Merge tag 'v3.17-rc3' into next
[cascardo/linux.git] / drivers / md / bcache / super.c
1 /*
2  * bcache setup/teardown code, and some metadata io - read a superblock and
3  * figure out what to do with it.
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "extents.h"
13 #include "request.h"
14 #include "writeback.h"
15
16 #include <linux/blkdev.h>
17 #include <linux/buffer_head.h>
18 #include <linux/debugfs.h>
19 #include <linux/genhd.h>
20 #include <linux/idr.h>
21 #include <linux/kthread.h>
22 #include <linux/module.h>
23 #include <linux/random.h>
24 #include <linux/reboot.h>
25 #include <linux/sysfs.h>
26
27 MODULE_LICENSE("GPL");
28 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
29
30 static const char bcache_magic[] = {
31         0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
32         0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
33 };
34
35 static const char invalid_uuid[] = {
36         0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
37         0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
38 };
39
40 /* Default is -1; we skip past it for struct cached_dev's cache mode */
41 const char * const bch_cache_modes[] = {
42         "default",
43         "writethrough",
44         "writeback",
45         "writearound",
46         "none",
47         NULL
48 };
49
50 static struct kobject *bcache_kobj;
51 struct mutex bch_register_lock;
52 LIST_HEAD(bch_cache_sets);
53 static LIST_HEAD(uncached_devices);
54
55 static int bcache_major;
56 static DEFINE_IDA(bcache_minor);
57 static wait_queue_head_t unregister_wait;
58 struct workqueue_struct *bcache_wq;
59
60 #define BTREE_MAX_PAGES         (256 * 1024 / PAGE_SIZE)
61
62 static void bio_split_pool_free(struct bio_split_pool *p)
63 {
64         if (p->bio_split_hook)
65                 mempool_destroy(p->bio_split_hook);
66
67         if (p->bio_split)
68                 bioset_free(p->bio_split);
69 }
70
71 static int bio_split_pool_init(struct bio_split_pool *p)
72 {
73         p->bio_split = bioset_create(4, 0);
74         if (!p->bio_split)
75                 return -ENOMEM;
76
77         p->bio_split_hook = mempool_create_kmalloc_pool(4,
78                                 sizeof(struct bio_split_hook));
79         if (!p->bio_split_hook)
80                 return -ENOMEM;
81
82         return 0;
83 }
84
85 /* Superblock */
86
87 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
88                               struct page **res)
89 {
90         const char *err;
91         struct cache_sb *s;
92         struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
93         unsigned i;
94
95         if (!bh)
96                 return "IO error";
97
98         s = (struct cache_sb *) bh->b_data;
99
100         sb->offset              = le64_to_cpu(s->offset);
101         sb->version             = le64_to_cpu(s->version);
102
103         memcpy(sb->magic,       s->magic, 16);
104         memcpy(sb->uuid,        s->uuid, 16);
105         memcpy(sb->set_uuid,    s->set_uuid, 16);
106         memcpy(sb->label,       s->label, SB_LABEL_SIZE);
107
108         sb->flags               = le64_to_cpu(s->flags);
109         sb->seq                 = le64_to_cpu(s->seq);
110         sb->last_mount          = le32_to_cpu(s->last_mount);
111         sb->first_bucket        = le16_to_cpu(s->first_bucket);
112         sb->keys                = le16_to_cpu(s->keys);
113
114         for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
115                 sb->d[i] = le64_to_cpu(s->d[i]);
116
117         pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
118                  sb->version, sb->flags, sb->seq, sb->keys);
119
120         err = "Not a bcache superblock";
121         if (sb->offset != SB_SECTOR)
122                 goto err;
123
124         if (memcmp(sb->magic, bcache_magic, 16))
125                 goto err;
126
127         err = "Too many journal buckets";
128         if (sb->keys > SB_JOURNAL_BUCKETS)
129                 goto err;
130
131         err = "Bad checksum";
132         if (s->csum != csum_set(s))
133                 goto err;
134
135         err = "Bad UUID";
136         if (bch_is_zero(sb->uuid, 16))
137                 goto err;
138
139         sb->block_size  = le16_to_cpu(s->block_size);
140
141         err = "Superblock block size smaller than device block size";
142         if (sb->block_size << 9 < bdev_logical_block_size(bdev))
143                 goto err;
144
145         switch (sb->version) {
146         case BCACHE_SB_VERSION_BDEV:
147                 sb->data_offset = BDEV_DATA_START_DEFAULT;
148                 break;
149         case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
150                 sb->data_offset = le64_to_cpu(s->data_offset);
151
152                 err = "Bad data offset";
153                 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
154                         goto err;
155
156                 break;
157         case BCACHE_SB_VERSION_CDEV:
158         case BCACHE_SB_VERSION_CDEV_WITH_UUID:
159                 sb->nbuckets    = le64_to_cpu(s->nbuckets);
160                 sb->block_size  = le16_to_cpu(s->block_size);
161                 sb->bucket_size = le16_to_cpu(s->bucket_size);
162
163                 sb->nr_in_set   = le16_to_cpu(s->nr_in_set);
164                 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
165
166                 err = "Too many buckets";
167                 if (sb->nbuckets > LONG_MAX)
168                         goto err;
169
170                 err = "Not enough buckets";
171                 if (sb->nbuckets < 1 << 7)
172                         goto err;
173
174                 err = "Bad block/bucket size";
175                 if (!is_power_of_2(sb->block_size) ||
176                     sb->block_size > PAGE_SECTORS ||
177                     !is_power_of_2(sb->bucket_size) ||
178                     sb->bucket_size < PAGE_SECTORS)
179                         goto err;
180
181                 err = "Invalid superblock: device too small";
182                 if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
183                         goto err;
184
185                 err = "Bad UUID";
186                 if (bch_is_zero(sb->set_uuid, 16))
187                         goto err;
188
189                 err = "Bad cache device number in set";
190                 if (!sb->nr_in_set ||
191                     sb->nr_in_set <= sb->nr_this_dev ||
192                     sb->nr_in_set > MAX_CACHES_PER_SET)
193                         goto err;
194
195                 err = "Journal buckets not sequential";
196                 for (i = 0; i < sb->keys; i++)
197                         if (sb->d[i] != sb->first_bucket + i)
198                                 goto err;
199
200                 err = "Too many journal buckets";
201                 if (sb->first_bucket + sb->keys > sb->nbuckets)
202                         goto err;
203
204                 err = "Invalid superblock: first bucket comes before end of super";
205                 if (sb->first_bucket * sb->bucket_size < 16)
206                         goto err;
207
208                 break;
209         default:
210                 err = "Unsupported superblock version";
211                 goto err;
212         }
213
214         sb->last_mount = get_seconds();
215         err = NULL;
216
217         get_page(bh->b_page);
218         *res = bh->b_page;
219 err:
220         put_bh(bh);
221         return err;
222 }
223
224 static void write_bdev_super_endio(struct bio *bio, int error)
225 {
226         struct cached_dev *dc = bio->bi_private;
227         /* XXX: error checking */
228
229         closure_put(&dc->sb_write);
230 }
231
232 static void __write_super(struct cache_sb *sb, struct bio *bio)
233 {
234         struct cache_sb *out = page_address(bio->bi_io_vec[0].bv_page);
235         unsigned i;
236
237         bio->bi_iter.bi_sector  = SB_SECTOR;
238         bio->bi_rw              = REQ_SYNC|REQ_META;
239         bio->bi_iter.bi_size    = SB_SIZE;
240         bch_bio_map(bio, NULL);
241
242         out->offset             = cpu_to_le64(sb->offset);
243         out->version            = cpu_to_le64(sb->version);
244
245         memcpy(out->uuid,       sb->uuid, 16);
246         memcpy(out->set_uuid,   sb->set_uuid, 16);
247         memcpy(out->label,      sb->label, SB_LABEL_SIZE);
248
249         out->flags              = cpu_to_le64(sb->flags);
250         out->seq                = cpu_to_le64(sb->seq);
251
252         out->last_mount         = cpu_to_le32(sb->last_mount);
253         out->first_bucket       = cpu_to_le16(sb->first_bucket);
254         out->keys               = cpu_to_le16(sb->keys);
255
256         for (i = 0; i < sb->keys; i++)
257                 out->d[i] = cpu_to_le64(sb->d[i]);
258
259         out->csum = csum_set(out);
260
261         pr_debug("ver %llu, flags %llu, seq %llu",
262                  sb->version, sb->flags, sb->seq);
263
264         submit_bio(REQ_WRITE, bio);
265 }
266
267 static void bch_write_bdev_super_unlock(struct closure *cl)
268 {
269         struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
270
271         up(&dc->sb_write_mutex);
272 }
273
274 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
275 {
276         struct closure *cl = &dc->sb_write;
277         struct bio *bio = &dc->sb_bio;
278
279         down(&dc->sb_write_mutex);
280         closure_init(cl, parent);
281
282         bio_reset(bio);
283         bio->bi_bdev    = dc->bdev;
284         bio->bi_end_io  = write_bdev_super_endio;
285         bio->bi_private = dc;
286
287         closure_get(cl);
288         __write_super(&dc->sb, bio);
289
290         closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
291 }
292
293 static void write_super_endio(struct bio *bio, int error)
294 {
295         struct cache *ca = bio->bi_private;
296
297         bch_count_io_errors(ca, error, "writing superblock");
298         closure_put(&ca->set->sb_write);
299 }
300
301 static void bcache_write_super_unlock(struct closure *cl)
302 {
303         struct cache_set *c = container_of(cl, struct cache_set, sb_write);
304
305         up(&c->sb_write_mutex);
306 }
307
308 void bcache_write_super(struct cache_set *c)
309 {
310         struct closure *cl = &c->sb_write;
311         struct cache *ca;
312         unsigned i;
313
314         down(&c->sb_write_mutex);
315         closure_init(cl, &c->cl);
316
317         c->sb.seq++;
318
319         for_each_cache(ca, c, i) {
320                 struct bio *bio = &ca->sb_bio;
321
322                 ca->sb.version          = BCACHE_SB_VERSION_CDEV_WITH_UUID;
323                 ca->sb.seq              = c->sb.seq;
324                 ca->sb.last_mount       = c->sb.last_mount;
325
326                 SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
327
328                 bio_reset(bio);
329                 bio->bi_bdev    = ca->bdev;
330                 bio->bi_end_io  = write_super_endio;
331                 bio->bi_private = ca;
332
333                 closure_get(cl);
334                 __write_super(&ca->sb, bio);
335         }
336
337         closure_return_with_destructor(cl, bcache_write_super_unlock);
338 }
339
340 /* UUID io */
341
342 static void uuid_endio(struct bio *bio, int error)
343 {
344         struct closure *cl = bio->bi_private;
345         struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
346
347         cache_set_err_on(error, c, "accessing uuids");
348         bch_bbio_free(bio, c);
349         closure_put(cl);
350 }
351
352 static void uuid_io_unlock(struct closure *cl)
353 {
354         struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
355
356         up(&c->uuid_write_mutex);
357 }
358
359 static void uuid_io(struct cache_set *c, unsigned long rw,
360                     struct bkey *k, struct closure *parent)
361 {
362         struct closure *cl = &c->uuid_write;
363         struct uuid_entry *u;
364         unsigned i;
365         char buf[80];
366
367         BUG_ON(!parent);
368         down(&c->uuid_write_mutex);
369         closure_init(cl, parent);
370
371         for (i = 0; i < KEY_PTRS(k); i++) {
372                 struct bio *bio = bch_bbio_alloc(c);
373
374                 bio->bi_rw      = REQ_SYNC|REQ_META|rw;
375                 bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
376
377                 bio->bi_end_io  = uuid_endio;
378                 bio->bi_private = cl;
379                 bch_bio_map(bio, c->uuids);
380
381                 bch_submit_bbio(bio, c, k, i);
382
383                 if (!(rw & WRITE))
384                         break;
385         }
386
387         bch_extent_to_text(buf, sizeof(buf), k);
388         pr_debug("%s UUIDs at %s", rw & REQ_WRITE ? "wrote" : "read", buf);
389
390         for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
391                 if (!bch_is_zero(u->uuid, 16))
392                         pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
393                                  u - c->uuids, u->uuid, u->label,
394                                  u->first_reg, u->last_reg, u->invalidated);
395
396         closure_return_with_destructor(cl, uuid_io_unlock);
397 }
398
399 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
400 {
401         struct bkey *k = &j->uuid_bucket;
402
403         if (__bch_btree_ptr_invalid(c, k))
404                 return "bad uuid pointer";
405
406         bkey_copy(&c->uuid_bucket, k);
407         uuid_io(c, READ_SYNC, k, cl);
408
409         if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
410                 struct uuid_entry_v0    *u0 = (void *) c->uuids;
411                 struct uuid_entry       *u1 = (void *) c->uuids;
412                 int i;
413
414                 closure_sync(cl);
415
416                 /*
417                  * Since the new uuid entry is bigger than the old, we have to
418                  * convert starting at the highest memory address and work down
419                  * in order to do it in place
420                  */
421
422                 for (i = c->nr_uuids - 1;
423                      i >= 0;
424                      --i) {
425                         memcpy(u1[i].uuid,      u0[i].uuid, 16);
426                         memcpy(u1[i].label,     u0[i].label, 32);
427
428                         u1[i].first_reg         = u0[i].first_reg;
429                         u1[i].last_reg          = u0[i].last_reg;
430                         u1[i].invalidated       = u0[i].invalidated;
431
432                         u1[i].flags     = 0;
433                         u1[i].sectors   = 0;
434                 }
435         }
436
437         return NULL;
438 }
439
440 static int __uuid_write(struct cache_set *c)
441 {
442         BKEY_PADDED(key) k;
443         struct closure cl;
444         closure_init_stack(&cl);
445
446         lockdep_assert_held(&bch_register_lock);
447
448         if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
449                 return 1;
450
451         SET_KEY_SIZE(&k.key, c->sb.bucket_size);
452         uuid_io(c, REQ_WRITE, &k.key, &cl);
453         closure_sync(&cl);
454
455         bkey_copy(&c->uuid_bucket, &k.key);
456         bkey_put(c, &k.key);
457         return 0;
458 }
459
460 int bch_uuid_write(struct cache_set *c)
461 {
462         int ret = __uuid_write(c);
463
464         if (!ret)
465                 bch_journal_meta(c, NULL);
466
467         return ret;
468 }
469
470 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
471 {
472         struct uuid_entry *u;
473
474         for (u = c->uuids;
475              u < c->uuids + c->nr_uuids; u++)
476                 if (!memcmp(u->uuid, uuid, 16))
477                         return u;
478
479         return NULL;
480 }
481
482 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
483 {
484         static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
485         return uuid_find(c, zero_uuid);
486 }
487
488 /*
489  * Bucket priorities/gens:
490  *
491  * For each bucket, we store on disk its
492    * 8 bit gen
493    * 16 bit priority
494  *
495  * See alloc.c for an explanation of the gen. The priority is used to implement
496  * lru (and in the future other) cache replacement policies; for most purposes
497  * it's just an opaque integer.
498  *
499  * The gens and the priorities don't have a whole lot to do with each other, and
500  * it's actually the gens that must be written out at specific times - it's no
501  * big deal if the priorities don't get written, if we lose them we just reuse
502  * buckets in suboptimal order.
503  *
504  * On disk they're stored in a packed array, and in as many buckets are required
505  * to fit them all. The buckets we use to store them form a list; the journal
506  * header points to the first bucket, the first bucket points to the second
507  * bucket, et cetera.
508  *
509  * This code is used by the allocation code; periodically (whenever it runs out
510  * of buckets to allocate from) the allocation code will invalidate some
511  * buckets, but it can't use those buckets until their new gens are safely on
512  * disk.
513  */
514
515 static void prio_endio(struct bio *bio, int error)
516 {
517         struct cache *ca = bio->bi_private;
518
519         cache_set_err_on(error, ca->set, "accessing priorities");
520         bch_bbio_free(bio, ca->set);
521         closure_put(&ca->prio);
522 }
523
524 static void prio_io(struct cache *ca, uint64_t bucket, unsigned long rw)
525 {
526         struct closure *cl = &ca->prio;
527         struct bio *bio = bch_bbio_alloc(ca->set);
528
529         closure_init_stack(cl);
530
531         bio->bi_iter.bi_sector  = bucket * ca->sb.bucket_size;
532         bio->bi_bdev            = ca->bdev;
533         bio->bi_rw              = REQ_SYNC|REQ_META|rw;
534         bio->bi_iter.bi_size    = bucket_bytes(ca);
535
536         bio->bi_end_io  = prio_endio;
537         bio->bi_private = ca;
538         bch_bio_map(bio, ca->disk_buckets);
539
540         closure_bio_submit(bio, &ca->prio, ca);
541         closure_sync(cl);
542 }
543
544 void bch_prio_write(struct cache *ca)
545 {
546         int i;
547         struct bucket *b;
548         struct closure cl;
549
550         closure_init_stack(&cl);
551
552         lockdep_assert_held(&ca->set->bucket_lock);
553
554         ca->disk_buckets->seq++;
555
556         atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
557                         &ca->meta_sectors_written);
558
559         //pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
560         //       fifo_used(&ca->free_inc), fifo_used(&ca->unused));
561
562         for (i = prio_buckets(ca) - 1; i >= 0; --i) {
563                 long bucket;
564                 struct prio_set *p = ca->disk_buckets;
565                 struct bucket_disk *d = p->data;
566                 struct bucket_disk *end = d + prios_per_bucket(ca);
567
568                 for (b = ca->buckets + i * prios_per_bucket(ca);
569                      b < ca->buckets + ca->sb.nbuckets && d < end;
570                      b++, d++) {
571                         d->prio = cpu_to_le16(b->prio);
572                         d->gen = b->gen;
573                 }
574
575                 p->next_bucket  = ca->prio_buckets[i + 1];
576                 p->magic        = pset_magic(&ca->sb);
577                 p->csum         = bch_crc64(&p->magic, bucket_bytes(ca) - 8);
578
579                 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, true);
580                 BUG_ON(bucket == -1);
581
582                 mutex_unlock(&ca->set->bucket_lock);
583                 prio_io(ca, bucket, REQ_WRITE);
584                 mutex_lock(&ca->set->bucket_lock);
585
586                 ca->prio_buckets[i] = bucket;
587                 atomic_dec_bug(&ca->buckets[bucket].pin);
588         }
589
590         mutex_unlock(&ca->set->bucket_lock);
591
592         bch_journal_meta(ca->set, &cl);
593         closure_sync(&cl);
594
595         mutex_lock(&ca->set->bucket_lock);
596
597         /*
598          * Don't want the old priorities to get garbage collected until after we
599          * finish writing the new ones, and they're journalled
600          */
601         for (i = 0; i < prio_buckets(ca); i++) {
602                 if (ca->prio_last_buckets[i])
603                         __bch_bucket_free(ca,
604                                 &ca->buckets[ca->prio_last_buckets[i]]);
605
606                 ca->prio_last_buckets[i] = ca->prio_buckets[i];
607         }
608 }
609
610 static void prio_read(struct cache *ca, uint64_t bucket)
611 {
612         struct prio_set *p = ca->disk_buckets;
613         struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
614         struct bucket *b;
615         unsigned bucket_nr = 0;
616
617         for (b = ca->buckets;
618              b < ca->buckets + ca->sb.nbuckets;
619              b++, d++) {
620                 if (d == end) {
621                         ca->prio_buckets[bucket_nr] = bucket;
622                         ca->prio_last_buckets[bucket_nr] = bucket;
623                         bucket_nr++;
624
625                         prio_io(ca, bucket, READ_SYNC);
626
627                         if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
628                                 pr_warn("bad csum reading priorities");
629
630                         if (p->magic != pset_magic(&ca->sb))
631                                 pr_warn("bad magic reading priorities");
632
633                         bucket = p->next_bucket;
634                         d = p->data;
635                 }
636
637                 b->prio = le16_to_cpu(d->prio);
638                 b->gen = b->last_gc = d->gen;
639         }
640 }
641
642 /* Bcache device */
643
644 static int open_dev(struct block_device *b, fmode_t mode)
645 {
646         struct bcache_device *d = b->bd_disk->private_data;
647         if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
648                 return -ENXIO;
649
650         closure_get(&d->cl);
651         return 0;
652 }
653
654 static void release_dev(struct gendisk *b, fmode_t mode)
655 {
656         struct bcache_device *d = b->private_data;
657         closure_put(&d->cl);
658 }
659
660 static int ioctl_dev(struct block_device *b, fmode_t mode,
661                      unsigned int cmd, unsigned long arg)
662 {
663         struct bcache_device *d = b->bd_disk->private_data;
664         return d->ioctl(d, mode, cmd, arg);
665 }
666
667 static const struct block_device_operations bcache_ops = {
668         .open           = open_dev,
669         .release        = release_dev,
670         .ioctl          = ioctl_dev,
671         .owner          = THIS_MODULE,
672 };
673
674 void bcache_device_stop(struct bcache_device *d)
675 {
676         if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
677                 closure_queue(&d->cl);
678 }
679
680 static void bcache_device_unlink(struct bcache_device *d)
681 {
682         lockdep_assert_held(&bch_register_lock);
683
684         if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
685                 unsigned i;
686                 struct cache *ca;
687
688                 sysfs_remove_link(&d->c->kobj, d->name);
689                 sysfs_remove_link(&d->kobj, "cache");
690
691                 for_each_cache(ca, d->c, i)
692                         bd_unlink_disk_holder(ca->bdev, d->disk);
693         }
694 }
695
696 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
697                                const char *name)
698 {
699         unsigned i;
700         struct cache *ca;
701
702         for_each_cache(ca, d->c, i)
703                 bd_link_disk_holder(ca->bdev, d->disk);
704
705         snprintf(d->name, BCACHEDEVNAME_SIZE,
706                  "%s%u", name, d->id);
707
708         WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
709              sysfs_create_link(&c->kobj, &d->kobj, d->name),
710              "Couldn't create device <-> cache set symlinks");
711 }
712
713 static void bcache_device_detach(struct bcache_device *d)
714 {
715         lockdep_assert_held(&bch_register_lock);
716
717         if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
718                 struct uuid_entry *u = d->c->uuids + d->id;
719
720                 SET_UUID_FLASH_ONLY(u, 0);
721                 memcpy(u->uuid, invalid_uuid, 16);
722                 u->invalidated = cpu_to_le32(get_seconds());
723                 bch_uuid_write(d->c);
724         }
725
726         bcache_device_unlink(d);
727
728         d->c->devices[d->id] = NULL;
729         closure_put(&d->c->caching);
730         d->c = NULL;
731 }
732
733 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
734                                  unsigned id)
735 {
736         d->id = id;
737         d->c = c;
738         c->devices[id] = d;
739
740         closure_get(&c->caching);
741 }
742
743 static void bcache_device_free(struct bcache_device *d)
744 {
745         lockdep_assert_held(&bch_register_lock);
746
747         pr_info("%s stopped", d->disk->disk_name);
748
749         if (d->c)
750                 bcache_device_detach(d);
751         if (d->disk && d->disk->flags & GENHD_FL_UP)
752                 del_gendisk(d->disk);
753         if (d->disk && d->disk->queue)
754                 blk_cleanup_queue(d->disk->queue);
755         if (d->disk) {
756                 ida_simple_remove(&bcache_minor, d->disk->first_minor);
757                 put_disk(d->disk);
758         }
759
760         bio_split_pool_free(&d->bio_split_hook);
761         if (d->bio_split)
762                 bioset_free(d->bio_split);
763         if (is_vmalloc_addr(d->full_dirty_stripes))
764                 vfree(d->full_dirty_stripes);
765         else
766                 kfree(d->full_dirty_stripes);
767         if (is_vmalloc_addr(d->stripe_sectors_dirty))
768                 vfree(d->stripe_sectors_dirty);
769         else
770                 kfree(d->stripe_sectors_dirty);
771
772         closure_debug_destroy(&d->cl);
773 }
774
775 static int bcache_device_init(struct bcache_device *d, unsigned block_size,
776                               sector_t sectors)
777 {
778         struct request_queue *q;
779         size_t n;
780         int minor;
781
782         if (!d->stripe_size)
783                 d->stripe_size = 1 << 31;
784
785         d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
786
787         if (!d->nr_stripes ||
788             d->nr_stripes > INT_MAX ||
789             d->nr_stripes > SIZE_MAX / sizeof(atomic_t)) {
790                 pr_err("nr_stripes too large");
791                 return -ENOMEM;
792         }
793
794         n = d->nr_stripes * sizeof(atomic_t);
795         d->stripe_sectors_dirty = n < PAGE_SIZE << 6
796                 ? kzalloc(n, GFP_KERNEL)
797                 : vzalloc(n);
798         if (!d->stripe_sectors_dirty)
799                 return -ENOMEM;
800
801         n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
802         d->full_dirty_stripes = n < PAGE_SIZE << 6
803                 ? kzalloc(n, GFP_KERNEL)
804                 : vzalloc(n);
805         if (!d->full_dirty_stripes)
806                 return -ENOMEM;
807
808         minor = ida_simple_get(&bcache_minor, 0, MINORMASK + 1, GFP_KERNEL);
809         if (minor < 0)
810                 return minor;
811
812         if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
813             bio_split_pool_init(&d->bio_split_hook) ||
814             !(d->disk = alloc_disk(1))) {
815                 ida_simple_remove(&bcache_minor, minor);
816                 return -ENOMEM;
817         }
818
819         set_capacity(d->disk, sectors);
820         snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", minor);
821
822         d->disk->major          = bcache_major;
823         d->disk->first_minor    = minor;
824         d->disk->fops           = &bcache_ops;
825         d->disk->private_data   = d;
826
827         q = blk_alloc_queue(GFP_KERNEL);
828         if (!q)
829                 return -ENOMEM;
830
831         blk_queue_make_request(q, NULL);
832         d->disk->queue                  = q;
833         q->queuedata                    = d;
834         q->backing_dev_info.congested_data = d;
835         q->limits.max_hw_sectors        = UINT_MAX;
836         q->limits.max_sectors           = UINT_MAX;
837         q->limits.max_segment_size      = UINT_MAX;
838         q->limits.max_segments          = BIO_MAX_PAGES;
839         q->limits.max_discard_sectors   = UINT_MAX;
840         q->limits.discard_granularity   = 512;
841         q->limits.io_min                = block_size;
842         q->limits.logical_block_size    = block_size;
843         q->limits.physical_block_size   = block_size;
844         set_bit(QUEUE_FLAG_NONROT,      &d->disk->queue->queue_flags);
845         set_bit(QUEUE_FLAG_DISCARD,     &d->disk->queue->queue_flags);
846
847         blk_queue_flush(q, REQ_FLUSH|REQ_FUA);
848
849         return 0;
850 }
851
852 /* Cached device */
853
854 static void calc_cached_dev_sectors(struct cache_set *c)
855 {
856         uint64_t sectors = 0;
857         struct cached_dev *dc;
858
859         list_for_each_entry(dc, &c->cached_devs, list)
860                 sectors += bdev_sectors(dc->bdev);
861
862         c->cached_dev_sectors = sectors;
863 }
864
865 void bch_cached_dev_run(struct cached_dev *dc)
866 {
867         struct bcache_device *d = &dc->disk;
868         char buf[SB_LABEL_SIZE + 1];
869         char *env[] = {
870                 "DRIVER=bcache",
871                 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
872                 NULL,
873                 NULL,
874         };
875
876         memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
877         buf[SB_LABEL_SIZE] = '\0';
878         env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
879
880         if (atomic_xchg(&dc->running, 1))
881                 return;
882
883         if (!d->c &&
884             BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
885                 struct closure cl;
886                 closure_init_stack(&cl);
887
888                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
889                 bch_write_bdev_super(dc, &cl);
890                 closure_sync(&cl);
891         }
892
893         add_disk(d->disk);
894         bd_link_disk_holder(dc->bdev, dc->disk.disk);
895         /* won't show up in the uevent file, use udevadm monitor -e instead
896          * only class / kset properties are persistent */
897         kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
898         kfree(env[1]);
899         kfree(env[2]);
900
901         if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
902             sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
903                 pr_debug("error creating sysfs link");
904 }
905
906 static void cached_dev_detach_finish(struct work_struct *w)
907 {
908         struct cached_dev *dc = container_of(w, struct cached_dev, detach);
909         char buf[BDEVNAME_SIZE];
910         struct closure cl;
911         closure_init_stack(&cl);
912
913         BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
914         BUG_ON(atomic_read(&dc->count));
915
916         mutex_lock(&bch_register_lock);
917
918         memset(&dc->sb.set_uuid, 0, 16);
919         SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
920
921         bch_write_bdev_super(dc, &cl);
922         closure_sync(&cl);
923
924         bcache_device_detach(&dc->disk);
925         list_move(&dc->list, &uncached_devices);
926
927         clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
928         clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
929
930         mutex_unlock(&bch_register_lock);
931
932         pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
933
934         /* Drop ref we took in cached_dev_detach() */
935         closure_put(&dc->disk.cl);
936 }
937
938 void bch_cached_dev_detach(struct cached_dev *dc)
939 {
940         lockdep_assert_held(&bch_register_lock);
941
942         if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
943                 return;
944
945         if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
946                 return;
947
948         /*
949          * Block the device from being closed and freed until we're finished
950          * detaching
951          */
952         closure_get(&dc->disk.cl);
953
954         bch_writeback_queue(dc);
955         cached_dev_put(dc);
956 }
957
958 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c)
959 {
960         uint32_t rtime = cpu_to_le32(get_seconds());
961         struct uuid_entry *u;
962         char buf[BDEVNAME_SIZE];
963
964         bdevname(dc->bdev, buf);
965
966         if (memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))
967                 return -ENOENT;
968
969         if (dc->disk.c) {
970                 pr_err("Can't attach %s: already attached", buf);
971                 return -EINVAL;
972         }
973
974         if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
975                 pr_err("Can't attach %s: shutting down", buf);
976                 return -EINVAL;
977         }
978
979         if (dc->sb.block_size < c->sb.block_size) {
980                 /* Will die */
981                 pr_err("Couldn't attach %s: block size less than set's block size",
982                        buf);
983                 return -EINVAL;
984         }
985
986         u = uuid_find(c, dc->sb.uuid);
987
988         if (u &&
989             (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
990              BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
991                 memcpy(u->uuid, invalid_uuid, 16);
992                 u->invalidated = cpu_to_le32(get_seconds());
993                 u = NULL;
994         }
995
996         if (!u) {
997                 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
998                         pr_err("Couldn't find uuid for %s in set", buf);
999                         return -ENOENT;
1000                 }
1001
1002                 u = uuid_find_empty(c);
1003                 if (!u) {
1004                         pr_err("Not caching %s, no room for UUID", buf);
1005                         return -EINVAL;
1006                 }
1007         }
1008
1009         /* Deadlocks since we're called via sysfs...
1010         sysfs_remove_file(&dc->kobj, &sysfs_attach);
1011          */
1012
1013         if (bch_is_zero(u->uuid, 16)) {
1014                 struct closure cl;
1015                 closure_init_stack(&cl);
1016
1017                 memcpy(u->uuid, dc->sb.uuid, 16);
1018                 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1019                 u->first_reg = u->last_reg = rtime;
1020                 bch_uuid_write(c);
1021
1022                 memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
1023                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1024
1025                 bch_write_bdev_super(dc, &cl);
1026                 closure_sync(&cl);
1027         } else {
1028                 u->last_reg = rtime;
1029                 bch_uuid_write(c);
1030         }
1031
1032         bcache_device_attach(&dc->disk, c, u - c->uuids);
1033         list_move(&dc->list, &c->cached_devs);
1034         calc_cached_dev_sectors(c);
1035
1036         smp_wmb();
1037         /*
1038          * dc->c must be set before dc->count != 0 - paired with the mb in
1039          * cached_dev_get()
1040          */
1041         atomic_set(&dc->count, 1);
1042
1043         if (bch_cached_dev_writeback_start(dc))
1044                 return -ENOMEM;
1045
1046         if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1047                 bch_sectors_dirty_init(dc);
1048                 atomic_set(&dc->has_dirty, 1);
1049                 atomic_inc(&dc->count);
1050                 bch_writeback_queue(dc);
1051         }
1052
1053         bch_cached_dev_run(dc);
1054         bcache_device_link(&dc->disk, c, "bdev");
1055
1056         pr_info("Caching %s as %s on set %pU",
1057                 bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
1058                 dc->disk.c->sb.set_uuid);
1059         return 0;
1060 }
1061
1062 void bch_cached_dev_release(struct kobject *kobj)
1063 {
1064         struct cached_dev *dc = container_of(kobj, struct cached_dev,
1065                                              disk.kobj);
1066         kfree(dc);
1067         module_put(THIS_MODULE);
1068 }
1069
1070 static void cached_dev_free(struct closure *cl)
1071 {
1072         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1073
1074         cancel_delayed_work_sync(&dc->writeback_rate_update);
1075         if (!IS_ERR_OR_NULL(dc->writeback_thread))
1076                 kthread_stop(dc->writeback_thread);
1077
1078         mutex_lock(&bch_register_lock);
1079
1080         if (atomic_read(&dc->running))
1081                 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1082         bcache_device_free(&dc->disk);
1083         list_del(&dc->list);
1084
1085         mutex_unlock(&bch_register_lock);
1086
1087         if (!IS_ERR_OR_NULL(dc->bdev))
1088                 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1089
1090         wake_up(&unregister_wait);
1091
1092         kobject_put(&dc->disk.kobj);
1093 }
1094
1095 static void cached_dev_flush(struct closure *cl)
1096 {
1097         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1098         struct bcache_device *d = &dc->disk;
1099
1100         mutex_lock(&bch_register_lock);
1101         bcache_device_unlink(d);
1102         mutex_unlock(&bch_register_lock);
1103
1104         bch_cache_accounting_destroy(&dc->accounting);
1105         kobject_del(&d->kobj);
1106
1107         continue_at(cl, cached_dev_free, system_wq);
1108 }
1109
1110 static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
1111 {
1112         int ret;
1113         struct io *io;
1114         struct request_queue *q = bdev_get_queue(dc->bdev);
1115
1116         __module_get(THIS_MODULE);
1117         INIT_LIST_HEAD(&dc->list);
1118         closure_init(&dc->disk.cl, NULL);
1119         set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1120         kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1121         INIT_WORK(&dc->detach, cached_dev_detach_finish);
1122         sema_init(&dc->sb_write_mutex, 1);
1123         INIT_LIST_HEAD(&dc->io_lru);
1124         spin_lock_init(&dc->io_lock);
1125         bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1126
1127         dc->sequential_cutoff           = 4 << 20;
1128
1129         for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1130                 list_add(&io->lru, &dc->io_lru);
1131                 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1132         }
1133
1134         dc->disk.stripe_size = q->limits.io_opt >> 9;
1135
1136         if (dc->disk.stripe_size)
1137                 dc->partial_stripes_expensive =
1138                         q->limits.raid_partial_stripes_expensive;
1139
1140         ret = bcache_device_init(&dc->disk, block_size,
1141                          dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1142         if (ret)
1143                 return ret;
1144
1145         set_capacity(dc->disk.disk,
1146                      dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1147
1148         dc->disk.disk->queue->backing_dev_info.ra_pages =
1149                 max(dc->disk.disk->queue->backing_dev_info.ra_pages,
1150                     q->backing_dev_info.ra_pages);
1151
1152         bch_cached_dev_request_init(dc);
1153         bch_cached_dev_writeback_init(dc);
1154         return 0;
1155 }
1156
1157 /* Cached device - bcache superblock */
1158
1159 static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1160                                  struct block_device *bdev,
1161                                  struct cached_dev *dc)
1162 {
1163         char name[BDEVNAME_SIZE];
1164         const char *err = "cannot allocate memory";
1165         struct cache_set *c;
1166
1167         memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1168         dc->bdev = bdev;
1169         dc->bdev->bd_holder = dc;
1170
1171         bio_init(&dc->sb_bio);
1172         dc->sb_bio.bi_max_vecs  = 1;
1173         dc->sb_bio.bi_io_vec    = dc->sb_bio.bi_inline_vecs;
1174         dc->sb_bio.bi_io_vec[0].bv_page = sb_page;
1175         get_page(sb_page);
1176
1177         if (cached_dev_init(dc, sb->block_size << 9))
1178                 goto err;
1179
1180         err = "error creating kobject";
1181         if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1182                         "bcache"))
1183                 goto err;
1184         if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1185                 goto err;
1186
1187         pr_info("registered backing device %s", bdevname(bdev, name));
1188
1189         list_add(&dc->list, &uncached_devices);
1190         list_for_each_entry(c, &bch_cache_sets, list)
1191                 bch_cached_dev_attach(dc, c);
1192
1193         if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1194             BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1195                 bch_cached_dev_run(dc);
1196
1197         return;
1198 err:
1199         pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1200         bcache_device_stop(&dc->disk);
1201 }
1202
1203 /* Flash only volumes */
1204
1205 void bch_flash_dev_release(struct kobject *kobj)
1206 {
1207         struct bcache_device *d = container_of(kobj, struct bcache_device,
1208                                                kobj);
1209         kfree(d);
1210 }
1211
1212 static void flash_dev_free(struct closure *cl)
1213 {
1214         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1215         mutex_lock(&bch_register_lock);
1216         bcache_device_free(d);
1217         mutex_unlock(&bch_register_lock);
1218         kobject_put(&d->kobj);
1219 }
1220
1221 static void flash_dev_flush(struct closure *cl)
1222 {
1223         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1224
1225         mutex_lock(&bch_register_lock);
1226         bcache_device_unlink(d);
1227         mutex_unlock(&bch_register_lock);
1228         kobject_del(&d->kobj);
1229         continue_at(cl, flash_dev_free, system_wq);
1230 }
1231
1232 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1233 {
1234         struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1235                                           GFP_KERNEL);
1236         if (!d)
1237                 return -ENOMEM;
1238
1239         closure_init(&d->cl, NULL);
1240         set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1241
1242         kobject_init(&d->kobj, &bch_flash_dev_ktype);
1243
1244         if (bcache_device_init(d, block_bytes(c), u->sectors))
1245                 goto err;
1246
1247         bcache_device_attach(d, c, u - c->uuids);
1248         bch_flash_dev_request_init(d);
1249         add_disk(d->disk);
1250
1251         if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1252                 goto err;
1253
1254         bcache_device_link(d, c, "volume");
1255
1256         return 0;
1257 err:
1258         kobject_put(&d->kobj);
1259         return -ENOMEM;
1260 }
1261
1262 static int flash_devs_run(struct cache_set *c)
1263 {
1264         int ret = 0;
1265         struct uuid_entry *u;
1266
1267         for (u = c->uuids;
1268              u < c->uuids + c->nr_uuids && !ret;
1269              u++)
1270                 if (UUID_FLASH_ONLY(u))
1271                         ret = flash_dev_run(c, u);
1272
1273         return ret;
1274 }
1275
1276 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1277 {
1278         struct uuid_entry *u;
1279
1280         if (test_bit(CACHE_SET_STOPPING, &c->flags))
1281                 return -EINTR;
1282
1283         if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1284                 return -EPERM;
1285
1286         u = uuid_find_empty(c);
1287         if (!u) {
1288                 pr_err("Can't create volume, no room for UUID");
1289                 return -EINVAL;
1290         }
1291
1292         get_random_bytes(u->uuid, 16);
1293         memset(u->label, 0, 32);
1294         u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1295
1296         SET_UUID_FLASH_ONLY(u, 1);
1297         u->sectors = size >> 9;
1298
1299         bch_uuid_write(c);
1300
1301         return flash_dev_run(c, u);
1302 }
1303
1304 /* Cache set */
1305
1306 __printf(2, 3)
1307 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1308 {
1309         va_list args;
1310
1311         if (c->on_error != ON_ERROR_PANIC &&
1312             test_bit(CACHE_SET_STOPPING, &c->flags))
1313                 return false;
1314
1315         /* XXX: we can be called from atomic context
1316         acquire_console_sem();
1317         */
1318
1319         printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1320
1321         va_start(args, fmt);
1322         vprintk(fmt, args);
1323         va_end(args);
1324
1325         printk(", disabling caching\n");
1326
1327         if (c->on_error == ON_ERROR_PANIC)
1328                 panic("panic forced after error\n");
1329
1330         bch_cache_set_unregister(c);
1331         return true;
1332 }
1333
1334 void bch_cache_set_release(struct kobject *kobj)
1335 {
1336         struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1337         kfree(c);
1338         module_put(THIS_MODULE);
1339 }
1340
1341 static void cache_set_free(struct closure *cl)
1342 {
1343         struct cache_set *c = container_of(cl, struct cache_set, cl);
1344         struct cache *ca;
1345         unsigned i;
1346
1347         if (!IS_ERR_OR_NULL(c->debug))
1348                 debugfs_remove(c->debug);
1349
1350         bch_open_buckets_free(c);
1351         bch_btree_cache_free(c);
1352         bch_journal_free(c);
1353
1354         for_each_cache(ca, c, i)
1355                 if (ca) {
1356                         ca->set = NULL;
1357                         c->cache[ca->sb.nr_this_dev] = NULL;
1358                         kobject_put(&ca->kobj);
1359                 }
1360
1361         bch_bset_sort_state_free(&c->sort);
1362         free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1363
1364         if (c->moving_gc_wq)
1365                 destroy_workqueue(c->moving_gc_wq);
1366         if (c->bio_split)
1367                 bioset_free(c->bio_split);
1368         if (c->fill_iter)
1369                 mempool_destroy(c->fill_iter);
1370         if (c->bio_meta)
1371                 mempool_destroy(c->bio_meta);
1372         if (c->search)
1373                 mempool_destroy(c->search);
1374         kfree(c->devices);
1375
1376         mutex_lock(&bch_register_lock);
1377         list_del(&c->list);
1378         mutex_unlock(&bch_register_lock);
1379
1380         pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1381         wake_up(&unregister_wait);
1382
1383         closure_debug_destroy(&c->cl);
1384         kobject_put(&c->kobj);
1385 }
1386
1387 static void cache_set_flush(struct closure *cl)
1388 {
1389         struct cache_set *c = container_of(cl, struct cache_set, caching);
1390         struct cache *ca;
1391         struct btree *b;
1392         unsigned i;
1393
1394         bch_cache_accounting_destroy(&c->accounting);
1395
1396         kobject_put(&c->internal);
1397         kobject_del(&c->kobj);
1398
1399         if (c->gc_thread)
1400                 kthread_stop(c->gc_thread);
1401
1402         if (!IS_ERR_OR_NULL(c->root))
1403                 list_add(&c->root->list, &c->btree_cache);
1404
1405         /* Should skip this if we're unregistering because of an error */
1406         list_for_each_entry(b, &c->btree_cache, list) {
1407                 mutex_lock(&b->write_lock);
1408                 if (btree_node_dirty(b))
1409                         __bch_btree_node_write(b, NULL);
1410                 mutex_unlock(&b->write_lock);
1411         }
1412
1413         for_each_cache(ca, c, i)
1414                 if (ca->alloc_thread)
1415                         kthread_stop(ca->alloc_thread);
1416
1417         if (c->journal.cur) {
1418                 cancel_delayed_work_sync(&c->journal.work);
1419                 /* flush last journal entry if needed */
1420                 c->journal.work.work.func(&c->journal.work.work);
1421         }
1422
1423         closure_return(cl);
1424 }
1425
1426 static void __cache_set_unregister(struct closure *cl)
1427 {
1428         struct cache_set *c = container_of(cl, struct cache_set, caching);
1429         struct cached_dev *dc;
1430         size_t i;
1431
1432         mutex_lock(&bch_register_lock);
1433
1434         for (i = 0; i < c->nr_uuids; i++)
1435                 if (c->devices[i]) {
1436                         if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1437                             test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1438                                 dc = container_of(c->devices[i],
1439                                                   struct cached_dev, disk);
1440                                 bch_cached_dev_detach(dc);
1441                         } else {
1442                                 bcache_device_stop(c->devices[i]);
1443                         }
1444                 }
1445
1446         mutex_unlock(&bch_register_lock);
1447
1448         continue_at(cl, cache_set_flush, system_wq);
1449 }
1450
1451 void bch_cache_set_stop(struct cache_set *c)
1452 {
1453         if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1454                 closure_queue(&c->caching);
1455 }
1456
1457 void bch_cache_set_unregister(struct cache_set *c)
1458 {
1459         set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1460         bch_cache_set_stop(c);
1461 }
1462
1463 #define alloc_bucket_pages(gfp, c)                      \
1464         ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1465
1466 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1467 {
1468         int iter_size;
1469         struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1470         if (!c)
1471                 return NULL;
1472
1473         __module_get(THIS_MODULE);
1474         closure_init(&c->cl, NULL);
1475         set_closure_fn(&c->cl, cache_set_free, system_wq);
1476
1477         closure_init(&c->caching, &c->cl);
1478         set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1479
1480         /* Maybe create continue_at_noreturn() and use it here? */
1481         closure_set_stopped(&c->cl);
1482         closure_put(&c->cl);
1483
1484         kobject_init(&c->kobj, &bch_cache_set_ktype);
1485         kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1486
1487         bch_cache_accounting_init(&c->accounting, &c->cl);
1488
1489         memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1490         c->sb.block_size        = sb->block_size;
1491         c->sb.bucket_size       = sb->bucket_size;
1492         c->sb.nr_in_set         = sb->nr_in_set;
1493         c->sb.last_mount        = sb->last_mount;
1494         c->bucket_bits          = ilog2(sb->bucket_size);
1495         c->block_bits           = ilog2(sb->block_size);
1496         c->nr_uuids             = bucket_bytes(c) / sizeof(struct uuid_entry);
1497
1498         c->btree_pages          = bucket_pages(c);
1499         if (c->btree_pages > BTREE_MAX_PAGES)
1500                 c->btree_pages = max_t(int, c->btree_pages / 4,
1501                                        BTREE_MAX_PAGES);
1502
1503         sema_init(&c->sb_write_mutex, 1);
1504         mutex_init(&c->bucket_lock);
1505         init_waitqueue_head(&c->btree_cache_wait);
1506         init_waitqueue_head(&c->bucket_wait);
1507         sema_init(&c->uuid_write_mutex, 1);
1508
1509         spin_lock_init(&c->btree_gc_time.lock);
1510         spin_lock_init(&c->btree_split_time.lock);
1511         spin_lock_init(&c->btree_read_time.lock);
1512
1513         bch_moving_init_cache_set(c);
1514
1515         INIT_LIST_HEAD(&c->list);
1516         INIT_LIST_HEAD(&c->cached_devs);
1517         INIT_LIST_HEAD(&c->btree_cache);
1518         INIT_LIST_HEAD(&c->btree_cache_freeable);
1519         INIT_LIST_HEAD(&c->btree_cache_freed);
1520         INIT_LIST_HEAD(&c->data_buckets);
1521
1522         c->search = mempool_create_slab_pool(32, bch_search_cache);
1523         if (!c->search)
1524                 goto err;
1525
1526         iter_size = (sb->bucket_size / sb->block_size + 1) *
1527                 sizeof(struct btree_iter_set);
1528
1529         if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
1530             !(c->bio_meta = mempool_create_kmalloc_pool(2,
1531                                 sizeof(struct bbio) + sizeof(struct bio_vec) *
1532                                 bucket_pages(c))) ||
1533             !(c->fill_iter = mempool_create_kmalloc_pool(1, iter_size)) ||
1534             !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
1535             !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1536             !(c->moving_gc_wq = create_workqueue("bcache_gc")) ||
1537             bch_journal_alloc(c) ||
1538             bch_btree_cache_alloc(c) ||
1539             bch_open_buckets_alloc(c) ||
1540             bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1541                 goto err;
1542
1543         c->congested_read_threshold_us  = 2000;
1544         c->congested_write_threshold_us = 20000;
1545         c->error_limit  = 8 << IO_ERROR_SHIFT;
1546
1547         return c;
1548 err:
1549         bch_cache_set_unregister(c);
1550         return NULL;
1551 }
1552
1553 static void run_cache_set(struct cache_set *c)
1554 {
1555         const char *err = "cannot allocate memory";
1556         struct cached_dev *dc, *t;
1557         struct cache *ca;
1558         struct closure cl;
1559         unsigned i;
1560
1561         closure_init_stack(&cl);
1562
1563         for_each_cache(ca, c, i)
1564                 c->nbuckets += ca->sb.nbuckets;
1565
1566         if (CACHE_SYNC(&c->sb)) {
1567                 LIST_HEAD(journal);
1568                 struct bkey *k;
1569                 struct jset *j;
1570
1571                 err = "cannot allocate memory for journal";
1572                 if (bch_journal_read(c, &journal))
1573                         goto err;
1574
1575                 pr_debug("btree_journal_read() done");
1576
1577                 err = "no journal entries found";
1578                 if (list_empty(&journal))
1579                         goto err;
1580
1581                 j = &list_entry(journal.prev, struct journal_replay, list)->j;
1582
1583                 err = "IO error reading priorities";
1584                 for_each_cache(ca, c, i)
1585                         prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1586
1587                 /*
1588                  * If prio_read() fails it'll call cache_set_error and we'll
1589                  * tear everything down right away, but if we perhaps checked
1590                  * sooner we could avoid journal replay.
1591                  */
1592
1593                 k = &j->btree_root;
1594
1595                 err = "bad btree root";
1596                 if (__bch_btree_ptr_invalid(c, k))
1597                         goto err;
1598
1599                 err = "error reading btree root";
1600                 c->root = bch_btree_node_get(c, NULL, k, j->btree_level, true, NULL);
1601                 if (IS_ERR_OR_NULL(c->root))
1602                         goto err;
1603
1604                 list_del_init(&c->root->list);
1605                 rw_unlock(true, c->root);
1606
1607                 err = uuid_read(c, j, &cl);
1608                 if (err)
1609                         goto err;
1610
1611                 err = "error in recovery";
1612                 if (bch_btree_check(c))
1613                         goto err;
1614
1615                 bch_journal_mark(c, &journal);
1616                 bch_initial_gc_finish(c);
1617                 pr_debug("btree_check() done");
1618
1619                 /*
1620                  * bcache_journal_next() can't happen sooner, or
1621                  * btree_gc_finish() will give spurious errors about last_gc >
1622                  * gc_gen - this is a hack but oh well.
1623                  */
1624                 bch_journal_next(&c->journal);
1625
1626                 err = "error starting allocator thread";
1627                 for_each_cache(ca, c, i)
1628                         if (bch_cache_allocator_start(ca))
1629                                 goto err;
1630
1631                 /*
1632                  * First place it's safe to allocate: btree_check() and
1633                  * btree_gc_finish() have to run before we have buckets to
1634                  * allocate, and bch_bucket_alloc_set() might cause a journal
1635                  * entry to be written so bcache_journal_next() has to be called
1636                  * first.
1637                  *
1638                  * If the uuids were in the old format we have to rewrite them
1639                  * before the next journal entry is written:
1640                  */
1641                 if (j->version < BCACHE_JSET_VERSION_UUID)
1642                         __uuid_write(c);
1643
1644                 bch_journal_replay(c, &journal);
1645         } else {
1646                 pr_notice("invalidating existing data");
1647
1648                 for_each_cache(ca, c, i) {
1649                         unsigned j;
1650
1651                         ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1652                                               2, SB_JOURNAL_BUCKETS);
1653
1654                         for (j = 0; j < ca->sb.keys; j++)
1655                                 ca->sb.d[j] = ca->sb.first_bucket + j;
1656                 }
1657
1658                 bch_initial_gc_finish(c);
1659
1660                 err = "error starting allocator thread";
1661                 for_each_cache(ca, c, i)
1662                         if (bch_cache_allocator_start(ca))
1663                                 goto err;
1664
1665                 mutex_lock(&c->bucket_lock);
1666                 for_each_cache(ca, c, i)
1667                         bch_prio_write(ca);
1668                 mutex_unlock(&c->bucket_lock);
1669
1670                 err = "cannot allocate new UUID bucket";
1671                 if (__uuid_write(c))
1672                         goto err;
1673
1674                 err = "cannot allocate new btree root";
1675                 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
1676                 if (IS_ERR_OR_NULL(c->root))
1677                         goto err;
1678
1679                 mutex_lock(&c->root->write_lock);
1680                 bkey_copy_key(&c->root->key, &MAX_KEY);
1681                 bch_btree_node_write(c->root, &cl);
1682                 mutex_unlock(&c->root->write_lock);
1683
1684                 bch_btree_set_root(c->root);
1685                 rw_unlock(true, c->root);
1686
1687                 /*
1688                  * We don't want to write the first journal entry until
1689                  * everything is set up - fortunately journal entries won't be
1690                  * written until the SET_CACHE_SYNC() here:
1691                  */
1692                 SET_CACHE_SYNC(&c->sb, true);
1693
1694                 bch_journal_next(&c->journal);
1695                 bch_journal_meta(c, &cl);
1696         }
1697
1698         err = "error starting gc thread";
1699         if (bch_gc_thread_start(c))
1700                 goto err;
1701
1702         closure_sync(&cl);
1703         c->sb.last_mount = get_seconds();
1704         bcache_write_super(c);
1705
1706         list_for_each_entry_safe(dc, t, &uncached_devices, list)
1707                 bch_cached_dev_attach(dc, c);
1708
1709         flash_devs_run(c);
1710
1711         set_bit(CACHE_SET_RUNNING, &c->flags);
1712         return;
1713 err:
1714         closure_sync(&cl);
1715         /* XXX: test this, it's broken */
1716         bch_cache_set_error(c, "%s", err);
1717 }
1718
1719 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1720 {
1721         return ca->sb.block_size        == c->sb.block_size &&
1722                 ca->sb.bucket_size      == c->sb.bucket_size &&
1723                 ca->sb.nr_in_set        == c->sb.nr_in_set;
1724 }
1725
1726 static const char *register_cache_set(struct cache *ca)
1727 {
1728         char buf[12];
1729         const char *err = "cannot allocate memory";
1730         struct cache_set *c;
1731
1732         list_for_each_entry(c, &bch_cache_sets, list)
1733                 if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1734                         if (c->cache[ca->sb.nr_this_dev])
1735                                 return "duplicate cache set member";
1736
1737                         if (!can_attach_cache(ca, c))
1738                                 return "cache sb does not match set";
1739
1740                         if (!CACHE_SYNC(&ca->sb))
1741                                 SET_CACHE_SYNC(&c->sb, false);
1742
1743                         goto found;
1744                 }
1745
1746         c = bch_cache_set_alloc(&ca->sb);
1747         if (!c)
1748                 return err;
1749
1750         err = "error creating kobject";
1751         if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1752             kobject_add(&c->internal, &c->kobj, "internal"))
1753                 goto err;
1754
1755         if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1756                 goto err;
1757
1758         bch_debug_init_cache_set(c);
1759
1760         list_add(&c->list, &bch_cache_sets);
1761 found:
1762         sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1763         if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1764             sysfs_create_link(&c->kobj, &ca->kobj, buf))
1765                 goto err;
1766
1767         if (ca->sb.seq > c->sb.seq) {
1768                 c->sb.version           = ca->sb.version;
1769                 memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1770                 c->sb.flags             = ca->sb.flags;
1771                 c->sb.seq               = ca->sb.seq;
1772                 pr_debug("set version = %llu", c->sb.version);
1773         }
1774
1775         kobject_get(&ca->kobj);
1776         ca->set = c;
1777         ca->set->cache[ca->sb.nr_this_dev] = ca;
1778         c->cache_by_alloc[c->caches_loaded++] = ca;
1779
1780         if (c->caches_loaded == c->sb.nr_in_set)
1781                 run_cache_set(c);
1782
1783         return NULL;
1784 err:
1785         bch_cache_set_unregister(c);
1786         return err;
1787 }
1788
1789 /* Cache device */
1790
1791 void bch_cache_release(struct kobject *kobj)
1792 {
1793         struct cache *ca = container_of(kobj, struct cache, kobj);
1794         unsigned i;
1795
1796         if (ca->set) {
1797                 BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca);
1798                 ca->set->cache[ca->sb.nr_this_dev] = NULL;
1799         }
1800
1801         bio_split_pool_free(&ca->bio_split_hook);
1802
1803         free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1804         kfree(ca->prio_buckets);
1805         vfree(ca->buckets);
1806
1807         free_heap(&ca->heap);
1808         free_fifo(&ca->free_inc);
1809
1810         for (i = 0; i < RESERVE_NR; i++)
1811                 free_fifo(&ca->free[i]);
1812
1813         if (ca->sb_bio.bi_inline_vecs[0].bv_page)
1814                 put_page(ca->sb_bio.bi_io_vec[0].bv_page);
1815
1816         if (!IS_ERR_OR_NULL(ca->bdev))
1817                 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1818
1819         kfree(ca);
1820         module_put(THIS_MODULE);
1821 }
1822
1823 static int cache_alloc(struct cache_sb *sb, struct cache *ca)
1824 {
1825         size_t free;
1826         struct bucket *b;
1827
1828         __module_get(THIS_MODULE);
1829         kobject_init(&ca->kobj, &bch_cache_ktype);
1830
1831         bio_init(&ca->journal.bio);
1832         ca->journal.bio.bi_max_vecs = 8;
1833         ca->journal.bio.bi_io_vec = ca->journal.bio.bi_inline_vecs;
1834
1835         free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
1836
1837         if (!init_fifo(&ca->free[RESERVE_BTREE], 8, GFP_KERNEL) ||
1838             !init_fifo(&ca->free[RESERVE_PRIO], prio_buckets(ca), GFP_KERNEL) ||
1839             !init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL) ||
1840             !init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL) ||
1841             !init_fifo(&ca->free_inc,   free << 2, GFP_KERNEL) ||
1842             !init_heap(&ca->heap,       free << 3, GFP_KERNEL) ||
1843             !(ca->buckets       = vzalloc(sizeof(struct bucket) *
1844                                           ca->sb.nbuckets)) ||
1845             !(ca->prio_buckets  = kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
1846                                           2, GFP_KERNEL)) ||
1847             !(ca->disk_buckets  = alloc_bucket_pages(GFP_KERNEL, ca)) ||
1848             bio_split_pool_init(&ca->bio_split_hook))
1849                 return -ENOMEM;
1850
1851         ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
1852
1853         for_each_bucket(b, ca)
1854                 atomic_set(&b->pin, 0);
1855
1856         return 0;
1857 }
1858
1859 static void register_cache(struct cache_sb *sb, struct page *sb_page,
1860                                 struct block_device *bdev, struct cache *ca)
1861 {
1862         char name[BDEVNAME_SIZE];
1863         const char *err = "cannot allocate memory";
1864
1865         memcpy(&ca->sb, sb, sizeof(struct cache_sb));
1866         ca->bdev = bdev;
1867         ca->bdev->bd_holder = ca;
1868
1869         bio_init(&ca->sb_bio);
1870         ca->sb_bio.bi_max_vecs  = 1;
1871         ca->sb_bio.bi_io_vec    = ca->sb_bio.bi_inline_vecs;
1872         ca->sb_bio.bi_io_vec[0].bv_page = sb_page;
1873         get_page(sb_page);
1874
1875         if (blk_queue_discard(bdev_get_queue(ca->bdev)))
1876                 ca->discard = CACHE_DISCARD(&ca->sb);
1877
1878         if (cache_alloc(sb, ca) != 0)
1879                 goto err;
1880
1881         err = "error creating kobject";
1882         if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache"))
1883                 goto err;
1884
1885         mutex_lock(&bch_register_lock);
1886         err = register_cache_set(ca);
1887         mutex_unlock(&bch_register_lock);
1888
1889         if (err)
1890                 goto err;
1891
1892         pr_info("registered cache device %s", bdevname(bdev, name));
1893 out:
1894         kobject_put(&ca->kobj);
1895         return;
1896 err:
1897         pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1898         goto out;
1899 }
1900
1901 /* Global interfaces/init */
1902
1903 static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
1904                                const char *, size_t);
1905
1906 kobj_attribute_write(register,          register_bcache);
1907 kobj_attribute_write(register_quiet,    register_bcache);
1908
1909 static bool bch_is_open_backing(struct block_device *bdev) {
1910         struct cache_set *c, *tc;
1911         struct cached_dev *dc, *t;
1912
1913         list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1914                 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
1915                         if (dc->bdev == bdev)
1916                                 return true;
1917         list_for_each_entry_safe(dc, t, &uncached_devices, list)
1918                 if (dc->bdev == bdev)
1919                         return true;
1920         return false;
1921 }
1922
1923 static bool bch_is_open_cache(struct block_device *bdev) {
1924         struct cache_set *c, *tc;
1925         struct cache *ca;
1926         unsigned i;
1927
1928         list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1929                 for_each_cache(ca, c, i)
1930                         if (ca->bdev == bdev)
1931                                 return true;
1932         return false;
1933 }
1934
1935 static bool bch_is_open(struct block_device *bdev) {
1936         return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
1937 }
1938
1939 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
1940                                const char *buffer, size_t size)
1941 {
1942         ssize_t ret = size;
1943         const char *err = "cannot allocate memory";
1944         char *path = NULL;
1945         struct cache_sb *sb = NULL;
1946         struct block_device *bdev = NULL;
1947         struct page *sb_page = NULL;
1948
1949         if (!try_module_get(THIS_MODULE))
1950                 return -EBUSY;
1951
1952         if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
1953             !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
1954                 goto err;
1955
1956         err = "failed to open device";
1957         bdev = blkdev_get_by_path(strim(path),
1958                                   FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1959                                   sb);
1960         if (IS_ERR(bdev)) {
1961                 if (bdev == ERR_PTR(-EBUSY)) {
1962                         bdev = lookup_bdev(strim(path));
1963                         mutex_lock(&bch_register_lock);
1964                         if (!IS_ERR(bdev) && bch_is_open(bdev))
1965                                 err = "device already registered";
1966                         else
1967                                 err = "device busy";
1968                         mutex_unlock(&bch_register_lock);
1969                 }
1970                 goto err;
1971         }
1972
1973         err = "failed to set blocksize";
1974         if (set_blocksize(bdev, 4096))
1975                 goto err_close;
1976
1977         err = read_super(sb, bdev, &sb_page);
1978         if (err)
1979                 goto err_close;
1980
1981         if (SB_IS_BDEV(sb)) {
1982                 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1983                 if (!dc)
1984                         goto err_close;
1985
1986                 mutex_lock(&bch_register_lock);
1987                 register_bdev(sb, sb_page, bdev, dc);
1988                 mutex_unlock(&bch_register_lock);
1989         } else {
1990                 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1991                 if (!ca)
1992                         goto err_close;
1993
1994                 register_cache(sb, sb_page, bdev, ca);
1995         }
1996 out:
1997         if (sb_page)
1998                 put_page(sb_page);
1999         kfree(sb);
2000         kfree(path);
2001         module_put(THIS_MODULE);
2002         return ret;
2003
2004 err_close:
2005         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2006 err:
2007         if (attr != &ksysfs_register_quiet)
2008                 pr_info("error opening %s: %s", path, err);
2009         ret = -EINVAL;
2010         goto out;
2011 }
2012
2013 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2014 {
2015         if (code == SYS_DOWN ||
2016             code == SYS_HALT ||
2017             code == SYS_POWER_OFF) {
2018                 DEFINE_WAIT(wait);
2019                 unsigned long start = jiffies;
2020                 bool stopped = false;
2021
2022                 struct cache_set *c, *tc;
2023                 struct cached_dev *dc, *tdc;
2024
2025                 mutex_lock(&bch_register_lock);
2026
2027                 if (list_empty(&bch_cache_sets) &&
2028                     list_empty(&uncached_devices))
2029                         goto out;
2030
2031                 pr_info("Stopping all devices:");
2032
2033                 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2034                         bch_cache_set_stop(c);
2035
2036                 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2037                         bcache_device_stop(&dc->disk);
2038
2039                 /* What's a condition variable? */
2040                 while (1) {
2041                         long timeout = start + 2 * HZ - jiffies;
2042
2043                         stopped = list_empty(&bch_cache_sets) &&
2044                                 list_empty(&uncached_devices);
2045
2046                         if (timeout < 0 || stopped)
2047                                 break;
2048
2049                         prepare_to_wait(&unregister_wait, &wait,
2050                                         TASK_UNINTERRUPTIBLE);
2051
2052                         mutex_unlock(&bch_register_lock);
2053                         schedule_timeout(timeout);
2054                         mutex_lock(&bch_register_lock);
2055                 }
2056
2057                 finish_wait(&unregister_wait, &wait);
2058
2059                 if (stopped)
2060                         pr_info("All devices stopped");
2061                 else
2062                         pr_notice("Timeout waiting for devices to be closed");
2063 out:
2064                 mutex_unlock(&bch_register_lock);
2065         }
2066
2067         return NOTIFY_DONE;
2068 }
2069
2070 static struct notifier_block reboot = {
2071         .notifier_call  = bcache_reboot,
2072         .priority       = INT_MAX, /* before any real devices */
2073 };
2074
2075 static void bcache_exit(void)
2076 {
2077         bch_debug_exit();
2078         bch_request_exit();
2079         if (bcache_kobj)
2080                 kobject_put(bcache_kobj);
2081         if (bcache_wq)
2082                 destroy_workqueue(bcache_wq);
2083         if (bcache_major)
2084                 unregister_blkdev(bcache_major, "bcache");
2085         unregister_reboot_notifier(&reboot);
2086 }
2087
2088 static int __init bcache_init(void)
2089 {
2090         static const struct attribute *files[] = {
2091                 &ksysfs_register.attr,
2092                 &ksysfs_register_quiet.attr,
2093                 NULL
2094         };
2095
2096         mutex_init(&bch_register_lock);
2097         init_waitqueue_head(&unregister_wait);
2098         register_reboot_notifier(&reboot);
2099         closure_debug_init();
2100
2101         bcache_major = register_blkdev(0, "bcache");
2102         if (bcache_major < 0)
2103                 return bcache_major;
2104
2105         if (!(bcache_wq = create_workqueue("bcache")) ||
2106             !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
2107             sysfs_create_files(bcache_kobj, files) ||
2108             bch_request_init() ||
2109             bch_debug_init(bcache_kobj))
2110                 goto err;
2111
2112         return 0;
2113 err:
2114         bcache_exit();
2115         return -ENOMEM;
2116 }
2117
2118 module_exit(bcache_exit);
2119 module_init(bcache_init);