86480480895d86a09b7bc78b5ecdb30bd52dca27
[cascardo/linux.git] / drivers / iommu / arm-smmu-v3.c
1 /*
2  * IOMMU API for ARM architected SMMUv3 implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  *
16  * Copyright (C) 2015 ARM Limited
17  *
18  * Author: Will Deacon <will.deacon@arm.com>
19  *
20  * This driver is powered by bad coffee and bombay mix.
21  */
22
23 #include <linux/delay.h>
24 #include <linux/err.h>
25 #include <linux/interrupt.h>
26 #include <linux/iommu.h>
27 #include <linux/iopoll.h>
28 #include <linux/module.h>
29 #include <linux/msi.h>
30 #include <linux/of.h>
31 #include <linux/of_address.h>
32 #include <linux/of_platform.h>
33 #include <linux/pci.h>
34 #include <linux/platform_device.h>
35
36 #include "io-pgtable.h"
37
38 /* MMIO registers */
39 #define ARM_SMMU_IDR0                   0x0
40 #define IDR0_ST_LVL_SHIFT               27
41 #define IDR0_ST_LVL_MASK                0x3
42 #define IDR0_ST_LVL_2LVL                (1 << IDR0_ST_LVL_SHIFT)
43 #define IDR0_STALL_MODEL                (3 << 24)
44 #define IDR0_TTENDIAN_SHIFT             21
45 #define IDR0_TTENDIAN_MASK              0x3
46 #define IDR0_TTENDIAN_LE                (2 << IDR0_TTENDIAN_SHIFT)
47 #define IDR0_TTENDIAN_BE                (3 << IDR0_TTENDIAN_SHIFT)
48 #define IDR0_TTENDIAN_MIXED             (0 << IDR0_TTENDIAN_SHIFT)
49 #define IDR0_CD2L                       (1 << 19)
50 #define IDR0_VMID16                     (1 << 18)
51 #define IDR0_PRI                        (1 << 16)
52 #define IDR0_SEV                        (1 << 14)
53 #define IDR0_MSI                        (1 << 13)
54 #define IDR0_ASID16                     (1 << 12)
55 #define IDR0_ATS                        (1 << 10)
56 #define IDR0_HYP                        (1 << 9)
57 #define IDR0_COHACC                     (1 << 4)
58 #define IDR0_TTF_SHIFT                  2
59 #define IDR0_TTF_MASK                   0x3
60 #define IDR0_TTF_AARCH64                (2 << IDR0_TTF_SHIFT)
61 #define IDR0_TTF_AARCH32_64             (3 << IDR0_TTF_SHIFT)
62 #define IDR0_S1P                        (1 << 1)
63 #define IDR0_S2P                        (1 << 0)
64
65 #define ARM_SMMU_IDR1                   0x4
66 #define IDR1_TABLES_PRESET              (1 << 30)
67 #define IDR1_QUEUES_PRESET              (1 << 29)
68 #define IDR1_REL                        (1 << 28)
69 #define IDR1_CMDQ_SHIFT                 21
70 #define IDR1_CMDQ_MASK                  0x1f
71 #define IDR1_EVTQ_SHIFT                 16
72 #define IDR1_EVTQ_MASK                  0x1f
73 #define IDR1_PRIQ_SHIFT                 11
74 #define IDR1_PRIQ_MASK                  0x1f
75 #define IDR1_SSID_SHIFT                 6
76 #define IDR1_SSID_MASK                  0x1f
77 #define IDR1_SID_SHIFT                  0
78 #define IDR1_SID_MASK                   0x3f
79
80 #define ARM_SMMU_IDR5                   0x14
81 #define IDR5_STALL_MAX_SHIFT            16
82 #define IDR5_STALL_MAX_MASK             0xffff
83 #define IDR5_GRAN64K                    (1 << 6)
84 #define IDR5_GRAN16K                    (1 << 5)
85 #define IDR5_GRAN4K                     (1 << 4)
86 #define IDR5_OAS_SHIFT                  0
87 #define IDR5_OAS_MASK                   0x7
88 #define IDR5_OAS_32_BIT                 (0 << IDR5_OAS_SHIFT)
89 #define IDR5_OAS_36_BIT                 (1 << IDR5_OAS_SHIFT)
90 #define IDR5_OAS_40_BIT                 (2 << IDR5_OAS_SHIFT)
91 #define IDR5_OAS_42_BIT                 (3 << IDR5_OAS_SHIFT)
92 #define IDR5_OAS_44_BIT                 (4 << IDR5_OAS_SHIFT)
93 #define IDR5_OAS_48_BIT                 (5 << IDR5_OAS_SHIFT)
94
95 #define ARM_SMMU_CR0                    0x20
96 #define CR0_CMDQEN                      (1 << 3)
97 #define CR0_EVTQEN                      (1 << 2)
98 #define CR0_PRIQEN                      (1 << 1)
99 #define CR0_SMMUEN                      (1 << 0)
100
101 #define ARM_SMMU_CR0ACK                 0x24
102
103 #define ARM_SMMU_CR1                    0x28
104 #define CR1_SH_NSH                      0
105 #define CR1_SH_OSH                      2
106 #define CR1_SH_ISH                      3
107 #define CR1_CACHE_NC                    0
108 #define CR1_CACHE_WB                    1
109 #define CR1_CACHE_WT                    2
110 #define CR1_TABLE_SH_SHIFT              10
111 #define CR1_TABLE_OC_SHIFT              8
112 #define CR1_TABLE_IC_SHIFT              6
113 #define CR1_QUEUE_SH_SHIFT              4
114 #define CR1_QUEUE_OC_SHIFT              2
115 #define CR1_QUEUE_IC_SHIFT              0
116
117 #define ARM_SMMU_CR2                    0x2c
118 #define CR2_PTM                         (1 << 2)
119 #define CR2_RECINVSID                   (1 << 1)
120 #define CR2_E2H                         (1 << 0)
121
122 #define ARM_SMMU_IRQ_CTRL               0x50
123 #define IRQ_CTRL_EVTQ_IRQEN             (1 << 2)
124 #define IRQ_CTRL_PRIQ_IRQEN             (1 << 1)
125 #define IRQ_CTRL_GERROR_IRQEN           (1 << 0)
126
127 #define ARM_SMMU_IRQ_CTRLACK            0x54
128
129 #define ARM_SMMU_GERROR                 0x60
130 #define GERROR_SFM_ERR                  (1 << 8)
131 #define GERROR_MSI_GERROR_ABT_ERR       (1 << 7)
132 #define GERROR_MSI_PRIQ_ABT_ERR         (1 << 6)
133 #define GERROR_MSI_EVTQ_ABT_ERR         (1 << 5)
134 #define GERROR_MSI_CMDQ_ABT_ERR         (1 << 4)
135 #define GERROR_PRIQ_ABT_ERR             (1 << 3)
136 #define GERROR_EVTQ_ABT_ERR             (1 << 2)
137 #define GERROR_CMDQ_ERR                 (1 << 0)
138 #define GERROR_ERR_MASK                 0xfd
139
140 #define ARM_SMMU_GERRORN                0x64
141
142 #define ARM_SMMU_GERROR_IRQ_CFG0        0x68
143 #define ARM_SMMU_GERROR_IRQ_CFG1        0x70
144 #define ARM_SMMU_GERROR_IRQ_CFG2        0x74
145
146 #define ARM_SMMU_STRTAB_BASE            0x80
147 #define STRTAB_BASE_RA                  (1UL << 62)
148 #define STRTAB_BASE_ADDR_SHIFT          6
149 #define STRTAB_BASE_ADDR_MASK           0x3ffffffffffUL
150
151 #define ARM_SMMU_STRTAB_BASE_CFG        0x88
152 #define STRTAB_BASE_CFG_LOG2SIZE_SHIFT  0
153 #define STRTAB_BASE_CFG_LOG2SIZE_MASK   0x3f
154 #define STRTAB_BASE_CFG_SPLIT_SHIFT     6
155 #define STRTAB_BASE_CFG_SPLIT_MASK      0x1f
156 #define STRTAB_BASE_CFG_FMT_SHIFT       16
157 #define STRTAB_BASE_CFG_FMT_MASK        0x3
158 #define STRTAB_BASE_CFG_FMT_LINEAR      (0 << STRTAB_BASE_CFG_FMT_SHIFT)
159 #define STRTAB_BASE_CFG_FMT_2LVL        (1 << STRTAB_BASE_CFG_FMT_SHIFT)
160
161 #define ARM_SMMU_CMDQ_BASE              0x90
162 #define ARM_SMMU_CMDQ_PROD              0x98
163 #define ARM_SMMU_CMDQ_CONS              0x9c
164
165 #define ARM_SMMU_EVTQ_BASE              0xa0
166 #define ARM_SMMU_EVTQ_PROD              0x100a8
167 #define ARM_SMMU_EVTQ_CONS              0x100ac
168 #define ARM_SMMU_EVTQ_IRQ_CFG0          0xb0
169 #define ARM_SMMU_EVTQ_IRQ_CFG1          0xb8
170 #define ARM_SMMU_EVTQ_IRQ_CFG2          0xbc
171
172 #define ARM_SMMU_PRIQ_BASE              0xc0
173 #define ARM_SMMU_PRIQ_PROD              0x100c8
174 #define ARM_SMMU_PRIQ_CONS              0x100cc
175 #define ARM_SMMU_PRIQ_IRQ_CFG0          0xd0
176 #define ARM_SMMU_PRIQ_IRQ_CFG1          0xd8
177 #define ARM_SMMU_PRIQ_IRQ_CFG2          0xdc
178
179 /* Common MSI config fields */
180 #define MSI_CFG0_ADDR_SHIFT             2
181 #define MSI_CFG0_ADDR_MASK              0x3fffffffffffUL
182 #define MSI_CFG2_SH_SHIFT               4
183 #define MSI_CFG2_SH_NSH                 (0UL << MSI_CFG2_SH_SHIFT)
184 #define MSI_CFG2_SH_OSH                 (2UL << MSI_CFG2_SH_SHIFT)
185 #define MSI_CFG2_SH_ISH                 (3UL << MSI_CFG2_SH_SHIFT)
186 #define MSI_CFG2_MEMATTR_SHIFT          0
187 #define MSI_CFG2_MEMATTR_DEVICE_nGnRE   (0x1 << MSI_CFG2_MEMATTR_SHIFT)
188
189 #define Q_IDX(q, p)                     ((p) & ((1 << (q)->max_n_shift) - 1))
190 #define Q_WRP(q, p)                     ((p) & (1 << (q)->max_n_shift))
191 #define Q_OVERFLOW_FLAG                 (1 << 31)
192 #define Q_OVF(q, p)                     ((p) & Q_OVERFLOW_FLAG)
193 #define Q_ENT(q, p)                     ((q)->base +                    \
194                                          Q_IDX(q, p) * (q)->ent_dwords)
195
196 #define Q_BASE_RWA                      (1UL << 62)
197 #define Q_BASE_ADDR_SHIFT               5
198 #define Q_BASE_ADDR_MASK                0xfffffffffffUL
199 #define Q_BASE_LOG2SIZE_SHIFT           0
200 #define Q_BASE_LOG2SIZE_MASK            0x1fUL
201
202 /*
203  * Stream table.
204  *
205  * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
206  * 2lvl: 128k L1 entries,
207  *       256 lazy entries per table (each table covers a PCI bus)
208  */
209 #define STRTAB_L1_SZ_SHIFT              20
210 #define STRTAB_SPLIT                    8
211
212 #define STRTAB_L1_DESC_DWORDS           1
213 #define STRTAB_L1_DESC_SPAN_SHIFT       0
214 #define STRTAB_L1_DESC_SPAN_MASK        0x1fUL
215 #define STRTAB_L1_DESC_L2PTR_SHIFT      6
216 #define STRTAB_L1_DESC_L2PTR_MASK       0x3ffffffffffUL
217
218 #define STRTAB_STE_DWORDS               8
219 #define STRTAB_STE_0_V                  (1UL << 0)
220 #define STRTAB_STE_0_CFG_SHIFT          1
221 #define STRTAB_STE_0_CFG_MASK           0x7UL
222 #define STRTAB_STE_0_CFG_ABORT          (0UL << STRTAB_STE_0_CFG_SHIFT)
223 #define STRTAB_STE_0_CFG_BYPASS         (4UL << STRTAB_STE_0_CFG_SHIFT)
224 #define STRTAB_STE_0_CFG_S1_TRANS       (5UL << STRTAB_STE_0_CFG_SHIFT)
225 #define STRTAB_STE_0_CFG_S2_TRANS       (6UL << STRTAB_STE_0_CFG_SHIFT)
226
227 #define STRTAB_STE_0_S1FMT_SHIFT        4
228 #define STRTAB_STE_0_S1FMT_LINEAR       (0UL << STRTAB_STE_0_S1FMT_SHIFT)
229 #define STRTAB_STE_0_S1CTXPTR_SHIFT     6
230 #define STRTAB_STE_0_S1CTXPTR_MASK      0x3ffffffffffUL
231 #define STRTAB_STE_0_S1CDMAX_SHIFT      59
232 #define STRTAB_STE_0_S1CDMAX_MASK       0x1fUL
233
234 #define STRTAB_STE_1_S1C_CACHE_NC       0UL
235 #define STRTAB_STE_1_S1C_CACHE_WBRA     1UL
236 #define STRTAB_STE_1_S1C_CACHE_WT       2UL
237 #define STRTAB_STE_1_S1C_CACHE_WB       3UL
238 #define STRTAB_STE_1_S1C_SH_NSH         0UL
239 #define STRTAB_STE_1_S1C_SH_OSH         2UL
240 #define STRTAB_STE_1_S1C_SH_ISH         3UL
241 #define STRTAB_STE_1_S1CIR_SHIFT        2
242 #define STRTAB_STE_1_S1COR_SHIFT        4
243 #define STRTAB_STE_1_S1CSH_SHIFT        6
244
245 #define STRTAB_STE_1_S1STALLD           (1UL << 27)
246
247 #define STRTAB_STE_1_EATS_ABT           0UL
248 #define STRTAB_STE_1_EATS_TRANS         1UL
249 #define STRTAB_STE_1_EATS_S1CHK         2UL
250 #define STRTAB_STE_1_EATS_SHIFT         28
251
252 #define STRTAB_STE_1_STRW_NSEL1         0UL
253 #define STRTAB_STE_1_STRW_EL2           2UL
254 #define STRTAB_STE_1_STRW_SHIFT         30
255
256 #define STRTAB_STE_2_S2VMID_SHIFT       0
257 #define STRTAB_STE_2_S2VMID_MASK        0xffffUL
258 #define STRTAB_STE_2_VTCR_SHIFT         32
259 #define STRTAB_STE_2_VTCR_MASK          0x7ffffUL
260 #define STRTAB_STE_2_S2AA64             (1UL << 51)
261 #define STRTAB_STE_2_S2ENDI             (1UL << 52)
262 #define STRTAB_STE_2_S2PTW              (1UL << 54)
263 #define STRTAB_STE_2_S2R                (1UL << 58)
264
265 #define STRTAB_STE_3_S2TTB_SHIFT        4
266 #define STRTAB_STE_3_S2TTB_MASK         0xfffffffffffUL
267
268 /* Context descriptor (stage-1 only) */
269 #define CTXDESC_CD_DWORDS               8
270 #define CTXDESC_CD_0_TCR_T0SZ_SHIFT     0
271 #define ARM64_TCR_T0SZ_SHIFT            0
272 #define ARM64_TCR_T0SZ_MASK             0x1fUL
273 #define CTXDESC_CD_0_TCR_TG0_SHIFT      6
274 #define ARM64_TCR_TG0_SHIFT             14
275 #define ARM64_TCR_TG0_MASK              0x3UL
276 #define CTXDESC_CD_0_TCR_IRGN0_SHIFT    8
277 #define ARM64_TCR_IRGN0_SHIFT           8
278 #define ARM64_TCR_IRGN0_MASK            0x3UL
279 #define CTXDESC_CD_0_TCR_ORGN0_SHIFT    10
280 #define ARM64_TCR_ORGN0_SHIFT           10
281 #define ARM64_TCR_ORGN0_MASK            0x3UL
282 #define CTXDESC_CD_0_TCR_SH0_SHIFT      12
283 #define ARM64_TCR_SH0_SHIFT             12
284 #define ARM64_TCR_SH0_MASK              0x3UL
285 #define CTXDESC_CD_0_TCR_EPD0_SHIFT     14
286 #define ARM64_TCR_EPD0_SHIFT            7
287 #define ARM64_TCR_EPD0_MASK             0x1UL
288 #define CTXDESC_CD_0_TCR_EPD1_SHIFT     30
289 #define ARM64_TCR_EPD1_SHIFT            23
290 #define ARM64_TCR_EPD1_MASK             0x1UL
291
292 #define CTXDESC_CD_0_ENDI               (1UL << 15)
293 #define CTXDESC_CD_0_V                  (1UL << 31)
294
295 #define CTXDESC_CD_0_TCR_IPS_SHIFT      32
296 #define ARM64_TCR_IPS_SHIFT             32
297 #define ARM64_TCR_IPS_MASK              0x7UL
298 #define CTXDESC_CD_0_TCR_TBI0_SHIFT     38
299 #define ARM64_TCR_TBI0_SHIFT            37
300 #define ARM64_TCR_TBI0_MASK             0x1UL
301
302 #define CTXDESC_CD_0_AA64               (1UL << 41)
303 #define CTXDESC_CD_0_R                  (1UL << 45)
304 #define CTXDESC_CD_0_A                  (1UL << 46)
305 #define CTXDESC_CD_0_ASET_SHIFT         47
306 #define CTXDESC_CD_0_ASET_SHARED        (0UL << CTXDESC_CD_0_ASET_SHIFT)
307 #define CTXDESC_CD_0_ASET_PRIVATE       (1UL << CTXDESC_CD_0_ASET_SHIFT)
308 #define CTXDESC_CD_0_ASID_SHIFT         48
309 #define CTXDESC_CD_0_ASID_MASK          0xffffUL
310
311 #define CTXDESC_CD_1_TTB0_SHIFT         4
312 #define CTXDESC_CD_1_TTB0_MASK          0xfffffffffffUL
313
314 #define CTXDESC_CD_3_MAIR_SHIFT         0
315
316 /* Convert between AArch64 (CPU) TCR format and SMMU CD format */
317 #define ARM_SMMU_TCR2CD(tcr, fld)                                       \
318         (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK)    \
319          << CTXDESC_CD_0_TCR_##fld##_SHIFT)
320
321 /* Command queue */
322 #define CMDQ_ENT_DWORDS                 2
323 #define CMDQ_MAX_SZ_SHIFT               8
324
325 #define CMDQ_ERR_SHIFT                  24
326 #define CMDQ_ERR_MASK                   0x7f
327 #define CMDQ_ERR_CERROR_NONE_IDX        0
328 #define CMDQ_ERR_CERROR_ILL_IDX         1
329 #define CMDQ_ERR_CERROR_ABT_IDX         2
330
331 #define CMDQ_0_OP_SHIFT                 0
332 #define CMDQ_0_OP_MASK                  0xffUL
333 #define CMDQ_0_SSV                      (1UL << 11)
334
335 #define CMDQ_PREFETCH_0_SID_SHIFT       32
336 #define CMDQ_PREFETCH_1_SIZE_SHIFT      0
337 #define CMDQ_PREFETCH_1_ADDR_MASK       ~0xfffUL
338
339 #define CMDQ_CFGI_0_SID_SHIFT           32
340 #define CMDQ_CFGI_0_SID_MASK            0xffffffffUL
341 #define CMDQ_CFGI_1_LEAF                (1UL << 0)
342 #define CMDQ_CFGI_1_RANGE_SHIFT         0
343 #define CMDQ_CFGI_1_RANGE_MASK          0x1fUL
344
345 #define CMDQ_TLBI_0_VMID_SHIFT          32
346 #define CMDQ_TLBI_0_ASID_SHIFT          48
347 #define CMDQ_TLBI_1_LEAF                (1UL << 0)
348 #define CMDQ_TLBI_1_VA_MASK             ~0xfffUL
349 #define CMDQ_TLBI_1_IPA_MASK            0xfffffffff000UL
350
351 #define CMDQ_PRI_0_SSID_SHIFT           12
352 #define CMDQ_PRI_0_SSID_MASK            0xfffffUL
353 #define CMDQ_PRI_0_SID_SHIFT            32
354 #define CMDQ_PRI_0_SID_MASK             0xffffffffUL
355 #define CMDQ_PRI_1_GRPID_SHIFT          0
356 #define CMDQ_PRI_1_GRPID_MASK           0x1ffUL
357 #define CMDQ_PRI_1_RESP_SHIFT           12
358 #define CMDQ_PRI_1_RESP_DENY            (0UL << CMDQ_PRI_1_RESP_SHIFT)
359 #define CMDQ_PRI_1_RESP_FAIL            (1UL << CMDQ_PRI_1_RESP_SHIFT)
360 #define CMDQ_PRI_1_RESP_SUCC            (2UL << CMDQ_PRI_1_RESP_SHIFT)
361
362 #define CMDQ_SYNC_0_CS_SHIFT            12
363 #define CMDQ_SYNC_0_CS_NONE             (0UL << CMDQ_SYNC_0_CS_SHIFT)
364 #define CMDQ_SYNC_0_CS_SEV              (2UL << CMDQ_SYNC_0_CS_SHIFT)
365
366 /* Event queue */
367 #define EVTQ_ENT_DWORDS                 4
368 #define EVTQ_MAX_SZ_SHIFT               7
369
370 #define EVTQ_0_ID_SHIFT                 0
371 #define EVTQ_0_ID_MASK                  0xffUL
372
373 /* PRI queue */
374 #define PRIQ_ENT_DWORDS                 2
375 #define PRIQ_MAX_SZ_SHIFT               8
376
377 #define PRIQ_0_SID_SHIFT                0
378 #define PRIQ_0_SID_MASK                 0xffffffffUL
379 #define PRIQ_0_SSID_SHIFT               32
380 #define PRIQ_0_SSID_MASK                0xfffffUL
381 #define PRIQ_0_PERM_PRIV                (1UL << 58)
382 #define PRIQ_0_PERM_EXEC                (1UL << 59)
383 #define PRIQ_0_PERM_READ                (1UL << 60)
384 #define PRIQ_0_PERM_WRITE               (1UL << 61)
385 #define PRIQ_0_PRG_LAST                 (1UL << 62)
386 #define PRIQ_0_SSID_V                   (1UL << 63)
387
388 #define PRIQ_1_PRG_IDX_SHIFT            0
389 #define PRIQ_1_PRG_IDX_MASK             0x1ffUL
390 #define PRIQ_1_ADDR_SHIFT               12
391 #define PRIQ_1_ADDR_MASK                0xfffffffffffffUL
392
393 /* High-level queue structures */
394 #define ARM_SMMU_POLL_TIMEOUT_US        100
395
396 static bool disable_bypass;
397 module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
398 MODULE_PARM_DESC(disable_bypass,
399         "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
400
401 enum pri_resp {
402         PRI_RESP_DENY,
403         PRI_RESP_FAIL,
404         PRI_RESP_SUCC,
405 };
406
407 enum arm_smmu_msi_index {
408         EVTQ_MSI_INDEX,
409         GERROR_MSI_INDEX,
410         PRIQ_MSI_INDEX,
411         ARM_SMMU_MAX_MSIS,
412 };
413
414 static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
415         [EVTQ_MSI_INDEX] = {
416                 ARM_SMMU_EVTQ_IRQ_CFG0,
417                 ARM_SMMU_EVTQ_IRQ_CFG1,
418                 ARM_SMMU_EVTQ_IRQ_CFG2,
419         },
420         [GERROR_MSI_INDEX] = {
421                 ARM_SMMU_GERROR_IRQ_CFG0,
422                 ARM_SMMU_GERROR_IRQ_CFG1,
423                 ARM_SMMU_GERROR_IRQ_CFG2,
424         },
425         [PRIQ_MSI_INDEX] = {
426                 ARM_SMMU_PRIQ_IRQ_CFG0,
427                 ARM_SMMU_PRIQ_IRQ_CFG1,
428                 ARM_SMMU_PRIQ_IRQ_CFG2,
429         },
430 };
431
432 struct arm_smmu_cmdq_ent {
433         /* Common fields */
434         u8                              opcode;
435         bool                            substream_valid;
436
437         /* Command-specific fields */
438         union {
439                 #define CMDQ_OP_PREFETCH_CFG    0x1
440                 struct {
441                         u32                     sid;
442                         u8                      size;
443                         u64                     addr;
444                 } prefetch;
445
446                 #define CMDQ_OP_CFGI_STE        0x3
447                 #define CMDQ_OP_CFGI_ALL        0x4
448                 struct {
449                         u32                     sid;
450                         union {
451                                 bool            leaf;
452                                 u8              span;
453                         };
454                 } cfgi;
455
456                 #define CMDQ_OP_TLBI_NH_ASID    0x11
457                 #define CMDQ_OP_TLBI_NH_VA      0x12
458                 #define CMDQ_OP_TLBI_EL2_ALL    0x20
459                 #define CMDQ_OP_TLBI_S12_VMALL  0x28
460                 #define CMDQ_OP_TLBI_S2_IPA     0x2a
461                 #define CMDQ_OP_TLBI_NSNH_ALL   0x30
462                 struct {
463                         u16                     asid;
464                         u16                     vmid;
465                         bool                    leaf;
466                         u64                     addr;
467                 } tlbi;
468
469                 #define CMDQ_OP_PRI_RESP        0x41
470                 struct {
471                         u32                     sid;
472                         u32                     ssid;
473                         u16                     grpid;
474                         enum pri_resp           resp;
475                 } pri;
476
477                 #define CMDQ_OP_CMD_SYNC        0x46
478         };
479 };
480
481 struct arm_smmu_queue {
482         int                             irq; /* Wired interrupt */
483
484         __le64                          *base;
485         dma_addr_t                      base_dma;
486         u64                             q_base;
487
488         size_t                          ent_dwords;
489         u32                             max_n_shift;
490         u32                             prod;
491         u32                             cons;
492
493         u32 __iomem                     *prod_reg;
494         u32 __iomem                     *cons_reg;
495 };
496
497 struct arm_smmu_cmdq {
498         struct arm_smmu_queue           q;
499         spinlock_t                      lock;
500 };
501
502 struct arm_smmu_evtq {
503         struct arm_smmu_queue           q;
504         u32                             max_stalls;
505 };
506
507 struct arm_smmu_priq {
508         struct arm_smmu_queue           q;
509 };
510
511 /* High-level stream table and context descriptor structures */
512 struct arm_smmu_strtab_l1_desc {
513         u8                              span;
514
515         __le64                          *l2ptr;
516         dma_addr_t                      l2ptr_dma;
517 };
518
519 struct arm_smmu_s1_cfg {
520         __le64                          *cdptr;
521         dma_addr_t                      cdptr_dma;
522
523         struct arm_smmu_ctx_desc {
524                 u16     asid;
525                 u64     ttbr;
526                 u64     tcr;
527                 u64     mair;
528         }                               cd;
529 };
530
531 struct arm_smmu_s2_cfg {
532         u16                             vmid;
533         u64                             vttbr;
534         u64                             vtcr;
535 };
536
537 struct arm_smmu_strtab_ent {
538         bool                            valid;
539
540         bool                            bypass; /* Overrides s1/s2 config */
541         struct arm_smmu_s1_cfg          *s1_cfg;
542         struct arm_smmu_s2_cfg          *s2_cfg;
543 };
544
545 struct arm_smmu_strtab_cfg {
546         __le64                          *strtab;
547         dma_addr_t                      strtab_dma;
548         struct arm_smmu_strtab_l1_desc  *l1_desc;
549         unsigned int                    num_l1_ents;
550
551         u64                             strtab_base;
552         u32                             strtab_base_cfg;
553 };
554
555 /* An SMMUv3 instance */
556 struct arm_smmu_device {
557         struct device                   *dev;
558         void __iomem                    *base;
559
560 #define ARM_SMMU_FEAT_2_LVL_STRTAB      (1 << 0)
561 #define ARM_SMMU_FEAT_2_LVL_CDTAB       (1 << 1)
562 #define ARM_SMMU_FEAT_TT_LE             (1 << 2)
563 #define ARM_SMMU_FEAT_TT_BE             (1 << 3)
564 #define ARM_SMMU_FEAT_PRI               (1 << 4)
565 #define ARM_SMMU_FEAT_ATS               (1 << 5)
566 #define ARM_SMMU_FEAT_SEV               (1 << 6)
567 #define ARM_SMMU_FEAT_MSI               (1 << 7)
568 #define ARM_SMMU_FEAT_COHERENCY         (1 << 8)
569 #define ARM_SMMU_FEAT_TRANS_S1          (1 << 9)
570 #define ARM_SMMU_FEAT_TRANS_S2          (1 << 10)
571 #define ARM_SMMU_FEAT_STALLS            (1 << 11)
572 #define ARM_SMMU_FEAT_HYP               (1 << 12)
573         u32                             features;
574
575 #define ARM_SMMU_OPT_SKIP_PREFETCH      (1 << 0)
576         u32                             options;
577
578         struct arm_smmu_cmdq            cmdq;
579         struct arm_smmu_evtq            evtq;
580         struct arm_smmu_priq            priq;
581
582         int                             gerr_irq;
583
584         unsigned long                   ias; /* IPA */
585         unsigned long                   oas; /* PA */
586
587 #define ARM_SMMU_MAX_ASIDS              (1 << 16)
588         unsigned int                    asid_bits;
589         DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
590
591 #define ARM_SMMU_MAX_VMIDS              (1 << 16)
592         unsigned int                    vmid_bits;
593         DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
594
595         unsigned int                    ssid_bits;
596         unsigned int                    sid_bits;
597
598         struct arm_smmu_strtab_cfg      strtab_cfg;
599 };
600
601 /* SMMU private data for an IOMMU group */
602 struct arm_smmu_group {
603         struct arm_smmu_device          *smmu;
604         struct arm_smmu_domain          *domain;
605         int                             num_sids;
606         u32                             *sids;
607         struct arm_smmu_strtab_ent      ste;
608 };
609
610 /* SMMU private data for an IOMMU domain */
611 enum arm_smmu_domain_stage {
612         ARM_SMMU_DOMAIN_S1 = 0,
613         ARM_SMMU_DOMAIN_S2,
614         ARM_SMMU_DOMAIN_NESTED,
615 };
616
617 struct arm_smmu_domain {
618         struct arm_smmu_device          *smmu;
619         struct mutex                    init_mutex; /* Protects smmu pointer */
620
621         struct io_pgtable_ops           *pgtbl_ops;
622         spinlock_t                      pgtbl_lock;
623
624         enum arm_smmu_domain_stage      stage;
625         union {
626                 struct arm_smmu_s1_cfg  s1_cfg;
627                 struct arm_smmu_s2_cfg  s2_cfg;
628         };
629
630         struct iommu_domain             domain;
631 };
632
633 struct arm_smmu_option_prop {
634         u32 opt;
635         const char *prop;
636 };
637
638 static struct arm_smmu_option_prop arm_smmu_options[] = {
639         { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
640         { 0, NULL},
641 };
642
643 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
644 {
645         return container_of(dom, struct arm_smmu_domain, domain);
646 }
647
648 static void parse_driver_options(struct arm_smmu_device *smmu)
649 {
650         int i = 0;
651
652         do {
653                 if (of_property_read_bool(smmu->dev->of_node,
654                                                 arm_smmu_options[i].prop)) {
655                         smmu->options |= arm_smmu_options[i].opt;
656                         dev_notice(smmu->dev, "option %s\n",
657                                 arm_smmu_options[i].prop);
658                 }
659         } while (arm_smmu_options[++i].opt);
660 }
661
662 /* Low-level queue manipulation functions */
663 static bool queue_full(struct arm_smmu_queue *q)
664 {
665         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
666                Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
667 }
668
669 static bool queue_empty(struct arm_smmu_queue *q)
670 {
671         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
672                Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
673 }
674
675 static void queue_sync_cons(struct arm_smmu_queue *q)
676 {
677         q->cons = readl_relaxed(q->cons_reg);
678 }
679
680 static void queue_inc_cons(struct arm_smmu_queue *q)
681 {
682         u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
683
684         q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
685         writel(q->cons, q->cons_reg);
686 }
687
688 static int queue_sync_prod(struct arm_smmu_queue *q)
689 {
690         int ret = 0;
691         u32 prod = readl_relaxed(q->prod_reg);
692
693         if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
694                 ret = -EOVERFLOW;
695
696         q->prod = prod;
697         return ret;
698 }
699
700 static void queue_inc_prod(struct arm_smmu_queue *q)
701 {
702         u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
703
704         q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
705         writel(q->prod, q->prod_reg);
706 }
707
708 static bool __queue_cons_before(struct arm_smmu_queue *q, u32 until)
709 {
710         if (Q_WRP(q, q->cons) == Q_WRP(q, until))
711                 return Q_IDX(q, q->cons) < Q_IDX(q, until);
712
713         return Q_IDX(q, q->cons) >= Q_IDX(q, until);
714 }
715
716 static int queue_poll_cons(struct arm_smmu_queue *q, u32 until, bool wfe)
717 {
718         ktime_t timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
719
720         while (queue_sync_cons(q), __queue_cons_before(q, until)) {
721                 if (ktime_compare(ktime_get(), timeout) > 0)
722                         return -ETIMEDOUT;
723
724                 if (wfe) {
725                         wfe();
726                 } else {
727                         cpu_relax();
728                         udelay(1);
729                 }
730         }
731
732         return 0;
733 }
734
735 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
736 {
737         int i;
738
739         for (i = 0; i < n_dwords; ++i)
740                 *dst++ = cpu_to_le64(*src++);
741 }
742
743 static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
744 {
745         if (queue_full(q))
746                 return -ENOSPC;
747
748         queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
749         queue_inc_prod(q);
750         return 0;
751 }
752
753 static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
754 {
755         int i;
756
757         for (i = 0; i < n_dwords; ++i)
758                 *dst++ = le64_to_cpu(*src++);
759 }
760
761 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
762 {
763         if (queue_empty(q))
764                 return -EAGAIN;
765
766         queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
767         queue_inc_cons(q);
768         return 0;
769 }
770
771 /* High-level queue accessors */
772 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
773 {
774         memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
775         cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
776
777         switch (ent->opcode) {
778         case CMDQ_OP_TLBI_EL2_ALL:
779         case CMDQ_OP_TLBI_NSNH_ALL:
780                 break;
781         case CMDQ_OP_PREFETCH_CFG:
782                 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
783                 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
784                 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
785                 break;
786         case CMDQ_OP_CFGI_STE:
787                 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
788                 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
789                 break;
790         case CMDQ_OP_CFGI_ALL:
791                 /* Cover the entire SID range */
792                 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
793                 break;
794         case CMDQ_OP_TLBI_NH_VA:
795                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
796                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
797                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
798                 break;
799         case CMDQ_OP_TLBI_S2_IPA:
800                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
801                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
802                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
803                 break;
804         case CMDQ_OP_TLBI_NH_ASID:
805                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
806                 /* Fallthrough */
807         case CMDQ_OP_TLBI_S12_VMALL:
808                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
809                 break;
810         case CMDQ_OP_PRI_RESP:
811                 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
812                 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
813                 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
814                 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
815                 switch (ent->pri.resp) {
816                 case PRI_RESP_DENY:
817                         cmd[1] |= CMDQ_PRI_1_RESP_DENY;
818                         break;
819                 case PRI_RESP_FAIL:
820                         cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
821                         break;
822                 case PRI_RESP_SUCC:
823                         cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
824                         break;
825                 default:
826                         return -EINVAL;
827                 }
828                 break;
829         case CMDQ_OP_CMD_SYNC:
830                 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
831                 break;
832         default:
833                 return -ENOENT;
834         }
835
836         return 0;
837 }
838
839 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
840 {
841         static const char *cerror_str[] = {
842                 [CMDQ_ERR_CERROR_NONE_IDX]      = "No error",
843                 [CMDQ_ERR_CERROR_ILL_IDX]       = "Illegal command",
844                 [CMDQ_ERR_CERROR_ABT_IDX]       = "Abort on command fetch",
845         };
846
847         int i;
848         u64 cmd[CMDQ_ENT_DWORDS];
849         struct arm_smmu_queue *q = &smmu->cmdq.q;
850         u32 cons = readl_relaxed(q->cons_reg);
851         u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
852         struct arm_smmu_cmdq_ent cmd_sync = {
853                 .opcode = CMDQ_OP_CMD_SYNC,
854         };
855
856         dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
857                 cerror_str[idx]);
858
859         switch (idx) {
860         case CMDQ_ERR_CERROR_ILL_IDX:
861                 break;
862         case CMDQ_ERR_CERROR_ABT_IDX:
863                 dev_err(smmu->dev, "retrying command fetch\n");
864         case CMDQ_ERR_CERROR_NONE_IDX:
865                 return;
866         }
867
868         /*
869          * We may have concurrent producers, so we need to be careful
870          * not to touch any of the shadow cmdq state.
871          */
872         queue_read(cmd, Q_ENT(q, idx), q->ent_dwords);
873         dev_err(smmu->dev, "skipping command in error state:\n");
874         for (i = 0; i < ARRAY_SIZE(cmd); ++i)
875                 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
876
877         /* Convert the erroneous command into a CMD_SYNC */
878         if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
879                 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
880                 return;
881         }
882
883         queue_write(cmd, Q_ENT(q, idx), q->ent_dwords);
884 }
885
886 static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
887                                     struct arm_smmu_cmdq_ent *ent)
888 {
889         u32 until;
890         u64 cmd[CMDQ_ENT_DWORDS];
891         bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
892         struct arm_smmu_queue *q = &smmu->cmdq.q;
893
894         if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
895                 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
896                          ent->opcode);
897                 return;
898         }
899
900         spin_lock(&smmu->cmdq.lock);
901         while (until = q->prod + 1, queue_insert_raw(q, cmd) == -ENOSPC) {
902                 /*
903                  * Keep the queue locked, otherwise the producer could wrap
904                  * twice and we could see a future consumer pointer that looks
905                  * like it's behind us.
906                  */
907                 if (queue_poll_cons(q, until, wfe))
908                         dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
909         }
910
911         if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, until, wfe))
912                 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
913         spin_unlock(&smmu->cmdq.lock);
914 }
915
916 /* Context descriptor manipulation functions */
917 static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
918 {
919         u64 val = 0;
920
921         /* Repack the TCR. Just care about TTBR0 for now */
922         val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
923         val |= ARM_SMMU_TCR2CD(tcr, TG0);
924         val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
925         val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
926         val |= ARM_SMMU_TCR2CD(tcr, SH0);
927         val |= ARM_SMMU_TCR2CD(tcr, EPD0);
928         val |= ARM_SMMU_TCR2CD(tcr, EPD1);
929         val |= ARM_SMMU_TCR2CD(tcr, IPS);
930         val |= ARM_SMMU_TCR2CD(tcr, TBI0);
931
932         return val;
933 }
934
935 static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
936                                     struct arm_smmu_s1_cfg *cfg)
937 {
938         u64 val;
939
940         /*
941          * We don't need to issue any invalidation here, as we'll invalidate
942          * the STE when installing the new entry anyway.
943          */
944         val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
945 #ifdef __BIG_ENDIAN
946               CTXDESC_CD_0_ENDI |
947 #endif
948               CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
949               CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
950               CTXDESC_CD_0_V;
951         cfg->cdptr[0] = cpu_to_le64(val);
952
953         val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
954         cfg->cdptr[1] = cpu_to_le64(val);
955
956         cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
957 }
958
959 /* Stream table manipulation functions */
960 static void
961 arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
962 {
963         u64 val = 0;
964
965         val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
966                 << STRTAB_L1_DESC_SPAN_SHIFT;
967         val |= desc->l2ptr_dma &
968                STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
969
970         *dst = cpu_to_le64(val);
971 }
972
973 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
974 {
975         struct arm_smmu_cmdq_ent cmd = {
976                 .opcode = CMDQ_OP_CFGI_STE,
977                 .cfgi   = {
978                         .sid    = sid,
979                         .leaf   = true,
980                 },
981         };
982
983         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
984         cmd.opcode = CMDQ_OP_CMD_SYNC;
985         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
986 }
987
988 static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
989                                       __le64 *dst, struct arm_smmu_strtab_ent *ste)
990 {
991         /*
992          * This is hideously complicated, but we only really care about
993          * three cases at the moment:
994          *
995          * 1. Invalid (all zero) -> bypass  (init)
996          * 2. Bypass -> translation (attach)
997          * 3. Translation -> bypass (detach)
998          *
999          * Given that we can't update the STE atomically and the SMMU
1000          * doesn't read the thing in a defined order, that leaves us
1001          * with the following maintenance requirements:
1002          *
1003          * 1. Update Config, return (init time STEs aren't live)
1004          * 2. Write everything apart from dword 0, sync, write dword 0, sync
1005          * 3. Update Config, sync
1006          */
1007         u64 val = le64_to_cpu(dst[0]);
1008         bool ste_live = false;
1009         struct arm_smmu_cmdq_ent prefetch_cmd = {
1010                 .opcode         = CMDQ_OP_PREFETCH_CFG,
1011                 .prefetch       = {
1012                         .sid    = sid,
1013                 },
1014         };
1015
1016         if (val & STRTAB_STE_0_V) {
1017                 u64 cfg;
1018
1019                 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
1020                 switch (cfg) {
1021                 case STRTAB_STE_0_CFG_BYPASS:
1022                         break;
1023                 case STRTAB_STE_0_CFG_S1_TRANS:
1024                 case STRTAB_STE_0_CFG_S2_TRANS:
1025                         ste_live = true;
1026                         break;
1027                 default:
1028                         BUG(); /* STE corruption */
1029                 }
1030         }
1031
1032         /* Nuke the existing Config, as we're going to rewrite it */
1033         val &= ~(STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT);
1034
1035         if (ste->valid)
1036                 val |= STRTAB_STE_0_V;
1037         else
1038                 val &= ~STRTAB_STE_0_V;
1039
1040         if (ste->bypass) {
1041                 val |= disable_bypass ? STRTAB_STE_0_CFG_ABORT
1042                                       : STRTAB_STE_0_CFG_BYPASS;
1043                 dst[0] = cpu_to_le64(val);
1044                 dst[2] = 0; /* Nuke the VMID */
1045                 if (ste_live)
1046                         arm_smmu_sync_ste_for_sid(smmu, sid);
1047                 return;
1048         }
1049
1050         if (ste->s1_cfg) {
1051                 BUG_ON(ste_live);
1052                 dst[1] = cpu_to_le64(
1053                          STRTAB_STE_1_S1C_CACHE_WBRA
1054                          << STRTAB_STE_1_S1CIR_SHIFT |
1055                          STRTAB_STE_1_S1C_CACHE_WBRA
1056                          << STRTAB_STE_1_S1COR_SHIFT |
1057                          STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
1058                          STRTAB_STE_1_S1STALLD |
1059 #ifdef CONFIG_PCI_ATS
1060                          STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1061 #endif
1062                          STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT);
1063
1064                 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1065                         << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1066                         STRTAB_STE_0_CFG_S1_TRANS;
1067
1068         }
1069
1070         if (ste->s2_cfg) {
1071                 BUG_ON(ste_live);
1072                 dst[2] = cpu_to_le64(
1073                          ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1074                          (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1075                           << STRTAB_STE_2_VTCR_SHIFT |
1076 #ifdef __BIG_ENDIAN
1077                          STRTAB_STE_2_S2ENDI |
1078 #endif
1079                          STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1080                          STRTAB_STE_2_S2R);
1081
1082                 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1083                          STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1084
1085                 val |= STRTAB_STE_0_CFG_S2_TRANS;
1086         }
1087
1088         arm_smmu_sync_ste_for_sid(smmu, sid);
1089         dst[0] = cpu_to_le64(val);
1090         arm_smmu_sync_ste_for_sid(smmu, sid);
1091
1092         /* It's likely that we'll want to use the new STE soon */
1093         if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1094                 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1095 }
1096
1097 static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1098 {
1099         unsigned int i;
1100         struct arm_smmu_strtab_ent ste = {
1101                 .valid  = true,
1102                 .bypass = true,
1103         };
1104
1105         for (i = 0; i < nent; ++i) {
1106                 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1107                 strtab += STRTAB_STE_DWORDS;
1108         }
1109 }
1110
1111 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1112 {
1113         size_t size;
1114         void *strtab;
1115         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1116         struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1117
1118         if (desc->l2ptr)
1119                 return 0;
1120
1121         size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1122         strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1123
1124         desc->span = STRTAB_SPLIT + 1;
1125         desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1126                                           GFP_KERNEL | __GFP_ZERO);
1127         if (!desc->l2ptr) {
1128                 dev_err(smmu->dev,
1129                         "failed to allocate l2 stream table for SID %u\n",
1130                         sid);
1131                 return -ENOMEM;
1132         }
1133
1134         arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1135         arm_smmu_write_strtab_l1_desc(strtab, desc);
1136         return 0;
1137 }
1138
1139 /* IRQ and event handlers */
1140 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1141 {
1142         int i;
1143         struct arm_smmu_device *smmu = dev;
1144         struct arm_smmu_queue *q = &smmu->evtq.q;
1145         u64 evt[EVTQ_ENT_DWORDS];
1146
1147         while (!queue_remove_raw(q, evt)) {
1148                 u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
1149
1150                 dev_info(smmu->dev, "event 0x%02x received:\n", id);
1151                 for (i = 0; i < ARRAY_SIZE(evt); ++i)
1152                         dev_info(smmu->dev, "\t0x%016llx\n",
1153                                  (unsigned long long)evt[i]);
1154         }
1155
1156         /* Sync our overflow flag, as we believe we're up to speed */
1157         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1158         return IRQ_HANDLED;
1159 }
1160
1161 static irqreturn_t arm_smmu_evtq_handler(int irq, void *dev)
1162 {
1163         irqreturn_t ret = IRQ_WAKE_THREAD;
1164         struct arm_smmu_device *smmu = dev;
1165         struct arm_smmu_queue *q = &smmu->evtq.q;
1166
1167         /*
1168          * Not much we can do on overflow, so scream and pretend we're
1169          * trying harder.
1170          */
1171         if (queue_sync_prod(q) == -EOVERFLOW)
1172                 dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1173         else if (queue_empty(q))
1174                 ret = IRQ_NONE;
1175
1176         return ret;
1177 }
1178
1179 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1180 {
1181         struct arm_smmu_device *smmu = dev;
1182         struct arm_smmu_queue *q = &smmu->priq.q;
1183         u64 evt[PRIQ_ENT_DWORDS];
1184
1185         while (!queue_remove_raw(q, evt)) {
1186                 u32 sid, ssid;
1187                 u16 grpid;
1188                 bool ssv, last;
1189
1190                 sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1191                 ssv = evt[0] & PRIQ_0_SSID_V;
1192                 ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1193                 last = evt[0] & PRIQ_0_PRG_LAST;
1194                 grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1195
1196                 dev_info(smmu->dev, "unexpected PRI request received:\n");
1197                 dev_info(smmu->dev,
1198                          "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1199                          sid, ssid, grpid, last ? "L" : "",
1200                          evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1201                          evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1202                          evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1203                          evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1204                          evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1205
1206                 if (last) {
1207                         struct arm_smmu_cmdq_ent cmd = {
1208                                 .opcode                 = CMDQ_OP_PRI_RESP,
1209                                 .substream_valid        = ssv,
1210                                 .pri                    = {
1211                                         .sid    = sid,
1212                                         .ssid   = ssid,
1213                                         .grpid  = grpid,
1214                                         .resp   = PRI_RESP_DENY,
1215                                 },
1216                         };
1217
1218                         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1219                 }
1220         }
1221
1222         /* Sync our overflow flag, as we believe we're up to speed */
1223         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1224         return IRQ_HANDLED;
1225 }
1226
1227 static irqreturn_t arm_smmu_priq_handler(int irq, void *dev)
1228 {
1229         irqreturn_t ret = IRQ_WAKE_THREAD;
1230         struct arm_smmu_device *smmu = dev;
1231         struct arm_smmu_queue *q = &smmu->priq.q;
1232
1233         /* PRIQ overflow indicates a programming error */
1234         if (queue_sync_prod(q) == -EOVERFLOW)
1235                 dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1236         else if (queue_empty(q))
1237                 ret = IRQ_NONE;
1238
1239         return ret;
1240 }
1241
1242 static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1243 {
1244         /* We don't actually use CMD_SYNC interrupts for anything */
1245         return IRQ_HANDLED;
1246 }
1247
1248 static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1249
1250 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1251 {
1252         u32 gerror, gerrorn;
1253         struct arm_smmu_device *smmu = dev;
1254
1255         gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1256         gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1257
1258         gerror ^= gerrorn;
1259         if (!(gerror & GERROR_ERR_MASK))
1260                 return IRQ_NONE; /* No errors pending */
1261
1262         dev_warn(smmu->dev,
1263                  "unexpected global error reported (0x%08x), this could be serious\n",
1264                  gerror);
1265
1266         if (gerror & GERROR_SFM_ERR) {
1267                 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1268                 arm_smmu_device_disable(smmu);
1269         }
1270
1271         if (gerror & GERROR_MSI_GERROR_ABT_ERR)
1272                 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1273
1274         if (gerror & GERROR_MSI_PRIQ_ABT_ERR) {
1275                 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1276                 arm_smmu_priq_handler(irq, smmu->dev);
1277         }
1278
1279         if (gerror & GERROR_MSI_EVTQ_ABT_ERR) {
1280                 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1281                 arm_smmu_evtq_handler(irq, smmu->dev);
1282         }
1283
1284         if (gerror & GERROR_MSI_CMDQ_ABT_ERR) {
1285                 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1286                 arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1287         }
1288
1289         if (gerror & GERROR_PRIQ_ABT_ERR)
1290                 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1291
1292         if (gerror & GERROR_EVTQ_ABT_ERR)
1293                 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1294
1295         if (gerror & GERROR_CMDQ_ERR)
1296                 arm_smmu_cmdq_skip_err(smmu);
1297
1298         writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1299         return IRQ_HANDLED;
1300 }
1301
1302 /* IO_PGTABLE API */
1303 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1304 {
1305         struct arm_smmu_cmdq_ent cmd;
1306
1307         cmd.opcode = CMDQ_OP_CMD_SYNC;
1308         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1309 }
1310
1311 static void arm_smmu_tlb_sync(void *cookie)
1312 {
1313         struct arm_smmu_domain *smmu_domain = cookie;
1314         __arm_smmu_tlb_sync(smmu_domain->smmu);
1315 }
1316
1317 static void arm_smmu_tlb_inv_context(void *cookie)
1318 {
1319         struct arm_smmu_domain *smmu_domain = cookie;
1320         struct arm_smmu_device *smmu = smmu_domain->smmu;
1321         struct arm_smmu_cmdq_ent cmd;
1322
1323         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1324                 cmd.opcode      = CMDQ_OP_TLBI_NH_ASID;
1325                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1326                 cmd.tlbi.vmid   = 0;
1327         } else {
1328                 cmd.opcode      = CMDQ_OP_TLBI_S12_VMALL;
1329                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1330         }
1331
1332         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1333         __arm_smmu_tlb_sync(smmu);
1334 }
1335
1336 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
1337                                           bool leaf, void *cookie)
1338 {
1339         struct arm_smmu_domain *smmu_domain = cookie;
1340         struct arm_smmu_device *smmu = smmu_domain->smmu;
1341         struct arm_smmu_cmdq_ent cmd = {
1342                 .tlbi = {
1343                         .leaf   = leaf,
1344                         .addr   = iova,
1345                 },
1346         };
1347
1348         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1349                 cmd.opcode      = CMDQ_OP_TLBI_NH_VA;
1350                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1351         } else {
1352                 cmd.opcode      = CMDQ_OP_TLBI_S2_IPA;
1353                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1354         }
1355
1356         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1357 }
1358
1359 static struct iommu_gather_ops arm_smmu_gather_ops = {
1360         .tlb_flush_all  = arm_smmu_tlb_inv_context,
1361         .tlb_add_flush  = arm_smmu_tlb_inv_range_nosync,
1362         .tlb_sync       = arm_smmu_tlb_sync,
1363 };
1364
1365 /* IOMMU API */
1366 static bool arm_smmu_capable(enum iommu_cap cap)
1367 {
1368         switch (cap) {
1369         case IOMMU_CAP_CACHE_COHERENCY:
1370                 return true;
1371         case IOMMU_CAP_INTR_REMAP:
1372                 return true; /* MSIs are just memory writes */
1373         case IOMMU_CAP_NOEXEC:
1374                 return true;
1375         default:
1376                 return false;
1377         }
1378 }
1379
1380 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1381 {
1382         struct arm_smmu_domain *smmu_domain;
1383
1384         if (type != IOMMU_DOMAIN_UNMANAGED)
1385                 return NULL;
1386
1387         /*
1388          * Allocate the domain and initialise some of its data structures.
1389          * We can't really do anything meaningful until we've added a
1390          * master.
1391          */
1392         smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1393         if (!smmu_domain)
1394                 return NULL;
1395
1396         mutex_init(&smmu_domain->init_mutex);
1397         spin_lock_init(&smmu_domain->pgtbl_lock);
1398         return &smmu_domain->domain;
1399 }
1400
1401 static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1402 {
1403         int idx, size = 1 << span;
1404
1405         do {
1406                 idx = find_first_zero_bit(map, size);
1407                 if (idx == size)
1408                         return -ENOSPC;
1409         } while (test_and_set_bit(idx, map));
1410
1411         return idx;
1412 }
1413
1414 static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1415 {
1416         clear_bit(idx, map);
1417 }
1418
1419 static void arm_smmu_domain_free(struct iommu_domain *domain)
1420 {
1421         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1422         struct arm_smmu_device *smmu = smmu_domain->smmu;
1423
1424         free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1425
1426         /* Free the CD and ASID, if we allocated them */
1427         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1428                 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1429
1430                 if (cfg->cdptr) {
1431                         dmam_free_coherent(smmu_domain->smmu->dev,
1432                                            CTXDESC_CD_DWORDS << 3,
1433                                            cfg->cdptr,
1434                                            cfg->cdptr_dma);
1435
1436                         arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1437                 }
1438         } else {
1439                 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1440                 if (cfg->vmid)
1441                         arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1442         }
1443
1444         kfree(smmu_domain);
1445 }
1446
1447 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1448                                        struct io_pgtable_cfg *pgtbl_cfg)
1449 {
1450         int ret;
1451         int asid;
1452         struct arm_smmu_device *smmu = smmu_domain->smmu;
1453         struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1454
1455         asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1456         if (IS_ERR_VALUE(asid))
1457                 return asid;
1458
1459         cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1460                                          &cfg->cdptr_dma,
1461                                          GFP_KERNEL | __GFP_ZERO);
1462         if (!cfg->cdptr) {
1463                 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1464                 ret = -ENOMEM;
1465                 goto out_free_asid;
1466         }
1467
1468         cfg->cd.asid    = (u16)asid;
1469         cfg->cd.ttbr    = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1470         cfg->cd.tcr     = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1471         cfg->cd.mair    = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1472         return 0;
1473
1474 out_free_asid:
1475         arm_smmu_bitmap_free(smmu->asid_map, asid);
1476         return ret;
1477 }
1478
1479 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1480                                        struct io_pgtable_cfg *pgtbl_cfg)
1481 {
1482         int vmid;
1483         struct arm_smmu_device *smmu = smmu_domain->smmu;
1484         struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1485
1486         vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1487         if (IS_ERR_VALUE(vmid))
1488                 return vmid;
1489
1490         cfg->vmid       = (u16)vmid;
1491         cfg->vttbr      = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1492         cfg->vtcr       = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1493         return 0;
1494 }
1495
1496 static struct iommu_ops arm_smmu_ops;
1497
1498 static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1499 {
1500         int ret;
1501         unsigned long ias, oas;
1502         enum io_pgtable_fmt fmt;
1503         struct io_pgtable_cfg pgtbl_cfg;
1504         struct io_pgtable_ops *pgtbl_ops;
1505         int (*finalise_stage_fn)(struct arm_smmu_domain *,
1506                                  struct io_pgtable_cfg *);
1507         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1508         struct arm_smmu_device *smmu = smmu_domain->smmu;
1509
1510         /* Restrict the stage to what we can actually support */
1511         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1512                 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1513         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1514                 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1515
1516         switch (smmu_domain->stage) {
1517         case ARM_SMMU_DOMAIN_S1:
1518                 ias = VA_BITS;
1519                 oas = smmu->ias;
1520                 fmt = ARM_64_LPAE_S1;
1521                 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1522                 break;
1523         case ARM_SMMU_DOMAIN_NESTED:
1524         case ARM_SMMU_DOMAIN_S2:
1525                 ias = smmu->ias;
1526                 oas = smmu->oas;
1527                 fmt = ARM_64_LPAE_S2;
1528                 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1529                 break;
1530         default:
1531                 return -EINVAL;
1532         }
1533
1534         pgtbl_cfg = (struct io_pgtable_cfg) {
1535                 .pgsize_bitmap  = arm_smmu_ops.pgsize_bitmap,
1536                 .ias            = ias,
1537                 .oas            = oas,
1538                 .tlb            = &arm_smmu_gather_ops,
1539                 .iommu_dev      = smmu->dev,
1540         };
1541
1542         pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1543         if (!pgtbl_ops)
1544                 return -ENOMEM;
1545
1546         arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1547         smmu_domain->pgtbl_ops = pgtbl_ops;
1548
1549         ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1550         if (IS_ERR_VALUE(ret))
1551                 free_io_pgtable_ops(pgtbl_ops);
1552
1553         return ret;
1554 }
1555
1556 static struct arm_smmu_group *arm_smmu_group_get(struct device *dev)
1557 {
1558         struct iommu_group *group;
1559         struct arm_smmu_group *smmu_group;
1560
1561         group = iommu_group_get(dev);
1562         if (!group)
1563                 return NULL;
1564
1565         smmu_group = iommu_group_get_iommudata(group);
1566         iommu_group_put(group);
1567         return smmu_group;
1568 }
1569
1570 static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1571 {
1572         __le64 *step;
1573         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1574
1575         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1576                 struct arm_smmu_strtab_l1_desc *l1_desc;
1577                 int idx;
1578
1579                 /* Two-level walk */
1580                 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1581                 l1_desc = &cfg->l1_desc[idx];
1582                 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1583                 step = &l1_desc->l2ptr[idx];
1584         } else {
1585                 /* Simple linear lookup */
1586                 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1587         }
1588
1589         return step;
1590 }
1591
1592 static int arm_smmu_install_ste_for_group(struct arm_smmu_group *smmu_group)
1593 {
1594         int i;
1595         struct arm_smmu_domain *smmu_domain = smmu_group->domain;
1596         struct arm_smmu_strtab_ent *ste = &smmu_group->ste;
1597         struct arm_smmu_device *smmu = smmu_group->smmu;
1598
1599         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1600                 ste->s1_cfg = &smmu_domain->s1_cfg;
1601                 ste->s2_cfg = NULL;
1602                 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1603         } else {
1604                 ste->s1_cfg = NULL;
1605                 ste->s2_cfg = &smmu_domain->s2_cfg;
1606         }
1607
1608         for (i = 0; i < smmu_group->num_sids; ++i) {
1609                 u32 sid = smmu_group->sids[i];
1610                 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1611
1612                 arm_smmu_write_strtab_ent(smmu, sid, step, ste);
1613         }
1614
1615         return 0;
1616 }
1617
1618 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1619 {
1620         int ret = 0;
1621         struct arm_smmu_device *smmu;
1622         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1623         struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1624
1625         if (!smmu_group)
1626                 return -ENOENT;
1627
1628         /* Already attached to a different domain? */
1629         if (smmu_group->domain && smmu_group->domain != smmu_domain)
1630                 return -EEXIST;
1631
1632         smmu = smmu_group->smmu;
1633         mutex_lock(&smmu_domain->init_mutex);
1634
1635         if (!smmu_domain->smmu) {
1636                 smmu_domain->smmu = smmu;
1637                 ret = arm_smmu_domain_finalise(domain);
1638                 if (ret) {
1639                         smmu_domain->smmu = NULL;
1640                         goto out_unlock;
1641                 }
1642         } else if (smmu_domain->smmu != smmu) {
1643                 dev_err(dev,
1644                         "cannot attach to SMMU %s (upstream of %s)\n",
1645                         dev_name(smmu_domain->smmu->dev),
1646                         dev_name(smmu->dev));
1647                 ret = -ENXIO;
1648                 goto out_unlock;
1649         }
1650
1651         /* Group already attached to this domain? */
1652         if (smmu_group->domain)
1653                 goto out_unlock;
1654
1655         smmu_group->domain      = smmu_domain;
1656         smmu_group->ste.bypass  = false;
1657
1658         ret = arm_smmu_install_ste_for_group(smmu_group);
1659         if (IS_ERR_VALUE(ret))
1660                 smmu_group->domain = NULL;
1661
1662 out_unlock:
1663         mutex_unlock(&smmu_domain->init_mutex);
1664         return ret;
1665 }
1666
1667 static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
1668 {
1669         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1670         struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1671
1672         BUG_ON(!smmu_domain);
1673         BUG_ON(!smmu_group);
1674
1675         mutex_lock(&smmu_domain->init_mutex);
1676         BUG_ON(smmu_group->domain != smmu_domain);
1677
1678         smmu_group->ste.bypass = true;
1679         if (IS_ERR_VALUE(arm_smmu_install_ste_for_group(smmu_group)))
1680                 dev_warn(dev, "failed to install bypass STE\n");
1681
1682         smmu_group->domain = NULL;
1683         mutex_unlock(&smmu_domain->init_mutex);
1684 }
1685
1686 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1687                         phys_addr_t paddr, size_t size, int prot)
1688 {
1689         int ret;
1690         unsigned long flags;
1691         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1692         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1693
1694         if (!ops)
1695                 return -ENODEV;
1696
1697         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1698         ret = ops->map(ops, iova, paddr, size, prot);
1699         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1700         return ret;
1701 }
1702
1703 static size_t
1704 arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1705 {
1706         size_t ret;
1707         unsigned long flags;
1708         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1709         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1710
1711         if (!ops)
1712                 return 0;
1713
1714         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1715         ret = ops->unmap(ops, iova, size);
1716         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1717         return ret;
1718 }
1719
1720 static phys_addr_t
1721 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1722 {
1723         phys_addr_t ret;
1724         unsigned long flags;
1725         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1726         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1727
1728         if (!ops)
1729                 return 0;
1730
1731         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1732         ret = ops->iova_to_phys(ops, iova);
1733         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1734
1735         return ret;
1736 }
1737
1738 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *sidp)
1739 {
1740         *(u32 *)sidp = alias;
1741         return 0; /* Continue walking */
1742 }
1743
1744 static void __arm_smmu_release_pci_iommudata(void *data)
1745 {
1746         kfree(data);
1747 }
1748
1749 static struct arm_smmu_device *arm_smmu_get_for_pci_dev(struct pci_dev *pdev)
1750 {
1751         struct device_node *of_node;
1752         struct platform_device *smmu_pdev;
1753         struct arm_smmu_device *smmu = NULL;
1754         struct pci_bus *bus = pdev->bus;
1755
1756         /* Walk up to the root bus */
1757         while (!pci_is_root_bus(bus))
1758                 bus = bus->parent;
1759
1760         /* Follow the "iommus" phandle from the host controller */
1761         of_node = of_parse_phandle(bus->bridge->parent->of_node, "iommus", 0);
1762         if (!of_node)
1763                 return NULL;
1764
1765         /* See if we can find an SMMU corresponding to the phandle */
1766         smmu_pdev = of_find_device_by_node(of_node);
1767         if (smmu_pdev)
1768                 smmu = platform_get_drvdata(smmu_pdev);
1769
1770         of_node_put(of_node);
1771         return smmu;
1772 }
1773
1774 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1775 {
1776         unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1777
1778         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1779                 limit *= 1UL << STRTAB_SPLIT;
1780
1781         return sid < limit;
1782 }
1783
1784 static int arm_smmu_add_device(struct device *dev)
1785 {
1786         int i, ret;
1787         u32 sid, *sids;
1788         struct pci_dev *pdev;
1789         struct iommu_group *group;
1790         struct arm_smmu_group *smmu_group;
1791         struct arm_smmu_device *smmu;
1792
1793         /* We only support PCI, for now */
1794         if (!dev_is_pci(dev))
1795                 return -ENODEV;
1796
1797         pdev = to_pci_dev(dev);
1798         group = iommu_group_get_for_dev(dev);
1799         if (IS_ERR(group))
1800                 return PTR_ERR(group);
1801
1802         smmu_group = iommu_group_get_iommudata(group);
1803         if (!smmu_group) {
1804                 smmu = arm_smmu_get_for_pci_dev(pdev);
1805                 if (!smmu) {
1806                         ret = -ENOENT;
1807                         goto out_put_group;
1808                 }
1809
1810                 smmu_group = kzalloc(sizeof(*smmu_group), GFP_KERNEL);
1811                 if (!smmu_group) {
1812                         ret = -ENOMEM;
1813                         goto out_put_group;
1814                 }
1815
1816                 smmu_group->ste.valid   = true;
1817                 smmu_group->smmu        = smmu;
1818                 iommu_group_set_iommudata(group, smmu_group,
1819                                           __arm_smmu_release_pci_iommudata);
1820         } else {
1821                 smmu = smmu_group->smmu;
1822         }
1823
1824         /* Assume SID == RID until firmware tells us otherwise */
1825         pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
1826         for (i = 0; i < smmu_group->num_sids; ++i) {
1827                 /* If we already know about this SID, then we're done */
1828                 if (smmu_group->sids[i] == sid)
1829                         return 0;
1830         }
1831
1832         /* Check the SID is in range of the SMMU and our stream table */
1833         if (!arm_smmu_sid_in_range(smmu, sid)) {
1834                 ret = -ERANGE;
1835                 goto out_put_group;
1836         }
1837
1838         /* Ensure l2 strtab is initialised */
1839         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1840                 ret = arm_smmu_init_l2_strtab(smmu, sid);
1841                 if (ret)
1842                         goto out_put_group;
1843         }
1844
1845         /* Resize the SID array for the group */
1846         smmu_group->num_sids++;
1847         sids = krealloc(smmu_group->sids, smmu_group->num_sids * sizeof(*sids),
1848                         GFP_KERNEL);
1849         if (!sids) {
1850                 smmu_group->num_sids--;
1851                 ret = -ENOMEM;
1852                 goto out_put_group;
1853         }
1854
1855         /* Add the new SID */
1856         sids[smmu_group->num_sids - 1] = sid;
1857         smmu_group->sids = sids;
1858         return 0;
1859
1860 out_put_group:
1861         iommu_group_put(group);
1862         return ret;
1863 }
1864
1865 static void arm_smmu_remove_device(struct device *dev)
1866 {
1867         iommu_group_remove_device(dev);
1868 }
1869
1870 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1871                                     enum iommu_attr attr, void *data)
1872 {
1873         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1874
1875         switch (attr) {
1876         case DOMAIN_ATTR_NESTING:
1877                 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1878                 return 0;
1879         default:
1880                 return -ENODEV;
1881         }
1882 }
1883
1884 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1885                                     enum iommu_attr attr, void *data)
1886 {
1887         int ret = 0;
1888         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1889
1890         mutex_lock(&smmu_domain->init_mutex);
1891
1892         switch (attr) {
1893         case DOMAIN_ATTR_NESTING:
1894                 if (smmu_domain->smmu) {
1895                         ret = -EPERM;
1896                         goto out_unlock;
1897                 }
1898
1899                 if (*(int *)data)
1900                         smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1901                 else
1902                         smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1903
1904                 break;
1905         default:
1906                 ret = -ENODEV;
1907         }
1908
1909 out_unlock:
1910         mutex_unlock(&smmu_domain->init_mutex);
1911         return ret;
1912 }
1913
1914 static struct iommu_ops arm_smmu_ops = {
1915         .capable                = arm_smmu_capable,
1916         .domain_alloc           = arm_smmu_domain_alloc,
1917         .domain_free            = arm_smmu_domain_free,
1918         .attach_dev             = arm_smmu_attach_dev,
1919         .detach_dev             = arm_smmu_detach_dev,
1920         .map                    = arm_smmu_map,
1921         .unmap                  = arm_smmu_unmap,
1922         .iova_to_phys           = arm_smmu_iova_to_phys,
1923         .add_device             = arm_smmu_add_device,
1924         .remove_device          = arm_smmu_remove_device,
1925         .device_group           = pci_device_group,
1926         .domain_get_attr        = arm_smmu_domain_get_attr,
1927         .domain_set_attr        = arm_smmu_domain_set_attr,
1928         .pgsize_bitmap          = -1UL, /* Restricted during device attach */
1929 };
1930
1931 /* Probing and initialisation functions */
1932 static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1933                                    struct arm_smmu_queue *q,
1934                                    unsigned long prod_off,
1935                                    unsigned long cons_off,
1936                                    size_t dwords)
1937 {
1938         size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
1939
1940         q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
1941         if (!q->base) {
1942                 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
1943                         qsz);
1944                 return -ENOMEM;
1945         }
1946
1947         q->prod_reg     = smmu->base + prod_off;
1948         q->cons_reg     = smmu->base + cons_off;
1949         q->ent_dwords   = dwords;
1950
1951         q->q_base  = Q_BASE_RWA;
1952         q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
1953         q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
1954                      << Q_BASE_LOG2SIZE_SHIFT;
1955
1956         q->prod = q->cons = 0;
1957         return 0;
1958 }
1959
1960 static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
1961 {
1962         int ret;
1963
1964         /* cmdq */
1965         spin_lock_init(&smmu->cmdq.lock);
1966         ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
1967                                       ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
1968         if (ret)
1969                 return ret;
1970
1971         /* evtq */
1972         ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
1973                                       ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
1974         if (ret)
1975                 return ret;
1976
1977         /* priq */
1978         if (!(smmu->features & ARM_SMMU_FEAT_PRI))
1979                 return 0;
1980
1981         return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
1982                                        ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
1983 }
1984
1985 static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
1986 {
1987         unsigned int i;
1988         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1989         size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
1990         void *strtab = smmu->strtab_cfg.strtab;
1991
1992         cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
1993         if (!cfg->l1_desc) {
1994                 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
1995                 return -ENOMEM;
1996         }
1997
1998         for (i = 0; i < cfg->num_l1_ents; ++i) {
1999                 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
2000                 strtab += STRTAB_L1_DESC_DWORDS << 3;
2001         }
2002
2003         return 0;
2004 }
2005
2006 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
2007 {
2008         void *strtab;
2009         u64 reg;
2010         u32 size, l1size;
2011         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2012
2013         /*
2014          * If we can resolve everything with a single L2 table, then we
2015          * just need a single L1 descriptor. Otherwise, calculate the L1
2016          * size, capped to the SIDSIZE.
2017          */
2018         if (smmu->sid_bits < STRTAB_SPLIT) {
2019                 size = 0;
2020         } else {
2021                 size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
2022                 size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2023         }
2024         cfg->num_l1_ents = 1 << size;
2025
2026         size += STRTAB_SPLIT;
2027         if (size < smmu->sid_bits)
2028                 dev_warn(smmu->dev,
2029                          "2-level strtab only covers %u/%u bits of SID\n",
2030                          size, smmu->sid_bits);
2031
2032         l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2033         strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2034                                      GFP_KERNEL | __GFP_ZERO);
2035         if (!strtab) {
2036                 dev_err(smmu->dev,
2037                         "failed to allocate l1 stream table (%u bytes)\n",
2038                         size);
2039                 return -ENOMEM;
2040         }
2041         cfg->strtab = strtab;
2042
2043         /* Configure strtab_base_cfg for 2 levels */
2044         reg  = STRTAB_BASE_CFG_FMT_2LVL;
2045         reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2046                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2047         reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2048                 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2049         cfg->strtab_base_cfg = reg;
2050
2051         return arm_smmu_init_l1_strtab(smmu);
2052 }
2053
2054 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2055 {
2056         void *strtab;
2057         u64 reg;
2058         u32 size;
2059         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2060
2061         size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2062         strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2063                                      GFP_KERNEL | __GFP_ZERO);
2064         if (!strtab) {
2065                 dev_err(smmu->dev,
2066                         "failed to allocate linear stream table (%u bytes)\n",
2067                         size);
2068                 return -ENOMEM;
2069         }
2070         cfg->strtab = strtab;
2071         cfg->num_l1_ents = 1 << smmu->sid_bits;
2072
2073         /* Configure strtab_base_cfg for a linear table covering all SIDs */
2074         reg  = STRTAB_BASE_CFG_FMT_LINEAR;
2075         reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2076                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2077         cfg->strtab_base_cfg = reg;
2078
2079         arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2080         return 0;
2081 }
2082
2083 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2084 {
2085         u64 reg;
2086         int ret;
2087
2088         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2089                 ret = arm_smmu_init_strtab_2lvl(smmu);
2090         else
2091                 ret = arm_smmu_init_strtab_linear(smmu);
2092
2093         if (ret)
2094                 return ret;
2095
2096         /* Set the strtab base address */
2097         reg  = smmu->strtab_cfg.strtab_dma &
2098                STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2099         reg |= STRTAB_BASE_RA;
2100         smmu->strtab_cfg.strtab_base = reg;
2101
2102         /* Allocate the first VMID for stage-2 bypass STEs */
2103         set_bit(0, smmu->vmid_map);
2104         return 0;
2105 }
2106
2107 static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2108 {
2109         int ret;
2110
2111         ret = arm_smmu_init_queues(smmu);
2112         if (ret)
2113                 return ret;
2114
2115         return arm_smmu_init_strtab(smmu);
2116 }
2117
2118 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2119                                    unsigned int reg_off, unsigned int ack_off)
2120 {
2121         u32 reg;
2122
2123         writel_relaxed(val, smmu->base + reg_off);
2124         return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2125                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2126 }
2127
2128 static void arm_smmu_free_msis(void *data)
2129 {
2130         struct device *dev = data;
2131         platform_msi_domain_free_irqs(dev);
2132 }
2133
2134 static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2135 {
2136         phys_addr_t doorbell;
2137         struct device *dev = msi_desc_to_dev(desc);
2138         struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2139         phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];
2140
2141         doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2142         doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;
2143
2144         writeq_relaxed(doorbell, smmu->base + cfg[0]);
2145         writel_relaxed(msg->data, smmu->base + cfg[1]);
2146         writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2147 }
2148
2149 static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
2150 {
2151         struct msi_desc *desc;
2152         int ret, nvec = ARM_SMMU_MAX_MSIS;
2153         struct device *dev = smmu->dev;
2154
2155         /* Clear the MSI address regs */
2156         writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2157         writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2158
2159         if (smmu->features & ARM_SMMU_FEAT_PRI)
2160                 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2161         else
2162                 nvec--;
2163
2164         if (!(smmu->features & ARM_SMMU_FEAT_MSI))
2165                 return;
2166
2167         /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2168         ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
2169         if (ret) {
2170                 dev_warn(dev, "failed to allocate MSIs\n");
2171                 return;
2172         }
2173
2174         for_each_msi_entry(desc, dev) {
2175                 switch (desc->platform.msi_index) {
2176                 case EVTQ_MSI_INDEX:
2177                         smmu->evtq.q.irq = desc->irq;
2178                         break;
2179                 case GERROR_MSI_INDEX:
2180                         smmu->gerr_irq = desc->irq;
2181                         break;
2182                 case PRIQ_MSI_INDEX:
2183                         smmu->priq.q.irq = desc->irq;
2184                         break;
2185                 default:        /* Unknown */
2186                         continue;
2187                 }
2188         }
2189
2190         /* Add callback to free MSIs on teardown */
2191         devm_add_action(dev, arm_smmu_free_msis, dev);
2192 }
2193
2194 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2195 {
2196         int ret, irq;
2197         u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
2198
2199         /* Disable IRQs first */
2200         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2201                                       ARM_SMMU_IRQ_CTRLACK);
2202         if (ret) {
2203                 dev_err(smmu->dev, "failed to disable irqs\n");
2204                 return ret;
2205         }
2206
2207         arm_smmu_setup_msis(smmu);
2208
2209         /* Request interrupt lines */
2210         irq = smmu->evtq.q.irq;
2211         if (irq) {
2212                 ret = devm_request_threaded_irq(smmu->dev, irq,
2213                                                 arm_smmu_evtq_handler,
2214                                                 arm_smmu_evtq_thread,
2215                                                 0, "arm-smmu-v3-evtq", smmu);
2216                 if (IS_ERR_VALUE(ret))
2217                         dev_warn(smmu->dev, "failed to enable evtq irq\n");
2218         }
2219
2220         irq = smmu->cmdq.q.irq;
2221         if (irq) {
2222                 ret = devm_request_irq(smmu->dev, irq,
2223                                        arm_smmu_cmdq_sync_handler, 0,
2224                                        "arm-smmu-v3-cmdq-sync", smmu);
2225                 if (IS_ERR_VALUE(ret))
2226                         dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2227         }
2228
2229         irq = smmu->gerr_irq;
2230         if (irq) {
2231                 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2232                                        0, "arm-smmu-v3-gerror", smmu);
2233                 if (IS_ERR_VALUE(ret))
2234                         dev_warn(smmu->dev, "failed to enable gerror irq\n");
2235         }
2236
2237         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2238                 irq = smmu->priq.q.irq;
2239                 if (irq) {
2240                         ret = devm_request_threaded_irq(smmu->dev, irq,
2241                                                         arm_smmu_priq_handler,
2242                                                         arm_smmu_priq_thread,
2243                                                         0, "arm-smmu-v3-priq",
2244                                                         smmu);
2245                         if (IS_ERR_VALUE(ret))
2246                                 dev_warn(smmu->dev,
2247                                          "failed to enable priq irq\n");
2248                         else
2249                                 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
2250                 }
2251         }
2252
2253         /* Enable interrupt generation on the SMMU */
2254         ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
2255                                       ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2256         if (ret)
2257                 dev_warn(smmu->dev, "failed to enable irqs\n");
2258
2259         return 0;
2260 }
2261
2262 static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2263 {
2264         int ret;
2265
2266         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2267         if (ret)
2268                 dev_err(smmu->dev, "failed to clear cr0\n");
2269
2270         return ret;
2271 }
2272
2273 static int arm_smmu_device_reset(struct arm_smmu_device *smmu)
2274 {
2275         int ret;
2276         u32 reg, enables;
2277         struct arm_smmu_cmdq_ent cmd;
2278
2279         /* Clear CR0 and sync (disables SMMU and queue processing) */
2280         reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2281         if (reg & CR0_SMMUEN)
2282                 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2283
2284         ret = arm_smmu_device_disable(smmu);
2285         if (ret)
2286                 return ret;
2287
2288         /* CR1 (table and queue memory attributes) */
2289         reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2290               (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2291               (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2292               (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2293               (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2294               (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2295         writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2296
2297         /* CR2 (random crap) */
2298         reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2299         writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2300
2301         /* Stream table */
2302         writeq_relaxed(smmu->strtab_cfg.strtab_base,
2303                        smmu->base + ARM_SMMU_STRTAB_BASE);
2304         writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2305                        smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2306
2307         /* Command queue */
2308         writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2309         writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2310         writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2311
2312         enables = CR0_CMDQEN;
2313         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2314                                       ARM_SMMU_CR0ACK);
2315         if (ret) {
2316                 dev_err(smmu->dev, "failed to enable command queue\n");
2317                 return ret;
2318         }
2319
2320         /* Invalidate any cached configuration */
2321         cmd.opcode = CMDQ_OP_CFGI_ALL;
2322         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2323         cmd.opcode = CMDQ_OP_CMD_SYNC;
2324         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2325
2326         /* Invalidate any stale TLB entries */
2327         if (smmu->features & ARM_SMMU_FEAT_HYP) {
2328                 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2329                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2330         }
2331
2332         cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2333         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2334         cmd.opcode = CMDQ_OP_CMD_SYNC;
2335         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2336
2337         /* Event queue */
2338         writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2339         writel_relaxed(smmu->evtq.q.prod, smmu->base + ARM_SMMU_EVTQ_PROD);
2340         writel_relaxed(smmu->evtq.q.cons, smmu->base + ARM_SMMU_EVTQ_CONS);
2341
2342         enables |= CR0_EVTQEN;
2343         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2344                                       ARM_SMMU_CR0ACK);
2345         if (ret) {
2346                 dev_err(smmu->dev, "failed to enable event queue\n");
2347                 return ret;
2348         }
2349
2350         /* PRI queue */
2351         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2352                 writeq_relaxed(smmu->priq.q.q_base,
2353                                smmu->base + ARM_SMMU_PRIQ_BASE);
2354                 writel_relaxed(smmu->priq.q.prod,
2355                                smmu->base + ARM_SMMU_PRIQ_PROD);
2356                 writel_relaxed(smmu->priq.q.cons,
2357                                smmu->base + ARM_SMMU_PRIQ_CONS);
2358
2359                 enables |= CR0_PRIQEN;
2360                 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2361                                               ARM_SMMU_CR0ACK);
2362                 if (ret) {
2363                         dev_err(smmu->dev, "failed to enable PRI queue\n");
2364                         return ret;
2365                 }
2366         }
2367
2368         ret = arm_smmu_setup_irqs(smmu);
2369         if (ret) {
2370                 dev_err(smmu->dev, "failed to setup irqs\n");
2371                 return ret;
2372         }
2373
2374         /* Enable the SMMU interface */
2375         enables |= CR0_SMMUEN;
2376         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2377                                       ARM_SMMU_CR0ACK);
2378         if (ret) {
2379                 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2380                 return ret;
2381         }
2382
2383         return 0;
2384 }
2385
2386 static int arm_smmu_device_probe(struct arm_smmu_device *smmu)
2387 {
2388         u32 reg;
2389         bool coherent;
2390         unsigned long pgsize_bitmap = 0;
2391
2392         /* IDR0 */
2393         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2394
2395         /* 2-level structures */
2396         if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2397                 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2398
2399         if (reg & IDR0_CD2L)
2400                 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2401
2402         /*
2403          * Translation table endianness.
2404          * We currently require the same endianness as the CPU, but this
2405          * could be changed later by adding a new IO_PGTABLE_QUIRK.
2406          */
2407         switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2408         case IDR0_TTENDIAN_MIXED:
2409                 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2410                 break;
2411 #ifdef __BIG_ENDIAN
2412         case IDR0_TTENDIAN_BE:
2413                 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2414                 break;
2415 #else
2416         case IDR0_TTENDIAN_LE:
2417                 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2418                 break;
2419 #endif
2420         default:
2421                 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2422                 return -ENXIO;
2423         }
2424
2425         /* Boolean feature flags */
2426         if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2427                 smmu->features |= ARM_SMMU_FEAT_PRI;
2428
2429         if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2430                 smmu->features |= ARM_SMMU_FEAT_ATS;
2431
2432         if (reg & IDR0_SEV)
2433                 smmu->features |= ARM_SMMU_FEAT_SEV;
2434
2435         if (reg & IDR0_MSI)
2436                 smmu->features |= ARM_SMMU_FEAT_MSI;
2437
2438         if (reg & IDR0_HYP)
2439                 smmu->features |= ARM_SMMU_FEAT_HYP;
2440
2441         /*
2442          * The dma-coherent property is used in preference to the ID
2443          * register, but warn on mismatch.
2444          */
2445         coherent = of_dma_is_coherent(smmu->dev->of_node);
2446         if (coherent)
2447                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2448
2449         if (!!(reg & IDR0_COHACC) != coherent)
2450                 dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2451                          coherent ? "true" : "false");
2452
2453         if (reg & IDR0_STALL_MODEL)
2454                 smmu->features |= ARM_SMMU_FEAT_STALLS;
2455
2456         if (reg & IDR0_S1P)
2457                 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2458
2459         if (reg & IDR0_S2P)
2460                 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2461
2462         if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2463                 dev_err(smmu->dev, "no translation support!\n");
2464                 return -ENXIO;
2465         }
2466
2467         /* We only support the AArch64 table format at present */
2468         switch (reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) {
2469         case IDR0_TTF_AARCH32_64:
2470                 smmu->ias = 40;
2471                 /* Fallthrough */
2472         case IDR0_TTF_AARCH64:
2473                 break;
2474         default:
2475                 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2476                 return -ENXIO;
2477         }
2478
2479         /* ASID/VMID sizes */
2480         smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2481         smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2482
2483         /* IDR1 */
2484         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2485         if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2486                 dev_err(smmu->dev, "embedded implementation not supported\n");
2487                 return -ENXIO;
2488         }
2489
2490         /* Queue sizes, capped at 4k */
2491         smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2492                                        reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2493         if (!smmu->cmdq.q.max_n_shift) {
2494                 /* Odd alignment restrictions on the base, so ignore for now */
2495                 dev_err(smmu->dev, "unit-length command queue not supported\n");
2496                 return -ENXIO;
2497         }
2498
2499         smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2500                                        reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2501         smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2502                                        reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2503
2504         /* SID/SSID sizes */
2505         smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2506         smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2507
2508         /* IDR5 */
2509         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2510
2511         /* Maximum number of outstanding stalls */
2512         smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2513                                 & IDR5_STALL_MAX_MASK;
2514
2515         /* Page sizes */
2516         if (reg & IDR5_GRAN64K)
2517                 pgsize_bitmap |= SZ_64K | SZ_512M;
2518         if (reg & IDR5_GRAN16K)
2519                 pgsize_bitmap |= SZ_16K | SZ_32M;
2520         if (reg & IDR5_GRAN4K)
2521                 pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2522
2523         arm_smmu_ops.pgsize_bitmap &= pgsize_bitmap;
2524
2525         /* Output address size */
2526         switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2527         case IDR5_OAS_32_BIT:
2528                 smmu->oas = 32;
2529                 break;
2530         case IDR5_OAS_36_BIT:
2531                 smmu->oas = 36;
2532                 break;
2533         case IDR5_OAS_40_BIT:
2534                 smmu->oas = 40;
2535                 break;
2536         case IDR5_OAS_42_BIT:
2537                 smmu->oas = 42;
2538                 break;
2539         case IDR5_OAS_44_BIT:
2540                 smmu->oas = 44;
2541                 break;
2542         default:
2543                 dev_info(smmu->dev,
2544                         "unknown output address size. Truncating to 48-bit\n");
2545                 /* Fallthrough */
2546         case IDR5_OAS_48_BIT:
2547                 smmu->oas = 48;
2548         }
2549
2550         /* Set the DMA mask for our table walker */
2551         if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2552                 dev_warn(smmu->dev,
2553                          "failed to set DMA mask for table walker\n");
2554
2555         smmu->ias = max(smmu->ias, smmu->oas);
2556
2557         dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2558                  smmu->ias, smmu->oas, smmu->features);
2559         return 0;
2560 }
2561
2562 static int arm_smmu_device_dt_probe(struct platform_device *pdev)
2563 {
2564         int irq, ret;
2565         struct resource *res;
2566         struct arm_smmu_device *smmu;
2567         struct device *dev = &pdev->dev;
2568
2569         smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2570         if (!smmu) {
2571                 dev_err(dev, "failed to allocate arm_smmu_device\n");
2572                 return -ENOMEM;
2573         }
2574         smmu->dev = dev;
2575
2576         /* Base address */
2577         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2578         if (resource_size(res) + 1 < SZ_128K) {
2579                 dev_err(dev, "MMIO region too small (%pr)\n", res);
2580                 return -EINVAL;
2581         }
2582
2583         smmu->base = devm_ioremap_resource(dev, res);
2584         if (IS_ERR(smmu->base))
2585                 return PTR_ERR(smmu->base);
2586
2587         /* Interrupt lines */
2588         irq = platform_get_irq_byname(pdev, "eventq");
2589         if (irq > 0)
2590                 smmu->evtq.q.irq = irq;
2591
2592         irq = platform_get_irq_byname(pdev, "priq");
2593         if (irq > 0)
2594                 smmu->priq.q.irq = irq;
2595
2596         irq = platform_get_irq_byname(pdev, "cmdq-sync");
2597         if (irq > 0)
2598                 smmu->cmdq.q.irq = irq;
2599
2600         irq = platform_get_irq_byname(pdev, "gerror");
2601         if (irq > 0)
2602                 smmu->gerr_irq = irq;
2603
2604         parse_driver_options(smmu);
2605
2606         /* Probe the h/w */
2607         ret = arm_smmu_device_probe(smmu);
2608         if (ret)
2609                 return ret;
2610
2611         /* Initialise in-memory data structures */
2612         ret = arm_smmu_init_structures(smmu);
2613         if (ret)
2614                 return ret;
2615
2616         /* Record our private device structure */
2617         platform_set_drvdata(pdev, smmu);
2618
2619         /* Reset the device */
2620         return arm_smmu_device_reset(smmu);
2621 }
2622
2623 static int arm_smmu_device_remove(struct platform_device *pdev)
2624 {
2625         struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2626
2627         arm_smmu_device_disable(smmu);
2628         return 0;
2629 }
2630
2631 static struct of_device_id arm_smmu_of_match[] = {
2632         { .compatible = "arm,smmu-v3", },
2633         { },
2634 };
2635 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2636
2637 static struct platform_driver arm_smmu_driver = {
2638         .driver = {
2639                 .name           = "arm-smmu-v3",
2640                 .of_match_table = of_match_ptr(arm_smmu_of_match),
2641         },
2642         .probe  = arm_smmu_device_dt_probe,
2643         .remove = arm_smmu_device_remove,
2644 };
2645
2646 static int __init arm_smmu_init(void)
2647 {
2648         struct device_node *np;
2649         int ret;
2650
2651         np = of_find_matching_node(NULL, arm_smmu_of_match);
2652         if (!np)
2653                 return 0;
2654
2655         of_node_put(np);
2656
2657         ret = platform_driver_register(&arm_smmu_driver);
2658         if (ret)
2659                 return ret;
2660
2661         return bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2662 }
2663
2664 static void __exit arm_smmu_exit(void)
2665 {
2666         return platform_driver_unregister(&arm_smmu_driver);
2667 }
2668
2669 subsys_initcall(arm_smmu_init);
2670 module_exit(arm_smmu_exit);
2671
2672 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2673 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2674 MODULE_LICENSE("GPL v2");