a24f359fa0d09b11f904bd1ede7216cf6d750f36
[cascardo/linux.git] / drivers / iommu / arm-smmu-v3.c
1 /*
2  * IOMMU API for ARM architected SMMUv3 implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  *
16  * Copyright (C) 2015 ARM Limited
17  *
18  * Author: Will Deacon <will.deacon@arm.com>
19  *
20  * This driver is powered by bad coffee and bombay mix.
21  */
22
23 #include <linux/delay.h>
24 #include <linux/err.h>
25 #include <linux/interrupt.h>
26 #include <linux/iommu.h>
27 #include <linux/iopoll.h>
28 #include <linux/module.h>
29 #include <linux/of.h>
30 #include <linux/of_address.h>
31 #include <linux/pci.h>
32 #include <linux/platform_device.h>
33
34 #include "io-pgtable.h"
35
36 /* MMIO registers */
37 #define ARM_SMMU_IDR0                   0x0
38 #define IDR0_ST_LVL_SHIFT               27
39 #define IDR0_ST_LVL_MASK                0x3
40 #define IDR0_ST_LVL_2LVL                (1 << IDR0_ST_LVL_SHIFT)
41 #define IDR0_STALL_MODEL                (3 << 24)
42 #define IDR0_TTENDIAN_SHIFT             21
43 #define IDR0_TTENDIAN_MASK              0x3
44 #define IDR0_TTENDIAN_LE                (2 << IDR0_TTENDIAN_SHIFT)
45 #define IDR0_TTENDIAN_BE                (3 << IDR0_TTENDIAN_SHIFT)
46 #define IDR0_TTENDIAN_MIXED             (0 << IDR0_TTENDIAN_SHIFT)
47 #define IDR0_CD2L                       (1 << 19)
48 #define IDR0_VMID16                     (1 << 18)
49 #define IDR0_PRI                        (1 << 16)
50 #define IDR0_SEV                        (1 << 14)
51 #define IDR0_MSI                        (1 << 13)
52 #define IDR0_ASID16                     (1 << 12)
53 #define IDR0_ATS                        (1 << 10)
54 #define IDR0_HYP                        (1 << 9)
55 #define IDR0_COHACC                     (1 << 4)
56 #define IDR0_TTF_SHIFT                  2
57 #define IDR0_TTF_MASK                   0x3
58 #define IDR0_TTF_AARCH64                (2 << IDR0_TTF_SHIFT)
59 #define IDR0_TTF_AARCH32_64             (3 << IDR0_TTF_SHIFT)
60 #define IDR0_S1P                        (1 << 1)
61 #define IDR0_S2P                        (1 << 0)
62
63 #define ARM_SMMU_IDR1                   0x4
64 #define IDR1_TABLES_PRESET              (1 << 30)
65 #define IDR1_QUEUES_PRESET              (1 << 29)
66 #define IDR1_REL                        (1 << 28)
67 #define IDR1_CMDQ_SHIFT                 21
68 #define IDR1_CMDQ_MASK                  0x1f
69 #define IDR1_EVTQ_SHIFT                 16
70 #define IDR1_EVTQ_MASK                  0x1f
71 #define IDR1_PRIQ_SHIFT                 11
72 #define IDR1_PRIQ_MASK                  0x1f
73 #define IDR1_SSID_SHIFT                 6
74 #define IDR1_SSID_MASK                  0x1f
75 #define IDR1_SID_SHIFT                  0
76 #define IDR1_SID_MASK                   0x3f
77
78 #define ARM_SMMU_IDR5                   0x14
79 #define IDR5_STALL_MAX_SHIFT            16
80 #define IDR5_STALL_MAX_MASK             0xffff
81 #define IDR5_GRAN64K                    (1 << 6)
82 #define IDR5_GRAN16K                    (1 << 5)
83 #define IDR5_GRAN4K                     (1 << 4)
84 #define IDR5_OAS_SHIFT                  0
85 #define IDR5_OAS_MASK                   0x7
86 #define IDR5_OAS_32_BIT                 (0 << IDR5_OAS_SHIFT)
87 #define IDR5_OAS_36_BIT                 (1 << IDR5_OAS_SHIFT)
88 #define IDR5_OAS_40_BIT                 (2 << IDR5_OAS_SHIFT)
89 #define IDR5_OAS_42_BIT                 (3 << IDR5_OAS_SHIFT)
90 #define IDR5_OAS_44_BIT                 (4 << IDR5_OAS_SHIFT)
91 #define IDR5_OAS_48_BIT                 (5 << IDR5_OAS_SHIFT)
92
93 #define ARM_SMMU_CR0                    0x20
94 #define CR0_CMDQEN                      (1 << 3)
95 #define CR0_EVTQEN                      (1 << 2)
96 #define CR0_PRIQEN                      (1 << 1)
97 #define CR0_SMMUEN                      (1 << 0)
98
99 #define ARM_SMMU_CR0ACK                 0x24
100
101 #define ARM_SMMU_CR1                    0x28
102 #define CR1_SH_NSH                      0
103 #define CR1_SH_OSH                      2
104 #define CR1_SH_ISH                      3
105 #define CR1_CACHE_NC                    0
106 #define CR1_CACHE_WB                    1
107 #define CR1_CACHE_WT                    2
108 #define CR1_TABLE_SH_SHIFT              10
109 #define CR1_TABLE_OC_SHIFT              8
110 #define CR1_TABLE_IC_SHIFT              6
111 #define CR1_QUEUE_SH_SHIFT              4
112 #define CR1_QUEUE_OC_SHIFT              2
113 #define CR1_QUEUE_IC_SHIFT              0
114
115 #define ARM_SMMU_CR2                    0x2c
116 #define CR2_PTM                         (1 << 2)
117 #define CR2_RECINVSID                   (1 << 1)
118 #define CR2_E2H                         (1 << 0)
119
120 #define ARM_SMMU_IRQ_CTRL               0x50
121 #define IRQ_CTRL_EVTQ_IRQEN             (1 << 2)
122 #define IRQ_CTRL_PRIQ_IRQEN             (1 << 1)
123 #define IRQ_CTRL_GERROR_IRQEN           (1 << 0)
124
125 #define ARM_SMMU_IRQ_CTRLACK            0x54
126
127 #define ARM_SMMU_GERROR                 0x60
128 #define GERROR_SFM_ERR                  (1 << 8)
129 #define GERROR_MSI_GERROR_ABT_ERR       (1 << 7)
130 #define GERROR_MSI_PRIQ_ABT_ERR         (1 << 6)
131 #define GERROR_MSI_EVTQ_ABT_ERR         (1 << 5)
132 #define GERROR_MSI_CMDQ_ABT_ERR         (1 << 4)
133 #define GERROR_PRIQ_ABT_ERR             (1 << 3)
134 #define GERROR_EVTQ_ABT_ERR             (1 << 2)
135 #define GERROR_CMDQ_ERR                 (1 << 0)
136 #define GERROR_ERR_MASK                 0xfd
137
138 #define ARM_SMMU_GERRORN                0x64
139
140 #define ARM_SMMU_GERROR_IRQ_CFG0        0x68
141 #define ARM_SMMU_GERROR_IRQ_CFG1        0x70
142 #define ARM_SMMU_GERROR_IRQ_CFG2        0x74
143
144 #define ARM_SMMU_STRTAB_BASE            0x80
145 #define STRTAB_BASE_RA                  (1UL << 62)
146 #define STRTAB_BASE_ADDR_SHIFT          6
147 #define STRTAB_BASE_ADDR_MASK           0x3ffffffffffUL
148
149 #define ARM_SMMU_STRTAB_BASE_CFG        0x88
150 #define STRTAB_BASE_CFG_LOG2SIZE_SHIFT  0
151 #define STRTAB_BASE_CFG_LOG2SIZE_MASK   0x3f
152 #define STRTAB_BASE_CFG_SPLIT_SHIFT     6
153 #define STRTAB_BASE_CFG_SPLIT_MASK      0x1f
154 #define STRTAB_BASE_CFG_FMT_SHIFT       16
155 #define STRTAB_BASE_CFG_FMT_MASK        0x3
156 #define STRTAB_BASE_CFG_FMT_LINEAR      (0 << STRTAB_BASE_CFG_FMT_SHIFT)
157 #define STRTAB_BASE_CFG_FMT_2LVL        (1 << STRTAB_BASE_CFG_FMT_SHIFT)
158
159 #define ARM_SMMU_CMDQ_BASE              0x90
160 #define ARM_SMMU_CMDQ_PROD              0x98
161 #define ARM_SMMU_CMDQ_CONS              0x9c
162
163 #define ARM_SMMU_EVTQ_BASE              0xa0
164 #define ARM_SMMU_EVTQ_PROD              0x100a8
165 #define ARM_SMMU_EVTQ_CONS              0x100ac
166 #define ARM_SMMU_EVTQ_IRQ_CFG0          0xb0
167 #define ARM_SMMU_EVTQ_IRQ_CFG1          0xb8
168 #define ARM_SMMU_EVTQ_IRQ_CFG2          0xbc
169
170 #define ARM_SMMU_PRIQ_BASE              0xc0
171 #define ARM_SMMU_PRIQ_PROD              0x100c8
172 #define ARM_SMMU_PRIQ_CONS              0x100cc
173 #define ARM_SMMU_PRIQ_IRQ_CFG0          0xd0
174 #define ARM_SMMU_PRIQ_IRQ_CFG1          0xd8
175 #define ARM_SMMU_PRIQ_IRQ_CFG2          0xdc
176
177 /* Common MSI config fields */
178 #define MSI_CFG0_ADDR_SHIFT             2
179 #define MSI_CFG0_ADDR_MASK              0x3fffffffffffUL
180 #define MSI_CFG2_SH_SHIFT               4
181 #define MSI_CFG2_SH_NSH                 (0UL << MSI_CFG2_SH_SHIFT)
182 #define MSI_CFG2_SH_OSH                 (2UL << MSI_CFG2_SH_SHIFT)
183 #define MSI_CFG2_SH_ISH                 (3UL << MSI_CFG2_SH_SHIFT)
184 #define MSI_CFG2_MEMATTR_SHIFT          0
185 #define MSI_CFG2_MEMATTR_DEVICE_nGnRE   (0x1 << MSI_CFG2_MEMATTR_SHIFT)
186
187 #define Q_IDX(q, p)                     ((p) & ((1 << (q)->max_n_shift) - 1))
188 #define Q_WRP(q, p)                     ((p) & (1 << (q)->max_n_shift))
189 #define Q_OVERFLOW_FLAG                 (1 << 31)
190 #define Q_OVF(q, p)                     ((p) & Q_OVERFLOW_FLAG)
191 #define Q_ENT(q, p)                     ((q)->base +                    \
192                                          Q_IDX(q, p) * (q)->ent_dwords)
193
194 #define Q_BASE_RWA                      (1UL << 62)
195 #define Q_BASE_ADDR_SHIFT               5
196 #define Q_BASE_ADDR_MASK                0xfffffffffffUL
197 #define Q_BASE_LOG2SIZE_SHIFT           0
198 #define Q_BASE_LOG2SIZE_MASK            0x1fUL
199
200 /*
201  * Stream table.
202  *
203  * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
204  * 2lvl: 128k L1 entries,
205  *       256 lazy entries per table (each table covers a PCI bus)
206  */
207 #define STRTAB_L1_SZ_SHIFT              20
208 #define STRTAB_SPLIT                    8
209
210 #define STRTAB_L1_DESC_DWORDS           1
211 #define STRTAB_L1_DESC_SPAN_SHIFT       0
212 #define STRTAB_L1_DESC_SPAN_MASK        0x1fUL
213 #define STRTAB_L1_DESC_L2PTR_SHIFT      6
214 #define STRTAB_L1_DESC_L2PTR_MASK       0x3ffffffffffUL
215
216 #define STRTAB_STE_DWORDS               8
217 #define STRTAB_STE_0_V                  (1UL << 0)
218 #define STRTAB_STE_0_CFG_SHIFT          1
219 #define STRTAB_STE_0_CFG_MASK           0x7UL
220 #define STRTAB_STE_0_CFG_ABORT          (0UL << STRTAB_STE_0_CFG_SHIFT)
221 #define STRTAB_STE_0_CFG_BYPASS         (4UL << STRTAB_STE_0_CFG_SHIFT)
222 #define STRTAB_STE_0_CFG_S1_TRANS       (5UL << STRTAB_STE_0_CFG_SHIFT)
223 #define STRTAB_STE_0_CFG_S2_TRANS       (6UL << STRTAB_STE_0_CFG_SHIFT)
224
225 #define STRTAB_STE_0_S1FMT_SHIFT        4
226 #define STRTAB_STE_0_S1FMT_LINEAR       (0UL << STRTAB_STE_0_S1FMT_SHIFT)
227 #define STRTAB_STE_0_S1CTXPTR_SHIFT     6
228 #define STRTAB_STE_0_S1CTXPTR_MASK      0x3ffffffffffUL
229 #define STRTAB_STE_0_S1CDMAX_SHIFT      59
230 #define STRTAB_STE_0_S1CDMAX_MASK       0x1fUL
231
232 #define STRTAB_STE_1_S1C_CACHE_NC       0UL
233 #define STRTAB_STE_1_S1C_CACHE_WBRA     1UL
234 #define STRTAB_STE_1_S1C_CACHE_WT       2UL
235 #define STRTAB_STE_1_S1C_CACHE_WB       3UL
236 #define STRTAB_STE_1_S1C_SH_NSH         0UL
237 #define STRTAB_STE_1_S1C_SH_OSH         2UL
238 #define STRTAB_STE_1_S1C_SH_ISH         3UL
239 #define STRTAB_STE_1_S1CIR_SHIFT        2
240 #define STRTAB_STE_1_S1COR_SHIFT        4
241 #define STRTAB_STE_1_S1CSH_SHIFT        6
242
243 #define STRTAB_STE_1_S1STALLD           (1UL << 27)
244
245 #define STRTAB_STE_1_EATS_ABT           0UL
246 #define STRTAB_STE_1_EATS_TRANS         1UL
247 #define STRTAB_STE_1_EATS_S1CHK         2UL
248 #define STRTAB_STE_1_EATS_SHIFT         28
249
250 #define STRTAB_STE_1_STRW_NSEL1         0UL
251 #define STRTAB_STE_1_STRW_EL2           2UL
252 #define STRTAB_STE_1_STRW_SHIFT         30
253
254 #define STRTAB_STE_2_S2VMID_SHIFT       0
255 #define STRTAB_STE_2_S2VMID_MASK        0xffffUL
256 #define STRTAB_STE_2_VTCR_SHIFT         32
257 #define STRTAB_STE_2_VTCR_MASK          0x7ffffUL
258 #define STRTAB_STE_2_S2AA64             (1UL << 51)
259 #define STRTAB_STE_2_S2ENDI             (1UL << 52)
260 #define STRTAB_STE_2_S2PTW              (1UL << 54)
261 #define STRTAB_STE_2_S2R                (1UL << 58)
262
263 #define STRTAB_STE_3_S2TTB_SHIFT        4
264 #define STRTAB_STE_3_S2TTB_MASK         0xfffffffffffUL
265
266 /* Context descriptor (stage-1 only) */
267 #define CTXDESC_CD_DWORDS               8
268 #define CTXDESC_CD_0_TCR_T0SZ_SHIFT     0
269 #define ARM64_TCR_T0SZ_SHIFT            0
270 #define ARM64_TCR_T0SZ_MASK             0x1fUL
271 #define CTXDESC_CD_0_TCR_TG0_SHIFT      6
272 #define ARM64_TCR_TG0_SHIFT             14
273 #define ARM64_TCR_TG0_MASK              0x3UL
274 #define CTXDESC_CD_0_TCR_IRGN0_SHIFT    8
275 #define ARM64_TCR_IRGN0_SHIFT           8
276 #define ARM64_TCR_IRGN0_MASK            0x3UL
277 #define CTXDESC_CD_0_TCR_ORGN0_SHIFT    10
278 #define ARM64_TCR_ORGN0_SHIFT           10
279 #define ARM64_TCR_ORGN0_MASK            0x3UL
280 #define CTXDESC_CD_0_TCR_SH0_SHIFT      12
281 #define ARM64_TCR_SH0_SHIFT             12
282 #define ARM64_TCR_SH0_MASK              0x3UL
283 #define CTXDESC_CD_0_TCR_EPD0_SHIFT     14
284 #define ARM64_TCR_EPD0_SHIFT            7
285 #define ARM64_TCR_EPD0_MASK             0x1UL
286 #define CTXDESC_CD_0_TCR_EPD1_SHIFT     30
287 #define ARM64_TCR_EPD1_SHIFT            23
288 #define ARM64_TCR_EPD1_MASK             0x1UL
289
290 #define CTXDESC_CD_0_ENDI               (1UL << 15)
291 #define CTXDESC_CD_0_V                  (1UL << 31)
292
293 #define CTXDESC_CD_0_TCR_IPS_SHIFT      32
294 #define ARM64_TCR_IPS_SHIFT             32
295 #define ARM64_TCR_IPS_MASK              0x7UL
296 #define CTXDESC_CD_0_TCR_TBI0_SHIFT     38
297 #define ARM64_TCR_TBI0_SHIFT            37
298 #define ARM64_TCR_TBI0_MASK             0x1UL
299
300 #define CTXDESC_CD_0_AA64               (1UL << 41)
301 #define CTXDESC_CD_0_R                  (1UL << 45)
302 #define CTXDESC_CD_0_A                  (1UL << 46)
303 #define CTXDESC_CD_0_ASET_SHIFT         47
304 #define CTXDESC_CD_0_ASET_SHARED        (0UL << CTXDESC_CD_0_ASET_SHIFT)
305 #define CTXDESC_CD_0_ASET_PRIVATE       (1UL << CTXDESC_CD_0_ASET_SHIFT)
306 #define CTXDESC_CD_0_ASID_SHIFT         48
307 #define CTXDESC_CD_0_ASID_MASK          0xffffUL
308
309 #define CTXDESC_CD_1_TTB0_SHIFT         4
310 #define CTXDESC_CD_1_TTB0_MASK          0xfffffffffffUL
311
312 #define CTXDESC_CD_3_MAIR_SHIFT         0
313
314 /* Convert between AArch64 (CPU) TCR format and SMMU CD format */
315 #define ARM_SMMU_TCR2CD(tcr, fld)                                       \
316         (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK)    \
317          << CTXDESC_CD_0_TCR_##fld##_SHIFT)
318
319 /* Command queue */
320 #define CMDQ_ENT_DWORDS                 2
321 #define CMDQ_MAX_SZ_SHIFT               8
322
323 #define CMDQ_ERR_SHIFT                  24
324 #define CMDQ_ERR_MASK                   0x7f
325 #define CMDQ_ERR_CERROR_NONE_IDX        0
326 #define CMDQ_ERR_CERROR_ILL_IDX         1
327 #define CMDQ_ERR_CERROR_ABT_IDX         2
328
329 #define CMDQ_0_OP_SHIFT                 0
330 #define CMDQ_0_OP_MASK                  0xffUL
331 #define CMDQ_0_SSV                      (1UL << 11)
332
333 #define CMDQ_PREFETCH_0_SID_SHIFT       32
334 #define CMDQ_PREFETCH_1_SIZE_SHIFT      0
335 #define CMDQ_PREFETCH_1_ADDR_MASK       ~0xfffUL
336
337 #define CMDQ_CFGI_0_SID_SHIFT           32
338 #define CMDQ_CFGI_0_SID_MASK            0xffffffffUL
339 #define CMDQ_CFGI_1_LEAF                (1UL << 0)
340 #define CMDQ_CFGI_1_RANGE_SHIFT         0
341 #define CMDQ_CFGI_1_RANGE_MASK          0x1fUL
342
343 #define CMDQ_TLBI_0_VMID_SHIFT          32
344 #define CMDQ_TLBI_0_ASID_SHIFT          48
345 #define CMDQ_TLBI_1_LEAF                (1UL << 0)
346 #define CMDQ_TLBI_1_ADDR_MASK           ~0xfffUL
347
348 #define CMDQ_PRI_0_SSID_SHIFT           12
349 #define CMDQ_PRI_0_SSID_MASK            0xfffffUL
350 #define CMDQ_PRI_0_SID_SHIFT            32
351 #define CMDQ_PRI_0_SID_MASK             0xffffffffUL
352 #define CMDQ_PRI_1_GRPID_SHIFT          0
353 #define CMDQ_PRI_1_GRPID_MASK           0x1ffUL
354 #define CMDQ_PRI_1_RESP_SHIFT           12
355 #define CMDQ_PRI_1_RESP_DENY            (0UL << CMDQ_PRI_1_RESP_SHIFT)
356 #define CMDQ_PRI_1_RESP_FAIL            (1UL << CMDQ_PRI_1_RESP_SHIFT)
357 #define CMDQ_PRI_1_RESP_SUCC            (2UL << CMDQ_PRI_1_RESP_SHIFT)
358
359 #define CMDQ_SYNC_0_CS_SHIFT            12
360 #define CMDQ_SYNC_0_CS_NONE             (0UL << CMDQ_SYNC_0_CS_SHIFT)
361 #define CMDQ_SYNC_0_CS_SEV              (2UL << CMDQ_SYNC_0_CS_SHIFT)
362
363 /* Event queue */
364 #define EVTQ_ENT_DWORDS                 4
365 #define EVTQ_MAX_SZ_SHIFT               7
366
367 #define EVTQ_0_ID_SHIFT                 0
368 #define EVTQ_0_ID_MASK                  0xffUL
369
370 /* PRI queue */
371 #define PRIQ_ENT_DWORDS                 2
372 #define PRIQ_MAX_SZ_SHIFT               8
373
374 #define PRIQ_0_SID_SHIFT                0
375 #define PRIQ_0_SID_MASK                 0xffffffffUL
376 #define PRIQ_0_SSID_SHIFT               32
377 #define PRIQ_0_SSID_MASK                0xfffffUL
378 #define PRIQ_0_OF                       (1UL << 57)
379 #define PRIQ_0_PERM_PRIV                (1UL << 58)
380 #define PRIQ_0_PERM_EXEC                (1UL << 59)
381 #define PRIQ_0_PERM_READ                (1UL << 60)
382 #define PRIQ_0_PERM_WRITE               (1UL << 61)
383 #define PRIQ_0_PRG_LAST                 (1UL << 62)
384 #define PRIQ_0_SSID_V                   (1UL << 63)
385
386 #define PRIQ_1_PRG_IDX_SHIFT            0
387 #define PRIQ_1_PRG_IDX_MASK             0x1ffUL
388 #define PRIQ_1_ADDR_SHIFT               12
389 #define PRIQ_1_ADDR_MASK                0xfffffffffffffUL
390
391 /* High-level queue structures */
392 #define ARM_SMMU_POLL_TIMEOUT_US        100
393
394 static bool disable_bypass;
395 module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
396 MODULE_PARM_DESC(disable_bypass,
397         "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
398
399 enum pri_resp {
400         PRI_RESP_DENY,
401         PRI_RESP_FAIL,
402         PRI_RESP_SUCC,
403 };
404
405 struct arm_smmu_cmdq_ent {
406         /* Common fields */
407         u8                              opcode;
408         bool                            substream_valid;
409
410         /* Command-specific fields */
411         union {
412                 #define CMDQ_OP_PREFETCH_CFG    0x1
413                 struct {
414                         u32                     sid;
415                         u8                      size;
416                         u64                     addr;
417                 } prefetch;
418
419                 #define CMDQ_OP_CFGI_STE        0x3
420                 #define CMDQ_OP_CFGI_ALL        0x4
421                 struct {
422                         u32                     sid;
423                         union {
424                                 bool            leaf;
425                                 u8              span;
426                         };
427                 } cfgi;
428
429                 #define CMDQ_OP_TLBI_NH_ASID    0x11
430                 #define CMDQ_OP_TLBI_NH_VA      0x12
431                 #define CMDQ_OP_TLBI_EL2_ALL    0x20
432                 #define CMDQ_OP_TLBI_S12_VMALL  0x28
433                 #define CMDQ_OP_TLBI_S2_IPA     0x2a
434                 #define CMDQ_OP_TLBI_NSNH_ALL   0x30
435                 struct {
436                         u16                     asid;
437                         u16                     vmid;
438                         bool                    leaf;
439                         u64                     addr;
440                 } tlbi;
441
442                 #define CMDQ_OP_PRI_RESP        0x41
443                 struct {
444                         u32                     sid;
445                         u32                     ssid;
446                         u16                     grpid;
447                         enum pri_resp           resp;
448                 } pri;
449
450                 #define CMDQ_OP_CMD_SYNC        0x46
451         };
452 };
453
454 struct arm_smmu_queue {
455         int                             irq; /* Wired interrupt */
456
457         __le64                          *base;
458         dma_addr_t                      base_dma;
459         u64                             q_base;
460
461         size_t                          ent_dwords;
462         u32                             max_n_shift;
463         u32                             prod;
464         u32                             cons;
465
466         u32 __iomem                     *prod_reg;
467         u32 __iomem                     *cons_reg;
468 };
469
470 struct arm_smmu_cmdq {
471         struct arm_smmu_queue           q;
472         spinlock_t                      lock;
473 };
474
475 struct arm_smmu_evtq {
476         struct arm_smmu_queue           q;
477         u32                             max_stalls;
478 };
479
480 struct arm_smmu_priq {
481         struct arm_smmu_queue           q;
482 };
483
484 /* High-level stream table and context descriptor structures */
485 struct arm_smmu_strtab_l1_desc {
486         u8                              span;
487
488         __le64                          *l2ptr;
489         dma_addr_t                      l2ptr_dma;
490 };
491
492 struct arm_smmu_s1_cfg {
493         __le64                          *cdptr;
494         dma_addr_t                      cdptr_dma;
495
496         struct arm_smmu_ctx_desc {
497                 u16     asid;
498                 u64     ttbr;
499                 u64     tcr;
500                 u64     mair;
501         }                               cd;
502 };
503
504 struct arm_smmu_s2_cfg {
505         u16                             vmid;
506         u64                             vttbr;
507         u64                             vtcr;
508 };
509
510 struct arm_smmu_strtab_ent {
511         bool                            valid;
512
513         bool                            bypass; /* Overrides s1/s2 config */
514         struct arm_smmu_s1_cfg          *s1_cfg;
515         struct arm_smmu_s2_cfg          *s2_cfg;
516 };
517
518 struct arm_smmu_strtab_cfg {
519         __le64                          *strtab;
520         dma_addr_t                      strtab_dma;
521         struct arm_smmu_strtab_l1_desc  *l1_desc;
522         unsigned int                    num_l1_ents;
523
524         u64                             strtab_base;
525         u32                             strtab_base_cfg;
526 };
527
528 /* An SMMUv3 instance */
529 struct arm_smmu_device {
530         struct device                   *dev;
531         void __iomem                    *base;
532
533 #define ARM_SMMU_FEAT_2_LVL_STRTAB      (1 << 0)
534 #define ARM_SMMU_FEAT_2_LVL_CDTAB       (1 << 1)
535 #define ARM_SMMU_FEAT_TT_LE             (1 << 2)
536 #define ARM_SMMU_FEAT_TT_BE             (1 << 3)
537 #define ARM_SMMU_FEAT_PRI               (1 << 4)
538 #define ARM_SMMU_FEAT_ATS               (1 << 5)
539 #define ARM_SMMU_FEAT_SEV               (1 << 6)
540 #define ARM_SMMU_FEAT_MSI               (1 << 7)
541 #define ARM_SMMU_FEAT_COHERENCY         (1 << 8)
542 #define ARM_SMMU_FEAT_TRANS_S1          (1 << 9)
543 #define ARM_SMMU_FEAT_TRANS_S2          (1 << 10)
544 #define ARM_SMMU_FEAT_STALLS            (1 << 11)
545 #define ARM_SMMU_FEAT_HYP               (1 << 12)
546         u32                             features;
547
548 #define ARM_SMMU_OPT_SKIP_PREFETCH      (1 << 0)
549         u32                             options;
550
551         struct arm_smmu_cmdq            cmdq;
552         struct arm_smmu_evtq            evtq;
553         struct arm_smmu_priq            priq;
554
555         int                             gerr_irq;
556
557         unsigned long                   ias; /* IPA */
558         unsigned long                   oas; /* PA */
559
560 #define ARM_SMMU_MAX_ASIDS              (1 << 16)
561         unsigned int                    asid_bits;
562         DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
563
564 #define ARM_SMMU_MAX_VMIDS              (1 << 16)
565         unsigned int                    vmid_bits;
566         DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
567
568         unsigned int                    ssid_bits;
569         unsigned int                    sid_bits;
570
571         struct arm_smmu_strtab_cfg      strtab_cfg;
572         struct list_head                list;
573 };
574
575 /* SMMU private data for an IOMMU group */
576 struct arm_smmu_group {
577         struct arm_smmu_device          *smmu;
578         struct arm_smmu_domain          *domain;
579         int                             num_sids;
580         u32                             *sids;
581         struct arm_smmu_strtab_ent      ste;
582 };
583
584 /* SMMU private data for an IOMMU domain */
585 enum arm_smmu_domain_stage {
586         ARM_SMMU_DOMAIN_S1 = 0,
587         ARM_SMMU_DOMAIN_S2,
588         ARM_SMMU_DOMAIN_NESTED,
589 };
590
591 struct arm_smmu_domain {
592         struct arm_smmu_device          *smmu;
593         struct mutex                    init_mutex; /* Protects smmu pointer */
594
595         struct io_pgtable_ops           *pgtbl_ops;
596         spinlock_t                      pgtbl_lock;
597
598         enum arm_smmu_domain_stage      stage;
599         union {
600                 struct arm_smmu_s1_cfg  s1_cfg;
601                 struct arm_smmu_s2_cfg  s2_cfg;
602         };
603
604         struct iommu_domain             domain;
605 };
606
607 /* Our list of SMMU instances */
608 static DEFINE_SPINLOCK(arm_smmu_devices_lock);
609 static LIST_HEAD(arm_smmu_devices);
610
611 struct arm_smmu_option_prop {
612         u32 opt;
613         const char *prop;
614 };
615
616 static struct arm_smmu_option_prop arm_smmu_options[] = {
617         { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
618         { 0, NULL},
619 };
620
621 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
622 {
623         return container_of(dom, struct arm_smmu_domain, domain);
624 }
625
626 static void parse_driver_options(struct arm_smmu_device *smmu)
627 {
628         int i = 0;
629
630         do {
631                 if (of_property_read_bool(smmu->dev->of_node,
632                                                 arm_smmu_options[i].prop)) {
633                         smmu->options |= arm_smmu_options[i].opt;
634                         dev_notice(smmu->dev, "option %s\n",
635                                 arm_smmu_options[i].prop);
636                 }
637         } while (arm_smmu_options[++i].opt);
638 }
639
640 /* Low-level queue manipulation functions */
641 static bool queue_full(struct arm_smmu_queue *q)
642 {
643         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
644                Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
645 }
646
647 static bool queue_empty(struct arm_smmu_queue *q)
648 {
649         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
650                Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
651 }
652
653 static void queue_sync_cons(struct arm_smmu_queue *q)
654 {
655         q->cons = readl_relaxed(q->cons_reg);
656 }
657
658 static void queue_inc_cons(struct arm_smmu_queue *q)
659 {
660         u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
661
662         q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
663         writel(q->cons, q->cons_reg);
664 }
665
666 static int queue_sync_prod(struct arm_smmu_queue *q)
667 {
668         int ret = 0;
669         u32 prod = readl_relaxed(q->prod_reg);
670
671         if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
672                 ret = -EOVERFLOW;
673
674         q->prod = prod;
675         return ret;
676 }
677
678 static void queue_inc_prod(struct arm_smmu_queue *q)
679 {
680         u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
681
682         q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
683         writel(q->prod, q->prod_reg);
684 }
685
686 static bool __queue_cons_before(struct arm_smmu_queue *q, u32 until)
687 {
688         if (Q_WRP(q, q->cons) == Q_WRP(q, until))
689                 return Q_IDX(q, q->cons) < Q_IDX(q, until);
690
691         return Q_IDX(q, q->cons) >= Q_IDX(q, until);
692 }
693
694 static int queue_poll_cons(struct arm_smmu_queue *q, u32 until, bool wfe)
695 {
696         ktime_t timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
697
698         while (queue_sync_cons(q), __queue_cons_before(q, until)) {
699                 if (ktime_compare(ktime_get(), timeout) > 0)
700                         return -ETIMEDOUT;
701
702                 if (wfe) {
703                         wfe();
704                 } else {
705                         cpu_relax();
706                         udelay(1);
707                 }
708         }
709
710         return 0;
711 }
712
713 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
714 {
715         int i;
716
717         for (i = 0; i < n_dwords; ++i)
718                 *dst++ = cpu_to_le64(*src++);
719 }
720
721 static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
722 {
723         if (queue_full(q))
724                 return -ENOSPC;
725
726         queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
727         queue_inc_prod(q);
728         return 0;
729 }
730
731 static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
732 {
733         int i;
734
735         for (i = 0; i < n_dwords; ++i)
736                 *dst++ = le64_to_cpu(*src++);
737 }
738
739 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
740 {
741         if (queue_empty(q))
742                 return -EAGAIN;
743
744         queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
745         queue_inc_cons(q);
746         return 0;
747 }
748
749 /* High-level queue accessors */
750 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
751 {
752         memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
753         cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
754
755         switch (ent->opcode) {
756         case CMDQ_OP_TLBI_EL2_ALL:
757         case CMDQ_OP_TLBI_NSNH_ALL:
758                 break;
759         case CMDQ_OP_PREFETCH_CFG:
760                 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
761                 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
762                 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
763                 break;
764         case CMDQ_OP_CFGI_STE:
765                 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
766                 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
767                 break;
768         case CMDQ_OP_CFGI_ALL:
769                 /* Cover the entire SID range */
770                 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
771                 break;
772         case CMDQ_OP_TLBI_NH_VA:
773                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
774                 /* Fallthrough */
775         case CMDQ_OP_TLBI_S2_IPA:
776                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
777                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
778                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_ADDR_MASK;
779                 break;
780         case CMDQ_OP_TLBI_NH_ASID:
781                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
782                 /* Fallthrough */
783         case CMDQ_OP_TLBI_S12_VMALL:
784                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
785                 break;
786         case CMDQ_OP_PRI_RESP:
787                 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
788                 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
789                 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
790                 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
791                 switch (ent->pri.resp) {
792                 case PRI_RESP_DENY:
793                         cmd[1] |= CMDQ_PRI_1_RESP_DENY;
794                         break;
795                 case PRI_RESP_FAIL:
796                         cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
797                         break;
798                 case PRI_RESP_SUCC:
799                         cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
800                         break;
801                 default:
802                         return -EINVAL;
803                 }
804                 break;
805         case CMDQ_OP_CMD_SYNC:
806                 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
807                 break;
808         default:
809                 return -ENOENT;
810         }
811
812         return 0;
813 }
814
815 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
816 {
817         static const char *cerror_str[] = {
818                 [CMDQ_ERR_CERROR_NONE_IDX]      = "No error",
819                 [CMDQ_ERR_CERROR_ILL_IDX]       = "Illegal command",
820                 [CMDQ_ERR_CERROR_ABT_IDX]       = "Abort on command fetch",
821         };
822
823         int i;
824         u64 cmd[CMDQ_ENT_DWORDS];
825         struct arm_smmu_queue *q = &smmu->cmdq.q;
826         u32 cons = readl_relaxed(q->cons_reg);
827         u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
828         struct arm_smmu_cmdq_ent cmd_sync = {
829                 .opcode = CMDQ_OP_CMD_SYNC,
830         };
831
832         dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
833                 cerror_str[idx]);
834
835         switch (idx) {
836         case CMDQ_ERR_CERROR_ILL_IDX:
837                 break;
838         case CMDQ_ERR_CERROR_ABT_IDX:
839                 dev_err(smmu->dev, "retrying command fetch\n");
840         case CMDQ_ERR_CERROR_NONE_IDX:
841                 return;
842         }
843
844         /*
845          * We may have concurrent producers, so we need to be careful
846          * not to touch any of the shadow cmdq state.
847          */
848         queue_read(cmd, Q_ENT(q, idx), q->ent_dwords);
849         dev_err(smmu->dev, "skipping command in error state:\n");
850         for (i = 0; i < ARRAY_SIZE(cmd); ++i)
851                 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
852
853         /* Convert the erroneous command into a CMD_SYNC */
854         if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
855                 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
856                 return;
857         }
858
859         queue_write(cmd, Q_ENT(q, idx), q->ent_dwords);
860 }
861
862 static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
863                                     struct arm_smmu_cmdq_ent *ent)
864 {
865         u32 until;
866         u64 cmd[CMDQ_ENT_DWORDS];
867         bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
868         struct arm_smmu_queue *q = &smmu->cmdq.q;
869
870         if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
871                 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
872                          ent->opcode);
873                 return;
874         }
875
876         spin_lock(&smmu->cmdq.lock);
877         while (until = q->prod + 1, queue_insert_raw(q, cmd) == -ENOSPC) {
878                 /*
879                  * Keep the queue locked, otherwise the producer could wrap
880                  * twice and we could see a future consumer pointer that looks
881                  * like it's behind us.
882                  */
883                 if (queue_poll_cons(q, until, wfe))
884                         dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
885         }
886
887         if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, until, wfe))
888                 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
889         spin_unlock(&smmu->cmdq.lock);
890 }
891
892 /* Context descriptor manipulation functions */
893 static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
894 {
895         u64 val = 0;
896
897         /* Repack the TCR. Just care about TTBR0 for now */
898         val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
899         val |= ARM_SMMU_TCR2CD(tcr, TG0);
900         val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
901         val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
902         val |= ARM_SMMU_TCR2CD(tcr, SH0);
903         val |= ARM_SMMU_TCR2CD(tcr, EPD0);
904         val |= ARM_SMMU_TCR2CD(tcr, EPD1);
905         val |= ARM_SMMU_TCR2CD(tcr, IPS);
906         val |= ARM_SMMU_TCR2CD(tcr, TBI0);
907
908         return val;
909 }
910
911 static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
912                                     struct arm_smmu_s1_cfg *cfg)
913 {
914         u64 val;
915
916         /*
917          * We don't need to issue any invalidation here, as we'll invalidate
918          * the STE when installing the new entry anyway.
919          */
920         val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
921 #ifdef __BIG_ENDIAN
922               CTXDESC_CD_0_ENDI |
923 #endif
924               CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
925               CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
926               CTXDESC_CD_0_V;
927         cfg->cdptr[0] = cpu_to_le64(val);
928
929         val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
930         cfg->cdptr[1] = cpu_to_le64(val);
931
932         cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
933 }
934
935 /* Stream table manipulation functions */
936 static void
937 arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
938 {
939         u64 val = 0;
940
941         val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
942                 << STRTAB_L1_DESC_SPAN_SHIFT;
943         val |= desc->l2ptr_dma &
944                STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
945
946         *dst = cpu_to_le64(val);
947 }
948
949 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
950 {
951         struct arm_smmu_cmdq_ent cmd = {
952                 .opcode = CMDQ_OP_CFGI_STE,
953                 .cfgi   = {
954                         .sid    = sid,
955                         .leaf   = true,
956                 },
957         };
958
959         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
960         cmd.opcode = CMDQ_OP_CMD_SYNC;
961         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
962 }
963
964 static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
965                                       __le64 *dst, struct arm_smmu_strtab_ent *ste)
966 {
967         /*
968          * This is hideously complicated, but we only really care about
969          * three cases at the moment:
970          *
971          * 1. Invalid (all zero) -> bypass  (init)
972          * 2. Bypass -> translation (attach)
973          * 3. Translation -> bypass (detach)
974          *
975          * Given that we can't update the STE atomically and the SMMU
976          * doesn't read the thing in a defined order, that leaves us
977          * with the following maintenance requirements:
978          *
979          * 1. Update Config, return (init time STEs aren't live)
980          * 2. Write everything apart from dword 0, sync, write dword 0, sync
981          * 3. Update Config, sync
982          */
983         u64 val = le64_to_cpu(dst[0]);
984         bool ste_live = false;
985         struct arm_smmu_cmdq_ent prefetch_cmd = {
986                 .opcode         = CMDQ_OP_PREFETCH_CFG,
987                 .prefetch       = {
988                         .sid    = sid,
989                 },
990         };
991
992         if (val & STRTAB_STE_0_V) {
993                 u64 cfg;
994
995                 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
996                 switch (cfg) {
997                 case STRTAB_STE_0_CFG_BYPASS:
998                         break;
999                 case STRTAB_STE_0_CFG_S1_TRANS:
1000                 case STRTAB_STE_0_CFG_S2_TRANS:
1001                         ste_live = true;
1002                         break;
1003                 default:
1004                         BUG(); /* STE corruption */
1005                 }
1006         }
1007
1008         /* Nuke the existing Config, as we're going to rewrite it */
1009         val &= ~(STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT);
1010
1011         if (ste->valid)
1012                 val |= STRTAB_STE_0_V;
1013         else
1014                 val &= ~STRTAB_STE_0_V;
1015
1016         if (ste->bypass) {
1017                 val |= disable_bypass ? STRTAB_STE_0_CFG_ABORT
1018                                       : STRTAB_STE_0_CFG_BYPASS;
1019                 dst[0] = cpu_to_le64(val);
1020                 dst[2] = 0; /* Nuke the VMID */
1021                 if (ste_live)
1022                         arm_smmu_sync_ste_for_sid(smmu, sid);
1023                 return;
1024         }
1025
1026         if (ste->s1_cfg) {
1027                 BUG_ON(ste_live);
1028                 dst[1] = cpu_to_le64(
1029                          STRTAB_STE_1_S1C_CACHE_WBRA
1030                          << STRTAB_STE_1_S1CIR_SHIFT |
1031                          STRTAB_STE_1_S1C_CACHE_WBRA
1032                          << STRTAB_STE_1_S1COR_SHIFT |
1033                          STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
1034                          STRTAB_STE_1_S1STALLD |
1035 #ifdef CONFIG_PCI_ATS
1036                          STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1037 #endif
1038                          STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT);
1039
1040                 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1041                         << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1042                         STRTAB_STE_0_CFG_S1_TRANS;
1043
1044         }
1045
1046         if (ste->s2_cfg) {
1047                 BUG_ON(ste_live);
1048                 dst[2] = cpu_to_le64(
1049                          ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1050                          (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1051                           << STRTAB_STE_2_VTCR_SHIFT |
1052 #ifdef __BIG_ENDIAN
1053                          STRTAB_STE_2_S2ENDI |
1054 #endif
1055                          STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1056                          STRTAB_STE_2_S2R);
1057
1058                 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1059                          STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1060
1061                 val |= STRTAB_STE_0_CFG_S2_TRANS;
1062         }
1063
1064         arm_smmu_sync_ste_for_sid(smmu, sid);
1065         dst[0] = cpu_to_le64(val);
1066         arm_smmu_sync_ste_for_sid(smmu, sid);
1067
1068         /* It's likely that we'll want to use the new STE soon */
1069         if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1070                 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1071 }
1072
1073 static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1074 {
1075         unsigned int i;
1076         struct arm_smmu_strtab_ent ste = {
1077                 .valid  = true,
1078                 .bypass = true,
1079         };
1080
1081         for (i = 0; i < nent; ++i) {
1082                 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1083                 strtab += STRTAB_STE_DWORDS;
1084         }
1085 }
1086
1087 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1088 {
1089         size_t size;
1090         void *strtab;
1091         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1092         struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1093
1094         if (desc->l2ptr)
1095                 return 0;
1096
1097         size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1098         strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1099
1100         desc->span = STRTAB_SPLIT + 1;
1101         desc->l2ptr = dma_zalloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1102                                           GFP_KERNEL);
1103         if (!desc->l2ptr) {
1104                 dev_err(smmu->dev,
1105                         "failed to allocate l2 stream table for SID %u\n",
1106                         sid);
1107                 return -ENOMEM;
1108         }
1109
1110         arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1111         arm_smmu_write_strtab_l1_desc(strtab, desc);
1112         return 0;
1113 }
1114
1115 /* IRQ and event handlers */
1116 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1117 {
1118         int i;
1119         struct arm_smmu_device *smmu = dev;
1120         struct arm_smmu_queue *q = &smmu->evtq.q;
1121         u64 evt[EVTQ_ENT_DWORDS];
1122
1123         while (!queue_remove_raw(q, evt)) {
1124                 u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
1125
1126                 dev_info(smmu->dev, "event 0x%02x received:\n", id);
1127                 for (i = 0; i < ARRAY_SIZE(evt); ++i)
1128                         dev_info(smmu->dev, "\t0x%016llx\n",
1129                                  (unsigned long long)evt[i]);
1130         }
1131
1132         /* Sync our overflow flag, as we believe we're up to speed */
1133         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1134         return IRQ_HANDLED;
1135 }
1136
1137 static irqreturn_t arm_smmu_evtq_handler(int irq, void *dev)
1138 {
1139         irqreturn_t ret = IRQ_WAKE_THREAD;
1140         struct arm_smmu_device *smmu = dev;
1141         struct arm_smmu_queue *q = &smmu->evtq.q;
1142
1143         /*
1144          * Not much we can do on overflow, so scream and pretend we're
1145          * trying harder.
1146          */
1147         if (queue_sync_prod(q) == -EOVERFLOW)
1148                 dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1149         else if (queue_empty(q))
1150                 ret = IRQ_NONE;
1151
1152         return ret;
1153 }
1154
1155 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1156 {
1157         struct arm_smmu_device *smmu = dev;
1158         struct arm_smmu_queue *q = &smmu->priq.q;
1159         u64 evt[PRIQ_ENT_DWORDS];
1160
1161         while (!queue_remove_raw(q, evt)) {
1162                 u32 sid, ssid;
1163                 u16 grpid;
1164                 bool ssv, last;
1165
1166                 sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1167                 ssv = evt[0] & PRIQ_0_SSID_V;
1168                 ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1169                 last = evt[0] & PRIQ_0_PRG_LAST;
1170                 grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1171
1172                 dev_info(smmu->dev, "unexpected PRI request received:\n");
1173                 dev_info(smmu->dev,
1174                          "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1175                          sid, ssid, grpid, last ? "L" : "",
1176                          evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1177                          evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1178                          evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1179                          evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1180                          evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1181
1182                 if (last) {
1183                         struct arm_smmu_cmdq_ent cmd = {
1184                                 .opcode                 = CMDQ_OP_PRI_RESP,
1185                                 .substream_valid        = ssv,
1186                                 .pri                    = {
1187                                         .sid    = sid,
1188                                         .ssid   = ssid,
1189                                         .grpid  = grpid,
1190                                         .resp   = PRI_RESP_DENY,
1191                                 },
1192                         };
1193
1194                         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1195                 }
1196         }
1197
1198         /* Sync our overflow flag, as we believe we're up to speed */
1199         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1200         return IRQ_HANDLED;
1201 }
1202
1203 static irqreturn_t arm_smmu_priq_handler(int irq, void *dev)
1204 {
1205         irqreturn_t ret = IRQ_WAKE_THREAD;
1206         struct arm_smmu_device *smmu = dev;
1207         struct arm_smmu_queue *q = &smmu->priq.q;
1208
1209         /* PRIQ overflow indicates a programming error */
1210         if (queue_sync_prod(q) == -EOVERFLOW)
1211                 dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1212         else if (queue_empty(q))
1213                 ret = IRQ_NONE;
1214
1215         return ret;
1216 }
1217
1218 static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1219 {
1220         /* We don't actually use CMD_SYNC interrupts for anything */
1221         return IRQ_HANDLED;
1222 }
1223
1224 static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1225
1226 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1227 {
1228         u32 gerror, gerrorn;
1229         struct arm_smmu_device *smmu = dev;
1230
1231         gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1232         gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1233
1234         gerror ^= gerrorn;
1235         if (!(gerror & GERROR_ERR_MASK))
1236                 return IRQ_NONE; /* No errors pending */
1237
1238         dev_warn(smmu->dev,
1239                  "unexpected global error reported (0x%08x), this could be serious\n",
1240                  gerror);
1241
1242         if (gerror & GERROR_SFM_ERR) {
1243                 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1244                 arm_smmu_device_disable(smmu);
1245         }
1246
1247         if (gerror & GERROR_MSI_GERROR_ABT_ERR)
1248                 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1249
1250         if (gerror & GERROR_MSI_PRIQ_ABT_ERR) {
1251                 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1252                 arm_smmu_priq_handler(irq, smmu->dev);
1253         }
1254
1255         if (gerror & GERROR_MSI_EVTQ_ABT_ERR) {
1256                 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1257                 arm_smmu_evtq_handler(irq, smmu->dev);
1258         }
1259
1260         if (gerror & GERROR_MSI_CMDQ_ABT_ERR) {
1261                 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1262                 arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1263         }
1264
1265         if (gerror & GERROR_PRIQ_ABT_ERR)
1266                 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1267
1268         if (gerror & GERROR_EVTQ_ABT_ERR)
1269                 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1270
1271         if (gerror & GERROR_CMDQ_ERR)
1272                 arm_smmu_cmdq_skip_err(smmu);
1273
1274         writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1275         return IRQ_HANDLED;
1276 }
1277
1278 /* IO_PGTABLE API */
1279 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1280 {
1281         struct arm_smmu_cmdq_ent cmd;
1282
1283         cmd.opcode = CMDQ_OP_CMD_SYNC;
1284         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1285 }
1286
1287 static void arm_smmu_tlb_sync(void *cookie)
1288 {
1289         struct arm_smmu_domain *smmu_domain = cookie;
1290         __arm_smmu_tlb_sync(smmu_domain->smmu);
1291 }
1292
1293 static void arm_smmu_tlb_inv_context(void *cookie)
1294 {
1295         struct arm_smmu_domain *smmu_domain = cookie;
1296         struct arm_smmu_device *smmu = smmu_domain->smmu;
1297         struct arm_smmu_cmdq_ent cmd;
1298
1299         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1300                 cmd.opcode      = CMDQ_OP_TLBI_NH_ASID;
1301                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1302                 cmd.tlbi.vmid   = 0;
1303         } else {
1304                 cmd.opcode      = CMDQ_OP_TLBI_S12_VMALL;
1305                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1306         }
1307
1308         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1309         __arm_smmu_tlb_sync(smmu);
1310 }
1311
1312 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
1313                                           bool leaf, void *cookie)
1314 {
1315         struct arm_smmu_domain *smmu_domain = cookie;
1316         struct arm_smmu_device *smmu = smmu_domain->smmu;
1317         struct arm_smmu_cmdq_ent cmd = {
1318                 .tlbi = {
1319                         .leaf   = leaf,
1320                         .addr   = iova,
1321                 },
1322         };
1323
1324         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1325                 cmd.opcode      = CMDQ_OP_TLBI_NH_VA;
1326                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1327         } else {
1328                 cmd.opcode      = CMDQ_OP_TLBI_S2_IPA;
1329                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1330         }
1331
1332         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1333 }
1334
1335 static struct iommu_gather_ops arm_smmu_gather_ops = {
1336         .tlb_flush_all  = arm_smmu_tlb_inv_context,
1337         .tlb_add_flush  = arm_smmu_tlb_inv_range_nosync,
1338         .tlb_sync       = arm_smmu_tlb_sync,
1339 };
1340
1341 /* IOMMU API */
1342 static bool arm_smmu_capable(enum iommu_cap cap)
1343 {
1344         switch (cap) {
1345         case IOMMU_CAP_CACHE_COHERENCY:
1346                 return true;
1347         case IOMMU_CAP_INTR_REMAP:
1348                 return true; /* MSIs are just memory writes */
1349         case IOMMU_CAP_NOEXEC:
1350                 return true;
1351         default:
1352                 return false;
1353         }
1354 }
1355
1356 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1357 {
1358         struct arm_smmu_domain *smmu_domain;
1359
1360         if (type != IOMMU_DOMAIN_UNMANAGED)
1361                 return NULL;
1362
1363         /*
1364          * Allocate the domain and initialise some of its data structures.
1365          * We can't really do anything meaningful until we've added a
1366          * master.
1367          */
1368         smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1369         if (!smmu_domain)
1370                 return NULL;
1371
1372         mutex_init(&smmu_domain->init_mutex);
1373         spin_lock_init(&smmu_domain->pgtbl_lock);
1374         return &smmu_domain->domain;
1375 }
1376
1377 static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1378 {
1379         int idx, size = 1 << span;
1380
1381         do {
1382                 idx = find_first_zero_bit(map, size);
1383                 if (idx == size)
1384                         return -ENOSPC;
1385         } while (test_and_set_bit(idx, map));
1386
1387         return idx;
1388 }
1389
1390 static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1391 {
1392         clear_bit(idx, map);
1393 }
1394
1395 static void arm_smmu_domain_free(struct iommu_domain *domain)
1396 {
1397         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1398         struct arm_smmu_device *smmu = smmu_domain->smmu;
1399
1400         free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1401
1402         /* Free the CD and ASID, if we allocated them */
1403         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1404                 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1405
1406                 if (cfg->cdptr) {
1407                         dma_free_coherent(smmu_domain->smmu->dev,
1408                                           CTXDESC_CD_DWORDS << 3,
1409                                           cfg->cdptr,
1410                                           cfg->cdptr_dma);
1411
1412                         arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1413                 }
1414         } else {
1415                 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1416                 if (cfg->vmid)
1417                         arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1418         }
1419
1420         kfree(smmu_domain);
1421 }
1422
1423 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1424                                        struct io_pgtable_cfg *pgtbl_cfg)
1425 {
1426         int ret;
1427         u16 asid;
1428         struct arm_smmu_device *smmu = smmu_domain->smmu;
1429         struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1430
1431         asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1432         if (IS_ERR_VALUE(asid))
1433                 return asid;
1434
1435         cfg->cdptr = dma_zalloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1436                                          &cfg->cdptr_dma, GFP_KERNEL);
1437         if (!cfg->cdptr) {
1438                 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1439                 goto out_free_asid;
1440         }
1441
1442         cfg->cd.asid    = asid;
1443         cfg->cd.ttbr    = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1444         cfg->cd.tcr     = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1445         cfg->cd.mair    = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1446         return 0;
1447
1448 out_free_asid:
1449         arm_smmu_bitmap_free(smmu->asid_map, asid);
1450         return ret;
1451 }
1452
1453 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1454                                        struct io_pgtable_cfg *pgtbl_cfg)
1455 {
1456         u16 vmid;
1457         struct arm_smmu_device *smmu = smmu_domain->smmu;
1458         struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1459
1460         vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1461         if (IS_ERR_VALUE(vmid))
1462                 return vmid;
1463
1464         cfg->vmid       = vmid;
1465         cfg->vttbr      = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1466         cfg->vtcr       = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1467         return 0;
1468 }
1469
1470 static struct iommu_ops arm_smmu_ops;
1471
1472 static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1473 {
1474         int ret;
1475         unsigned long ias, oas;
1476         enum io_pgtable_fmt fmt;
1477         struct io_pgtable_cfg pgtbl_cfg;
1478         struct io_pgtable_ops *pgtbl_ops;
1479         int (*finalise_stage_fn)(struct arm_smmu_domain *,
1480                                  struct io_pgtable_cfg *);
1481         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1482         struct arm_smmu_device *smmu = smmu_domain->smmu;
1483
1484         /* Restrict the stage to what we can actually support */
1485         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1486                 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1487         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1488                 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1489
1490         switch (smmu_domain->stage) {
1491         case ARM_SMMU_DOMAIN_S1:
1492                 ias = VA_BITS;
1493                 oas = smmu->ias;
1494                 fmt = ARM_64_LPAE_S1;
1495                 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1496                 break;
1497         case ARM_SMMU_DOMAIN_NESTED:
1498         case ARM_SMMU_DOMAIN_S2:
1499                 ias = smmu->ias;
1500                 oas = smmu->oas;
1501                 fmt = ARM_64_LPAE_S2;
1502                 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1503                 break;
1504         default:
1505                 return -EINVAL;
1506         }
1507
1508         pgtbl_cfg = (struct io_pgtable_cfg) {
1509                 .pgsize_bitmap  = arm_smmu_ops.pgsize_bitmap,
1510                 .ias            = ias,
1511                 .oas            = oas,
1512                 .tlb            = &arm_smmu_gather_ops,
1513                 .iommu_dev      = smmu->dev,
1514         };
1515
1516         pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1517         if (!pgtbl_ops)
1518                 return -ENOMEM;
1519
1520         arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1521         smmu_domain->pgtbl_ops = pgtbl_ops;
1522
1523         ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1524         if (IS_ERR_VALUE(ret))
1525                 free_io_pgtable_ops(pgtbl_ops);
1526
1527         return ret;
1528 }
1529
1530 static struct arm_smmu_group *arm_smmu_group_get(struct device *dev)
1531 {
1532         struct iommu_group *group;
1533         struct arm_smmu_group *smmu_group;
1534
1535         group = iommu_group_get(dev);
1536         if (!group)
1537                 return NULL;
1538
1539         smmu_group = iommu_group_get_iommudata(group);
1540         iommu_group_put(group);
1541         return smmu_group;
1542 }
1543
1544 static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1545 {
1546         __le64 *step;
1547         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1548
1549         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1550                 struct arm_smmu_strtab_l1_desc *l1_desc;
1551                 int idx;
1552
1553                 /* Two-level walk */
1554                 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1555                 l1_desc = &cfg->l1_desc[idx];
1556                 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1557                 step = &l1_desc->l2ptr[idx];
1558         } else {
1559                 /* Simple linear lookup */
1560                 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1561         }
1562
1563         return step;
1564 }
1565
1566 static int arm_smmu_install_ste_for_group(struct arm_smmu_group *smmu_group)
1567 {
1568         int i;
1569         struct arm_smmu_domain *smmu_domain = smmu_group->domain;
1570         struct arm_smmu_strtab_ent *ste = &smmu_group->ste;
1571         struct arm_smmu_device *smmu = smmu_group->smmu;
1572
1573         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1574                 ste->s1_cfg = &smmu_domain->s1_cfg;
1575                 ste->s2_cfg = NULL;
1576                 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1577         } else {
1578                 ste->s1_cfg = NULL;
1579                 ste->s2_cfg = &smmu_domain->s2_cfg;
1580         }
1581
1582         for (i = 0; i < smmu_group->num_sids; ++i) {
1583                 u32 sid = smmu_group->sids[i];
1584                 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1585
1586                 arm_smmu_write_strtab_ent(smmu, sid, step, ste);
1587         }
1588
1589         return 0;
1590 }
1591
1592 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1593 {
1594         int ret = 0;
1595         struct arm_smmu_device *smmu;
1596         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1597         struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1598
1599         if (!smmu_group)
1600                 return -ENOENT;
1601
1602         /* Already attached to a different domain? */
1603         if (smmu_group->domain && smmu_group->domain != smmu_domain)
1604                 return -EEXIST;
1605
1606         smmu = smmu_group->smmu;
1607         mutex_lock(&smmu_domain->init_mutex);
1608
1609         if (!smmu_domain->smmu) {
1610                 smmu_domain->smmu = smmu;
1611                 ret = arm_smmu_domain_finalise(domain);
1612                 if (ret) {
1613                         smmu_domain->smmu = NULL;
1614                         goto out_unlock;
1615                 }
1616         } else if (smmu_domain->smmu != smmu) {
1617                 dev_err(dev,
1618                         "cannot attach to SMMU %s (upstream of %s)\n",
1619                         dev_name(smmu_domain->smmu->dev),
1620                         dev_name(smmu->dev));
1621                 ret = -ENXIO;
1622                 goto out_unlock;
1623         }
1624
1625         /* Group already attached to this domain? */
1626         if (smmu_group->domain)
1627                 goto out_unlock;
1628
1629         smmu_group->domain      = smmu_domain;
1630         smmu_group->ste.bypass  = false;
1631
1632         ret = arm_smmu_install_ste_for_group(smmu_group);
1633         if (IS_ERR_VALUE(ret))
1634                 smmu_group->domain = NULL;
1635
1636 out_unlock:
1637         mutex_unlock(&smmu_domain->init_mutex);
1638         return ret;
1639 }
1640
1641 static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
1642 {
1643         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1644         struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1645
1646         BUG_ON(!smmu_domain);
1647         BUG_ON(!smmu_group);
1648
1649         mutex_lock(&smmu_domain->init_mutex);
1650         BUG_ON(smmu_group->domain != smmu_domain);
1651
1652         smmu_group->ste.bypass = true;
1653         if (IS_ERR_VALUE(arm_smmu_install_ste_for_group(smmu_group)))
1654                 dev_warn(dev, "failed to install bypass STE\n");
1655
1656         smmu_group->domain = NULL;
1657         mutex_unlock(&smmu_domain->init_mutex);
1658 }
1659
1660 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1661                         phys_addr_t paddr, size_t size, int prot)
1662 {
1663         int ret;
1664         unsigned long flags;
1665         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1666         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1667
1668         if (!ops)
1669                 return -ENODEV;
1670
1671         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1672         ret = ops->map(ops, iova, paddr, size, prot);
1673         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1674         return ret;
1675 }
1676
1677 static size_t
1678 arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1679 {
1680         size_t ret;
1681         unsigned long flags;
1682         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1683         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1684
1685         if (!ops)
1686                 return 0;
1687
1688         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1689         ret = ops->unmap(ops, iova, size);
1690         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1691         return ret;
1692 }
1693
1694 static phys_addr_t
1695 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1696 {
1697         phys_addr_t ret;
1698         unsigned long flags;
1699         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1700         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1701
1702         if (!ops)
1703                 return 0;
1704
1705         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1706         ret = ops->iova_to_phys(ops, iova);
1707         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1708
1709         return ret;
1710 }
1711
1712 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *sidp)
1713 {
1714         *(u32 *)sidp = alias;
1715         return 0; /* Continue walking */
1716 }
1717
1718 static void __arm_smmu_release_pci_iommudata(void *data)
1719 {
1720         kfree(data);
1721 }
1722
1723 static struct arm_smmu_device *arm_smmu_get_for_pci_dev(struct pci_dev *pdev)
1724 {
1725         struct device_node *of_node;
1726         struct arm_smmu_device *curr, *smmu = NULL;
1727         struct pci_bus *bus = pdev->bus;
1728
1729         /* Walk up to the root bus */
1730         while (!pci_is_root_bus(bus))
1731                 bus = bus->parent;
1732
1733         /* Follow the "iommus" phandle from the host controller */
1734         of_node = of_parse_phandle(bus->bridge->parent->of_node, "iommus", 0);
1735         if (!of_node)
1736                 return NULL;
1737
1738         /* See if we can find an SMMU corresponding to the phandle */
1739         spin_lock(&arm_smmu_devices_lock);
1740         list_for_each_entry(curr, &arm_smmu_devices, list) {
1741                 if (curr->dev->of_node == of_node) {
1742                         smmu = curr;
1743                         break;
1744                 }
1745         }
1746         spin_unlock(&arm_smmu_devices_lock);
1747         of_node_put(of_node);
1748         return smmu;
1749 }
1750
1751 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1752 {
1753         unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1754
1755         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1756                 limit *= 1UL << STRTAB_SPLIT;
1757
1758         return sid < limit;
1759 }
1760
1761 static int arm_smmu_add_device(struct device *dev)
1762 {
1763         int i, ret;
1764         u32 sid, *sids;
1765         struct pci_dev *pdev;
1766         struct iommu_group *group;
1767         struct arm_smmu_group *smmu_group;
1768         struct arm_smmu_device *smmu;
1769
1770         /* We only support PCI, for now */
1771         if (!dev_is_pci(dev))
1772                 return -ENODEV;
1773
1774         pdev = to_pci_dev(dev);
1775         group = iommu_group_get_for_dev(dev);
1776         if (IS_ERR(group))
1777                 return PTR_ERR(group);
1778
1779         smmu_group = iommu_group_get_iommudata(group);
1780         if (!smmu_group) {
1781                 smmu = arm_smmu_get_for_pci_dev(pdev);
1782                 if (!smmu) {
1783                         ret = -ENOENT;
1784                         goto out_put_group;
1785                 }
1786
1787                 smmu_group = kzalloc(sizeof(*smmu_group), GFP_KERNEL);
1788                 if (!smmu_group) {
1789                         ret = -ENOMEM;
1790                         goto out_put_group;
1791                 }
1792
1793                 smmu_group->ste.valid   = true;
1794                 smmu_group->smmu        = smmu;
1795                 iommu_group_set_iommudata(group, smmu_group,
1796                                           __arm_smmu_release_pci_iommudata);
1797         } else {
1798                 smmu = smmu_group->smmu;
1799         }
1800
1801         /* Assume SID == RID until firmware tells us otherwise */
1802         pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
1803         for (i = 0; i < smmu_group->num_sids; ++i) {
1804                 /* If we already know about this SID, then we're done */
1805                 if (smmu_group->sids[i] == sid)
1806                         return 0;
1807         }
1808
1809         /* Check the SID is in range of the SMMU and our stream table */
1810         if (!arm_smmu_sid_in_range(smmu, sid)) {
1811                 ret = -ERANGE;
1812                 goto out_put_group;
1813         }
1814
1815         /* Ensure l2 strtab is initialised */
1816         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1817                 ret = arm_smmu_init_l2_strtab(smmu, sid);
1818                 if (ret)
1819                         goto out_put_group;
1820         }
1821
1822         /* Resize the SID array for the group */
1823         smmu_group->num_sids++;
1824         sids = krealloc(smmu_group->sids, smmu_group->num_sids * sizeof(*sids),
1825                         GFP_KERNEL);
1826         if (!sids) {
1827                 smmu_group->num_sids--;
1828                 ret = -ENOMEM;
1829                 goto out_put_group;
1830         }
1831
1832         /* Add the new SID */
1833         sids[smmu_group->num_sids - 1] = sid;
1834         smmu_group->sids = sids;
1835         return 0;
1836
1837 out_put_group:
1838         iommu_group_put(group);
1839         return ret;
1840 }
1841
1842 static void arm_smmu_remove_device(struct device *dev)
1843 {
1844         iommu_group_remove_device(dev);
1845 }
1846
1847 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1848                                     enum iommu_attr attr, void *data)
1849 {
1850         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1851
1852         switch (attr) {
1853         case DOMAIN_ATTR_NESTING:
1854                 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1855                 return 0;
1856         default:
1857                 return -ENODEV;
1858         }
1859 }
1860
1861 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1862                                     enum iommu_attr attr, void *data)
1863 {
1864         int ret = 0;
1865         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1866
1867         mutex_lock(&smmu_domain->init_mutex);
1868
1869         switch (attr) {
1870         case DOMAIN_ATTR_NESTING:
1871                 if (smmu_domain->smmu) {
1872                         ret = -EPERM;
1873                         goto out_unlock;
1874                 }
1875
1876                 if (*(int *)data)
1877                         smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1878                 else
1879                         smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1880
1881                 break;
1882         default:
1883                 ret = -ENODEV;
1884         }
1885
1886 out_unlock:
1887         mutex_unlock(&smmu_domain->init_mutex);
1888         return ret;
1889 }
1890
1891 static struct iommu_ops arm_smmu_ops = {
1892         .capable                = arm_smmu_capable,
1893         .domain_alloc           = arm_smmu_domain_alloc,
1894         .domain_free            = arm_smmu_domain_free,
1895         .attach_dev             = arm_smmu_attach_dev,
1896         .detach_dev             = arm_smmu_detach_dev,
1897         .map                    = arm_smmu_map,
1898         .unmap                  = arm_smmu_unmap,
1899         .iova_to_phys           = arm_smmu_iova_to_phys,
1900         .add_device             = arm_smmu_add_device,
1901         .remove_device          = arm_smmu_remove_device,
1902         .domain_get_attr        = arm_smmu_domain_get_attr,
1903         .domain_set_attr        = arm_smmu_domain_set_attr,
1904         .pgsize_bitmap          = -1UL, /* Restricted during device attach */
1905 };
1906
1907 /* Probing and initialisation functions */
1908 static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1909                                    struct arm_smmu_queue *q,
1910                                    unsigned long prod_off,
1911                                    unsigned long cons_off,
1912                                    size_t dwords)
1913 {
1914         size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
1915
1916         q->base = dma_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
1917         if (!q->base) {
1918                 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
1919                         qsz);
1920                 return -ENOMEM;
1921         }
1922
1923         q->prod_reg     = smmu->base + prod_off;
1924         q->cons_reg     = smmu->base + cons_off;
1925         q->ent_dwords   = dwords;
1926
1927         q->q_base  = Q_BASE_RWA;
1928         q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
1929         q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
1930                      << Q_BASE_LOG2SIZE_SHIFT;
1931
1932         q->prod = q->cons = 0;
1933         return 0;
1934 }
1935
1936 static void arm_smmu_free_one_queue(struct arm_smmu_device *smmu,
1937                                     struct arm_smmu_queue *q)
1938 {
1939         size_t qsz = ((1 << q->max_n_shift) * q->ent_dwords) << 3;
1940
1941         dma_free_coherent(smmu->dev, qsz, q->base, q->base_dma);
1942 }
1943
1944 static void arm_smmu_free_queues(struct arm_smmu_device *smmu)
1945 {
1946         arm_smmu_free_one_queue(smmu, &smmu->cmdq.q);
1947         arm_smmu_free_one_queue(smmu, &smmu->evtq.q);
1948
1949         if (smmu->features & ARM_SMMU_FEAT_PRI)
1950                 arm_smmu_free_one_queue(smmu, &smmu->priq.q);
1951 }
1952
1953 static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
1954 {
1955         int ret;
1956
1957         /* cmdq */
1958         spin_lock_init(&smmu->cmdq.lock);
1959         ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
1960                                       ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
1961         if (ret)
1962                 goto out;
1963
1964         /* evtq */
1965         ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
1966                                       ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
1967         if (ret)
1968                 goto out_free_cmdq;
1969
1970         /* priq */
1971         if (!(smmu->features & ARM_SMMU_FEAT_PRI))
1972                 return 0;
1973
1974         ret = arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
1975                                       ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
1976         if (ret)
1977                 goto out_free_evtq;
1978
1979         return 0;
1980
1981 out_free_evtq:
1982         arm_smmu_free_one_queue(smmu, &smmu->evtq.q);
1983 out_free_cmdq:
1984         arm_smmu_free_one_queue(smmu, &smmu->cmdq.q);
1985 out:
1986         return ret;
1987 }
1988
1989 static void arm_smmu_free_l2_strtab(struct arm_smmu_device *smmu)
1990 {
1991         int i;
1992         size_t size;
1993         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1994
1995         size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1996         for (i = 0; i < cfg->num_l1_ents; ++i) {
1997                 struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[i];
1998
1999                 if (!desc->l2ptr)
2000                         continue;
2001
2002                 dma_free_coherent(smmu->dev, size, desc->l2ptr,
2003                                   desc->l2ptr_dma);
2004         }
2005 }
2006
2007 static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
2008 {
2009         unsigned int i;
2010         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2011         size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
2012         void *strtab = smmu->strtab_cfg.strtab;
2013
2014         cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
2015         if (!cfg->l1_desc) {
2016                 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
2017                 return -ENOMEM;
2018         }
2019
2020         for (i = 0; i < cfg->num_l1_ents; ++i) {
2021                 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
2022                 strtab += STRTAB_L1_DESC_DWORDS << 3;
2023         }
2024
2025         return 0;
2026 }
2027
2028 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
2029 {
2030         void *strtab;
2031         u64 reg;
2032         u32 size, l1size;
2033         int ret;
2034         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2035
2036         /*
2037          * If we can resolve everything with a single L2 table, then we
2038          * just need a single L1 descriptor. Otherwise, calculate the L1
2039          * size, capped to the SIDSIZE.
2040          */
2041         if (smmu->sid_bits < STRTAB_SPLIT) {
2042                 size = 0;
2043         } else {
2044                 size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
2045                 size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2046         }
2047         cfg->num_l1_ents = 1 << size;
2048
2049         size += STRTAB_SPLIT;
2050         if (size < smmu->sid_bits)
2051                 dev_warn(smmu->dev,
2052                          "2-level strtab only covers %u/%u bits of SID\n",
2053                          size, smmu->sid_bits);
2054
2055         l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2056         strtab = dma_zalloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2057                                      GFP_KERNEL);
2058         if (!strtab) {
2059                 dev_err(smmu->dev,
2060                         "failed to allocate l1 stream table (%u bytes)\n",
2061                         size);
2062                 return -ENOMEM;
2063         }
2064         cfg->strtab = strtab;
2065
2066         /* Configure strtab_base_cfg for 2 levels */
2067         reg  = STRTAB_BASE_CFG_FMT_2LVL;
2068         reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2069                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2070         reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2071                 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2072         cfg->strtab_base_cfg = reg;
2073
2074         ret = arm_smmu_init_l1_strtab(smmu);
2075         if (ret)
2076                 dma_free_coherent(smmu->dev,
2077                                   l1size,
2078                                   strtab,
2079                                   cfg->strtab_dma);
2080         return ret;
2081 }
2082
2083 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2084 {
2085         void *strtab;
2086         u64 reg;
2087         u32 size;
2088         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2089
2090         size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2091         strtab = dma_zalloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2092                                      GFP_KERNEL);
2093         if (!strtab) {
2094                 dev_err(smmu->dev,
2095                         "failed to allocate linear stream table (%u bytes)\n",
2096                         size);
2097                 return -ENOMEM;
2098         }
2099         cfg->strtab = strtab;
2100         cfg->num_l1_ents = 1 << smmu->sid_bits;
2101
2102         /* Configure strtab_base_cfg for a linear table covering all SIDs */
2103         reg  = STRTAB_BASE_CFG_FMT_LINEAR;
2104         reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2105                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2106         cfg->strtab_base_cfg = reg;
2107
2108         arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2109         return 0;
2110 }
2111
2112 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2113 {
2114         u64 reg;
2115         int ret;
2116
2117         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2118                 ret = arm_smmu_init_strtab_2lvl(smmu);
2119         else
2120                 ret = arm_smmu_init_strtab_linear(smmu);
2121
2122         if (ret)
2123                 return ret;
2124
2125         /* Set the strtab base address */
2126         reg  = smmu->strtab_cfg.strtab_dma &
2127                STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2128         reg |= STRTAB_BASE_RA;
2129         smmu->strtab_cfg.strtab_base = reg;
2130
2131         /* Allocate the first VMID for stage-2 bypass STEs */
2132         set_bit(0, smmu->vmid_map);
2133         return 0;
2134 }
2135
2136 static void arm_smmu_free_strtab(struct arm_smmu_device *smmu)
2137 {
2138         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2139         u32 size = cfg->num_l1_ents;
2140
2141         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
2142                 arm_smmu_free_l2_strtab(smmu);
2143                 size *= STRTAB_L1_DESC_DWORDS << 3;
2144         } else {
2145                 size *= STRTAB_STE_DWORDS * 3;
2146         }
2147
2148         dma_free_coherent(smmu->dev, size, cfg->strtab, cfg->strtab_dma);
2149 }
2150
2151 static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2152 {
2153         int ret;
2154
2155         ret = arm_smmu_init_queues(smmu);
2156         if (ret)
2157                 return ret;
2158
2159         ret = arm_smmu_init_strtab(smmu);
2160         if (ret)
2161                 goto out_free_queues;
2162
2163         return 0;
2164
2165 out_free_queues:
2166         arm_smmu_free_queues(smmu);
2167         return ret;
2168 }
2169
2170 static void arm_smmu_free_structures(struct arm_smmu_device *smmu)
2171 {
2172         arm_smmu_free_strtab(smmu);
2173         arm_smmu_free_queues(smmu);
2174 }
2175
2176 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2177                                    unsigned int reg_off, unsigned int ack_off)
2178 {
2179         u32 reg;
2180
2181         writel_relaxed(val, smmu->base + reg_off);
2182         return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2183                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2184 }
2185
2186 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2187 {
2188         int ret, irq;
2189         u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
2190
2191         /* Disable IRQs first */
2192         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2193                                       ARM_SMMU_IRQ_CTRLACK);
2194         if (ret) {
2195                 dev_err(smmu->dev, "failed to disable irqs\n");
2196                 return ret;
2197         }
2198
2199         /* Clear the MSI address regs */
2200         writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2201         writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2202
2203         /* Request wired interrupt lines */
2204         irq = smmu->evtq.q.irq;
2205         if (irq) {
2206                 ret = devm_request_threaded_irq(smmu->dev, irq,
2207                                                 arm_smmu_evtq_handler,
2208                                                 arm_smmu_evtq_thread,
2209                                                 0, "arm-smmu-v3-evtq", smmu);
2210                 if (IS_ERR_VALUE(ret))
2211                         dev_warn(smmu->dev, "failed to enable evtq irq\n");
2212         }
2213
2214         irq = smmu->cmdq.q.irq;
2215         if (irq) {
2216                 ret = devm_request_irq(smmu->dev, irq,
2217                                        arm_smmu_cmdq_sync_handler, 0,
2218                                        "arm-smmu-v3-cmdq-sync", smmu);
2219                 if (IS_ERR_VALUE(ret))
2220                         dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2221         }
2222
2223         irq = smmu->gerr_irq;
2224         if (irq) {
2225                 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2226                                        0, "arm-smmu-v3-gerror", smmu);
2227                 if (IS_ERR_VALUE(ret))
2228                         dev_warn(smmu->dev, "failed to enable gerror irq\n");
2229         }
2230
2231         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2232                 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2233
2234                 irq = smmu->priq.q.irq;
2235                 if (irq) {
2236                         ret = devm_request_threaded_irq(smmu->dev, irq,
2237                                                         arm_smmu_priq_handler,
2238                                                         arm_smmu_priq_thread,
2239                                                         0, "arm-smmu-v3-priq",
2240                                                         smmu);
2241                         if (IS_ERR_VALUE(ret))
2242                                 dev_warn(smmu->dev,
2243                                          "failed to enable priq irq\n");
2244                         else
2245                                 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
2246                 }
2247         }
2248
2249         /* Enable interrupt generation on the SMMU */
2250         ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
2251                                       ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2252         if (ret)
2253                 dev_warn(smmu->dev, "failed to enable irqs\n");
2254
2255         return 0;
2256 }
2257
2258 static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2259 {
2260         int ret;
2261
2262         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2263         if (ret)
2264                 dev_err(smmu->dev, "failed to clear cr0\n");
2265
2266         return ret;
2267 }
2268
2269 static int arm_smmu_device_reset(struct arm_smmu_device *smmu)
2270 {
2271         int ret;
2272         u32 reg, enables;
2273         struct arm_smmu_cmdq_ent cmd;
2274
2275         /* Clear CR0 and sync (disables SMMU and queue processing) */
2276         reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2277         if (reg & CR0_SMMUEN)
2278                 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2279
2280         ret = arm_smmu_device_disable(smmu);
2281         if (ret)
2282                 return ret;
2283
2284         /* CR1 (table and queue memory attributes) */
2285         reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2286               (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2287               (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2288               (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2289               (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2290               (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2291         writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2292
2293         /* CR2 (random crap) */
2294         reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2295         writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2296
2297         /* Stream table */
2298         writeq_relaxed(smmu->strtab_cfg.strtab_base,
2299                        smmu->base + ARM_SMMU_STRTAB_BASE);
2300         writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2301                        smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2302
2303         /* Command queue */
2304         writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2305         writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2306         writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2307
2308         enables = CR0_CMDQEN;
2309         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2310                                       ARM_SMMU_CR0ACK);
2311         if (ret) {
2312                 dev_err(smmu->dev, "failed to enable command queue\n");
2313                 return ret;
2314         }
2315
2316         /* Invalidate any cached configuration */
2317         cmd.opcode = CMDQ_OP_CFGI_ALL;
2318         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2319         cmd.opcode = CMDQ_OP_CMD_SYNC;
2320         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2321
2322         /* Invalidate any stale TLB entries */
2323         if (smmu->features & ARM_SMMU_FEAT_HYP) {
2324                 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2325                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2326         }
2327
2328         cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2329         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2330         cmd.opcode = CMDQ_OP_CMD_SYNC;
2331         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2332
2333         /* Event queue */
2334         writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2335         writel_relaxed(smmu->evtq.q.prod, smmu->base + ARM_SMMU_EVTQ_PROD);
2336         writel_relaxed(smmu->evtq.q.cons, smmu->base + ARM_SMMU_EVTQ_CONS);
2337
2338         enables |= CR0_EVTQEN;
2339         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2340                                       ARM_SMMU_CR0ACK);
2341         if (ret) {
2342                 dev_err(smmu->dev, "failed to enable event queue\n");
2343                 return ret;
2344         }
2345
2346         /* PRI queue */
2347         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2348                 writeq_relaxed(smmu->priq.q.q_base,
2349                                smmu->base + ARM_SMMU_PRIQ_BASE);
2350                 writel_relaxed(smmu->priq.q.prod,
2351                                smmu->base + ARM_SMMU_PRIQ_PROD);
2352                 writel_relaxed(smmu->priq.q.cons,
2353                                smmu->base + ARM_SMMU_PRIQ_CONS);
2354
2355                 enables |= CR0_PRIQEN;
2356                 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2357                                               ARM_SMMU_CR0ACK);
2358                 if (ret) {
2359                         dev_err(smmu->dev, "failed to enable PRI queue\n");
2360                         return ret;
2361                 }
2362         }
2363
2364         ret = arm_smmu_setup_irqs(smmu);
2365         if (ret) {
2366                 dev_err(smmu->dev, "failed to setup irqs\n");
2367                 return ret;
2368         }
2369
2370         /* Enable the SMMU interface */
2371         enables |= CR0_SMMUEN;
2372         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2373                                       ARM_SMMU_CR0ACK);
2374         if (ret) {
2375                 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2376                 return ret;
2377         }
2378
2379         return 0;
2380 }
2381
2382 static int arm_smmu_device_probe(struct arm_smmu_device *smmu)
2383 {
2384         u32 reg;
2385         bool coherent;
2386         unsigned long pgsize_bitmap = 0;
2387
2388         /* IDR0 */
2389         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2390
2391         /* 2-level structures */
2392         if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2393                 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2394
2395         if (reg & IDR0_CD2L)
2396                 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2397
2398         /*
2399          * Translation table endianness.
2400          * We currently require the same endianness as the CPU, but this
2401          * could be changed later by adding a new IO_PGTABLE_QUIRK.
2402          */
2403         switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2404         case IDR0_TTENDIAN_MIXED:
2405                 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2406                 break;
2407 #ifdef __BIG_ENDIAN
2408         case IDR0_TTENDIAN_BE:
2409                 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2410                 break;
2411 #else
2412         case IDR0_TTENDIAN_LE:
2413                 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2414                 break;
2415 #endif
2416         default:
2417                 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2418                 return -ENXIO;
2419         }
2420
2421         /* Boolean feature flags */
2422         if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2423                 smmu->features |= ARM_SMMU_FEAT_PRI;
2424
2425         if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2426                 smmu->features |= ARM_SMMU_FEAT_ATS;
2427
2428         if (reg & IDR0_SEV)
2429                 smmu->features |= ARM_SMMU_FEAT_SEV;
2430
2431         if (reg & IDR0_MSI)
2432                 smmu->features |= ARM_SMMU_FEAT_MSI;
2433
2434         if (reg & IDR0_HYP)
2435                 smmu->features |= ARM_SMMU_FEAT_HYP;
2436
2437         /*
2438          * The dma-coherent property is used in preference to the ID
2439          * register, but warn on mismatch.
2440          */
2441         coherent = of_dma_is_coherent(smmu->dev->of_node);
2442         if (coherent)
2443                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2444
2445         if (!!(reg & IDR0_COHACC) != coherent)
2446                 dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2447                          coherent ? "true" : "false");
2448
2449         if (reg & IDR0_STALL_MODEL)
2450                 smmu->features |= ARM_SMMU_FEAT_STALLS;
2451
2452         if (reg & IDR0_S1P)
2453                 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2454
2455         if (reg & IDR0_S2P)
2456                 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2457
2458         if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2459                 dev_err(smmu->dev, "no translation support!\n");
2460                 return -ENXIO;
2461         }
2462
2463         /* We only support the AArch64 table format at present */
2464         switch (reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) {
2465         case IDR0_TTF_AARCH32_64:
2466                 smmu->ias = 40;
2467                 /* Fallthrough */
2468         case IDR0_TTF_AARCH64:
2469                 break;
2470         default:
2471                 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2472                 return -ENXIO;
2473         }
2474
2475         /* ASID/VMID sizes */
2476         smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2477         smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2478
2479         /* IDR1 */
2480         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2481         if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2482                 dev_err(smmu->dev, "embedded implementation not supported\n");
2483                 return -ENXIO;
2484         }
2485
2486         /* Queue sizes, capped at 4k */
2487         smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2488                                        reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2489         if (!smmu->cmdq.q.max_n_shift) {
2490                 /* Odd alignment restrictions on the base, so ignore for now */
2491                 dev_err(smmu->dev, "unit-length command queue not supported\n");
2492                 return -ENXIO;
2493         }
2494
2495         smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2496                                        reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2497         smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2498                                        reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2499
2500         /* SID/SSID sizes */
2501         smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2502         smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2503
2504         /* IDR5 */
2505         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2506
2507         /* Maximum number of outstanding stalls */
2508         smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2509                                 & IDR5_STALL_MAX_MASK;
2510
2511         /* Page sizes */
2512         if (reg & IDR5_GRAN64K)
2513                 pgsize_bitmap |= SZ_64K | SZ_512M;
2514         if (reg & IDR5_GRAN16K)
2515                 pgsize_bitmap |= SZ_16K | SZ_32M;
2516         if (reg & IDR5_GRAN4K)
2517                 pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2518
2519         arm_smmu_ops.pgsize_bitmap &= pgsize_bitmap;
2520
2521         /* Output address size */
2522         switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2523         case IDR5_OAS_32_BIT:
2524                 smmu->oas = 32;
2525                 break;
2526         case IDR5_OAS_36_BIT:
2527                 smmu->oas = 36;
2528                 break;
2529         case IDR5_OAS_40_BIT:
2530                 smmu->oas = 40;
2531                 break;
2532         case IDR5_OAS_42_BIT:
2533                 smmu->oas = 42;
2534                 break;
2535         case IDR5_OAS_44_BIT:
2536                 smmu->oas = 44;
2537                 break;
2538         default:
2539                 dev_info(smmu->dev,
2540                         "unknown output address size. Truncating to 48-bit\n");
2541                 /* Fallthrough */
2542         case IDR5_OAS_48_BIT:
2543                 smmu->oas = 48;
2544         }
2545
2546         /* Set the DMA mask for our table walker */
2547         if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2548                 dev_warn(smmu->dev,
2549                          "failed to set DMA mask for table walker\n");
2550
2551         smmu->ias = max(smmu->ias, smmu->oas);
2552
2553         dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2554                  smmu->ias, smmu->oas, smmu->features);
2555         return 0;
2556 }
2557
2558 static int arm_smmu_device_dt_probe(struct platform_device *pdev)
2559 {
2560         int irq, ret;
2561         struct resource *res;
2562         struct arm_smmu_device *smmu;
2563         struct device *dev = &pdev->dev;
2564
2565         smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2566         if (!smmu) {
2567                 dev_err(dev, "failed to allocate arm_smmu_device\n");
2568                 return -ENOMEM;
2569         }
2570         smmu->dev = dev;
2571
2572         /* Base address */
2573         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2574         if (resource_size(res) + 1 < SZ_128K) {
2575                 dev_err(dev, "MMIO region too small (%pr)\n", res);
2576                 return -EINVAL;
2577         }
2578
2579         smmu->base = devm_ioremap_resource(dev, res);
2580         if (IS_ERR(smmu->base))
2581                 return PTR_ERR(smmu->base);
2582
2583         /* Interrupt lines */
2584         irq = platform_get_irq_byname(pdev, "eventq");
2585         if (irq > 0)
2586                 smmu->evtq.q.irq = irq;
2587
2588         irq = platform_get_irq_byname(pdev, "priq");
2589         if (irq > 0)
2590                 smmu->priq.q.irq = irq;
2591
2592         irq = platform_get_irq_byname(pdev, "cmdq-sync");
2593         if (irq > 0)
2594                 smmu->cmdq.q.irq = irq;
2595
2596         irq = platform_get_irq_byname(pdev, "gerror");
2597         if (irq > 0)
2598                 smmu->gerr_irq = irq;
2599
2600         parse_driver_options(smmu);
2601
2602         /* Probe the h/w */
2603         ret = arm_smmu_device_probe(smmu);
2604         if (ret)
2605                 return ret;
2606
2607         /* Initialise in-memory data structures */
2608         ret = arm_smmu_init_structures(smmu);
2609         if (ret)
2610                 return ret;
2611
2612         /* Reset the device */
2613         ret = arm_smmu_device_reset(smmu);
2614         if (ret)
2615                 goto out_free_structures;
2616
2617         /* Record our private device structure */
2618         INIT_LIST_HEAD(&smmu->list);
2619         spin_lock(&arm_smmu_devices_lock);
2620         list_add(&smmu->list, &arm_smmu_devices);
2621         spin_unlock(&arm_smmu_devices_lock);
2622         return 0;
2623
2624 out_free_structures:
2625         arm_smmu_free_structures(smmu);
2626         return ret;
2627 }
2628
2629 static int arm_smmu_device_remove(struct platform_device *pdev)
2630 {
2631         struct arm_smmu_device *curr, *smmu = NULL;
2632         struct device *dev = &pdev->dev;
2633
2634         spin_lock(&arm_smmu_devices_lock);
2635         list_for_each_entry(curr, &arm_smmu_devices, list) {
2636                 if (curr->dev == dev) {
2637                         smmu = curr;
2638                         list_del(&smmu->list);
2639                         break;
2640                 }
2641         }
2642         spin_unlock(&arm_smmu_devices_lock);
2643
2644         if (!smmu)
2645                 return -ENODEV;
2646
2647         arm_smmu_device_disable(smmu);
2648         arm_smmu_free_structures(smmu);
2649         return 0;
2650 }
2651
2652 static struct of_device_id arm_smmu_of_match[] = {
2653         { .compatible = "arm,smmu-v3", },
2654         { },
2655 };
2656 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2657
2658 static struct platform_driver arm_smmu_driver = {
2659         .driver = {
2660                 .name           = "arm-smmu-v3",
2661                 .of_match_table = of_match_ptr(arm_smmu_of_match),
2662         },
2663         .probe  = arm_smmu_device_dt_probe,
2664         .remove = arm_smmu_device_remove,
2665 };
2666
2667 static int __init arm_smmu_init(void)
2668 {
2669         struct device_node *np;
2670         int ret;
2671
2672         np = of_find_matching_node(NULL, arm_smmu_of_match);
2673         if (!np)
2674                 return 0;
2675
2676         of_node_put(np);
2677
2678         ret = platform_driver_register(&arm_smmu_driver);
2679         if (ret)
2680                 return ret;
2681
2682         return bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2683 }
2684
2685 static void __exit arm_smmu_exit(void)
2686 {
2687         return platform_driver_unregister(&arm_smmu_driver);
2688 }
2689
2690 subsys_initcall(arm_smmu_init);
2691 module_exit(arm_smmu_exit);
2692
2693 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2694 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2695 MODULE_LICENSE("GPL v2");