MD: fix null pointer deference
[cascardo/linux.git] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define NR_RAID1_BIOS 256
48
49 /* when we get a read error on a read-only array, we redirect to another
50  * device without failing the first device, or trying to over-write to
51  * correct the read error.  To keep track of bad blocks on a per-bio
52  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53  */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56  * bad-block marking which must be done from process context.  So we record
57  * the success by setting devs[n].bio to IO_MADE_GOOD
58  */
59 #define IO_MADE_GOOD ((struct bio *)2)
60
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
63 /* When there are this many requests queue to be written by
64  * the raid1 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70                           sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75         struct pool_info *pi = data;
76         int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77
78         /* allocate a r1bio with room for raid_disks entries in the bios array */
79         return kzalloc(size, gfp_flags);
80 }
81
82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84         kfree(r1_bio);
85 }
86
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
94 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
95 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
96
97 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
98 {
99         struct pool_info *pi = data;
100         struct r1bio *r1_bio;
101         struct bio *bio;
102         int need_pages;
103         int i, j;
104
105         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
106         if (!r1_bio)
107                 return NULL;
108
109         /*
110          * Allocate bios : 1 for reading, n-1 for writing
111          */
112         for (j = pi->raid_disks ; j-- ; ) {
113                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
114                 if (!bio)
115                         goto out_free_bio;
116                 r1_bio->bios[j] = bio;
117         }
118         /*
119          * Allocate RESYNC_PAGES data pages and attach them to
120          * the first bio.
121          * If this is a user-requested check/repair, allocate
122          * RESYNC_PAGES for each bio.
123          */
124         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
125                 need_pages = pi->raid_disks;
126         else
127                 need_pages = 1;
128         for (j = 0; j < need_pages; j++) {
129                 bio = r1_bio->bios[j];
130                 bio->bi_vcnt = RESYNC_PAGES;
131
132                 if (bio_alloc_pages(bio, gfp_flags))
133                         goto out_free_pages;
134         }
135         /* If not user-requests, copy the page pointers to all bios */
136         if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
137                 for (i=0; i<RESYNC_PAGES ; i++)
138                         for (j=1; j<pi->raid_disks; j++)
139                                 r1_bio->bios[j]->bi_io_vec[i].bv_page =
140                                         r1_bio->bios[0]->bi_io_vec[i].bv_page;
141         }
142
143         r1_bio->master_bio = NULL;
144
145         return r1_bio;
146
147 out_free_pages:
148         while (--j >= 0) {
149                 struct bio_vec *bv;
150
151                 bio_for_each_segment_all(bv, r1_bio->bios[j], i)
152                         __free_page(bv->bv_page);
153         }
154
155 out_free_bio:
156         while (++j < pi->raid_disks)
157                 bio_put(r1_bio->bios[j]);
158         r1bio_pool_free(r1_bio, data);
159         return NULL;
160 }
161
162 static void r1buf_pool_free(void *__r1_bio, void *data)
163 {
164         struct pool_info *pi = data;
165         int i,j;
166         struct r1bio *r1bio = __r1_bio;
167
168         for (i = 0; i < RESYNC_PAGES; i++)
169                 for (j = pi->raid_disks; j-- ;) {
170                         if (j == 0 ||
171                             r1bio->bios[j]->bi_io_vec[i].bv_page !=
172                             r1bio->bios[0]->bi_io_vec[i].bv_page)
173                                 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
174                 }
175         for (i=0 ; i < pi->raid_disks; i++)
176                 bio_put(r1bio->bios[i]);
177
178         r1bio_pool_free(r1bio, data);
179 }
180
181 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
182 {
183         int i;
184
185         for (i = 0; i < conf->raid_disks * 2; i++) {
186                 struct bio **bio = r1_bio->bios + i;
187                 if (!BIO_SPECIAL(*bio))
188                         bio_put(*bio);
189                 *bio = NULL;
190         }
191 }
192
193 static void free_r1bio(struct r1bio *r1_bio)
194 {
195         struct r1conf *conf = r1_bio->mddev->private;
196
197         put_all_bios(conf, r1_bio);
198         mempool_free(r1_bio, conf->r1bio_pool);
199 }
200
201 static void put_buf(struct r1bio *r1_bio)
202 {
203         struct r1conf *conf = r1_bio->mddev->private;
204         int i;
205
206         for (i = 0; i < conf->raid_disks * 2; i++) {
207                 struct bio *bio = r1_bio->bios[i];
208                 if (bio->bi_end_io)
209                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
210         }
211
212         mempool_free(r1_bio, conf->r1buf_pool);
213
214         lower_barrier(conf);
215 }
216
217 static void reschedule_retry(struct r1bio *r1_bio)
218 {
219         unsigned long flags;
220         struct mddev *mddev = r1_bio->mddev;
221         struct r1conf *conf = mddev->private;
222
223         spin_lock_irqsave(&conf->device_lock, flags);
224         list_add(&r1_bio->retry_list, &conf->retry_list);
225         conf->nr_queued ++;
226         spin_unlock_irqrestore(&conf->device_lock, flags);
227
228         wake_up(&conf->wait_barrier);
229         md_wakeup_thread(mddev->thread);
230 }
231
232 /*
233  * raid_end_bio_io() is called when we have finished servicing a mirrored
234  * operation and are ready to return a success/failure code to the buffer
235  * cache layer.
236  */
237 static void call_bio_endio(struct r1bio *r1_bio)
238 {
239         struct bio *bio = r1_bio->master_bio;
240         int done;
241         struct r1conf *conf = r1_bio->mddev->private;
242         sector_t start_next_window = r1_bio->start_next_window;
243         sector_t bi_sector = bio->bi_iter.bi_sector;
244
245         if (bio->bi_phys_segments) {
246                 unsigned long flags;
247                 spin_lock_irqsave(&conf->device_lock, flags);
248                 bio->bi_phys_segments--;
249                 done = (bio->bi_phys_segments == 0);
250                 spin_unlock_irqrestore(&conf->device_lock, flags);
251                 /*
252                  * make_request() might be waiting for
253                  * bi_phys_segments to decrease
254                  */
255                 wake_up(&conf->wait_barrier);
256         } else
257                 done = 1;
258
259         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
260                 bio->bi_error = -EIO;
261
262         if (done) {
263                 bio_endio(bio);
264                 /*
265                  * Wake up any possible resync thread that waits for the device
266                  * to go idle.
267                  */
268                 allow_barrier(conf, start_next_window, bi_sector);
269         }
270 }
271
272 static void raid_end_bio_io(struct r1bio *r1_bio)
273 {
274         struct bio *bio = r1_bio->master_bio;
275
276         /* if nobody has done the final endio yet, do it now */
277         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
278                 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
279                          (bio_data_dir(bio) == WRITE) ? "write" : "read",
280                          (unsigned long long) bio->bi_iter.bi_sector,
281                          (unsigned long long) bio_end_sector(bio) - 1);
282
283                 call_bio_endio(r1_bio);
284         }
285         free_r1bio(r1_bio);
286 }
287
288 /*
289  * Update disk head position estimator based on IRQ completion info.
290  */
291 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
292 {
293         struct r1conf *conf = r1_bio->mddev->private;
294
295         conf->mirrors[disk].head_position =
296                 r1_bio->sector + (r1_bio->sectors);
297 }
298
299 /*
300  * Find the disk number which triggered given bio
301  */
302 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
303 {
304         int mirror;
305         struct r1conf *conf = r1_bio->mddev->private;
306         int raid_disks = conf->raid_disks;
307
308         for (mirror = 0; mirror < raid_disks * 2; mirror++)
309                 if (r1_bio->bios[mirror] == bio)
310                         break;
311
312         BUG_ON(mirror == raid_disks * 2);
313         update_head_pos(mirror, r1_bio);
314
315         return mirror;
316 }
317
318 static void raid1_end_read_request(struct bio *bio)
319 {
320         int uptodate = !bio->bi_error;
321         struct r1bio *r1_bio = bio->bi_private;
322         struct r1conf *conf = r1_bio->mddev->private;
323         struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
324
325         /*
326          * this branch is our 'one mirror IO has finished' event handler:
327          */
328         update_head_pos(r1_bio->read_disk, r1_bio);
329
330         if (uptodate)
331                 set_bit(R1BIO_Uptodate, &r1_bio->state);
332         else {
333                 /* If all other devices have failed, we want to return
334                  * the error upwards rather than fail the last device.
335                  * Here we redefine "uptodate" to mean "Don't want to retry"
336                  */
337                 unsigned long flags;
338                 spin_lock_irqsave(&conf->device_lock, flags);
339                 if (r1_bio->mddev->degraded == conf->raid_disks ||
340                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
341                      test_bit(In_sync, &rdev->flags)))
342                         uptodate = 1;
343                 spin_unlock_irqrestore(&conf->device_lock, flags);
344         }
345
346         if (uptodate) {
347                 raid_end_bio_io(r1_bio);
348                 rdev_dec_pending(rdev, conf->mddev);
349         } else {
350                 /*
351                  * oops, read error:
352                  */
353                 char b[BDEVNAME_SIZE];
354                 printk_ratelimited(
355                         KERN_ERR "md/raid1:%s: %s: "
356                         "rescheduling sector %llu\n",
357                         mdname(conf->mddev),
358                         bdevname(rdev->bdev,
359                                  b),
360                         (unsigned long long)r1_bio->sector);
361                 set_bit(R1BIO_ReadError, &r1_bio->state);
362                 reschedule_retry(r1_bio);
363                 /* don't drop the reference on read_disk yet */
364         }
365 }
366
367 static void close_write(struct r1bio *r1_bio)
368 {
369         /* it really is the end of this request */
370         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
371                 /* free extra copy of the data pages */
372                 int i = r1_bio->behind_page_count;
373                 while (i--)
374                         safe_put_page(r1_bio->behind_bvecs[i].bv_page);
375                 kfree(r1_bio->behind_bvecs);
376                 r1_bio->behind_bvecs = NULL;
377         }
378         /* clear the bitmap if all writes complete successfully */
379         bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
380                         r1_bio->sectors,
381                         !test_bit(R1BIO_Degraded, &r1_bio->state),
382                         test_bit(R1BIO_BehindIO, &r1_bio->state));
383         md_write_end(r1_bio->mddev);
384 }
385
386 static void r1_bio_write_done(struct r1bio *r1_bio)
387 {
388         if (!atomic_dec_and_test(&r1_bio->remaining))
389                 return;
390
391         if (test_bit(R1BIO_WriteError, &r1_bio->state))
392                 reschedule_retry(r1_bio);
393         else {
394                 close_write(r1_bio);
395                 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
396                         reschedule_retry(r1_bio);
397                 else
398                         raid_end_bio_io(r1_bio);
399         }
400 }
401
402 static void raid1_end_write_request(struct bio *bio)
403 {
404         struct r1bio *r1_bio = bio->bi_private;
405         int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
406         struct r1conf *conf = r1_bio->mddev->private;
407         struct bio *to_put = NULL;
408         int mirror = find_bio_disk(r1_bio, bio);
409         struct md_rdev *rdev = conf->mirrors[mirror].rdev;
410
411         /*
412          * 'one mirror IO has finished' event handler:
413          */
414         if (bio->bi_error) {
415                 set_bit(WriteErrorSeen, &rdev->flags);
416                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
417                         set_bit(MD_RECOVERY_NEEDED, &
418                                 conf->mddev->recovery);
419
420                 set_bit(R1BIO_WriteError, &r1_bio->state);
421         } else {
422                 /*
423                  * Set R1BIO_Uptodate in our master bio, so that we
424                  * will return a good error code for to the higher
425                  * levels even if IO on some other mirrored buffer
426                  * fails.
427                  *
428                  * The 'master' represents the composite IO operation
429                  * to user-side. So if something waits for IO, then it
430                  * will wait for the 'master' bio.
431                  */
432                 sector_t first_bad;
433                 int bad_sectors;
434
435                 r1_bio->bios[mirror] = NULL;
436                 to_put = bio;
437                 /*
438                  * Do not set R1BIO_Uptodate if the current device is
439                  * rebuilding or Faulty. This is because we cannot use
440                  * such device for properly reading the data back (we could
441                  * potentially use it, if the current write would have felt
442                  * before rdev->recovery_offset, but for simplicity we don't
443                  * check this here.
444                  */
445                 if (test_bit(In_sync, &rdev->flags) &&
446                     !test_bit(Faulty, &rdev->flags))
447                         set_bit(R1BIO_Uptodate, &r1_bio->state);
448
449                 /* Maybe we can clear some bad blocks. */
450                 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
451                                 &first_bad, &bad_sectors)) {
452                         r1_bio->bios[mirror] = IO_MADE_GOOD;
453                         set_bit(R1BIO_MadeGood, &r1_bio->state);
454                 }
455         }
456
457         if (behind) {
458                 if (test_bit(WriteMostly, &rdev->flags))
459                         atomic_dec(&r1_bio->behind_remaining);
460
461                 /*
462                  * In behind mode, we ACK the master bio once the I/O
463                  * has safely reached all non-writemostly
464                  * disks. Setting the Returned bit ensures that this
465                  * gets done only once -- we don't ever want to return
466                  * -EIO here, instead we'll wait
467                  */
468                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
469                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
470                         /* Maybe we can return now */
471                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
472                                 struct bio *mbio = r1_bio->master_bio;
473                                 pr_debug("raid1: behind end write sectors"
474                                          " %llu-%llu\n",
475                                          (unsigned long long) mbio->bi_iter.bi_sector,
476                                          (unsigned long long) bio_end_sector(mbio) - 1);
477                                 call_bio_endio(r1_bio);
478                         }
479                 }
480         }
481         if (r1_bio->bios[mirror] == NULL)
482                 rdev_dec_pending(rdev, conf->mddev);
483
484         /*
485          * Let's see if all mirrored write operations have finished
486          * already.
487          */
488         r1_bio_write_done(r1_bio);
489
490         if (to_put)
491                 bio_put(to_put);
492 }
493
494 /*
495  * This routine returns the disk from which the requested read should
496  * be done. There is a per-array 'next expected sequential IO' sector
497  * number - if this matches on the next IO then we use the last disk.
498  * There is also a per-disk 'last know head position' sector that is
499  * maintained from IRQ contexts, both the normal and the resync IO
500  * completion handlers update this position correctly. If there is no
501  * perfect sequential match then we pick the disk whose head is closest.
502  *
503  * If there are 2 mirrors in the same 2 devices, performance degrades
504  * because position is mirror, not device based.
505  *
506  * The rdev for the device selected will have nr_pending incremented.
507  */
508 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
509 {
510         const sector_t this_sector = r1_bio->sector;
511         int sectors;
512         int best_good_sectors;
513         int best_disk, best_dist_disk, best_pending_disk;
514         int has_nonrot_disk;
515         int disk;
516         sector_t best_dist;
517         unsigned int min_pending;
518         struct md_rdev *rdev;
519         int choose_first;
520         int choose_next_idle;
521
522         rcu_read_lock();
523         /*
524          * Check if we can balance. We can balance on the whole
525          * device if no resync is going on, or below the resync window.
526          * We take the first readable disk when above the resync window.
527          */
528  retry:
529         sectors = r1_bio->sectors;
530         best_disk = -1;
531         best_dist_disk = -1;
532         best_dist = MaxSector;
533         best_pending_disk = -1;
534         min_pending = UINT_MAX;
535         best_good_sectors = 0;
536         has_nonrot_disk = 0;
537         choose_next_idle = 0;
538
539         if ((conf->mddev->recovery_cp < this_sector + sectors) ||
540             (mddev_is_clustered(conf->mddev) &&
541             md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
542                     this_sector + sectors)))
543                 choose_first = 1;
544         else
545                 choose_first = 0;
546
547         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
548                 sector_t dist;
549                 sector_t first_bad;
550                 int bad_sectors;
551                 unsigned int pending;
552                 bool nonrot;
553
554                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
555                 if (r1_bio->bios[disk] == IO_BLOCKED
556                     || rdev == NULL
557                     || test_bit(Faulty, &rdev->flags))
558                         continue;
559                 if (!test_bit(In_sync, &rdev->flags) &&
560                     rdev->recovery_offset < this_sector + sectors)
561                         continue;
562                 if (test_bit(WriteMostly, &rdev->flags)) {
563                         /* Don't balance among write-mostly, just
564                          * use the first as a last resort */
565                         if (best_dist_disk < 0) {
566                                 if (is_badblock(rdev, this_sector, sectors,
567                                                 &first_bad, &bad_sectors)) {
568                                         if (first_bad <= this_sector)
569                                                 /* Cannot use this */
570                                                 continue;
571                                         best_good_sectors = first_bad - this_sector;
572                                 } else
573                                         best_good_sectors = sectors;
574                                 best_dist_disk = disk;
575                                 best_pending_disk = disk;
576                         }
577                         continue;
578                 }
579                 /* This is a reasonable device to use.  It might
580                  * even be best.
581                  */
582                 if (is_badblock(rdev, this_sector, sectors,
583                                 &first_bad, &bad_sectors)) {
584                         if (best_dist < MaxSector)
585                                 /* already have a better device */
586                                 continue;
587                         if (first_bad <= this_sector) {
588                                 /* cannot read here. If this is the 'primary'
589                                  * device, then we must not read beyond
590                                  * bad_sectors from another device..
591                                  */
592                                 bad_sectors -= (this_sector - first_bad);
593                                 if (choose_first && sectors > bad_sectors)
594                                         sectors = bad_sectors;
595                                 if (best_good_sectors > sectors)
596                                         best_good_sectors = sectors;
597
598                         } else {
599                                 sector_t good_sectors = first_bad - this_sector;
600                                 if (good_sectors > best_good_sectors) {
601                                         best_good_sectors = good_sectors;
602                                         best_disk = disk;
603                                 }
604                                 if (choose_first)
605                                         break;
606                         }
607                         continue;
608                 } else
609                         best_good_sectors = sectors;
610
611                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
612                 has_nonrot_disk |= nonrot;
613                 pending = atomic_read(&rdev->nr_pending);
614                 dist = abs(this_sector - conf->mirrors[disk].head_position);
615                 if (choose_first) {
616                         best_disk = disk;
617                         break;
618                 }
619                 /* Don't change to another disk for sequential reads */
620                 if (conf->mirrors[disk].next_seq_sect == this_sector
621                     || dist == 0) {
622                         int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
623                         struct raid1_info *mirror = &conf->mirrors[disk];
624
625                         best_disk = disk;
626                         /*
627                          * If buffered sequential IO size exceeds optimal
628                          * iosize, check if there is idle disk. If yes, choose
629                          * the idle disk. read_balance could already choose an
630                          * idle disk before noticing it's a sequential IO in
631                          * this disk. This doesn't matter because this disk
632                          * will idle, next time it will be utilized after the
633                          * first disk has IO size exceeds optimal iosize. In
634                          * this way, iosize of the first disk will be optimal
635                          * iosize at least. iosize of the second disk might be
636                          * small, but not a big deal since when the second disk
637                          * starts IO, the first disk is likely still busy.
638                          */
639                         if (nonrot && opt_iosize > 0 &&
640                             mirror->seq_start != MaxSector &&
641                             mirror->next_seq_sect > opt_iosize &&
642                             mirror->next_seq_sect - opt_iosize >=
643                             mirror->seq_start) {
644                                 choose_next_idle = 1;
645                                 continue;
646                         }
647                         break;
648                 }
649                 /* If device is idle, use it */
650                 if (pending == 0) {
651                         best_disk = disk;
652                         break;
653                 }
654
655                 if (choose_next_idle)
656                         continue;
657
658                 if (min_pending > pending) {
659                         min_pending = pending;
660                         best_pending_disk = disk;
661                 }
662
663                 if (dist < best_dist) {
664                         best_dist = dist;
665                         best_dist_disk = disk;
666                 }
667         }
668
669         /*
670          * If all disks are rotational, choose the closest disk. If any disk is
671          * non-rotational, choose the disk with less pending request even the
672          * disk is rotational, which might/might not be optimal for raids with
673          * mixed ratation/non-rotational disks depending on workload.
674          */
675         if (best_disk == -1) {
676                 if (has_nonrot_disk)
677                         best_disk = best_pending_disk;
678                 else
679                         best_disk = best_dist_disk;
680         }
681
682         if (best_disk >= 0) {
683                 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
684                 if (!rdev)
685                         goto retry;
686                 atomic_inc(&rdev->nr_pending);
687                 sectors = best_good_sectors;
688
689                 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
690                         conf->mirrors[best_disk].seq_start = this_sector;
691
692                 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
693         }
694         rcu_read_unlock();
695         *max_sectors = sectors;
696
697         return best_disk;
698 }
699
700 static int raid1_congested(struct mddev *mddev, int bits)
701 {
702         struct r1conf *conf = mddev->private;
703         int i, ret = 0;
704
705         if ((bits & (1 << WB_async_congested)) &&
706             conf->pending_count >= max_queued_requests)
707                 return 1;
708
709         rcu_read_lock();
710         for (i = 0; i < conf->raid_disks * 2; i++) {
711                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
712                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
713                         struct request_queue *q = bdev_get_queue(rdev->bdev);
714
715                         BUG_ON(!q);
716
717                         /* Note the '|| 1' - when read_balance prefers
718                          * non-congested targets, it can be removed
719                          */
720                         if ((bits & (1 << WB_async_congested)) || 1)
721                                 ret |= bdi_congested(&q->backing_dev_info, bits);
722                         else
723                                 ret &= bdi_congested(&q->backing_dev_info, bits);
724                 }
725         }
726         rcu_read_unlock();
727         return ret;
728 }
729
730 static void flush_pending_writes(struct r1conf *conf)
731 {
732         /* Any writes that have been queued but are awaiting
733          * bitmap updates get flushed here.
734          */
735         spin_lock_irq(&conf->device_lock);
736
737         if (conf->pending_bio_list.head) {
738                 struct bio *bio;
739                 bio = bio_list_get(&conf->pending_bio_list);
740                 conf->pending_count = 0;
741                 spin_unlock_irq(&conf->device_lock);
742                 /* flush any pending bitmap writes to
743                  * disk before proceeding w/ I/O */
744                 bitmap_unplug(conf->mddev->bitmap);
745                 wake_up(&conf->wait_barrier);
746
747                 while (bio) { /* submit pending writes */
748                         struct bio *next = bio->bi_next;
749                         bio->bi_next = NULL;
750                         if (unlikely((bio->bi_rw & REQ_DISCARD) &&
751                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
752                                 /* Just ignore it */
753                                 bio_endio(bio);
754                         else
755                                 generic_make_request(bio);
756                         bio = next;
757                 }
758         } else
759                 spin_unlock_irq(&conf->device_lock);
760 }
761
762 /* Barriers....
763  * Sometimes we need to suspend IO while we do something else,
764  * either some resync/recovery, or reconfigure the array.
765  * To do this we raise a 'barrier'.
766  * The 'barrier' is a counter that can be raised multiple times
767  * to count how many activities are happening which preclude
768  * normal IO.
769  * We can only raise the barrier if there is no pending IO.
770  * i.e. if nr_pending == 0.
771  * We choose only to raise the barrier if no-one is waiting for the
772  * barrier to go down.  This means that as soon as an IO request
773  * is ready, no other operations which require a barrier will start
774  * until the IO request has had a chance.
775  *
776  * So: regular IO calls 'wait_barrier'.  When that returns there
777  *    is no backgroup IO happening,  It must arrange to call
778  *    allow_barrier when it has finished its IO.
779  * backgroup IO calls must call raise_barrier.  Once that returns
780  *    there is no normal IO happeing.  It must arrange to call
781  *    lower_barrier when the particular background IO completes.
782  */
783 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
784 {
785         spin_lock_irq(&conf->resync_lock);
786
787         /* Wait until no block IO is waiting */
788         wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
789                             conf->resync_lock);
790
791         /* block any new IO from starting */
792         conf->barrier++;
793         conf->next_resync = sector_nr;
794
795         /* For these conditions we must wait:
796          * A: while the array is in frozen state
797          * B: while barrier >= RESYNC_DEPTH, meaning resync reach
798          *    the max count which allowed.
799          * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
800          *    next resync will reach to the window which normal bios are
801          *    handling.
802          * D: while there are any active requests in the current window.
803          */
804         wait_event_lock_irq(conf->wait_barrier,
805                             !conf->array_frozen &&
806                             conf->barrier < RESYNC_DEPTH &&
807                             conf->current_window_requests == 0 &&
808                             (conf->start_next_window >=
809                              conf->next_resync + RESYNC_SECTORS),
810                             conf->resync_lock);
811
812         conf->nr_pending++;
813         spin_unlock_irq(&conf->resync_lock);
814 }
815
816 static void lower_barrier(struct r1conf *conf)
817 {
818         unsigned long flags;
819         BUG_ON(conf->barrier <= 0);
820         spin_lock_irqsave(&conf->resync_lock, flags);
821         conf->barrier--;
822         conf->nr_pending--;
823         spin_unlock_irqrestore(&conf->resync_lock, flags);
824         wake_up(&conf->wait_barrier);
825 }
826
827 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
828 {
829         bool wait = false;
830
831         if (conf->array_frozen || !bio)
832                 wait = true;
833         else if (conf->barrier && bio_data_dir(bio) == WRITE) {
834                 if ((conf->mddev->curr_resync_completed
835                      >= bio_end_sector(bio)) ||
836                     (conf->next_resync + NEXT_NORMALIO_DISTANCE
837                      <= bio->bi_iter.bi_sector))
838                         wait = false;
839                 else
840                         wait = true;
841         }
842
843         return wait;
844 }
845
846 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
847 {
848         sector_t sector = 0;
849
850         spin_lock_irq(&conf->resync_lock);
851         if (need_to_wait_for_sync(conf, bio)) {
852                 conf->nr_waiting++;
853                 /* Wait for the barrier to drop.
854                  * However if there are already pending
855                  * requests (preventing the barrier from
856                  * rising completely), and the
857                  * per-process bio queue isn't empty,
858                  * then don't wait, as we need to empty
859                  * that queue to allow conf->start_next_window
860                  * to increase.
861                  */
862                 wait_event_lock_irq(conf->wait_barrier,
863                                     !conf->array_frozen &&
864                                     (!conf->barrier ||
865                                      ((conf->start_next_window <
866                                        conf->next_resync + RESYNC_SECTORS) &&
867                                       current->bio_list &&
868                                       !bio_list_empty(current->bio_list))),
869                                     conf->resync_lock);
870                 conf->nr_waiting--;
871         }
872
873         if (bio && bio_data_dir(bio) == WRITE) {
874                 if (bio->bi_iter.bi_sector >= conf->next_resync) {
875                         if (conf->start_next_window == MaxSector)
876                                 conf->start_next_window =
877                                         conf->next_resync +
878                                         NEXT_NORMALIO_DISTANCE;
879
880                         if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
881                             <= bio->bi_iter.bi_sector)
882                                 conf->next_window_requests++;
883                         else
884                                 conf->current_window_requests++;
885                         sector = conf->start_next_window;
886                 }
887         }
888
889         conf->nr_pending++;
890         spin_unlock_irq(&conf->resync_lock);
891         return sector;
892 }
893
894 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
895                           sector_t bi_sector)
896 {
897         unsigned long flags;
898
899         spin_lock_irqsave(&conf->resync_lock, flags);
900         conf->nr_pending--;
901         if (start_next_window) {
902                 if (start_next_window == conf->start_next_window) {
903                         if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
904                             <= bi_sector)
905                                 conf->next_window_requests--;
906                         else
907                                 conf->current_window_requests--;
908                 } else
909                         conf->current_window_requests--;
910
911                 if (!conf->current_window_requests) {
912                         if (conf->next_window_requests) {
913                                 conf->current_window_requests =
914                                         conf->next_window_requests;
915                                 conf->next_window_requests = 0;
916                                 conf->start_next_window +=
917                                         NEXT_NORMALIO_DISTANCE;
918                         } else
919                                 conf->start_next_window = MaxSector;
920                 }
921         }
922         spin_unlock_irqrestore(&conf->resync_lock, flags);
923         wake_up(&conf->wait_barrier);
924 }
925
926 static void freeze_array(struct r1conf *conf, int extra)
927 {
928         /* stop syncio and normal IO and wait for everything to
929          * go quite.
930          * We wait until nr_pending match nr_queued+extra
931          * This is called in the context of one normal IO request
932          * that has failed. Thus any sync request that might be pending
933          * will be blocked by nr_pending, and we need to wait for
934          * pending IO requests to complete or be queued for re-try.
935          * Thus the number queued (nr_queued) plus this request (extra)
936          * must match the number of pending IOs (nr_pending) before
937          * we continue.
938          */
939         spin_lock_irq(&conf->resync_lock);
940         conf->array_frozen = 1;
941         wait_event_lock_irq_cmd(conf->wait_barrier,
942                                 conf->nr_pending == conf->nr_queued+extra,
943                                 conf->resync_lock,
944                                 flush_pending_writes(conf));
945         spin_unlock_irq(&conf->resync_lock);
946 }
947 static void unfreeze_array(struct r1conf *conf)
948 {
949         /* reverse the effect of the freeze */
950         spin_lock_irq(&conf->resync_lock);
951         conf->array_frozen = 0;
952         wake_up(&conf->wait_barrier);
953         spin_unlock_irq(&conf->resync_lock);
954 }
955
956 /* duplicate the data pages for behind I/O
957  */
958 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
959 {
960         int i;
961         struct bio_vec *bvec;
962         struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
963                                         GFP_NOIO);
964         if (unlikely(!bvecs))
965                 return;
966
967         bio_for_each_segment_all(bvec, bio, i) {
968                 bvecs[i] = *bvec;
969                 bvecs[i].bv_page = alloc_page(GFP_NOIO);
970                 if (unlikely(!bvecs[i].bv_page))
971                         goto do_sync_io;
972                 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
973                        kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
974                 kunmap(bvecs[i].bv_page);
975                 kunmap(bvec->bv_page);
976         }
977         r1_bio->behind_bvecs = bvecs;
978         r1_bio->behind_page_count = bio->bi_vcnt;
979         set_bit(R1BIO_BehindIO, &r1_bio->state);
980         return;
981
982 do_sync_io:
983         for (i = 0; i < bio->bi_vcnt; i++)
984                 if (bvecs[i].bv_page)
985                         put_page(bvecs[i].bv_page);
986         kfree(bvecs);
987         pr_debug("%dB behind alloc failed, doing sync I/O\n",
988                  bio->bi_iter.bi_size);
989 }
990
991 struct raid1_plug_cb {
992         struct blk_plug_cb      cb;
993         struct bio_list         pending;
994         int                     pending_cnt;
995 };
996
997 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
998 {
999         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1000                                                   cb);
1001         struct mddev *mddev = plug->cb.data;
1002         struct r1conf *conf = mddev->private;
1003         struct bio *bio;
1004
1005         if (from_schedule || current->bio_list) {
1006                 spin_lock_irq(&conf->device_lock);
1007                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1008                 conf->pending_count += plug->pending_cnt;
1009                 spin_unlock_irq(&conf->device_lock);
1010                 wake_up(&conf->wait_barrier);
1011                 md_wakeup_thread(mddev->thread);
1012                 kfree(plug);
1013                 return;
1014         }
1015
1016         /* we aren't scheduling, so we can do the write-out directly. */
1017         bio = bio_list_get(&plug->pending);
1018         bitmap_unplug(mddev->bitmap);
1019         wake_up(&conf->wait_barrier);
1020
1021         while (bio) { /* submit pending writes */
1022                 struct bio *next = bio->bi_next;
1023                 bio->bi_next = NULL;
1024                 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1025                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1026                         /* Just ignore it */
1027                         bio_endio(bio);
1028                 else
1029                         generic_make_request(bio);
1030                 bio = next;
1031         }
1032         kfree(plug);
1033 }
1034
1035 static void raid1_make_request(struct mddev *mddev, struct bio * bio)
1036 {
1037         struct r1conf *conf = mddev->private;
1038         struct raid1_info *mirror;
1039         struct r1bio *r1_bio;
1040         struct bio *read_bio;
1041         int i, disks;
1042         struct bitmap *bitmap;
1043         unsigned long flags;
1044         const int rw = bio_data_dir(bio);
1045         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1046         const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1047         const unsigned long do_discard = (bio->bi_rw
1048                                           & (REQ_DISCARD | REQ_SECURE));
1049         const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1050         struct md_rdev *blocked_rdev;
1051         struct blk_plug_cb *cb;
1052         struct raid1_plug_cb *plug = NULL;
1053         int first_clone;
1054         int sectors_handled;
1055         int max_sectors;
1056         sector_t start_next_window;
1057
1058         /*
1059          * Register the new request and wait if the reconstruction
1060          * thread has put up a bar for new requests.
1061          * Continue immediately if no resync is active currently.
1062          */
1063
1064         md_write_start(mddev, bio); /* wait on superblock update early */
1065
1066         if (bio_data_dir(bio) == WRITE &&
1067             ((bio_end_sector(bio) > mddev->suspend_lo &&
1068             bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1069             (mddev_is_clustered(mddev) &&
1070              md_cluster_ops->area_resyncing(mddev, WRITE,
1071                      bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
1072                 /* As the suspend_* range is controlled by
1073                  * userspace, we want an interruptible
1074                  * wait.
1075                  */
1076                 DEFINE_WAIT(w);
1077                 for (;;) {
1078                         flush_signals(current);
1079                         prepare_to_wait(&conf->wait_barrier,
1080                                         &w, TASK_INTERRUPTIBLE);
1081                         if (bio_end_sector(bio) <= mddev->suspend_lo ||
1082                             bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1083                             (mddev_is_clustered(mddev) &&
1084                              !md_cluster_ops->area_resyncing(mddev, WRITE,
1085                                      bio->bi_iter.bi_sector, bio_end_sector(bio))))
1086                                 break;
1087                         schedule();
1088                 }
1089                 finish_wait(&conf->wait_barrier, &w);
1090         }
1091
1092         start_next_window = wait_barrier(conf, bio);
1093
1094         bitmap = mddev->bitmap;
1095
1096         /*
1097          * make_request() can abort the operation when READA is being
1098          * used and no empty request is available.
1099          *
1100          */
1101         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1102
1103         r1_bio->master_bio = bio;
1104         r1_bio->sectors = bio_sectors(bio);
1105         r1_bio->state = 0;
1106         r1_bio->mddev = mddev;
1107         r1_bio->sector = bio->bi_iter.bi_sector;
1108
1109         /* We might need to issue multiple reads to different
1110          * devices if there are bad blocks around, so we keep
1111          * track of the number of reads in bio->bi_phys_segments.
1112          * If this is 0, there is only one r1_bio and no locking
1113          * will be needed when requests complete.  If it is
1114          * non-zero, then it is the number of not-completed requests.
1115          */
1116         bio->bi_phys_segments = 0;
1117         bio_clear_flag(bio, BIO_SEG_VALID);
1118
1119         if (rw == READ) {
1120                 /*
1121                  * read balancing logic:
1122                  */
1123                 int rdisk;
1124
1125 read_again:
1126                 rdisk = read_balance(conf, r1_bio, &max_sectors);
1127
1128                 if (rdisk < 0) {
1129                         /* couldn't find anywhere to read from */
1130                         raid_end_bio_io(r1_bio);
1131                         return;
1132                 }
1133                 mirror = conf->mirrors + rdisk;
1134
1135                 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1136                     bitmap) {
1137                         /* Reading from a write-mostly device must
1138                          * take care not to over-take any writes
1139                          * that are 'behind'
1140                          */
1141                         wait_event(bitmap->behind_wait,
1142                                    atomic_read(&bitmap->behind_writes) == 0);
1143                 }
1144                 r1_bio->read_disk = rdisk;
1145                 r1_bio->start_next_window = 0;
1146
1147                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1148                 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1149                          max_sectors);
1150
1151                 r1_bio->bios[rdisk] = read_bio;
1152
1153                 read_bio->bi_iter.bi_sector = r1_bio->sector +
1154                         mirror->rdev->data_offset;
1155                 read_bio->bi_bdev = mirror->rdev->bdev;
1156                 read_bio->bi_end_io = raid1_end_read_request;
1157                 read_bio->bi_rw = READ | do_sync;
1158                 read_bio->bi_private = r1_bio;
1159
1160                 if (max_sectors < r1_bio->sectors) {
1161                         /* could not read all from this device, so we will
1162                          * need another r1_bio.
1163                          */
1164
1165                         sectors_handled = (r1_bio->sector + max_sectors
1166                                            - bio->bi_iter.bi_sector);
1167                         r1_bio->sectors = max_sectors;
1168                         spin_lock_irq(&conf->device_lock);
1169                         if (bio->bi_phys_segments == 0)
1170                                 bio->bi_phys_segments = 2;
1171                         else
1172                                 bio->bi_phys_segments++;
1173                         spin_unlock_irq(&conf->device_lock);
1174                         /* Cannot call generic_make_request directly
1175                          * as that will be queued in __make_request
1176                          * and subsequent mempool_alloc might block waiting
1177                          * for it.  So hand bio over to raid1d.
1178                          */
1179                         reschedule_retry(r1_bio);
1180
1181                         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1182
1183                         r1_bio->master_bio = bio;
1184                         r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1185                         r1_bio->state = 0;
1186                         r1_bio->mddev = mddev;
1187                         r1_bio->sector = bio->bi_iter.bi_sector +
1188                                 sectors_handled;
1189                         goto read_again;
1190                 } else
1191                         generic_make_request(read_bio);
1192                 return;
1193         }
1194
1195         /*
1196          * WRITE:
1197          */
1198         if (conf->pending_count >= max_queued_requests) {
1199                 md_wakeup_thread(mddev->thread);
1200                 wait_event(conf->wait_barrier,
1201                            conf->pending_count < max_queued_requests);
1202         }
1203         /* first select target devices under rcu_lock and
1204          * inc refcount on their rdev.  Record them by setting
1205          * bios[x] to bio
1206          * If there are known/acknowledged bad blocks on any device on
1207          * which we have seen a write error, we want to avoid writing those
1208          * blocks.
1209          * This potentially requires several writes to write around
1210          * the bad blocks.  Each set of writes gets it's own r1bio
1211          * with a set of bios attached.
1212          */
1213
1214         disks = conf->raid_disks * 2;
1215  retry_write:
1216         r1_bio->start_next_window = start_next_window;
1217         blocked_rdev = NULL;
1218         rcu_read_lock();
1219         max_sectors = r1_bio->sectors;
1220         for (i = 0;  i < disks; i++) {
1221                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1222                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1223                         atomic_inc(&rdev->nr_pending);
1224                         blocked_rdev = rdev;
1225                         break;
1226                 }
1227                 r1_bio->bios[i] = NULL;
1228                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1229                         if (i < conf->raid_disks)
1230                                 set_bit(R1BIO_Degraded, &r1_bio->state);
1231                         continue;
1232                 }
1233
1234                 atomic_inc(&rdev->nr_pending);
1235                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1236                         sector_t first_bad;
1237                         int bad_sectors;
1238                         int is_bad;
1239
1240                         is_bad = is_badblock(rdev, r1_bio->sector,
1241                                              max_sectors,
1242                                              &first_bad, &bad_sectors);
1243                         if (is_bad < 0) {
1244                                 /* mustn't write here until the bad block is
1245                                  * acknowledged*/
1246                                 set_bit(BlockedBadBlocks, &rdev->flags);
1247                                 blocked_rdev = rdev;
1248                                 break;
1249                         }
1250                         if (is_bad && first_bad <= r1_bio->sector) {
1251                                 /* Cannot write here at all */
1252                                 bad_sectors -= (r1_bio->sector - first_bad);
1253                                 if (bad_sectors < max_sectors)
1254                                         /* mustn't write more than bad_sectors
1255                                          * to other devices yet
1256                                          */
1257                                         max_sectors = bad_sectors;
1258                                 rdev_dec_pending(rdev, mddev);
1259                                 /* We don't set R1BIO_Degraded as that
1260                                  * only applies if the disk is
1261                                  * missing, so it might be re-added,
1262                                  * and we want to know to recover this
1263                                  * chunk.
1264                                  * In this case the device is here,
1265                                  * and the fact that this chunk is not
1266                                  * in-sync is recorded in the bad
1267                                  * block log
1268                                  */
1269                                 continue;
1270                         }
1271                         if (is_bad) {
1272                                 int good_sectors = first_bad - r1_bio->sector;
1273                                 if (good_sectors < max_sectors)
1274                                         max_sectors = good_sectors;
1275                         }
1276                 }
1277                 r1_bio->bios[i] = bio;
1278         }
1279         rcu_read_unlock();
1280
1281         if (unlikely(blocked_rdev)) {
1282                 /* Wait for this device to become unblocked */
1283                 int j;
1284                 sector_t old = start_next_window;
1285
1286                 for (j = 0; j < i; j++)
1287                         if (r1_bio->bios[j])
1288                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1289                 r1_bio->state = 0;
1290                 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1291                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1292                 start_next_window = wait_barrier(conf, bio);
1293                 /*
1294                  * We must make sure the multi r1bios of bio have
1295                  * the same value of bi_phys_segments
1296                  */
1297                 if (bio->bi_phys_segments && old &&
1298                     old != start_next_window)
1299                         /* Wait for the former r1bio(s) to complete */
1300                         wait_event(conf->wait_barrier,
1301                                    bio->bi_phys_segments == 1);
1302                 goto retry_write;
1303         }
1304
1305         if (max_sectors < r1_bio->sectors) {
1306                 /* We are splitting this write into multiple parts, so
1307                  * we need to prepare for allocating another r1_bio.
1308                  */
1309                 r1_bio->sectors = max_sectors;
1310                 spin_lock_irq(&conf->device_lock);
1311                 if (bio->bi_phys_segments == 0)
1312                         bio->bi_phys_segments = 2;
1313                 else
1314                         bio->bi_phys_segments++;
1315                 spin_unlock_irq(&conf->device_lock);
1316         }
1317         sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1318
1319         atomic_set(&r1_bio->remaining, 1);
1320         atomic_set(&r1_bio->behind_remaining, 0);
1321
1322         first_clone = 1;
1323         for (i = 0; i < disks; i++) {
1324                 struct bio *mbio;
1325                 if (!r1_bio->bios[i])
1326                         continue;
1327
1328                 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1329                 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1330
1331                 if (first_clone) {
1332                         /* do behind I/O ?
1333                          * Not if there are too many, or cannot
1334                          * allocate memory, or a reader on WriteMostly
1335                          * is waiting for behind writes to flush */
1336                         if (bitmap &&
1337                             (atomic_read(&bitmap->behind_writes)
1338                              < mddev->bitmap_info.max_write_behind) &&
1339                             !waitqueue_active(&bitmap->behind_wait))
1340                                 alloc_behind_pages(mbio, r1_bio);
1341
1342                         bitmap_startwrite(bitmap, r1_bio->sector,
1343                                           r1_bio->sectors,
1344                                           test_bit(R1BIO_BehindIO,
1345                                                    &r1_bio->state));
1346                         first_clone = 0;
1347                 }
1348                 if (r1_bio->behind_bvecs) {
1349                         struct bio_vec *bvec;
1350                         int j;
1351
1352                         /*
1353                          * We trimmed the bio, so _all is legit
1354                          */
1355                         bio_for_each_segment_all(bvec, mbio, j)
1356                                 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1357                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1358                                 atomic_inc(&r1_bio->behind_remaining);
1359                 }
1360
1361                 r1_bio->bios[i] = mbio;
1362
1363                 mbio->bi_iter.bi_sector = (r1_bio->sector +
1364                                    conf->mirrors[i].rdev->data_offset);
1365                 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1366                 mbio->bi_end_io = raid1_end_write_request;
1367                 mbio->bi_rw =
1368                         WRITE | do_flush_fua | do_sync | do_discard | do_same;
1369                 mbio->bi_private = r1_bio;
1370
1371                 atomic_inc(&r1_bio->remaining);
1372
1373                 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1374                 if (cb)
1375                         plug = container_of(cb, struct raid1_plug_cb, cb);
1376                 else
1377                         plug = NULL;
1378                 spin_lock_irqsave(&conf->device_lock, flags);
1379                 if (plug) {
1380                         bio_list_add(&plug->pending, mbio);
1381                         plug->pending_cnt++;
1382                 } else {
1383                         bio_list_add(&conf->pending_bio_list, mbio);
1384                         conf->pending_count++;
1385                 }
1386                 spin_unlock_irqrestore(&conf->device_lock, flags);
1387                 if (!plug)
1388                         md_wakeup_thread(mddev->thread);
1389         }
1390         /* Mustn't call r1_bio_write_done before this next test,
1391          * as it could result in the bio being freed.
1392          */
1393         if (sectors_handled < bio_sectors(bio)) {
1394                 r1_bio_write_done(r1_bio);
1395                 /* We need another r1_bio.  It has already been counted
1396                  * in bio->bi_phys_segments
1397                  */
1398                 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1399                 r1_bio->master_bio = bio;
1400                 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1401                 r1_bio->state = 0;
1402                 r1_bio->mddev = mddev;
1403                 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1404                 goto retry_write;
1405         }
1406
1407         r1_bio_write_done(r1_bio);
1408
1409         /* In case raid1d snuck in to freeze_array */
1410         wake_up(&conf->wait_barrier);
1411 }
1412
1413 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1414 {
1415         struct r1conf *conf = mddev->private;
1416         int i;
1417
1418         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1419                    conf->raid_disks - mddev->degraded);
1420         rcu_read_lock();
1421         for (i = 0; i < conf->raid_disks; i++) {
1422                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1423                 seq_printf(seq, "%s",
1424                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1425         }
1426         rcu_read_unlock();
1427         seq_printf(seq, "]");
1428 }
1429
1430 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1431 {
1432         char b[BDEVNAME_SIZE];
1433         struct r1conf *conf = mddev->private;
1434         unsigned long flags;
1435
1436         /*
1437          * If it is not operational, then we have already marked it as dead
1438          * else if it is the last working disks, ignore the error, let the
1439          * next level up know.
1440          * else mark the drive as failed
1441          */
1442         if (test_bit(In_sync, &rdev->flags)
1443             && (conf->raid_disks - mddev->degraded) == 1) {
1444                 /*
1445                  * Don't fail the drive, act as though we were just a
1446                  * normal single drive.
1447                  * However don't try a recovery from this drive as
1448                  * it is very likely to fail.
1449                  */
1450                 conf->recovery_disabled = mddev->recovery_disabled;
1451                 return;
1452         }
1453         set_bit(Blocked, &rdev->flags);
1454         spin_lock_irqsave(&conf->device_lock, flags);
1455         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1456                 mddev->degraded++;
1457                 set_bit(Faulty, &rdev->flags);
1458         } else
1459                 set_bit(Faulty, &rdev->flags);
1460         spin_unlock_irqrestore(&conf->device_lock, flags);
1461         /*
1462          * if recovery is running, make sure it aborts.
1463          */
1464         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1465         set_mask_bits(&mddev->flags, 0,
1466                       BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1467         printk(KERN_ALERT
1468                "md/raid1:%s: Disk failure on %s, disabling device.\n"
1469                "md/raid1:%s: Operation continuing on %d devices.\n",
1470                mdname(mddev), bdevname(rdev->bdev, b),
1471                mdname(mddev), conf->raid_disks - mddev->degraded);
1472 }
1473
1474 static void print_conf(struct r1conf *conf)
1475 {
1476         int i;
1477
1478         printk(KERN_DEBUG "RAID1 conf printout:\n");
1479         if (!conf) {
1480                 printk(KERN_DEBUG "(!conf)\n");
1481                 return;
1482         }
1483         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1484                 conf->raid_disks);
1485
1486         rcu_read_lock();
1487         for (i = 0; i < conf->raid_disks; i++) {
1488                 char b[BDEVNAME_SIZE];
1489                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1490                 if (rdev)
1491                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1492                                i, !test_bit(In_sync, &rdev->flags),
1493                                !test_bit(Faulty, &rdev->flags),
1494                                bdevname(rdev->bdev,b));
1495         }
1496         rcu_read_unlock();
1497 }
1498
1499 static void close_sync(struct r1conf *conf)
1500 {
1501         wait_barrier(conf, NULL);
1502         allow_barrier(conf, 0, 0);
1503
1504         mempool_destroy(conf->r1buf_pool);
1505         conf->r1buf_pool = NULL;
1506
1507         spin_lock_irq(&conf->resync_lock);
1508         conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE;
1509         conf->start_next_window = MaxSector;
1510         conf->current_window_requests +=
1511                 conf->next_window_requests;
1512         conf->next_window_requests = 0;
1513         spin_unlock_irq(&conf->resync_lock);
1514 }
1515
1516 static int raid1_spare_active(struct mddev *mddev)
1517 {
1518         int i;
1519         struct r1conf *conf = mddev->private;
1520         int count = 0;
1521         unsigned long flags;
1522
1523         /*
1524          * Find all failed disks within the RAID1 configuration
1525          * and mark them readable.
1526          * Called under mddev lock, so rcu protection not needed.
1527          * device_lock used to avoid races with raid1_end_read_request
1528          * which expects 'In_sync' flags and ->degraded to be consistent.
1529          */
1530         spin_lock_irqsave(&conf->device_lock, flags);
1531         for (i = 0; i < conf->raid_disks; i++) {
1532                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1533                 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1534                 if (repl
1535                     && !test_bit(Candidate, &repl->flags)
1536                     && repl->recovery_offset == MaxSector
1537                     && !test_bit(Faulty, &repl->flags)
1538                     && !test_and_set_bit(In_sync, &repl->flags)) {
1539                         /* replacement has just become active */
1540                         if (!rdev ||
1541                             !test_and_clear_bit(In_sync, &rdev->flags))
1542                                 count++;
1543                         if (rdev) {
1544                                 /* Replaced device not technically
1545                                  * faulty, but we need to be sure
1546                                  * it gets removed and never re-added
1547                                  */
1548                                 set_bit(Faulty, &rdev->flags);
1549                                 sysfs_notify_dirent_safe(
1550                                         rdev->sysfs_state);
1551                         }
1552                 }
1553                 if (rdev
1554                     && rdev->recovery_offset == MaxSector
1555                     && !test_bit(Faulty, &rdev->flags)
1556                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1557                         count++;
1558                         sysfs_notify_dirent_safe(rdev->sysfs_state);
1559                 }
1560         }
1561         mddev->degraded -= count;
1562         spin_unlock_irqrestore(&conf->device_lock, flags);
1563
1564         print_conf(conf);
1565         return count;
1566 }
1567
1568 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1569 {
1570         struct r1conf *conf = mddev->private;
1571         int err = -EEXIST;
1572         int mirror = 0;
1573         struct raid1_info *p;
1574         int first = 0;
1575         int last = conf->raid_disks - 1;
1576
1577         if (mddev->recovery_disabled == conf->recovery_disabled)
1578                 return -EBUSY;
1579
1580         if (md_integrity_add_rdev(rdev, mddev))
1581                 return -ENXIO;
1582
1583         if (rdev->raid_disk >= 0)
1584                 first = last = rdev->raid_disk;
1585
1586         /*
1587          * find the disk ... but prefer rdev->saved_raid_disk
1588          * if possible.
1589          */
1590         if (rdev->saved_raid_disk >= 0 &&
1591             rdev->saved_raid_disk >= first &&
1592             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1593                 first = last = rdev->saved_raid_disk;
1594
1595         for (mirror = first; mirror <= last; mirror++) {
1596                 p = conf->mirrors+mirror;
1597                 if (!p->rdev) {
1598
1599                         if (mddev->gendisk)
1600                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1601                                                   rdev->data_offset << 9);
1602
1603                         p->head_position = 0;
1604                         rdev->raid_disk = mirror;
1605                         err = 0;
1606                         /* As all devices are equivalent, we don't need a full recovery
1607                          * if this was recently any drive of the array
1608                          */
1609                         if (rdev->saved_raid_disk < 0)
1610                                 conf->fullsync = 1;
1611                         rcu_assign_pointer(p->rdev, rdev);
1612                         break;
1613                 }
1614                 if (test_bit(WantReplacement, &p->rdev->flags) &&
1615                     p[conf->raid_disks].rdev == NULL) {
1616                         /* Add this device as a replacement */
1617                         clear_bit(In_sync, &rdev->flags);
1618                         set_bit(Replacement, &rdev->flags);
1619                         rdev->raid_disk = mirror;
1620                         err = 0;
1621                         conf->fullsync = 1;
1622                         rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1623                         break;
1624                 }
1625         }
1626         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1627                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1628         print_conf(conf);
1629         return err;
1630 }
1631
1632 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1633 {
1634         struct r1conf *conf = mddev->private;
1635         int err = 0;
1636         int number = rdev->raid_disk;
1637         struct raid1_info *p = conf->mirrors + number;
1638
1639         if (rdev != p->rdev)
1640                 p = conf->mirrors + conf->raid_disks + number;
1641
1642         print_conf(conf);
1643         if (rdev == p->rdev) {
1644                 if (test_bit(In_sync, &rdev->flags) ||
1645                     atomic_read(&rdev->nr_pending)) {
1646                         err = -EBUSY;
1647                         goto abort;
1648                 }
1649                 /* Only remove non-faulty devices if recovery
1650                  * is not possible.
1651                  */
1652                 if (!test_bit(Faulty, &rdev->flags) &&
1653                     mddev->recovery_disabled != conf->recovery_disabled &&
1654                     mddev->degraded < conf->raid_disks) {
1655                         err = -EBUSY;
1656                         goto abort;
1657                 }
1658                 p->rdev = NULL;
1659                 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1660                         synchronize_rcu();
1661                         if (atomic_read(&rdev->nr_pending)) {
1662                                 /* lost the race, try later */
1663                                 err = -EBUSY;
1664                                 p->rdev = rdev;
1665                                 goto abort;
1666                         }
1667                 }
1668                 if (conf->mirrors[conf->raid_disks + number].rdev) {
1669                         /* We just removed a device that is being replaced.
1670                          * Move down the replacement.  We drain all IO before
1671                          * doing this to avoid confusion.
1672                          */
1673                         struct md_rdev *repl =
1674                                 conf->mirrors[conf->raid_disks + number].rdev;
1675                         freeze_array(conf, 0);
1676                         clear_bit(Replacement, &repl->flags);
1677                         p->rdev = repl;
1678                         conf->mirrors[conf->raid_disks + number].rdev = NULL;
1679                         unfreeze_array(conf);
1680                         clear_bit(WantReplacement, &rdev->flags);
1681                 } else
1682                         clear_bit(WantReplacement, &rdev->flags);
1683                 err = md_integrity_register(mddev);
1684         }
1685 abort:
1686
1687         print_conf(conf);
1688         return err;
1689 }
1690
1691 static void end_sync_read(struct bio *bio)
1692 {
1693         struct r1bio *r1_bio = bio->bi_private;
1694
1695         update_head_pos(r1_bio->read_disk, r1_bio);
1696
1697         /*
1698          * we have read a block, now it needs to be re-written,
1699          * or re-read if the read failed.
1700          * We don't do much here, just schedule handling by raid1d
1701          */
1702         if (!bio->bi_error)
1703                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1704
1705         if (atomic_dec_and_test(&r1_bio->remaining))
1706                 reschedule_retry(r1_bio);
1707 }
1708
1709 static void end_sync_write(struct bio *bio)
1710 {
1711         int uptodate = !bio->bi_error;
1712         struct r1bio *r1_bio = bio->bi_private;
1713         struct mddev *mddev = r1_bio->mddev;
1714         struct r1conf *conf = mddev->private;
1715         sector_t first_bad;
1716         int bad_sectors;
1717         struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1718
1719         if (!uptodate) {
1720                 sector_t sync_blocks = 0;
1721                 sector_t s = r1_bio->sector;
1722                 long sectors_to_go = r1_bio->sectors;
1723                 /* make sure these bits doesn't get cleared. */
1724                 do {
1725                         bitmap_end_sync(mddev->bitmap, s,
1726                                         &sync_blocks, 1);
1727                         s += sync_blocks;
1728                         sectors_to_go -= sync_blocks;
1729                 } while (sectors_to_go > 0);
1730                 set_bit(WriteErrorSeen, &rdev->flags);
1731                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1732                         set_bit(MD_RECOVERY_NEEDED, &
1733                                 mddev->recovery);
1734                 set_bit(R1BIO_WriteError, &r1_bio->state);
1735         } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1736                                &first_bad, &bad_sectors) &&
1737                    !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1738                                 r1_bio->sector,
1739                                 r1_bio->sectors,
1740                                 &first_bad, &bad_sectors)
1741                 )
1742                 set_bit(R1BIO_MadeGood, &r1_bio->state);
1743
1744         if (atomic_dec_and_test(&r1_bio->remaining)) {
1745                 int s = r1_bio->sectors;
1746                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1747                     test_bit(R1BIO_WriteError, &r1_bio->state))
1748                         reschedule_retry(r1_bio);
1749                 else {
1750                         put_buf(r1_bio);
1751                         md_done_sync(mddev, s, uptodate);
1752                 }
1753         }
1754 }
1755
1756 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1757                             int sectors, struct page *page, int rw)
1758 {
1759         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1760                 /* success */
1761                 return 1;
1762         if (rw == WRITE) {
1763                 set_bit(WriteErrorSeen, &rdev->flags);
1764                 if (!test_and_set_bit(WantReplacement,
1765                                       &rdev->flags))
1766                         set_bit(MD_RECOVERY_NEEDED, &
1767                                 rdev->mddev->recovery);
1768         }
1769         /* need to record an error - either for the block or the device */
1770         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1771                 md_error(rdev->mddev, rdev);
1772         return 0;
1773 }
1774
1775 static int fix_sync_read_error(struct r1bio *r1_bio)
1776 {
1777         /* Try some synchronous reads of other devices to get
1778          * good data, much like with normal read errors.  Only
1779          * read into the pages we already have so we don't
1780          * need to re-issue the read request.
1781          * We don't need to freeze the array, because being in an
1782          * active sync request, there is no normal IO, and
1783          * no overlapping syncs.
1784          * We don't need to check is_badblock() again as we
1785          * made sure that anything with a bad block in range
1786          * will have bi_end_io clear.
1787          */
1788         struct mddev *mddev = r1_bio->mddev;
1789         struct r1conf *conf = mddev->private;
1790         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1791         sector_t sect = r1_bio->sector;
1792         int sectors = r1_bio->sectors;
1793         int idx = 0;
1794
1795         while(sectors) {
1796                 int s = sectors;
1797                 int d = r1_bio->read_disk;
1798                 int success = 0;
1799                 struct md_rdev *rdev;
1800                 int start;
1801
1802                 if (s > (PAGE_SIZE>>9))
1803                         s = PAGE_SIZE >> 9;
1804                 do {
1805                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1806                                 /* No rcu protection needed here devices
1807                                  * can only be removed when no resync is
1808                                  * active, and resync is currently active
1809                                  */
1810                                 rdev = conf->mirrors[d].rdev;
1811                                 if (sync_page_io(rdev, sect, s<<9,
1812                                                  bio->bi_io_vec[idx].bv_page,
1813                                                  READ, false)) {
1814                                         success = 1;
1815                                         break;
1816                                 }
1817                         }
1818                         d++;
1819                         if (d == conf->raid_disks * 2)
1820                                 d = 0;
1821                 } while (!success && d != r1_bio->read_disk);
1822
1823                 if (!success) {
1824                         char b[BDEVNAME_SIZE];
1825                         int abort = 0;
1826                         /* Cannot read from anywhere, this block is lost.
1827                          * Record a bad block on each device.  If that doesn't
1828                          * work just disable and interrupt the recovery.
1829                          * Don't fail devices as that won't really help.
1830                          */
1831                         printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1832                                " for block %llu\n",
1833                                mdname(mddev),
1834                                bdevname(bio->bi_bdev, b),
1835                                (unsigned long long)r1_bio->sector);
1836                         for (d = 0; d < conf->raid_disks * 2; d++) {
1837                                 rdev = conf->mirrors[d].rdev;
1838                                 if (!rdev || test_bit(Faulty, &rdev->flags))
1839                                         continue;
1840                                 if (!rdev_set_badblocks(rdev, sect, s, 0))
1841                                         abort = 1;
1842                         }
1843                         if (abort) {
1844                                 conf->recovery_disabled =
1845                                         mddev->recovery_disabled;
1846                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1847                                 md_done_sync(mddev, r1_bio->sectors, 0);
1848                                 put_buf(r1_bio);
1849                                 return 0;
1850                         }
1851                         /* Try next page */
1852                         sectors -= s;
1853                         sect += s;
1854                         idx++;
1855                         continue;
1856                 }
1857
1858                 start = d;
1859                 /* write it back and re-read */
1860                 while (d != r1_bio->read_disk) {
1861                         if (d == 0)
1862                                 d = conf->raid_disks * 2;
1863                         d--;
1864                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1865                                 continue;
1866                         rdev = conf->mirrors[d].rdev;
1867                         if (r1_sync_page_io(rdev, sect, s,
1868                                             bio->bi_io_vec[idx].bv_page,
1869                                             WRITE) == 0) {
1870                                 r1_bio->bios[d]->bi_end_io = NULL;
1871                                 rdev_dec_pending(rdev, mddev);
1872                         }
1873                 }
1874                 d = start;
1875                 while (d != r1_bio->read_disk) {
1876                         if (d == 0)
1877                                 d = conf->raid_disks * 2;
1878                         d--;
1879                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1880                                 continue;
1881                         rdev = conf->mirrors[d].rdev;
1882                         if (r1_sync_page_io(rdev, sect, s,
1883                                             bio->bi_io_vec[idx].bv_page,
1884                                             READ) != 0)
1885                                 atomic_add(s, &rdev->corrected_errors);
1886                 }
1887                 sectors -= s;
1888                 sect += s;
1889                 idx ++;
1890         }
1891         set_bit(R1BIO_Uptodate, &r1_bio->state);
1892         bio->bi_error = 0;
1893         return 1;
1894 }
1895
1896 static void process_checks(struct r1bio *r1_bio)
1897 {
1898         /* We have read all readable devices.  If we haven't
1899          * got the block, then there is no hope left.
1900          * If we have, then we want to do a comparison
1901          * and skip the write if everything is the same.
1902          * If any blocks failed to read, then we need to
1903          * attempt an over-write
1904          */
1905         struct mddev *mddev = r1_bio->mddev;
1906         struct r1conf *conf = mddev->private;
1907         int primary;
1908         int i;
1909         int vcnt;
1910
1911         /* Fix variable parts of all bios */
1912         vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1913         for (i = 0; i < conf->raid_disks * 2; i++) {
1914                 int j;
1915                 int size;
1916                 int error;
1917                 struct bio *b = r1_bio->bios[i];
1918                 if (b->bi_end_io != end_sync_read)
1919                         continue;
1920                 /* fixup the bio for reuse, but preserve errno */
1921                 error = b->bi_error;
1922                 bio_reset(b);
1923                 b->bi_error = error;
1924                 b->bi_vcnt = vcnt;
1925                 b->bi_iter.bi_size = r1_bio->sectors << 9;
1926                 b->bi_iter.bi_sector = r1_bio->sector +
1927                         conf->mirrors[i].rdev->data_offset;
1928                 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1929                 b->bi_end_io = end_sync_read;
1930                 b->bi_private = r1_bio;
1931
1932                 size = b->bi_iter.bi_size;
1933                 for (j = 0; j < vcnt ; j++) {
1934                         struct bio_vec *bi;
1935                         bi = &b->bi_io_vec[j];
1936                         bi->bv_offset = 0;
1937                         if (size > PAGE_SIZE)
1938                                 bi->bv_len = PAGE_SIZE;
1939                         else
1940                                 bi->bv_len = size;
1941                         size -= PAGE_SIZE;
1942                 }
1943         }
1944         for (primary = 0; primary < conf->raid_disks * 2; primary++)
1945                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1946                     !r1_bio->bios[primary]->bi_error) {
1947                         r1_bio->bios[primary]->bi_end_io = NULL;
1948                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1949                         break;
1950                 }
1951         r1_bio->read_disk = primary;
1952         for (i = 0; i < conf->raid_disks * 2; i++) {
1953                 int j;
1954                 struct bio *pbio = r1_bio->bios[primary];
1955                 struct bio *sbio = r1_bio->bios[i];
1956                 int error = sbio->bi_error;
1957
1958                 if (sbio->bi_end_io != end_sync_read)
1959                         continue;
1960                 /* Now we can 'fixup' the error value */
1961                 sbio->bi_error = 0;
1962
1963                 if (!error) {
1964                         for (j = vcnt; j-- ; ) {
1965                                 struct page *p, *s;
1966                                 p = pbio->bi_io_vec[j].bv_page;
1967                                 s = sbio->bi_io_vec[j].bv_page;
1968                                 if (memcmp(page_address(p),
1969                                            page_address(s),
1970                                            sbio->bi_io_vec[j].bv_len))
1971                                         break;
1972                         }
1973                 } else
1974                         j = 0;
1975                 if (j >= 0)
1976                         atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
1977                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1978                               && !error)) {
1979                         /* No need to write to this device. */
1980                         sbio->bi_end_io = NULL;
1981                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1982                         continue;
1983                 }
1984
1985                 bio_copy_data(sbio, pbio);
1986         }
1987 }
1988
1989 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1990 {
1991         struct r1conf *conf = mddev->private;
1992         int i;
1993         int disks = conf->raid_disks * 2;
1994         struct bio *bio, *wbio;
1995
1996         bio = r1_bio->bios[r1_bio->read_disk];
1997
1998         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1999                 /* ouch - failed to read all of that. */
2000                 if (!fix_sync_read_error(r1_bio))
2001                         return;
2002
2003         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2004                 process_checks(r1_bio);
2005
2006         /*
2007          * schedule writes
2008          */
2009         atomic_set(&r1_bio->remaining, 1);
2010         for (i = 0; i < disks ; i++) {
2011                 wbio = r1_bio->bios[i];
2012                 if (wbio->bi_end_io == NULL ||
2013                     (wbio->bi_end_io == end_sync_read &&
2014                      (i == r1_bio->read_disk ||
2015                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2016                         continue;
2017
2018                 wbio->bi_rw = WRITE;
2019                 wbio->bi_end_io = end_sync_write;
2020                 atomic_inc(&r1_bio->remaining);
2021                 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2022
2023                 generic_make_request(wbio);
2024         }
2025
2026         if (atomic_dec_and_test(&r1_bio->remaining)) {
2027                 /* if we're here, all write(s) have completed, so clean up */
2028                 int s = r1_bio->sectors;
2029                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2030                     test_bit(R1BIO_WriteError, &r1_bio->state))
2031                         reschedule_retry(r1_bio);
2032                 else {
2033                         put_buf(r1_bio);
2034                         md_done_sync(mddev, s, 1);
2035                 }
2036         }
2037 }
2038
2039 /*
2040  * This is a kernel thread which:
2041  *
2042  *      1.      Retries failed read operations on working mirrors.
2043  *      2.      Updates the raid superblock when problems encounter.
2044  *      3.      Performs writes following reads for array synchronising.
2045  */
2046
2047 static void fix_read_error(struct r1conf *conf, int read_disk,
2048                            sector_t sect, int sectors)
2049 {
2050         struct mddev *mddev = conf->mddev;
2051         while(sectors) {
2052                 int s = sectors;
2053                 int d = read_disk;
2054                 int success = 0;
2055                 int start;
2056                 struct md_rdev *rdev;
2057
2058                 if (s > (PAGE_SIZE>>9))
2059                         s = PAGE_SIZE >> 9;
2060
2061                 do {
2062                         sector_t first_bad;
2063                         int bad_sectors;
2064
2065                         rcu_read_lock();
2066                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2067                         if (rdev &&
2068                             (test_bit(In_sync, &rdev->flags) ||
2069                              (!test_bit(Faulty, &rdev->flags) &&
2070                               rdev->recovery_offset >= sect + s)) &&
2071                             is_badblock(rdev, sect, s,
2072                                         &first_bad, &bad_sectors) == 0) {
2073                                 atomic_inc(&rdev->nr_pending);
2074                                 rcu_read_unlock();
2075                                 if (sync_page_io(rdev, sect, s<<9,
2076                                                  conf->tmppage, READ, false))
2077                                         success = 1;
2078                                 rdev_dec_pending(rdev, mddev);
2079                                 if (success)
2080                                         break;
2081                         } else
2082                                 rcu_read_unlock();
2083                         d++;
2084                         if (d == conf->raid_disks * 2)
2085                                 d = 0;
2086                 } while (!success && d != read_disk);
2087
2088                 if (!success) {
2089                         /* Cannot read from anywhere - mark it bad */
2090                         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2091                         if (!rdev_set_badblocks(rdev, sect, s, 0))
2092                                 md_error(mddev, rdev);
2093                         break;
2094                 }
2095                 /* write it back and re-read */
2096                 start = d;
2097                 while (d != read_disk) {
2098                         if (d==0)
2099                                 d = conf->raid_disks * 2;
2100                         d--;
2101                         rcu_read_lock();
2102                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2103                         if (rdev &&
2104                             !test_bit(Faulty, &rdev->flags)) {
2105                                 atomic_inc(&rdev->nr_pending);
2106                                 rcu_read_unlock();
2107                                 r1_sync_page_io(rdev, sect, s,
2108                                                 conf->tmppage, WRITE);
2109                                 rdev_dec_pending(rdev, mddev);
2110                         } else
2111                                 rcu_read_unlock();
2112                 }
2113                 d = start;
2114                 while (d != read_disk) {
2115                         char b[BDEVNAME_SIZE];
2116                         if (d==0)
2117                                 d = conf->raid_disks * 2;
2118                         d--;
2119                         rcu_read_lock();
2120                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2121                         if (rdev &&
2122                             !test_bit(Faulty, &rdev->flags)) {
2123                                 atomic_inc(&rdev->nr_pending);
2124                                 rcu_read_unlock();
2125                                 if (r1_sync_page_io(rdev, sect, s,
2126                                                     conf->tmppage, READ)) {
2127                                         atomic_add(s, &rdev->corrected_errors);
2128                                         printk(KERN_INFO
2129                                                "md/raid1:%s: read error corrected "
2130                                                "(%d sectors at %llu on %s)\n",
2131                                                mdname(mddev), s,
2132                                                (unsigned long long)(sect +
2133                                                                     rdev->data_offset),
2134                                                bdevname(rdev->bdev, b));
2135                                 }
2136                                 rdev_dec_pending(rdev, mddev);
2137                         } else
2138                                 rcu_read_unlock();
2139                 }
2140                 sectors -= s;
2141                 sect += s;
2142         }
2143 }
2144
2145 static int narrow_write_error(struct r1bio *r1_bio, int i)
2146 {
2147         struct mddev *mddev = r1_bio->mddev;
2148         struct r1conf *conf = mddev->private;
2149         struct md_rdev *rdev = conf->mirrors[i].rdev;
2150
2151         /* bio has the data to be written to device 'i' where
2152          * we just recently had a write error.
2153          * We repeatedly clone the bio and trim down to one block,
2154          * then try the write.  Where the write fails we record
2155          * a bad block.
2156          * It is conceivable that the bio doesn't exactly align with
2157          * blocks.  We must handle this somehow.
2158          *
2159          * We currently own a reference on the rdev.
2160          */
2161
2162         int block_sectors;
2163         sector_t sector;
2164         int sectors;
2165         int sect_to_write = r1_bio->sectors;
2166         int ok = 1;
2167
2168         if (rdev->badblocks.shift < 0)
2169                 return 0;
2170
2171         block_sectors = roundup(1 << rdev->badblocks.shift,
2172                                 bdev_logical_block_size(rdev->bdev) >> 9);
2173         sector = r1_bio->sector;
2174         sectors = ((sector + block_sectors)
2175                    & ~(sector_t)(block_sectors - 1))
2176                 - sector;
2177
2178         while (sect_to_write) {
2179                 struct bio *wbio;
2180                 if (sectors > sect_to_write)
2181                         sectors = sect_to_write;
2182                 /* Write at 'sector' for 'sectors'*/
2183
2184                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2185                         unsigned vcnt = r1_bio->behind_page_count;
2186                         struct bio_vec *vec = r1_bio->behind_bvecs;
2187
2188                         while (!vec->bv_page) {
2189                                 vec++;
2190                                 vcnt--;
2191                         }
2192
2193                         wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2194                         memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2195
2196                         wbio->bi_vcnt = vcnt;
2197                 } else {
2198                         wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2199                 }
2200
2201                 wbio->bi_rw = WRITE;
2202                 wbio->bi_iter.bi_sector = r1_bio->sector;
2203                 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2204
2205                 bio_trim(wbio, sector - r1_bio->sector, sectors);
2206                 wbio->bi_iter.bi_sector += rdev->data_offset;
2207                 wbio->bi_bdev = rdev->bdev;
2208                 if (submit_bio_wait(WRITE, wbio) < 0)
2209                         /* failure! */
2210                         ok = rdev_set_badblocks(rdev, sector,
2211                                                 sectors, 0)
2212                                 && ok;
2213
2214                 bio_put(wbio);
2215                 sect_to_write -= sectors;
2216                 sector += sectors;
2217                 sectors = block_sectors;
2218         }
2219         return ok;
2220 }
2221
2222 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2223 {
2224         int m;
2225         int s = r1_bio->sectors;
2226         for (m = 0; m < conf->raid_disks * 2 ; m++) {
2227                 struct md_rdev *rdev = conf->mirrors[m].rdev;
2228                 struct bio *bio = r1_bio->bios[m];
2229                 if (bio->bi_end_io == NULL)
2230                         continue;
2231                 if (!bio->bi_error &&
2232                     test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2233                         rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2234                 }
2235                 if (bio->bi_error &&
2236                     test_bit(R1BIO_WriteError, &r1_bio->state)) {
2237                         if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2238                                 md_error(conf->mddev, rdev);
2239                 }
2240         }
2241         put_buf(r1_bio);
2242         md_done_sync(conf->mddev, s, 1);
2243 }
2244
2245 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2246 {
2247         int m;
2248         bool fail = false;
2249         for (m = 0; m < conf->raid_disks * 2 ; m++)
2250                 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2251                         struct md_rdev *rdev = conf->mirrors[m].rdev;
2252                         rdev_clear_badblocks(rdev,
2253                                              r1_bio->sector,
2254                                              r1_bio->sectors, 0);
2255                         rdev_dec_pending(rdev, conf->mddev);
2256                 } else if (r1_bio->bios[m] != NULL) {
2257                         /* This drive got a write error.  We need to
2258                          * narrow down and record precise write
2259                          * errors.
2260                          */
2261                         fail = true;
2262                         if (!narrow_write_error(r1_bio, m)) {
2263                                 md_error(conf->mddev,
2264                                          conf->mirrors[m].rdev);
2265                                 /* an I/O failed, we can't clear the bitmap */
2266                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2267                         }
2268                         rdev_dec_pending(conf->mirrors[m].rdev,
2269                                          conf->mddev);
2270                 }
2271         if (fail) {
2272                 spin_lock_irq(&conf->device_lock);
2273                 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2274                 conf->nr_queued++;
2275                 spin_unlock_irq(&conf->device_lock);
2276                 md_wakeup_thread(conf->mddev->thread);
2277         } else {
2278                 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2279                         close_write(r1_bio);
2280                 raid_end_bio_io(r1_bio);
2281         }
2282 }
2283
2284 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2285 {
2286         int disk;
2287         int max_sectors;
2288         struct mddev *mddev = conf->mddev;
2289         struct bio *bio;
2290         char b[BDEVNAME_SIZE];
2291         struct md_rdev *rdev;
2292
2293         clear_bit(R1BIO_ReadError, &r1_bio->state);
2294         /* we got a read error. Maybe the drive is bad.  Maybe just
2295          * the block and we can fix it.
2296          * We freeze all other IO, and try reading the block from
2297          * other devices.  When we find one, we re-write
2298          * and check it that fixes the read error.
2299          * This is all done synchronously while the array is
2300          * frozen
2301          */
2302         if (mddev->ro == 0) {
2303                 freeze_array(conf, 1);
2304                 fix_read_error(conf, r1_bio->read_disk,
2305                                r1_bio->sector, r1_bio->sectors);
2306                 unfreeze_array(conf);
2307         } else
2308                 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2309         rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2310
2311         bio = r1_bio->bios[r1_bio->read_disk];
2312         bdevname(bio->bi_bdev, b);
2313 read_more:
2314         disk = read_balance(conf, r1_bio, &max_sectors);
2315         if (disk == -1) {
2316                 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2317                        " read error for block %llu\n",
2318                        mdname(mddev), b, (unsigned long long)r1_bio->sector);
2319                 raid_end_bio_io(r1_bio);
2320         } else {
2321                 const unsigned long do_sync
2322                         = r1_bio->master_bio->bi_rw & REQ_SYNC;
2323                 if (bio) {
2324                         r1_bio->bios[r1_bio->read_disk] =
2325                                 mddev->ro ? IO_BLOCKED : NULL;
2326                         bio_put(bio);
2327                 }
2328                 r1_bio->read_disk = disk;
2329                 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2330                 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2331                          max_sectors);
2332                 r1_bio->bios[r1_bio->read_disk] = bio;
2333                 rdev = conf->mirrors[disk].rdev;
2334                 printk_ratelimited(KERN_ERR
2335                                    "md/raid1:%s: redirecting sector %llu"
2336                                    " to other mirror: %s\n",
2337                                    mdname(mddev),
2338                                    (unsigned long long)r1_bio->sector,
2339                                    bdevname(rdev->bdev, b));
2340                 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2341                 bio->bi_bdev = rdev->bdev;
2342                 bio->bi_end_io = raid1_end_read_request;
2343                 bio->bi_rw = READ | do_sync;
2344                 bio->bi_private = r1_bio;
2345                 if (max_sectors < r1_bio->sectors) {
2346                         /* Drat - have to split this up more */
2347                         struct bio *mbio = r1_bio->master_bio;
2348                         int sectors_handled = (r1_bio->sector + max_sectors
2349                                                - mbio->bi_iter.bi_sector);
2350                         r1_bio->sectors = max_sectors;
2351                         spin_lock_irq(&conf->device_lock);
2352                         if (mbio->bi_phys_segments == 0)
2353                                 mbio->bi_phys_segments = 2;
2354                         else
2355                                 mbio->bi_phys_segments++;
2356                         spin_unlock_irq(&conf->device_lock);
2357                         generic_make_request(bio);
2358                         bio = NULL;
2359
2360                         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2361
2362                         r1_bio->master_bio = mbio;
2363                         r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2364                         r1_bio->state = 0;
2365                         set_bit(R1BIO_ReadError, &r1_bio->state);
2366                         r1_bio->mddev = mddev;
2367                         r1_bio->sector = mbio->bi_iter.bi_sector +
2368                                 sectors_handled;
2369
2370                         goto read_more;
2371                 } else
2372                         generic_make_request(bio);
2373         }
2374 }
2375
2376 static void raid1d(struct md_thread *thread)
2377 {
2378         struct mddev *mddev = thread->mddev;
2379         struct r1bio *r1_bio;
2380         unsigned long flags;
2381         struct r1conf *conf = mddev->private;
2382         struct list_head *head = &conf->retry_list;
2383         struct blk_plug plug;
2384
2385         md_check_recovery(mddev);
2386
2387         if (!list_empty_careful(&conf->bio_end_io_list) &&
2388             !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2389                 LIST_HEAD(tmp);
2390                 spin_lock_irqsave(&conf->device_lock, flags);
2391                 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2392                         while (!list_empty(&conf->bio_end_io_list)) {
2393                                 list_move(conf->bio_end_io_list.prev, &tmp);
2394                                 conf->nr_queued--;
2395                         }
2396                 }
2397                 spin_unlock_irqrestore(&conf->device_lock, flags);
2398                 while (!list_empty(&tmp)) {
2399                         r1_bio = list_first_entry(&tmp, struct r1bio,
2400                                                   retry_list);
2401                         list_del(&r1_bio->retry_list);
2402                         if (mddev->degraded)
2403                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2404                         if (test_bit(R1BIO_WriteError, &r1_bio->state))
2405                                 close_write(r1_bio);
2406                         raid_end_bio_io(r1_bio);
2407                 }
2408         }
2409
2410         blk_start_plug(&plug);
2411         for (;;) {
2412
2413                 flush_pending_writes(conf);
2414
2415                 spin_lock_irqsave(&conf->device_lock, flags);
2416                 if (list_empty(head)) {
2417                         spin_unlock_irqrestore(&conf->device_lock, flags);
2418                         break;
2419                 }
2420                 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2421                 list_del(head->prev);
2422                 conf->nr_queued--;
2423                 spin_unlock_irqrestore(&conf->device_lock, flags);
2424
2425                 mddev = r1_bio->mddev;
2426                 conf = mddev->private;
2427                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2428                         if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2429                             test_bit(R1BIO_WriteError, &r1_bio->state))
2430                                 handle_sync_write_finished(conf, r1_bio);
2431                         else
2432                                 sync_request_write(mddev, r1_bio);
2433                 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2434                            test_bit(R1BIO_WriteError, &r1_bio->state))
2435                         handle_write_finished(conf, r1_bio);
2436                 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2437                         handle_read_error(conf, r1_bio);
2438                 else
2439                         /* just a partial read to be scheduled from separate
2440                          * context
2441                          */
2442                         generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2443
2444                 cond_resched();
2445                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2446                         md_check_recovery(mddev);
2447         }
2448         blk_finish_plug(&plug);
2449 }
2450
2451 static int init_resync(struct r1conf *conf)
2452 {
2453         int buffs;
2454
2455         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2456         BUG_ON(conf->r1buf_pool);
2457         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2458                                           conf->poolinfo);
2459         if (!conf->r1buf_pool)
2460                 return -ENOMEM;
2461         conf->next_resync = 0;
2462         return 0;
2463 }
2464
2465 /*
2466  * perform a "sync" on one "block"
2467  *
2468  * We need to make sure that no normal I/O request - particularly write
2469  * requests - conflict with active sync requests.
2470  *
2471  * This is achieved by tracking pending requests and a 'barrier' concept
2472  * that can be installed to exclude normal IO requests.
2473  */
2474
2475 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2476                                    int *skipped)
2477 {
2478         struct r1conf *conf = mddev->private;
2479         struct r1bio *r1_bio;
2480         struct bio *bio;
2481         sector_t max_sector, nr_sectors;
2482         int disk = -1;
2483         int i;
2484         int wonly = -1;
2485         int write_targets = 0, read_targets = 0;
2486         sector_t sync_blocks;
2487         int still_degraded = 0;
2488         int good_sectors = RESYNC_SECTORS;
2489         int min_bad = 0; /* number of sectors that are bad in all devices */
2490
2491         if (!conf->r1buf_pool)
2492                 if (init_resync(conf))
2493                         return 0;
2494
2495         max_sector = mddev->dev_sectors;
2496         if (sector_nr >= max_sector) {
2497                 /* If we aborted, we need to abort the
2498                  * sync on the 'current' bitmap chunk (there will
2499                  * only be one in raid1 resync.
2500                  * We can find the current addess in mddev->curr_resync
2501                  */
2502                 if (mddev->curr_resync < max_sector) /* aborted */
2503                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2504                                                 &sync_blocks, 1);
2505                 else /* completed sync */
2506                         conf->fullsync = 0;
2507
2508                 bitmap_close_sync(mddev->bitmap);
2509                 close_sync(conf);
2510
2511                 if (mddev_is_clustered(mddev)) {
2512                         conf->cluster_sync_low = 0;
2513                         conf->cluster_sync_high = 0;
2514                 }
2515                 return 0;
2516         }
2517
2518         if (mddev->bitmap == NULL &&
2519             mddev->recovery_cp == MaxSector &&
2520             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2521             conf->fullsync == 0) {
2522                 *skipped = 1;
2523                 return max_sector - sector_nr;
2524         }
2525         /* before building a request, check if we can skip these blocks..
2526          * This call the bitmap_start_sync doesn't actually record anything
2527          */
2528         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2529             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2530                 /* We can skip this block, and probably several more */
2531                 *skipped = 1;
2532                 return sync_blocks;
2533         }
2534
2535         /*
2536          * If there is non-resync activity waiting for a turn, then let it
2537          * though before starting on this new sync request.
2538          */
2539         if (conf->nr_waiting)
2540                 schedule_timeout_uninterruptible(1);
2541
2542         /* we are incrementing sector_nr below. To be safe, we check against
2543          * sector_nr + two times RESYNC_SECTORS
2544          */
2545
2546         bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2547                 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2548         r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2549
2550         raise_barrier(conf, sector_nr);
2551
2552         rcu_read_lock();
2553         /*
2554          * If we get a correctably read error during resync or recovery,
2555          * we might want to read from a different device.  So we
2556          * flag all drives that could conceivably be read from for READ,
2557          * and any others (which will be non-In_sync devices) for WRITE.
2558          * If a read fails, we try reading from something else for which READ
2559          * is OK.
2560          */
2561
2562         r1_bio->mddev = mddev;
2563         r1_bio->sector = sector_nr;
2564         r1_bio->state = 0;
2565         set_bit(R1BIO_IsSync, &r1_bio->state);
2566
2567         for (i = 0; i < conf->raid_disks * 2; i++) {
2568                 struct md_rdev *rdev;
2569                 bio = r1_bio->bios[i];
2570                 bio_reset(bio);
2571
2572                 rdev = rcu_dereference(conf->mirrors[i].rdev);
2573                 if (rdev == NULL ||
2574                     test_bit(Faulty, &rdev->flags)) {
2575                         if (i < conf->raid_disks)
2576                                 still_degraded = 1;
2577                 } else if (!test_bit(In_sync, &rdev->flags)) {
2578                         bio->bi_rw = WRITE;
2579                         bio->bi_end_io = end_sync_write;
2580                         write_targets ++;
2581                 } else {
2582                         /* may need to read from here */
2583                         sector_t first_bad = MaxSector;
2584                         int bad_sectors;
2585
2586                         if (is_badblock(rdev, sector_nr, good_sectors,
2587                                         &first_bad, &bad_sectors)) {
2588                                 if (first_bad > sector_nr)
2589                                         good_sectors = first_bad - sector_nr;
2590                                 else {
2591                                         bad_sectors -= (sector_nr - first_bad);
2592                                         if (min_bad == 0 ||
2593                                             min_bad > bad_sectors)
2594                                                 min_bad = bad_sectors;
2595                                 }
2596                         }
2597                         if (sector_nr < first_bad) {
2598                                 if (test_bit(WriteMostly, &rdev->flags)) {
2599                                         if (wonly < 0)
2600                                                 wonly = i;
2601                                 } else {
2602                                         if (disk < 0)
2603                                                 disk = i;
2604                                 }
2605                                 bio->bi_rw = READ;
2606                                 bio->bi_end_io = end_sync_read;
2607                                 read_targets++;
2608                         } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2609                                 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2610                                 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2611                                 /*
2612                                  * The device is suitable for reading (InSync),
2613                                  * but has bad block(s) here. Let's try to correct them,
2614                                  * if we are doing resync or repair. Otherwise, leave
2615                                  * this device alone for this sync request.
2616                                  */
2617                                 bio->bi_rw = WRITE;
2618                                 bio->bi_end_io = end_sync_write;
2619                                 write_targets++;
2620                         }
2621                 }
2622                 if (bio->bi_end_io) {
2623                         atomic_inc(&rdev->nr_pending);
2624                         bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2625                         bio->bi_bdev = rdev->bdev;
2626                         bio->bi_private = r1_bio;
2627                 }
2628         }
2629         rcu_read_unlock();
2630         if (disk < 0)
2631                 disk = wonly;
2632         r1_bio->read_disk = disk;
2633
2634         if (read_targets == 0 && min_bad > 0) {
2635                 /* These sectors are bad on all InSync devices, so we
2636                  * need to mark them bad on all write targets
2637                  */
2638                 int ok = 1;
2639                 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2640                         if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2641                                 struct md_rdev *rdev = conf->mirrors[i].rdev;
2642                                 ok = rdev_set_badblocks(rdev, sector_nr,
2643                                                         min_bad, 0
2644                                         ) && ok;
2645                         }
2646                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2647                 *skipped = 1;
2648                 put_buf(r1_bio);
2649
2650                 if (!ok) {
2651                         /* Cannot record the badblocks, so need to
2652                          * abort the resync.
2653                          * If there are multiple read targets, could just
2654                          * fail the really bad ones ???
2655                          */
2656                         conf->recovery_disabled = mddev->recovery_disabled;
2657                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2658                         return 0;
2659                 } else
2660                         return min_bad;
2661
2662         }
2663         if (min_bad > 0 && min_bad < good_sectors) {
2664                 /* only resync enough to reach the next bad->good
2665                  * transition */
2666                 good_sectors = min_bad;
2667         }
2668
2669         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2670                 /* extra read targets are also write targets */
2671                 write_targets += read_targets-1;
2672
2673         if (write_targets == 0 || read_targets == 0) {
2674                 /* There is nowhere to write, so all non-sync
2675                  * drives must be failed - so we are finished
2676                  */
2677                 sector_t rv;
2678                 if (min_bad > 0)
2679                         max_sector = sector_nr + min_bad;
2680                 rv = max_sector - sector_nr;
2681                 *skipped = 1;
2682                 put_buf(r1_bio);
2683                 return rv;
2684         }
2685
2686         if (max_sector > mddev->resync_max)
2687                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2688         if (max_sector > sector_nr + good_sectors)
2689                 max_sector = sector_nr + good_sectors;
2690         nr_sectors = 0;
2691         sync_blocks = 0;
2692         do {
2693                 struct page *page;
2694                 int len = PAGE_SIZE;
2695                 if (sector_nr + (len>>9) > max_sector)
2696                         len = (max_sector - sector_nr) << 9;
2697                 if (len == 0)
2698                         break;
2699                 if (sync_blocks == 0) {
2700                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2701                                                &sync_blocks, still_degraded) &&
2702                             !conf->fullsync &&
2703                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2704                                 break;
2705                         if ((len >> 9) > sync_blocks)
2706                                 len = sync_blocks<<9;
2707                 }
2708
2709                 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2710                         bio = r1_bio->bios[i];
2711                         if (bio->bi_end_io) {
2712                                 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2713                                 if (bio_add_page(bio, page, len, 0) == 0) {
2714                                         /* stop here */
2715                                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2716                                         while (i > 0) {
2717                                                 i--;
2718                                                 bio = r1_bio->bios[i];
2719                                                 if (bio->bi_end_io==NULL)
2720                                                         continue;
2721                                                 /* remove last page from this bio */
2722                                                 bio->bi_vcnt--;
2723                                                 bio->bi_iter.bi_size -= len;
2724                                                 bio_clear_flag(bio, BIO_SEG_VALID);
2725                                         }
2726                                         goto bio_full;
2727                                 }
2728                         }
2729                 }
2730                 nr_sectors += len>>9;
2731                 sector_nr += len>>9;
2732                 sync_blocks -= (len>>9);
2733         } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2734  bio_full:
2735         r1_bio->sectors = nr_sectors;
2736
2737         if (mddev_is_clustered(mddev) &&
2738                         conf->cluster_sync_high < sector_nr + nr_sectors) {
2739                 conf->cluster_sync_low = mddev->curr_resync_completed;
2740                 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2741                 /* Send resync message */
2742                 md_cluster_ops->resync_info_update(mddev,
2743                                 conf->cluster_sync_low,
2744                                 conf->cluster_sync_high);
2745         }
2746
2747         /* For a user-requested sync, we read all readable devices and do a
2748          * compare
2749          */
2750         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2751                 atomic_set(&r1_bio->remaining, read_targets);
2752                 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2753                         bio = r1_bio->bios[i];
2754                         if (bio->bi_end_io == end_sync_read) {
2755                                 read_targets--;
2756                                 md_sync_acct(bio->bi_bdev, nr_sectors);
2757                                 generic_make_request(bio);
2758                         }
2759                 }
2760         } else {
2761                 atomic_set(&r1_bio->remaining, 1);
2762                 bio = r1_bio->bios[r1_bio->read_disk];
2763                 md_sync_acct(bio->bi_bdev, nr_sectors);
2764                 generic_make_request(bio);
2765
2766         }
2767         return nr_sectors;
2768 }
2769
2770 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2771 {
2772         if (sectors)
2773                 return sectors;
2774
2775         return mddev->dev_sectors;
2776 }
2777
2778 static struct r1conf *setup_conf(struct mddev *mddev)
2779 {
2780         struct r1conf *conf;
2781         int i;
2782         struct raid1_info *disk;
2783         struct md_rdev *rdev;
2784         int err = -ENOMEM;
2785
2786         conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2787         if (!conf)
2788                 goto abort;
2789
2790         conf->mirrors = kzalloc(sizeof(struct raid1_info)
2791                                 * mddev->raid_disks * 2,
2792                                  GFP_KERNEL);
2793         if (!conf->mirrors)
2794                 goto abort;
2795
2796         conf->tmppage = alloc_page(GFP_KERNEL);
2797         if (!conf->tmppage)
2798                 goto abort;
2799
2800         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2801         if (!conf->poolinfo)
2802                 goto abort;
2803         conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2804         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2805                                           r1bio_pool_free,
2806                                           conf->poolinfo);
2807         if (!conf->r1bio_pool)
2808                 goto abort;
2809
2810         conf->poolinfo->mddev = mddev;
2811
2812         err = -EINVAL;
2813         spin_lock_init(&conf->device_lock);
2814         rdev_for_each(rdev, mddev) {
2815                 struct request_queue *q;
2816                 int disk_idx = rdev->raid_disk;
2817                 if (disk_idx >= mddev->raid_disks
2818                     || disk_idx < 0)
2819                         continue;
2820                 if (test_bit(Replacement, &rdev->flags))
2821                         disk = conf->mirrors + mddev->raid_disks + disk_idx;
2822                 else
2823                         disk = conf->mirrors + disk_idx;
2824
2825                 if (disk->rdev)
2826                         goto abort;
2827                 disk->rdev = rdev;
2828                 q = bdev_get_queue(rdev->bdev);
2829
2830                 disk->head_position = 0;
2831                 disk->seq_start = MaxSector;
2832         }
2833         conf->raid_disks = mddev->raid_disks;
2834         conf->mddev = mddev;
2835         INIT_LIST_HEAD(&conf->retry_list);
2836         INIT_LIST_HEAD(&conf->bio_end_io_list);
2837
2838         spin_lock_init(&conf->resync_lock);
2839         init_waitqueue_head(&conf->wait_barrier);
2840
2841         bio_list_init(&conf->pending_bio_list);
2842         conf->pending_count = 0;
2843         conf->recovery_disabled = mddev->recovery_disabled - 1;
2844
2845         conf->start_next_window = MaxSector;
2846         conf->current_window_requests = conf->next_window_requests = 0;
2847
2848         err = -EIO;
2849         for (i = 0; i < conf->raid_disks * 2; i++) {
2850
2851                 disk = conf->mirrors + i;
2852
2853                 if (i < conf->raid_disks &&
2854                     disk[conf->raid_disks].rdev) {
2855                         /* This slot has a replacement. */
2856                         if (!disk->rdev) {
2857                                 /* No original, just make the replacement
2858                                  * a recovering spare
2859                                  */
2860                                 disk->rdev =
2861                                         disk[conf->raid_disks].rdev;
2862                                 disk[conf->raid_disks].rdev = NULL;
2863                         } else if (!test_bit(In_sync, &disk->rdev->flags))
2864                                 /* Original is not in_sync - bad */
2865                                 goto abort;
2866                 }
2867
2868                 if (!disk->rdev ||
2869                     !test_bit(In_sync, &disk->rdev->flags)) {
2870                         disk->head_position = 0;
2871                         if (disk->rdev &&
2872                             (disk->rdev->saved_raid_disk < 0))
2873                                 conf->fullsync = 1;
2874                 }
2875         }
2876
2877         err = -ENOMEM;
2878         conf->thread = md_register_thread(raid1d, mddev, "raid1");
2879         if (!conf->thread) {
2880                 printk(KERN_ERR
2881                        "md/raid1:%s: couldn't allocate thread\n",
2882                        mdname(mddev));
2883                 goto abort;
2884         }
2885
2886         return conf;
2887
2888  abort:
2889         if (conf) {
2890                 mempool_destroy(conf->r1bio_pool);
2891                 kfree(conf->mirrors);
2892                 safe_put_page(conf->tmppage);
2893                 kfree(conf->poolinfo);
2894                 kfree(conf);
2895         }
2896         return ERR_PTR(err);
2897 }
2898
2899 static void raid1_free(struct mddev *mddev, void *priv);
2900 static int raid1_run(struct mddev *mddev)
2901 {
2902         struct r1conf *conf;
2903         int i;
2904         struct md_rdev *rdev;
2905         int ret;
2906         bool discard_supported = false;
2907
2908         if (mddev->level != 1) {
2909                 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2910                        mdname(mddev), mddev->level);
2911                 return -EIO;
2912         }
2913         if (mddev->reshape_position != MaxSector) {
2914                 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2915                        mdname(mddev));
2916                 return -EIO;
2917         }
2918         /*
2919          * copy the already verified devices into our private RAID1
2920          * bookkeeping area. [whatever we allocate in run(),
2921          * should be freed in raid1_free()]
2922          */
2923         if (mddev->private == NULL)
2924                 conf = setup_conf(mddev);
2925         else
2926                 conf = mddev->private;
2927
2928         if (IS_ERR(conf))
2929                 return PTR_ERR(conf);
2930
2931         if (mddev->queue)
2932                 blk_queue_max_write_same_sectors(mddev->queue, 0);
2933
2934         rdev_for_each(rdev, mddev) {
2935                 if (!mddev->gendisk)
2936                         continue;
2937                 disk_stack_limits(mddev->gendisk, rdev->bdev,
2938                                   rdev->data_offset << 9);
2939                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2940                         discard_supported = true;
2941         }
2942
2943         mddev->degraded = 0;
2944         for (i=0; i < conf->raid_disks; i++)
2945                 if (conf->mirrors[i].rdev == NULL ||
2946                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2947                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2948                         mddev->degraded++;
2949
2950         if (conf->raid_disks - mddev->degraded == 1)
2951                 mddev->recovery_cp = MaxSector;
2952
2953         if (mddev->recovery_cp != MaxSector)
2954                 printk(KERN_NOTICE "md/raid1:%s: not clean"
2955                        " -- starting background reconstruction\n",
2956                        mdname(mddev));
2957         printk(KERN_INFO
2958                 "md/raid1:%s: active with %d out of %d mirrors\n",
2959                 mdname(mddev), mddev->raid_disks - mddev->degraded,
2960                 mddev->raid_disks);
2961
2962         /*
2963          * Ok, everything is just fine now
2964          */
2965         mddev->thread = conf->thread;
2966         conf->thread = NULL;
2967         mddev->private = conf;
2968
2969         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2970
2971         if (mddev->queue) {
2972                 if (discard_supported)
2973                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2974                                                 mddev->queue);
2975                 else
2976                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2977                                                   mddev->queue);
2978         }
2979
2980         ret =  md_integrity_register(mddev);
2981         if (ret) {
2982                 md_unregister_thread(&mddev->thread);
2983                 raid1_free(mddev, conf);
2984         }
2985         return ret;
2986 }
2987
2988 static void raid1_free(struct mddev *mddev, void *priv)
2989 {
2990         struct r1conf *conf = priv;
2991
2992         mempool_destroy(conf->r1bio_pool);
2993         kfree(conf->mirrors);
2994         safe_put_page(conf->tmppage);
2995         kfree(conf->poolinfo);
2996         kfree(conf);
2997 }
2998
2999 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3000 {
3001         /* no resync is happening, and there is enough space
3002          * on all devices, so we can resize.
3003          * We need to make sure resync covers any new space.
3004          * If the array is shrinking we should possibly wait until
3005          * any io in the removed space completes, but it hardly seems
3006          * worth it.
3007          */
3008         sector_t newsize = raid1_size(mddev, sectors, 0);
3009         if (mddev->external_size &&
3010             mddev->array_sectors > newsize)
3011                 return -EINVAL;
3012         if (mddev->bitmap) {
3013                 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3014                 if (ret)
3015                         return ret;
3016         }
3017         md_set_array_sectors(mddev, newsize);
3018         set_capacity(mddev->gendisk, mddev->array_sectors);
3019         revalidate_disk(mddev->gendisk);
3020         if (sectors > mddev->dev_sectors &&
3021             mddev->recovery_cp > mddev->dev_sectors) {
3022                 mddev->recovery_cp = mddev->dev_sectors;
3023                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3024         }
3025         mddev->dev_sectors = sectors;
3026         mddev->resync_max_sectors = sectors;
3027         return 0;
3028 }
3029
3030 static int raid1_reshape(struct mddev *mddev)
3031 {
3032         /* We need to:
3033          * 1/ resize the r1bio_pool
3034          * 2/ resize conf->mirrors
3035          *
3036          * We allocate a new r1bio_pool if we can.
3037          * Then raise a device barrier and wait until all IO stops.
3038          * Then resize conf->mirrors and swap in the new r1bio pool.
3039          *
3040          * At the same time, we "pack" the devices so that all the missing
3041          * devices have the higher raid_disk numbers.
3042          */
3043         mempool_t *newpool, *oldpool;
3044         struct pool_info *newpoolinfo;
3045         struct raid1_info *newmirrors;
3046         struct r1conf *conf = mddev->private;
3047         int cnt, raid_disks;
3048         unsigned long flags;
3049         int d, d2, err;
3050
3051         /* Cannot change chunk_size, layout, or level */
3052         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3053             mddev->layout != mddev->new_layout ||
3054             mddev->level != mddev->new_level) {
3055                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3056                 mddev->new_layout = mddev->layout;
3057                 mddev->new_level = mddev->level;
3058                 return -EINVAL;
3059         }
3060
3061         if (!mddev_is_clustered(mddev)) {
3062                 err = md_allow_write(mddev);
3063                 if (err)
3064                         return err;
3065         }
3066
3067         raid_disks = mddev->raid_disks + mddev->delta_disks;
3068
3069         if (raid_disks < conf->raid_disks) {
3070                 cnt=0;
3071                 for (d= 0; d < conf->raid_disks; d++)
3072                         if (conf->mirrors[d].rdev)
3073                                 cnt++;
3074                 if (cnt > raid_disks)
3075                         return -EBUSY;
3076         }
3077
3078         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3079         if (!newpoolinfo)
3080                 return -ENOMEM;
3081         newpoolinfo->mddev = mddev;
3082         newpoolinfo->raid_disks = raid_disks * 2;
3083
3084         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3085                                  r1bio_pool_free, newpoolinfo);
3086         if (!newpool) {
3087                 kfree(newpoolinfo);
3088                 return -ENOMEM;
3089         }
3090         newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3091                              GFP_KERNEL);
3092         if (!newmirrors) {
3093                 kfree(newpoolinfo);
3094                 mempool_destroy(newpool);
3095                 return -ENOMEM;
3096         }
3097
3098         freeze_array(conf, 0);
3099
3100         /* ok, everything is stopped */
3101         oldpool = conf->r1bio_pool;
3102         conf->r1bio_pool = newpool;
3103
3104         for (d = d2 = 0; d < conf->raid_disks; d++) {
3105                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3106                 if (rdev && rdev->raid_disk != d2) {
3107                         sysfs_unlink_rdev(mddev, rdev);
3108                         rdev->raid_disk = d2;
3109                         sysfs_unlink_rdev(mddev, rdev);
3110                         if (sysfs_link_rdev(mddev, rdev))
3111                                 printk(KERN_WARNING
3112                                        "md/raid1:%s: cannot register rd%d\n",
3113                                        mdname(mddev), rdev->raid_disk);
3114                 }
3115                 if (rdev)
3116                         newmirrors[d2++].rdev = rdev;
3117         }
3118         kfree(conf->mirrors);
3119         conf->mirrors = newmirrors;
3120         kfree(conf->poolinfo);
3121         conf->poolinfo = newpoolinfo;
3122
3123         spin_lock_irqsave(&conf->device_lock, flags);
3124         mddev->degraded += (raid_disks - conf->raid_disks);
3125         spin_unlock_irqrestore(&conf->device_lock, flags);
3126         conf->raid_disks = mddev->raid_disks = raid_disks;
3127         mddev->delta_disks = 0;
3128
3129         unfreeze_array(conf);
3130
3131         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3132         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3133         md_wakeup_thread(mddev->thread);
3134
3135         mempool_destroy(oldpool);
3136         return 0;
3137 }
3138
3139 static void raid1_quiesce(struct mddev *mddev, int state)
3140 {
3141         struct r1conf *conf = mddev->private;
3142
3143         switch(state) {
3144         case 2: /* wake for suspend */
3145                 wake_up(&conf->wait_barrier);
3146                 break;
3147         case 1:
3148                 freeze_array(conf, 0);
3149                 break;
3150         case 0:
3151                 unfreeze_array(conf);
3152                 break;
3153         }
3154 }
3155
3156 static void *raid1_takeover(struct mddev *mddev)
3157 {
3158         /* raid1 can take over:
3159          *  raid5 with 2 devices, any layout or chunk size
3160          */
3161         if (mddev->level == 5 && mddev->raid_disks == 2) {
3162                 struct r1conf *conf;
3163                 mddev->new_level = 1;
3164                 mddev->new_layout = 0;
3165                 mddev->new_chunk_sectors = 0;
3166                 conf = setup_conf(mddev);
3167                 if (!IS_ERR(conf))
3168                         /* Array must appear to be quiesced */
3169                         conf->array_frozen = 1;
3170                 return conf;
3171         }
3172         return ERR_PTR(-EINVAL);
3173 }
3174
3175 static struct md_personality raid1_personality =
3176 {
3177         .name           = "raid1",
3178         .level          = 1,
3179         .owner          = THIS_MODULE,
3180         .make_request   = raid1_make_request,
3181         .run            = raid1_run,
3182         .free           = raid1_free,
3183         .status         = raid1_status,
3184         .error_handler  = raid1_error,
3185         .hot_add_disk   = raid1_add_disk,
3186         .hot_remove_disk= raid1_remove_disk,
3187         .spare_active   = raid1_spare_active,
3188         .sync_request   = raid1_sync_request,
3189         .resize         = raid1_resize,
3190         .size           = raid1_size,
3191         .check_reshape  = raid1_reshape,
3192         .quiesce        = raid1_quiesce,
3193         .takeover       = raid1_takeover,
3194         .congested      = raid1_congested,
3195 };
3196
3197 static int __init raid_init(void)
3198 {
3199         return register_md_personality(&raid1_personality);
3200 }
3201
3202 static void raid_exit(void)
3203 {
3204         unregister_md_personality(&raid1_personality);
3205 }
3206
3207 module_init(raid_init);
3208 module_exit(raid_exit);
3209 MODULE_LICENSE("GPL");
3210 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3211 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3212 MODULE_ALIAS("md-raid1");
3213 MODULE_ALIAS("md-level-1");
3214
3215 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);