76cc910557f049b59a0b81fc384167cf82af6669
[cascardo/linux.git] / drivers / md / dm-cache-target.c
1 /*
2  * Copyright (C) 2012 Red Hat. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm.h"
8 #include "dm-bio-prison.h"
9 #include "dm-cache-metadata.h"
10
11 #include <linux/dm-io.h>
12 #include <linux/dm-kcopyd.h>
13 #include <linux/init.h>
14 #include <linux/mempool.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/vmalloc.h>
18
19 #define DM_MSG_PREFIX "cache"
20
21 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
22         "A percentage of time allocated for copying to and/or from cache");
23
24 /*----------------------------------------------------------------*/
25
26 /*
27  * Glossary:
28  *
29  * oblock: index of an origin block
30  * cblock: index of a cache block
31  * promotion: movement of a block from origin to cache
32  * demotion: movement of a block from cache to origin
33  * migration: movement of a block between the origin and cache device,
34  *            either direction
35  */
36
37 /*----------------------------------------------------------------*/
38
39 static size_t bitset_size_in_bytes(unsigned nr_entries)
40 {
41         return sizeof(unsigned long) * dm_div_up(nr_entries, BITS_PER_LONG);
42 }
43
44 static unsigned long *alloc_bitset(unsigned nr_entries)
45 {
46         size_t s = bitset_size_in_bytes(nr_entries);
47         return vzalloc(s);
48 }
49
50 static void clear_bitset(void *bitset, unsigned nr_entries)
51 {
52         size_t s = bitset_size_in_bytes(nr_entries);
53         memset(bitset, 0, s);
54 }
55
56 static void free_bitset(unsigned long *bits)
57 {
58         vfree(bits);
59 }
60
61 /*----------------------------------------------------------------*/
62
63 #define PRISON_CELLS 1024
64 #define MIGRATION_POOL_SIZE 128
65 #define COMMIT_PERIOD HZ
66 #define MIGRATION_COUNT_WINDOW 10
67
68 /*
69  * The block size of the device holding cache data must be >= 32KB
70  */
71 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
72
73 /*
74  * FIXME: the cache is read/write for the time being.
75  */
76 enum cache_mode {
77         CM_WRITE,               /* metadata may be changed */
78         CM_READ_ONLY,           /* metadata may not be changed */
79 };
80
81 struct cache_features {
82         enum cache_mode mode;
83         bool write_through:1;
84 };
85
86 struct cache_stats {
87         atomic_t read_hit;
88         atomic_t read_miss;
89         atomic_t write_hit;
90         atomic_t write_miss;
91         atomic_t demotion;
92         atomic_t promotion;
93         atomic_t copies_avoided;
94         atomic_t cache_cell_clash;
95         atomic_t commit_count;
96         atomic_t discard_count;
97 };
98
99 struct cache {
100         struct dm_target *ti;
101         struct dm_target_callbacks callbacks;
102
103         /*
104          * Metadata is written to this device.
105          */
106         struct dm_dev *metadata_dev;
107
108         /*
109          * The slower of the two data devices.  Typically a spindle.
110          */
111         struct dm_dev *origin_dev;
112
113         /*
114          * The faster of the two data devices.  Typically an SSD.
115          */
116         struct dm_dev *cache_dev;
117
118         /*
119          * Cache features such as write-through.
120          */
121         struct cache_features features;
122
123         /*
124          * Size of the origin device in _complete_ blocks and native sectors.
125          */
126         dm_oblock_t origin_blocks;
127         sector_t origin_sectors;
128
129         /*
130          * Size of the cache device in blocks.
131          */
132         dm_cblock_t cache_size;
133
134         /*
135          * Fields for converting from sectors to blocks.
136          */
137         uint32_t sectors_per_block;
138         int sectors_per_block_shift;
139
140         struct dm_cache_metadata *cmd;
141
142         spinlock_t lock;
143         struct bio_list deferred_bios;
144         struct bio_list deferred_flush_bios;
145         struct list_head quiesced_migrations;
146         struct list_head completed_migrations;
147         struct list_head need_commit_migrations;
148         sector_t migration_threshold;
149         atomic_t nr_migrations;
150         wait_queue_head_t migration_wait;
151
152         /*
153          * cache_size entries, dirty if set
154          */
155         dm_cblock_t nr_dirty;
156         unsigned long *dirty_bitset;
157
158         /*
159          * origin_blocks entries, discarded if set.
160          */
161         uint32_t discard_block_size; /* a power of 2 times sectors per block */
162         dm_dblock_t discard_nr_blocks;
163         unsigned long *discard_bitset;
164
165         struct dm_kcopyd_client *copier;
166         struct workqueue_struct *wq;
167         struct work_struct worker;
168
169         struct delayed_work waker;
170         unsigned long last_commit_jiffies;
171
172         struct dm_bio_prison *prison;
173         struct dm_deferred_set *all_io_ds;
174
175         mempool_t *migration_pool;
176         struct dm_cache_migration *next_migration;
177
178         struct dm_cache_policy *policy;
179         unsigned policy_nr_args;
180
181         bool need_tick_bio:1;
182         bool sized:1;
183         bool quiescing:1;
184         bool commit_requested:1;
185         bool loaded_mappings:1;
186         bool loaded_discards:1;
187
188         struct cache_stats stats;
189
190         /*
191          * Rather than reconstructing the table line for the status we just
192          * save it and regurgitate.
193          */
194         unsigned nr_ctr_args;
195         const char **ctr_args;
196 };
197
198 struct per_bio_data {
199         bool tick:1;
200         unsigned req_nr:2;
201         struct dm_deferred_entry *all_io_entry;
202 };
203
204 struct dm_cache_migration {
205         struct list_head list;
206         struct cache *cache;
207
208         unsigned long start_jiffies;
209         dm_oblock_t old_oblock;
210         dm_oblock_t new_oblock;
211         dm_cblock_t cblock;
212
213         bool err:1;
214         bool writeback:1;
215         bool demote:1;
216         bool promote:1;
217
218         struct dm_bio_prison_cell *old_ocell;
219         struct dm_bio_prison_cell *new_ocell;
220 };
221
222 /*
223  * Processing a bio in the worker thread may require these memory
224  * allocations.  We prealloc to avoid deadlocks (the same worker thread
225  * frees them back to the mempool).
226  */
227 struct prealloc {
228         struct dm_cache_migration *mg;
229         struct dm_bio_prison_cell *cell1;
230         struct dm_bio_prison_cell *cell2;
231 };
232
233 static void wake_worker(struct cache *cache)
234 {
235         queue_work(cache->wq, &cache->worker);
236 }
237
238 /*----------------------------------------------------------------*/
239
240 static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache)
241 {
242         /* FIXME: change to use a local slab. */
243         return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT);
244 }
245
246 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell)
247 {
248         dm_bio_prison_free_cell(cache->prison, cell);
249 }
250
251 static int prealloc_data_structs(struct cache *cache, struct prealloc *p)
252 {
253         if (!p->mg) {
254                 p->mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
255                 if (!p->mg)
256                         return -ENOMEM;
257         }
258
259         if (!p->cell1) {
260                 p->cell1 = alloc_prison_cell(cache);
261                 if (!p->cell1)
262                         return -ENOMEM;
263         }
264
265         if (!p->cell2) {
266                 p->cell2 = alloc_prison_cell(cache);
267                 if (!p->cell2)
268                         return -ENOMEM;
269         }
270
271         return 0;
272 }
273
274 static void prealloc_free_structs(struct cache *cache, struct prealloc *p)
275 {
276         if (p->cell2)
277                 free_prison_cell(cache, p->cell2);
278
279         if (p->cell1)
280                 free_prison_cell(cache, p->cell1);
281
282         if (p->mg)
283                 mempool_free(p->mg, cache->migration_pool);
284 }
285
286 static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p)
287 {
288         struct dm_cache_migration *mg = p->mg;
289
290         BUG_ON(!mg);
291         p->mg = NULL;
292
293         return mg;
294 }
295
296 /*
297  * You must have a cell within the prealloc struct to return.  If not this
298  * function will BUG() rather than returning NULL.
299  */
300 static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p)
301 {
302         struct dm_bio_prison_cell *r = NULL;
303
304         if (p->cell1) {
305                 r = p->cell1;
306                 p->cell1 = NULL;
307
308         } else if (p->cell2) {
309                 r = p->cell2;
310                 p->cell2 = NULL;
311         } else
312                 BUG();
313
314         return r;
315 }
316
317 /*
318  * You can't have more than two cells in a prealloc struct.  BUG() will be
319  * called if you try and overfill.
320  */
321 static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell)
322 {
323         if (!p->cell2)
324                 p->cell2 = cell;
325
326         else if (!p->cell1)
327                 p->cell1 = cell;
328
329         else
330                 BUG();
331 }
332
333 /*----------------------------------------------------------------*/
334
335 static void build_key(dm_oblock_t oblock, struct dm_cell_key *key)
336 {
337         key->virtual = 0;
338         key->dev = 0;
339         key->block = from_oblock(oblock);
340 }
341
342 /*
343  * The caller hands in a preallocated cell, and a free function for it.
344  * The cell will be freed if there's an error, or if it wasn't used because
345  * a cell with that key already exists.
346  */
347 typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell);
348
349 static int bio_detain(struct cache *cache, dm_oblock_t oblock,
350                       struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
351                       cell_free_fn free_fn, void *free_context,
352                       struct dm_bio_prison_cell **cell_result)
353 {
354         int r;
355         struct dm_cell_key key;
356
357         build_key(oblock, &key);
358         r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result);
359         if (r)
360                 free_fn(free_context, cell_prealloc);
361
362         return r;
363 }
364
365 static int get_cell(struct cache *cache,
366                     dm_oblock_t oblock,
367                     struct prealloc *structs,
368                     struct dm_bio_prison_cell **cell_result)
369 {
370         int r;
371         struct dm_cell_key key;
372         struct dm_bio_prison_cell *cell_prealloc;
373
374         cell_prealloc = prealloc_get_cell(structs);
375
376         build_key(oblock, &key);
377         r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result);
378         if (r)
379                 prealloc_put_cell(structs, cell_prealloc);
380
381         return r;
382 }
383
384  /*----------------------------------------------------------------*/
385
386 static bool is_dirty(struct cache *cache, dm_cblock_t b)
387 {
388         return test_bit(from_cblock(b), cache->dirty_bitset);
389 }
390
391 static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
392 {
393         if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
394                 cache->nr_dirty = to_cblock(from_cblock(cache->nr_dirty) + 1);
395                 policy_set_dirty(cache->policy, oblock);
396         }
397 }
398
399 static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
400 {
401         if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
402                 policy_clear_dirty(cache->policy, oblock);
403                 cache->nr_dirty = to_cblock(from_cblock(cache->nr_dirty) - 1);
404                 if (!from_cblock(cache->nr_dirty))
405                         dm_table_event(cache->ti->table);
406         }
407 }
408
409 /*----------------------------------------------------------------*/
410 static bool block_size_is_power_of_two(struct cache *cache)
411 {
412         return cache->sectors_per_block_shift >= 0;
413 }
414
415 static dm_block_t block_div(dm_block_t b, uint32_t n)
416 {
417         do_div(b, n);
418
419         return b;
420 }
421
422 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
423 {
424         uint32_t discard_blocks = cache->discard_block_size;
425         dm_block_t b = from_oblock(oblock);
426
427         if (!block_size_is_power_of_two(cache))
428                 discard_blocks = discard_blocks / cache->sectors_per_block;
429         else
430                 discard_blocks >>= cache->sectors_per_block_shift;
431
432         b = block_div(b, discard_blocks);
433
434         return to_dblock(b);
435 }
436
437 static void set_discard(struct cache *cache, dm_dblock_t b)
438 {
439         unsigned long flags;
440
441         atomic_inc(&cache->stats.discard_count);
442
443         spin_lock_irqsave(&cache->lock, flags);
444         set_bit(from_dblock(b), cache->discard_bitset);
445         spin_unlock_irqrestore(&cache->lock, flags);
446 }
447
448 static void clear_discard(struct cache *cache, dm_dblock_t b)
449 {
450         unsigned long flags;
451
452         spin_lock_irqsave(&cache->lock, flags);
453         clear_bit(from_dblock(b), cache->discard_bitset);
454         spin_unlock_irqrestore(&cache->lock, flags);
455 }
456
457 static bool is_discarded(struct cache *cache, dm_dblock_t b)
458 {
459         int r;
460         unsigned long flags;
461
462         spin_lock_irqsave(&cache->lock, flags);
463         r = test_bit(from_dblock(b), cache->discard_bitset);
464         spin_unlock_irqrestore(&cache->lock, flags);
465
466         return r;
467 }
468
469 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
470 {
471         int r;
472         unsigned long flags;
473
474         spin_lock_irqsave(&cache->lock, flags);
475         r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
476                      cache->discard_bitset);
477         spin_unlock_irqrestore(&cache->lock, flags);
478
479         return r;
480 }
481
482 /*----------------------------------------------------------------*/
483
484 static void load_stats(struct cache *cache)
485 {
486         struct dm_cache_statistics stats;
487
488         dm_cache_metadata_get_stats(cache->cmd, &stats);
489         atomic_set(&cache->stats.read_hit, stats.read_hits);
490         atomic_set(&cache->stats.read_miss, stats.read_misses);
491         atomic_set(&cache->stats.write_hit, stats.write_hits);
492         atomic_set(&cache->stats.write_miss, stats.write_misses);
493 }
494
495 static void save_stats(struct cache *cache)
496 {
497         struct dm_cache_statistics stats;
498
499         stats.read_hits = atomic_read(&cache->stats.read_hit);
500         stats.read_misses = atomic_read(&cache->stats.read_miss);
501         stats.write_hits = atomic_read(&cache->stats.write_hit);
502         stats.write_misses = atomic_read(&cache->stats.write_miss);
503
504         dm_cache_metadata_set_stats(cache->cmd, &stats);
505 }
506
507 /*----------------------------------------------------------------
508  * Per bio data
509  *--------------------------------------------------------------*/
510 static struct per_bio_data *get_per_bio_data(struct bio *bio)
511 {
512         struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
513         BUG_ON(!pb);
514         return pb;
515 }
516
517 static struct per_bio_data *init_per_bio_data(struct bio *bio)
518 {
519         struct per_bio_data *pb = get_per_bio_data(bio);
520
521         pb->tick = false;
522         pb->req_nr = dm_bio_get_target_bio_nr(bio);
523         pb->all_io_entry = NULL;
524
525         return pb;
526 }
527
528 /*----------------------------------------------------------------
529  * Remapping
530  *--------------------------------------------------------------*/
531 static void remap_to_origin(struct cache *cache, struct bio *bio)
532 {
533         bio->bi_bdev = cache->origin_dev->bdev;
534 }
535
536 static void remap_to_cache(struct cache *cache, struct bio *bio,
537                            dm_cblock_t cblock)
538 {
539         sector_t bi_sector = bio->bi_sector;
540
541         bio->bi_bdev = cache->cache_dev->bdev;
542         if (!block_size_is_power_of_two(cache))
543                 bio->bi_sector = (from_cblock(cblock) * cache->sectors_per_block) +
544                                 sector_div(bi_sector, cache->sectors_per_block);
545         else
546                 bio->bi_sector = (from_cblock(cblock) << cache->sectors_per_block_shift) |
547                                 (bi_sector & (cache->sectors_per_block - 1));
548 }
549
550 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
551 {
552         unsigned long flags;
553         struct per_bio_data *pb = get_per_bio_data(bio);
554
555         spin_lock_irqsave(&cache->lock, flags);
556         if (cache->need_tick_bio &&
557             !(bio->bi_rw & (REQ_FUA | REQ_FLUSH | REQ_DISCARD))) {
558                 pb->tick = true;
559                 cache->need_tick_bio = false;
560         }
561         spin_unlock_irqrestore(&cache->lock, flags);
562 }
563
564 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
565                                   dm_oblock_t oblock)
566 {
567         check_if_tick_bio_needed(cache, bio);
568         remap_to_origin(cache, bio);
569         if (bio_data_dir(bio) == WRITE)
570                 clear_discard(cache, oblock_to_dblock(cache, oblock));
571 }
572
573 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
574                                  dm_oblock_t oblock, dm_cblock_t cblock)
575 {
576         remap_to_cache(cache, bio, cblock);
577         if (bio_data_dir(bio) == WRITE) {
578                 set_dirty(cache, oblock, cblock);
579                 clear_discard(cache, oblock_to_dblock(cache, oblock));
580         }
581 }
582
583 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
584 {
585         sector_t block_nr = bio->bi_sector;
586
587         if (!block_size_is_power_of_two(cache))
588                 (void) sector_div(block_nr, cache->sectors_per_block);
589         else
590                 block_nr >>= cache->sectors_per_block_shift;
591
592         return to_oblock(block_nr);
593 }
594
595 static int bio_triggers_commit(struct cache *cache, struct bio *bio)
596 {
597         return bio->bi_rw & (REQ_FLUSH | REQ_FUA);
598 }
599
600 static void issue(struct cache *cache, struct bio *bio)
601 {
602         unsigned long flags;
603
604         if (!bio_triggers_commit(cache, bio)) {
605                 generic_make_request(bio);
606                 return;
607         }
608
609         /*
610          * Batch together any bios that trigger commits and then issue a
611          * single commit for them in do_worker().
612          */
613         spin_lock_irqsave(&cache->lock, flags);
614         cache->commit_requested = true;
615         bio_list_add(&cache->deferred_flush_bios, bio);
616         spin_unlock_irqrestore(&cache->lock, flags);
617 }
618
619 /*----------------------------------------------------------------
620  * Migration processing
621  *
622  * Migration covers moving data from the origin device to the cache, or
623  * vice versa.
624  *--------------------------------------------------------------*/
625 static void free_migration(struct dm_cache_migration *mg)
626 {
627         mempool_free(mg, mg->cache->migration_pool);
628 }
629
630 static void inc_nr_migrations(struct cache *cache)
631 {
632         atomic_inc(&cache->nr_migrations);
633 }
634
635 static void dec_nr_migrations(struct cache *cache)
636 {
637         atomic_dec(&cache->nr_migrations);
638
639         /*
640          * Wake the worker in case we're suspending the target.
641          */
642         wake_up(&cache->migration_wait);
643 }
644
645 static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
646                          bool holder)
647 {
648         (holder ? dm_cell_release : dm_cell_release_no_holder)
649                 (cache->prison, cell, &cache->deferred_bios);
650         free_prison_cell(cache, cell);
651 }
652
653 static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
654                        bool holder)
655 {
656         unsigned long flags;
657
658         spin_lock_irqsave(&cache->lock, flags);
659         __cell_defer(cache, cell, holder);
660         spin_unlock_irqrestore(&cache->lock, flags);
661
662         wake_worker(cache);
663 }
664
665 static void cleanup_migration(struct dm_cache_migration *mg)
666 {
667         dec_nr_migrations(mg->cache);
668         free_migration(mg);
669 }
670
671 static void migration_failure(struct dm_cache_migration *mg)
672 {
673         struct cache *cache = mg->cache;
674
675         if (mg->writeback) {
676                 DMWARN_LIMIT("writeback failed; couldn't copy block");
677                 set_dirty(cache, mg->old_oblock, mg->cblock);
678                 cell_defer(cache, mg->old_ocell, false);
679
680         } else if (mg->demote) {
681                 DMWARN_LIMIT("demotion failed; couldn't copy block");
682                 policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock);
683
684                 cell_defer(cache, mg->old_ocell, mg->promote ? 0 : 1);
685                 if (mg->promote)
686                         cell_defer(cache, mg->new_ocell, 1);
687         } else {
688                 DMWARN_LIMIT("promotion failed; couldn't copy block");
689                 policy_remove_mapping(cache->policy, mg->new_oblock);
690                 cell_defer(cache, mg->new_ocell, 1);
691         }
692
693         cleanup_migration(mg);
694 }
695
696 static void migration_success_pre_commit(struct dm_cache_migration *mg)
697 {
698         unsigned long flags;
699         struct cache *cache = mg->cache;
700
701         if (mg->writeback) {
702                 cell_defer(cache, mg->old_ocell, false);
703                 clear_dirty(cache, mg->old_oblock, mg->cblock);
704                 cleanup_migration(mg);
705                 return;
706
707         } else if (mg->demote) {
708                 if (dm_cache_remove_mapping(cache->cmd, mg->cblock)) {
709                         DMWARN_LIMIT("demotion failed; couldn't update on disk metadata");
710                         policy_force_mapping(cache->policy, mg->new_oblock,
711                                              mg->old_oblock);
712                         if (mg->promote)
713                                 cell_defer(cache, mg->new_ocell, true);
714                         cleanup_migration(mg);
715                         return;
716                 }
717         } else {
718                 if (dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock)) {
719                         DMWARN_LIMIT("promotion failed; couldn't update on disk metadata");
720                         policy_remove_mapping(cache->policy, mg->new_oblock);
721                         cleanup_migration(mg);
722                         return;
723                 }
724         }
725
726         spin_lock_irqsave(&cache->lock, flags);
727         list_add_tail(&mg->list, &cache->need_commit_migrations);
728         cache->commit_requested = true;
729         spin_unlock_irqrestore(&cache->lock, flags);
730 }
731
732 static void migration_success_post_commit(struct dm_cache_migration *mg)
733 {
734         unsigned long flags;
735         struct cache *cache = mg->cache;
736
737         if (mg->writeback) {
738                 DMWARN("writeback unexpectedly triggered commit");
739                 return;
740
741         } else if (mg->demote) {
742                 cell_defer(cache, mg->old_ocell, mg->promote ? 0 : 1);
743
744                 if (mg->promote) {
745                         mg->demote = false;
746
747                         spin_lock_irqsave(&cache->lock, flags);
748                         list_add_tail(&mg->list, &cache->quiesced_migrations);
749                         spin_unlock_irqrestore(&cache->lock, flags);
750
751                 } else
752                         cleanup_migration(mg);
753
754         } else {
755                 cell_defer(cache, mg->new_ocell, true);
756                 clear_dirty(cache, mg->new_oblock, mg->cblock);
757                 cleanup_migration(mg);
758         }
759 }
760
761 static void copy_complete(int read_err, unsigned long write_err, void *context)
762 {
763         unsigned long flags;
764         struct dm_cache_migration *mg = (struct dm_cache_migration *) context;
765         struct cache *cache = mg->cache;
766
767         if (read_err || write_err)
768                 mg->err = true;
769
770         spin_lock_irqsave(&cache->lock, flags);
771         list_add_tail(&mg->list, &cache->completed_migrations);
772         spin_unlock_irqrestore(&cache->lock, flags);
773
774         wake_worker(cache);
775 }
776
777 static void issue_copy_real(struct dm_cache_migration *mg)
778 {
779         int r;
780         struct dm_io_region o_region, c_region;
781         struct cache *cache = mg->cache;
782
783         o_region.bdev = cache->origin_dev->bdev;
784         o_region.count = cache->sectors_per_block;
785
786         c_region.bdev = cache->cache_dev->bdev;
787         c_region.sector = from_cblock(mg->cblock) * cache->sectors_per_block;
788         c_region.count = cache->sectors_per_block;
789
790         if (mg->writeback || mg->demote) {
791                 /* demote */
792                 o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block;
793                 r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg);
794         } else {
795                 /* promote */
796                 o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block;
797                 r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg);
798         }
799
800         if (r < 0)
801                 migration_failure(mg);
802 }
803
804 static void avoid_copy(struct dm_cache_migration *mg)
805 {
806         atomic_inc(&mg->cache->stats.copies_avoided);
807         migration_success_pre_commit(mg);
808 }
809
810 static void issue_copy(struct dm_cache_migration *mg)
811 {
812         bool avoid;
813         struct cache *cache = mg->cache;
814
815         if (mg->writeback || mg->demote)
816                 avoid = !is_dirty(cache, mg->cblock) ||
817                         is_discarded_oblock(cache, mg->old_oblock);
818         else
819                 avoid = is_discarded_oblock(cache, mg->new_oblock);
820
821         avoid ? avoid_copy(mg) : issue_copy_real(mg);
822 }
823
824 static void complete_migration(struct dm_cache_migration *mg)
825 {
826         if (mg->err)
827                 migration_failure(mg);
828         else
829                 migration_success_pre_commit(mg);
830 }
831
832 static void process_migrations(struct cache *cache, struct list_head *head,
833                                void (*fn)(struct dm_cache_migration *))
834 {
835         unsigned long flags;
836         struct list_head list;
837         struct dm_cache_migration *mg, *tmp;
838
839         INIT_LIST_HEAD(&list);
840         spin_lock_irqsave(&cache->lock, flags);
841         list_splice_init(head, &list);
842         spin_unlock_irqrestore(&cache->lock, flags);
843
844         list_for_each_entry_safe(mg, tmp, &list, list)
845                 fn(mg);
846 }
847
848 static void __queue_quiesced_migration(struct dm_cache_migration *mg)
849 {
850         list_add_tail(&mg->list, &mg->cache->quiesced_migrations);
851 }
852
853 static void queue_quiesced_migration(struct dm_cache_migration *mg)
854 {
855         unsigned long flags;
856         struct cache *cache = mg->cache;
857
858         spin_lock_irqsave(&cache->lock, flags);
859         __queue_quiesced_migration(mg);
860         spin_unlock_irqrestore(&cache->lock, flags);
861
862         wake_worker(cache);
863 }
864
865 static void queue_quiesced_migrations(struct cache *cache, struct list_head *work)
866 {
867         unsigned long flags;
868         struct dm_cache_migration *mg, *tmp;
869
870         spin_lock_irqsave(&cache->lock, flags);
871         list_for_each_entry_safe(mg, tmp, work, list)
872                 __queue_quiesced_migration(mg);
873         spin_unlock_irqrestore(&cache->lock, flags);
874
875         wake_worker(cache);
876 }
877
878 static void check_for_quiesced_migrations(struct cache *cache,
879                                           struct per_bio_data *pb)
880 {
881         struct list_head work;
882
883         if (!pb->all_io_entry)
884                 return;
885
886         INIT_LIST_HEAD(&work);
887         if (pb->all_io_entry)
888                 dm_deferred_entry_dec(pb->all_io_entry, &work);
889
890         if (!list_empty(&work))
891                 queue_quiesced_migrations(cache, &work);
892 }
893
894 static void quiesce_migration(struct dm_cache_migration *mg)
895 {
896         if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list))
897                 queue_quiesced_migration(mg);
898 }
899
900 static void promote(struct cache *cache, struct prealloc *structs,
901                     dm_oblock_t oblock, dm_cblock_t cblock,
902                     struct dm_bio_prison_cell *cell)
903 {
904         struct dm_cache_migration *mg = prealloc_get_migration(structs);
905
906         mg->err = false;
907         mg->writeback = false;
908         mg->demote = false;
909         mg->promote = true;
910         mg->cache = cache;
911         mg->new_oblock = oblock;
912         mg->cblock = cblock;
913         mg->old_ocell = NULL;
914         mg->new_ocell = cell;
915         mg->start_jiffies = jiffies;
916
917         inc_nr_migrations(cache);
918         quiesce_migration(mg);
919 }
920
921 static void writeback(struct cache *cache, struct prealloc *structs,
922                       dm_oblock_t oblock, dm_cblock_t cblock,
923                       struct dm_bio_prison_cell *cell)
924 {
925         struct dm_cache_migration *mg = prealloc_get_migration(structs);
926
927         mg->err = false;
928         mg->writeback = true;
929         mg->demote = false;
930         mg->promote = false;
931         mg->cache = cache;
932         mg->old_oblock = oblock;
933         mg->cblock = cblock;
934         mg->old_ocell = cell;
935         mg->new_ocell = NULL;
936         mg->start_jiffies = jiffies;
937
938         inc_nr_migrations(cache);
939         quiesce_migration(mg);
940 }
941
942 static void demote_then_promote(struct cache *cache, struct prealloc *structs,
943                                 dm_oblock_t old_oblock, dm_oblock_t new_oblock,
944                                 dm_cblock_t cblock,
945                                 struct dm_bio_prison_cell *old_ocell,
946                                 struct dm_bio_prison_cell *new_ocell)
947 {
948         struct dm_cache_migration *mg = prealloc_get_migration(structs);
949
950         mg->err = false;
951         mg->writeback = false;
952         mg->demote = true;
953         mg->promote = true;
954         mg->cache = cache;
955         mg->old_oblock = old_oblock;
956         mg->new_oblock = new_oblock;
957         mg->cblock = cblock;
958         mg->old_ocell = old_ocell;
959         mg->new_ocell = new_ocell;
960         mg->start_jiffies = jiffies;
961
962         inc_nr_migrations(cache);
963         quiesce_migration(mg);
964 }
965
966 /*----------------------------------------------------------------
967  * bio processing
968  *--------------------------------------------------------------*/
969 static void defer_bio(struct cache *cache, struct bio *bio)
970 {
971         unsigned long flags;
972
973         spin_lock_irqsave(&cache->lock, flags);
974         bio_list_add(&cache->deferred_bios, bio);
975         spin_unlock_irqrestore(&cache->lock, flags);
976
977         wake_worker(cache);
978 }
979
980 static void process_flush_bio(struct cache *cache, struct bio *bio)
981 {
982         struct per_bio_data *pb = get_per_bio_data(bio);
983
984         BUG_ON(bio->bi_size);
985         if (!pb->req_nr)
986                 remap_to_origin(cache, bio);
987         else
988                 remap_to_cache(cache, bio, 0);
989
990         issue(cache, bio);
991 }
992
993 /*
994  * People generally discard large parts of a device, eg, the whole device
995  * when formatting.  Splitting these large discards up into cache block
996  * sized ios and then quiescing (always neccessary for discard) takes too
997  * long.
998  *
999  * We keep it simple, and allow any size of discard to come in, and just
1000  * mark off blocks on the discard bitset.  No passdown occurs!
1001  *
1002  * To implement passdown we need to change the bio_prison such that a cell
1003  * can have a key that spans many blocks.
1004  */
1005 static void process_discard_bio(struct cache *cache, struct bio *bio)
1006 {
1007         dm_block_t start_block = dm_sector_div_up(bio->bi_sector,
1008                                                   cache->discard_block_size);
1009         dm_block_t end_block = bio->bi_sector + bio_sectors(bio);
1010         dm_block_t b;
1011
1012         end_block = block_div(end_block, cache->discard_block_size);
1013
1014         for (b = start_block; b < end_block; b++)
1015                 set_discard(cache, to_dblock(b));
1016
1017         bio_endio(bio, 0);
1018 }
1019
1020 static bool spare_migration_bandwidth(struct cache *cache)
1021 {
1022         sector_t current_volume = (atomic_read(&cache->nr_migrations) + 1) *
1023                 cache->sectors_per_block;
1024         return current_volume < cache->migration_threshold;
1025 }
1026
1027 static bool is_writethrough_io(struct cache *cache, struct bio *bio,
1028                                dm_cblock_t cblock)
1029 {
1030         return bio_data_dir(bio) == WRITE &&
1031                 cache->features.write_through && !is_dirty(cache, cblock);
1032 }
1033
1034 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1035 {
1036         atomic_inc(bio_data_dir(bio) == READ ?
1037                    &cache->stats.read_hit : &cache->stats.write_hit);
1038 }
1039
1040 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1041 {
1042         atomic_inc(bio_data_dir(bio) == READ ?
1043                    &cache->stats.read_miss : &cache->stats.write_miss);
1044 }
1045
1046 static void process_bio(struct cache *cache, struct prealloc *structs,
1047                         struct bio *bio)
1048 {
1049         int r;
1050         bool release_cell = true;
1051         dm_oblock_t block = get_bio_block(cache, bio);
1052         struct dm_bio_prison_cell *cell_prealloc, *old_ocell, *new_ocell;
1053         struct policy_result lookup_result;
1054         struct per_bio_data *pb = get_per_bio_data(bio);
1055         bool discarded_block = is_discarded_oblock(cache, block);
1056         bool can_migrate = discarded_block || spare_migration_bandwidth(cache);
1057
1058         /*
1059          * Check to see if that block is currently migrating.
1060          */
1061         cell_prealloc = prealloc_get_cell(structs);
1062         r = bio_detain(cache, block, bio, cell_prealloc,
1063                        (cell_free_fn) prealloc_put_cell,
1064                        structs, &new_ocell);
1065         if (r > 0)
1066                 return;
1067
1068         r = policy_map(cache->policy, block, true, can_migrate, discarded_block,
1069                        bio, &lookup_result);
1070
1071         if (r == -EWOULDBLOCK)
1072                 /* migration has been denied */
1073                 lookup_result.op = POLICY_MISS;
1074
1075         switch (lookup_result.op) {
1076         case POLICY_HIT:
1077                 inc_hit_counter(cache, bio);
1078                 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1079
1080                 if (is_writethrough_io(cache, bio, lookup_result.cblock)) {
1081                         /*
1082                          * No need to mark anything dirty in write through mode.
1083                          */
1084                         pb->req_nr == 0 ?
1085                                 remap_to_cache(cache, bio, lookup_result.cblock) :
1086                                 remap_to_origin_clear_discard(cache, bio, block);
1087                 } else
1088                         remap_to_cache_dirty(cache, bio, block, lookup_result.cblock);
1089
1090                 issue(cache, bio);
1091                 break;
1092
1093         case POLICY_MISS:
1094                 inc_miss_counter(cache, bio);
1095                 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1096
1097                 if (pb->req_nr != 0) {
1098                         /*
1099                          * This is a duplicate writethrough io that is no
1100                          * longer needed because the block has been demoted.
1101                          */
1102                         bio_endio(bio, 0);
1103                 } else {
1104                         remap_to_origin_clear_discard(cache, bio, block);
1105                         issue(cache, bio);
1106                 }
1107                 break;
1108
1109         case POLICY_NEW:
1110                 atomic_inc(&cache->stats.promotion);
1111                 promote(cache, structs, block, lookup_result.cblock, new_ocell);
1112                 release_cell = false;
1113                 break;
1114
1115         case POLICY_REPLACE:
1116                 cell_prealloc = prealloc_get_cell(structs);
1117                 r = bio_detain(cache, lookup_result.old_oblock, bio, cell_prealloc,
1118                                (cell_free_fn) prealloc_put_cell,
1119                                structs, &old_ocell);
1120                 if (r > 0) {
1121                         /*
1122                          * We have to be careful to avoid lock inversion of
1123                          * the cells.  So we back off, and wait for the
1124                          * old_ocell to become free.
1125                          */
1126                         policy_force_mapping(cache->policy, block,
1127                                              lookup_result.old_oblock);
1128                         atomic_inc(&cache->stats.cache_cell_clash);
1129                         break;
1130                 }
1131                 atomic_inc(&cache->stats.demotion);
1132                 atomic_inc(&cache->stats.promotion);
1133
1134                 demote_then_promote(cache, structs, lookup_result.old_oblock,
1135                                     block, lookup_result.cblock,
1136                                     old_ocell, new_ocell);
1137                 release_cell = false;
1138                 break;
1139
1140         default:
1141                 DMERR_LIMIT("%s: erroring bio, unknown policy op: %u", __func__,
1142                             (unsigned) lookup_result.op);
1143                 bio_io_error(bio);
1144         }
1145
1146         if (release_cell)
1147                 cell_defer(cache, new_ocell, false);
1148 }
1149
1150 static int need_commit_due_to_time(struct cache *cache)
1151 {
1152         return jiffies < cache->last_commit_jiffies ||
1153                jiffies > cache->last_commit_jiffies + COMMIT_PERIOD;
1154 }
1155
1156 static int commit_if_needed(struct cache *cache)
1157 {
1158         if (dm_cache_changed_this_transaction(cache->cmd) &&
1159             (cache->commit_requested || need_commit_due_to_time(cache))) {
1160                 atomic_inc(&cache->stats.commit_count);
1161                 cache->last_commit_jiffies = jiffies;
1162                 cache->commit_requested = false;
1163                 return dm_cache_commit(cache->cmd, false);
1164         }
1165
1166         return 0;
1167 }
1168
1169 static void process_deferred_bios(struct cache *cache)
1170 {
1171         unsigned long flags;
1172         struct bio_list bios;
1173         struct bio *bio;
1174         struct prealloc structs;
1175
1176         memset(&structs, 0, sizeof(structs));
1177         bio_list_init(&bios);
1178
1179         spin_lock_irqsave(&cache->lock, flags);
1180         bio_list_merge(&bios, &cache->deferred_bios);
1181         bio_list_init(&cache->deferred_bios);
1182         spin_unlock_irqrestore(&cache->lock, flags);
1183
1184         while (!bio_list_empty(&bios)) {
1185                 /*
1186                  * If we've got no free migration structs, and processing
1187                  * this bio might require one, we pause until there are some
1188                  * prepared mappings to process.
1189                  */
1190                 if (prealloc_data_structs(cache, &structs)) {
1191                         spin_lock_irqsave(&cache->lock, flags);
1192                         bio_list_merge(&cache->deferred_bios, &bios);
1193                         spin_unlock_irqrestore(&cache->lock, flags);
1194                         break;
1195                 }
1196
1197                 bio = bio_list_pop(&bios);
1198
1199                 if (bio->bi_rw & REQ_FLUSH)
1200                         process_flush_bio(cache, bio);
1201                 else if (bio->bi_rw & REQ_DISCARD)
1202                         process_discard_bio(cache, bio);
1203                 else
1204                         process_bio(cache, &structs, bio);
1205         }
1206
1207         prealloc_free_structs(cache, &structs);
1208 }
1209
1210 static void process_deferred_flush_bios(struct cache *cache, bool submit_bios)
1211 {
1212         unsigned long flags;
1213         struct bio_list bios;
1214         struct bio *bio;
1215
1216         bio_list_init(&bios);
1217
1218         spin_lock_irqsave(&cache->lock, flags);
1219         bio_list_merge(&bios, &cache->deferred_flush_bios);
1220         bio_list_init(&cache->deferred_flush_bios);
1221         spin_unlock_irqrestore(&cache->lock, flags);
1222
1223         while ((bio = bio_list_pop(&bios)))
1224                 submit_bios ? generic_make_request(bio) : bio_io_error(bio);
1225 }
1226
1227 static void writeback_some_dirty_blocks(struct cache *cache)
1228 {
1229         int r = 0;
1230         dm_oblock_t oblock;
1231         dm_cblock_t cblock;
1232         struct prealloc structs;
1233         struct dm_bio_prison_cell *old_ocell;
1234
1235         memset(&structs, 0, sizeof(structs));
1236
1237         while (spare_migration_bandwidth(cache)) {
1238                 if (prealloc_data_structs(cache, &structs))
1239                         break;
1240
1241                 r = policy_writeback_work(cache->policy, &oblock, &cblock);
1242                 if (r)
1243                         break;
1244
1245                 r = get_cell(cache, oblock, &structs, &old_ocell);
1246                 if (r) {
1247                         policy_set_dirty(cache->policy, oblock);
1248                         break;
1249                 }
1250
1251                 writeback(cache, &structs, oblock, cblock, old_ocell);
1252         }
1253
1254         prealloc_free_structs(cache, &structs);
1255 }
1256
1257 /*----------------------------------------------------------------
1258  * Main worker loop
1259  *--------------------------------------------------------------*/
1260 static void start_quiescing(struct cache *cache)
1261 {
1262         unsigned long flags;
1263
1264         spin_lock_irqsave(&cache->lock, flags);
1265         cache->quiescing = 1;
1266         spin_unlock_irqrestore(&cache->lock, flags);
1267 }
1268
1269 static void stop_quiescing(struct cache *cache)
1270 {
1271         unsigned long flags;
1272
1273         spin_lock_irqsave(&cache->lock, flags);
1274         cache->quiescing = 0;
1275         spin_unlock_irqrestore(&cache->lock, flags);
1276 }
1277
1278 static bool is_quiescing(struct cache *cache)
1279 {
1280         int r;
1281         unsigned long flags;
1282
1283         spin_lock_irqsave(&cache->lock, flags);
1284         r = cache->quiescing;
1285         spin_unlock_irqrestore(&cache->lock, flags);
1286
1287         return r;
1288 }
1289
1290 static void wait_for_migrations(struct cache *cache)
1291 {
1292         wait_event(cache->migration_wait, !atomic_read(&cache->nr_migrations));
1293 }
1294
1295 static void stop_worker(struct cache *cache)
1296 {
1297         cancel_delayed_work(&cache->waker);
1298         flush_workqueue(cache->wq);
1299 }
1300
1301 static void requeue_deferred_io(struct cache *cache)
1302 {
1303         struct bio *bio;
1304         struct bio_list bios;
1305
1306         bio_list_init(&bios);
1307         bio_list_merge(&bios, &cache->deferred_bios);
1308         bio_list_init(&cache->deferred_bios);
1309
1310         while ((bio = bio_list_pop(&bios)))
1311                 bio_endio(bio, DM_ENDIO_REQUEUE);
1312 }
1313
1314 static int more_work(struct cache *cache)
1315 {
1316         if (is_quiescing(cache))
1317                 return !list_empty(&cache->quiesced_migrations) ||
1318                         !list_empty(&cache->completed_migrations) ||
1319                         !list_empty(&cache->need_commit_migrations);
1320         else
1321                 return !bio_list_empty(&cache->deferred_bios) ||
1322                         !bio_list_empty(&cache->deferred_flush_bios) ||
1323                         !list_empty(&cache->quiesced_migrations) ||
1324                         !list_empty(&cache->completed_migrations) ||
1325                         !list_empty(&cache->need_commit_migrations);
1326 }
1327
1328 static void do_worker(struct work_struct *ws)
1329 {
1330         struct cache *cache = container_of(ws, struct cache, worker);
1331
1332         do {
1333                 if (!is_quiescing(cache))
1334                         process_deferred_bios(cache);
1335
1336                 process_migrations(cache, &cache->quiesced_migrations, issue_copy);
1337                 process_migrations(cache, &cache->completed_migrations, complete_migration);
1338
1339                 writeback_some_dirty_blocks(cache);
1340
1341                 if (commit_if_needed(cache)) {
1342                         process_deferred_flush_bios(cache, false);
1343
1344                         /*
1345                          * FIXME: rollback metadata or just go into a
1346                          * failure mode and error everything
1347                          */
1348                 } else {
1349                         process_deferred_flush_bios(cache, true);
1350                         process_migrations(cache, &cache->need_commit_migrations,
1351                                            migration_success_post_commit);
1352                 }
1353         } while (more_work(cache));
1354 }
1355
1356 /*
1357  * We want to commit periodically so that not too much
1358  * unwritten metadata builds up.
1359  */
1360 static void do_waker(struct work_struct *ws)
1361 {
1362         struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1363         wake_worker(cache);
1364         queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1365 }
1366
1367 /*----------------------------------------------------------------*/
1368
1369 static int is_congested(struct dm_dev *dev, int bdi_bits)
1370 {
1371         struct request_queue *q = bdev_get_queue(dev->bdev);
1372         return bdi_congested(&q->backing_dev_info, bdi_bits);
1373 }
1374
1375 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1376 {
1377         struct cache *cache = container_of(cb, struct cache, callbacks);
1378
1379         return is_congested(cache->origin_dev, bdi_bits) ||
1380                 is_congested(cache->cache_dev, bdi_bits);
1381 }
1382
1383 /*----------------------------------------------------------------
1384  * Target methods
1385  *--------------------------------------------------------------*/
1386
1387 /*
1388  * This function gets called on the error paths of the constructor, so we
1389  * have to cope with a partially initialised struct.
1390  */
1391 static void destroy(struct cache *cache)
1392 {
1393         unsigned i;
1394
1395         if (cache->next_migration)
1396                 mempool_free(cache->next_migration, cache->migration_pool);
1397
1398         if (cache->migration_pool)
1399                 mempool_destroy(cache->migration_pool);
1400
1401         if (cache->all_io_ds)
1402                 dm_deferred_set_destroy(cache->all_io_ds);
1403
1404         if (cache->prison)
1405                 dm_bio_prison_destroy(cache->prison);
1406
1407         if (cache->wq)
1408                 destroy_workqueue(cache->wq);
1409
1410         if (cache->dirty_bitset)
1411                 free_bitset(cache->dirty_bitset);
1412
1413         if (cache->discard_bitset)
1414                 free_bitset(cache->discard_bitset);
1415
1416         if (cache->copier)
1417                 dm_kcopyd_client_destroy(cache->copier);
1418
1419         if (cache->cmd)
1420                 dm_cache_metadata_close(cache->cmd);
1421
1422         if (cache->metadata_dev)
1423                 dm_put_device(cache->ti, cache->metadata_dev);
1424
1425         if (cache->origin_dev)
1426                 dm_put_device(cache->ti, cache->origin_dev);
1427
1428         if (cache->cache_dev)
1429                 dm_put_device(cache->ti, cache->cache_dev);
1430
1431         if (cache->policy)
1432                 dm_cache_policy_destroy(cache->policy);
1433
1434         for (i = 0; i < cache->nr_ctr_args ; i++)
1435                 kfree(cache->ctr_args[i]);
1436         kfree(cache->ctr_args);
1437
1438         kfree(cache);
1439 }
1440
1441 static void cache_dtr(struct dm_target *ti)
1442 {
1443         struct cache *cache = ti->private;
1444
1445         destroy(cache);
1446 }
1447
1448 static sector_t get_dev_size(struct dm_dev *dev)
1449 {
1450         return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
1451 }
1452
1453 /*----------------------------------------------------------------*/
1454
1455 /*
1456  * Construct a cache device mapping.
1457  *
1458  * cache <metadata dev> <cache dev> <origin dev> <block size>
1459  *       <#feature args> [<feature arg>]*
1460  *       <policy> <#policy args> [<policy arg>]*
1461  *
1462  * metadata dev    : fast device holding the persistent metadata
1463  * cache dev       : fast device holding cached data blocks
1464  * origin dev      : slow device holding original data blocks
1465  * block size      : cache unit size in sectors
1466  *
1467  * #feature args   : number of feature arguments passed
1468  * feature args    : writethrough.  (The default is writeback.)
1469  *
1470  * policy          : the replacement policy to use
1471  * #policy args    : an even number of policy arguments corresponding
1472  *                   to key/value pairs passed to the policy
1473  * policy args     : key/value pairs passed to the policy
1474  *                   E.g. 'sequential_threshold 1024'
1475  *                   See cache-policies.txt for details.
1476  *
1477  * Optional feature arguments are:
1478  *   writethrough  : write through caching that prohibits cache block
1479  *                   content from being different from origin block content.
1480  *                   Without this argument, the default behaviour is to write
1481  *                   back cache block contents later for performance reasons,
1482  *                   so they may differ from the corresponding origin blocks.
1483  */
1484 struct cache_args {
1485         struct dm_target *ti;
1486
1487         struct dm_dev *metadata_dev;
1488
1489         struct dm_dev *cache_dev;
1490         sector_t cache_sectors;
1491
1492         struct dm_dev *origin_dev;
1493         sector_t origin_sectors;
1494
1495         uint32_t block_size;
1496
1497         const char *policy_name;
1498         int policy_argc;
1499         const char **policy_argv;
1500
1501         struct cache_features features;
1502 };
1503
1504 static void destroy_cache_args(struct cache_args *ca)
1505 {
1506         if (ca->metadata_dev)
1507                 dm_put_device(ca->ti, ca->metadata_dev);
1508
1509         if (ca->cache_dev)
1510                 dm_put_device(ca->ti, ca->cache_dev);
1511
1512         if (ca->origin_dev)
1513                 dm_put_device(ca->ti, ca->origin_dev);
1514
1515         kfree(ca);
1516 }
1517
1518 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
1519 {
1520         if (!as->argc) {
1521                 *error = "Insufficient args";
1522                 return false;
1523         }
1524
1525         return true;
1526 }
1527
1528 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
1529                               char **error)
1530 {
1531         int r;
1532         sector_t metadata_dev_size;
1533         char b[BDEVNAME_SIZE];
1534
1535         if (!at_least_one_arg(as, error))
1536                 return -EINVAL;
1537
1538         r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1539                           &ca->metadata_dev);
1540         if (r) {
1541                 *error = "Error opening metadata device";
1542                 return r;
1543         }
1544
1545         metadata_dev_size = get_dev_size(ca->metadata_dev);
1546         if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
1547                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1548                        bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
1549
1550         return 0;
1551 }
1552
1553 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
1554                            char **error)
1555 {
1556         int r;
1557
1558         if (!at_least_one_arg(as, error))
1559                 return -EINVAL;
1560
1561         r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1562                           &ca->cache_dev);
1563         if (r) {
1564                 *error = "Error opening cache device";
1565                 return r;
1566         }
1567         ca->cache_sectors = get_dev_size(ca->cache_dev);
1568
1569         return 0;
1570 }
1571
1572 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
1573                             char **error)
1574 {
1575         int r;
1576
1577         if (!at_least_one_arg(as, error))
1578                 return -EINVAL;
1579
1580         r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1581                           &ca->origin_dev);
1582         if (r) {
1583                 *error = "Error opening origin device";
1584                 return r;
1585         }
1586
1587         ca->origin_sectors = get_dev_size(ca->origin_dev);
1588         if (ca->ti->len > ca->origin_sectors) {
1589                 *error = "Device size larger than cached device";
1590                 return -EINVAL;
1591         }
1592
1593         return 0;
1594 }
1595
1596 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
1597                             char **error)
1598 {
1599         unsigned long tmp;
1600
1601         if (!at_least_one_arg(as, error))
1602                 return -EINVAL;
1603
1604         if (kstrtoul(dm_shift_arg(as), 10, &tmp) || !tmp ||
1605             tmp < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1606             tmp & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
1607                 *error = "Invalid data block size";
1608                 return -EINVAL;
1609         }
1610
1611         if (tmp > ca->cache_sectors) {
1612                 *error = "Data block size is larger than the cache device";
1613                 return -EINVAL;
1614         }
1615
1616         ca->block_size = tmp;
1617
1618         return 0;
1619 }
1620
1621 static void init_features(struct cache_features *cf)
1622 {
1623         cf->mode = CM_WRITE;
1624         cf->write_through = false;
1625 }
1626
1627 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
1628                           char **error)
1629 {
1630         static struct dm_arg _args[] = {
1631                 {0, 1, "Invalid number of cache feature arguments"},
1632         };
1633
1634         int r;
1635         unsigned argc;
1636         const char *arg;
1637         struct cache_features *cf = &ca->features;
1638
1639         init_features(cf);
1640
1641         r = dm_read_arg_group(_args, as, &argc, error);
1642         if (r)
1643                 return -EINVAL;
1644
1645         while (argc--) {
1646                 arg = dm_shift_arg(as);
1647
1648                 if (!strcasecmp(arg, "writeback"))
1649                         cf->write_through = false;
1650
1651                 else if (!strcasecmp(arg, "writethrough"))
1652                         cf->write_through = true;
1653
1654                 else {
1655                         *error = "Unrecognised cache feature requested";
1656                         return -EINVAL;
1657                 }
1658         }
1659
1660         return 0;
1661 }
1662
1663 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
1664                         char **error)
1665 {
1666         static struct dm_arg _args[] = {
1667                 {0, 1024, "Invalid number of policy arguments"},
1668         };
1669
1670         int r;
1671
1672         if (!at_least_one_arg(as, error))
1673                 return -EINVAL;
1674
1675         ca->policy_name = dm_shift_arg(as);
1676
1677         r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
1678         if (r)
1679                 return -EINVAL;
1680
1681         ca->policy_argv = (const char **)as->argv;
1682         dm_consume_args(as, ca->policy_argc);
1683
1684         return 0;
1685 }
1686
1687 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
1688                             char **error)
1689 {
1690         int r;
1691         struct dm_arg_set as;
1692
1693         as.argc = argc;
1694         as.argv = argv;
1695
1696         r = parse_metadata_dev(ca, &as, error);
1697         if (r)
1698                 return r;
1699
1700         r = parse_cache_dev(ca, &as, error);
1701         if (r)
1702                 return r;
1703
1704         r = parse_origin_dev(ca, &as, error);
1705         if (r)
1706                 return r;
1707
1708         r = parse_block_size(ca, &as, error);
1709         if (r)
1710                 return r;
1711
1712         r = parse_features(ca, &as, error);
1713         if (r)
1714                 return r;
1715
1716         r = parse_policy(ca, &as, error);
1717         if (r)
1718                 return r;
1719
1720         return 0;
1721 }
1722
1723 /*----------------------------------------------------------------*/
1724
1725 static struct kmem_cache *migration_cache;
1726
1727 static int set_config_values(struct dm_cache_policy *p, int argc, const char **argv)
1728 {
1729         int r = 0;
1730
1731         if (argc & 1) {
1732                 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
1733                 return -EINVAL;
1734         }
1735
1736         while (argc) {
1737                 r = policy_set_config_value(p, argv[0], argv[1]);
1738                 if (r) {
1739                         DMWARN("policy_set_config_value failed: key = '%s', value = '%s'",
1740                                argv[0], argv[1]);
1741                         return r;
1742                 }
1743
1744                 argc -= 2;
1745                 argv += 2;
1746         }
1747
1748         return r;
1749 }
1750
1751 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
1752                                char **error)
1753 {
1754         int r;
1755
1756         cache->policy = dm_cache_policy_create(ca->policy_name,
1757                                                cache->cache_size,
1758                                                cache->origin_sectors,
1759                                                cache->sectors_per_block);
1760         if (!cache->policy) {
1761                 *error = "Error creating cache's policy";
1762                 return -ENOMEM;
1763         }
1764
1765         r = set_config_values(cache->policy, ca->policy_argc, ca->policy_argv);
1766         if (r)
1767                 dm_cache_policy_destroy(cache->policy);
1768
1769         return r;
1770 }
1771
1772 /*
1773  * We want the discard block size to be a power of two, at least the size
1774  * of the cache block size, and have no more than 2^14 discard blocks
1775  * across the origin.
1776  */
1777 #define MAX_DISCARD_BLOCKS (1 << 14)
1778
1779 static bool too_many_discard_blocks(sector_t discard_block_size,
1780                                     sector_t origin_size)
1781 {
1782         (void) sector_div(origin_size, discard_block_size);
1783
1784         return origin_size > MAX_DISCARD_BLOCKS;
1785 }
1786
1787 static sector_t calculate_discard_block_size(sector_t cache_block_size,
1788                                              sector_t origin_size)
1789 {
1790         sector_t discard_block_size;
1791
1792         discard_block_size = roundup_pow_of_two(cache_block_size);
1793
1794         if (origin_size)
1795                 while (too_many_discard_blocks(discard_block_size, origin_size))
1796                         discard_block_size *= 2;
1797
1798         return discard_block_size;
1799 }
1800
1801 #define DEFAULT_MIGRATION_THRESHOLD (2048 * 100)
1802
1803 static unsigned cache_num_write_bios(struct dm_target *ti, struct bio *bio);
1804
1805 static int cache_create(struct cache_args *ca, struct cache **result)
1806 {
1807         int r = 0;
1808         char **error = &ca->ti->error;
1809         struct cache *cache;
1810         struct dm_target *ti = ca->ti;
1811         dm_block_t origin_blocks;
1812         struct dm_cache_metadata *cmd;
1813         bool may_format = ca->features.mode == CM_WRITE;
1814
1815         cache = kzalloc(sizeof(*cache), GFP_KERNEL);
1816         if (!cache)
1817                 return -ENOMEM;
1818
1819         cache->ti = ca->ti;
1820         ti->private = cache;
1821         ti->per_bio_data_size = sizeof(struct per_bio_data);
1822         ti->num_flush_bios = 2;
1823         ti->flush_supported = true;
1824
1825         ti->num_discard_bios = 1;
1826         ti->discards_supported = true;
1827         ti->discard_zeroes_data_unsupported = true;
1828
1829         memcpy(&cache->features, &ca->features, sizeof(cache->features));
1830
1831         if (cache->features.write_through)
1832                 ti->num_write_bios = cache_num_write_bios;
1833
1834         cache->callbacks.congested_fn = cache_is_congested;
1835         dm_table_add_target_callbacks(ti->table, &cache->callbacks);
1836
1837         cache->metadata_dev = ca->metadata_dev;
1838         cache->origin_dev = ca->origin_dev;
1839         cache->cache_dev = ca->cache_dev;
1840
1841         ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
1842
1843         /* FIXME: factor out this whole section */
1844         origin_blocks = cache->origin_sectors = ca->origin_sectors;
1845         origin_blocks = block_div(origin_blocks, ca->block_size);
1846         cache->origin_blocks = to_oblock(origin_blocks);
1847
1848         cache->sectors_per_block = ca->block_size;
1849         if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
1850                 r = -EINVAL;
1851                 goto bad;
1852         }
1853
1854         if (ca->block_size & (ca->block_size - 1)) {
1855                 dm_block_t cache_size = ca->cache_sectors;
1856
1857                 cache->sectors_per_block_shift = -1;
1858                 cache_size = block_div(cache_size, ca->block_size);
1859                 cache->cache_size = to_cblock(cache_size);
1860         } else {
1861                 cache->sectors_per_block_shift = __ffs(ca->block_size);
1862                 cache->cache_size = to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift);
1863         }
1864
1865         r = create_cache_policy(cache, ca, error);
1866         if (r)
1867                 goto bad;
1868         cache->policy_nr_args = ca->policy_argc;
1869
1870         cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
1871                                      ca->block_size, may_format,
1872                                      dm_cache_policy_get_hint_size(cache->policy));
1873         if (IS_ERR(cmd)) {
1874                 *error = "Error creating metadata object";
1875                 r = PTR_ERR(cmd);
1876                 goto bad;
1877         }
1878         cache->cmd = cmd;
1879
1880         spin_lock_init(&cache->lock);
1881         bio_list_init(&cache->deferred_bios);
1882         bio_list_init(&cache->deferred_flush_bios);
1883         INIT_LIST_HEAD(&cache->quiesced_migrations);
1884         INIT_LIST_HEAD(&cache->completed_migrations);
1885         INIT_LIST_HEAD(&cache->need_commit_migrations);
1886         cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
1887         atomic_set(&cache->nr_migrations, 0);
1888         init_waitqueue_head(&cache->migration_wait);
1889
1890         cache->nr_dirty = 0;
1891         cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
1892         if (!cache->dirty_bitset) {
1893                 *error = "could not allocate dirty bitset";
1894                 goto bad;
1895         }
1896         clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
1897
1898         cache->discard_block_size =
1899                 calculate_discard_block_size(cache->sectors_per_block,
1900                                              cache->origin_sectors);
1901         cache->discard_nr_blocks = oblock_to_dblock(cache, cache->origin_blocks);
1902         cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
1903         if (!cache->discard_bitset) {
1904                 *error = "could not allocate discard bitset";
1905                 goto bad;
1906         }
1907         clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
1908
1909         cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1910         if (IS_ERR(cache->copier)) {
1911                 *error = "could not create kcopyd client";
1912                 r = PTR_ERR(cache->copier);
1913                 goto bad;
1914         }
1915
1916         cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1917         if (!cache->wq) {
1918                 *error = "could not create workqueue for metadata object";
1919                 goto bad;
1920         }
1921         INIT_WORK(&cache->worker, do_worker);
1922         INIT_DELAYED_WORK(&cache->waker, do_waker);
1923         cache->last_commit_jiffies = jiffies;
1924
1925         cache->prison = dm_bio_prison_create(PRISON_CELLS);
1926         if (!cache->prison) {
1927                 *error = "could not create bio prison";
1928                 goto bad;
1929         }
1930
1931         cache->all_io_ds = dm_deferred_set_create();
1932         if (!cache->all_io_ds) {
1933                 *error = "could not create all_io deferred set";
1934                 goto bad;
1935         }
1936
1937         cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
1938                                                          migration_cache);
1939         if (!cache->migration_pool) {
1940                 *error = "Error creating cache's migration mempool";
1941                 goto bad;
1942         }
1943
1944         cache->next_migration = NULL;
1945
1946         cache->need_tick_bio = true;
1947         cache->sized = false;
1948         cache->quiescing = false;
1949         cache->commit_requested = false;
1950         cache->loaded_mappings = false;
1951         cache->loaded_discards = false;
1952
1953         load_stats(cache);
1954
1955         atomic_set(&cache->stats.demotion, 0);
1956         atomic_set(&cache->stats.promotion, 0);
1957         atomic_set(&cache->stats.copies_avoided, 0);
1958         atomic_set(&cache->stats.cache_cell_clash, 0);
1959         atomic_set(&cache->stats.commit_count, 0);
1960         atomic_set(&cache->stats.discard_count, 0);
1961
1962         *result = cache;
1963         return 0;
1964
1965 bad:
1966         destroy(cache);
1967         return r;
1968 }
1969
1970 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
1971 {
1972         unsigned i;
1973         const char **copy;
1974
1975         copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
1976         if (!copy)
1977                 return -ENOMEM;
1978         for (i = 0; i < argc; i++) {
1979                 copy[i] = kstrdup(argv[i], GFP_KERNEL);
1980                 if (!copy[i]) {
1981                         while (i--)
1982                                 kfree(copy[i]);
1983                         kfree(copy);
1984                         return -ENOMEM;
1985                 }
1986         }
1987
1988         cache->nr_ctr_args = argc;
1989         cache->ctr_args = copy;
1990
1991         return 0;
1992 }
1993
1994 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
1995 {
1996         int r = -EINVAL;
1997         struct cache_args *ca;
1998         struct cache *cache = NULL;
1999
2000         ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2001         if (!ca) {
2002                 ti->error = "Error allocating memory for cache";
2003                 return -ENOMEM;
2004         }
2005         ca->ti = ti;
2006
2007         r = parse_cache_args(ca, argc, argv, &ti->error);
2008         if (r)
2009                 goto out;
2010
2011         r = cache_create(ca, &cache);
2012         if (r)
2013                 goto out;
2014
2015         r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2016         if (r) {
2017                 destroy(cache);
2018                 goto out;
2019         }
2020
2021         ti->private = cache;
2022
2023 out:
2024         destroy_cache_args(ca);
2025         return r;
2026 }
2027
2028 static unsigned cache_num_write_bios(struct dm_target *ti, struct bio *bio)
2029 {
2030         int r;
2031         struct cache *cache = ti->private;
2032         dm_oblock_t block = get_bio_block(cache, bio);
2033         dm_cblock_t cblock;
2034
2035         r = policy_lookup(cache->policy, block, &cblock);
2036         if (r < 0)
2037                 return 2;       /* assume the worst */
2038
2039         return (!r && !is_dirty(cache, cblock)) ? 2 : 1;
2040 }
2041
2042 static int cache_map(struct dm_target *ti, struct bio *bio)
2043 {
2044         struct cache *cache = ti->private;
2045
2046         int r;
2047         dm_oblock_t block = get_bio_block(cache, bio);
2048         bool can_migrate = false;
2049         bool discarded_block;
2050         struct dm_bio_prison_cell *cell;
2051         struct policy_result lookup_result;
2052         struct per_bio_data *pb;
2053
2054         if (from_oblock(block) > from_oblock(cache->origin_blocks)) {
2055                 /*
2056                  * This can only occur if the io goes to a partial block at
2057                  * the end of the origin device.  We don't cache these.
2058                  * Just remap to the origin and carry on.
2059                  */
2060                 remap_to_origin_clear_discard(cache, bio, block);
2061                 return DM_MAPIO_REMAPPED;
2062         }
2063
2064         pb = init_per_bio_data(bio);
2065
2066         if (bio->bi_rw & (REQ_FLUSH | REQ_FUA | REQ_DISCARD)) {
2067                 defer_bio(cache, bio);
2068                 return DM_MAPIO_SUBMITTED;
2069         }
2070
2071         /*
2072          * Check to see if that block is currently migrating.
2073          */
2074         cell = alloc_prison_cell(cache);
2075         if (!cell) {
2076                 defer_bio(cache, bio);
2077                 return DM_MAPIO_SUBMITTED;
2078         }
2079
2080         r = bio_detain(cache, block, bio, cell,
2081                        (cell_free_fn) free_prison_cell,
2082                        cache, &cell);
2083         if (r) {
2084                 if (r < 0)
2085                         defer_bio(cache, bio);
2086
2087                 return DM_MAPIO_SUBMITTED;
2088         }
2089
2090         discarded_block = is_discarded_oblock(cache, block);
2091
2092         r = policy_map(cache->policy, block, false, can_migrate, discarded_block,
2093                        bio, &lookup_result);
2094         if (r == -EWOULDBLOCK) {
2095                 cell_defer(cache, cell, true);
2096                 return DM_MAPIO_SUBMITTED;
2097
2098         } else if (r) {
2099                 DMERR_LIMIT("Unexpected return from cache replacement policy: %d", r);
2100                 bio_io_error(bio);
2101                 return DM_MAPIO_SUBMITTED;
2102         }
2103
2104         switch (lookup_result.op) {
2105         case POLICY_HIT:
2106                 inc_hit_counter(cache, bio);
2107                 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
2108
2109                 if (is_writethrough_io(cache, bio, lookup_result.cblock)) {
2110                         /*
2111                          * No need to mark anything dirty in write through mode.
2112                          */
2113                         pb->req_nr == 0 ?
2114                                 remap_to_cache(cache, bio, lookup_result.cblock) :
2115                                 remap_to_origin_clear_discard(cache, bio, block);
2116                         cell_defer(cache, cell, false);
2117                 } else {
2118                         remap_to_cache_dirty(cache, bio, block, lookup_result.cblock);
2119                         cell_defer(cache, cell, false);
2120                 }
2121                 break;
2122
2123         case POLICY_MISS:
2124                 inc_miss_counter(cache, bio);
2125                 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
2126
2127                 if (pb->req_nr != 0) {
2128                         /*
2129                          * This is a duplicate writethrough io that is no
2130                          * longer needed because the block has been demoted.
2131                          */
2132                         bio_endio(bio, 0);
2133                         cell_defer(cache, cell, false);
2134                         return DM_MAPIO_SUBMITTED;
2135                 } else {
2136                         remap_to_origin_clear_discard(cache, bio, block);
2137                         cell_defer(cache, cell, false);
2138                 }
2139                 break;
2140
2141         default:
2142                 DMERR_LIMIT("%s: erroring bio: unknown policy op: %u", __func__,
2143                             (unsigned) lookup_result.op);
2144                 bio_io_error(bio);
2145                 return DM_MAPIO_SUBMITTED;
2146         }
2147
2148         return DM_MAPIO_REMAPPED;
2149 }
2150
2151 static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
2152 {
2153         struct cache *cache = ti->private;
2154         unsigned long flags;
2155         struct per_bio_data *pb = get_per_bio_data(bio);
2156
2157         if (pb->tick) {
2158                 policy_tick(cache->policy);
2159
2160                 spin_lock_irqsave(&cache->lock, flags);
2161                 cache->need_tick_bio = true;
2162                 spin_unlock_irqrestore(&cache->lock, flags);
2163         }
2164
2165         check_for_quiesced_migrations(cache, pb);
2166
2167         return 0;
2168 }
2169
2170 static int write_dirty_bitset(struct cache *cache)
2171 {
2172         unsigned i, r;
2173
2174         for (i = 0; i < from_cblock(cache->cache_size); i++) {
2175                 r = dm_cache_set_dirty(cache->cmd, to_cblock(i),
2176                                        is_dirty(cache, to_cblock(i)));
2177                 if (r)
2178                         return r;
2179         }
2180
2181         return 0;
2182 }
2183
2184 static int write_discard_bitset(struct cache *cache)
2185 {
2186         unsigned i, r;
2187
2188         r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2189                                            cache->discard_nr_blocks);
2190         if (r) {
2191                 DMERR("could not resize on-disk discard bitset");
2192                 return r;
2193         }
2194
2195         for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2196                 r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2197                                          is_discarded(cache, to_dblock(i)));
2198                 if (r)
2199                         return r;
2200         }
2201
2202         return 0;
2203 }
2204
2205 static int save_hint(void *context, dm_cblock_t cblock, dm_oblock_t oblock,
2206                      uint32_t hint)
2207 {
2208         struct cache *cache = context;
2209         return dm_cache_save_hint(cache->cmd, cblock, hint);
2210 }
2211
2212 static int write_hints(struct cache *cache)
2213 {
2214         int r;
2215
2216         r = dm_cache_begin_hints(cache->cmd, cache->policy);
2217         if (r) {
2218                 DMERR("dm_cache_begin_hints failed");
2219                 return r;
2220         }
2221
2222         r = policy_walk_mappings(cache->policy, save_hint, cache);
2223         if (r)
2224                 DMERR("policy_walk_mappings failed");
2225
2226         return r;
2227 }
2228
2229 /*
2230  * returns true on success
2231  */
2232 static bool sync_metadata(struct cache *cache)
2233 {
2234         int r1, r2, r3, r4;
2235
2236         r1 = write_dirty_bitset(cache);
2237         if (r1)
2238                 DMERR("could not write dirty bitset");
2239
2240         r2 = write_discard_bitset(cache);
2241         if (r2)
2242                 DMERR("could not write discard bitset");
2243
2244         save_stats(cache);
2245
2246         r3 = write_hints(cache);
2247         if (r3)
2248                 DMERR("could not write hints");
2249
2250         /*
2251          * If writing the above metadata failed, we still commit, but don't
2252          * set the clean shutdown flag.  This will effectively force every
2253          * dirty bit to be set on reload.
2254          */
2255         r4 = dm_cache_commit(cache->cmd, !r1 && !r2 && !r3);
2256         if (r4)
2257                 DMERR("could not write cache metadata.  Data loss may occur.");
2258
2259         return !r1 && !r2 && !r3 && !r4;
2260 }
2261
2262 static void cache_postsuspend(struct dm_target *ti)
2263 {
2264         struct cache *cache = ti->private;
2265
2266         start_quiescing(cache);
2267         wait_for_migrations(cache);
2268         stop_worker(cache);
2269         requeue_deferred_io(cache);
2270         stop_quiescing(cache);
2271
2272         (void) sync_metadata(cache);
2273 }
2274
2275 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2276                         bool dirty, uint32_t hint, bool hint_valid)
2277 {
2278         int r;
2279         struct cache *cache = context;
2280
2281         r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid);
2282         if (r)
2283                 return r;
2284
2285         if (dirty)
2286                 set_dirty(cache, oblock, cblock);
2287         else
2288                 clear_dirty(cache, oblock, cblock);
2289
2290         return 0;
2291 }
2292
2293 static int load_discard(void *context, sector_t discard_block_size,
2294                         dm_dblock_t dblock, bool discard)
2295 {
2296         struct cache *cache = context;
2297
2298         /* FIXME: handle mis-matched block size */
2299
2300         if (discard)
2301                 set_discard(cache, dblock);
2302         else
2303                 clear_discard(cache, dblock);
2304
2305         return 0;
2306 }
2307
2308 static int cache_preresume(struct dm_target *ti)
2309 {
2310         int r = 0;
2311         struct cache *cache = ti->private;
2312         sector_t actual_cache_size = get_dev_size(cache->cache_dev);
2313         (void) sector_div(actual_cache_size, cache->sectors_per_block);
2314
2315         /*
2316          * Check to see if the cache has resized.
2317          */
2318         if (from_cblock(cache->cache_size) != actual_cache_size || !cache->sized) {
2319                 cache->cache_size = to_cblock(actual_cache_size);
2320
2321                 r = dm_cache_resize(cache->cmd, cache->cache_size);
2322                 if (r) {
2323                         DMERR("could not resize cache metadata");
2324                         return r;
2325                 }
2326
2327                 cache->sized = true;
2328         }
2329
2330         if (!cache->loaded_mappings) {
2331                 r = dm_cache_load_mappings(cache->cmd,
2332                                            dm_cache_policy_get_name(cache->policy),
2333                                            load_mapping, cache);
2334                 if (r) {
2335                         DMERR("could not load cache mappings");
2336                         return r;
2337                 }
2338
2339                 cache->loaded_mappings = true;
2340         }
2341
2342         if (!cache->loaded_discards) {
2343                 r = dm_cache_load_discards(cache->cmd, load_discard, cache);
2344                 if (r) {
2345                         DMERR("could not load origin discards");
2346                         return r;
2347                 }
2348
2349                 cache->loaded_discards = true;
2350         }
2351
2352         return r;
2353 }
2354
2355 static void cache_resume(struct dm_target *ti)
2356 {
2357         struct cache *cache = ti->private;
2358
2359         cache->need_tick_bio = true;
2360         do_waker(&cache->waker.work);
2361 }
2362
2363 /*
2364  * Status format:
2365  *
2366  * <#used metadata blocks>/<#total metadata blocks>
2367  * <#read hits> <#read misses> <#write hits> <#write misses>
2368  * <#demotions> <#promotions> <#blocks in cache> <#dirty>
2369  * <#features> <features>*
2370  * <#core args> <core args>
2371  * <#policy args> <policy args>*
2372  */
2373 static void cache_status(struct dm_target *ti, status_type_t type,
2374                          unsigned status_flags, char *result, unsigned maxlen)
2375 {
2376         int r = 0;
2377         unsigned i;
2378         ssize_t sz = 0;
2379         dm_block_t nr_free_blocks_metadata = 0;
2380         dm_block_t nr_blocks_metadata = 0;
2381         char buf[BDEVNAME_SIZE];
2382         struct cache *cache = ti->private;
2383         dm_cblock_t residency;
2384
2385         switch (type) {
2386         case STATUSTYPE_INFO:
2387                 /* Commit to ensure statistics aren't out-of-date */
2388                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) {
2389                         r = dm_cache_commit(cache->cmd, false);
2390                         if (r)
2391                                 DMERR("could not commit metadata for accurate status");
2392                 }
2393
2394                 r = dm_cache_get_free_metadata_block_count(cache->cmd,
2395                                                            &nr_free_blocks_metadata);
2396                 if (r) {
2397                         DMERR("could not get metadata free block count");
2398                         goto err;
2399                 }
2400
2401                 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
2402                 if (r) {
2403                         DMERR("could not get metadata device size");
2404                         goto err;
2405                 }
2406
2407                 residency = policy_residency(cache->policy);
2408
2409                 DMEMIT("%llu/%llu %u %u %u %u %u %u %llu %u ",
2410                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2411                        (unsigned long long)nr_blocks_metadata,
2412                        (unsigned) atomic_read(&cache->stats.read_hit),
2413                        (unsigned) atomic_read(&cache->stats.read_miss),
2414                        (unsigned) atomic_read(&cache->stats.write_hit),
2415                        (unsigned) atomic_read(&cache->stats.write_miss),
2416                        (unsigned) atomic_read(&cache->stats.demotion),
2417                        (unsigned) atomic_read(&cache->stats.promotion),
2418                        (unsigned long long) from_cblock(residency),
2419                        cache->nr_dirty);
2420
2421                 if (cache->features.write_through)
2422                         DMEMIT("1 writethrough ");
2423                 else
2424                         DMEMIT("0 ");
2425
2426                 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
2427                 if (sz < maxlen) {
2428                         r = policy_emit_config_values(cache->policy, result + sz, maxlen - sz);
2429                         if (r)
2430                                 DMERR("policy_emit_config_values returned %d", r);
2431                 }
2432
2433                 break;
2434
2435         case STATUSTYPE_TABLE:
2436                 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
2437                 DMEMIT("%s ", buf);
2438                 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
2439                 DMEMIT("%s ", buf);
2440                 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
2441                 DMEMIT("%s", buf);
2442
2443                 for (i = 0; i < cache->nr_ctr_args - 1; i++)
2444                         DMEMIT(" %s", cache->ctr_args[i]);
2445                 if (cache->nr_ctr_args)
2446                         DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
2447         }
2448
2449         return;
2450
2451 err:
2452         DMEMIT("Error");
2453 }
2454
2455 #define NOT_CORE_OPTION 1
2456
2457 static int process_config_option(struct cache *cache, char **argv)
2458 {
2459         unsigned long tmp;
2460
2461         if (!strcasecmp(argv[0], "migration_threshold")) {
2462                 if (kstrtoul(argv[1], 10, &tmp))
2463                         return -EINVAL;
2464
2465                 cache->migration_threshold = tmp;
2466                 return 0;
2467         }
2468
2469         return NOT_CORE_OPTION;
2470 }
2471
2472 /*
2473  * Supports <key> <value>.
2474  *
2475  * The key migration_threshold is supported by the cache target core.
2476  */
2477 static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
2478 {
2479         int r;
2480         struct cache *cache = ti->private;
2481
2482         if (argc != 2)
2483                 return -EINVAL;
2484
2485         r = process_config_option(cache, argv);
2486         if (r == NOT_CORE_OPTION)
2487                 return policy_set_config_value(cache->policy, argv[0], argv[1]);
2488
2489         return r;
2490 }
2491
2492 static int cache_iterate_devices(struct dm_target *ti,
2493                                  iterate_devices_callout_fn fn, void *data)
2494 {
2495         int r = 0;
2496         struct cache *cache = ti->private;
2497
2498         r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
2499         if (!r)
2500                 r = fn(ti, cache->origin_dev, 0, ti->len, data);
2501
2502         return r;
2503 }
2504
2505 /*
2506  * We assume I/O is going to the origin (which is the volume
2507  * more likely to have restrictions e.g. by being striped).
2508  * (Looking up the exact location of the data would be expensive
2509  * and could always be out of date by the time the bio is submitted.)
2510  */
2511 static int cache_bvec_merge(struct dm_target *ti,
2512                             struct bvec_merge_data *bvm,
2513                             struct bio_vec *biovec, int max_size)
2514 {
2515         struct cache *cache = ti->private;
2516         struct request_queue *q = bdev_get_queue(cache->origin_dev->bdev);
2517
2518         if (!q->merge_bvec_fn)
2519                 return max_size;
2520
2521         bvm->bi_bdev = cache->origin_dev->bdev;
2522         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2523 }
2524
2525 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
2526 {
2527         /*
2528          * FIXME: these limits may be incompatible with the cache device
2529          */
2530         limits->max_discard_sectors = cache->discard_block_size * 1024;
2531         limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
2532 }
2533
2534 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
2535 {
2536         struct cache *cache = ti->private;
2537
2538         blk_limits_io_min(limits, 0);
2539         blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
2540         set_discard_limits(cache, limits);
2541 }
2542
2543 /*----------------------------------------------------------------*/
2544
2545 static struct target_type cache_target = {
2546         .name = "cache",
2547         .version = {1, 0, 0},
2548         .module = THIS_MODULE,
2549         .ctr = cache_ctr,
2550         .dtr = cache_dtr,
2551         .map = cache_map,
2552         .end_io = cache_end_io,
2553         .postsuspend = cache_postsuspend,
2554         .preresume = cache_preresume,
2555         .resume = cache_resume,
2556         .status = cache_status,
2557         .message = cache_message,
2558         .iterate_devices = cache_iterate_devices,
2559         .merge = cache_bvec_merge,
2560         .io_hints = cache_io_hints,
2561 };
2562
2563 static int __init dm_cache_init(void)
2564 {
2565         int r;
2566
2567         r = dm_register_target(&cache_target);
2568         if (r) {
2569                 DMERR("cache target registration failed: %d", r);
2570                 return r;
2571         }
2572
2573         migration_cache = KMEM_CACHE(dm_cache_migration, 0);
2574         if (!migration_cache) {
2575                 dm_unregister_target(&cache_target);
2576                 return -ENOMEM;
2577         }
2578
2579         return 0;
2580 }
2581
2582 static void __exit dm_cache_exit(void)
2583 {
2584         dm_unregister_target(&cache_target);
2585         kmem_cache_destroy(migration_cache);
2586 }
2587
2588 module_init(dm_cache_init);
2589 module_exit(dm_cache_exit);
2590
2591 MODULE_DESCRIPTION(DM_NAME " cache target");
2592 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
2593 MODULE_LICENSE("GPL");