iommu/exynos: Refactor fault handling code
[cascardo/linux.git] / drivers / iommu / exynos-iommu.c
1 /* linux/drivers/iommu/exynos_iommu.c
2  *
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *              http://www.samsung.com
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10
11 #ifdef CONFIG_EXYNOS_IOMMU_DEBUG
12 #define DEBUG
13 #endif
14
15 #include <linux/clk.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/err.h>
18 #include <linux/io.h>
19 #include <linux/iommu.h>
20 #include <linux/interrupt.h>
21 #include <linux/list.h>
22 #include <linux/of.h>
23 #include <linux/of_iommu.h>
24 #include <linux/of_platform.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/slab.h>
28 #include <linux/dma-iommu.h>
29
30 typedef u32 sysmmu_iova_t;
31 typedef u32 sysmmu_pte_t;
32
33 /* We do not consider super section mapping (16MB) */
34 #define SECT_ORDER 20
35 #define LPAGE_ORDER 16
36 #define SPAGE_ORDER 12
37
38 #define SECT_SIZE (1 << SECT_ORDER)
39 #define LPAGE_SIZE (1 << LPAGE_ORDER)
40 #define SPAGE_SIZE (1 << SPAGE_ORDER)
41
42 #define SECT_MASK (~(SECT_SIZE - 1))
43 #define LPAGE_MASK (~(LPAGE_SIZE - 1))
44 #define SPAGE_MASK (~(SPAGE_SIZE - 1))
45
46 #define lv1ent_fault(sent) ((*(sent) == ZERO_LV2LINK) || \
47                            ((*(sent) & 3) == 0) || ((*(sent) & 3) == 3))
48 #define lv1ent_zero(sent) (*(sent) == ZERO_LV2LINK)
49 #define lv1ent_page_zero(sent) ((*(sent) & 3) == 1)
50 #define lv1ent_page(sent) ((*(sent) != ZERO_LV2LINK) && \
51                           ((*(sent) & 3) == 1))
52 #define lv1ent_section(sent) ((*(sent) & 3) == 2)
53
54 #define lv2ent_fault(pent) ((*(pent) & 3) == 0)
55 #define lv2ent_small(pent) ((*(pent) & 2) == 2)
56 #define lv2ent_large(pent) ((*(pent) & 3) == 1)
57
58 static u32 sysmmu_page_offset(sysmmu_iova_t iova, u32 size)
59 {
60         return iova & (size - 1);
61 }
62
63 #define section_phys(sent) (*(sent) & SECT_MASK)
64 #define section_offs(iova) sysmmu_page_offset((iova), SECT_SIZE)
65 #define lpage_phys(pent) (*(pent) & LPAGE_MASK)
66 #define lpage_offs(iova) sysmmu_page_offset((iova), LPAGE_SIZE)
67 #define spage_phys(pent) (*(pent) & SPAGE_MASK)
68 #define spage_offs(iova) sysmmu_page_offset((iova), SPAGE_SIZE)
69
70 #define NUM_LV1ENTRIES 4096
71 #define NUM_LV2ENTRIES (SECT_SIZE / SPAGE_SIZE)
72
73 static u32 lv1ent_offset(sysmmu_iova_t iova)
74 {
75         return iova >> SECT_ORDER;
76 }
77
78 static u32 lv2ent_offset(sysmmu_iova_t iova)
79 {
80         return (iova >> SPAGE_ORDER) & (NUM_LV2ENTRIES - 1);
81 }
82
83 #define LV1TABLE_SIZE (NUM_LV1ENTRIES * sizeof(sysmmu_pte_t))
84 #define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(sysmmu_pte_t))
85
86 #define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE)
87
88 #define lv2table_base(sent) (*(sent) & 0xFFFFFC00)
89
90 #define mk_lv1ent_sect(pa) ((pa) | 2)
91 #define mk_lv1ent_page(pa) ((pa) | 1)
92 #define mk_lv2ent_lpage(pa) ((pa) | 1)
93 #define mk_lv2ent_spage(pa) ((pa) | 2)
94
95 #define CTRL_ENABLE     0x5
96 #define CTRL_BLOCK      0x7
97 #define CTRL_DISABLE    0x0
98
99 #define CFG_LRU         0x1
100 #define CFG_QOS(n)      ((n & 0xF) << 7)
101 #define CFG_MASK        0x0150FFFF /* Selecting bit 0-15, 20, 22 and 24 */
102 #define CFG_ACGEN       (1 << 24) /* System MMU 3.3 only */
103 #define CFG_SYSSEL      (1 << 22) /* System MMU 3.2 only */
104 #define CFG_FLPDCACHE   (1 << 20) /* System MMU 3.2+ only */
105
106 #define REG_MMU_CTRL            0x000
107 #define REG_MMU_CFG             0x004
108 #define REG_MMU_STATUS          0x008
109 #define REG_MMU_FLUSH           0x00C
110 #define REG_MMU_FLUSH_ENTRY     0x010
111 #define REG_PT_BASE_ADDR        0x014
112 #define REG_INT_STATUS          0x018
113 #define REG_INT_CLEAR           0x01C
114
115 #define REG_PAGE_FAULT_ADDR     0x024
116 #define REG_AW_FAULT_ADDR       0x028
117 #define REG_AR_FAULT_ADDR       0x02C
118 #define REG_DEFAULT_SLAVE_ADDR  0x030
119
120 #define REG_MMU_VERSION         0x034
121
122 #define MMU_MAJ_VER(val)        ((val) >> 7)
123 #define MMU_MIN_VER(val)        ((val) & 0x7F)
124 #define MMU_RAW_VER(reg)        (((reg) >> 21) & ((1 << 11) - 1)) /* 11 bits */
125
126 #define MAKE_MMU_VER(maj, min)  ((((maj) & 0xF) << 7) | ((min) & 0x7F))
127
128 #define REG_PB0_SADDR           0x04C
129 #define REG_PB0_EADDR           0x050
130 #define REG_PB1_SADDR           0x054
131 #define REG_PB1_EADDR           0x058
132
133 #define has_sysmmu(dev)         (dev->archdata.iommu != NULL)
134
135 static struct device *dma_dev;
136 static struct kmem_cache *lv2table_kmem_cache;
137 static sysmmu_pte_t *zero_lv2_table;
138 #define ZERO_LV2LINK mk_lv1ent_page(virt_to_phys(zero_lv2_table))
139
140 static sysmmu_pte_t *section_entry(sysmmu_pte_t *pgtable, sysmmu_iova_t iova)
141 {
142         return pgtable + lv1ent_offset(iova);
143 }
144
145 static sysmmu_pte_t *page_entry(sysmmu_pte_t *sent, sysmmu_iova_t iova)
146 {
147         return (sysmmu_pte_t *)phys_to_virt(
148                                 lv2table_base(sent)) + lv2ent_offset(iova);
149 }
150
151 /*
152  * IOMMU fault information register
153  */
154 struct sysmmu_fault_info {
155         unsigned int bit;       /* bit number in STATUS register */
156         unsigned short addr_reg; /* register to read VA fault address */
157         const char *name;       /* human readable fault name */
158         unsigned int type;      /* fault type for report_iommu_fault */
159 };
160
161 static const struct sysmmu_fault_info sysmmu_faults[] = {
162         { 0, REG_PAGE_FAULT_ADDR, "PAGE", IOMMU_FAULT_READ },
163         { 1, REG_AR_FAULT_ADDR, "AR MULTI-HIT", IOMMU_FAULT_READ },
164         { 2, REG_AW_FAULT_ADDR, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
165         { 3, REG_DEFAULT_SLAVE_ADDR, "BUS ERROR", IOMMU_FAULT_READ },
166         { 4, REG_AR_FAULT_ADDR, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
167         { 5, REG_AR_FAULT_ADDR, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
168         { 6, REG_AW_FAULT_ADDR, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
169         { 7, REG_AW_FAULT_ADDR, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
170 };
171
172 /*
173  * This structure is attached to dev.archdata.iommu of the master device
174  * on device add, contains a list of SYSMMU controllers defined by device tree,
175  * which are bound to given master device. It is usually referenced by 'owner'
176  * pointer.
177 */
178 struct exynos_iommu_owner {
179         struct list_head controllers;   /* list of sysmmu_drvdata.owner_node */
180 };
181
182 /*
183  * This structure exynos specific generalization of struct iommu_domain.
184  * It contains list of SYSMMU controllers from all master devices, which has
185  * been attached to this domain and page tables of IO address space defined by
186  * it. It is usually referenced by 'domain' pointer.
187  */
188 struct exynos_iommu_domain {
189         struct list_head clients; /* list of sysmmu_drvdata.domain_node */
190         sysmmu_pte_t *pgtable;  /* lv1 page table, 16KB */
191         short *lv2entcnt;       /* free lv2 entry counter for each section */
192         spinlock_t lock;        /* lock for modyfying list of clients */
193         spinlock_t pgtablelock; /* lock for modifying page table @ pgtable */
194         struct iommu_domain domain; /* generic domain data structure */
195 };
196
197 /*
198  * This structure hold all data of a single SYSMMU controller, this includes
199  * hw resources like registers and clocks, pointers and list nodes to connect
200  * it to all other structures, internal state and parameters read from device
201  * tree. It is usually referenced by 'data' pointer.
202  */
203 struct sysmmu_drvdata {
204         struct device *sysmmu;          /* SYSMMU controller device */
205         struct device *master;          /* master device (owner) */
206         void __iomem *sfrbase;          /* our registers */
207         struct clk *clk;                /* SYSMMU's clock */
208         struct clk *clk_master;         /* master's device clock */
209         int activations;                /* number of calls to sysmmu_enable */
210         spinlock_t lock;                /* lock for modyfying state */
211         struct exynos_iommu_domain *domain; /* domain we belong to */
212         struct list_head domain_node;   /* node for domain clients list */
213         struct list_head owner_node;    /* node for owner controllers list */
214         phys_addr_t pgtable;            /* assigned page table structure */
215         unsigned int version;           /* our version */
216 };
217
218 static struct exynos_iommu_domain *to_exynos_domain(struct iommu_domain *dom)
219 {
220         return container_of(dom, struct exynos_iommu_domain, domain);
221 }
222
223 static bool set_sysmmu_active(struct sysmmu_drvdata *data)
224 {
225         /* return true if the System MMU was not active previously
226            and it needs to be initialized */
227         return ++data->activations == 1;
228 }
229
230 static bool set_sysmmu_inactive(struct sysmmu_drvdata *data)
231 {
232         /* return true if the System MMU is needed to be disabled */
233         BUG_ON(data->activations < 1);
234         return --data->activations == 0;
235 }
236
237 static bool is_sysmmu_active(struct sysmmu_drvdata *data)
238 {
239         return data->activations > 0;
240 }
241
242 static void sysmmu_unblock(struct sysmmu_drvdata *data)
243 {
244         __raw_writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
245 }
246
247 static bool sysmmu_block(struct sysmmu_drvdata *data)
248 {
249         int i = 120;
250
251         __raw_writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
252         while ((i > 0) && !(__raw_readl(data->sfrbase + REG_MMU_STATUS) & 1))
253                 --i;
254
255         if (!(__raw_readl(data->sfrbase + REG_MMU_STATUS) & 1)) {
256                 sysmmu_unblock(data);
257                 return false;
258         }
259
260         return true;
261 }
262
263 static void __sysmmu_tlb_invalidate(struct sysmmu_drvdata *data)
264 {
265         __raw_writel(0x1, data->sfrbase + REG_MMU_FLUSH);
266 }
267
268 static void __sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
269                                 sysmmu_iova_t iova, unsigned int num_inv)
270 {
271         unsigned int i;
272
273         for (i = 0; i < num_inv; i++) {
274                 __raw_writel((iova & SPAGE_MASK) | 1,
275                                 data->sfrbase + REG_MMU_FLUSH_ENTRY);
276                 iova += SPAGE_SIZE;
277         }
278 }
279
280 static void __sysmmu_set_ptbase(struct sysmmu_drvdata *data, phys_addr_t pgd)
281 {
282         __raw_writel(pgd, data->sfrbase + REG_PT_BASE_ADDR);
283
284         __sysmmu_tlb_invalidate(data);
285 }
286
287 static void show_fault_information(struct sysmmu_drvdata *data,
288                                    const struct sysmmu_fault_info *finfo,
289                                    sysmmu_iova_t fault_addr)
290 {
291         sysmmu_pte_t *ent;
292
293         dev_err(data->sysmmu, "%s FAULT occurred at %#x (page table base: %pa)\n",
294                 finfo->name, fault_addr, &data->pgtable);
295         ent = section_entry(phys_to_virt(data->pgtable), fault_addr);
296         dev_err(data->sysmmu, "\tLv1 entry: %#x\n", *ent);
297         if (lv1ent_page(ent)) {
298                 ent = page_entry(ent, fault_addr);
299                 dev_err(data->sysmmu, "\t Lv2 entry: %#x\n", *ent);
300         }
301 }
302
303 static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id)
304 {
305         /* SYSMMU is in blocked state when interrupt occurred. */
306         struct sysmmu_drvdata *data = dev_id;
307         const struct sysmmu_fault_info *finfo = sysmmu_faults;
308         int i, n = ARRAY_SIZE(sysmmu_faults);
309         unsigned int itype;
310         sysmmu_iova_t fault_addr = -1;
311         int ret = -ENOSYS;
312
313         WARN_ON(!is_sysmmu_active(data));
314
315         spin_lock(&data->lock);
316
317         clk_enable(data->clk_master);
318
319         itype = __ffs(__raw_readl(data->sfrbase + REG_INT_STATUS));
320         for (i = 0; i < n; i++, finfo++)
321                 if (finfo->bit == itype)
322                         break;
323         /* unknown/unsupported fault */
324         BUG_ON(i == n);
325
326         /* print debug message */
327         fault_addr = __raw_readl(data->sfrbase + finfo->addr_reg);
328         show_fault_information(data, finfo, fault_addr);
329
330         if (data->domain)
331                 ret = report_iommu_fault(&data->domain->domain,
332                                         data->master, fault_addr, finfo->type);
333         /* fault is not recovered by fault handler */
334         BUG_ON(ret != 0);
335
336         __raw_writel(1 << itype, data->sfrbase + REG_INT_CLEAR);
337
338         sysmmu_unblock(data);
339
340         clk_disable(data->clk_master);
341
342         spin_unlock(&data->lock);
343
344         return IRQ_HANDLED;
345 }
346
347 static void __sysmmu_disable_nocount(struct sysmmu_drvdata *data)
348 {
349         clk_enable(data->clk_master);
350
351         __raw_writel(CTRL_DISABLE, data->sfrbase + REG_MMU_CTRL);
352         __raw_writel(0, data->sfrbase + REG_MMU_CFG);
353
354         clk_disable(data->clk);
355         clk_disable(data->clk_master);
356 }
357
358 static bool __sysmmu_disable(struct sysmmu_drvdata *data)
359 {
360         bool disabled;
361         unsigned long flags;
362
363         spin_lock_irqsave(&data->lock, flags);
364
365         disabled = set_sysmmu_inactive(data);
366
367         if (disabled) {
368                 data->pgtable = 0;
369                 data->domain = NULL;
370
371                 __sysmmu_disable_nocount(data);
372
373                 dev_dbg(data->sysmmu, "Disabled\n");
374         } else  {
375                 dev_dbg(data->sysmmu, "%d times left to disable\n",
376                                         data->activations);
377         }
378
379         spin_unlock_irqrestore(&data->lock, flags);
380
381         return disabled;
382 }
383
384 static void __sysmmu_init_config(struct sysmmu_drvdata *data)
385 {
386         unsigned int cfg = CFG_LRU | CFG_QOS(15);
387         unsigned int ver;
388
389         ver = MMU_RAW_VER(__raw_readl(data->sfrbase + REG_MMU_VERSION));
390         if (MMU_MAJ_VER(ver) == 3) {
391                 if (MMU_MIN_VER(ver) >= 2) {
392                         cfg |= CFG_FLPDCACHE;
393                         if (MMU_MIN_VER(ver) == 3) {
394                                 cfg |= CFG_ACGEN;
395                                 cfg &= ~CFG_LRU;
396                         } else {
397                                 cfg |= CFG_SYSSEL;
398                         }
399                 }
400         }
401
402         __raw_writel(cfg, data->sfrbase + REG_MMU_CFG);
403         data->version = ver;
404 }
405
406 static void __sysmmu_enable_nocount(struct sysmmu_drvdata *data)
407 {
408         clk_enable(data->clk_master);
409         clk_enable(data->clk);
410
411         __raw_writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
412
413         __sysmmu_init_config(data);
414
415         __sysmmu_set_ptbase(data, data->pgtable);
416
417         __raw_writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
418
419         clk_disable(data->clk_master);
420 }
421
422 static int __sysmmu_enable(struct sysmmu_drvdata *data, phys_addr_t pgtable,
423                            struct exynos_iommu_domain *domain)
424 {
425         int ret = 0;
426         unsigned long flags;
427
428         spin_lock_irqsave(&data->lock, flags);
429         if (set_sysmmu_active(data)) {
430                 data->pgtable = pgtable;
431                 data->domain = domain;
432
433                 __sysmmu_enable_nocount(data);
434
435                 dev_dbg(data->sysmmu, "Enabled\n");
436         } else {
437                 ret = (pgtable == data->pgtable) ? 1 : -EBUSY;
438
439                 dev_dbg(data->sysmmu, "already enabled\n");
440         }
441
442         if (WARN_ON(ret < 0))
443                 set_sysmmu_inactive(data); /* decrement count */
444
445         spin_unlock_irqrestore(&data->lock, flags);
446
447         return ret;
448 }
449
450 static void __sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data,
451                                               sysmmu_iova_t iova)
452 {
453         if (data->version == MAKE_MMU_VER(3, 3))
454                 __raw_writel(iova | 0x1, data->sfrbase + REG_MMU_FLUSH_ENTRY);
455 }
456
457 static void sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data,
458                                             sysmmu_iova_t iova)
459 {
460         unsigned long flags;
461
462         clk_enable(data->clk_master);
463
464         spin_lock_irqsave(&data->lock, flags);
465         if (is_sysmmu_active(data))
466                 __sysmmu_tlb_invalidate_flpdcache(data, iova);
467         spin_unlock_irqrestore(&data->lock, flags);
468
469         clk_disable(data->clk_master);
470 }
471
472 static void sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
473                                         sysmmu_iova_t iova, size_t size)
474 {
475         unsigned long flags;
476
477         spin_lock_irqsave(&data->lock, flags);
478         if (is_sysmmu_active(data)) {
479                 unsigned int num_inv = 1;
480
481                 clk_enable(data->clk_master);
482
483                 /*
484                  * L2TLB invalidation required
485                  * 4KB page: 1 invalidation
486                  * 64KB page: 16 invalidations
487                  * 1MB page: 64 invalidations
488                  * because it is set-associative TLB
489                  * with 8-way and 64 sets.
490                  * 1MB page can be cached in one of all sets.
491                  * 64KB page can be one of 16 consecutive sets.
492                  */
493                 if (MMU_MAJ_VER(data->version) == 2)
494                         num_inv = min_t(unsigned int, size / PAGE_SIZE, 64);
495
496                 if (sysmmu_block(data)) {
497                         __sysmmu_tlb_invalidate_entry(data, iova, num_inv);
498                         sysmmu_unblock(data);
499                 }
500                 clk_disable(data->clk_master);
501         } else {
502                 dev_dbg(data->master,
503                         "disabled. Skipping TLB invalidation @ %#x\n", iova);
504         }
505         spin_unlock_irqrestore(&data->lock, flags);
506 }
507
508 static int __init exynos_sysmmu_probe(struct platform_device *pdev)
509 {
510         int irq, ret;
511         struct device *dev = &pdev->dev;
512         struct sysmmu_drvdata *data;
513         struct resource *res;
514
515         data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
516         if (!data)
517                 return -ENOMEM;
518
519         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
520         data->sfrbase = devm_ioremap_resource(dev, res);
521         if (IS_ERR(data->sfrbase))
522                 return PTR_ERR(data->sfrbase);
523
524         irq = platform_get_irq(pdev, 0);
525         if (irq <= 0) {
526                 dev_err(dev, "Unable to find IRQ resource\n");
527                 return irq;
528         }
529
530         ret = devm_request_irq(dev, irq, exynos_sysmmu_irq, 0,
531                                 dev_name(dev), data);
532         if (ret) {
533                 dev_err(dev, "Unabled to register handler of irq %d\n", irq);
534                 return ret;
535         }
536
537         data->clk = devm_clk_get(dev, "sysmmu");
538         if (IS_ERR(data->clk)) {
539                 dev_err(dev, "Failed to get clock!\n");
540                 return PTR_ERR(data->clk);
541         } else  {
542                 ret = clk_prepare(data->clk);
543                 if (ret) {
544                         dev_err(dev, "Failed to prepare clk\n");
545                         return ret;
546                 }
547         }
548
549         data->clk_master = devm_clk_get(dev, "master");
550         if (!IS_ERR(data->clk_master)) {
551                 ret = clk_prepare(data->clk_master);
552                 if (ret) {
553                         clk_unprepare(data->clk);
554                         dev_err(dev, "Failed to prepare master's clk\n");
555                         return ret;
556                 }
557         } else {
558                 data->clk_master = NULL;
559         }
560
561         data->sysmmu = dev;
562         spin_lock_init(&data->lock);
563
564         platform_set_drvdata(pdev, data);
565
566         pm_runtime_enable(dev);
567
568         return 0;
569 }
570
571 #ifdef CONFIG_PM_SLEEP
572 static int exynos_sysmmu_suspend(struct device *dev)
573 {
574         struct sysmmu_drvdata *data = dev_get_drvdata(dev);
575
576         dev_dbg(dev, "suspend\n");
577         if (is_sysmmu_active(data)) {
578                 __sysmmu_disable_nocount(data);
579                 pm_runtime_put(dev);
580         }
581         return 0;
582 }
583
584 static int exynos_sysmmu_resume(struct device *dev)
585 {
586         struct sysmmu_drvdata *data = dev_get_drvdata(dev);
587
588         dev_dbg(dev, "resume\n");
589         if (is_sysmmu_active(data)) {
590                 pm_runtime_get_sync(dev);
591                 __sysmmu_enable_nocount(data);
592         }
593         return 0;
594 }
595 #endif
596
597 static const struct dev_pm_ops sysmmu_pm_ops = {
598         SET_LATE_SYSTEM_SLEEP_PM_OPS(exynos_sysmmu_suspend, exynos_sysmmu_resume)
599 };
600
601 static const struct of_device_id sysmmu_of_match[] __initconst = {
602         { .compatible   = "samsung,exynos-sysmmu", },
603         { },
604 };
605
606 static struct platform_driver exynos_sysmmu_driver __refdata = {
607         .probe  = exynos_sysmmu_probe,
608         .driver = {
609                 .name           = "exynos-sysmmu",
610                 .of_match_table = sysmmu_of_match,
611                 .pm             = &sysmmu_pm_ops,
612         }
613 };
614
615 static inline void update_pte(sysmmu_pte_t *ent, sysmmu_pte_t val)
616 {
617         dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent), sizeof(*ent),
618                                 DMA_TO_DEVICE);
619         *ent = val;
620         dma_sync_single_for_device(dma_dev, virt_to_phys(ent), sizeof(*ent),
621                                    DMA_TO_DEVICE);
622 }
623
624 static struct iommu_domain *exynos_iommu_domain_alloc(unsigned type)
625 {
626         struct exynos_iommu_domain *domain;
627         dma_addr_t handle;
628         int i;
629
630
631         domain = kzalloc(sizeof(*domain), GFP_KERNEL);
632         if (!domain)
633                 return NULL;
634
635         if (type == IOMMU_DOMAIN_DMA) {
636                 if (iommu_get_dma_cookie(&domain->domain) != 0)
637                         goto err_pgtable;
638         } else if (type != IOMMU_DOMAIN_UNMANAGED) {
639                 goto err_pgtable;
640         }
641
642         domain->pgtable = (sysmmu_pte_t *)__get_free_pages(GFP_KERNEL, 2);
643         if (!domain->pgtable)
644                 goto err_dma_cookie;
645
646         domain->lv2entcnt = (short *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
647         if (!domain->lv2entcnt)
648                 goto err_counter;
649
650         /* Workaround for System MMU v3.3 to prevent caching 1MiB mapping */
651         for (i = 0; i < NUM_LV1ENTRIES; i += 8) {
652                 domain->pgtable[i + 0] = ZERO_LV2LINK;
653                 domain->pgtable[i + 1] = ZERO_LV2LINK;
654                 domain->pgtable[i + 2] = ZERO_LV2LINK;
655                 domain->pgtable[i + 3] = ZERO_LV2LINK;
656                 domain->pgtable[i + 4] = ZERO_LV2LINK;
657                 domain->pgtable[i + 5] = ZERO_LV2LINK;
658                 domain->pgtable[i + 6] = ZERO_LV2LINK;
659                 domain->pgtable[i + 7] = ZERO_LV2LINK;
660         }
661
662         handle = dma_map_single(dma_dev, domain->pgtable, LV1TABLE_SIZE,
663                                 DMA_TO_DEVICE);
664         /* For mapping page table entries we rely on dma == phys */
665         BUG_ON(handle != virt_to_phys(domain->pgtable));
666
667         spin_lock_init(&domain->lock);
668         spin_lock_init(&domain->pgtablelock);
669         INIT_LIST_HEAD(&domain->clients);
670
671         domain->domain.geometry.aperture_start = 0;
672         domain->domain.geometry.aperture_end   = ~0UL;
673         domain->domain.geometry.force_aperture = true;
674
675         return &domain->domain;
676
677 err_counter:
678         free_pages((unsigned long)domain->pgtable, 2);
679 err_dma_cookie:
680         if (type == IOMMU_DOMAIN_DMA)
681                 iommu_put_dma_cookie(&domain->domain);
682 err_pgtable:
683         kfree(domain);
684         return NULL;
685 }
686
687 static void exynos_iommu_domain_free(struct iommu_domain *iommu_domain)
688 {
689         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
690         struct sysmmu_drvdata *data, *next;
691         unsigned long flags;
692         int i;
693
694         WARN_ON(!list_empty(&domain->clients));
695
696         spin_lock_irqsave(&domain->lock, flags);
697
698         list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
699                 if (__sysmmu_disable(data))
700                         data->master = NULL;
701                 list_del_init(&data->domain_node);
702         }
703
704         spin_unlock_irqrestore(&domain->lock, flags);
705
706         if (iommu_domain->type == IOMMU_DOMAIN_DMA)
707                 iommu_put_dma_cookie(iommu_domain);
708
709         dma_unmap_single(dma_dev, virt_to_phys(domain->pgtable), LV1TABLE_SIZE,
710                          DMA_TO_DEVICE);
711
712         for (i = 0; i < NUM_LV1ENTRIES; i++)
713                 if (lv1ent_page(domain->pgtable + i)) {
714                         phys_addr_t base = lv2table_base(domain->pgtable + i);
715
716                         dma_unmap_single(dma_dev, base, LV2TABLE_SIZE,
717                                          DMA_TO_DEVICE);
718                         kmem_cache_free(lv2table_kmem_cache,
719                                         phys_to_virt(base));
720                 }
721
722         free_pages((unsigned long)domain->pgtable, 2);
723         free_pages((unsigned long)domain->lv2entcnt, 1);
724         kfree(domain);
725 }
726
727 static int exynos_iommu_attach_device(struct iommu_domain *iommu_domain,
728                                    struct device *dev)
729 {
730         struct exynos_iommu_owner *owner = dev->archdata.iommu;
731         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
732         struct sysmmu_drvdata *data;
733         phys_addr_t pagetable = virt_to_phys(domain->pgtable);
734         unsigned long flags;
735         int ret = -ENODEV;
736
737         if (!has_sysmmu(dev))
738                 return -ENODEV;
739
740         list_for_each_entry(data, &owner->controllers, owner_node) {
741                 pm_runtime_get_sync(data->sysmmu);
742                 ret = __sysmmu_enable(data, pagetable, domain);
743                 if (ret >= 0) {
744                         data->master = dev;
745
746                         spin_lock_irqsave(&domain->lock, flags);
747                         list_add_tail(&data->domain_node, &domain->clients);
748                         spin_unlock_irqrestore(&domain->lock, flags);
749                 }
750         }
751
752         if (ret < 0) {
753                 dev_err(dev, "%s: Failed to attach IOMMU with pgtable %pa\n",
754                                         __func__, &pagetable);
755                 return ret;
756         }
757
758         dev_dbg(dev, "%s: Attached IOMMU with pgtable %pa %s\n",
759                 __func__, &pagetable, (ret == 0) ? "" : ", again");
760
761         return ret;
762 }
763
764 static void exynos_iommu_detach_device(struct iommu_domain *iommu_domain,
765                                     struct device *dev)
766 {
767         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
768         phys_addr_t pagetable = virt_to_phys(domain->pgtable);
769         struct sysmmu_drvdata *data, *next;
770         unsigned long flags;
771         bool found = false;
772
773         if (!has_sysmmu(dev))
774                 return;
775
776         spin_lock_irqsave(&domain->lock, flags);
777         list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
778                 if (data->master == dev) {
779                         if (__sysmmu_disable(data)) {
780                                 data->master = NULL;
781                                 list_del_init(&data->domain_node);
782                         }
783                         pm_runtime_put(data->sysmmu);
784                         found = true;
785                 }
786         }
787         spin_unlock_irqrestore(&domain->lock, flags);
788
789         if (found)
790                 dev_dbg(dev, "%s: Detached IOMMU with pgtable %pa\n",
791                                         __func__, &pagetable);
792         else
793                 dev_err(dev, "%s: No IOMMU is attached\n", __func__);
794 }
795
796 static sysmmu_pte_t *alloc_lv2entry(struct exynos_iommu_domain *domain,
797                 sysmmu_pte_t *sent, sysmmu_iova_t iova, short *pgcounter)
798 {
799         if (lv1ent_section(sent)) {
800                 WARN(1, "Trying mapping on %#08x mapped with 1MiB page", iova);
801                 return ERR_PTR(-EADDRINUSE);
802         }
803
804         if (lv1ent_fault(sent)) {
805                 sysmmu_pte_t *pent;
806                 bool need_flush_flpd_cache = lv1ent_zero(sent);
807
808                 pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC);
809                 BUG_ON((unsigned int)pent & (LV2TABLE_SIZE - 1));
810                 if (!pent)
811                         return ERR_PTR(-ENOMEM);
812
813                 update_pte(sent, mk_lv1ent_page(virt_to_phys(pent)));
814                 kmemleak_ignore(pent);
815                 *pgcounter = NUM_LV2ENTRIES;
816                 dma_map_single(dma_dev, pent, LV2TABLE_SIZE, DMA_TO_DEVICE);
817
818                 /*
819                  * If pre-fetched SLPD is a faulty SLPD in zero_l2_table,
820                  * FLPD cache may cache the address of zero_l2_table. This
821                  * function replaces the zero_l2_table with new L2 page table
822                  * to write valid mappings.
823                  * Accessing the valid area may cause page fault since FLPD
824                  * cache may still cache zero_l2_table for the valid area
825                  * instead of new L2 page table that has the mapping
826                  * information of the valid area.
827                  * Thus any replacement of zero_l2_table with other valid L2
828                  * page table must involve FLPD cache invalidation for System
829                  * MMU v3.3.
830                  * FLPD cache invalidation is performed with TLB invalidation
831                  * by VPN without blocking. It is safe to invalidate TLB without
832                  * blocking because the target address of TLB invalidation is
833                  * not currently mapped.
834                  */
835                 if (need_flush_flpd_cache) {
836                         struct sysmmu_drvdata *data;
837
838                         spin_lock(&domain->lock);
839                         list_for_each_entry(data, &domain->clients, domain_node)
840                                 sysmmu_tlb_invalidate_flpdcache(data, iova);
841                         spin_unlock(&domain->lock);
842                 }
843         }
844
845         return page_entry(sent, iova);
846 }
847
848 static int lv1set_section(struct exynos_iommu_domain *domain,
849                           sysmmu_pte_t *sent, sysmmu_iova_t iova,
850                           phys_addr_t paddr, short *pgcnt)
851 {
852         if (lv1ent_section(sent)) {
853                 WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
854                         iova);
855                 return -EADDRINUSE;
856         }
857
858         if (lv1ent_page(sent)) {
859                 if (*pgcnt != NUM_LV2ENTRIES) {
860                         WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
861                                 iova);
862                         return -EADDRINUSE;
863                 }
864
865                 kmem_cache_free(lv2table_kmem_cache, page_entry(sent, 0));
866                 *pgcnt = 0;
867         }
868
869         update_pte(sent, mk_lv1ent_sect(paddr));
870
871         spin_lock(&domain->lock);
872         if (lv1ent_page_zero(sent)) {
873                 struct sysmmu_drvdata *data;
874                 /*
875                  * Flushing FLPD cache in System MMU v3.3 that may cache a FLPD
876                  * entry by speculative prefetch of SLPD which has no mapping.
877                  */
878                 list_for_each_entry(data, &domain->clients, domain_node)
879                         sysmmu_tlb_invalidate_flpdcache(data, iova);
880         }
881         spin_unlock(&domain->lock);
882
883         return 0;
884 }
885
886 static int lv2set_page(sysmmu_pte_t *pent, phys_addr_t paddr, size_t size,
887                                                                 short *pgcnt)
888 {
889         if (size == SPAGE_SIZE) {
890                 if (WARN_ON(!lv2ent_fault(pent)))
891                         return -EADDRINUSE;
892
893                 update_pte(pent, mk_lv2ent_spage(paddr));
894                 *pgcnt -= 1;
895         } else { /* size == LPAGE_SIZE */
896                 int i;
897                 dma_addr_t pent_base = virt_to_phys(pent);
898
899                 dma_sync_single_for_cpu(dma_dev, pent_base,
900                                         sizeof(*pent) * SPAGES_PER_LPAGE,
901                                         DMA_TO_DEVICE);
902                 for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) {
903                         if (WARN_ON(!lv2ent_fault(pent))) {
904                                 if (i > 0)
905                                         memset(pent - i, 0, sizeof(*pent) * i);
906                                 return -EADDRINUSE;
907                         }
908
909                         *pent = mk_lv2ent_lpage(paddr);
910                 }
911                 dma_sync_single_for_device(dma_dev, pent_base,
912                                            sizeof(*pent) * SPAGES_PER_LPAGE,
913                                            DMA_TO_DEVICE);
914                 *pgcnt -= SPAGES_PER_LPAGE;
915         }
916
917         return 0;
918 }
919
920 /*
921  * *CAUTION* to the I/O virtual memory managers that support exynos-iommu:
922  *
923  * System MMU v3.x has advanced logic to improve address translation
924  * performance with caching more page table entries by a page table walk.
925  * However, the logic has a bug that while caching faulty page table entries,
926  * System MMU reports page fault if the cached fault entry is hit even though
927  * the fault entry is updated to a valid entry after the entry is cached.
928  * To prevent caching faulty page table entries which may be updated to valid
929  * entries later, the virtual memory manager should care about the workaround
930  * for the problem. The following describes the workaround.
931  *
932  * Any two consecutive I/O virtual address regions must have a hole of 128KiB
933  * at maximum to prevent misbehavior of System MMU 3.x (workaround for h/w bug).
934  *
935  * Precisely, any start address of I/O virtual region must be aligned with
936  * the following sizes for System MMU v3.1 and v3.2.
937  * System MMU v3.1: 128KiB
938  * System MMU v3.2: 256KiB
939  *
940  * Because System MMU v3.3 caches page table entries more aggressively, it needs
941  * more workarounds.
942  * - Any two consecutive I/O virtual regions must have a hole of size larger
943  *   than or equal to 128KiB.
944  * - Start address of an I/O virtual region must be aligned by 128KiB.
945  */
946 static int exynos_iommu_map(struct iommu_domain *iommu_domain,
947                             unsigned long l_iova, phys_addr_t paddr, size_t size,
948                             int prot)
949 {
950         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
951         sysmmu_pte_t *entry;
952         sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
953         unsigned long flags;
954         int ret = -ENOMEM;
955
956         BUG_ON(domain->pgtable == NULL);
957
958         spin_lock_irqsave(&domain->pgtablelock, flags);
959
960         entry = section_entry(domain->pgtable, iova);
961
962         if (size == SECT_SIZE) {
963                 ret = lv1set_section(domain, entry, iova, paddr,
964                                      &domain->lv2entcnt[lv1ent_offset(iova)]);
965         } else {
966                 sysmmu_pte_t *pent;
967
968                 pent = alloc_lv2entry(domain, entry, iova,
969                                       &domain->lv2entcnt[lv1ent_offset(iova)]);
970
971                 if (IS_ERR(pent))
972                         ret = PTR_ERR(pent);
973                 else
974                         ret = lv2set_page(pent, paddr, size,
975                                        &domain->lv2entcnt[lv1ent_offset(iova)]);
976         }
977
978         if (ret)
979                 pr_err("%s: Failed(%d) to map %#zx bytes @ %#x\n",
980                         __func__, ret, size, iova);
981
982         spin_unlock_irqrestore(&domain->pgtablelock, flags);
983
984         return ret;
985 }
986
987 static void exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain *domain,
988                                               sysmmu_iova_t iova, size_t size)
989 {
990         struct sysmmu_drvdata *data;
991         unsigned long flags;
992
993         spin_lock_irqsave(&domain->lock, flags);
994
995         list_for_each_entry(data, &domain->clients, domain_node)
996                 sysmmu_tlb_invalidate_entry(data, iova, size);
997
998         spin_unlock_irqrestore(&domain->lock, flags);
999 }
1000
1001 static size_t exynos_iommu_unmap(struct iommu_domain *iommu_domain,
1002                                  unsigned long l_iova, size_t size)
1003 {
1004         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1005         sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1006         sysmmu_pte_t *ent;
1007         size_t err_pgsize;
1008         unsigned long flags;
1009
1010         BUG_ON(domain->pgtable == NULL);
1011
1012         spin_lock_irqsave(&domain->pgtablelock, flags);
1013
1014         ent = section_entry(domain->pgtable, iova);
1015
1016         if (lv1ent_section(ent)) {
1017                 if (WARN_ON(size < SECT_SIZE)) {
1018                         err_pgsize = SECT_SIZE;
1019                         goto err;
1020                 }
1021
1022                 /* workaround for h/w bug in System MMU v3.3 */
1023                 update_pte(ent, ZERO_LV2LINK);
1024                 size = SECT_SIZE;
1025                 goto done;
1026         }
1027
1028         if (unlikely(lv1ent_fault(ent))) {
1029                 if (size > SECT_SIZE)
1030                         size = SECT_SIZE;
1031                 goto done;
1032         }
1033
1034         /* lv1ent_page(sent) == true here */
1035
1036         ent = page_entry(ent, iova);
1037
1038         if (unlikely(lv2ent_fault(ent))) {
1039                 size = SPAGE_SIZE;
1040                 goto done;
1041         }
1042
1043         if (lv2ent_small(ent)) {
1044                 update_pte(ent, 0);
1045                 size = SPAGE_SIZE;
1046                 domain->lv2entcnt[lv1ent_offset(iova)] += 1;
1047                 goto done;
1048         }
1049
1050         /* lv1ent_large(ent) == true here */
1051         if (WARN_ON(size < LPAGE_SIZE)) {
1052                 err_pgsize = LPAGE_SIZE;
1053                 goto err;
1054         }
1055
1056         dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent),
1057                                 sizeof(*ent) * SPAGES_PER_LPAGE,
1058                                 DMA_TO_DEVICE);
1059         memset(ent, 0, sizeof(*ent) * SPAGES_PER_LPAGE);
1060         dma_sync_single_for_device(dma_dev, virt_to_phys(ent),
1061                                    sizeof(*ent) * SPAGES_PER_LPAGE,
1062                                    DMA_TO_DEVICE);
1063         size = LPAGE_SIZE;
1064         domain->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE;
1065 done:
1066         spin_unlock_irqrestore(&domain->pgtablelock, flags);
1067
1068         exynos_iommu_tlb_invalidate_entry(domain, iova, size);
1069
1070         return size;
1071 err:
1072         spin_unlock_irqrestore(&domain->pgtablelock, flags);
1073
1074         pr_err("%s: Failed: size(%#zx) @ %#x is smaller than page size %#zx\n",
1075                 __func__, size, iova, err_pgsize);
1076
1077         return 0;
1078 }
1079
1080 static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *iommu_domain,
1081                                           dma_addr_t iova)
1082 {
1083         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1084         sysmmu_pte_t *entry;
1085         unsigned long flags;
1086         phys_addr_t phys = 0;
1087
1088         spin_lock_irqsave(&domain->pgtablelock, flags);
1089
1090         entry = section_entry(domain->pgtable, iova);
1091
1092         if (lv1ent_section(entry)) {
1093                 phys = section_phys(entry) + section_offs(iova);
1094         } else if (lv1ent_page(entry)) {
1095                 entry = page_entry(entry, iova);
1096
1097                 if (lv2ent_large(entry))
1098                         phys = lpage_phys(entry) + lpage_offs(iova);
1099                 else if (lv2ent_small(entry))
1100                         phys = spage_phys(entry) + spage_offs(iova);
1101         }
1102
1103         spin_unlock_irqrestore(&domain->pgtablelock, flags);
1104
1105         return phys;
1106 }
1107
1108 static struct iommu_group *get_device_iommu_group(struct device *dev)
1109 {
1110         struct iommu_group *group;
1111
1112         group = iommu_group_get(dev);
1113         if (!group)
1114                 group = iommu_group_alloc();
1115
1116         return group;
1117 }
1118
1119 static int exynos_iommu_add_device(struct device *dev)
1120 {
1121         struct iommu_group *group;
1122
1123         if (!has_sysmmu(dev))
1124                 return -ENODEV;
1125
1126         group = iommu_group_get_for_dev(dev);
1127
1128         if (IS_ERR(group))
1129                 return PTR_ERR(group);
1130
1131         iommu_group_put(group);
1132
1133         return 0;
1134 }
1135
1136 static void exynos_iommu_remove_device(struct device *dev)
1137 {
1138         if (!has_sysmmu(dev))
1139                 return;
1140
1141         iommu_group_remove_device(dev);
1142 }
1143
1144 static int exynos_iommu_of_xlate(struct device *dev,
1145                                  struct of_phandle_args *spec)
1146 {
1147         struct exynos_iommu_owner *owner = dev->archdata.iommu;
1148         struct platform_device *sysmmu = of_find_device_by_node(spec->np);
1149         struct sysmmu_drvdata *data;
1150
1151         if (!sysmmu)
1152                 return -ENODEV;
1153
1154         data = platform_get_drvdata(sysmmu);
1155         if (!data)
1156                 return -ENODEV;
1157
1158         if (!owner) {
1159                 owner = kzalloc(sizeof(*owner), GFP_KERNEL);
1160                 if (!owner)
1161                         return -ENOMEM;
1162
1163                 INIT_LIST_HEAD(&owner->controllers);
1164                 dev->archdata.iommu = owner;
1165         }
1166
1167         list_add_tail(&data->owner_node, &owner->controllers);
1168         return 0;
1169 }
1170
1171 static struct iommu_ops exynos_iommu_ops = {
1172         .domain_alloc = exynos_iommu_domain_alloc,
1173         .domain_free = exynos_iommu_domain_free,
1174         .attach_dev = exynos_iommu_attach_device,
1175         .detach_dev = exynos_iommu_detach_device,
1176         .map = exynos_iommu_map,
1177         .unmap = exynos_iommu_unmap,
1178         .map_sg = default_iommu_map_sg,
1179         .iova_to_phys = exynos_iommu_iova_to_phys,
1180         .device_group = get_device_iommu_group,
1181         .add_device = exynos_iommu_add_device,
1182         .remove_device = exynos_iommu_remove_device,
1183         .pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE,
1184         .of_xlate = exynos_iommu_of_xlate,
1185 };
1186
1187 static bool init_done;
1188
1189 static int __init exynos_iommu_init(void)
1190 {
1191         int ret;
1192
1193         lv2table_kmem_cache = kmem_cache_create("exynos-iommu-lv2table",
1194                                 LV2TABLE_SIZE, LV2TABLE_SIZE, 0, NULL);
1195         if (!lv2table_kmem_cache) {
1196                 pr_err("%s: Failed to create kmem cache\n", __func__);
1197                 return -ENOMEM;
1198         }
1199
1200         ret = platform_driver_register(&exynos_sysmmu_driver);
1201         if (ret) {
1202                 pr_err("%s: Failed to register driver\n", __func__);
1203                 goto err_reg_driver;
1204         }
1205
1206         zero_lv2_table = kmem_cache_zalloc(lv2table_kmem_cache, GFP_KERNEL);
1207         if (zero_lv2_table == NULL) {
1208                 pr_err("%s: Failed to allocate zero level2 page table\n",
1209                         __func__);
1210                 ret = -ENOMEM;
1211                 goto err_zero_lv2;
1212         }
1213
1214         ret = bus_set_iommu(&platform_bus_type, &exynos_iommu_ops);
1215         if (ret) {
1216                 pr_err("%s: Failed to register exynos-iommu driver.\n",
1217                                                                 __func__);
1218                 goto err_set_iommu;
1219         }
1220
1221         init_done = true;
1222
1223         return 0;
1224 err_set_iommu:
1225         kmem_cache_free(lv2table_kmem_cache, zero_lv2_table);
1226 err_zero_lv2:
1227         platform_driver_unregister(&exynos_sysmmu_driver);
1228 err_reg_driver:
1229         kmem_cache_destroy(lv2table_kmem_cache);
1230         return ret;
1231 }
1232
1233 static int __init exynos_iommu_of_setup(struct device_node *np)
1234 {
1235         struct platform_device *pdev;
1236
1237         if (!init_done)
1238                 exynos_iommu_init();
1239
1240         pdev = of_platform_device_create(np, NULL, platform_bus_type.dev_root);
1241         if (IS_ERR(pdev))
1242                 return PTR_ERR(pdev);
1243
1244         /*
1245          * use the first registered sysmmu device for performing
1246          * dma mapping operations on iommu page tables (cpu cache flush)
1247          */
1248         if (!dma_dev)
1249                 dma_dev = &pdev->dev;
1250
1251         of_iommu_set_ops(np, &exynos_iommu_ops);
1252         return 0;
1253 }
1254
1255 IOMMU_OF_DECLARE(exynos_iommu_of, "samsung,exynos-sysmmu",
1256                  exynos_iommu_of_setup);