dm thin metadata: use struct dm_pool_metadata members in __open_or_format_metadata
[cascardo/linux.git] / drivers / md / dm-thin-metadata.c
1 /*
2  * Copyright (C) 2011 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
12
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
16
17 /*--------------------------------------------------------------------------
18  * As far as the metadata goes, there is:
19  *
20  * - A superblock in block zero, taking up fewer than 512 bytes for
21  *   atomic writes.
22  *
23  * - A space map managing the metadata blocks.
24  *
25  * - A space map managing the data blocks.
26  *
27  * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28  *
29  * - A hierarchical btree, with 2 levels which effectively maps (thin
30  *   dev id, virtual block) -> block_time.  Block time is a 64-bit
31  *   field holding the time in the low 24 bits, and block in the top 48
32  *   bits.
33  *
34  * BTrees consist solely of btree_nodes, that fill a block.  Some are
35  * internal nodes, as such their values are a __le64 pointing to other
36  * nodes.  Leaf nodes can store data of any reasonable size (ie. much
37  * smaller than the block size).  The nodes consist of the header,
38  * followed by an array of keys, followed by an array of values.  We have
39  * to binary search on the keys so they're all held together to help the
40  * cpu cache.
41  *
42  * Space maps have 2 btrees:
43  *
44  * - One maps a uint64_t onto a struct index_entry.  Which points to a
45  *   bitmap block, and has some details about how many free entries there
46  *   are etc.
47  *
48  * - The bitmap blocks have a header (for the checksum).  Then the rest
49  *   of the block is pairs of bits.  With the meaning being:
50  *
51  *   0 - ref count is 0
52  *   1 - ref count is 1
53  *   2 - ref count is 2
54  *   3 - ref count is higher than 2
55  *
56  * - If the count is higher than 2 then the ref count is entered in a
57  *   second btree that directly maps the block_address to a uint32_t ref
58  *   count.
59  *
60  * The space map metadata variant doesn't have a bitmaps btree.  Instead
61  * it has one single blocks worth of index_entries.  This avoids
62  * recursive issues with the bitmap btree needing to allocate space in
63  * order to insert.  With a small data block size such as 64k the
64  * metadata support data devices that are hundreds of terrabytes.
65  *
66  * The space maps allocate space linearly from front to back.  Space that
67  * is freed in a transaction is never recycled within that transaction.
68  * To try and avoid fragmenting _free_ space the allocator always goes
69  * back and fills in gaps.
70  *
71  * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72  * from the block manager.
73  *--------------------------------------------------------------------------*/
74
75 #define DM_MSG_PREFIX   "thin metadata"
76
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 1
80 #define THIN_METADATA_CACHE_SIZE 64
81 #define SECTOR_TO_BLOCK_SHIFT 3
82
83 /*
84  *  3 for btree insert +
85  *  2 for btree lookup used within space map
86  */
87 #define THIN_MAX_CONCURRENT_LOCKS 5
88
89 /* This should be plenty */
90 #define SPACE_MAP_ROOT_SIZE 128
91
92 /*
93  * Little endian on-disk superblock and device details.
94  */
95 struct thin_disk_superblock {
96         __le32 csum;    /* Checksum of superblock except for this field. */
97         __le32 flags;
98         __le64 blocknr; /* This block number, dm_block_t. */
99
100         __u8 uuid[16];
101         __le64 magic;
102         __le32 version;
103         __le32 time;
104
105         __le64 trans_id;
106
107         /*
108          * Root held by userspace transactions.
109          */
110         __le64 held_root;
111
112         __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
113         __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
114
115         /*
116          * 2-level btree mapping (dev_id, (dev block, time)) -> data block
117          */
118         __le64 data_mapping_root;
119
120         /*
121          * Device detail root mapping dev_id -> device_details
122          */
123         __le64 device_details_root;
124
125         __le32 data_block_size;         /* In 512-byte sectors. */
126
127         __le32 metadata_block_size;     /* In 512-byte sectors. */
128         __le64 metadata_nr_blocks;
129
130         __le32 compat_flags;
131         __le32 compat_ro_flags;
132         __le32 incompat_flags;
133 } __packed;
134
135 struct disk_device_details {
136         __le64 mapped_blocks;
137         __le64 transaction_id;          /* When created. */
138         __le32 creation_time;
139         __le32 snapshotted_time;
140 } __packed;
141
142 struct dm_pool_metadata {
143         struct hlist_node hash;
144
145         struct block_device *bdev;
146         struct dm_block_manager *bm;
147         struct dm_space_map *metadata_sm;
148         struct dm_space_map *data_sm;
149         struct dm_transaction_manager *tm;
150         struct dm_transaction_manager *nb_tm;
151
152         /*
153          * Two-level btree.
154          * First level holds thin_dev_t.
155          * Second level holds mappings.
156          */
157         struct dm_btree_info info;
158
159         /*
160          * Non-blocking version of the above.
161          */
162         struct dm_btree_info nb_info;
163
164         /*
165          * Just the top level for deleting whole devices.
166          */
167         struct dm_btree_info tl_info;
168
169         /*
170          * Just the bottom level for creating new devices.
171          */
172         struct dm_btree_info bl_info;
173
174         /*
175          * Describes the device details btree.
176          */
177         struct dm_btree_info details_info;
178
179         struct rw_semaphore root_lock;
180         uint32_t time;
181         dm_block_t root;
182         dm_block_t details_root;
183         struct list_head thin_devices;
184         uint64_t trans_id;
185         unsigned long flags;
186         sector_t data_block_size;
187 };
188
189 struct dm_thin_device {
190         struct list_head list;
191         struct dm_pool_metadata *pmd;
192         dm_thin_id id;
193
194         int open_count;
195         int changed;
196         uint64_t mapped_blocks;
197         uint64_t transaction_id;
198         uint32_t creation_time;
199         uint32_t snapshotted_time;
200 };
201
202 /*----------------------------------------------------------------
203  * superblock validator
204  *--------------------------------------------------------------*/
205
206 #define SUPERBLOCK_CSUM_XOR 160774
207
208 static void sb_prepare_for_write(struct dm_block_validator *v,
209                                  struct dm_block *b,
210                                  size_t block_size)
211 {
212         struct thin_disk_superblock *disk_super = dm_block_data(b);
213
214         disk_super->blocknr = cpu_to_le64(dm_block_location(b));
215         disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
216                                                       block_size - sizeof(__le32),
217                                                       SUPERBLOCK_CSUM_XOR));
218 }
219
220 static int sb_check(struct dm_block_validator *v,
221                     struct dm_block *b,
222                     size_t block_size)
223 {
224         struct thin_disk_superblock *disk_super = dm_block_data(b);
225         __le32 csum_le;
226
227         if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
228                 DMERR("sb_check failed: blocknr %llu: "
229                       "wanted %llu", le64_to_cpu(disk_super->blocknr),
230                       (unsigned long long)dm_block_location(b));
231                 return -ENOTBLK;
232         }
233
234         if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
235                 DMERR("sb_check failed: magic %llu: "
236                       "wanted %llu", le64_to_cpu(disk_super->magic),
237                       (unsigned long long)THIN_SUPERBLOCK_MAGIC);
238                 return -EILSEQ;
239         }
240
241         csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
242                                              block_size - sizeof(__le32),
243                                              SUPERBLOCK_CSUM_XOR));
244         if (csum_le != disk_super->csum) {
245                 DMERR("sb_check failed: csum %u: wanted %u",
246                       le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
247                 return -EILSEQ;
248         }
249
250         return 0;
251 }
252
253 static struct dm_block_validator sb_validator = {
254         .name = "superblock",
255         .prepare_for_write = sb_prepare_for_write,
256         .check = sb_check
257 };
258
259 /*----------------------------------------------------------------
260  * Methods for the btree value types
261  *--------------------------------------------------------------*/
262
263 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
264 {
265         return (b << 24) | t;
266 }
267
268 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
269 {
270         *b = v >> 24;
271         *t = v & ((1 << 24) - 1);
272 }
273
274 static void data_block_inc(void *context, void *value_le)
275 {
276         struct dm_space_map *sm = context;
277         __le64 v_le;
278         uint64_t b;
279         uint32_t t;
280
281         memcpy(&v_le, value_le, sizeof(v_le));
282         unpack_block_time(le64_to_cpu(v_le), &b, &t);
283         dm_sm_inc_block(sm, b);
284 }
285
286 static void data_block_dec(void *context, void *value_le)
287 {
288         struct dm_space_map *sm = context;
289         __le64 v_le;
290         uint64_t b;
291         uint32_t t;
292
293         memcpy(&v_le, value_le, sizeof(v_le));
294         unpack_block_time(le64_to_cpu(v_le), &b, &t);
295         dm_sm_dec_block(sm, b);
296 }
297
298 static int data_block_equal(void *context, void *value1_le, void *value2_le)
299 {
300         __le64 v1_le, v2_le;
301         uint64_t b1, b2;
302         uint32_t t;
303
304         memcpy(&v1_le, value1_le, sizeof(v1_le));
305         memcpy(&v2_le, value2_le, sizeof(v2_le));
306         unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
307         unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
308
309         return b1 == b2;
310 }
311
312 static void subtree_inc(void *context, void *value)
313 {
314         struct dm_btree_info *info = context;
315         __le64 root_le;
316         uint64_t root;
317
318         memcpy(&root_le, value, sizeof(root_le));
319         root = le64_to_cpu(root_le);
320         dm_tm_inc(info->tm, root);
321 }
322
323 static void subtree_dec(void *context, void *value)
324 {
325         struct dm_btree_info *info = context;
326         __le64 root_le;
327         uint64_t root;
328
329         memcpy(&root_le, value, sizeof(root_le));
330         root = le64_to_cpu(root_le);
331         if (dm_btree_del(info, root))
332                 DMERR("btree delete failed\n");
333 }
334
335 static int subtree_equal(void *context, void *value1_le, void *value2_le)
336 {
337         __le64 v1_le, v2_le;
338         memcpy(&v1_le, value1_le, sizeof(v1_le));
339         memcpy(&v2_le, value2_le, sizeof(v2_le));
340
341         return v1_le == v2_le;
342 }
343
344 /*----------------------------------------------------------------*/
345
346 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
347                                 struct dm_block **sblock)
348 {
349         return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
350                                      &sb_validator, sblock);
351 }
352
353 static int superblock_lock(struct dm_pool_metadata *pmd,
354                            struct dm_block **sblock)
355 {
356         return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
357                                 &sb_validator, sblock);
358 }
359
360 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
361 {
362         int r;
363         unsigned i;
364         struct dm_block *b;
365         __le64 *data_le, zero = cpu_to_le64(0);
366         unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
367
368         /*
369          * We can't use a validator here - it may be all zeroes.
370          */
371         r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
372         if (r)
373                 return r;
374
375         data_le = dm_block_data(b);
376         *result = 1;
377         for (i = 0; i < block_size; i++) {
378                 if (data_le[i] != zero) {
379                         *result = 0;
380                         break;
381                 }
382         }
383
384         return dm_bm_unlock(b);
385 }
386
387 static void __setup_btree_details(struct dm_pool_metadata *pmd)
388 {
389         pmd->info.tm = pmd->tm;
390         pmd->info.levels = 2;
391         pmd->info.value_type.context = pmd->data_sm;
392         pmd->info.value_type.size = sizeof(__le64);
393         pmd->info.value_type.inc = data_block_inc;
394         pmd->info.value_type.dec = data_block_dec;
395         pmd->info.value_type.equal = data_block_equal;
396
397         memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
398         pmd->nb_info.tm = pmd->nb_tm;
399
400         pmd->tl_info.tm = pmd->tm;
401         pmd->tl_info.levels = 1;
402         pmd->tl_info.value_type.context = &pmd->info;
403         pmd->tl_info.value_type.size = sizeof(__le64);
404         pmd->tl_info.value_type.inc = subtree_inc;
405         pmd->tl_info.value_type.dec = subtree_dec;
406         pmd->tl_info.value_type.equal = subtree_equal;
407
408         pmd->bl_info.tm = pmd->tm;
409         pmd->bl_info.levels = 1;
410         pmd->bl_info.value_type.context = pmd->data_sm;
411         pmd->bl_info.value_type.size = sizeof(__le64);
412         pmd->bl_info.value_type.inc = data_block_inc;
413         pmd->bl_info.value_type.dec = data_block_dec;
414         pmd->bl_info.value_type.equal = data_block_equal;
415
416         pmd->details_info.tm = pmd->tm;
417         pmd->details_info.levels = 1;
418         pmd->details_info.value_type.context = NULL;
419         pmd->details_info.value_type.size = sizeof(struct disk_device_details);
420         pmd->details_info.value_type.inc = NULL;
421         pmd->details_info.value_type.dec = NULL;
422         pmd->details_info.value_type.equal = NULL;
423 }
424
425 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
426 {
427         int r;
428         struct dm_block *sblock;
429         size_t metadata_len, data_len;
430         struct thin_disk_superblock *disk_super;
431         sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
432
433         if (bdev_size > THIN_METADATA_MAX_SECTORS)
434                 bdev_size = THIN_METADATA_MAX_SECTORS;
435
436         r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
437         if (r < 0)
438                 return r;
439
440         r = dm_sm_root_size(pmd->data_sm, &data_len);
441         if (r < 0)
442                 return r;
443
444         r = dm_sm_commit(pmd->data_sm);
445         if (r < 0)
446                 return r;
447
448         r = dm_tm_pre_commit(pmd->tm);
449         if (r < 0)
450                 return r;
451
452         r = superblock_lock_zero(pmd, &sblock);
453         if (r)
454                 return r;
455
456         disk_super = dm_block_data(sblock);
457         disk_super->flags = 0;
458         memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
459         disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
460         disk_super->version = cpu_to_le32(THIN_VERSION);
461         disk_super->time = 0;
462         disk_super->trans_id = 0;
463         disk_super->held_root = 0;
464
465         r = dm_sm_copy_root(pmd->metadata_sm, &disk_super->metadata_space_map_root,
466                             metadata_len);
467         if (r < 0)
468                 goto bad_locked;
469
470         r = dm_sm_copy_root(pmd->data_sm, &disk_super->data_space_map_root,
471                             data_len);
472         if (r < 0)
473                 goto bad_locked;
474
475         disk_super->data_mapping_root = cpu_to_le64(pmd->root);
476         disk_super->device_details_root = cpu_to_le64(pmd->details_root);
477         disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
478         disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
479         disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
480
481         return dm_tm_commit(pmd->tm, sblock);
482
483 bad_locked:
484         dm_bm_unlock(sblock);
485         return r;
486 }
487
488 static int __open_or_format_metadata(struct dm_pool_metadata *pmd,
489                                      dm_block_t nr_blocks, int create)
490 {
491         int r;
492         struct dm_block *sblock;
493
494         if (create) {
495                 r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
496                                          &pmd->tm, &pmd->metadata_sm);
497                 if (r < 0) {
498                         DMERR("tm_create_with_sm failed");
499                         return r;
500                 }
501
502                 pmd->data_sm = dm_sm_disk_create(pmd->tm, nr_blocks);
503                 if (IS_ERR(pmd->data_sm)) {
504                         DMERR("sm_disk_create failed");
505                         r = PTR_ERR(pmd->data_sm);
506                         goto bad;
507                 }
508         } else {
509                 struct thin_disk_superblock *disk_super;
510
511                 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
512                                     &sb_validator, &sblock);
513                 if (r < 0) {
514                         DMERR("couldn't read superblock");
515                         return r;
516                 }
517
518                 disk_super = dm_block_data(sblock);
519                 r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
520                                        disk_super->metadata_space_map_root,
521                                        sizeof(disk_super->metadata_space_map_root),
522                                        &pmd->tm, &pmd->metadata_sm);
523                 if (r < 0) {
524                         DMERR("tm_open_with_sm failed");
525                         dm_bm_unlock(sblock);
526                         return r;
527                 }
528
529                 pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
530                                                sizeof(disk_super->data_space_map_root));
531                 if (IS_ERR(pmd->data_sm)) {
532                         DMERR("sm_disk_open failed");
533                         dm_bm_unlock(sblock);
534                         r = PTR_ERR(pmd->data_sm);
535                         goto bad;
536                 }
537
538                 dm_bm_unlock(sblock);
539         }
540
541         pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
542         if (!pmd->nb_tm) {
543                 DMERR("could not create clone tm");
544                 r = -ENOMEM;
545                 goto bad_data_sm;
546         }
547
548         __setup_btree_details(pmd);
549
550         pmd->root = 0;
551         pmd->details_root = 0;
552         pmd->trans_id = 0;
553         pmd->flags = 0;
554
555         if (!create)
556                 return 0;
557
558         r = dm_btree_empty(&pmd->info, &pmd->root);
559         if (r < 0)
560                 goto bad_data_sm;
561
562         r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
563         if (r < 0) {
564                 DMERR("couldn't create devices root");
565                 goto bad_data_sm;
566         }
567
568         r = __write_initial_superblock(pmd);
569         if (r)
570                 goto bad_data_sm;
571
572         return 0;
573
574 bad_data_sm:
575         dm_sm_destroy(pmd->data_sm);
576 bad:
577         dm_tm_destroy(pmd->tm);
578         dm_sm_destroy(pmd->metadata_sm);
579
580         return r;
581 }
582
583 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd,
584                                             dm_block_t nr_blocks, int *create)
585 {
586         int r;
587
588         pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE,
589                                           THIN_METADATA_CACHE_SIZE,
590                                           THIN_MAX_CONCURRENT_LOCKS);
591         if (IS_ERR(pmd->bm)) {
592                 DMERR("could not create block manager");
593                 return PTR_ERR(pmd->bm);
594         }
595
596         r = __superblock_all_zeroes(pmd->bm, create);
597         if (r) {
598                 dm_block_manager_destroy(pmd->bm);
599                 return r;
600         }
601
602         r = __open_or_format_metadata(pmd, nr_blocks, *create);
603         if (r)
604                 dm_block_manager_destroy(pmd->bm);
605
606         return r;
607 }
608
609 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
610 {
611         dm_sm_destroy(pmd->data_sm);
612         dm_sm_destroy(pmd->metadata_sm);
613         dm_tm_destroy(pmd->nb_tm);
614         dm_tm_destroy(pmd->tm);
615         dm_block_manager_destroy(pmd->bm);
616 }
617
618 static int __begin_transaction(struct dm_pool_metadata *pmd)
619 {
620         int r;
621         u32 features;
622         struct thin_disk_superblock *disk_super;
623         struct dm_block *sblock;
624
625         /*
626          * We re-read the superblock every time.  Shouldn't need to do this
627          * really.
628          */
629         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
630                             &sb_validator, &sblock);
631         if (r)
632                 return r;
633
634         disk_super = dm_block_data(sblock);
635         pmd->time = le32_to_cpu(disk_super->time);
636         pmd->root = le64_to_cpu(disk_super->data_mapping_root);
637         pmd->details_root = le64_to_cpu(disk_super->device_details_root);
638         pmd->trans_id = le64_to_cpu(disk_super->trans_id);
639         pmd->flags = le32_to_cpu(disk_super->flags);
640         pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
641
642         features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
643         if (features) {
644                 DMERR("could not access metadata due to "
645                       "unsupported optional features (%lx).",
646                       (unsigned long)features);
647                 r = -EINVAL;
648                 goto out;
649         }
650
651         /*
652          * Check for read-only metadata to skip the following RDWR checks.
653          */
654         if (get_disk_ro(pmd->bdev->bd_disk))
655                 goto out;
656
657         features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
658         if (features) {
659                 DMERR("could not access metadata RDWR due to "
660                       "unsupported optional features (%lx).",
661                       (unsigned long)features);
662                 r = -EINVAL;
663         }
664
665 out:
666         dm_bm_unlock(sblock);
667         return r;
668 }
669
670 static int __write_changed_details(struct dm_pool_metadata *pmd)
671 {
672         int r;
673         struct dm_thin_device *td, *tmp;
674         struct disk_device_details details;
675         uint64_t key;
676
677         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
678                 if (!td->changed)
679                         continue;
680
681                 key = td->id;
682
683                 details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
684                 details.transaction_id = cpu_to_le64(td->transaction_id);
685                 details.creation_time = cpu_to_le32(td->creation_time);
686                 details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
687                 __dm_bless_for_disk(&details);
688
689                 r = dm_btree_insert(&pmd->details_info, pmd->details_root,
690                                     &key, &details, &pmd->details_root);
691                 if (r)
692                         return r;
693
694                 if (td->open_count)
695                         td->changed = 0;
696                 else {
697                         list_del(&td->list);
698                         kfree(td);
699                 }
700         }
701
702         return 0;
703 }
704
705 static int __commit_transaction(struct dm_pool_metadata *pmd)
706 {
707         /*
708          * FIXME: Associated pool should be made read-only on failure.
709          */
710         int r;
711         size_t metadata_len, data_len;
712         struct thin_disk_superblock *disk_super;
713         struct dm_block *sblock;
714
715         /*
716          * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
717          */
718         BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
719
720         r = __write_changed_details(pmd);
721         if (r < 0)
722                 return r;
723
724         r = dm_sm_commit(pmd->data_sm);
725         if (r < 0)
726                 return r;
727
728         r = dm_tm_pre_commit(pmd->tm);
729         if (r < 0)
730                 return r;
731
732         r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
733         if (r < 0)
734                 return r;
735
736         r = dm_sm_root_size(pmd->data_sm, &data_len);
737         if (r < 0)
738                 return r;
739
740         r = superblock_lock(pmd, &sblock);
741         if (r)
742                 return r;
743
744         disk_super = dm_block_data(sblock);
745         disk_super->time = cpu_to_le32(pmd->time);
746         disk_super->data_mapping_root = cpu_to_le64(pmd->root);
747         disk_super->device_details_root = cpu_to_le64(pmd->details_root);
748         disk_super->trans_id = cpu_to_le64(pmd->trans_id);
749         disk_super->flags = cpu_to_le32(pmd->flags);
750
751         r = dm_sm_copy_root(pmd->metadata_sm, &disk_super->metadata_space_map_root,
752                             metadata_len);
753         if (r < 0)
754                 goto out_locked;
755
756         r = dm_sm_copy_root(pmd->data_sm, &disk_super->data_space_map_root,
757                             data_len);
758         if (r < 0)
759                 goto out_locked;
760
761         return dm_tm_commit(pmd->tm, sblock);
762
763 out_locked:
764         dm_bm_unlock(sblock);
765         return r;
766 }
767
768 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
769                                                sector_t data_block_size)
770 {
771         int r;
772         struct dm_pool_metadata *pmd;
773         int create;
774
775         pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
776         if (!pmd) {
777                 DMERR("could not allocate metadata struct");
778                 return ERR_PTR(-ENOMEM);
779         }
780
781         init_rwsem(&pmd->root_lock);
782         pmd->time = 0;
783         INIT_LIST_HEAD(&pmd->thin_devices);
784         pmd->bdev = bdev;
785         pmd->data_block_size = data_block_size;
786
787         r = __create_persistent_data_objects(pmd, 0, &create);
788         if (r) {
789                 kfree(pmd);
790                 return ERR_PTR(r);
791         }
792
793         r = __begin_transaction(pmd);
794         if (r < 0) {
795                 if (dm_pool_metadata_close(pmd) < 0)
796                         DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
797                 return ERR_PTR(r);
798         }
799
800         return pmd;
801 }
802
803 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
804 {
805         int r;
806         unsigned open_devices = 0;
807         struct dm_thin_device *td, *tmp;
808
809         down_read(&pmd->root_lock);
810         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
811                 if (td->open_count)
812                         open_devices++;
813                 else {
814                         list_del(&td->list);
815                         kfree(td);
816                 }
817         }
818         up_read(&pmd->root_lock);
819
820         if (open_devices) {
821                 DMERR("attempt to close pmd when %u device(s) are still open",
822                        open_devices);
823                 return -EBUSY;
824         }
825
826         r = __commit_transaction(pmd);
827         if (r < 0)
828                 DMWARN("%s: __commit_transaction() failed, error = %d",
829                        __func__, r);
830
831         __destroy_persistent_data_objects(pmd);
832         kfree(pmd);
833
834         return 0;
835 }
836
837 /*
838  * __open_device: Returns @td corresponding to device with id @dev,
839  * creating it if @create is set and incrementing @td->open_count.
840  * On failure, @td is undefined.
841  */
842 static int __open_device(struct dm_pool_metadata *pmd,
843                          dm_thin_id dev, int create,
844                          struct dm_thin_device **td)
845 {
846         int r, changed = 0;
847         struct dm_thin_device *td2;
848         uint64_t key = dev;
849         struct disk_device_details details_le;
850
851         /*
852          * If the device is already open, return it.
853          */
854         list_for_each_entry(td2, &pmd->thin_devices, list)
855                 if (td2->id == dev) {
856                         /*
857                          * May not create an already-open device.
858                          */
859                         if (create)
860                                 return -EEXIST;
861
862                         td2->open_count++;
863                         *td = td2;
864                         return 0;
865                 }
866
867         /*
868          * Check the device exists.
869          */
870         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
871                             &key, &details_le);
872         if (r) {
873                 if (r != -ENODATA || !create)
874                         return r;
875
876                 /*
877                  * Create new device.
878                  */
879                 changed = 1;
880                 details_le.mapped_blocks = 0;
881                 details_le.transaction_id = cpu_to_le64(pmd->trans_id);
882                 details_le.creation_time = cpu_to_le32(pmd->time);
883                 details_le.snapshotted_time = cpu_to_le32(pmd->time);
884         }
885
886         *td = kmalloc(sizeof(**td), GFP_NOIO);
887         if (!*td)
888                 return -ENOMEM;
889
890         (*td)->pmd = pmd;
891         (*td)->id = dev;
892         (*td)->open_count = 1;
893         (*td)->changed = changed;
894         (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
895         (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
896         (*td)->creation_time = le32_to_cpu(details_le.creation_time);
897         (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
898
899         list_add(&(*td)->list, &pmd->thin_devices);
900
901         return 0;
902 }
903
904 static void __close_device(struct dm_thin_device *td)
905 {
906         --td->open_count;
907 }
908
909 static int __create_thin(struct dm_pool_metadata *pmd,
910                          dm_thin_id dev)
911 {
912         int r;
913         dm_block_t dev_root;
914         uint64_t key = dev;
915         struct disk_device_details details_le;
916         struct dm_thin_device *td;
917         __le64 value;
918
919         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
920                             &key, &details_le);
921         if (!r)
922                 return -EEXIST;
923
924         /*
925          * Create an empty btree for the mappings.
926          */
927         r = dm_btree_empty(&pmd->bl_info, &dev_root);
928         if (r)
929                 return r;
930
931         /*
932          * Insert it into the main mapping tree.
933          */
934         value = cpu_to_le64(dev_root);
935         __dm_bless_for_disk(&value);
936         r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
937         if (r) {
938                 dm_btree_del(&pmd->bl_info, dev_root);
939                 return r;
940         }
941
942         r = __open_device(pmd, dev, 1, &td);
943         if (r) {
944                 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
945                 dm_btree_del(&pmd->bl_info, dev_root);
946                 return r;
947         }
948         __close_device(td);
949
950         return r;
951 }
952
953 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
954 {
955         int r;
956
957         down_write(&pmd->root_lock);
958         r = __create_thin(pmd, dev);
959         up_write(&pmd->root_lock);
960
961         return r;
962 }
963
964 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
965                                   struct dm_thin_device *snap,
966                                   dm_thin_id origin, uint32_t time)
967 {
968         int r;
969         struct dm_thin_device *td;
970
971         r = __open_device(pmd, origin, 0, &td);
972         if (r)
973                 return r;
974
975         td->changed = 1;
976         td->snapshotted_time = time;
977
978         snap->mapped_blocks = td->mapped_blocks;
979         snap->snapshotted_time = time;
980         __close_device(td);
981
982         return 0;
983 }
984
985 static int __create_snap(struct dm_pool_metadata *pmd,
986                          dm_thin_id dev, dm_thin_id origin)
987 {
988         int r;
989         dm_block_t origin_root;
990         uint64_t key = origin, dev_key = dev;
991         struct dm_thin_device *td;
992         struct disk_device_details details_le;
993         __le64 value;
994
995         /* check this device is unused */
996         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
997                             &dev_key, &details_le);
998         if (!r)
999                 return -EEXIST;
1000
1001         /* find the mapping tree for the origin */
1002         r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1003         if (r)
1004                 return r;
1005         origin_root = le64_to_cpu(value);
1006
1007         /* clone the origin, an inc will do */
1008         dm_tm_inc(pmd->tm, origin_root);
1009
1010         /* insert into the main mapping tree */
1011         value = cpu_to_le64(origin_root);
1012         __dm_bless_for_disk(&value);
1013         key = dev;
1014         r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1015         if (r) {
1016                 dm_tm_dec(pmd->tm, origin_root);
1017                 return r;
1018         }
1019
1020         pmd->time++;
1021
1022         r = __open_device(pmd, dev, 1, &td);
1023         if (r)
1024                 goto bad;
1025
1026         r = __set_snapshot_details(pmd, td, origin, pmd->time);
1027         __close_device(td);
1028
1029         if (r)
1030                 goto bad;
1031
1032         return 0;
1033
1034 bad:
1035         dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1036         dm_btree_remove(&pmd->details_info, pmd->details_root,
1037                         &key, &pmd->details_root);
1038         return r;
1039 }
1040
1041 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1042                                  dm_thin_id dev,
1043                                  dm_thin_id origin)
1044 {
1045         int r;
1046
1047         down_write(&pmd->root_lock);
1048         r = __create_snap(pmd, dev, origin);
1049         up_write(&pmd->root_lock);
1050
1051         return r;
1052 }
1053
1054 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1055 {
1056         int r;
1057         uint64_t key = dev;
1058         struct dm_thin_device *td;
1059
1060         /* TODO: failure should mark the transaction invalid */
1061         r = __open_device(pmd, dev, 0, &td);
1062         if (r)
1063                 return r;
1064
1065         if (td->open_count > 1) {
1066                 __close_device(td);
1067                 return -EBUSY;
1068         }
1069
1070         list_del(&td->list);
1071         kfree(td);
1072         r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1073                             &key, &pmd->details_root);
1074         if (r)
1075                 return r;
1076
1077         r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1078         if (r)
1079                 return r;
1080
1081         return 0;
1082 }
1083
1084 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1085                                dm_thin_id dev)
1086 {
1087         int r;
1088
1089         down_write(&pmd->root_lock);
1090         r = __delete_device(pmd, dev);
1091         up_write(&pmd->root_lock);
1092
1093         return r;
1094 }
1095
1096 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1097                                         uint64_t current_id,
1098                                         uint64_t new_id)
1099 {
1100         down_write(&pmd->root_lock);
1101         if (pmd->trans_id != current_id) {
1102                 up_write(&pmd->root_lock);
1103                 DMERR("mismatched transaction id");
1104                 return -EINVAL;
1105         }
1106
1107         pmd->trans_id = new_id;
1108         up_write(&pmd->root_lock);
1109
1110         return 0;
1111 }
1112
1113 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1114                                         uint64_t *result)
1115 {
1116         down_read(&pmd->root_lock);
1117         *result = pmd->trans_id;
1118         up_read(&pmd->root_lock);
1119
1120         return 0;
1121 }
1122
1123 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1124 {
1125         int r, inc;
1126         struct thin_disk_superblock *disk_super;
1127         struct dm_block *copy, *sblock;
1128         dm_block_t held_root;
1129
1130         /*
1131          * Copy the superblock.
1132          */
1133         dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1134         r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1135                                &sb_validator, &copy, &inc);
1136         if (r)
1137                 return r;
1138
1139         BUG_ON(!inc);
1140
1141         held_root = dm_block_location(copy);
1142         disk_super = dm_block_data(copy);
1143
1144         if (le64_to_cpu(disk_super->held_root)) {
1145                 DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1146
1147                 dm_tm_dec(pmd->tm, held_root);
1148                 dm_tm_unlock(pmd->tm, copy);
1149                 return -EBUSY;
1150         }
1151
1152         /*
1153          * Wipe the spacemap since we're not publishing this.
1154          */
1155         memset(&disk_super->data_space_map_root, 0,
1156                sizeof(disk_super->data_space_map_root));
1157         memset(&disk_super->metadata_space_map_root, 0,
1158                sizeof(disk_super->metadata_space_map_root));
1159
1160         /*
1161          * Increment the data structures that need to be preserved.
1162          */
1163         dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1164         dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1165         dm_tm_unlock(pmd->tm, copy);
1166
1167         /*
1168          * Write the held root into the superblock.
1169          */
1170         r = superblock_lock(pmd, &sblock);
1171         if (r) {
1172                 dm_tm_dec(pmd->tm, held_root);
1173                 return r;
1174         }
1175
1176         disk_super = dm_block_data(sblock);
1177         disk_super->held_root = cpu_to_le64(held_root);
1178         dm_bm_unlock(sblock);
1179         return 0;
1180 }
1181
1182 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1183 {
1184         int r;
1185
1186         down_write(&pmd->root_lock);
1187         r = __reserve_metadata_snap(pmd);
1188         up_write(&pmd->root_lock);
1189
1190         return r;
1191 }
1192
1193 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1194 {
1195         int r;
1196         struct thin_disk_superblock *disk_super;
1197         struct dm_block *sblock, *copy;
1198         dm_block_t held_root;
1199
1200         r = superblock_lock(pmd, &sblock);
1201         if (r)
1202                 return r;
1203
1204         disk_super = dm_block_data(sblock);
1205         held_root = le64_to_cpu(disk_super->held_root);
1206         disk_super->held_root = cpu_to_le64(0);
1207
1208         dm_bm_unlock(sblock);
1209
1210         if (!held_root) {
1211                 DMWARN("No pool metadata snapshot found: nothing to release.");
1212                 return -EINVAL;
1213         }
1214
1215         r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1216         if (r)
1217                 return r;
1218
1219         disk_super = dm_block_data(copy);
1220         dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->data_mapping_root));
1221         dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->device_details_root));
1222         dm_sm_dec_block(pmd->metadata_sm, held_root);
1223
1224         return dm_tm_unlock(pmd->tm, copy);
1225 }
1226
1227 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1228 {
1229         int r;
1230
1231         down_write(&pmd->root_lock);
1232         r = __release_metadata_snap(pmd);
1233         up_write(&pmd->root_lock);
1234
1235         return r;
1236 }
1237
1238 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1239                                dm_block_t *result)
1240 {
1241         int r;
1242         struct thin_disk_superblock *disk_super;
1243         struct dm_block *sblock;
1244
1245         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1246                             &sb_validator, &sblock);
1247         if (r)
1248                 return r;
1249
1250         disk_super = dm_block_data(sblock);
1251         *result = le64_to_cpu(disk_super->held_root);
1252
1253         return dm_bm_unlock(sblock);
1254 }
1255
1256 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1257                               dm_block_t *result)
1258 {
1259         int r;
1260
1261         down_read(&pmd->root_lock);
1262         r = __get_metadata_snap(pmd, result);
1263         up_read(&pmd->root_lock);
1264
1265         return r;
1266 }
1267
1268 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1269                              struct dm_thin_device **td)
1270 {
1271         int r;
1272
1273         down_write(&pmd->root_lock);
1274         r = __open_device(pmd, dev, 0, td);
1275         up_write(&pmd->root_lock);
1276
1277         return r;
1278 }
1279
1280 int dm_pool_close_thin_device(struct dm_thin_device *td)
1281 {
1282         down_write(&td->pmd->root_lock);
1283         __close_device(td);
1284         up_write(&td->pmd->root_lock);
1285
1286         return 0;
1287 }
1288
1289 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1290 {
1291         return td->id;
1292 }
1293
1294 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1295 {
1296         return td->snapshotted_time > time;
1297 }
1298
1299 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1300                        int can_block, struct dm_thin_lookup_result *result)
1301 {
1302         int r;
1303         uint64_t block_time = 0;
1304         __le64 value;
1305         struct dm_pool_metadata *pmd = td->pmd;
1306         dm_block_t keys[2] = { td->id, block };
1307
1308         if (can_block) {
1309                 down_read(&pmd->root_lock);
1310                 r = dm_btree_lookup(&pmd->info, pmd->root, keys, &value);
1311                 if (!r)
1312                         block_time = le64_to_cpu(value);
1313                 up_read(&pmd->root_lock);
1314
1315         } else if (down_read_trylock(&pmd->root_lock)) {
1316                 r = dm_btree_lookup(&pmd->nb_info, pmd->root, keys, &value);
1317                 if (!r)
1318                         block_time = le64_to_cpu(value);
1319                 up_read(&pmd->root_lock);
1320
1321         } else
1322                 return -EWOULDBLOCK;
1323
1324         if (!r) {
1325                 dm_block_t exception_block;
1326                 uint32_t exception_time;
1327                 unpack_block_time(block_time, &exception_block,
1328                                   &exception_time);
1329                 result->block = exception_block;
1330                 result->shared = __snapshotted_since(td, exception_time);
1331         }
1332
1333         return r;
1334 }
1335
1336 static int __insert(struct dm_thin_device *td, dm_block_t block,
1337                     dm_block_t data_block)
1338 {
1339         int r, inserted;
1340         __le64 value;
1341         struct dm_pool_metadata *pmd = td->pmd;
1342         dm_block_t keys[2] = { td->id, block };
1343
1344         value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1345         __dm_bless_for_disk(&value);
1346
1347         r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1348                                    &pmd->root, &inserted);
1349         if (r)
1350                 return r;
1351
1352         if (inserted) {
1353                 td->mapped_blocks++;
1354                 td->changed = 1;
1355         }
1356
1357         return 0;
1358 }
1359
1360 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1361                          dm_block_t data_block)
1362 {
1363         int r;
1364
1365         down_write(&td->pmd->root_lock);
1366         r = __insert(td, block, data_block);
1367         up_write(&td->pmd->root_lock);
1368
1369         return r;
1370 }
1371
1372 static int __remove(struct dm_thin_device *td, dm_block_t block)
1373 {
1374         int r;
1375         struct dm_pool_metadata *pmd = td->pmd;
1376         dm_block_t keys[2] = { td->id, block };
1377
1378         r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1379         if (r)
1380                 return r;
1381
1382         td->mapped_blocks--;
1383         td->changed = 1;
1384
1385         return 0;
1386 }
1387
1388 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1389 {
1390         int r;
1391
1392         down_write(&td->pmd->root_lock);
1393         r = __remove(td, block);
1394         up_write(&td->pmd->root_lock);
1395
1396         return r;
1397 }
1398
1399 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1400 {
1401         int r;
1402
1403         down_write(&pmd->root_lock);
1404         r = dm_sm_new_block(pmd->data_sm, result);
1405         up_write(&pmd->root_lock);
1406
1407         return r;
1408 }
1409
1410 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1411 {
1412         int r;
1413
1414         down_write(&pmd->root_lock);
1415
1416         r = __commit_transaction(pmd);
1417         if (r <= 0)
1418                 goto out;
1419
1420         /*
1421          * Open the next transaction.
1422          */
1423         r = __begin_transaction(pmd);
1424 out:
1425         up_write(&pmd->root_lock);
1426         return r;
1427 }
1428
1429 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1430 {
1431         int r;
1432
1433         down_read(&pmd->root_lock);
1434         r = dm_sm_get_nr_free(pmd->data_sm, result);
1435         up_read(&pmd->root_lock);
1436
1437         return r;
1438 }
1439
1440 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1441                                           dm_block_t *result)
1442 {
1443         int r;
1444
1445         down_read(&pmd->root_lock);
1446         r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1447         up_read(&pmd->root_lock);
1448
1449         return r;
1450 }
1451
1452 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1453                                   dm_block_t *result)
1454 {
1455         int r;
1456
1457         down_read(&pmd->root_lock);
1458         r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1459         up_read(&pmd->root_lock);
1460
1461         return r;
1462 }
1463
1464 int dm_pool_get_data_block_size(struct dm_pool_metadata *pmd, sector_t *result)
1465 {
1466         down_read(&pmd->root_lock);
1467         *result = pmd->data_block_size;
1468         up_read(&pmd->root_lock);
1469
1470         return 0;
1471 }
1472
1473 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1474 {
1475         int r;
1476
1477         down_read(&pmd->root_lock);
1478         r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1479         up_read(&pmd->root_lock);
1480
1481         return r;
1482 }
1483
1484 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1485 {
1486         struct dm_pool_metadata *pmd = td->pmd;
1487
1488         down_read(&pmd->root_lock);
1489         *result = td->mapped_blocks;
1490         up_read(&pmd->root_lock);
1491
1492         return 0;
1493 }
1494
1495 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1496 {
1497         int r;
1498         __le64 value_le;
1499         dm_block_t thin_root;
1500         struct dm_pool_metadata *pmd = td->pmd;
1501
1502         r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1503         if (r)
1504                 return r;
1505
1506         thin_root = le64_to_cpu(value_le);
1507
1508         return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1509 }
1510
1511 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1512                                      dm_block_t *result)
1513 {
1514         int r;
1515         struct dm_pool_metadata *pmd = td->pmd;
1516
1517         down_read(&pmd->root_lock);
1518         r = __highest_block(td, result);
1519         up_read(&pmd->root_lock);
1520
1521         return r;
1522 }
1523
1524 static int __resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1525 {
1526         int r;
1527         dm_block_t old_count;
1528
1529         r = dm_sm_get_nr_blocks(pmd->data_sm, &old_count);
1530         if (r)
1531                 return r;
1532
1533         if (new_count == old_count)
1534                 return 0;
1535
1536         if (new_count < old_count) {
1537                 DMERR("cannot reduce size of data device");
1538                 return -EINVAL;
1539         }
1540
1541         return dm_sm_extend(pmd->data_sm, new_count - old_count);
1542 }
1543
1544 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1545 {
1546         int r;
1547
1548         down_write(&pmd->root_lock);
1549         r = __resize_data_dev(pmd, new_count);
1550         up_write(&pmd->root_lock);
1551
1552         return r;
1553 }