63883f4c550d9c762cb59a94ecad433dd8e28ff3
[cascardo/linux.git] / drivers / md / dm-raid.c
1 /*
2  * Copyright (C) 2010-2011 Neil Brown
3  * Copyright (C) 2010-2016 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include <linux/slab.h>
9 #include <linux/module.h>
10
11 #include "md.h"
12 #include "raid1.h"
13 #include "raid5.h"
14 #include "raid10.h"
15 #include "bitmap.h"
16
17 #include <linux/device-mapper.h>
18
19 #define DM_MSG_PREFIX "raid"
20 #define MAX_RAID_DEVICES        253 /* md-raid kernel limit */
21
22 /*
23  * Minimum sectors of free reshape space per raid device
24  */
25 #define MIN_FREE_RESHAPE_SPACE to_sector(4*4096)
26
27 static bool devices_handle_discard_safely = false;
28
29 /*
30  * The following flags are used by dm-raid.c to set up the array state.
31  * They must be cleared before md_run is called.
32  */
33 #define FirstUse 10             /* rdev flag */
34
35 struct raid_dev {
36         /*
37          * Two DM devices, one to hold metadata and one to hold the
38          * actual data/parity.  The reason for this is to not confuse
39          * ti->len and give more flexibility in altering size and
40          * characteristics.
41          *
42          * While it is possible for this device to be associated
43          * with a different physical device than the data_dev, it
44          * is intended for it to be the same.
45          *    |--------- Physical Device ---------|
46          *    |- meta_dev -|------ data_dev ------|
47          */
48         struct dm_dev *meta_dev;
49         struct dm_dev *data_dev;
50         struct md_rdev rdev;
51 };
52
53 /*
54  * Bits for establishing rs->ctr_flags
55  *
56  * 1 = no flag value
57  * 2 = flag with value
58  */
59 #define __CTR_FLAG_SYNC                 0  /* 1 */ /* Not with raid0! */
60 #define __CTR_FLAG_NOSYNC               1  /* 1 */ /* Not with raid0! */
61 #define __CTR_FLAG_REBUILD              2  /* 2 */ /* Not with raid0! */
62 #define __CTR_FLAG_DAEMON_SLEEP         3  /* 2 */ /* Not with raid0! */
63 #define __CTR_FLAG_MIN_RECOVERY_RATE    4  /* 2 */ /* Not with raid0! */
64 #define __CTR_FLAG_MAX_RECOVERY_RATE    5  /* 2 */ /* Not with raid0! */
65 #define __CTR_FLAG_MAX_WRITE_BEHIND     6  /* 2 */ /* Only with raid1! */
66 #define __CTR_FLAG_WRITE_MOSTLY         7  /* 2 */ /* Only with raid1! */
67 #define __CTR_FLAG_STRIPE_CACHE         8  /* 2 */ /* Only with raid4/5/6! */
68 #define __CTR_FLAG_REGION_SIZE          9  /* 2 */ /* Not with raid0! */
69 #define __CTR_FLAG_RAID10_COPIES        10 /* 2 */ /* Only with raid10 */
70 #define __CTR_FLAG_RAID10_FORMAT        11 /* 2 */ /* Only with raid10 */
71 /* New for v1.9.0 */
72 #define __CTR_FLAG_DELTA_DISKS          12 /* 2 */ /* Only with reshapable raid4/5/6/10! */
73 #define __CTR_FLAG_DATA_OFFSET          13 /* 2 */ /* Only with reshapable raid4/5/6/10! */
74 #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */
75
76 /*
77  * Flags for rs->ctr_flags field.
78  */
79 #define CTR_FLAG_SYNC                   (1 << __CTR_FLAG_SYNC)
80 #define CTR_FLAG_NOSYNC                 (1 << __CTR_FLAG_NOSYNC)
81 #define CTR_FLAG_REBUILD                (1 << __CTR_FLAG_REBUILD)
82 #define CTR_FLAG_DAEMON_SLEEP           (1 << __CTR_FLAG_DAEMON_SLEEP)
83 #define CTR_FLAG_MIN_RECOVERY_RATE      (1 << __CTR_FLAG_MIN_RECOVERY_RATE)
84 #define CTR_FLAG_MAX_RECOVERY_RATE      (1 << __CTR_FLAG_MAX_RECOVERY_RATE)
85 #define CTR_FLAG_MAX_WRITE_BEHIND       (1 << __CTR_FLAG_MAX_WRITE_BEHIND)
86 #define CTR_FLAG_WRITE_MOSTLY           (1 << __CTR_FLAG_WRITE_MOSTLY)
87 #define CTR_FLAG_STRIPE_CACHE           (1 << __CTR_FLAG_STRIPE_CACHE)
88 #define CTR_FLAG_REGION_SIZE            (1 << __CTR_FLAG_REGION_SIZE)
89 #define CTR_FLAG_RAID10_COPIES          (1 << __CTR_FLAG_RAID10_COPIES)
90 #define CTR_FLAG_RAID10_FORMAT          (1 << __CTR_FLAG_RAID10_FORMAT)
91 #define CTR_FLAG_DELTA_DISKS            (1 << __CTR_FLAG_DELTA_DISKS)
92 #define CTR_FLAG_DATA_OFFSET            (1 << __CTR_FLAG_DATA_OFFSET)
93 #define CTR_FLAG_RAID10_USE_NEAR_SETS   (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS)
94
95 /*
96  * Definitions of various constructor flags to
97  * be used in checks of valid / invalid flags
98  * per raid level.
99  */
100 /* Define all any sync flags */
101 #define CTR_FLAGS_ANY_SYNC              (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)
102
103 /* Define flags for options without argument (e.g. 'nosync') */
104 #define CTR_FLAG_OPTIONS_NO_ARGS        (CTR_FLAGS_ANY_SYNC | \
105                                          CTR_FLAG_RAID10_USE_NEAR_SETS)
106
107 /* Define flags for options with one argument (e.g. 'delta_disks +2') */
108 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \
109                                   CTR_FLAG_WRITE_MOSTLY | \
110                                   CTR_FLAG_DAEMON_SLEEP | \
111                                   CTR_FLAG_MIN_RECOVERY_RATE | \
112                                   CTR_FLAG_MAX_RECOVERY_RATE | \
113                                   CTR_FLAG_MAX_WRITE_BEHIND | \
114                                   CTR_FLAG_STRIPE_CACHE | \
115                                   CTR_FLAG_REGION_SIZE | \
116                                   CTR_FLAG_RAID10_COPIES | \
117                                   CTR_FLAG_RAID10_FORMAT | \
118                                   CTR_FLAG_DELTA_DISKS | \
119                                   CTR_FLAG_DATA_OFFSET)
120
121 /* Valid options definitions per raid level... */
122
123 /* "raid0" does only accept data offset */
124 #define RAID0_VALID_FLAGS       (CTR_FLAG_DATA_OFFSET)
125
126 /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */
127 #define RAID1_VALID_FLAGS       (CTR_FLAGS_ANY_SYNC | \
128                                  CTR_FLAG_REBUILD | \
129                                  CTR_FLAG_WRITE_MOSTLY | \
130                                  CTR_FLAG_DAEMON_SLEEP | \
131                                  CTR_FLAG_MIN_RECOVERY_RATE | \
132                                  CTR_FLAG_MAX_RECOVERY_RATE | \
133                                  CTR_FLAG_MAX_WRITE_BEHIND | \
134                                  CTR_FLAG_REGION_SIZE | \
135                                  CTR_FLAG_DATA_OFFSET)
136
137 /* "raid10" does not accept any raid1 or stripe cache options */
138 #define RAID10_VALID_FLAGS      (CTR_FLAGS_ANY_SYNC | \
139                                  CTR_FLAG_REBUILD | \
140                                  CTR_FLAG_DAEMON_SLEEP | \
141                                  CTR_FLAG_MIN_RECOVERY_RATE | \
142                                  CTR_FLAG_MAX_RECOVERY_RATE | \
143                                  CTR_FLAG_REGION_SIZE | \
144                                  CTR_FLAG_RAID10_COPIES | \
145                                  CTR_FLAG_RAID10_FORMAT | \
146                                  CTR_FLAG_DELTA_DISKS | \
147                                  CTR_FLAG_DATA_OFFSET | \
148                                  CTR_FLAG_RAID10_USE_NEAR_SETS)
149
150 /*
151  * "raid4/5/6" do not accept any raid1 or raid10 specific options
152  *
153  * "raid6" does not accept "nosync", because it is not guaranteed
154  * that both parity and q-syndrome are being written properly with
155  * any writes
156  */
157 #define RAID45_VALID_FLAGS      (CTR_FLAGS_ANY_SYNC | \
158                                  CTR_FLAG_REBUILD | \
159                                  CTR_FLAG_DAEMON_SLEEP | \
160                                  CTR_FLAG_MIN_RECOVERY_RATE | \
161                                  CTR_FLAG_MAX_RECOVERY_RATE | \
162                                  CTR_FLAG_MAX_WRITE_BEHIND | \
163                                  CTR_FLAG_STRIPE_CACHE | \
164                                  CTR_FLAG_REGION_SIZE | \
165                                  CTR_FLAG_DELTA_DISKS | \
166                                  CTR_FLAG_DATA_OFFSET)
167
168 #define RAID6_VALID_FLAGS       (CTR_FLAG_SYNC | \
169                                  CTR_FLAG_REBUILD | \
170                                  CTR_FLAG_DAEMON_SLEEP | \
171                                  CTR_FLAG_MIN_RECOVERY_RATE | \
172                                  CTR_FLAG_MAX_RECOVERY_RATE | \
173                                  CTR_FLAG_MAX_WRITE_BEHIND | \
174                                  CTR_FLAG_STRIPE_CACHE | \
175                                  CTR_FLAG_REGION_SIZE | \
176                                  CTR_FLAG_DELTA_DISKS | \
177                                  CTR_FLAG_DATA_OFFSET)
178 /* ...valid options definitions per raid level */
179
180 /*
181  * Flags for rs->runtime_flags field
182  * (RT_FLAG prefix meaning "runtime flag")
183  *
184  * These are all internal and used to define runtime state,
185  * e.g. to prevent another resume from preresume processing
186  * the raid set all over again.
187  */
188 #define RT_FLAG_RS_PRERESUMED           0
189 #define RT_FLAG_RS_RESUMED              1
190 #define RT_FLAG_RS_BITMAP_LOADED        2
191 #define RT_FLAG_UPDATE_SBS              3
192 #define RT_FLAG_RESHAPE_RS              4
193 #define RT_FLAG_KEEP_RS_FROZEN          5
194
195 /* Array elements of 64 bit needed for rebuild/write_mostly bits */
196 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8)
197
198 /*
199  * raid set level, layout and chunk sectors backup/restore
200  */
201 struct rs_layout {
202         int new_level;
203         int new_layout;
204         int new_chunk_sectors;
205 };
206
207 struct raid_set {
208         struct dm_target *ti;
209
210         uint32_t bitmap_loaded;
211         uint32_t stripe_cache_entries;
212         unsigned long ctr_flags;
213         unsigned long runtime_flags;
214
215         uint64_t rebuild_disks[DISKS_ARRAY_ELEMS];
216
217         int raid_disks;
218         int delta_disks;
219         int data_offset;
220         int raid10_copies;
221         int requested_bitmap_chunk_sectors;
222
223         struct mddev md;
224         struct raid_type *raid_type;
225         struct dm_target_callbacks callbacks;
226
227         struct raid_dev dev[0];
228 };
229
230 static void rs_config_backup(struct raid_set *rs, struct rs_layout *l)
231 {
232         struct mddev *mddev = &rs->md;
233
234         l->new_level = mddev->new_level;
235         l->new_layout = mddev->new_layout;
236         l->new_chunk_sectors = mddev->new_chunk_sectors;
237 }
238
239 static void rs_config_restore(struct raid_set *rs, struct rs_layout *l)
240 {
241         struct mddev *mddev = &rs->md;
242
243         mddev->new_level = l->new_level;
244         mddev->new_layout = l->new_layout;
245         mddev->new_chunk_sectors = l->new_chunk_sectors;
246 }
247
248 /* raid10 algorithms (i.e. formats) */
249 #define ALGORITHM_RAID10_DEFAULT        0
250 #define ALGORITHM_RAID10_NEAR           1
251 #define ALGORITHM_RAID10_OFFSET         2
252 #define ALGORITHM_RAID10_FAR            3
253
254 /* Supported raid types and properties. */
255 static struct raid_type {
256         const char *name;               /* RAID algorithm. */
257         const char *descr;              /* Descriptor text for logging. */
258         const unsigned parity_devs;     /* # of parity devices. */
259         const unsigned minimal_devs;    /* minimal # of devices in set. */
260         const unsigned level;           /* RAID level. */
261         const unsigned algorithm;       /* RAID algorithm. */
262 } raid_types[] = {
263         {"raid0",         "raid0 (striping)",                       0, 2, 0,  0 /* NONE */},
264         {"raid1",         "raid1 (mirroring)",                      0, 2, 1,  0 /* NONE */},
265         {"raid10_far",    "raid10 far (striped mirrors)",           0, 2, 10, ALGORITHM_RAID10_FAR},
266         {"raid10_offset", "raid10 offset (striped mirrors)",        0, 2, 10, ALGORITHM_RAID10_OFFSET},
267         {"raid10_near",   "raid10 near (striped mirrors)",          0, 2, 10, ALGORITHM_RAID10_NEAR},
268         {"raid10",        "raid10 (striped mirrors)",               0, 2, 10, ALGORITHM_RAID10_DEFAULT},
269         {"raid4",         "raid4 (dedicated last parity disk)",     1, 2, 4,  ALGORITHM_PARITY_N}, /* raid4 layout = raid5_n */
270         {"raid5_n",       "raid5 (dedicated last parity disk)",     1, 2, 5,  ALGORITHM_PARITY_N},
271         {"raid5_ls",      "raid5 (left symmetric)",                 1, 2, 5,  ALGORITHM_LEFT_SYMMETRIC},
272         {"raid5_rs",      "raid5 (right symmetric)",                1, 2, 5,  ALGORITHM_RIGHT_SYMMETRIC},
273         {"raid5_la",      "raid5 (left asymmetric)",                1, 2, 5,  ALGORITHM_LEFT_ASYMMETRIC},
274         {"raid5_ra",      "raid5 (right asymmetric)",               1, 2, 5,  ALGORITHM_RIGHT_ASYMMETRIC},
275         {"raid6_zr",      "raid6 (zero restart)",                   2, 4, 6,  ALGORITHM_ROTATING_ZERO_RESTART},
276         {"raid6_nr",      "raid6 (N restart)",                      2, 4, 6,  ALGORITHM_ROTATING_N_RESTART},
277         {"raid6_nc",      "raid6 (N continue)",                     2, 4, 6,  ALGORITHM_ROTATING_N_CONTINUE},
278         {"raid6_n_6",     "raid6 (dedicated parity/Q n/6)",         2, 4, 6,  ALGORITHM_PARITY_N_6},
279         {"raid6_ls_6",    "raid6 (left symmetric dedicated Q 6)",   2, 4, 6,  ALGORITHM_LEFT_SYMMETRIC_6},
280         {"raid6_rs_6",    "raid6 (right symmetric dedicated Q 6)",  2, 4, 6,  ALGORITHM_RIGHT_SYMMETRIC_6},
281         {"raid6_la_6",    "raid6 (left asymmetric dedicated Q 6)",  2, 4, 6,  ALGORITHM_LEFT_ASYMMETRIC_6},
282         {"raid6_ra_6",    "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6,  ALGORITHM_RIGHT_ASYMMETRIC_6}
283 };
284
285 /* True, if @v is in inclusive range [@min, @max] */
286 static bool __within_range(long v, long min, long max)
287 {
288         return v >= min && v <= max;
289 }
290
291 /* All table line arguments are defined here */
292 static struct arg_name_flag {
293         const unsigned long flag;
294         const char *name;
295 } __arg_name_flags[] = {
296         { CTR_FLAG_SYNC, "sync"},
297         { CTR_FLAG_NOSYNC, "nosync"},
298         { CTR_FLAG_REBUILD, "rebuild"},
299         { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"},
300         { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"},
301         { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"},
302         { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"},
303         { CTR_FLAG_WRITE_MOSTLY, "writemostly"},
304         { CTR_FLAG_STRIPE_CACHE, "stripe_cache"},
305         { CTR_FLAG_REGION_SIZE, "region_size"},
306         { CTR_FLAG_RAID10_COPIES, "raid10_copies"},
307         { CTR_FLAG_RAID10_FORMAT, "raid10_format"},
308         { CTR_FLAG_DATA_OFFSET, "data_offset"},
309         { CTR_FLAG_DELTA_DISKS, "delta_disks"},
310         { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"},
311 };
312
313 /* Return argument name string for given @flag */
314 static const char *dm_raid_arg_name_by_flag(const uint32_t flag)
315 {
316         if (hweight32(flag) == 1) {
317                 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags);
318
319                 while (anf-- > __arg_name_flags)
320                         if (flag & anf->flag)
321                                 return anf->name;
322
323         } else
324                 DMERR("%s called with more than one flag!", __func__);
325
326         return NULL;
327 }
328
329 /*
330  * bool helpers to test for various raid levels of a raid set,
331  * is. it's level as reported by the superblock rather than
332  * the requested raid_type passed to the constructor.
333  */
334 /* Return true, if raid set in @rs is raid0 */
335 static bool rs_is_raid0(struct raid_set *rs)
336 {
337         return !rs->md.level;
338 }
339
340 /* Return true, if raid set in @rs is raid1 */
341 static bool rs_is_raid1(struct raid_set *rs)
342 {
343         return rs->md.level == 1;
344 }
345
346 /* Return true, if raid set in @rs is raid10 */
347 static bool rs_is_raid10(struct raid_set *rs)
348 {
349         return rs->md.level == 10;
350 }
351
352 /* Return true, if raid set in @rs is level 4, 5 or 6 */
353 static bool rs_is_raid456(struct raid_set *rs)
354 {
355         return __within_range(rs->md.level, 4, 6);
356 }
357
358 /* Return true, if raid set in @rs is reshapable */
359 static unsigned int __is_raid10_far(int layout);
360 static bool rs_is_reshapable(struct raid_set *rs)
361 {
362         return rs_is_raid456(rs) ||
363                (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout));
364 }
365
366 /* Return true, if raid set in @rs is recovering */
367 static bool rs_is_recovering(struct raid_set *rs)
368 {
369         return rs->md.recovery_cp != MaxSector;
370 }
371
372 /* Return true, if raid set in @rs is reshaping */
373 static bool rs_is_reshaping(struct raid_set *rs)
374 {
375         return rs->md.reshape_position != MaxSector;
376 }
377
378 /*
379  * bool helpers to test for various raid levels of a raid type
380  */
381
382 /* Return true, if raid type in @rt is raid0 */
383 static bool rt_is_raid0(struct raid_type *rt)
384 {
385         return !rt->level;
386 }
387
388 /* Return true, if raid type in @rt is raid1 */
389 static bool rt_is_raid1(struct raid_type *rt)
390 {
391         return rt->level == 1;
392 }
393
394 /* Return true, if raid type in @rt is raid10 */
395 static bool rt_is_raid10(struct raid_type *rt)
396 {
397         return rt->level == 10;
398 }
399
400 /* Return true, if raid type in @rt is raid4/5 */
401 static bool rt_is_raid45(struct raid_type *rt)
402 {
403         return __within_range(rt->level, 4, 5);
404 }
405
406 /* Return true, if raid type in @rt is raid6 */
407 static bool rt_is_raid6(struct raid_type *rt)
408 {
409         return rt->level == 6;
410 }
411
412 /* Return true, if raid type in @rt is raid4/5/6 */
413 static bool rt_is_raid456(struct raid_type *rt)
414 {
415         return __within_range(rt->level, 4, 6);
416 }
417 /* END: raid level bools */
418
419 /* Return valid ctr flags for the raid level of @rs */
420 static unsigned long __valid_flags(struct raid_set *rs)
421 {
422         if (rt_is_raid0(rs->raid_type))
423                 return RAID0_VALID_FLAGS;
424         else if (rt_is_raid1(rs->raid_type))
425                 return RAID1_VALID_FLAGS;
426         else if (rt_is_raid10(rs->raid_type))
427                 return RAID10_VALID_FLAGS;
428         else if (rt_is_raid45(rs->raid_type))
429                 return RAID45_VALID_FLAGS;
430         else if (rt_is_raid6(rs->raid_type))
431                 return RAID6_VALID_FLAGS;
432
433         return ~0;
434 }
435
436 /*
437  * Check for valid flags set on @rs
438  *
439  * Has to be called after parsing of the ctr flags!
440  */
441 static int rs_check_for_valid_flags(struct raid_set *rs)
442 {
443         if (rs->ctr_flags & ~__valid_flags(rs)) {
444                 rs->ti->error = "Invalid flags combination";
445                 return -EINVAL;
446         }
447
448         return 0;
449 }
450
451 /* MD raid10 bit definitions and helpers */
452 #define RAID10_OFFSET                   (1 << 16) /* stripes with data copies area adjacent on devices */
453 #define RAID10_BROCKEN_USE_FAR_SETS     (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */
454 #define RAID10_USE_FAR_SETS             (1 << 18) /* Use sets instead of whole stripe rotation */
455 #define RAID10_FAR_COPIES_SHIFT         8         /* raid10 # far copies shift (2nd byte of layout) */
456
457 /* Return md raid10 near copies for @layout */
458 static unsigned int __raid10_near_copies(int layout)
459 {
460         return layout & 0xFF;
461 }
462
463 /* Return md raid10 far copies for @layout */
464 static unsigned int __raid10_far_copies(int layout)
465 {
466         return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT);
467 }
468
469 /* Return true if md raid10 offset for @layout */
470 static unsigned int __is_raid10_offset(int layout)
471 {
472         return layout & RAID10_OFFSET;
473 }
474
475 /* Return true if md raid10 near for @layout */
476 static unsigned int __is_raid10_near(int layout)
477 {
478         return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1;
479 }
480
481 /* Return true if md raid10 far for @layout */
482 static unsigned int __is_raid10_far(int layout)
483 {
484         return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1;
485 }
486
487 /* Return md raid10 layout string for @layout */
488 static const char *raid10_md_layout_to_format(int layout)
489 {
490         /*
491          * Bit 16 stands for "offset"
492          * (i.e. adjacent stripes hold copies)
493          *
494          * Refer to MD's raid10.c for details
495          */
496         if (__is_raid10_offset(layout))
497                 return "offset";
498
499         if (__raid10_near_copies(layout) > 1)
500                 return "near";
501
502         WARN_ON(__raid10_far_copies(layout) < 2);
503
504         return "far";
505 }
506
507 /* Return md raid10 algorithm for @name */
508 static int raid10_name_to_format(const char *name)
509 {
510         if (!strcasecmp(name, "near"))
511                 return ALGORITHM_RAID10_NEAR;
512         else if (!strcasecmp(name, "offset"))
513                 return ALGORITHM_RAID10_OFFSET;
514         else if (!strcasecmp(name, "far"))
515                 return ALGORITHM_RAID10_FAR;
516
517         return -EINVAL;
518 }
519
520 /* Return md raid10 copies for @layout */
521 static unsigned int raid10_md_layout_to_copies(int layout)
522 {
523         return __raid10_near_copies(layout) > 1 ?
524                 __raid10_near_copies(layout) : __raid10_far_copies(layout);
525 }
526
527 /* Return md raid10 format id for @format string */
528 static int raid10_format_to_md_layout(struct raid_set *rs,
529                                       unsigned int algorithm,
530                                       unsigned int copies)
531 {
532         unsigned int n = 1, f = 1, r = 0;
533
534         /*
535          * MD resilienece flaw:
536          *
537          * enabling use_far_sets for far/offset formats causes copies
538          * to be colocated on the same devs together with their origins!
539          *
540          * -> disable it for now in the definition above
541          */
542         if (algorithm == ALGORITHM_RAID10_DEFAULT ||
543             algorithm == ALGORITHM_RAID10_NEAR)
544                 n = copies;
545
546         else if (algorithm == ALGORITHM_RAID10_OFFSET) {
547                 f = copies;
548                 r = RAID10_OFFSET;
549                 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
550                         r |= RAID10_USE_FAR_SETS;
551
552         } else if (algorithm == ALGORITHM_RAID10_FAR) {
553                 f = copies;
554                 r = !RAID10_OFFSET;
555                 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
556                         r |= RAID10_USE_FAR_SETS;
557
558         } else
559                 return -EINVAL;
560
561         return r | (f << RAID10_FAR_COPIES_SHIFT) | n;
562 }
563 /* END: MD raid10 bit definitions and helpers */
564
565 /* Check for any of the raid10 algorithms */
566 static int __got_raid10(struct raid_type *rtp, const int layout)
567 {
568         if (rtp->level == 10) {
569                 switch (rtp->algorithm) {
570                 case ALGORITHM_RAID10_DEFAULT:
571                 case ALGORITHM_RAID10_NEAR:
572                         return __is_raid10_near(layout);
573                 case ALGORITHM_RAID10_OFFSET:
574                         return __is_raid10_offset(layout);
575                 case ALGORITHM_RAID10_FAR:
576                         return __is_raid10_far(layout);
577                 default:
578                         break;
579                 }
580         }
581
582         return 0;
583 }
584
585 /* Return raid_type for @name */
586 static struct raid_type *get_raid_type(const char *name)
587 {
588         struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
589
590         while (rtp-- > raid_types)
591                 if (!strcasecmp(rtp->name, name))
592                         return rtp;
593
594         return NULL;
595 }
596
597 /* Return raid_type for @name based derived from @level and @layout */
598 static struct raid_type *get_raid_type_by_ll(const int level, const int layout)
599 {
600         struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
601
602         while (rtp-- > raid_types) {
603                 /* RAID10 special checks based on @layout flags/properties */
604                 if (rtp->level == level &&
605                     (__got_raid10(rtp, layout) || rtp->algorithm == layout))
606                         return rtp;
607         }
608
609         return NULL;
610 }
611
612 /*
613  * Conditionally change bdev capacity of @rs
614  * in case of a disk add/remove reshape
615  */
616 static void rs_set_capacity(struct raid_set *rs)
617 {
618         struct mddev *mddev = &rs->md;
619         struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table));
620
621         set_capacity(gendisk, mddev->array_sectors);
622         revalidate_disk(gendisk);
623 }
624
625 /*
626  * Set the mddev properties in @rs to the current
627  * ones retrieved from the freshest superblock
628  */
629 static void rs_set_cur(struct raid_set *rs)
630 {
631         struct mddev *mddev = &rs->md;
632
633         mddev->new_level = mddev->level;
634         mddev->new_layout = mddev->layout;
635         mddev->new_chunk_sectors = mddev->chunk_sectors;
636 }
637
638 /*
639  * Set the mddev properties in @rs to the new
640  * ones requested by the ctr
641  */
642 static void rs_set_new(struct raid_set *rs)
643 {
644         struct mddev *mddev = &rs->md;
645
646         mddev->level = mddev->new_level;
647         mddev->layout = mddev->new_layout;
648         mddev->chunk_sectors = mddev->new_chunk_sectors;
649         mddev->raid_disks = rs->raid_disks;
650         mddev->delta_disks = 0;
651 }
652
653 static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type,
654                                        unsigned raid_devs)
655 {
656         unsigned i;
657         struct raid_set *rs;
658
659         if (raid_devs <= raid_type->parity_devs) {
660                 ti->error = "Insufficient number of devices";
661                 return ERR_PTR(-EINVAL);
662         }
663
664         rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
665         if (!rs) {
666                 ti->error = "Cannot allocate raid context";
667                 return ERR_PTR(-ENOMEM);
668         }
669
670         mddev_init(&rs->md);
671
672         rs->raid_disks = raid_devs;
673         rs->delta_disks = 0;
674
675         rs->ti = ti;
676         rs->raid_type = raid_type;
677         rs->stripe_cache_entries = 256;
678         rs->md.raid_disks = raid_devs;
679         rs->md.level = raid_type->level;
680         rs->md.new_level = rs->md.level;
681         rs->md.layout = raid_type->algorithm;
682         rs->md.new_layout = rs->md.layout;
683         rs->md.delta_disks = 0;
684         rs->md.recovery_cp = rs_is_raid0(rs) ? MaxSector : 0;
685
686         for (i = 0; i < raid_devs; i++)
687                 md_rdev_init(&rs->dev[i].rdev);
688
689         /*
690          * Remaining items to be initialized by further RAID params:
691          *  rs->md.persistent
692          *  rs->md.external
693          *  rs->md.chunk_sectors
694          *  rs->md.new_chunk_sectors
695          *  rs->md.dev_sectors
696          */
697
698         return rs;
699 }
700
701 static void raid_set_free(struct raid_set *rs)
702 {
703         int i;
704
705         for (i = 0; i < rs->md.raid_disks; i++) {
706                 if (rs->dev[i].meta_dev)
707                         dm_put_device(rs->ti, rs->dev[i].meta_dev);
708                 md_rdev_clear(&rs->dev[i].rdev);
709                 if (rs->dev[i].data_dev)
710                         dm_put_device(rs->ti, rs->dev[i].data_dev);
711         }
712
713         kfree(rs);
714 }
715
716 /*
717  * For every device we have two words
718  *  <meta_dev>: meta device name or '-' if missing
719  *  <data_dev>: data device name or '-' if missing
720  *
721  * The following are permitted:
722  *    - -
723  *    - <data_dev>
724  *    <meta_dev> <data_dev>
725  *
726  * The following is not allowed:
727  *    <meta_dev> -
728  *
729  * This code parses those words.  If there is a failure,
730  * the caller must use raid_set_free() to unwind the operations.
731  */
732 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as)
733 {
734         int i;
735         int rebuild = 0;
736         int metadata_available = 0;
737         int r = 0;
738         const char *arg;
739
740         /* Put off the number of raid devices argument to get to dev pairs */
741         arg = dm_shift_arg(as);
742         if (!arg)
743                 return -EINVAL;
744
745         for (i = 0; i < rs->md.raid_disks; i++) {
746                 rs->dev[i].rdev.raid_disk = i;
747
748                 rs->dev[i].meta_dev = NULL;
749                 rs->dev[i].data_dev = NULL;
750
751                 /*
752                  * There are no offsets, since there is a separate device
753                  * for data and metadata.
754                  */
755                 rs->dev[i].rdev.data_offset = 0;
756                 rs->dev[i].rdev.mddev = &rs->md;
757
758                 arg = dm_shift_arg(as);
759                 if (!arg)
760                         return -EINVAL;
761
762                 if (strcmp(arg, "-")) {
763                         r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
764                                           &rs->dev[i].meta_dev);
765                         if (r) {
766                                 rs->ti->error = "RAID metadata device lookup failure";
767                                 return r;
768                         }
769
770                         rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
771                         if (!rs->dev[i].rdev.sb_page) {
772                                 rs->ti->error = "Failed to allocate superblock page";
773                                 return -ENOMEM;
774                         }
775                 }
776
777                 arg = dm_shift_arg(as);
778                 if (!arg)
779                         return -EINVAL;
780
781                 if (!strcmp(arg, "-")) {
782                         if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
783                             (!rs->dev[i].rdev.recovery_offset)) {
784                                 rs->ti->error = "Drive designated for rebuild not specified";
785                                 return -EINVAL;
786                         }
787
788                         if (rs->dev[i].meta_dev) {
789                                 rs->ti->error = "No data device supplied with metadata device";
790                                 return -EINVAL;
791                         }
792
793                         continue;
794                 }
795
796                 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
797                                   &rs->dev[i].data_dev);
798                 if (r) {
799                         rs->ti->error = "RAID device lookup failure";
800                         return r;
801                 }
802
803                 if (rs->dev[i].meta_dev) {
804                         metadata_available = 1;
805                         rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
806                 }
807                 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
808                 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks);
809                 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
810                         rebuild++;
811         }
812
813         if (metadata_available) {
814                 rs->md.external = 0;
815                 rs->md.persistent = 1;
816                 rs->md.major_version = 2;
817         } else if (rebuild && !rs->md.recovery_cp) {
818                 /*
819                  * Without metadata, we will not be able to tell if the array
820                  * is in-sync or not - we must assume it is not.  Therefore,
821                  * it is impossible to rebuild a drive.
822                  *
823                  * Even if there is metadata, the on-disk information may
824                  * indicate that the array is not in-sync and it will then
825                  * fail at that time.
826                  *
827                  * User could specify 'nosync' option if desperate.
828                  */
829                 rs->ti->error = "Unable to rebuild drive while array is not in-sync";
830                 return -EINVAL;
831         }
832
833         return 0;
834 }
835
836 /*
837  * validate_region_size
838  * @rs
839  * @region_size:  region size in sectors.  If 0, pick a size (4MiB default).
840  *
841  * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
842  * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
843  *
844  * Returns: 0 on success, -EINVAL on failure.
845  */
846 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
847 {
848         unsigned long min_region_size = rs->ti->len / (1 << 21);
849
850         if (!region_size) {
851                 /*
852                  * Choose a reasonable default.  All figures in sectors.
853                  */
854                 if (min_region_size > (1 << 13)) {
855                         /* If not a power of 2, make it the next power of 2 */
856                         region_size = roundup_pow_of_two(min_region_size);
857                         DMINFO("Choosing default region size of %lu sectors",
858                                region_size);
859                 } else {
860                         DMINFO("Choosing default region size of 4MiB");
861                         region_size = 1 << 13; /* sectors */
862                 }
863         } else {
864                 /*
865                  * Validate user-supplied value.
866                  */
867                 if (region_size > rs->ti->len) {
868                         rs->ti->error = "Supplied region size is too large";
869                         return -EINVAL;
870                 }
871
872                 if (region_size < min_region_size) {
873                         DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
874                               region_size, min_region_size);
875                         rs->ti->error = "Supplied region size is too small";
876                         return -EINVAL;
877                 }
878
879                 if (!is_power_of_2(region_size)) {
880                         rs->ti->error = "Region size is not a power of 2";
881                         return -EINVAL;
882                 }
883
884                 if (region_size < rs->md.chunk_sectors) {
885                         rs->ti->error = "Region size is smaller than the chunk size";
886                         return -EINVAL;
887                 }
888         }
889
890         /*
891          * Convert sectors to bytes.
892          */
893         rs->md.bitmap_info.chunksize = (region_size << 9);
894
895         return 0;
896 }
897
898 /*
899  * validate_raid_redundancy
900  * @rs
901  *
902  * Determine if there are enough devices in the array that haven't
903  * failed (or are being rebuilt) to form a usable array.
904  *
905  * Returns: 0 on success, -EINVAL on failure.
906  */
907 static int validate_raid_redundancy(struct raid_set *rs)
908 {
909         unsigned i, rebuild_cnt = 0;
910         unsigned rebuilds_per_group = 0, copies;
911         unsigned group_size, last_group_start;
912
913         for (i = 0; i < rs->md.raid_disks; i++)
914                 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
915                     !rs->dev[i].rdev.sb_page)
916                         rebuild_cnt++;
917
918         switch (rs->raid_type->level) {
919         case 1:
920                 if (rebuild_cnt >= rs->md.raid_disks)
921                         goto too_many;
922                 break;
923         case 4:
924         case 5:
925         case 6:
926                 if (rebuild_cnt > rs->raid_type->parity_devs)
927                         goto too_many;
928                 break;
929         case 10:
930                 copies = raid10_md_layout_to_copies(rs->md.new_layout);
931                 if (rebuild_cnt < copies)
932                         break;
933
934                 /*
935                  * It is possible to have a higher rebuild count for RAID10,
936                  * as long as the failed devices occur in different mirror
937                  * groups (i.e. different stripes).
938                  *
939                  * When checking "near" format, make sure no adjacent devices
940                  * have failed beyond what can be handled.  In addition to the
941                  * simple case where the number of devices is a multiple of the
942                  * number of copies, we must also handle cases where the number
943                  * of devices is not a multiple of the number of copies.
944                  * E.g.    dev1 dev2 dev3 dev4 dev5
945                  *          A    A    B    B    C
946                  *          C    D    D    E    E
947                  */
948                 if (__is_raid10_near(rs->md.new_layout)) {
949                         for (i = 0; i < rs->raid_disks; i++) {
950                                 if (!(i % copies))
951                                         rebuilds_per_group = 0;
952                                 if ((!rs->dev[i].rdev.sb_page ||
953                                     !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
954                                     (++rebuilds_per_group >= copies))
955                                         goto too_many;
956                         }
957                         break;
958                 }
959
960                 /*
961                  * When checking "far" and "offset" formats, we need to ensure
962                  * that the device that holds its copy is not also dead or
963                  * being rebuilt.  (Note that "far" and "offset" formats only
964                  * support two copies right now.  These formats also only ever
965                  * use the 'use_far_sets' variant.)
966                  *
967                  * This check is somewhat complicated by the need to account
968                  * for arrays that are not a multiple of (far) copies.  This
969                  * results in the need to treat the last (potentially larger)
970                  * set differently.
971                  */
972                 group_size = (rs->md.raid_disks / copies);
973                 last_group_start = (rs->md.raid_disks / group_size) - 1;
974                 last_group_start *= group_size;
975                 for (i = 0; i < rs->md.raid_disks; i++) {
976                         if (!(i % copies) && !(i > last_group_start))
977                                 rebuilds_per_group = 0;
978                         if ((!rs->dev[i].rdev.sb_page ||
979                              !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
980                             (++rebuilds_per_group >= copies))
981                                         goto too_many;
982                 }
983                 break;
984         default:
985                 if (rebuild_cnt)
986                         return -EINVAL;
987         }
988
989         return 0;
990
991 too_many:
992         return -EINVAL;
993 }
994
995 /*
996  * Possible arguments are...
997  *      <chunk_size> [optional_args]
998  *
999  * Argument definitions
1000  *    <chunk_size>                      The number of sectors per disk that
1001  *                                      will form the "stripe"
1002  *    [[no]sync]                        Force or prevent recovery of the
1003  *                                      entire array
1004  *    [rebuild <idx>]                   Rebuild the drive indicated by the index
1005  *    [daemon_sleep <ms>]               Time between bitmap daemon work to
1006  *                                      clear bits
1007  *    [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1008  *    [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1009  *    [write_mostly <idx>]              Indicate a write mostly drive via index
1010  *    [max_write_behind <sectors>]      See '-write-behind=' (man mdadm)
1011  *    [stripe_cache <sectors>]          Stripe cache size for higher RAIDs
1012  *    [region_size <sectors>]           Defines granularity of bitmap
1013  *
1014  * RAID10-only options:
1015  *    [raid10_copies <# copies>]        Number of copies.  (Default: 2)
1016  *    [raid10_format <near|far|offset>] Layout algorithm.  (Default: near)
1017  */
1018 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as,
1019                              unsigned num_raid_params)
1020 {
1021         int value, raid10_format = ALGORITHM_RAID10_DEFAULT;
1022         unsigned raid10_copies = 2;
1023         unsigned i, write_mostly = 0;
1024         unsigned region_size = 0;
1025         sector_t max_io_len;
1026         const char *arg, *key;
1027         struct raid_dev *rd;
1028         struct raid_type *rt = rs->raid_type;
1029
1030         arg = dm_shift_arg(as);
1031         num_raid_params--; /* Account for chunk_size argument */
1032
1033         if (kstrtoint(arg, 10, &value) < 0) {
1034                 rs->ti->error = "Bad numerical argument given for chunk_size";
1035                 return -EINVAL;
1036         }
1037
1038         /*
1039          * First, parse the in-order required arguments
1040          * "chunk_size" is the only argument of this type.
1041          */
1042         if (rt_is_raid1(rt)) {
1043                 if (value)
1044                         DMERR("Ignoring chunk size parameter for RAID 1");
1045                 value = 0;
1046         } else if (!is_power_of_2(value)) {
1047                 rs->ti->error = "Chunk size must be a power of 2";
1048                 return -EINVAL;
1049         } else if (value < 8) {
1050                 rs->ti->error = "Chunk size value is too small";
1051                 return -EINVAL;
1052         }
1053
1054         rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
1055
1056         /*
1057          * We set each individual device as In_sync with a completed
1058          * 'recovery_offset'.  If there has been a device failure or
1059          * replacement then one of the following cases applies:
1060          *
1061          *   1) User specifies 'rebuild'.
1062          *      - Device is reset when param is read.
1063          *   2) A new device is supplied.
1064          *      - No matching superblock found, resets device.
1065          *   3) Device failure was transient and returns on reload.
1066          *      - Failure noticed, resets device for bitmap replay.
1067          *   4) Device hadn't completed recovery after previous failure.
1068          *      - Superblock is read and overrides recovery_offset.
1069          *
1070          * What is found in the superblocks of the devices is always
1071          * authoritative, unless 'rebuild' or '[no]sync' was specified.
1072          */
1073         for (i = 0; i < rs->md.raid_disks; i++) {
1074                 set_bit(In_sync, &rs->dev[i].rdev.flags);
1075                 rs->dev[i].rdev.recovery_offset = MaxSector;
1076         }
1077
1078         /*
1079          * Second, parse the unordered optional arguments
1080          */
1081         for (i = 0; i < num_raid_params; i++) {
1082                 key = dm_shift_arg(as);
1083                 if (!key) {
1084                         rs->ti->error = "Not enough raid parameters given";
1085                         return -EINVAL;
1086                 }
1087
1088                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) {
1089                         if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1090                                 rs->ti->error = "Only one 'nosync' argument allowed";
1091                                 return -EINVAL;
1092                         }
1093                         rs->md.recovery_cp = MaxSector;
1094                         continue;
1095                 }
1096                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) {
1097                         if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) {
1098                                 rs->ti->error = "Only one 'sync' argument allowed";
1099                                 return -EINVAL;
1100                         }
1101                         rs->md.recovery_cp = 0;
1102                         continue;
1103                 }
1104                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) {
1105                         if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1106                                 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed";
1107                                 return -EINVAL;
1108                         }
1109                         continue;
1110                 }
1111
1112                 arg = dm_shift_arg(as);
1113                 i++; /* Account for the argument pairs */
1114                 if (!arg) {
1115                         rs->ti->error = "Wrong number of raid parameters given";
1116                         return -EINVAL;
1117                 }
1118
1119                 /*
1120                  * Parameters that take a string value are checked here.
1121                  */
1122
1123                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) {
1124                         if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) {
1125                                 rs->ti->error = "Only one 'raid10_format' argument pair allowed";
1126                                 return -EINVAL;
1127                         }
1128                         if (!rt_is_raid10(rt)) {
1129                                 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
1130                                 return -EINVAL;
1131                         }
1132                         raid10_format = raid10_name_to_format(arg);
1133                         if (raid10_format < 0) {
1134                                 rs->ti->error = "Invalid 'raid10_format' value given";
1135                                 return raid10_format;
1136                         }
1137                         continue;
1138                 }
1139
1140                 if (kstrtoint(arg, 10, &value) < 0) {
1141                         rs->ti->error = "Bad numerical argument given in raid params";
1142                         return -EINVAL;
1143                 }
1144
1145                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) {
1146                         /*
1147                          * "rebuild" is being passed in by userspace to provide
1148                          * indexes of replaced devices and to set up additional
1149                          * devices on raid level takeover.
1150                          */
1151                         if (!__within_range(value, 0, rs->raid_disks - 1)) {
1152                                 rs->ti->error = "Invalid rebuild index given";
1153                                 return -EINVAL;
1154                         }
1155
1156                         if (test_and_set_bit(value, (void *) rs->rebuild_disks)) {
1157                                 rs->ti->error = "rebuild for this index already given";
1158                                 return -EINVAL;
1159                         }
1160
1161                         rd = rs->dev + value;
1162                         clear_bit(In_sync, &rd->rdev.flags);
1163                         clear_bit(Faulty, &rd->rdev.flags);
1164                         rd->rdev.recovery_offset = 0;
1165                         set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags);
1166                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) {
1167                         if (!rt_is_raid1(rt)) {
1168                                 rs->ti->error = "write_mostly option is only valid for RAID1";
1169                                 return -EINVAL;
1170                         }
1171
1172                         if (!__within_range(value, 0, rs->md.raid_disks - 1)) {
1173                                 rs->ti->error = "Invalid write_mostly index given";
1174                                 return -EINVAL;
1175                         }
1176
1177                         write_mostly++;
1178                         set_bit(WriteMostly, &rs->dev[value].rdev.flags);
1179                         set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags);
1180                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) {
1181                         if (!rt_is_raid1(rt)) {
1182                                 rs->ti->error = "max_write_behind option is only valid for RAID1";
1183                                 return -EINVAL;
1184                         }
1185
1186                         if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) {
1187                                 rs->ti->error = "Only one max_write_behind argument pair allowed";
1188                                 return -EINVAL;
1189                         }
1190
1191                         /*
1192                          * In device-mapper, we specify things in sectors, but
1193                          * MD records this value in kB
1194                          */
1195                         value /= 2;
1196                         if (value > COUNTER_MAX) {
1197                                 rs->ti->error = "Max write-behind limit out of range";
1198                                 return -EINVAL;
1199                         }
1200
1201                         rs->md.bitmap_info.max_write_behind = value;
1202                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) {
1203                         if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) {
1204                                 rs->ti->error = "Only one daemon_sleep argument pair allowed";
1205                                 return -EINVAL;
1206                         }
1207                         if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
1208                                 rs->ti->error = "daemon sleep period out of range";
1209                                 return -EINVAL;
1210                         }
1211                         rs->md.bitmap_info.daemon_sleep = value;
1212                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) {
1213                         /* Userspace passes new data_offset after having extended the the data image LV */
1214                         if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
1215                                 rs->ti->error = "Only one data_offset argument pair allowed";
1216                                 return -EINVAL;
1217                         }
1218                         /* Ensure sensible data offset */
1219                         if (value < 0 ||
1220                             (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) {
1221                                 rs->ti->error = "Bogus data_offset value";
1222                                 return -EINVAL;
1223                         }
1224                         rs->data_offset = value;
1225                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) {
1226                         /* Define the +/-# of disks to add to/remove from the given raid set */
1227                         if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
1228                                 rs->ti->error = "Only one delta_disks argument pair allowed";
1229                                 return -EINVAL;
1230                         }
1231                         /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */
1232                         if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) {
1233                                 rs->ti->error = "Too many delta_disk requested";
1234                                 return -EINVAL;
1235                         }
1236
1237                         rs->delta_disks = value;
1238                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) {
1239                         if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) {
1240                                 rs->ti->error = "Only one stripe_cache argument pair allowed";
1241                                 return -EINVAL;
1242                         }
1243
1244                         if (!rt_is_raid456(rt)) {
1245                                 rs->ti->error = "Inappropriate argument: stripe_cache";
1246                                 return -EINVAL;
1247                         }
1248
1249                         rs->stripe_cache_entries = value;
1250                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) {
1251                         if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1252                                 rs->ti->error = "Only one min_recovery_rate argument pair allowed";
1253                                 return -EINVAL;
1254                         }
1255                         if (value > INT_MAX) {
1256                                 rs->ti->error = "min_recovery_rate out of range";
1257                                 return -EINVAL;
1258                         }
1259                         rs->md.sync_speed_min = (int)value;
1260                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) {
1261                         if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1262                                 rs->ti->error = "Only one max_recovery_rate argument pair allowed";
1263                                 return -EINVAL;
1264                         }
1265                         if (value > INT_MAX) {
1266                                 rs->ti->error = "max_recovery_rate out of range";
1267                                 return -EINVAL;
1268                         }
1269                         rs->md.sync_speed_max = (int)value;
1270                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) {
1271                         if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) {
1272                                 rs->ti->error = "Only one region_size argument pair allowed";
1273                                 return -EINVAL;
1274                         }
1275
1276                         region_size = value;
1277                         rs->requested_bitmap_chunk_sectors = value;
1278                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) {
1279                         if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) {
1280                                 rs->ti->error = "Only one raid10_copies argument pair allowed";
1281                                 return -EINVAL;
1282                         }
1283
1284                         if (!__within_range(value, 2, rs->md.raid_disks)) {
1285                                 rs->ti->error = "Bad value for 'raid10_copies'";
1286                                 return -EINVAL;
1287                         }
1288
1289                         raid10_copies = value;
1290                 } else {
1291                         DMERR("Unable to parse RAID parameter: %s", key);
1292                         rs->ti->error = "Unable to parse RAID parameter";
1293                         return -EINVAL;
1294                 }
1295         }
1296
1297         if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) &&
1298             test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1299                 rs->ti->error = "sync and nosync are mutually exclusive";
1300                 return -EINVAL;
1301         }
1302
1303         if (write_mostly >= rs->md.raid_disks) {
1304                 rs->ti->error = "Can't set all raid1 devices to write_mostly";
1305                 return -EINVAL;
1306         }
1307
1308         if (validate_region_size(rs, region_size))
1309                 return -EINVAL;
1310
1311         if (rs->md.chunk_sectors)
1312                 max_io_len = rs->md.chunk_sectors;
1313         else
1314                 max_io_len = region_size;
1315
1316         if (dm_set_target_max_io_len(rs->ti, max_io_len))
1317                 return -EINVAL;
1318
1319         if (rt_is_raid10(rt)) {
1320                 if (raid10_copies > rs->md.raid_disks) {
1321                         rs->ti->error = "Not enough devices to satisfy specification";
1322                         return -EINVAL;
1323                 }
1324
1325                 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
1326                 if (rs->md.new_layout < 0) {
1327                         rs->ti->error = "Error getting raid10 format";
1328                         return rs->md.new_layout;
1329                 }
1330
1331                 rt = get_raid_type_by_ll(10, rs->md.new_layout);
1332                 if (!rt) {
1333                         rs->ti->error = "Failed to recognize new raid10 layout";
1334                         return -EINVAL;
1335                 }
1336
1337                 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT ||
1338                      rt->algorithm == ALGORITHM_RAID10_NEAR) &&
1339                     test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1340                         rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible";
1341                         return -EINVAL;
1342                 }
1343         }
1344
1345         rs->raid10_copies = raid10_copies;
1346
1347         /* Assume there are no metadata devices until the drives are parsed */
1348         rs->md.persistent = 0;
1349         rs->md.external = 1;
1350
1351         /* Check, if any invalid ctr arguments have been passed in for the raid level */
1352         return rs_check_for_valid_flags(rs);
1353 }
1354
1355 /* Set raid4/5/6 cache size */
1356 static int rs_set_raid456_stripe_cache(struct raid_set *rs)
1357 {
1358         int r;
1359         struct r5conf *conf;
1360         struct mddev *mddev = &rs->md;
1361         uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2;
1362         uint32_t nr_stripes = rs->stripe_cache_entries;
1363
1364         if (!rt_is_raid456(rs->raid_type)) {
1365                 rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size";
1366                 return -EINVAL;
1367         }
1368
1369         if (nr_stripes < min_stripes) {
1370                 DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size",
1371                        nr_stripes, min_stripes);
1372                 nr_stripes = min_stripes;
1373         }
1374
1375         conf = mddev->private;
1376         if (!conf) {
1377                 rs->ti->error = "Cannot change stripe_cache size on inactive RAID set";
1378                 return -EINVAL;
1379         }
1380
1381         /* Try setting number of stripes in raid456 stripe cache */
1382         if (conf->min_nr_stripes != nr_stripes) {
1383                 r = raid5_set_cache_size(mddev, nr_stripes);
1384                 if (r) {
1385                         rs->ti->error = "Failed to set raid4/5/6 stripe cache size";
1386                         return r;
1387                 }
1388
1389                 DMINFO("%u stripe cache entries", nr_stripes);
1390         }
1391
1392         return 0;
1393 }
1394
1395 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */
1396 static unsigned int mddev_data_stripes(struct raid_set *rs)
1397 {
1398         return rs->md.raid_disks - rs->raid_type->parity_devs;
1399 }
1400
1401 /* Return # of data stripes of @rs (i.e. as of ctr) */
1402 static unsigned int rs_data_stripes(struct raid_set *rs)
1403 {
1404         return rs->raid_disks - rs->raid_type->parity_devs;
1405 }
1406
1407 /* Calculate the sectors per device and per array used for @rs */
1408 static int rs_set_dev_and_array_sectors(struct raid_set *rs, bool use_mddev)
1409 {
1410         int delta_disks;
1411         unsigned int data_stripes;
1412         struct mddev *mddev = &rs->md;
1413         struct md_rdev *rdev;
1414         sector_t array_sectors = rs->ti->len, dev_sectors = rs->ti->len;
1415         sector_t cur_dev_sectors = rs->dev[0].rdev.sectors;
1416
1417         if (use_mddev) {
1418                 delta_disks = mddev->delta_disks;
1419                 data_stripes = mddev_data_stripes(rs);
1420         } else {
1421                 delta_disks = rs->delta_disks;
1422                 data_stripes = rs_data_stripes(rs);
1423         }
1424
1425         /* Special raid1 case w/o delta_disks support (yet) */
1426         if (rt_is_raid1(rs->raid_type))
1427                 ;
1428         else if (rt_is_raid10(rs->raid_type)) {
1429                 if (rs->raid10_copies < 2 ||
1430                     delta_disks < 0) {
1431                         rs->ti->error = "Bogus raid10 data copies or delta disks";
1432                         return EINVAL;
1433                 }
1434
1435                 dev_sectors *= rs->raid10_copies;
1436                 if (sector_div(dev_sectors, data_stripes))
1437                         goto bad;
1438
1439                 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1440                 if (sector_div(array_sectors, rs->raid10_copies))
1441                         goto bad;
1442
1443         } else if (sector_div(dev_sectors, data_stripes))
1444                 goto bad;
1445
1446         else
1447                 /* Striped layouts */
1448                 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1449
1450         rdev_for_each(rdev, mddev)
1451                 rdev->sectors = dev_sectors;
1452
1453         mddev->array_sectors = array_sectors;
1454         mddev->dev_sectors = dev_sectors;
1455
1456         if (!rs_is_raid0(rs) && dev_sectors > cur_dev_sectors)
1457                 mddev->recovery_cp = dev_sectors;
1458
1459         return 0;
1460 bad:
1461         rs->ti->error = "Target length not divisible by number of data devices";
1462         return EINVAL;
1463 }
1464
1465 static void do_table_event(struct work_struct *ws)
1466 {
1467         struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
1468
1469         smp_rmb(); /* Make sure we access most actual mddev properties */
1470         if (!rs_is_reshaping(rs))
1471                 rs_set_capacity(rs);
1472         dm_table_event(rs->ti->table);
1473 }
1474
1475 static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
1476 {
1477         struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
1478
1479         return mddev_congested(&rs->md, bits);
1480 }
1481
1482 /*
1483  * Make sure a valid takover (level switch) is being requested on @rs
1484  *
1485  * Conversions of raid sets from one MD personality to another
1486  * have to conform to restrictions which are enforced here.
1487  */
1488 static int rs_check_takeover(struct raid_set *rs)
1489 {
1490         struct mddev *mddev = &rs->md;
1491         unsigned int near_copies;
1492
1493         if (rs->md.degraded) {
1494                 rs->ti->error = "Can't takeover degraded raid set";
1495                 return -EPERM;
1496         }
1497
1498         if (rs_is_reshaping(rs)) {
1499                 rs->ti->error = "Can't takeover reshaping raid set";
1500                 return -EPERM;
1501         }
1502
1503         switch (mddev->level) {
1504         case 0:
1505                 /* raid0 -> raid1/5 with one disk */
1506                 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1507                     mddev->raid_disks == 1)
1508                         return 0;
1509
1510                 /* raid0 -> raid10 */
1511                 if (mddev->new_level == 10 &&
1512                     !(rs->raid_disks % mddev->raid_disks))
1513                         return 0;
1514
1515                 /* raid0 with multiple disks -> raid4/5/6 */
1516                 if (__within_range(mddev->new_level, 4, 6) &&
1517                     mddev->new_layout == ALGORITHM_PARITY_N &&
1518                     mddev->raid_disks > 1)
1519                         return 0;
1520
1521                 break;
1522
1523         case 10:
1524                 /* Can't takeover raid10_offset! */
1525                 if (__is_raid10_offset(mddev->layout))
1526                         break;
1527
1528                 near_copies = __raid10_near_copies(mddev->layout);
1529
1530                 /* raid10* -> raid0 */
1531                 if (mddev->new_level == 0) {
1532                         /* Can takeover raid10_near with raid disks divisable by data copies! */
1533                         if (near_copies > 1 &&
1534                             !(mddev->raid_disks % near_copies)) {
1535                                 mddev->raid_disks /= near_copies;
1536                                 mddev->delta_disks = mddev->raid_disks;
1537                                 return 0;
1538                         }
1539
1540                         /* Can takeover raid10_far */
1541                         if (near_copies == 1 &&
1542                             __raid10_far_copies(mddev->layout) > 1)
1543                                 return 0;
1544
1545                         break;
1546                 }
1547
1548                 /* raid10_{near,far} -> raid1 */
1549                 if (mddev->new_level == 1 &&
1550                     max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks)
1551                         return 0;
1552
1553                 /* raid10_{near,far} with 2 disks -> raid4/5 */
1554                 if (__within_range(mddev->new_level, 4, 5) &&
1555                     mddev->raid_disks == 2)
1556                         return 0;
1557                 break;
1558
1559         case 1:
1560                 /* raid1 with 2 disks -> raid4/5 */
1561                 if (__within_range(mddev->new_level, 4, 5) &&
1562                     mddev->raid_disks == 2) {
1563                         mddev->degraded = 1;
1564                         return 0;
1565                 }
1566
1567                 /* raid1 -> raid0 */
1568                 if (mddev->new_level == 0 &&
1569                     mddev->raid_disks == 1)
1570                         return 0;
1571
1572                 /* raid1 -> raid10 */
1573                 if (mddev->new_level == 10)
1574                         return 0;
1575
1576                 break;
1577
1578         case 4:
1579                 /* raid4 -> raid0 */
1580                 if (mddev->new_level == 0)
1581                         return 0;
1582
1583                 /* raid4 -> raid1/5 with 2 disks */
1584                 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1585                     mddev->raid_disks == 2)
1586                         return 0;
1587
1588                 /* raid4 -> raid5/6 with parity N */
1589                 if (__within_range(mddev->new_level, 5, 6) &&
1590                     mddev->layout == ALGORITHM_PARITY_N)
1591                         return 0;
1592                 break;
1593
1594         case 5:
1595                 /* raid5 with parity N -> raid0 */
1596                 if (mddev->new_level == 0 &&
1597                     mddev->layout == ALGORITHM_PARITY_N)
1598                         return 0;
1599
1600                 /* raid5 with parity N -> raid4 */
1601                 if (mddev->new_level == 4 &&
1602                     mddev->layout == ALGORITHM_PARITY_N)
1603                         return 0;
1604
1605                 /* raid5 with 2 disks -> raid1/4/10 */
1606                 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) &&
1607                     mddev->raid_disks == 2)
1608                         return 0;
1609
1610                 /* raid5_* ->  raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */
1611                 if (mddev->new_level == 6 &&
1612                     ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1613                       __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6)))
1614                         return 0;
1615                 break;
1616
1617         case 6:
1618                 /* raid6 with parity N -> raid0 */
1619                 if (mddev->new_level == 0 &&
1620                     mddev->layout == ALGORITHM_PARITY_N)
1621                         return 0;
1622
1623                 /* raid6 with parity N -> raid4 */
1624                 if (mddev->new_level == 4 &&
1625                     mddev->layout == ALGORITHM_PARITY_N)
1626                         return 0;
1627
1628                 /* raid6_*_n with Q-Syndrome N -> raid5_* */
1629                 if (mddev->new_level == 5 &&
1630                     ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1631                      __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC)))
1632                         return 0;
1633
1634         default:
1635                 break;
1636         }
1637
1638         rs->ti->error = "takeover not possible";
1639         return -EINVAL;
1640 }
1641
1642 /* True if @rs requested to be taken over */
1643 static bool rs_takeover_requested(struct raid_set *rs)
1644 {
1645         return rs->md.new_level != rs->md.level;
1646 }
1647
1648 /* True if @rs is requested to reshape by ctr */
1649 static bool rs_reshape_requested(struct raid_set *rs)
1650 {
1651         struct mddev *mddev = &rs->md;
1652
1653         if (!mddev->level)
1654                 return false;
1655
1656         return !__is_raid10_far(mddev->new_layout) &&
1657                mddev->new_level == mddev->level &&
1658                (mddev->new_layout != mddev->layout ||
1659                 mddev->new_chunk_sectors != mddev->chunk_sectors ||
1660                 rs->raid_disks + rs->delta_disks != mddev->raid_disks);
1661 }
1662
1663 /*  Features */
1664 #define FEATURE_FLAG_SUPPORTS_V190      0x1 /* Supports extended superblock */
1665
1666 /* State flags for sb->flags */
1667 #define SB_FLAG_RESHAPE_ACTIVE          0x1
1668 #define SB_FLAG_RESHAPE_BACKWARDS       0x2
1669
1670 /*
1671  * This structure is never routinely used by userspace, unlike md superblocks.
1672  * Devices with this superblock should only ever be accessed via device-mapper.
1673  */
1674 #define DM_RAID_MAGIC 0x64526D44
1675 struct dm_raid_superblock {
1676         __le32 magic;           /* "DmRd" */
1677         __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */
1678
1679         __le32 num_devices;     /* Number of devices in this raid set. (Max 64) */
1680         __le32 array_position;  /* The position of this drive in the raid set */
1681
1682         __le64 events;          /* Incremented by md when superblock updated */
1683         __le64 failed_devices;  /* Pre 1.9.0 part of bit field of devices to */
1684                                 /* indicate failures (see extension below) */
1685
1686         /*
1687          * This offset tracks the progress of the repair or replacement of
1688          * an individual drive.
1689          */
1690         __le64 disk_recovery_offset;
1691
1692         /*
1693          * This offset tracks the progress of the initial raid set
1694          * synchronisation/parity calculation.
1695          */
1696         __le64 array_resync_offset;
1697
1698         /*
1699          * raid characteristics
1700          */
1701         __le32 level;
1702         __le32 layout;
1703         __le32 stripe_sectors;
1704
1705         /********************************************************************
1706          * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
1707          *
1708          * FEATURE_FLAG_SUPPORTS_V190 in the features member indicates that those exist
1709          */
1710
1711         __le32 flags; /* Flags defining array states for reshaping */
1712
1713         /*
1714          * This offset tracks the progress of a raid
1715          * set reshape in order to be able to restart it
1716          */
1717         __le64 reshape_position;
1718
1719         /*
1720          * These define the properties of the array in case of an interrupted reshape
1721          */
1722         __le32 new_level;
1723         __le32 new_layout;
1724         __le32 new_stripe_sectors;
1725         __le32 delta_disks;
1726
1727         __le64 array_sectors; /* Array size in sectors */
1728
1729         /*
1730          * Sector offsets to data on devices (reshaping).
1731          * Needed to support out of place reshaping, thus
1732          * not writing over any stripes whilst converting
1733          * them from old to new layout
1734          */
1735         __le64 data_offset;
1736         __le64 new_data_offset;
1737
1738         __le64 sectors; /* Used device size in sectors */
1739
1740         /*
1741          * Additonal Bit field of devices indicating failures to support
1742          * up to 256 devices with the 1.9.0 on-disk metadata format
1743          */
1744         __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1];
1745
1746         __le32 incompat_features;       /* Used to indicate any incompatible features */
1747
1748         /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */
1749 } __packed;
1750
1751 /*
1752  * Check for reshape constraints on raid set @rs:
1753  *
1754  * - reshape function non-existent
1755  * - degraded set
1756  * - ongoing recovery
1757  * - ongoing reshape
1758  *
1759  * Returns 0 if none or -EPERM if given constraint
1760  * and error message reference in @errmsg
1761  */
1762 static int rs_check_reshape(struct raid_set *rs)
1763 {
1764         struct mddev *mddev = &rs->md;
1765
1766         if (!mddev->pers || !mddev->pers->check_reshape)
1767                 rs->ti->error = "Reshape not supported";
1768         else if (mddev->degraded)
1769                 rs->ti->error = "Can't reshape degraded raid set";
1770         else if (rs_is_recovering(rs))
1771                 rs->ti->error = "Convert request on recovering raid set prohibited";
1772         else if (mddev->reshape_position && rs_is_reshaping(rs))
1773                 rs->ti->error = "raid set already reshaping!";
1774         else if (!(rs_is_raid10(rs) || rs_is_raid456(rs)))
1775                 rs->ti->error = "Reshaping only supported for raid4/5/6/10";
1776         else
1777                 return 0;
1778
1779         return -EPERM;
1780 }
1781
1782 static int read_disk_sb(struct md_rdev *rdev, int size)
1783 {
1784         BUG_ON(!rdev->sb_page);
1785
1786         if (rdev->sb_loaded)
1787                 return 0;
1788
1789         if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) {
1790                 DMERR("Failed to read superblock of device at position %d",
1791                       rdev->raid_disk);
1792                 md_error(rdev->mddev, rdev);
1793                 return -EINVAL;
1794         }
1795
1796         rdev->sb_loaded = 1;
1797
1798         return 0;
1799 }
1800
1801 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1802 {
1803         failed_devices[0] = le64_to_cpu(sb->failed_devices);
1804         memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices));
1805
1806         if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
1807                 int i = ARRAY_SIZE(sb->extended_failed_devices);
1808
1809                 while (i--)
1810                         failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]);
1811         }
1812 }
1813
1814 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
1815 {
1816         int i = ARRAY_SIZE(sb->extended_failed_devices);
1817
1818         sb->failed_devices = cpu_to_le64(failed_devices[0]);
1819         while (i--)
1820                 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]);
1821 }
1822
1823 /*
1824  * Synchronize the superblock members with the raid set properties
1825  *
1826  * All superblock data is little endian.
1827  */
1828 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
1829 {
1830         bool update_failed_devices = false;
1831         unsigned int i;
1832         uint64_t failed_devices[DISKS_ARRAY_ELEMS];
1833         struct dm_raid_superblock *sb;
1834         struct raid_set *rs = container_of(mddev, struct raid_set, md);
1835
1836         /* No metadata device, no superblock */
1837         if (!rdev->meta_bdev)
1838                 return;
1839
1840         BUG_ON(!rdev->sb_page);
1841
1842         sb = page_address(rdev->sb_page);
1843
1844         sb_retrieve_failed_devices(sb, failed_devices);
1845
1846         for (i = 0; i < rs->raid_disks; i++)
1847                 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) {
1848                         update_failed_devices = true;
1849                         set_bit(i, (void *) failed_devices);
1850                 }
1851
1852         if (update_failed_devices)
1853                 sb_update_failed_devices(sb, failed_devices);
1854
1855         sb->magic = cpu_to_le32(DM_RAID_MAGIC);
1856         sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
1857
1858         sb->num_devices = cpu_to_le32(mddev->raid_disks);
1859         sb->array_position = cpu_to_le32(rdev->raid_disk);
1860
1861         sb->events = cpu_to_le64(mddev->events);
1862
1863         sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
1864         sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
1865
1866         sb->level = cpu_to_le32(mddev->level);
1867         sb->layout = cpu_to_le32(mddev->layout);
1868         sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
1869
1870         sb->new_level = cpu_to_le32(mddev->new_level);
1871         sb->new_layout = cpu_to_le32(mddev->new_layout);
1872         sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors);
1873
1874         sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1875
1876         smp_rmb(); /* Make sure we access most recent reshape position */
1877         sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1878         if (le64_to_cpu(sb->reshape_position) != MaxSector) {
1879                 /* Flag ongoing reshape */
1880                 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE);
1881
1882                 if (mddev->delta_disks < 0 || mddev->reshape_backwards)
1883                         sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS);
1884         } else {
1885                 /* Clear reshape flags */
1886                 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS));
1887         }
1888
1889         sb->array_sectors = cpu_to_le64(mddev->array_sectors);
1890         sb->data_offset = cpu_to_le64(rdev->data_offset);
1891         sb->new_data_offset = cpu_to_le64(rdev->new_data_offset);
1892         sb->sectors = cpu_to_le64(rdev->sectors);
1893
1894         /* Zero out the rest of the payload after the size of the superblock */
1895         memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
1896 }
1897
1898 /*
1899  * super_load
1900  *
1901  * This function creates a superblock if one is not found on the device
1902  * and will decide which superblock to use if there's a choice.
1903  *
1904  * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
1905  */
1906 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
1907 {
1908         int r;
1909         struct dm_raid_superblock *sb;
1910         struct dm_raid_superblock *refsb;
1911         uint64_t events_sb, events_refsb;
1912
1913         rdev->sb_start = 0;
1914         rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
1915         if (rdev->sb_size < sizeof(*sb) || rdev->sb_size > PAGE_SIZE) {
1916                 DMERR("superblock size of a logical block is no longer valid");
1917                 return -EINVAL;
1918         }
1919
1920         r = read_disk_sb(rdev, rdev->sb_size);
1921         if (r)
1922                 return r;
1923
1924         sb = page_address(rdev->sb_page);
1925
1926         /*
1927          * Two cases that we want to write new superblocks and rebuild:
1928          * 1) New device (no matching magic number)
1929          * 2) Device specified for rebuild (!In_sync w/ offset == 0)
1930          */
1931         if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
1932             (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
1933                 super_sync(rdev->mddev, rdev);
1934
1935                 set_bit(FirstUse, &rdev->flags);
1936                 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
1937
1938                 /* Force writing of superblocks to disk */
1939                 set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags);
1940
1941                 /* Any superblock is better than none, choose that if given */
1942                 return refdev ? 0 : 1;
1943         }
1944
1945         if (!refdev)
1946                 return 1;
1947
1948         events_sb = le64_to_cpu(sb->events);
1949
1950         refsb = page_address(refdev->sb_page);
1951         events_refsb = le64_to_cpu(refsb->events);
1952
1953         return (events_sb > events_refsb) ? 1 : 0;
1954 }
1955
1956 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev)
1957 {
1958         int role;
1959         unsigned int d;
1960         struct mddev *mddev = &rs->md;
1961         uint64_t events_sb;
1962         uint64_t failed_devices[DISKS_ARRAY_ELEMS];
1963         struct dm_raid_superblock *sb;
1964         uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0;
1965         struct md_rdev *r;
1966         struct dm_raid_superblock *sb2;
1967
1968         sb = page_address(rdev->sb_page);
1969         events_sb = le64_to_cpu(sb->events);
1970
1971         /*
1972          * Initialise to 1 if this is a new superblock.
1973          */
1974         mddev->events = events_sb ? : 1;
1975
1976         mddev->reshape_position = MaxSector;
1977
1978         /*
1979          * Reshaping is supported, e.g. reshape_position is valid
1980          * in superblock and superblock content is authoritative.
1981          */
1982         if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
1983                 /* Superblock is authoritative wrt given raid set layout! */
1984                 mddev->raid_disks = le32_to_cpu(sb->num_devices);
1985                 mddev->level = le32_to_cpu(sb->level);
1986                 mddev->layout = le32_to_cpu(sb->layout);
1987                 mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors);
1988                 mddev->new_level = le32_to_cpu(sb->new_level);
1989                 mddev->new_layout = le32_to_cpu(sb->new_layout);
1990                 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors);
1991                 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1992                 mddev->array_sectors = le64_to_cpu(sb->array_sectors);
1993
1994                 /* raid was reshaping and got interrupted */
1995                 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) {
1996                         if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
1997                                 DMERR("Reshape requested but raid set is still reshaping");
1998                                 return -EINVAL;
1999                         }
2000
2001                         if (mddev->delta_disks < 0 ||
2002                             (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS)))
2003                                 mddev->reshape_backwards = 1;
2004                         else
2005                                 mddev->reshape_backwards = 0;
2006
2007                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
2008                         rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout);
2009                 }
2010
2011         } else {
2012                 /*
2013                  * No takeover/reshaping, because we don't have the extended v1.9.0 metadata
2014                  */
2015                 if (le32_to_cpu(sb->level) != mddev->level) {
2016                         DMERR("Reshaping/takeover raid sets not yet supported. (raid level/stripes/size change)");
2017                         return -EINVAL;
2018                 }
2019                 if (le32_to_cpu(sb->layout) != mddev->layout) {
2020                         DMERR("Reshaping raid sets not yet supported. (raid layout change)");
2021                         DMERR("  0x%X vs 0x%X", le32_to_cpu(sb->layout), mddev->layout);
2022                         DMERR("  Old layout: %s w/ %d copies",
2023                               raid10_md_layout_to_format(le32_to_cpu(sb->layout)),
2024                               raid10_md_layout_to_copies(le32_to_cpu(sb->layout)));
2025                         DMERR("  New layout: %s w/ %d copies",
2026                               raid10_md_layout_to_format(mddev->layout),
2027                               raid10_md_layout_to_copies(mddev->layout));
2028                         return -EINVAL;
2029                 }
2030                 if (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors) {
2031                         DMERR("Reshaping raid sets not yet supported. (stripe sectors change)");
2032                         return -EINVAL;
2033                 }
2034
2035                 /* We can only change the number of devices in raid1 with old (i.e. pre 1.0.7) metadata */
2036                 if (!rt_is_raid1(rs->raid_type) &&
2037                     (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) {
2038                         DMERR("Reshaping raid sets not yet supported. (device count change from %u to %u)",
2039                               sb->num_devices, mddev->raid_disks);
2040                         return -EINVAL;
2041                 }
2042
2043                 /* Table line is checked vs. authoritative superblock */
2044                 rs_set_new(rs);
2045         }
2046
2047         if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
2048                 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
2049
2050         /*
2051          * During load, we set FirstUse if a new superblock was written.
2052          * There are two reasons we might not have a superblock:
2053          * 1) The raid set is brand new - in which case, all of the
2054          *    devices must have their In_sync bit set.  Also,
2055          *    recovery_cp must be 0, unless forced.
2056          * 2) This is a new device being added to an old raid set
2057          *    and the new device needs to be rebuilt - in which
2058          *    case the In_sync bit will /not/ be set and
2059          *    recovery_cp must be MaxSector.
2060          * 3) This is/are a new device(s) being added to an old
2061          *    raid set during takeover to a higher raid level
2062          *    to provide capacity for redundancy or during reshape
2063          *    to add capacity to grow the raid set.
2064          */
2065         d = 0;
2066         rdev_for_each(r, mddev) {
2067                 if (test_bit(FirstUse, &r->flags))
2068                         new_devs++;
2069
2070                 if (!test_bit(In_sync, &r->flags)) {
2071                         DMINFO("Device %d specified for rebuild; clearing superblock",
2072                                 r->raid_disk);
2073                         rebuilds++;
2074
2075                         if (test_bit(FirstUse, &r->flags))
2076                                 rebuild_and_new++;
2077                 }
2078
2079                 d++;
2080         }
2081
2082         if (new_devs == rs->raid_disks || !rebuilds) {
2083                 /* Replace a broken device */
2084                 if (new_devs == 1 && !rs->delta_disks)
2085                         ;
2086                 if (new_devs == rs->raid_disks) {
2087                         DMINFO("Superblocks created for new raid set");
2088                         set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2089                         mddev->recovery_cp = 0;
2090                 } else if (new_devs != rebuilds &&
2091                            new_devs != rs->delta_disks) {
2092                         DMERR("New device injected into existing raid set without "
2093                               "'delta_disks' or 'rebuild' parameter specified");
2094                         return -EINVAL;
2095                 }
2096         } else if (new_devs && new_devs != rebuilds) {
2097                 DMERR("%u 'rebuild' devices cannot be injected into"
2098                       " a raid set with %u other first-time devices",
2099                       rebuilds, new_devs);
2100                 return -EINVAL;
2101         } else if (rebuilds) {
2102                 if (rebuild_and_new && rebuilds != rebuild_and_new) {
2103                         DMERR("new device%s provided without 'rebuild'",
2104                               new_devs > 1 ? "s" : "");
2105                         return -EINVAL;
2106                 } else if (rs_is_recovering(rs)) {
2107                         DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)",
2108                               (unsigned long long) mddev->recovery_cp);
2109                         return -EINVAL;
2110                 } else if (rs_is_reshaping(rs)) {
2111                         DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)",
2112                               (unsigned long long) mddev->reshape_position);
2113                         return -EINVAL;
2114                 }
2115         }
2116
2117         /*
2118          * Now we set the Faulty bit for those devices that are
2119          * recorded in the superblock as failed.
2120          */
2121         sb_retrieve_failed_devices(sb, failed_devices);
2122         rdev_for_each(r, mddev) {
2123                 if (!r->sb_page)
2124                         continue;
2125                 sb2 = page_address(r->sb_page);
2126                 sb2->failed_devices = 0;
2127                 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices));
2128
2129                 /*
2130                  * Check for any device re-ordering.
2131                  */
2132                 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
2133                         role = le32_to_cpu(sb2->array_position);
2134                         if (role < 0)
2135                                 continue;
2136
2137                         if (role != r->raid_disk) {
2138                                 if (__is_raid10_near(mddev->layout)) {
2139                                         if (mddev->raid_disks % __raid10_near_copies(mddev->layout) ||
2140                                             rs->raid_disks % rs->raid10_copies) {
2141                                                 rs->ti->error =
2142                                                         "Cannot change raid10 near set to odd # of devices!";
2143                                                 return -EINVAL;
2144                                         }
2145
2146                                         sb2->array_position = cpu_to_le32(r->raid_disk);
2147
2148                                 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) &&
2149                                            !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) &&
2150                                            !rt_is_raid1(rs->raid_type)) {
2151                                         rs->ti->error = "Cannot change device positions in raid set";
2152                                         return -EINVAL;
2153                                 }
2154
2155                                 DMINFO("raid device #%d now at position #%d", role, r->raid_disk);
2156                         }
2157
2158                         /*
2159                          * Partial recovery is performed on
2160                          * returning failed devices.
2161                          */
2162                         if (test_bit(role, (void *) failed_devices))
2163                                 set_bit(Faulty, &r->flags);
2164                 }
2165         }
2166
2167         return 0;
2168 }
2169
2170 static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
2171 {
2172         struct mddev *mddev = &rs->md;
2173         struct dm_raid_superblock *sb;
2174
2175         if (rs_is_raid0(rs) || !rdev->sb_page)
2176                 return 0;
2177
2178         sb = page_address(rdev->sb_page);
2179
2180         /*
2181          * If mddev->events is not set, we know we have not yet initialized
2182          * the array.
2183          */
2184         if (!mddev->events && super_init_validation(rs, rdev))
2185                 return -EINVAL;
2186
2187         if (le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) {
2188                 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags";
2189                 return -EINVAL;
2190         }
2191
2192         if (sb->incompat_features) {
2193                 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet";
2194                 return -EINVAL;
2195         }
2196
2197         /* Enable bitmap creation for RAID levels != 0 */
2198         mddev->bitmap_info.offset = rt_is_raid0(rs->raid_type) ? 0 : to_sector(4096);
2199         rdev->mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
2200
2201         if (!test_and_clear_bit(FirstUse, &rdev->flags)) {
2202                 /* Retrieve device size stored in superblock to be prepared for shrink */
2203                 rdev->sectors = le64_to_cpu(sb->sectors);
2204                 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
2205                 if (rdev->recovery_offset == MaxSector)
2206                         set_bit(In_sync, &rdev->flags);
2207                 /*
2208                  * If no reshape in progress -> we're recovering single
2209                  * disk(s) and have to set the device(s) to out-of-sync
2210                  */
2211                 else if (!rs_is_reshaping(rs))
2212                         clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */
2213         }
2214
2215         /*
2216          * If a device comes back, set it as not In_sync and no longer faulty.
2217          */
2218         if (test_and_clear_bit(Faulty, &rdev->flags)) {
2219                 rdev->recovery_offset = 0;
2220                 clear_bit(In_sync, &rdev->flags);
2221                 rdev->saved_raid_disk = rdev->raid_disk;
2222         }
2223
2224         /* Reshape support -> restore repective data offsets */
2225         rdev->data_offset = le64_to_cpu(sb->data_offset);
2226         rdev->new_data_offset = le64_to_cpu(sb->new_data_offset);
2227
2228         return 0;
2229 }
2230
2231 /*
2232  * Analyse superblocks and select the freshest.
2233  */
2234 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
2235 {
2236         int r;
2237         struct raid_dev *dev;
2238         struct md_rdev *rdev, *tmp, *freshest;
2239         struct mddev *mddev = &rs->md;
2240
2241         freshest = NULL;
2242         rdev_for_each_safe(rdev, tmp, mddev) {
2243                 /*
2244                  * Skipping super_load due to CTR_FLAG_SYNC will cause
2245                  * the array to undergo initialization again as
2246                  * though it were new.  This is the intended effect
2247                  * of the "sync" directive.
2248                  *
2249                  * When reshaping capability is added, we must ensure
2250                  * that the "sync" directive is disallowed during the
2251                  * reshape.
2252                  */
2253                 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
2254                         continue;
2255
2256                 if (!rdev->meta_bdev)
2257                         continue;
2258
2259                 r = super_load(rdev, freshest);
2260
2261                 switch (r) {
2262                 case 1:
2263                         freshest = rdev;
2264                         break;
2265                 case 0:
2266                         break;
2267                 default:
2268                         dev = container_of(rdev, struct raid_dev, rdev);
2269                         if (dev->meta_dev)
2270                                 dm_put_device(ti, dev->meta_dev);
2271
2272                         dev->meta_dev = NULL;
2273                         rdev->meta_bdev = NULL;
2274
2275                         if (rdev->sb_page)
2276                                 put_page(rdev->sb_page);
2277
2278                         rdev->sb_page = NULL;
2279
2280                         rdev->sb_loaded = 0;
2281
2282                         /*
2283                          * We might be able to salvage the data device
2284                          * even though the meta device has failed.  For
2285                          * now, we behave as though '- -' had been
2286                          * set for this device in the table.
2287                          */
2288                         if (dev->data_dev)
2289                                 dm_put_device(ti, dev->data_dev);
2290
2291                         dev->data_dev = NULL;
2292                         rdev->bdev = NULL;
2293
2294                         list_del(&rdev->same_set);
2295                 }
2296         }
2297
2298         if (!freshest)
2299                 return 0;
2300
2301         if (validate_raid_redundancy(rs)) {
2302                 rs->ti->error = "Insufficient redundancy to activate array";
2303                 return -EINVAL;
2304         }
2305
2306         /*
2307          * Validation of the freshest device provides the source of
2308          * validation for the remaining devices.
2309          */
2310         rs->ti->error = "Unable to assemble array: Invalid superblocks";
2311         if (super_validate(rs, freshest))
2312                 return -EINVAL;
2313
2314         rdev_for_each(rdev, mddev)
2315                 if ((rdev != freshest) && super_validate(rs, rdev))
2316                         return -EINVAL;
2317         return 0;
2318 }
2319
2320 /*
2321  * Adjust data_offset and new_data_offset on all disk members of @rs
2322  * for out of place reshaping if requested by contructor
2323  *
2324  * We need free space at the beginning of each raid disk for forward
2325  * and at the end for backward reshapes which userspace has to provide
2326  * via remapping/reordering of space.
2327  */
2328 static int rs_adjust_data_offsets(struct raid_set *rs)
2329 {
2330         sector_t data_offset = 0, new_data_offset = 0;
2331         struct md_rdev *rdev;
2332
2333         /* Constructor did not request data offset change */
2334         if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
2335                 if (!rs_is_reshapable(rs))
2336                         goto out;
2337
2338                 return 0;
2339         }
2340
2341         /* HM FIXME: get InSync raid_dev? */
2342         rdev = &rs->dev[0].rdev;
2343
2344         if (rs->delta_disks < 0) {
2345                 /*
2346                  * Removing disks (reshaping backwards):
2347                  *
2348                  * - before reshape: data is at offset 0 and free space
2349                  *                   is at end of each component LV
2350                  *
2351                  * - after reshape: data is at offset rs->data_offset != 0 on each component LV
2352                  */
2353                 data_offset = 0;
2354                 new_data_offset = rs->data_offset;
2355
2356         } else if (rs->delta_disks > 0) {
2357                 /*
2358                  * Adding disks (reshaping forwards):
2359                  *
2360                  * - before reshape: data is at offset rs->data_offset != 0 and
2361                  *                   free space is at begin of each component LV
2362                  *
2363                  * - after reshape: data is at offset 0 on each component LV
2364                  */
2365                 data_offset = rs->data_offset;
2366                 new_data_offset = 0;
2367
2368         } else {
2369                 /*
2370                  * User space passes in 0 for data offset after having removed reshape space
2371                  *
2372                  * - or - (data offset != 0)
2373                  *
2374                  * Changing RAID layout or chunk size -> toggle offsets
2375                  *
2376                  * - before reshape: data is at offset rs->data_offset 0 and
2377                  *                   free space is at end of each component LV
2378                  *                   -or-
2379                  *                   data is at offset rs->data_offset != 0 and
2380                  *                   free space is at begin of each component LV
2381                  *
2382                  * - after reshape: data is at offset 0 if i was at offset != 0
2383                  *                  of at offset != 0 if it was at offset 0
2384                  *                  on each component LV
2385                  *
2386                  */
2387                 data_offset = rs->data_offset ? rdev->data_offset : 0;
2388                 new_data_offset = data_offset ? 0 : rs->data_offset;
2389                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2390         }
2391
2392         /*
2393          * Make sure we got a minimum amount of free sectors per device
2394          */
2395         if (rs->data_offset &&
2396             to_sector(i_size_read(rdev->bdev->bd_inode)) - rdev->sectors < MIN_FREE_RESHAPE_SPACE) {
2397                 rs->ti->error = data_offset ? "No space for forward reshape" :
2398                                               "No space for backward reshape";
2399                 return -ENOSPC;
2400         }
2401 out:
2402         /* Adjust data offsets on all rdevs */
2403         rdev_for_each(rdev, &rs->md) {
2404                 rdev->data_offset = data_offset;
2405                 rdev->new_data_offset = new_data_offset;
2406         }
2407
2408         return 0;
2409 }
2410
2411 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */
2412 static void __reorder_raid_disk_indexes(struct raid_set *rs)
2413 {
2414         int i = 0;
2415         struct md_rdev *rdev;
2416
2417         rdev_for_each(rdev, &rs->md) {
2418                 rdev->raid_disk = i++;
2419                 rdev->saved_raid_disk = rdev->new_raid_disk = -1;
2420         }
2421 }
2422
2423 /*
2424  * Setup @rs for takeover by a different raid level
2425  */
2426 static int rs_setup_takeover(struct raid_set *rs)
2427 {
2428         struct mddev *mddev = &rs->md;
2429         struct md_rdev *rdev;
2430         unsigned int d = mddev->raid_disks = rs->raid_disks;
2431         sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset;
2432
2433         if (rt_is_raid10(rs->raid_type)) {
2434                 if (mddev->level == 0) {
2435                         /* Userpace reordered disks -> adjust raid_disk indexes */
2436                         __reorder_raid_disk_indexes(rs);
2437
2438                         /* raid0 -> raid10_far layout */
2439                         mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR,
2440                                                                    rs->raid10_copies);
2441                 } else if (mddev->level == 1)
2442                         /* raid1 -> raid10_near layout */
2443                         mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2444                                                                    rs->raid_disks);
2445                  else
2446                         return -EINVAL;
2447
2448         }
2449
2450         clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2451         mddev->recovery_cp = MaxSector;
2452
2453         while (d--) {
2454                 rdev = &rs->dev[d].rdev;
2455
2456                 if (test_bit(d, (void *) rs->rebuild_disks)) {
2457                         clear_bit(In_sync, &rdev->flags);
2458                         clear_bit(Faulty, &rdev->flags);
2459                         mddev->recovery_cp = rdev->recovery_offset = 0;
2460                         /* Bitmap has to be created when we do an "up" takeover */
2461                         set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2462                 }
2463
2464                 rdev->new_data_offset = new_data_offset;
2465         }
2466
2467         return 0;
2468 }
2469
2470 /*
2471  *
2472  * - change raid layout
2473  * - change chunk size
2474  * - add disks
2475  * - remove disks
2476  */
2477 static int rs_setup_reshape(struct raid_set *rs)
2478 {
2479         int r = 0;
2480         unsigned int cur_raid_devs, d;
2481         struct mddev *mddev = &rs->md;
2482         struct md_rdev *rdev;
2483
2484         mddev->delta_disks = rs->delta_disks;
2485         cur_raid_devs = mddev->raid_disks;
2486
2487         /* Ignore impossible layout change whilst adding/removing disks */
2488         if (mddev->delta_disks &&
2489             mddev->layout != mddev->new_layout) {
2490                 DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks);
2491                 mddev->new_layout = mddev->layout;
2492         }
2493
2494         /*
2495          * Adjust array size:
2496          *
2497          * - in case of adding disks, array size has
2498          *   to grow after the disk adding reshape,
2499          *   which'll hapen in the event handler;
2500          *   reshape will happen forward, so space has to
2501          *   be available at the beginning of each disk
2502          *
2503          * - in case of removing disks, array size
2504          *   has to shrink before starting the reshape,
2505          *   which'll happen here;
2506          *   reshape will happen backward, so space has to
2507          *   be available at the end of each disk
2508          *
2509          * - data_offset and new_data_offset are
2510          *   adjusted for aforementioned out of place
2511          *   reshaping based on userspace passing in
2512          *   the "data_offset <sectors>" key/value
2513          *   pair via the constructor
2514          */
2515
2516         /* Add disk(s) */
2517         if (rs->delta_disks > 0) {
2518                 /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */
2519                 for (d = cur_raid_devs; d < rs->raid_disks; d++) {
2520                         rdev = &rs->dev[d].rdev;
2521                         clear_bit(In_sync, &rdev->flags);
2522
2523                         /*
2524                          * save_raid_disk needs to be -1, or recovery_offset will be set to 0
2525                          * by md, which'll store that erroneously in the superblock on reshape
2526                          */
2527                         rdev->saved_raid_disk = -1;
2528                         rdev->raid_disk = d;
2529
2530                         rdev->sectors = mddev->dev_sectors;
2531                         rdev->recovery_offset = MaxSector;
2532                 }
2533
2534                 mddev->reshape_backwards = 0; /* adding disks -> forward reshape */
2535
2536         /* Remove disk(s) */
2537         } else if (rs->delta_disks < 0) {
2538                 r = rs_set_dev_and_array_sectors(rs, true);
2539                 mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */
2540
2541         /* Change layout and/or chunk size */
2542         } else {
2543                 /*
2544                  * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size:
2545                  *
2546                  * keeping number of disks and do layout change ->
2547                  *
2548                  * toggle reshape_backward depending on data_offset:
2549                  *
2550                  * - free space upfront -> reshape forward
2551                  *
2552                  * - free space at the end -> reshape backward
2553                  *
2554                  *
2555                  * This utilizes free reshape space avoiding the need
2556                  * for userspace to move (parts of) LV segments in
2557                  * case of layout/chunksize change  (for disk
2558                  * adding/removing reshape space has to be at
2559                  * the proper address (see above with delta_disks):
2560                  *
2561                  * add disk(s)   -> begin
2562                  * remove disk(s)-> end
2563                  */
2564                 mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1;
2565         }
2566
2567         return r;
2568 }
2569
2570 /*
2571  * Enable/disable discard support on RAID set depending on
2572  * RAID level and discard properties of underlying RAID members.
2573  */
2574 static void configure_discard_support(struct raid_set *rs)
2575 {
2576         int i;
2577         bool raid456;
2578         struct dm_target *ti = rs->ti;
2579
2580         /* Assume discards not supported until after checks below. */
2581         ti->discards_supported = false;
2582
2583         /* RAID level 4,5,6 require discard_zeroes_data for data integrity! */
2584         raid456 = (rs->md.level == 4 || rs->md.level == 5 || rs->md.level == 6);
2585
2586         for (i = 0; i < rs->md.raid_disks; i++) {
2587                 struct request_queue *q;
2588
2589                 if (!rs->dev[i].rdev.bdev)
2590                         continue;
2591
2592                 q = bdev_get_queue(rs->dev[i].rdev.bdev);
2593                 if (!q || !blk_queue_discard(q))
2594                         return;
2595
2596                 if (raid456) {
2597                         if (!q->limits.discard_zeroes_data)
2598                                 return;
2599                         if (!devices_handle_discard_safely) {
2600                                 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
2601                                 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
2602                                 return;
2603                         }
2604                 }
2605         }
2606
2607         /* All RAID members properly support discards */
2608         ti->discards_supported = true;
2609
2610         /*
2611          * RAID1 and RAID10 personalities require bio splitting,
2612          * RAID0/4/5/6 don't and process large discard bios properly.
2613          */
2614         ti->split_discard_bios = !!(rs->md.level == 1 || rs->md.level == 10);
2615         ti->num_discard_bios = 1;
2616 }
2617
2618 /*
2619  * Construct a RAID0/1/10/4/5/6 mapping:
2620  * Args:
2621  *      <raid_type> <#raid_params> <raid_params>{0,}    \
2622  *      <#raid_devs> [<meta_dev1> <dev1>]{1,}
2623  *
2624  * <raid_params> varies by <raid_type>.  See 'parse_raid_params' for
2625  * details on possible <raid_params>.
2626  *
2627  * Userspace is free to initialize the metadata devices, hence the superblocks to
2628  * enforce recreation based on the passed in table parameters.
2629  *
2630  */
2631 static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv)
2632 {
2633         int r;
2634         struct raid_type *rt;
2635         unsigned num_raid_params, num_raid_devs;
2636         struct raid_set *rs = NULL;
2637         const char *arg;
2638         struct rs_layout rs_layout;
2639         struct dm_arg_set as = { argc, argv }, as_nrd;
2640         struct dm_arg _args[] = {
2641                 { 0, as.argc, "Cannot understand number of raid parameters" },
2642                 { 1, 254, "Cannot understand number of raid devices parameters" }
2643         };
2644
2645         /* Must have <raid_type> */
2646         arg = dm_shift_arg(&as);
2647         if (!arg) {
2648                 ti->error = "No arguments";
2649                 return -EINVAL;
2650         }
2651
2652         rt = get_raid_type(arg);
2653         if (!rt) {
2654                 ti->error = "Unrecognised raid_type";
2655                 return -EINVAL;
2656         }
2657
2658         /* Must have <#raid_params> */
2659         if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error))
2660                 return -EINVAL;
2661
2662         /* number of raid device tupples <meta_dev data_dev> */
2663         as_nrd = as;
2664         dm_consume_args(&as_nrd, num_raid_params);
2665         _args[1].max = (as_nrd.argc - 1) / 2;
2666         if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error))
2667                 return -EINVAL;
2668
2669         if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) {
2670                 ti->error = "Invalid number of supplied raid devices";
2671                 return -EINVAL;
2672         }
2673
2674         rs = raid_set_alloc(ti, rt, num_raid_devs);
2675         if (IS_ERR(rs))
2676                 return PTR_ERR(rs);
2677
2678         r = parse_raid_params(rs, &as, num_raid_params);
2679         if (r)
2680                 goto bad;
2681
2682         r = parse_dev_params(rs, &as);
2683         if (r)
2684                 goto bad;
2685
2686         rs->md.sync_super = super_sync;
2687
2688         r = rs_set_dev_and_array_sectors(rs, false);
2689         if (r)
2690                 return r;
2691
2692         /*
2693          * Backup any new raid set level, layout, ...
2694          * requested to be able to compare to superblock
2695          * members for conversion decisions.
2696          */
2697         rs_config_backup(rs, &rs_layout);
2698
2699         r = analyse_superblocks(ti, rs);
2700         if (r)
2701                 goto bad;
2702
2703         INIT_WORK(&rs->md.event_work, do_table_event);
2704         ti->private = rs;
2705         ti->num_flush_bios = 1;
2706
2707         /* Restore any requested new layout for conversion decision */
2708         rs_config_restore(rs, &rs_layout);
2709
2710         if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) {
2711                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2712                 rs_set_new(rs);
2713         } else if (rs_is_reshaping(rs))
2714                 ; /* skip rs setup */
2715         else if (rs_takeover_requested(rs)) {
2716                 if (rs_is_reshaping(rs)) {
2717                         ti->error = "Can't takeover a reshaping raid set";
2718                         return -EPERM;
2719                 }
2720
2721                 /*
2722                  * If a takeover is needed, just set the level to
2723                  * the new requested one and allow the raid set to run.
2724                  */
2725                 r = rs_check_takeover(rs);
2726                 if (r)
2727                         return r;
2728
2729                 r = rs_setup_takeover(rs);
2730                 if (r)
2731                         return r;
2732
2733                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2734                 set_bit(RT_FLAG_KEEP_RS_FROZEN, &rs->runtime_flags);
2735                 rs_set_new(rs);
2736         } else if (rs_reshape_requested(rs)) {
2737                 if (rs_is_reshaping(rs)) {
2738                         ti->error = "raid set already reshaping!";
2739                         return -EPERM;
2740                 }
2741
2742                 if (rs_is_raid10(rs)) {
2743                         if (rs->raid_disks != rs->md.raid_disks &&
2744                             __is_raid10_near(rs->md.layout) &&
2745                             rs->raid10_copies &&
2746                             rs->raid10_copies != __raid10_near_copies(rs->md.layout)) {
2747                                 /*
2748                                  * raid disk have to be multiple of data copies to allow this conversion,
2749                                  *
2750                                  * This is actually not a reshape it is a
2751                                  * rebuild of any additional mirrors per group
2752                                  */
2753                                 if (rs->raid_disks % rs->raid10_copies) {
2754                                         ti->error = "Can't reshape raid10 mirror groups";
2755                                         return -EINVAL;
2756                                 }
2757
2758                                 /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */
2759                                 __reorder_raid_disk_indexes(rs);
2760                                 rs->md.layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2761                                                                            rs->raid10_copies);
2762                                 rs->md.new_layout = rs->md.layout;
2763
2764                         } else
2765                                 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2766
2767                 } else if (rs_is_raid456(rs))
2768                         set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2769
2770                 /*
2771                  * HM FIXME: process raid1 via delta_disks as well?
2772                  *           Would cause allocations in raid1->check_reshape
2773                  *           though, thus more issues with potential failures
2774                  */
2775                 else if (rs_is_raid1(rs)) {
2776                         set_bit(RT_FLAG_KEEP_RS_FROZEN, &rs->runtime_flags);
2777                         rs->md.raid_disks = rs->raid_disks;
2778                 }
2779
2780                 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
2781                         set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2782                         set_bit(RT_FLAG_KEEP_RS_FROZEN, &rs->runtime_flags);
2783                 }
2784
2785                 if (rs->md.raid_disks < rs->raid_disks)
2786                         set_bit(MD_ARRAY_FIRST_USE, &rs->md.flags);
2787
2788                 rs_set_cur(rs);
2789         } else
2790                 rs_set_cur(rs);
2791
2792         /* If constructor requested it, change data and new_data offsets */
2793         r = rs_adjust_data_offsets(rs);
2794         if (r)
2795                 return r;
2796
2797         /* Start raid set read-only and assumed clean to change in raid_resume() */
2798         rs->md.ro = 1;
2799         rs->md.in_sync = 1;
2800         set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
2801
2802         /* Has to be held on running the array */
2803         mddev_lock_nointr(&rs->md);
2804         r = md_run(&rs->md);
2805         rs->md.in_sync = 0; /* Assume already marked dirty */
2806
2807         if (r) {
2808                 ti->error = "Failed to run raid array";
2809                 mddev_unlock(&rs->md);
2810                 goto bad;
2811         }
2812
2813         rs->callbacks.congested_fn = raid_is_congested;
2814         dm_table_add_target_callbacks(ti->table, &rs->callbacks);
2815
2816         mddev_suspend(&rs->md);
2817
2818         /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */
2819         if (rs_is_raid456(rs)) {
2820                 r = rs_set_raid456_stripe_cache(rs);
2821                 if (r)
2822                         goto bad_stripe_cache;
2823         }
2824
2825         /* Now do an early reshape check */
2826         if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
2827                 r = rs_check_reshape(rs);
2828                 if (r)
2829                         return r;
2830
2831                 /* Restore new, ctr requested layout to perform check */
2832                 rs_config_restore(rs, &rs_layout);
2833
2834                 r = rs->md.pers->check_reshape(&rs->md);
2835                 if (r) {
2836                         ti->error = "Reshape check failed";
2837                         goto bad_check_reshape;
2838                 }
2839         }
2840
2841         mddev_unlock(&rs->md);
2842         return 0;
2843
2844 bad_stripe_cache:
2845 bad_check_reshape:
2846         md_stop(&rs->md);
2847 bad:
2848         raid_set_free(rs);
2849
2850         return r;
2851 }
2852
2853 static void raid_dtr(struct dm_target *ti)
2854 {
2855         struct raid_set *rs = ti->private;
2856
2857         list_del_init(&rs->callbacks.list);
2858         md_stop(&rs->md);
2859         raid_set_free(rs);
2860 }
2861
2862 static int raid_map(struct dm_target *ti, struct bio *bio)
2863 {
2864         struct raid_set *rs = ti->private;
2865         struct mddev *mddev = &rs->md;
2866
2867         /*
2868          * If we're reshaping to add disk(s)), ti->len and
2869          * mddev->array_sectors will differ during the process
2870          * (ti->len > mddev->array_sectors), so we have to requeue
2871          * bios with addresses > mddev->array_sectors here or
2872          * or there will occur accesses past EOD of the component
2873          * data images thus erroring the raid set.
2874          */
2875         if (unlikely(bio_end_sector(bio) > mddev->array_sectors))
2876                 return DM_MAPIO_REQUEUE;
2877
2878         mddev->pers->make_request(mddev, bio);
2879
2880         return DM_MAPIO_SUBMITTED;
2881 }
2882
2883 /* Return string describing the current sync action of @mddev */
2884 static const char *decipher_sync_action(struct mddev *mddev)
2885 {
2886         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
2887                 return "frozen";
2888
2889         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2890             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
2891                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2892                         return "reshape";
2893
2894                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2895                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2896                                 return "resync";
2897                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2898                                 return "check";
2899                         return "repair";
2900                 }
2901
2902                 if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
2903                         return "recover";
2904         }
2905
2906         return "idle";
2907 }
2908
2909 /*
2910  * Return status string @rdev
2911  *
2912  * Status characters:
2913  *
2914  *  'D' = Dead/Failed device
2915  *  'a' = Alive but not in-sync
2916  *  'A' = Alive and in-sync
2917  */
2918 static const char *__raid_dev_status(struct md_rdev *rdev, bool array_in_sync)
2919 {
2920         if (test_bit(Faulty, &rdev->flags))
2921                 return "D";
2922         else if (!array_in_sync || !test_bit(In_sync, &rdev->flags))
2923                 return "a";
2924         else
2925                 return "A";
2926 }
2927
2928 /* Helper to return resync/reshape progress for @rs and @array_in_sync */
2929 static sector_t rs_get_progress(struct raid_set *rs,
2930                                 sector_t resync_max_sectors, bool *array_in_sync)
2931 {
2932         sector_t r, recovery_cp, curr_resync_completed;
2933         struct mddev *mddev = &rs->md;
2934
2935         curr_resync_completed = mddev->curr_resync_completed ?: mddev->recovery_cp;
2936         recovery_cp = mddev->recovery_cp;
2937         *array_in_sync = false;
2938
2939         if (rs_is_raid0(rs)) {
2940                 r = resync_max_sectors;
2941                 *array_in_sync = true;
2942
2943         } else {
2944                 r = mddev->reshape_position;
2945
2946                 /* Reshape is relative to the array size */
2947                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
2948                     r != MaxSector) {
2949                         if (r == MaxSector) {
2950                                 *array_in_sync = true;
2951                                 r = resync_max_sectors;
2952                         } else {
2953                                 /* Got to reverse on backward reshape */
2954                                 if (mddev->reshape_backwards)
2955                                         r = mddev->array_sectors - r;
2956
2957                                 /* Devide by # of data stripes */
2958                                 sector_div(r, mddev_data_stripes(rs));
2959                         }
2960
2961                 /* Sync is relative to the component device size */
2962                 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2963                         r = curr_resync_completed;
2964                 else
2965                         r = recovery_cp;
2966
2967                 if (r == MaxSector) {
2968                         /*
2969                          * Sync complete.
2970                          */
2971                         *array_in_sync = true;
2972                         r = resync_max_sectors;
2973                 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2974                         /*
2975                          * If "check" or "repair" is occurring, the raid set has
2976                          * undergone an initial sync and the health characters
2977                          * should not be 'a' anymore.
2978                          */
2979                         *array_in_sync = true;
2980                 } else {
2981                         struct md_rdev *rdev;
2982
2983                         /*
2984                          * The raid set may be doing an initial sync, or it may
2985                          * be rebuilding individual components.  If all the
2986                          * devices are In_sync, then it is the raid set that is
2987                          * being initialized.
2988                          */
2989                         rdev_for_each(rdev, mddev)
2990                                 if (!test_bit(In_sync, &rdev->flags))
2991                                         *array_in_sync = true;
2992 #if 0
2993                         r = 0; /* HM FIXME: TESTME: https://bugzilla.redhat.com/show_bug.cgi?id=1210637 ? */
2994 #endif
2995                 }
2996         }
2997
2998         return r;
2999 }
3000
3001 /* Helper to return @dev name or "-" if !@dev */
3002 static const char *__get_dev_name(struct dm_dev *dev)
3003 {
3004         return dev ? dev->name : "-";
3005 }
3006
3007 static void raid_status(struct dm_target *ti, status_type_t type,
3008                         unsigned int status_flags, char *result, unsigned int maxlen)
3009 {
3010         struct raid_set *rs = ti->private;
3011         struct mddev *mddev = &rs->md;
3012         struct r5conf *conf = mddev->private;
3013         int max_nr_stripes = conf ? conf->max_nr_stripes : 0;
3014         bool array_in_sync;
3015         unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */
3016         unsigned int sz = 0;
3017         unsigned int write_mostly_params = 0;
3018         sector_t progress, resync_max_sectors, resync_mismatches;
3019         const char *sync_action;
3020         struct raid_type *rt;
3021         struct md_rdev *rdev;
3022
3023         switch (type) {
3024         case STATUSTYPE_INFO:
3025                 /* *Should* always succeed */
3026                 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3027                 if (!rt)
3028                         return;
3029
3030                 DMEMIT("%s %d ", rt->name, mddev->raid_disks);
3031
3032                 /* Access most recent mddev properties for status output */
3033                 smp_rmb();
3034                 /* Get sensible max sectors even if raid set not yet started */
3035                 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ?
3036                                       mddev->resync_max_sectors : mddev->dev_sectors;
3037                 progress = rs_get_progress(rs, resync_max_sectors, &array_in_sync);
3038                 resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ?
3039                                     atomic64_read(&mddev->resync_mismatches) : 0;
3040                 sync_action = decipher_sync_action(&rs->md);
3041
3042                 /* HM FIXME: do we want another state char for raid0? It shows 'D' or 'A' now */
3043                 rdev_for_each(rdev, mddev)
3044                         DMEMIT(__raid_dev_status(rdev, array_in_sync));
3045
3046                 /*
3047                  * In-sync/Reshape ratio:
3048                  *  The in-sync ratio shows the progress of:
3049                  *   - Initializing the raid set
3050                  *   - Rebuilding a subset of devices of the raid set
3051                  *  The user can distinguish between the two by referring
3052                  *  to the status characters.
3053                  *
3054                  *  The reshape ratio shows the progress of
3055                  *  changing the raid layout or the number of
3056                  *  disks of a raid set
3057                  */
3058                 DMEMIT(" %llu/%llu", (unsigned long long) progress,
3059                                      (unsigned long long) resync_max_sectors);
3060
3061                 /*
3062                  * v1.5.0+:
3063                  *
3064                  * Sync action:
3065                  *   See Documentation/device-mapper/dm-raid.txt for
3066                  *   information on each of these states.
3067                  */
3068                 DMEMIT(" %s", sync_action);
3069
3070                 /*
3071                  * v1.5.0+:
3072                  *
3073                  * resync_mismatches/mismatch_cnt
3074                  *   This field shows the number of discrepancies found when
3075                  *   performing a "check" of the raid set.
3076                  */
3077                 DMEMIT(" %llu", (unsigned long long) resync_mismatches);
3078
3079                 /*
3080                  * v1.9.0+:
3081                  *
3082                  * data_offset (needed for out of space reshaping)
3083                  *   This field shows the data offset into the data
3084                  *   image LV where the first stripes data starts.
3085                  *
3086                  * We keep data_offset equal on all raid disks of the set,
3087                  * so retrieving it from the first raid disk is sufficient.
3088                  */
3089                 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset);
3090                 break;
3091
3092         case STATUSTYPE_TABLE:
3093                 /* Report the table line string you would use to construct this raid set */
3094
3095                 /* Calculate raid parameter count */
3096                 rdev_for_each(rdev, mddev)
3097                         if (test_bit(WriteMostly, &rdev->flags))
3098                                 write_mostly_params += 2;
3099                 raid_param_cnt += memweight(rs->rebuild_disks,
3100                                             DISKS_ARRAY_ELEMS * sizeof(*rs->rebuild_disks)) * 2 +
3101                                   write_mostly_params +
3102                                   hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) +
3103                                   hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2;
3104                 /* Emit table line */
3105                 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors);
3106                 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags))
3107                         DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT),
3108                                          raid10_md_layout_to_format(mddev->layout));
3109                 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags))
3110                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES),
3111                                          raid10_md_layout_to_copies(mddev->layout));
3112                 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
3113                         DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC));
3114                 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
3115                         DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC));
3116                 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags))
3117                         DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE),
3118                                            (unsigned long long) to_sector(mddev->bitmap_info.chunksize));
3119                 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags))
3120                         DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET),
3121                                            (unsigned long long) rs->data_offset);
3122                 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags))
3123                         DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP),
3124                                           mddev->bitmap_info.daemon_sleep);
3125                 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags))
3126                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS),
3127                                          mddev->delta_disks);
3128                 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags))
3129                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE),
3130                                          max_nr_stripes);
3131                 rdev_for_each(rdev, mddev)
3132                         if (test_bit(rdev->raid_disk, (void *) rs->rebuild_disks))
3133                                 DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD),
3134                                                  rdev->raid_disk);
3135                 rdev_for_each(rdev, mddev)
3136                         if (test_bit(WriteMostly, &rdev->flags))
3137                                 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY),
3138                                                  rdev->raid_disk);
3139                 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags))
3140                         DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND),
3141                                           mddev->bitmap_info.max_write_behind);
3142                 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags))
3143                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE),
3144                                          mddev->sync_speed_max);
3145                 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags))
3146                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE),
3147                                          mddev->sync_speed_min);
3148                 DMEMIT(" %d", rs->raid_disks);
3149                 rdev_for_each(rdev, mddev) {
3150                         struct raid_dev *rd = container_of(rdev, struct raid_dev, rdev);
3151
3152                         DMEMIT(" %s %s", __get_dev_name(rd->meta_dev),
3153                                          __get_dev_name(rd->data_dev));
3154                 }
3155         }
3156 }
3157
3158 static int raid_message(struct dm_target *ti, unsigned argc, char **argv)
3159 {
3160         struct raid_set *rs = ti->private;
3161         struct mddev *mddev = &rs->md;
3162
3163         if (!mddev->pers || !mddev->pers->sync_request)
3164                 return -EINVAL;
3165
3166         if (!strcasecmp(argv[0], "frozen"))
3167                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3168         else
3169                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3170
3171         if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
3172                 if (mddev->sync_thread) {
3173                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3174                         md_reap_sync_thread(mddev);
3175                 }
3176         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3177                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3178                 return -EBUSY;
3179         else if (!strcasecmp(argv[0], "resync"))
3180                 ; /* MD_RECOVERY_NEEDED set below */
3181         else if (!strcasecmp(argv[0], "recover"))
3182                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3183         else {
3184                 if (!strcasecmp(argv[0], "check"))
3185                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3186                 else if (!!strcasecmp(argv[0], "repair"))
3187                         return -EINVAL;
3188                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3189                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3190         }
3191         if (mddev->ro == 2) {
3192                 /* A write to sync_action is enough to justify
3193                  * canceling read-auto mode
3194                  */
3195                 mddev->ro = 0;
3196                 if (!mddev->suspended && mddev->sync_thread)
3197                         md_wakeup_thread(mddev->sync_thread);
3198         }
3199         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3200         if (!mddev->suspended && mddev->thread)
3201                 md_wakeup_thread(mddev->thread);
3202
3203         return 0;
3204 }
3205
3206 static int raid_iterate_devices(struct dm_target *ti,
3207                                 iterate_devices_callout_fn fn, void *data)
3208 {
3209         struct raid_set *rs = ti->private;
3210         unsigned i;
3211         int r = 0;
3212
3213         for (i = 0; !r && i < rs->md.raid_disks; i++)
3214                 if (rs->dev[i].data_dev)
3215                         r = fn(ti,
3216                                  rs->dev[i].data_dev,
3217                                  0, /* No offset on data devs */
3218                                  rs->md.dev_sectors,
3219                                  data);
3220
3221         return r;
3222 }
3223
3224 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
3225 {
3226         struct raid_set *rs = ti->private;
3227         unsigned chunk_size = rs->md.chunk_sectors << 9;
3228         struct r5conf *conf = rs->md.private;
3229
3230         blk_limits_io_min(limits, chunk_size);
3231         blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded));
3232 }
3233
3234 static void raid_presuspend(struct dm_target *ti)
3235 {
3236         struct raid_set *rs = ti->private;
3237
3238         md_stop_writes(&rs->md);
3239 }
3240
3241 static void raid_postsuspend(struct dm_target *ti)
3242 {
3243         struct raid_set *rs = ti->private;
3244
3245         if (test_and_clear_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
3246                 if (!rs->md.suspended)
3247                         mddev_suspend(&rs->md);
3248                 rs->md.ro = 1;
3249         }
3250 }
3251
3252 static void attempt_restore_of_faulty_devices(struct raid_set *rs)
3253 {
3254         int i;
3255         uint64_t failed_devices, cleared_failed_devices = 0;
3256         unsigned long flags;
3257         struct dm_raid_superblock *sb;
3258         struct md_rdev *r;
3259
3260         for (i = 0; i < rs->md.raid_disks; i++) {
3261                 r = &rs->dev[i].rdev;
3262                 if (test_bit(Faulty, &r->flags) && r->sb_page &&
3263                     sync_page_io(r, 0, r->sb_size, r->sb_page,
3264                                  REQ_OP_READ, 0, true)) {
3265                         DMINFO("Faulty %s device #%d has readable super block."
3266                                "  Attempting to revive it.",
3267                                rs->raid_type->name, i);
3268
3269                         /*
3270                          * Faulty bit may be set, but sometimes the array can
3271                          * be suspended before the personalities can respond
3272                          * by removing the device from the array (i.e. calling
3273                          * 'hot_remove_disk').  If they haven't yet removed
3274                          * the failed device, its 'raid_disk' number will be
3275                          * '>= 0' - meaning we must call this function
3276                          * ourselves.
3277                          */
3278                         if ((r->raid_disk >= 0) &&
3279                             (r->mddev->pers->hot_remove_disk(r->mddev, r) != 0))
3280                                 /* Failed to revive this device, try next */
3281                                 continue;
3282
3283                         r->raid_disk = i;
3284                         r->saved_raid_disk = i;
3285                         flags = r->flags;
3286                         clear_bit(Faulty, &r->flags);
3287                         clear_bit(WriteErrorSeen, &r->flags);
3288                         clear_bit(In_sync, &r->flags);
3289                         if (r->mddev->pers->hot_add_disk(r->mddev, r)) {
3290                                 r->raid_disk = -1;
3291                                 r->saved_raid_disk = -1;
3292                                 r->flags = flags;
3293                         } else {
3294                                 r->recovery_offset = 0;
3295                                 cleared_failed_devices |= 1 << i;
3296                         }
3297                 }
3298         }
3299         if (cleared_failed_devices) {
3300                 rdev_for_each(r, &rs->md) {
3301                         sb = page_address(r->sb_page);
3302                         failed_devices = le64_to_cpu(sb->failed_devices);
3303                         failed_devices &= ~cleared_failed_devices;
3304                         sb->failed_devices = cpu_to_le64(failed_devices);
3305                 }
3306         }
3307 }
3308
3309 static int __load_dirty_region_bitmap(struct raid_set *rs)
3310 {
3311         int r = 0;
3312
3313         /* Try loading the bitmap unless "raid0", which does not have one */
3314         if (!rs_is_raid0(rs) &&
3315             !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
3316                 r = bitmap_load(&rs->md);
3317                 if (r)
3318                         DMERR("Failed to load bitmap");
3319         }
3320
3321         return r;
3322 }
3323
3324 /* Enforce updating all superblocks */
3325 static void rs_update_sbs(struct raid_set *rs)
3326 {
3327         struct mddev *mddev = &rs->md;
3328         int ro = mddev->ro;
3329
3330         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3331         mddev->ro = 0;
3332         md_update_sb(mddev, 1);
3333         mddev->ro = ro;
3334 }
3335
3336 /*
3337  * Reshape changes raid algorithm of @rs to new one within personality
3338  * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes
3339  * disks from a raid set thus growing/shrinking it or resizes the set
3340  *
3341  * Call mddev_lock_nointr() before!
3342  */
3343 static int rs_start_reshape(struct raid_set *rs)
3344 {
3345         int r;
3346         struct mddev *mddev = &rs->md;
3347         struct md_personality *pers = mddev->pers;
3348
3349         r = rs_setup_reshape(rs);
3350         if (r)
3351                 return r;
3352
3353         /* Need to be resumed to be able to start reshape, recovery is frozen until raid_resume() though */
3354         if (mddev->suspended)
3355                 mddev_resume(mddev);
3356
3357         /*
3358          * Check any reshape constraints enforced by the personalility
3359          *
3360          * May as well already kick the reshape off so that * pers->start_reshape() becomes optional.
3361          */
3362         r = pers->check_reshape(mddev);
3363         if (r) {
3364                 rs->ti->error = "pers->check_reshape() failed";
3365                 return r;
3366         }
3367
3368         /*
3369          * Personality may not provide start reshape method in which
3370          * case check_reshape above has already covered everything
3371          */
3372         if (pers->start_reshape) {
3373                 r = pers->start_reshape(mddev);
3374                 if (r) {
3375                         rs->ti->error = "pers->start_reshape() failed";
3376                         return r;
3377                 }
3378         }
3379
3380         /* Suspend because a resume will happen in raid_resume() */
3381         if (!mddev->suspended)
3382                 mddev_suspend(mddev);
3383
3384         /*
3385          * Now reshape got set up, update superblocks to
3386          * reflect the fact so that a table reload will
3387          * access proper superblock content in the ctr.
3388          */
3389         rs_update_sbs(rs);
3390
3391         return 0;
3392 }
3393
3394 static int raid_preresume(struct dm_target *ti)
3395 {
3396         int r;
3397         struct raid_set *rs = ti->private;
3398         struct mddev *mddev = &rs->md;
3399
3400         /* This is a resume after a suspend of the set -> it's already started */
3401         if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags))
3402                 return 0;
3403
3404         /*
3405          * The superblocks need to be updated on disk if the
3406          * array is new or new devices got added (thus zeroed
3407          * out by userspace) or __load_dirty_region_bitmap
3408          * will overwrite them in core with old data or fail.
3409          */
3410         if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags))
3411                 rs_update_sbs(rs);
3412
3413         /*
3414          * Disable/enable discard support on raid set after any
3415          * conversion, because devices can have been added
3416          */
3417         configure_discard_support(rs);
3418
3419         /* Load the bitmap from disk unless raid0 */
3420         r = __load_dirty_region_bitmap(rs);
3421         if (r)
3422                 return r;
3423
3424         /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) */
3425         if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) &&
3426             mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)) {
3427                 r = bitmap_resize(mddev->bitmap, mddev->dev_sectors,
3428                                   to_bytes(rs->requested_bitmap_chunk_sectors), 0);
3429                 if (r)
3430                         DMERR("Failed to resize bitmap");
3431         }
3432
3433         /* Check for any resize/reshape on @rs and adjust/initiate */
3434         /* Be prepared for mddev_resume() in raid_resume() */
3435         set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3436         if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) {
3437                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3438                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3439                 mddev->resync_min = mddev->recovery_cp;
3440         }
3441
3442         rs_set_capacity(rs);
3443
3444         /* Check for any reshape request and region size change unless new raid set */
3445         if (test_and_clear_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3446                 /* Initiate a reshape. */
3447                 mddev_lock_nointr(mddev);
3448                 r = rs_start_reshape(rs);
3449                 mddev_unlock(mddev);
3450                 if (r)
3451                         DMWARN("Failed to check/start reshape, continuing without change");
3452                 r = 0;
3453         }
3454
3455         return r;
3456 }
3457
3458 static void raid_resume(struct dm_target *ti)
3459 {
3460         struct raid_set *rs = ti->private;
3461         struct mddev *mddev = &rs->md;
3462
3463         if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
3464                 /*
3465                  * A secondary resume while the device is active.
3466                  * Take this opportunity to check whether any failed
3467                  * devices are reachable again.
3468                  */
3469                 attempt_restore_of_faulty_devices(rs);
3470         } else {
3471                 mddev->ro = 0;
3472                 mddev->in_sync = 0;
3473
3474                 /*
3475                  * When passing in flags to the ctr, we expect userspace
3476                  * to reset them because they made it to the superblocks
3477                  * and reload the mapping anyway.
3478                  *
3479                  * -> only unfreeze recovery in case of a table reload or
3480                  *    we'll have a bogus recovery/reshape position
3481                  *    retrieved from the superblock by the ctr because
3482                  *    the ongoing recovery/reshape will change it after read.
3483                  */
3484                 if (!test_bit(RT_FLAG_KEEP_RS_FROZEN, &rs->runtime_flags))
3485                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3486
3487                 if (mddev->suspended)
3488                         mddev_resume(mddev);
3489         }
3490 }
3491
3492 static struct target_type raid_target = {
3493         .name = "raid",
3494         .version = {1, 9, 0},
3495         .module = THIS_MODULE,
3496         .ctr = raid_ctr,
3497         .dtr = raid_dtr,
3498         .map = raid_map,
3499         .status = raid_status,
3500         .message = raid_message,
3501         .iterate_devices = raid_iterate_devices,
3502         .io_hints = raid_io_hints,
3503         .presuspend = raid_presuspend,
3504         .postsuspend = raid_postsuspend,
3505         .preresume = raid_preresume,
3506         .resume = raid_resume,
3507 };
3508
3509 static int __init dm_raid_init(void)
3510 {
3511         DMINFO("Loading target version %u.%u.%u",
3512                raid_target.version[0],
3513                raid_target.version[1],
3514                raid_target.version[2]);
3515         return dm_register_target(&raid_target);
3516 }
3517
3518 static void __exit dm_raid_exit(void)
3519 {
3520         dm_unregister_target(&raid_target);
3521 }
3522
3523 module_init(dm_raid_init);
3524 module_exit(dm_raid_exit);
3525
3526 module_param(devices_handle_discard_safely, bool, 0644);
3527 MODULE_PARM_DESC(devices_handle_discard_safely,
3528                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
3529
3530 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target");
3531 MODULE_ALIAS("dm-raid0");
3532 MODULE_ALIAS("dm-raid1");
3533 MODULE_ALIAS("dm-raid10");
3534 MODULE_ALIAS("dm-raid4");
3535 MODULE_ALIAS("dm-raid5");
3536 MODULE_ALIAS("dm-raid6");
3537 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
3538 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>");
3539 MODULE_LICENSE("GPL");