;
2776         target->rport = rport;
2777
2778         spin_lock(&host->target_lock);
2779         list_add_tail(&target->list, &host->target_list);
2780         spin_unlock(&host->target_lock);
2781
2782         scsi_scan_target(&target->scsi_host->shost_gendev,
2783                          0, target->scsi_id, SCAN_WILD_CARD, 0);
2784
2785         if (srp_connected_ch(target) < target->ch_count ||
2786             target->qp_in_error) {
2787                 shost_printk(KERN_INFO, target->scsi_host,
2788                              PFX "SCSI scan failed - removing SCSI host\n");
2789                 srp_queue_remove_work(target);
2790                 goto out;
2791         }
2792
2793         pr_debug(PFX "%s: SCSI scan succeeded - detected %d LUNs\n",
2794                  dev_name(&target->scsi_host->shost_gendev),
2795                  srp_sdev_count(target->scsi_host));
2796
2797         spin_lock_irq(&target->lock);
2798         if (target->state == SRP_TARGET_SCANNING)
2799                 target->state = SRP_TARGET_LIVE;
2800         spin_unlock_irq(&target->lock);
2801
2802 out:
2803         return 0;
2804 }
2805
2806 static void srp_release_dev(struct device *dev)
2807 {
2808         struct srp_host *host =
2809                 container_of(dev, struct srp_host, dev);
2810
2811         complete(&host->released);
2812 }
2813
2814 static struct class srp_class = {
2815         .name    = "infiniband_srp",
2816         .dev_release = srp_release_dev
2817 };
2818
2819 /**
2820  * srp_conn_unique() - check whether the connection to a target is unique
2821  * @host:   SRP host.
2822  * @target: SRP target port.
2823  */
2824 static bool srp_conn_unique(struct srp_host *host,
2825                             struct srp_target_port *target)
2826 {
2827         struct srp_target_port *t;
2828         bool ret = false;
2829
2830         if (target->state == SRP_TARGET_REMOVED)
2831                 goto out;
2832
2833         ret = true;
2834
2835         spin_lock(&host->target_lock);
2836         list_for_each_entry(t, &host->target_list, list) {
2837                 if (t != target &&
2838                     target->id_ext == t->id_ext &&
2839                     target->ioc_guid == t->ioc_guid &&
2840                     target->initiator_ext == t->initiator_ext) {
2841                         ret = false;
2842                         break;
2843                 }
2844         }
2845         spin_unlock(&host->target_lock);
2846
2847 out:
2848         return ret;
2849 }
2850
2851 /*
2852  * Target ports are added by writing
2853  *
2854  *     id_ext=<SRP ID ext>,ioc_guid=<SRP IOC GUID>,dgid=<dest GID>,
2855  *     pkey=<P_Key>,service_id=<service ID>
2856  *
2857  * to the add_target sysfs attribute.
2858  */
2859 enum {
2860         SRP_OPT_ERR             = 0,
2861         SRP_OPT_ID_EXT          = 1 << 0,
2862         SRP_OPT_IOC_GUID        = 1 << 1,
2863         SRP_OPT_DGID            = 1 << 2,
2864         SRP_OPT_PKEY            = 1 << 3,
2865         SRP_OPT_SERVICE_ID      = 1 << 4,
2866         SRP_OPT_MAX_SECT        = 1 << 5,
2867         SRP_OPT_MAX_CMD_PER_LUN = 1 << 6,
2868         SRP_OPT_IO_CLASS        = 1 << 7,
2869         SRP_OPT_INITIATOR_EXT   = 1 << 8,
2870         SRP_OPT_CMD_SG_ENTRIES  = 1 << 9,
2871         SRP_OPT_ALLOW_EXT_SG    = 1 << 10,
2872         SRP_OPT_SG_TABLESIZE    = 1 << 11,
2873         SRP_OPT_COMP_VECTOR     = 1 << 12,
2874         SRP_OPT_TL_RETRY_COUNT  = 1 << 13,
2875         SRP_OPT_QUEUE_SIZE      = 1 << 14,
2876         SRP_OPT_ALL             = (SRP_OPT_ID_EXT       |
2877                                    SRP_OPT_IOC_GUID     |
2878                                    SRP_OPT_DGID         |
2879                                    SRP_OPT_PKEY         |
2880                                    SRP_OPT_SERVICE_ID),
2881 };
2882
2883 static const match_table_t srp_opt_tokens = {
2884         { SRP_OPT_ID_EXT,               "id_ext=%s"             },
2885         { SRP_OPT_IOC_GUID,             "ioc_guid=%s"           },
2886         { SRP_OPT_DGID,                 "dgid=%s"               },
2887         { SRP_OPT_PKEY,                 "pkey=%x"               },
2888         { SRP_OPT_SERVICE_ID,           "service_id=%s"         },
2889         { SRP_OPT_MAX_SECT,             "max_sect=%d"           },
2890         { SRP_OPT_MAX_CMD_PER_LUN,      "max_cmd_per_lun=%d"    },
2891         { SRP_OPT_IO_CLASS,             "io_class=%x"           },
2892         { SRP_OPT_INITIATOR_EXT,        "initiator_ext=%s"      },
2893         { SRP_OPT_CMD_SG_ENTRIES,       "cmd_sg_entries=%u"     },
2894         { SRP_OPT_ALLOW_EXT_SG,         "allow_ext_sg=%u"       },
2895         { SRP_OPT_SG_TABLESIZE,         "sg_tablesize=%u"       },
2896         { SRP_OPT_COMP_VECTOR,          "comp_vector=%u"        },
2897         { SRP_OPT_TL_RETRY_COUNT,       "tl_retry_count=%u"     },
2898         { SRP_OPT_QUEUE_SIZE,           "queue_size=%d"         },
2899         { SRP_OPT_ERR,                  NULL                    }
2900 };
2901
2902 static int srp_parse_options(const char *buf, struct srp_target_port *target)
2903 {
2904         char *options, *sep_opt;
2905         char *p;
2906         char dgid[3];
2907         substring_t args[MAX_OPT_ARGS];
2908         int opt_mask = 0;
2909         int token;
2910         int ret = -EINVAL;
2911         int i;
2912
2913         options = kstrdup(buf, GFP_KERNEL);
2914         if (!options)
2915                 return -ENOMEM;
2916
2917         sep_opt = options;
2918         while ((p = strsep(&sep_opt, ",\n")) != NULL) {
2919                 if (!*p)
2920                         continue;
2921
2922                 token = match_token(p, srp_opt_tokens, args);
2923                 opt_mask |= token;
2924
2925                 switch (token) {
2926                 case SRP_OPT_ID_EXT:
2927                         p = match_strdup(args);
2928                         if (!p) {
2929                                 ret = -ENOMEM;
2930                                 goto out;
2931                         }
2932                         target->id_ext = cpu_to_be64(simple_strtoull(p, NULL, 16));
2933                         kfree(p);
2934                         break;
2935
2936                 case SRP_OPT_IOC_GUID:
2937                         p = match_strdup(args);
2938                         if (!p) {
2939                                 ret = -ENOMEM;
2940                                 goto out;
2941                         }
2942                         target->ioc_guid = cpu_to_be64(simple_strtoull(p, NULL, 16));
2943                         kfree(p);
2944                         break;
2945
2946                 case SRP_OPT_DGID:
2947                         p = match_strdup(args);
2948                         if (!p) {
2949                                 ret = -ENOMEM;
2950                                 goto out;
2951                         }
2952                         if (strlen(p) != 32) {
2953                                 pr_warn("bad dest GID parameter '%s'\n", p);
2954                                 kfree(p);
2955                                 goto out;
2956                         }
2957
2958                         for (i = 0; i < 16; ++i) {
2959                                 strlcpy(dgid, p + i * 2, sizeof(dgid));
2960                                 if (sscanf(dgid, "%hhx",
2961                                            &target->orig_dgid.raw[i]) < 1) {
2962                                         ret = -EINVAL;
2963                                         kfree(p);
2964                                         goto out;
2965                                 }
2966                         }
2967                         kfree(p);
2968                         break;
2969
2970                 case SRP_OPT_PKEY:
2971                         if (match_hex(args, &token)) {
2972                                 pr_warn("bad P_Key parameter '%s'\n", p);
2973                                 goto out;
2974                         }
2975                         target->pkey = cpu_to_be16(token);
2976                         break;
2977
2978                 case SRP_OPT_SERVICE_ID:
2979                         p = match_strdup(args);
2980                         if (!p) {
2981                                 ret = -ENOMEM;
2982                                 goto out;
2983                         }
2984                         target->service_id = cpu_to_be64(simple_strtoull(p, NULL, 16));
2985                         kfree(p);
2986                         break;
2987
2988                 case SRP_OPT_MAX_SECT:
2989                         if (match_int(args, &token)) {
2990                                 pr_warn("bad max sect parameter '%s'\n", p);
2991                                 goto out;
2992                         }
2993                         target->scsi_host->max_sectors = token;
2994                         break;
2995
2996                 case SRP_OPT_QUEUE_SIZE:
2997                         if (match_int(args, &token) || token < 1) {
2998                                 pr_warn("bad queue_size parameter '%s'\n", p);
2999                                 goto out;
3000                         }
3001                         target->scsi_host->can_queue = token;
3002                         target->queue_size = token + SRP_RSP_SQ_SIZE +
3003                                              SRP_TSK_MGMT_SQ_SIZE;
3004                         if (!(opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3005                                 target->scsi_host->cmd_per_lun = token;
3006                         break;
3007
3008                 case SRP_OPT_MAX_CMD_PER_LUN:
3009                         if (match_int(args, &token) || token < 1) {
3010                                 pr_warn("bad max cmd_per_lun parameter '%s'\n",
3011                                         p);
3012                                 goto out;
3013                         }
3014                         target->scsi_host->cmd_per_lun = token;
3015                         break;
3016
3017                 case SRP_OPT_IO_CLASS:
3018                         if (match_hex(args, &token)) {
3019                                 pr_warn("bad IO class parameter '%s'\n", p);
3020                                 goto out;
3021                         }
3022                         if (token != SRP_REV10_IB_IO_CLASS &&
3023                             token != SRP_REV16A_IB_IO_CLASS) {
3024                                 pr_warn("unknown IO class parameter value %x specified (use %x or %x).\n",
3025                                         token, SRP_REV10_IB_IO_CLASS,
3026                                         SRP_REV16A_IB_IO_CLASS);
3027                                 goto out;
3028                         }
3029                         target->io_class = token;
3030                         break;
3031
3032                 case SRP_OPT_INITIATOR_EXT:
3033                         p = match_strdup(args);
3034                         if (!p) {
3035                                 ret = -ENOMEM;
3036                                 goto out;
3037                         }
3038                         target->initiator_ext = cpu_to_be64(simple_strtoull(p, NULL, 16));
3039                         kfree(p);
3040                         break;
3041
3042                 case SRP_OPT_CMD_SG_ENTRIES:
3043                         if (match_int(args, &token) || token < 1 || token > 255) {
3044                                 pr_warn("bad max cmd_sg_entries parameter '%s'\n",
3045                                         p);
3046                                 goto out;
3047                         }
3048                         target->cmd_sg_cnt = token;
3049                         break;
3050
3051                 case SRP_OPT_ALLOW_EXT_SG:
3052                         if (match_int(args, &token)) {
3053                                 pr_warn("bad allow_ext_sg parameter '%s'\n", p);
3054                                 goto out;
3055                         }
3056                         target->allow_ext_sg = !!token;
3057                         break;
3058
3059                 case SRP_OPT_SG_TABLESIZE:
3060                         if (match_int(args, &token) || token < 1 ||
3061                                         token > SCSI_MAX_SG_CHAIN_SEGMENTS) {
3062                                 pr_warn("bad max sg_tablesize parameter '%s'\n",
3063                                         p);
3064                                 goto out;
3065                         }
3066                         target->sg_tablesize = token;
3067                         break;
3068
3069                 case SRP_OPT_COMP_VECTOR:
3070                         if (match_int(args, &token) || token < 0) {
3071                                 pr_warn("bad comp_vector parameter '%s'\n", p);
3072                                 goto out;
3073                         }
3074                         target->comp_vector = token;
3075                         break;
3076
3077                 case SRP_OPT_TL_RETRY_COUNT:
3078                         if (match_int(args, &token) || token < 2 || token > 7) {
3079                                 pr_warn("bad tl_retry_count parameter '%s' (must be a number between 2 and 7)\n",
3080                                         p);
3081                                 goto out;
3082                         }
3083                         target->tl_retry_count = token;
3084                         break;
3085
3086                 default:
3087                         pr_warn("unknown parameter or missing value '%s' in target creation request\n",
3088                                 p);
3089                         goto out;
3090                 }
3091         }
3092
3093         if ((opt_mask & SRP_OPT_ALL) == SRP_OPT_ALL)
3094                 ret = 0;
3095         else
3096                 for (i = 0; i < ARRAY_SIZE(srp_opt_tokens); ++i)
3097                         if ((srp_opt_tokens[i].token & SRP_OPT_ALL) &&
3098                             !(srp_opt_tokens[i].token & opt_mask))
3099                                 pr_warn("target creation request is missing parameter '%s'\n",
3100                                         srp_opt_tokens[i].pattern);
3101
3102         if (target->scsi_host->cmd_per_lun > target->scsi_host->can_queue
3103             && (opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3104                 pr_warn("cmd_per_lun = %d > queue_size = %d\n",
3105                         target->scsi_host->cmd_per_lun,
3106                         target->scsi_host->can_queue);
3107
3108 out:
3109         kfree(options);
3110         return ret;
3111 }
3112
3113 static ssize_t srp_create_target(struct device *dev,
3114                                  struct device_attribute *attr,
3115                                  const char *buf, size_t count)
3116 {
3117         struct srp_host *host =
3118                 container_of(dev, struct srp_host, dev);
3119         struct Scsi_Host *target_host;
3120         struct srp_target_port *target;
3121         struct srp_rdma_ch *ch;
3122         struct srp_device *srp_dev = host->srp_dev;
3123         struct ib_device *ibdev = srp_dev->dev;
3124         int ret, node_idx, node, cpu, i;
3125         bool multich = false;
3126
3127         target_host = scsi_host_alloc(&srp_template,
3128                                       sizeof (struct srp_target_port));
3129         if (!target_host)
3130                 return -ENOMEM;
3131
3132         target_host->transportt  = ib_srp_transport_template;
3133         target_host->max_channel = 0;
3134         target_host->max_id      = 1;
3135         target_host->max_lun     = -1LL;
3136         target_host->max_cmd_len = sizeof ((struct srp_cmd *) (void *) 0L)->cdb;
3137
3138         target = host_to_target(target_host);
3139
3140         target->io_class        = SRP_REV16A_IB_IO_CLASS;
3141         target->scsi_host       = target_host;
3142         target->srp_host        = host;
3143         target->lkey            = host->srp_dev->pd->local_dma_lkey;
3144         target->rkey            = host->srp_dev->mr->rkey;
3145         target->cmd_sg_cnt      = cmd_sg_entries;
3146         target->sg_tablesize    = indirect_sg_entries ? : cmd_sg_entries;
3147         target->allow_ext_sg    = allow_ext_sg;
3148         target->tl_retry_count  = 7;
3149         target->queue_size      = SRP_DEFAULT_QUEUE_SIZE;
3150
3151         /*
3152          * Avoid that the SCSI host can be removed by srp_remove_target()
3153          * before this function returns.
3154          */
3155         scsi_host_get(target->scsi_host);
3156
3157         mutex_lock(&host->add_target_mutex);
3158
3159         ret = srp_parse_options(buf, target);
3160         if (ret)
3161                 goto out;
3162
3163         ret = scsi_init_shared_tag_map(target_host, target_host->can_queue);
3164         if (ret)
3165                 goto out;
3166
3167         target->req_ring_size = target->queue_size - SRP_TSK_MGMT_SQ_SIZE;
3168
3169         if (!srp_conn_unique(target->srp_host, target)) {
3170                 shost_printk(KERN_INFO, target->scsi_host,
3171                              PFX "Already connected to target port with id_ext=%016llx;ioc_guid=%016llx;initiator_ext=%016llx\n",
3172                              be64_to_cpu(target->id_ext),
3173                              be64_to_cpu(target->ioc_guid),
3174                              be64_to_cpu(target->initiator_ext));
3175                 ret = -EEXIST;
3176                 goto out;
3177         }
3178
3179         if (!srp_dev->has_fmr && !srp_dev->has_fr && !target->allow_ext_sg &&
3180             target->cmd_sg_cnt < target->sg_tablesize) {
3181                 pr_warn("No MR pool and no external indirect descriptors, limiting sg_tablesize to cmd_sg_cnt\n");
3182                 target->sg_tablesize = target->cmd_sg_cnt;
3183         }
3184
3185         target_host->sg_tablesize = target->sg_tablesize;
3186         target->indirect_size = target->sg_tablesize *
3187                                 sizeof (struct srp_direct_buf);
3188         target->max_iu_len = sizeof (struct srp_cmd) +
3189                              sizeof (struct srp_indirect_buf) +
3190                              target->cmd_sg_cnt * sizeof (struct srp_direct_buf);
3191
3192         INIT_WORK(&target->tl_err_work, srp_tl_err_work);
3193         INIT_WORK(&target->remove_work, srp_remove_work);
3194         spin_lock_init(&target->lock);
3195         ret = ib_query_gid(ibdev, host->port, 0, &target->sgid);
3196         if (ret)
3197                 goto out;
3198
3199         ret = -ENOMEM;
3200         target->ch_count = max_t(unsigned, num_online_nodes(),
3201                                  min(ch_count ? :
3202                                      min(4 * num_online_nodes(),
3203                                          ibdev->num_comp_vectors),
3204                                      num_online_cpus()));
3205         target->ch = kcalloc(target->ch_count, sizeof(*target->ch),
3206                              GFP_KERNEL);
3207         if (!target->ch)
3208                 goto out;
3209
3210         node_idx = 0;
3211         for_each_online_node(node) {
3212                 const int ch_start = (node_idx * target->ch_count /
3213                                       num_online_nodes());
3214                 const int ch_end = ((node_idx + 1) * target->ch_count /
3215                                     num_online_nodes());
3216                 const int cv_start = (node_idx * ibdev->num_comp_vectors /
3217                                       num_online_nodes() + target->comp_vector)
3218                                      % ibdev->num_comp_vectors;
3219                 const int cv_end = ((node_idx + 1) * ibdev->num_comp_vectors /
3220                                     num_online_nodes() + target->comp_vector)
3221                                    % ibdev->num_comp_vectors;
3222                 int cpu_idx = 0;
3223
3224                 for_each_online_cpu(cpu) {
3225                         if (cpu_to_node(cpu) != node)
3226                                 continue;
3227                         if (ch_start + cpu_idx >= ch_end)
3228                                 continue;
3229                         ch = &target->ch[ch_start + cpu_idx];
3230                         ch->target = target;
3231                         ch->comp_vector = cv_start == cv_end ? cv_start :
3232                                 cv_start + cpu_idx % (cv_end - cv_start);
3233                         spin_lock_init(&ch->lock);
3234                         INIT_LIST_HEAD(&ch->free_tx);
3235                         ret = srp_new_cm_id(ch);
3236                         if (ret)
3237                                 goto err_disconnect;
3238
3239                         ret = srp_create_ch_ib(ch);
3240                         if (ret)
3241                                 goto err_disconnect;
3242
3243                         ret = srp_alloc_req_data(ch);
3244                         if (ret)
3245                                 goto err_disconnect;
3246
3247                         ret = srp_connect_ch(ch, multich);
3248                         if (ret) {
3249                                 shost_printk(KERN_ERR, target->scsi_host,
3250                                              PFX "Connection %d/%d failed\n",
3251                                              ch_start + cpu_idx,
3252                                              target->ch_count);
3253                                 if (node_idx == 0 && cpu_idx == 0) {
3254                                         goto err_disconnect;
3255                                 } else {
3256                                         srp_free_ch_ib(target, ch);
3257                                         srp_free_req_data(target, ch);
3258                                         target->ch_count = ch - target->ch;
3259                                         goto connected;
3260                                 }
3261                         }
3262
3263                         multich = true;
3264                         cpu_idx++;
3265                 }
3266                 node_idx++;
3267         }
3268
3269 connected:
3270         target->scsi_host->nr_hw_queues = target->ch_count;
3271
3272         ret = srp_add_target(host, target);
3273         if (ret)
3274                 goto err_disconnect;
3275
3276         if (target->state != SRP_TARGET_REMOVED) {
3277                 shost_printk(KERN_DEBUG, target->scsi_host, PFX
3278                              "new target: id_ext %016llx ioc_guid %016llx pkey %04x service_id %016llx sgid %pI6 dgid %pI6\n",
3279                              be64_to_cpu(target->id_ext),
3280                              be64_to_cpu(target->ioc_guid),
3281                              be16_to_cpu(target->pkey),
3282                              be64_to_cpu(target->service_id),
3283                              target->sgid.raw, target->orig_dgid.raw);
3284         }
3285
3286         ret = count;
3287
3288 out:
3289         mutex_unlock(&host->add_target_mutex);
3290
3291         scsi_host_put(target->scsi_host);
3292         if (ret < 0)
3293                 scsi_host_put(target->scsi_host);
3294
3295         return ret;
3296
3297 err_disconnect:
3298         srp_disconnect_target(target);
3299
3300         for (i = 0; i < target->ch_count; i++) {
3301                 ch = &target->ch[i];
3302                 srp_free_ch_ib(target, ch);
3303                 srp_free_req_data(target, ch);
3304         }
3305
3306         kfree(target->ch);
3307         goto out;
3308 }
3309
3310 static DEVICE_ATTR(add_target, S_IWUSR, NULL, srp_create_target);
3311
3312 static ssize_t show_ibdev(struct device *dev, struct device_attribute *attr,
3313                           char *buf)
3314 {
3315         struct srp_host *host = container_of(dev, struct srp_host, dev);
3316
3317         return sprintf(buf, "%s\n", host->srp_dev->dev->name);
3318 }
3319
3320 static DEVICE_ATTR(ibdev, S_IRUGO, show_ibdev, NULL);
3321
3322 static ssize_t show_port(struct device *dev, struct device_attribute *attr,
3323                          char *buf)
3324 {
3325         struct srp_host *host = container_of(dev, struct srp_host, dev);
3326
3327         return sprintf(buf, "%d\n", host->port);
3328 }
3329
3330 static DEVICE_ATTR(port, S_IRUGO, show_port, NULL);
3331
3332 static struct srp_host *srp_add_port(struct srp_device *device, u8 port)
3333 {
3334         struct srp_host *host;
3335
3336         host = kzalloc(sizeof *host, GFP_KERNEL);
3337         if (!host)
3338                 return NULL;
3339
3340         INIT_LIST_HEAD(&host->target_list);
3341         spin_lock_init(&host->target_lock);
3342         init_completion(&host->released);
3343         mutex_init(&host->add_target_mutex);
3344         host->srp_dev = device;
3345         host->port = port;
3346
3347         host->dev.class = &srp_class;
3348         host->dev.parent = device->dev->dma_device;
3349         dev_set_name(&host->dev, "srp-%s-%d", device->dev->name, port);
3350
3351         if (device_register(&host->dev))
3352                 goto free_host;
3353         if (device_create_file(&host->dev, &dev_attr_add_target))
3354                 goto err_class;
3355         if (device_create_file(&host->dev, &dev_attr_ibdev))
3356                 goto err_class;
3357         if (device_create_file(&host->dev, &dev_attr_port))
3358                 goto err_class;
3359
3360         return host;
3361
3362 err_class:
3363         device_unregister(&host->dev);
3364
3365 free_host:
3366         kfree(host);
3367
3368         return NULL;
3369 }
3370
3371 static void srp_add_one(struct ib_device *device)
3372 {
3373         struct srp_device *srp_dev;
3374         struct ib_device_attr *dev_attr;
3375         struct srp_host *host;
3376         int mr_page_shift, p;
3377         u64 max_pages_per_mr;
3378
3379         dev_attr = kmalloc(sizeof *dev_attr, GFP_KERNEL);
3380         if (!dev_attr)
3381                 return;
3382
3383         if (ib_query_device(device, dev_attr)) {
3384                 pr_warn("Query device failed for %s\n", device->name);
3385                 goto free_attr;
3386         }
3387
3388         srp_dev = kmalloc(sizeof *srp_dev, GFP_KERNEL);
3389         if (!srp_dev)
3390                 goto free_attr;
3391
3392         srp_dev->has_fmr = (device->alloc_fmr && device->dealloc_fmr &&
3393                             device->map_phys_fmr && device->unmap_fmr);
3394         srp_dev->has_fr = (dev_attr->device_cap_flags &
3395                            IB_DEVICE_MEM_MGT_EXTENSIONS);
3396         if (!srp_dev->has_fmr && !srp_dev->has_fr)
3397                 dev_warn(&device->dev, "neither FMR nor FR is supported\n");
3398
3399         srp_dev->use_fast_reg = (srp_dev->has_fr &&
3400                                  (!srp_dev->has_fmr || prefer_fr));
3401
3402         /*
3403          * Use the smallest page size supported by the HCA, down to a
3404          * minimum of 4096 bytes. We're unlikely to build large sglists
3405          * out of smaller entries.
3406          */
3407         mr_page_shift           = max(12, ffs(dev_attr->page_size_cap) - 1);
3408         srp_dev->mr_page_size   = 1 << mr_page_shift;
3409         srp_dev->mr_page_mask   = ~((u64) srp_dev->mr_page_size - 1);
3410         max_pages_per_mr        = dev_attr->max_mr_size;
3411         do_div(max_pages_per_mr, srp_dev->mr_page_size);
3412         srp_dev->max_pages_per_mr = min_t(u64, SRP_MAX_PAGES_PER_MR,
3413                                           max_pages_per_mr);
3414         if (srp_dev->use_fast_reg) {
3415                 srp_dev->max_pages_per_mr =
3416                         min_t(u32, srp_dev->max_pages_per_mr,
3417                               dev_attr->max_fast_reg_page_list_len);
3418         }
3419         srp_dev->mr_max_size    = srp_dev->mr_page_size *
3420                                    srp_dev->max_pages_per_mr;
3421         pr_debug("%s: mr_page_shift = %d, dev_attr->max_mr_size = %#llx, dev_attr->max_fast_reg_page_list_len = %u, max_pages_per_mr = %d, mr_max_size = %#x\n",
3422                  device->name, mr_page_shift, dev_attr->max_mr_size,
3423                  dev_attr->max_fast_reg_page_list_len,
3424                  srp_dev->max_pages_per_mr, srp_dev->mr_max_size);
3425
3426         INIT_LIST_HEAD(&srp_dev->dev_list);
3427
3428         srp_dev->dev = device;
3429         srp_dev->pd  = ib_alloc_pd(device);
3430         if (IS_ERR(srp_dev->pd))
3431                 goto free_dev;
3432
3433         srp_dev->mr = ib_get_dma_mr(srp_dev->pd,
3434                                     IB_ACCESS_LOCAL_WRITE |
3435                                     IB_ACCESS_REMOTE_READ |
3436                                     IB_ACCESS_REMOTE_WRITE);
3437         if (IS_ERR(srp_dev->mr))
3438                 goto err_pd;
3439
3440         for (p = rdma_start_port(device); p <= rdma_end_port(device); ++p) {
3441                 host = srp_add_port(srp_dev, p);
3442                 if (host)
3443                         list_add_tail(&host->list, &srp_dev->dev_list);
3444         }
3445
3446         ib_set_client_data(device, &srp_client, srp_dev);
3447
3448         goto free_attr;
3449
3450 err_pd:
3451         ib_dealloc_pd(srp_dev->pd);
3452
3453 free_dev:
3454         kfree(srp_dev);
3455
3456 free_attr:
3457         kfree(dev_attr);
3458 }
3459
3460 static void srp_remove_one(struct ib_device *device, void *client_data)
3461 {
3462         struct srp_device *srp_dev;
3463         struct srp_host *host, *tmp_host;
3464         struct srp_target_port *target;
3465
3466         srp_dev = client_data;
3467         if (!srp_dev)
3468                 return;
3469
3470         list_for_each_entry_safe(host, tmp_host, &srp_dev->dev_list, list) {
3471                 device_unregister(&host->dev);
3472                 /*
3473                  * Wait for the sysfs entry to go away, so that no new
3474                  * target ports can be created.
3475                  */
3476                 wait_for_completion(&host->released);
3477
3478                 /*
3479                  * Remove all target ports.
3480                  */
3481                 spin_lock(&host->target_lock);
3482                 list_for_each_entry(target, &host->target_list, list)
3483                         srp_queue_remove_work(target);
3484                 spin_unlock(&host->target_lock);
3485
3486                 /*
3487                  * Wait for tl_err and target port removal tasks.
3488                  */
3489                 flush_workqueue(system_long_wq);
3490                 flush_workqueue(srp_remove_wq);
3491
3492                 kfree(host);
3493         }
3494
3495         ib_dereg_mr(srp_dev->mr);
3496         ib_dealloc_pd(srp_dev->pd);
3497
3498         kfree(srp_dev);
3499 }
3500
3501 static struct srp_function_template ib_srp_transport_functions = {
3502         .has_rport_state         = true,
3503         .reset_timer_if_blocked  = true,
3504         .reconnect_delay         = &srp_reconnect_delay,
3505         .fast_io_fail_tmo        = &srp_fast_io_fail_tmo,
3506         .dev_loss_tmo            = &srp_dev_loss_tmo,
3507         .reconnect               = srp_rport_reconnect,
3508         .rport_delete            = srp_rport_delete,
3509         .terminate_rport_io      = srp_terminate_io,
3510 };
3511
3512 static int __init srp_init_module(void)
3513 {
3514         int ret;
3515
3516         BUILD_BUG_ON(FIELD_SIZEOF(struct ib_wc, wr_id) < sizeof(void *));
3517
3518         if (srp_sg_tablesize) {
3519                 pr_warn("srp_sg_tablesize is deprecated, please use cmd_sg_entries\n");
3520                 if (!cmd_sg_entries)
3521                         cmd_sg_entries = srp_sg_tablesize;
3522         }
3523
3524         if (!cmd_sg_entries)
3525                 cmd_sg_entries = SRP_DEF_SG_TABLESIZE;
3526
3527         if (cmd_sg_entries > 255) {
3528                 pr_warn("Clamping cmd_sg_entries to 255\n");
3529                 cmd_sg_entries = 255;
3530         }
3531
3532         if (!indirect_sg_entries)
3533                 indirect_sg_entries = cmd_sg_entries;
3534         else if (indirect_sg_entries < cmd_sg_entries) {
3535                 pr_warn("Bumping up indirect_sg_entries to match cmd_sg_entries (%u)\n",
3536                         cmd_sg_entries);
3537                 indirect_sg_entries = cmd_sg_entries;
3538         }
3539
3540         srp_remove_wq = create_workqueue("srp_remove");
3541         if (!srp_remove_wq) {
3542                 ret = -ENOMEM;
3543                 goto out;
3544         }
3545
3546         ret = -ENOMEM;
3547         ib_srp_transport_template =
3548                 srp_attach_transport(&ib_srp_transport_functions);
3549         if (!ib_srp_transport_template)
3550                 goto destroy_wq;
3551
3552         ret = class_register(&srp_class);
3553         if (ret) {
3554                 pr_err("couldn't register class infiniband_srp\n");
3555                 goto release_tr;
3556         }
3557
3558         ib_sa_register_client(&srp_sa_client);
3559
3560         ret = ib_register_client(&srp_client);
3561         if (ret) {
3562                 pr_err("couldn't register IB client\n");
3563                 goto unreg_sa;
3564         }
3565
3566 out:
3567         return ret;
3568
3569 unreg_sa:
3570         ib_sa_unregister_client(&srp_sa_client);
3571         class_unregister(&srp_class);
3572
3573 release_tr:
3574         srp_release_transport(ib_srp_transport_template);
3575
3576 destroy_wq:
3577         destroy_workqueue(srp_remove_wq);
3578         goto out;
3579 }
3580
3581 static void __exit srp_cleanup_module(void)
3582 {
3583         ib_unregister_client(&srp_client);
3584         ib_sa_unregister_client(&srp_sa_client);
3585         class_unregister(&srp_class);
3586         srp_release_transport(ib_srp_transport_template);
3587         destroy_workqueue(srp_remove_wq);
3588 }
3589
3590 module_init(srp_init_module);
3591 module_exit(srp_cleanup_module);