asoc: samsung: hdmi: Increase the initialization delay
[cascardo/linux.git] / drivers / md / persistent-data / dm-btree.c
1 /*
2  * Copyright (C) 2011 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-btree-internal.h"
8 #include "dm-space-map.h"
9 #include "dm-transaction-manager.h"
10
11 #include <linux/export.h>
12 #include <linux/device-mapper.h>
13
14 #define DM_MSG_PREFIX "btree"
15
16 /*----------------------------------------------------------------
17  * Array manipulation
18  *--------------------------------------------------------------*/
19 static void memcpy_disk(void *dest, const void *src, size_t len)
20         __dm_written_to_disk(src)
21 {
22         memcpy(dest, src, len);
23         __dm_unbless_for_disk(src);
24 }
25
26 static void array_insert(void *base, size_t elt_size, unsigned nr_elts,
27                          unsigned index, void *elt)
28         __dm_written_to_disk(elt)
29 {
30         if (index < nr_elts)
31                 memmove(base + (elt_size * (index + 1)),
32                         base + (elt_size * index),
33                         (nr_elts - index) * elt_size);
34
35         memcpy_disk(base + (elt_size * index), elt, elt_size);
36 }
37
38 /*----------------------------------------------------------------*/
39
40 /* makes the assumption that no two keys are the same. */
41 static int bsearch(struct node *n, uint64_t key, int want_hi)
42 {
43         int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
44
45         while (hi - lo > 1) {
46                 int mid = lo + ((hi - lo) / 2);
47                 uint64_t mid_key = le64_to_cpu(n->keys[mid]);
48
49                 if (mid_key == key)
50                         return mid;
51
52                 if (mid_key < key)
53                         lo = mid;
54                 else
55                         hi = mid;
56         }
57
58         return want_hi ? hi : lo;
59 }
60
61 int lower_bound(struct node *n, uint64_t key)
62 {
63         return bsearch(n, key, 0);
64 }
65
66 void inc_children(struct dm_transaction_manager *tm, struct node *n,
67                   struct dm_btree_value_type *vt)
68 {
69         unsigned i;
70         uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
71
72         if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
73                 for (i = 0; i < nr_entries; i++)
74                         dm_tm_inc(tm, value64(n, i));
75         else if (vt->inc)
76                 for (i = 0; i < nr_entries; i++)
77                         vt->inc(vt->context, value_ptr(n, i));
78 }
79
80 static int insert_at(size_t value_size, struct node *node, unsigned index,
81                       uint64_t key, void *value)
82                       __dm_written_to_disk(value)
83 {
84         uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
85         __le64 key_le = cpu_to_le64(key);
86
87         if (index > nr_entries ||
88             index >= le32_to_cpu(node->header.max_entries)) {
89                 DMERR("too many entries in btree node for insert");
90                 __dm_unbless_for_disk(value);
91                 return -ENOMEM;
92         }
93
94         __dm_bless_for_disk(&key_le);
95
96         array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
97         array_insert(value_base(node), value_size, nr_entries, index, value);
98         node->header.nr_entries = cpu_to_le32(nr_entries + 1);
99
100         return 0;
101 }
102
103 /*----------------------------------------------------------------*/
104
105 /*
106  * We want 3n entries (for some n).  This works more nicely for repeated
107  * insert remove loops than (2n + 1).
108  */
109 static uint32_t calc_max_entries(size_t value_size, size_t block_size)
110 {
111         uint32_t total, n;
112         size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
113
114         block_size -= sizeof(struct node_header);
115         total = block_size / elt_size;
116         n = total / 3;          /* rounds down */
117
118         return 3 * n;
119 }
120
121 int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
122 {
123         int r;
124         struct dm_block *b;
125         struct node *n;
126         size_t block_size;
127         uint32_t max_entries;
128
129         r = new_block(info, &b);
130         if (r < 0)
131                 return r;
132
133         block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
134         max_entries = calc_max_entries(info->value_type.size, block_size);
135
136         n = dm_block_data(b);
137         memset(n, 0, block_size);
138         n->header.flags = cpu_to_le32(LEAF_NODE);
139         n->header.nr_entries = cpu_to_le32(0);
140         n->header.max_entries = cpu_to_le32(max_entries);
141         n->header.value_size = cpu_to_le32(info->value_type.size);
142
143         *root = dm_block_location(b);
144         return unlock_block(info, b);
145 }
146 EXPORT_SYMBOL_GPL(dm_btree_empty);
147
148 /*----------------------------------------------------------------*/
149
150 /*
151  * Deletion uses a recursive algorithm, since we have limited stack space
152  * we explicitly manage our own stack on the heap.
153  */
154 #define MAX_SPINE_DEPTH 64
155 struct frame {
156         struct dm_block *b;
157         struct node *n;
158         unsigned level;
159         unsigned nr_children;
160         unsigned current_child;
161 };
162
163 struct del_stack {
164         struct dm_transaction_manager *tm;
165         int top;
166         struct frame spine[MAX_SPINE_DEPTH];
167 };
168
169 static int top_frame(struct del_stack *s, struct frame **f)
170 {
171         if (s->top < 0) {
172                 DMERR("btree deletion stack empty");
173                 return -EINVAL;
174         }
175
176         *f = s->spine + s->top;
177
178         return 0;
179 }
180
181 static int unprocessed_frames(struct del_stack *s)
182 {
183         return s->top >= 0;
184 }
185
186 static int push_frame(struct del_stack *s, dm_block_t b, unsigned level)
187 {
188         int r;
189         uint32_t ref_count;
190
191         if (s->top >= MAX_SPINE_DEPTH - 1) {
192                 DMERR("btree deletion stack out of memory");
193                 return -ENOMEM;
194         }
195
196         r = dm_tm_ref(s->tm, b, &ref_count);
197         if (r)
198                 return r;
199
200         if (ref_count > 1)
201                 /*
202                  * This is a shared node, so we can just decrement it's
203                  * reference counter and leave the children.
204                  */
205                 dm_tm_dec(s->tm, b);
206
207         else {
208                 struct frame *f = s->spine + ++s->top;
209
210                 r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
211                 if (r) {
212                         s->top--;
213                         return r;
214                 }
215
216                 f->n = dm_block_data(f->b);
217                 f->level = level;
218                 f->nr_children = le32_to_cpu(f->n->header.nr_entries);
219                 f->current_child = 0;
220         }
221
222         return 0;
223 }
224
225 static void pop_frame(struct del_stack *s)
226 {
227         struct frame *f = s->spine + s->top--;
228
229         dm_tm_dec(s->tm, dm_block_location(f->b));
230         dm_tm_unlock(s->tm, f->b);
231 }
232
233 int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
234 {
235         int r;
236         struct del_stack *s;
237
238         s = kmalloc(sizeof(*s), GFP_KERNEL);
239         if (!s)
240                 return -ENOMEM;
241         s->tm = info->tm;
242         s->top = -1;
243
244         r = push_frame(s, root, 1);
245         if (r)
246                 goto out;
247
248         while (unprocessed_frames(s)) {
249                 uint32_t flags;
250                 struct frame *f;
251                 dm_block_t b;
252
253                 r = top_frame(s, &f);
254                 if (r)
255                         goto out;
256
257                 if (f->current_child >= f->nr_children) {
258                         pop_frame(s);
259                         continue;
260                 }
261
262                 flags = le32_to_cpu(f->n->header.flags);
263                 if (flags & INTERNAL_NODE) {
264                         b = value64(f->n, f->current_child);
265                         f->current_child++;
266                         r = push_frame(s, b, f->level);
267                         if (r)
268                                 goto out;
269
270                 } else if (f->level != (info->levels - 1)) {
271                         b = value64(f->n, f->current_child);
272                         f->current_child++;
273                         r = push_frame(s, b, f->level + 1);
274                         if (r)
275                                 goto out;
276
277                 } else {
278                         if (info->value_type.dec) {
279                                 unsigned i;
280
281                                 for (i = 0; i < f->nr_children; i++)
282                                         info->value_type.dec(info->value_type.context,
283                                                              value_ptr(f->n, i));
284                         }
285                         f->current_child = f->nr_children;
286                 }
287         }
288
289 out:
290         kfree(s);
291         return r;
292 }
293 EXPORT_SYMBOL_GPL(dm_btree_del);
294
295 /*----------------------------------------------------------------*/
296
297 static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
298                             int (*search_fn)(struct node *, uint64_t),
299                             uint64_t *result_key, void *v, size_t value_size)
300 {
301         int i, r;
302         uint32_t flags, nr_entries;
303
304         do {
305                 r = ro_step(s, block);
306                 if (r < 0)
307                         return r;
308
309                 i = search_fn(ro_node(s), key);
310
311                 flags = le32_to_cpu(ro_node(s)->header.flags);
312                 nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
313                 if (i < 0 || i >= nr_entries)
314                         return -ENODATA;
315
316                 if (flags & INTERNAL_NODE)
317                         block = value64(ro_node(s), i);
318
319         } while (!(flags & LEAF_NODE));
320
321         *result_key = le64_to_cpu(ro_node(s)->keys[i]);
322         memcpy(v, value_ptr(ro_node(s), i), value_size);
323
324         return 0;
325 }
326
327 int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
328                     uint64_t *keys, void *value_le)
329 {
330         unsigned level, last_level = info->levels - 1;
331         int r = -ENODATA;
332         uint64_t rkey;
333         __le64 internal_value_le;
334         struct ro_spine spine;
335
336         init_ro_spine(&spine, info);
337         for (level = 0; level < info->levels; level++) {
338                 size_t size;
339                 void *value_p;
340
341                 if (level == last_level) {
342                         value_p = value_le;
343                         size = info->value_type.size;
344
345                 } else {
346                         value_p = &internal_value_le;
347                         size = sizeof(uint64_t);
348                 }
349
350                 r = btree_lookup_raw(&spine, root, keys[level],
351                                      lower_bound, &rkey,
352                                      value_p, size);
353
354                 if (!r) {
355                         if (rkey != keys[level]) {
356                                 exit_ro_spine(&spine);
357                                 return -ENODATA;
358                         }
359                 } else {
360                         exit_ro_spine(&spine);
361                         return r;
362                 }
363
364                 root = le64_to_cpu(internal_value_le);
365         }
366         exit_ro_spine(&spine);
367
368         return r;
369 }
370 EXPORT_SYMBOL_GPL(dm_btree_lookup);
371
372 /*
373  * Splits a node by creating a sibling node and shifting half the nodes
374  * contents across.  Assumes there is a parent node, and it has room for
375  * another child.
376  *
377  * Before:
378  *        +--------+
379  *        | Parent |
380  *        +--------+
381  *           |
382  *           v
383  *      +----------+
384  *      | A ++++++ |
385  *      +----------+
386  *
387  *
388  * After:
389  *              +--------+
390  *              | Parent |
391  *              +--------+
392  *                |     |
393  *                v     +------+
394  *          +---------+        |
395  *          | A* +++  |        v
396  *          +---------+   +-------+
397  *                        | B +++ |
398  *                        +-------+
399  *
400  * Where A* is a shadow of A.
401  */
402 static int btree_split_sibling(struct shadow_spine *s, dm_block_t root,
403                                unsigned parent_index, uint64_t key)
404 {
405         int r;
406         size_t size;
407         unsigned nr_left, nr_right;
408         struct dm_block *left, *right, *parent;
409         struct node *ln, *rn, *pn;
410         __le64 location;
411
412         left = shadow_current(s);
413
414         r = new_block(s->info, &right);
415         if (r < 0)
416                 return r;
417
418         ln = dm_block_data(left);
419         rn = dm_block_data(right);
420
421         nr_left = le32_to_cpu(ln->header.nr_entries) / 2;
422         nr_right = le32_to_cpu(ln->header.nr_entries) - nr_left;
423
424         ln->header.nr_entries = cpu_to_le32(nr_left);
425
426         rn->header.flags = ln->header.flags;
427         rn->header.nr_entries = cpu_to_le32(nr_right);
428         rn->header.max_entries = ln->header.max_entries;
429         rn->header.value_size = ln->header.value_size;
430         memcpy(rn->keys, ln->keys + nr_left, nr_right * sizeof(rn->keys[0]));
431
432         size = le32_to_cpu(ln->header.flags) & INTERNAL_NODE ?
433                 sizeof(uint64_t) : s->info->value_type.size;
434         memcpy(value_ptr(rn, 0), value_ptr(ln, nr_left),
435                size * nr_right);
436
437         /*
438          * Patch up the parent
439          */
440         parent = shadow_parent(s);
441
442         pn = dm_block_data(parent);
443         location = cpu_to_le64(dm_block_location(left));
444         __dm_bless_for_disk(&location);
445         memcpy_disk(value_ptr(pn, parent_index),
446                     &location, sizeof(__le64));
447
448         location = cpu_to_le64(dm_block_location(right));
449         __dm_bless_for_disk(&location);
450
451         r = insert_at(sizeof(__le64), pn, parent_index + 1,
452                       le64_to_cpu(rn->keys[0]), &location);
453         if (r)
454                 return r;
455
456         if (key < le64_to_cpu(rn->keys[0])) {
457                 unlock_block(s->info, right);
458                 s->nodes[1] = left;
459         } else {
460                 unlock_block(s->info, left);
461                 s->nodes[1] = right;
462         }
463
464         return 0;
465 }
466
467 /*
468  * Splits a node by creating two new children beneath the given node.
469  *
470  * Before:
471  *        +----------+
472  *        | A ++++++ |
473  *        +----------+
474  *
475  *
476  * After:
477  *      +------------+
478  *      | A (shadow) |
479  *      +------------+
480  *          |   |
481  *   +------+   +----+
482  *   |               |
483  *   v               v
484  * +-------+     +-------+
485  * | B +++ |     | C +++ |
486  * +-------+     +-------+
487  */
488 static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
489 {
490         int r;
491         size_t size;
492         unsigned nr_left, nr_right;
493         struct dm_block *left, *right, *new_parent;
494         struct node *pn, *ln, *rn;
495         __le64 val;
496
497         new_parent = shadow_current(s);
498
499         r = new_block(s->info, &left);
500         if (r < 0)
501                 return r;
502
503         r = new_block(s->info, &right);
504         if (r < 0) {
505                 /* FIXME: put left */
506                 return r;
507         }
508
509         pn = dm_block_data(new_parent);
510         ln = dm_block_data(left);
511         rn = dm_block_data(right);
512
513         nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
514         nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
515
516         ln->header.flags = pn->header.flags;
517         ln->header.nr_entries = cpu_to_le32(nr_left);
518         ln->header.max_entries = pn->header.max_entries;
519         ln->header.value_size = pn->header.value_size;
520
521         rn->header.flags = pn->header.flags;
522         rn->header.nr_entries = cpu_to_le32(nr_right);
523         rn->header.max_entries = pn->header.max_entries;
524         rn->header.value_size = pn->header.value_size;
525
526         memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
527         memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
528
529         size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
530                 sizeof(__le64) : s->info->value_type.size;
531         memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size);
532         memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left),
533                nr_right * size);
534
535         /* new_parent should just point to l and r now */
536         pn->header.flags = cpu_to_le32(INTERNAL_NODE);
537         pn->header.nr_entries = cpu_to_le32(2);
538         pn->header.max_entries = cpu_to_le32(
539                 calc_max_entries(sizeof(__le64),
540                                  dm_bm_block_size(
541                                          dm_tm_get_bm(s->info->tm))));
542         pn->header.value_size = cpu_to_le32(sizeof(__le64));
543
544         val = cpu_to_le64(dm_block_location(left));
545         __dm_bless_for_disk(&val);
546         pn->keys[0] = ln->keys[0];
547         memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64));
548
549         val = cpu_to_le64(dm_block_location(right));
550         __dm_bless_for_disk(&val);
551         pn->keys[1] = rn->keys[0];
552         memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64));
553
554         /*
555          * rejig the spine.  This is ugly, since it knows too
556          * much about the spine
557          */
558         if (s->nodes[0] != new_parent) {
559                 unlock_block(s->info, s->nodes[0]);
560                 s->nodes[0] = new_parent;
561         }
562         if (key < le64_to_cpu(rn->keys[0])) {
563                 unlock_block(s->info, right);
564                 s->nodes[1] = left;
565         } else {
566                 unlock_block(s->info, left);
567                 s->nodes[1] = right;
568         }
569         s->count = 2;
570
571         return 0;
572 }
573
574 static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
575                             struct dm_btree_value_type *vt,
576                             uint64_t key, unsigned *index)
577 {
578         int r, i = *index, top = 1;
579         struct node *node;
580
581         for (;;) {
582                 r = shadow_step(s, root, vt);
583                 if (r < 0)
584                         return r;
585
586                 node = dm_block_data(shadow_current(s));
587
588                 /*
589                  * We have to patch up the parent node, ugly, but I don't
590                  * see a way to do this automatically as part of the spine
591                  * op.
592                  */
593                 if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
594                         __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
595
596                         __dm_bless_for_disk(&location);
597                         memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
598                                     &location, sizeof(__le64));
599                 }
600
601                 node = dm_block_data(shadow_current(s));
602
603                 if (node->header.nr_entries == node->header.max_entries) {
604                         if (top)
605                                 r = btree_split_beneath(s, key);
606                         else
607                                 r = btree_split_sibling(s, root, i, key);
608
609                         if (r < 0)
610                                 return r;
611                 }
612
613                 node = dm_block_data(shadow_current(s));
614
615                 i = lower_bound(node, key);
616
617                 if (le32_to_cpu(node->header.flags) & LEAF_NODE)
618                         break;
619
620                 if (i < 0) {
621                         /* change the bounds on the lowest key */
622                         node->keys[0] = cpu_to_le64(key);
623                         i = 0;
624                 }
625
626                 root = value64(node, i);
627                 top = 0;
628         }
629
630         if (i < 0 || le64_to_cpu(node->keys[i]) != key)
631                 i++;
632
633         *index = i;
634         return 0;
635 }
636
637 static int insert(struct dm_btree_info *info, dm_block_t root,
638                   uint64_t *keys, void *value, dm_block_t *new_root,
639                   int *inserted)
640                   __dm_written_to_disk(value)
641 {
642         int r, need_insert;
643         unsigned level, index = -1, last_level = info->levels - 1;
644         dm_block_t block = root;
645         struct shadow_spine spine;
646         struct node *n;
647         struct dm_btree_value_type le64_type;
648
649         le64_type.context = NULL;
650         le64_type.size = sizeof(__le64);
651         le64_type.inc = NULL;
652         le64_type.dec = NULL;
653         le64_type.equal = NULL;
654
655         init_shadow_spine(&spine, info);
656
657         for (level = 0; level < (info->levels - 1); level++) {
658                 r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
659                 if (r < 0)
660                         goto bad;
661
662                 n = dm_block_data(shadow_current(&spine));
663                 need_insert = ((index >= le32_to_cpu(n->header.nr_entries)) ||
664                                (le64_to_cpu(n->keys[index]) != keys[level]));
665
666                 if (need_insert) {
667                         dm_block_t new_tree;
668                         __le64 new_le;
669
670                         r = dm_btree_empty(info, &new_tree);
671                         if (r < 0)
672                                 goto bad;
673
674                         new_le = cpu_to_le64(new_tree);
675                         __dm_bless_for_disk(&new_le);
676
677                         r = insert_at(sizeof(uint64_t), n, index,
678                                       keys[level], &new_le);
679                         if (r)
680                                 goto bad;
681                 }
682
683                 if (level < last_level)
684                         block = value64(n, index);
685         }
686
687         r = btree_insert_raw(&spine, block, &info->value_type,
688                              keys[level], &index);
689         if (r < 0)
690                 goto bad;
691
692         n = dm_block_data(shadow_current(&spine));
693         need_insert = ((index >= le32_to_cpu(n->header.nr_entries)) ||
694                        (le64_to_cpu(n->keys[index]) != keys[level]));
695
696         if (need_insert) {
697                 if (inserted)
698                         *inserted = 1;
699
700                 r = insert_at(info->value_type.size, n, index,
701                               keys[level], value);
702                 if (r)
703                         goto bad_unblessed;
704         } else {
705                 if (inserted)
706                         *inserted = 0;
707
708                 if (info->value_type.dec &&
709                     (!info->value_type.equal ||
710                      !info->value_type.equal(
711                              info->value_type.context,
712                              value_ptr(n, index),
713                              value))) {
714                         info->value_type.dec(info->value_type.context,
715                                              value_ptr(n, index));
716                 }
717                 memcpy_disk(value_ptr(n, index),
718                             value, info->value_type.size);
719         }
720
721         *new_root = shadow_root(&spine);
722         exit_shadow_spine(&spine);
723
724         return 0;
725
726 bad:
727         __dm_unbless_for_disk(value);
728 bad_unblessed:
729         exit_shadow_spine(&spine);
730         return r;
731 }
732
733 int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
734                     uint64_t *keys, void *value, dm_block_t *new_root)
735                     __dm_written_to_disk(value)
736 {
737         return insert(info, root, keys, value, new_root, NULL);
738 }
739 EXPORT_SYMBOL_GPL(dm_btree_insert);
740
741 int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
742                            uint64_t *keys, void *value, dm_block_t *new_root,
743                            int *inserted)
744                            __dm_written_to_disk(value)
745 {
746         return insert(info, root, keys, value, new_root, inserted);
747 }
748 EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
749
750 /*----------------------------------------------------------------*/
751
752 static int find_highest_key(struct ro_spine *s, dm_block_t block,
753                             uint64_t *result_key, dm_block_t *next_block)
754 {
755         int i, r;
756         uint32_t flags;
757
758         do {
759                 r = ro_step(s, block);
760                 if (r < 0)
761                         return r;
762
763                 flags = le32_to_cpu(ro_node(s)->header.flags);
764                 i = le32_to_cpu(ro_node(s)->header.nr_entries);
765                 if (!i)
766                         return -ENODATA;
767                 else
768                         i--;
769
770                 *result_key = le64_to_cpu(ro_node(s)->keys[i]);
771                 if (next_block || flags & INTERNAL_NODE)
772                         block = value64(ro_node(s), i);
773
774         } while (flags & INTERNAL_NODE);
775
776         if (next_block)
777                 *next_block = block;
778         return 0;
779 }
780
781 int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
782                               uint64_t *result_keys)
783 {
784         int r = 0, count = 0, level;
785         struct ro_spine spine;
786
787         init_ro_spine(&spine, info);
788         for (level = 0; level < info->levels; level++) {
789                 r = find_highest_key(&spine, root, result_keys + level,
790                                      level == info->levels - 1 ? NULL : &root);
791                 if (r == -ENODATA) {
792                         r = 0;
793                         break;
794
795                 } else if (r)
796                         break;
797
798                 count++;
799         }
800         exit_ro_spine(&spine);
801
802         return r ? r : count;
803 }
804 EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);