md/raid5: ensure device failure recorded before write request returns.
[cascardo/linux.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74  * Stripe cache
75  */
76
77 #define NR_STRIPES              256
78 #define STRIPE_SIZE             PAGE_SIZE
79 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD            1
82 #define BYPASS_THRESHOLD        1
83 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK               (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH        8
86
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90         return &conf->stripe_hashtbl[hash];
91 }
92
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95         return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100         spin_lock_irq(conf->hash_locks + hash);
101         spin_lock(&conf->device_lock);
102 }
103
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106         spin_unlock(&conf->device_lock);
107         spin_unlock_irq(conf->hash_locks + hash);
108 }
109
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112         int i;
113         local_irq_disable();
114         spin_lock(conf->hash_locks);
115         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116                 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117         spin_lock(&conf->device_lock);
118 }
119
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122         int i;
123         spin_unlock(&conf->device_lock);
124         for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125                 spin_unlock(conf->hash_locks + i - 1);
126         local_irq_enable();
127 }
128
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130  * order without overlap.  There may be several bio's per stripe+device, and
131  * a bio could span several devices.
132  * When walking this list for a particular stripe+device, we must never proceed
133  * beyond a bio that extends past this device, as the next bio might no longer
134  * be valid.
135  * This function is used to determine the 'next' bio in the list, given the sector
136  * of the current stripe+device
137  */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140         int sectors = bio_sectors(bio);
141         if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142                 return bio->bi_next;
143         else
144                 return NULL;
145 }
146
147 /*
148  * We maintain a biased count of active stripes in the bottom 16 bits of
149  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150  */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154         return (atomic_read(segments) >> 16) & 0xffff;
155 }
156
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160         return atomic_sub_return(1, segments) & 0xffff;
161 }
162
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166         atomic_inc(segments);
167 }
168
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170         unsigned int cnt)
171 {
172         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173         int old, new;
174
175         do {
176                 old = atomic_read(segments);
177                 new = (old & 0xffff) | (cnt << 16);
178         } while (atomic_cmpxchg(segments, old, new) != old);
179 }
180
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184         atomic_set(segments, cnt);
185 }
186
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190         if (sh->ddf_layout)
191                 /* ddf always start from first device */
192                 return 0;
193         /* md starts just after Q block */
194         if (sh->qd_idx == sh->disks - 1)
195                 return 0;
196         else
197                 return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201         disk++;
202         return (disk < raid_disks) ? disk : 0;
203 }
204
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206  * We need to map each disk to a 'slot', where the data disks are slot
207  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208  * is raid_disks-1.  This help does that mapping.
209  */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211                              int *count, int syndrome_disks)
212 {
213         int slot = *count;
214
215         if (sh->ddf_layout)
216                 (*count)++;
217         if (idx == sh->pd_idx)
218                 return syndrome_disks;
219         if (idx == sh->qd_idx)
220                 return syndrome_disks + 1;
221         if (!sh->ddf_layout)
222                 (*count)++;
223         return slot;
224 }
225
226 static void return_io(struct bio_list *return_bi)
227 {
228         struct bio *bi;
229         while ((bi = bio_list_pop(return_bi)) != NULL) {
230                 bi->bi_iter.bi_size = 0;
231                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
232                                          bi, 0);
233                 bio_endio(bi, 0);
234         }
235 }
236
237 static void print_raid5_conf (struct r5conf *conf);
238
239 static int stripe_operations_active(struct stripe_head *sh)
240 {
241         return sh->check_state || sh->reconstruct_state ||
242                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
243                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
244 }
245
246 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
247 {
248         struct r5conf *conf = sh->raid_conf;
249         struct r5worker_group *group;
250         int thread_cnt;
251         int i, cpu = sh->cpu;
252
253         if (!cpu_online(cpu)) {
254                 cpu = cpumask_any(cpu_online_mask);
255                 sh->cpu = cpu;
256         }
257
258         if (list_empty(&sh->lru)) {
259                 struct r5worker_group *group;
260                 group = conf->worker_groups + cpu_to_group(cpu);
261                 list_add_tail(&sh->lru, &group->handle_list);
262                 group->stripes_cnt++;
263                 sh->group = group;
264         }
265
266         if (conf->worker_cnt_per_group == 0) {
267                 md_wakeup_thread(conf->mddev->thread);
268                 return;
269         }
270
271         group = conf->worker_groups + cpu_to_group(sh->cpu);
272
273         group->workers[0].working = true;
274         /* at least one worker should run to avoid race */
275         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
276
277         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
278         /* wakeup more workers */
279         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
280                 if (group->workers[i].working == false) {
281                         group->workers[i].working = true;
282                         queue_work_on(sh->cpu, raid5_wq,
283                                       &group->workers[i].work);
284                         thread_cnt--;
285                 }
286         }
287 }
288
289 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
290                               struct list_head *temp_inactive_list)
291 {
292         BUG_ON(!list_empty(&sh->lru));
293         BUG_ON(atomic_read(&conf->active_stripes)==0);
294         if (test_bit(STRIPE_HANDLE, &sh->state)) {
295                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
296                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
297                         list_add_tail(&sh->lru, &conf->delayed_list);
298                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
299                            sh->bm_seq - conf->seq_write > 0)
300                         list_add_tail(&sh->lru, &conf->bitmap_list);
301                 else {
302                         clear_bit(STRIPE_DELAYED, &sh->state);
303                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
304                         if (conf->worker_cnt_per_group == 0) {
305                                 list_add_tail(&sh->lru, &conf->handle_list);
306                         } else {
307                                 raid5_wakeup_stripe_thread(sh);
308                                 return;
309                         }
310                 }
311                 md_wakeup_thread(conf->mddev->thread);
312         } else {
313                 BUG_ON(stripe_operations_active(sh));
314                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
315                         if (atomic_dec_return(&conf->preread_active_stripes)
316                             < IO_THRESHOLD)
317                                 md_wakeup_thread(conf->mddev->thread);
318                 atomic_dec(&conf->active_stripes);
319                 if (!test_bit(STRIPE_EXPANDING, &sh->state))
320                         list_add_tail(&sh->lru, temp_inactive_list);
321         }
322 }
323
324 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
325                              struct list_head *temp_inactive_list)
326 {
327         if (atomic_dec_and_test(&sh->count))
328                 do_release_stripe(conf, sh, temp_inactive_list);
329 }
330
331 /*
332  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
333  *
334  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
335  * given time. Adding stripes only takes device lock, while deleting stripes
336  * only takes hash lock.
337  */
338 static void release_inactive_stripe_list(struct r5conf *conf,
339                                          struct list_head *temp_inactive_list,
340                                          int hash)
341 {
342         int size;
343         unsigned long do_wakeup = 0;
344         int i = 0;
345         unsigned long flags;
346
347         if (hash == NR_STRIPE_HASH_LOCKS) {
348                 size = NR_STRIPE_HASH_LOCKS;
349                 hash = NR_STRIPE_HASH_LOCKS - 1;
350         } else
351                 size = 1;
352         while (size) {
353                 struct list_head *list = &temp_inactive_list[size - 1];
354
355                 /*
356                  * We don't hold any lock here yet, get_active_stripe() might
357                  * remove stripes from the list
358                  */
359                 if (!list_empty_careful(list)) {
360                         spin_lock_irqsave(conf->hash_locks + hash, flags);
361                         if (list_empty(conf->inactive_list + hash) &&
362                             !list_empty(list))
363                                 atomic_dec(&conf->empty_inactive_list_nr);
364                         list_splice_tail_init(list, conf->inactive_list + hash);
365                         do_wakeup |= 1 << hash;
366                         spin_unlock_irqrestore(conf->hash_locks + hash, flags);
367                 }
368                 size--;
369                 hash--;
370         }
371
372         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
373                 if (do_wakeup & (1 << i))
374                         wake_up(&conf->wait_for_stripe[i]);
375         }
376
377         if (do_wakeup) {
378                 if (atomic_read(&conf->active_stripes) == 0)
379                         wake_up(&conf->wait_for_quiescent);
380                 if (conf->retry_read_aligned)
381                         md_wakeup_thread(conf->mddev->thread);
382         }
383 }
384
385 /* should hold conf->device_lock already */
386 static int release_stripe_list(struct r5conf *conf,
387                                struct list_head *temp_inactive_list)
388 {
389         struct stripe_head *sh;
390         int count = 0;
391         struct llist_node *head;
392
393         head = llist_del_all(&conf->released_stripes);
394         head = llist_reverse_order(head);
395         while (head) {
396                 int hash;
397
398                 sh = llist_entry(head, struct stripe_head, release_list);
399                 head = llist_next(head);
400                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
401                 smp_mb();
402                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
403                 /*
404                  * Don't worry the bit is set here, because if the bit is set
405                  * again, the count is always > 1. This is true for
406                  * STRIPE_ON_UNPLUG_LIST bit too.
407                  */
408                 hash = sh->hash_lock_index;
409                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
410                 count++;
411         }
412
413         return count;
414 }
415
416 static void release_stripe(struct stripe_head *sh)
417 {
418         struct r5conf *conf = sh->raid_conf;
419         unsigned long flags;
420         struct list_head list;
421         int hash;
422         bool wakeup;
423
424         /* Avoid release_list until the last reference.
425          */
426         if (atomic_add_unless(&sh->count, -1, 1))
427                 return;
428
429         if (unlikely(!conf->mddev->thread) ||
430                 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
431                 goto slow_path;
432         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
433         if (wakeup)
434                 md_wakeup_thread(conf->mddev->thread);
435         return;
436 slow_path:
437         local_irq_save(flags);
438         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
439         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
440                 INIT_LIST_HEAD(&list);
441                 hash = sh->hash_lock_index;
442                 do_release_stripe(conf, sh, &list);
443                 spin_unlock(&conf->device_lock);
444                 release_inactive_stripe_list(conf, &list, hash);
445         }
446         local_irq_restore(flags);
447 }
448
449 static inline void remove_hash(struct stripe_head *sh)
450 {
451         pr_debug("remove_hash(), stripe %llu\n",
452                 (unsigned long long)sh->sector);
453
454         hlist_del_init(&sh->hash);
455 }
456
457 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
458 {
459         struct hlist_head *hp = stripe_hash(conf, sh->sector);
460
461         pr_debug("insert_hash(), stripe %llu\n",
462                 (unsigned long long)sh->sector);
463
464         hlist_add_head(&sh->hash, hp);
465 }
466
467 /* find an idle stripe, make sure it is unhashed, and return it. */
468 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
469 {
470         struct stripe_head *sh = NULL;
471         struct list_head *first;
472
473         if (list_empty(conf->inactive_list + hash))
474                 goto out;
475         first = (conf->inactive_list + hash)->next;
476         sh = list_entry(first, struct stripe_head, lru);
477         list_del_init(first);
478         remove_hash(sh);
479         atomic_inc(&conf->active_stripes);
480         BUG_ON(hash != sh->hash_lock_index);
481         if (list_empty(conf->inactive_list + hash))
482                 atomic_inc(&conf->empty_inactive_list_nr);
483 out:
484         return sh;
485 }
486
487 static void shrink_buffers(struct stripe_head *sh)
488 {
489         struct page *p;
490         int i;
491         int num = sh->raid_conf->pool_size;
492
493         for (i = 0; i < num ; i++) {
494                 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
495                 p = sh->dev[i].page;
496                 if (!p)
497                         continue;
498                 sh->dev[i].page = NULL;
499                 put_page(p);
500         }
501 }
502
503 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
504 {
505         int i;
506         int num = sh->raid_conf->pool_size;
507
508         for (i = 0; i < num; i++) {
509                 struct page *page;
510
511                 if (!(page = alloc_page(gfp))) {
512                         return 1;
513                 }
514                 sh->dev[i].page = page;
515                 sh->dev[i].orig_page = page;
516         }
517         return 0;
518 }
519
520 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
521 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
522                             struct stripe_head *sh);
523
524 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
525 {
526         struct r5conf *conf = sh->raid_conf;
527         int i, seq;
528
529         BUG_ON(atomic_read(&sh->count) != 0);
530         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
531         BUG_ON(stripe_operations_active(sh));
532         BUG_ON(sh->batch_head);
533
534         pr_debug("init_stripe called, stripe %llu\n",
535                 (unsigned long long)sector);
536 retry:
537         seq = read_seqcount_begin(&conf->gen_lock);
538         sh->generation = conf->generation - previous;
539         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
540         sh->sector = sector;
541         stripe_set_idx(sector, conf, previous, sh);
542         sh->state = 0;
543
544         for (i = sh->disks; i--; ) {
545                 struct r5dev *dev = &sh->dev[i];
546
547                 if (dev->toread || dev->read || dev->towrite || dev->written ||
548                     test_bit(R5_LOCKED, &dev->flags)) {
549                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
550                                (unsigned long long)sh->sector, i, dev->toread,
551                                dev->read, dev->towrite, dev->written,
552                                test_bit(R5_LOCKED, &dev->flags));
553                         WARN_ON(1);
554                 }
555                 dev->flags = 0;
556                 raid5_build_block(sh, i, previous);
557         }
558         if (read_seqcount_retry(&conf->gen_lock, seq))
559                 goto retry;
560         sh->overwrite_disks = 0;
561         insert_hash(conf, sh);
562         sh->cpu = smp_processor_id();
563         set_bit(STRIPE_BATCH_READY, &sh->state);
564 }
565
566 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
567                                          short generation)
568 {
569         struct stripe_head *sh;
570
571         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
572         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
573                 if (sh->sector == sector && sh->generation == generation)
574                         return sh;
575         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
576         return NULL;
577 }
578
579 /*
580  * Need to check if array has failed when deciding whether to:
581  *  - start an array
582  *  - remove non-faulty devices
583  *  - add a spare
584  *  - allow a reshape
585  * This determination is simple when no reshape is happening.
586  * However if there is a reshape, we need to carefully check
587  * both the before and after sections.
588  * This is because some failed devices may only affect one
589  * of the two sections, and some non-in_sync devices may
590  * be insync in the section most affected by failed devices.
591  */
592 static int calc_degraded(struct r5conf *conf)
593 {
594         int degraded, degraded2;
595         int i;
596
597         rcu_read_lock();
598         degraded = 0;
599         for (i = 0; i < conf->previous_raid_disks; i++) {
600                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
601                 if (rdev && test_bit(Faulty, &rdev->flags))
602                         rdev = rcu_dereference(conf->disks[i].replacement);
603                 if (!rdev || test_bit(Faulty, &rdev->flags))
604                         degraded++;
605                 else if (test_bit(In_sync, &rdev->flags))
606                         ;
607                 else
608                         /* not in-sync or faulty.
609                          * If the reshape increases the number of devices,
610                          * this is being recovered by the reshape, so
611                          * this 'previous' section is not in_sync.
612                          * If the number of devices is being reduced however,
613                          * the device can only be part of the array if
614                          * we are reverting a reshape, so this section will
615                          * be in-sync.
616                          */
617                         if (conf->raid_disks >= conf->previous_raid_disks)
618                                 degraded++;
619         }
620         rcu_read_unlock();
621         if (conf->raid_disks == conf->previous_raid_disks)
622                 return degraded;
623         rcu_read_lock();
624         degraded2 = 0;
625         for (i = 0; i < conf->raid_disks; i++) {
626                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
627                 if (rdev && test_bit(Faulty, &rdev->flags))
628                         rdev = rcu_dereference(conf->disks[i].replacement);
629                 if (!rdev || test_bit(Faulty, &rdev->flags))
630                         degraded2++;
631                 else if (test_bit(In_sync, &rdev->flags))
632                         ;
633                 else
634                         /* not in-sync or faulty.
635                          * If reshape increases the number of devices, this
636                          * section has already been recovered, else it
637                          * almost certainly hasn't.
638                          */
639                         if (conf->raid_disks <= conf->previous_raid_disks)
640                                 degraded2++;
641         }
642         rcu_read_unlock();
643         if (degraded2 > degraded)
644                 return degraded2;
645         return degraded;
646 }
647
648 static int has_failed(struct r5conf *conf)
649 {
650         int degraded;
651
652         if (conf->mddev->reshape_position == MaxSector)
653                 return conf->mddev->degraded > conf->max_degraded;
654
655         degraded = calc_degraded(conf);
656         if (degraded > conf->max_degraded)
657                 return 1;
658         return 0;
659 }
660
661 static struct stripe_head *
662 get_active_stripe(struct r5conf *conf, sector_t sector,
663                   int previous, int noblock, int noquiesce)
664 {
665         struct stripe_head *sh;
666         int hash = stripe_hash_locks_hash(sector);
667
668         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
669
670         spin_lock_irq(conf->hash_locks + hash);
671
672         do {
673                 wait_event_lock_irq(conf->wait_for_quiescent,
674                                     conf->quiesce == 0 || noquiesce,
675                                     *(conf->hash_locks + hash));
676                 sh = __find_stripe(conf, sector, conf->generation - previous);
677                 if (!sh) {
678                         if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
679                                 sh = get_free_stripe(conf, hash);
680                                 if (!sh && !test_bit(R5_DID_ALLOC,
681                                                      &conf->cache_state))
682                                         set_bit(R5_ALLOC_MORE,
683                                                 &conf->cache_state);
684                         }
685                         if (noblock && sh == NULL)
686                                 break;
687                         if (!sh) {
688                                 set_bit(R5_INACTIVE_BLOCKED,
689                                         &conf->cache_state);
690                                 wait_event_exclusive_cmd(
691                                         conf->wait_for_stripe[hash],
692                                         !list_empty(conf->inactive_list + hash) &&
693                                         (atomic_read(&conf->active_stripes)
694                                          < (conf->max_nr_stripes * 3 / 4)
695                                          || !test_bit(R5_INACTIVE_BLOCKED,
696                                                       &conf->cache_state)),
697                                         spin_unlock_irq(conf->hash_locks + hash),
698                                         spin_lock_irq(conf->hash_locks + hash));
699                                 clear_bit(R5_INACTIVE_BLOCKED,
700                                           &conf->cache_state);
701                         } else {
702                                 init_stripe(sh, sector, previous);
703                                 atomic_inc(&sh->count);
704                         }
705                 } else if (!atomic_inc_not_zero(&sh->count)) {
706                         spin_lock(&conf->device_lock);
707                         if (!atomic_read(&sh->count)) {
708                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
709                                         atomic_inc(&conf->active_stripes);
710                                 BUG_ON(list_empty(&sh->lru) &&
711                                        !test_bit(STRIPE_EXPANDING, &sh->state));
712                                 list_del_init(&sh->lru);
713                                 if (sh->group) {
714                                         sh->group->stripes_cnt--;
715                                         sh->group = NULL;
716                                 }
717                         }
718                         atomic_inc(&sh->count);
719                         spin_unlock(&conf->device_lock);
720                 }
721         } while (sh == NULL);
722
723         if (!list_empty(conf->inactive_list + hash))
724                 wake_up(&conf->wait_for_stripe[hash]);
725
726         spin_unlock_irq(conf->hash_locks + hash);
727         return sh;
728 }
729
730 static bool is_full_stripe_write(struct stripe_head *sh)
731 {
732         BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
733         return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
734 }
735
736 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
737 {
738         local_irq_disable();
739         if (sh1 > sh2) {
740                 spin_lock(&sh2->stripe_lock);
741                 spin_lock_nested(&sh1->stripe_lock, 1);
742         } else {
743                 spin_lock(&sh1->stripe_lock);
744                 spin_lock_nested(&sh2->stripe_lock, 1);
745         }
746 }
747
748 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
749 {
750         spin_unlock(&sh1->stripe_lock);
751         spin_unlock(&sh2->stripe_lock);
752         local_irq_enable();
753 }
754
755 /* Only freshly new full stripe normal write stripe can be added to a batch list */
756 static bool stripe_can_batch(struct stripe_head *sh)
757 {
758         return test_bit(STRIPE_BATCH_READY, &sh->state) &&
759                 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
760                 is_full_stripe_write(sh);
761 }
762
763 /* we only do back search */
764 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
765 {
766         struct stripe_head *head;
767         sector_t head_sector, tmp_sec;
768         int hash;
769         int dd_idx;
770
771         if (!stripe_can_batch(sh))
772                 return;
773         /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
774         tmp_sec = sh->sector;
775         if (!sector_div(tmp_sec, conf->chunk_sectors))
776                 return;
777         head_sector = sh->sector - STRIPE_SECTORS;
778
779         hash = stripe_hash_locks_hash(head_sector);
780         spin_lock_irq(conf->hash_locks + hash);
781         head = __find_stripe(conf, head_sector, conf->generation);
782         if (head && !atomic_inc_not_zero(&head->count)) {
783                 spin_lock(&conf->device_lock);
784                 if (!atomic_read(&head->count)) {
785                         if (!test_bit(STRIPE_HANDLE, &head->state))
786                                 atomic_inc(&conf->active_stripes);
787                         BUG_ON(list_empty(&head->lru) &&
788                                !test_bit(STRIPE_EXPANDING, &head->state));
789                         list_del_init(&head->lru);
790                         if (head->group) {
791                                 head->group->stripes_cnt--;
792                                 head->group = NULL;
793                         }
794                 }
795                 atomic_inc(&head->count);
796                 spin_unlock(&conf->device_lock);
797         }
798         spin_unlock_irq(conf->hash_locks + hash);
799
800         if (!head)
801                 return;
802         if (!stripe_can_batch(head))
803                 goto out;
804
805         lock_two_stripes(head, sh);
806         /* clear_batch_ready clear the flag */
807         if (!stripe_can_batch(head) || !stripe_can_batch(sh))
808                 goto unlock_out;
809
810         if (sh->batch_head)
811                 goto unlock_out;
812
813         dd_idx = 0;
814         while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
815                 dd_idx++;
816         if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
817                 goto unlock_out;
818
819         if (head->batch_head) {
820                 spin_lock(&head->batch_head->batch_lock);
821                 /* This batch list is already running */
822                 if (!stripe_can_batch(head)) {
823                         spin_unlock(&head->batch_head->batch_lock);
824                         goto unlock_out;
825                 }
826
827                 /*
828                  * at this point, head's BATCH_READY could be cleared, but we
829                  * can still add the stripe to batch list
830                  */
831                 list_add(&sh->batch_list, &head->batch_list);
832                 spin_unlock(&head->batch_head->batch_lock);
833
834                 sh->batch_head = head->batch_head;
835         } else {
836                 head->batch_head = head;
837                 sh->batch_head = head->batch_head;
838                 spin_lock(&head->batch_lock);
839                 list_add_tail(&sh->batch_list, &head->batch_list);
840                 spin_unlock(&head->batch_lock);
841         }
842
843         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
844                 if (atomic_dec_return(&conf->preread_active_stripes)
845                     < IO_THRESHOLD)
846                         md_wakeup_thread(conf->mddev->thread);
847
848         if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
849                 int seq = sh->bm_seq;
850                 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
851                     sh->batch_head->bm_seq > seq)
852                         seq = sh->batch_head->bm_seq;
853                 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
854                 sh->batch_head->bm_seq = seq;
855         }
856
857         atomic_inc(&sh->count);
858 unlock_out:
859         unlock_two_stripes(head, sh);
860 out:
861         release_stripe(head);
862 }
863
864 /* Determine if 'data_offset' or 'new_data_offset' should be used
865  * in this stripe_head.
866  */
867 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
868 {
869         sector_t progress = conf->reshape_progress;
870         /* Need a memory barrier to make sure we see the value
871          * of conf->generation, or ->data_offset that was set before
872          * reshape_progress was updated.
873          */
874         smp_rmb();
875         if (progress == MaxSector)
876                 return 0;
877         if (sh->generation == conf->generation - 1)
878                 return 0;
879         /* We are in a reshape, and this is a new-generation stripe,
880          * so use new_data_offset.
881          */
882         return 1;
883 }
884
885 static void
886 raid5_end_read_request(struct bio *bi, int error);
887 static void
888 raid5_end_write_request(struct bio *bi, int error);
889
890 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
891 {
892         struct r5conf *conf = sh->raid_conf;
893         int i, disks = sh->disks;
894         struct stripe_head *head_sh = sh;
895
896         might_sleep();
897
898         for (i = disks; i--; ) {
899                 int rw;
900                 int replace_only = 0;
901                 struct bio *bi, *rbi;
902                 struct md_rdev *rdev, *rrdev = NULL;
903
904                 sh = head_sh;
905                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
906                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
907                                 rw = WRITE_FUA;
908                         else
909                                 rw = WRITE;
910                         if (test_bit(R5_Discard, &sh->dev[i].flags))
911                                 rw |= REQ_DISCARD;
912                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
913                         rw = READ;
914                 else if (test_and_clear_bit(R5_WantReplace,
915                                             &sh->dev[i].flags)) {
916                         rw = WRITE;
917                         replace_only = 1;
918                 } else
919                         continue;
920                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
921                         rw |= REQ_SYNC;
922
923 again:
924                 bi = &sh->dev[i].req;
925                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
926
927                 rcu_read_lock();
928                 rrdev = rcu_dereference(conf->disks[i].replacement);
929                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
930                 rdev = rcu_dereference(conf->disks[i].rdev);
931                 if (!rdev) {
932                         rdev = rrdev;
933                         rrdev = NULL;
934                 }
935                 if (rw & WRITE) {
936                         if (replace_only)
937                                 rdev = NULL;
938                         if (rdev == rrdev)
939                                 /* We raced and saw duplicates */
940                                 rrdev = NULL;
941                 } else {
942                         if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
943                                 rdev = rrdev;
944                         rrdev = NULL;
945                 }
946
947                 if (rdev && test_bit(Faulty, &rdev->flags))
948                         rdev = NULL;
949                 if (rdev)
950                         atomic_inc(&rdev->nr_pending);
951                 if (rrdev && test_bit(Faulty, &rrdev->flags))
952                         rrdev = NULL;
953                 if (rrdev)
954                         atomic_inc(&rrdev->nr_pending);
955                 rcu_read_unlock();
956
957                 /* We have already checked bad blocks for reads.  Now
958                  * need to check for writes.  We never accept write errors
959                  * on the replacement, so we don't to check rrdev.
960                  */
961                 while ((rw & WRITE) && rdev &&
962                        test_bit(WriteErrorSeen, &rdev->flags)) {
963                         sector_t first_bad;
964                         int bad_sectors;
965                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
966                                               &first_bad, &bad_sectors);
967                         if (!bad)
968                                 break;
969
970                         if (bad < 0) {
971                                 set_bit(BlockedBadBlocks, &rdev->flags);
972                                 if (!conf->mddev->external &&
973                                     conf->mddev->flags) {
974                                         /* It is very unlikely, but we might
975                                          * still need to write out the
976                                          * bad block log - better give it
977                                          * a chance*/
978                                         md_check_recovery(conf->mddev);
979                                 }
980                                 /*
981                                  * Because md_wait_for_blocked_rdev
982                                  * will dec nr_pending, we must
983                                  * increment it first.
984                                  */
985                                 atomic_inc(&rdev->nr_pending);
986                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
987                         } else {
988                                 /* Acknowledged bad block - skip the write */
989                                 rdev_dec_pending(rdev, conf->mddev);
990                                 rdev = NULL;
991                         }
992                 }
993
994                 if (rdev) {
995                         if (s->syncing || s->expanding || s->expanded
996                             || s->replacing)
997                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
998
999                         set_bit(STRIPE_IO_STARTED, &sh->state);
1000
1001                         bio_reset(bi);
1002                         bi->bi_bdev = rdev->bdev;
1003                         bi->bi_rw = rw;
1004                         bi->bi_end_io = (rw & WRITE)
1005                                 ? raid5_end_write_request
1006                                 : raid5_end_read_request;
1007                         bi->bi_private = sh;
1008
1009                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
1010                                 __func__, (unsigned long long)sh->sector,
1011                                 bi->bi_rw, i);
1012                         atomic_inc(&sh->count);
1013                         if (sh != head_sh)
1014                                 atomic_inc(&head_sh->count);
1015                         if (use_new_offset(conf, sh))
1016                                 bi->bi_iter.bi_sector = (sh->sector
1017                                                  + rdev->new_data_offset);
1018                         else
1019                                 bi->bi_iter.bi_sector = (sh->sector
1020                                                  + rdev->data_offset);
1021                         if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1022                                 bi->bi_rw |= REQ_NOMERGE;
1023
1024                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1025                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1026                         sh->dev[i].vec.bv_page = sh->dev[i].page;
1027                         bi->bi_vcnt = 1;
1028                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1029                         bi->bi_io_vec[0].bv_offset = 0;
1030                         bi->bi_iter.bi_size = STRIPE_SIZE;
1031                         /*
1032                          * If this is discard request, set bi_vcnt 0. We don't
1033                          * want to confuse SCSI because SCSI will replace payload
1034                          */
1035                         if (rw & REQ_DISCARD)
1036                                 bi->bi_vcnt = 0;
1037                         if (rrdev)
1038                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1039
1040                         if (conf->mddev->gendisk)
1041                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1042                                                       bi, disk_devt(conf->mddev->gendisk),
1043                                                       sh->dev[i].sector);
1044                         generic_make_request(bi);
1045                 }
1046                 if (rrdev) {
1047                         if (s->syncing || s->expanding || s->expanded
1048                             || s->replacing)
1049                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1050
1051                         set_bit(STRIPE_IO_STARTED, &sh->state);
1052
1053                         bio_reset(rbi);
1054                         rbi->bi_bdev = rrdev->bdev;
1055                         rbi->bi_rw = rw;
1056                         BUG_ON(!(rw & WRITE));
1057                         rbi->bi_end_io = raid5_end_write_request;
1058                         rbi->bi_private = sh;
1059
1060                         pr_debug("%s: for %llu schedule op %ld on "
1061                                  "replacement disc %d\n",
1062                                 __func__, (unsigned long long)sh->sector,
1063                                 rbi->bi_rw, i);
1064                         atomic_inc(&sh->count);
1065                         if (sh != head_sh)
1066                                 atomic_inc(&head_sh->count);
1067                         if (use_new_offset(conf, sh))
1068                                 rbi->bi_iter.bi_sector = (sh->sector
1069                                                   + rrdev->new_data_offset);
1070                         else
1071                                 rbi->bi_iter.bi_sector = (sh->sector
1072                                                   + rrdev->data_offset);
1073                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1074                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1075                         sh->dev[i].rvec.bv_page = sh->dev[i].page;
1076                         rbi->bi_vcnt = 1;
1077                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1078                         rbi->bi_io_vec[0].bv_offset = 0;
1079                         rbi->bi_iter.bi_size = STRIPE_SIZE;
1080                         /*
1081                          * If this is discard request, set bi_vcnt 0. We don't
1082                          * want to confuse SCSI because SCSI will replace payload
1083                          */
1084                         if (rw & REQ_DISCARD)
1085                                 rbi->bi_vcnt = 0;
1086                         if (conf->mddev->gendisk)
1087                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1088                                                       rbi, disk_devt(conf->mddev->gendisk),
1089                                                       sh->dev[i].sector);
1090                         generic_make_request(rbi);
1091                 }
1092                 if (!rdev && !rrdev) {
1093                         if (rw & WRITE)
1094                                 set_bit(STRIPE_DEGRADED, &sh->state);
1095                         pr_debug("skip op %ld on disc %d for sector %llu\n",
1096                                 bi->bi_rw, i, (unsigned long long)sh->sector);
1097                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1098                         set_bit(STRIPE_HANDLE, &sh->state);
1099                 }
1100
1101                 if (!head_sh->batch_head)
1102                         continue;
1103                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1104                                       batch_list);
1105                 if (sh != head_sh)
1106                         goto again;
1107         }
1108 }
1109
1110 static struct dma_async_tx_descriptor *
1111 async_copy_data(int frombio, struct bio *bio, struct page **page,
1112         sector_t sector, struct dma_async_tx_descriptor *tx,
1113         struct stripe_head *sh)
1114 {
1115         struct bio_vec bvl;
1116         struct bvec_iter iter;
1117         struct page *bio_page;
1118         int page_offset;
1119         struct async_submit_ctl submit;
1120         enum async_tx_flags flags = 0;
1121
1122         if (bio->bi_iter.bi_sector >= sector)
1123                 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1124         else
1125                 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1126
1127         if (frombio)
1128                 flags |= ASYNC_TX_FENCE;
1129         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1130
1131         bio_for_each_segment(bvl, bio, iter) {
1132                 int len = bvl.bv_len;
1133                 int clen;
1134                 int b_offset = 0;
1135
1136                 if (page_offset < 0) {
1137                         b_offset = -page_offset;
1138                         page_offset += b_offset;
1139                         len -= b_offset;
1140                 }
1141
1142                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1143                         clen = STRIPE_SIZE - page_offset;
1144                 else
1145                         clen = len;
1146
1147                 if (clen > 0) {
1148                         b_offset += bvl.bv_offset;
1149                         bio_page = bvl.bv_page;
1150                         if (frombio) {
1151                                 if (sh->raid_conf->skip_copy &&
1152                                     b_offset == 0 && page_offset == 0 &&
1153                                     clen == STRIPE_SIZE)
1154                                         *page = bio_page;
1155                                 else
1156                                         tx = async_memcpy(*page, bio_page, page_offset,
1157                                                   b_offset, clen, &submit);
1158                         } else
1159                                 tx = async_memcpy(bio_page, *page, b_offset,
1160                                                   page_offset, clen, &submit);
1161                 }
1162                 /* chain the operations */
1163                 submit.depend_tx = tx;
1164
1165                 if (clen < len) /* hit end of page */
1166                         break;
1167                 page_offset +=  len;
1168         }
1169
1170         return tx;
1171 }
1172
1173 static void ops_complete_biofill(void *stripe_head_ref)
1174 {
1175         struct stripe_head *sh = stripe_head_ref;
1176         struct bio_list return_bi = BIO_EMPTY_LIST;
1177         int i;
1178
1179         pr_debug("%s: stripe %llu\n", __func__,
1180                 (unsigned long long)sh->sector);
1181
1182         /* clear completed biofills */
1183         for (i = sh->disks; i--; ) {
1184                 struct r5dev *dev = &sh->dev[i];
1185
1186                 /* acknowledge completion of a biofill operation */
1187                 /* and check if we need to reply to a read request,
1188                  * new R5_Wantfill requests are held off until
1189                  * !STRIPE_BIOFILL_RUN
1190                  */
1191                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1192                         struct bio *rbi, *rbi2;
1193
1194                         BUG_ON(!dev->read);
1195                         rbi = dev->read;
1196                         dev->read = NULL;
1197                         while (rbi && rbi->bi_iter.bi_sector <
1198                                 dev->sector + STRIPE_SECTORS) {
1199                                 rbi2 = r5_next_bio(rbi, dev->sector);
1200                                 if (!raid5_dec_bi_active_stripes(rbi))
1201                                         bio_list_add(&return_bi, rbi);
1202                                 rbi = rbi2;
1203                         }
1204                 }
1205         }
1206         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1207
1208         return_io(&return_bi);
1209
1210         set_bit(STRIPE_HANDLE, &sh->state);
1211         release_stripe(sh);
1212 }
1213
1214 static void ops_run_biofill(struct stripe_head *sh)
1215 {
1216         struct dma_async_tx_descriptor *tx = NULL;
1217         struct async_submit_ctl submit;
1218         int i;
1219
1220         BUG_ON(sh->batch_head);
1221         pr_debug("%s: stripe %llu\n", __func__,
1222                 (unsigned long long)sh->sector);
1223
1224         for (i = sh->disks; i--; ) {
1225                 struct r5dev *dev = &sh->dev[i];
1226                 if (test_bit(R5_Wantfill, &dev->flags)) {
1227                         struct bio *rbi;
1228                         spin_lock_irq(&sh->stripe_lock);
1229                         dev->read = rbi = dev->toread;
1230                         dev->toread = NULL;
1231                         spin_unlock_irq(&sh->stripe_lock);
1232                         while (rbi && rbi->bi_iter.bi_sector <
1233                                 dev->sector + STRIPE_SECTORS) {
1234                                 tx = async_copy_data(0, rbi, &dev->page,
1235                                         dev->sector, tx, sh);
1236                                 rbi = r5_next_bio(rbi, dev->sector);
1237                         }
1238                 }
1239         }
1240
1241         atomic_inc(&sh->count);
1242         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1243         async_trigger_callback(&submit);
1244 }
1245
1246 static void mark_target_uptodate(struct stripe_head *sh, int target)
1247 {
1248         struct r5dev *tgt;
1249
1250         if (target < 0)
1251                 return;
1252
1253         tgt = &sh->dev[target];
1254         set_bit(R5_UPTODATE, &tgt->flags);
1255         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1256         clear_bit(R5_Wantcompute, &tgt->flags);
1257 }
1258
1259 static void ops_complete_compute(void *stripe_head_ref)
1260 {
1261         struct stripe_head *sh = stripe_head_ref;
1262
1263         pr_debug("%s: stripe %llu\n", __func__,
1264                 (unsigned long long)sh->sector);
1265
1266         /* mark the computed target(s) as uptodate */
1267         mark_target_uptodate(sh, sh->ops.target);
1268         mark_target_uptodate(sh, sh->ops.target2);
1269
1270         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1271         if (sh->check_state == check_state_compute_run)
1272                 sh->check_state = check_state_compute_result;
1273         set_bit(STRIPE_HANDLE, &sh->state);
1274         release_stripe(sh);
1275 }
1276
1277 /* return a pointer to the address conversion region of the scribble buffer */
1278 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1279                                  struct raid5_percpu *percpu, int i)
1280 {
1281         void *addr;
1282
1283         addr = flex_array_get(percpu->scribble, i);
1284         return addr + sizeof(struct page *) * (sh->disks + 2);
1285 }
1286
1287 /* return a pointer to the address conversion region of the scribble buffer */
1288 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1289 {
1290         void *addr;
1291
1292         addr = flex_array_get(percpu->scribble, i);
1293         return addr;
1294 }
1295
1296 static struct dma_async_tx_descriptor *
1297 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1298 {
1299         int disks = sh->disks;
1300         struct page **xor_srcs = to_addr_page(percpu, 0);
1301         int target = sh->ops.target;
1302         struct r5dev *tgt = &sh->dev[target];
1303         struct page *xor_dest = tgt->page;
1304         int count = 0;
1305         struct dma_async_tx_descriptor *tx;
1306         struct async_submit_ctl submit;
1307         int i;
1308
1309         BUG_ON(sh->batch_head);
1310
1311         pr_debug("%s: stripe %llu block: %d\n",
1312                 __func__, (unsigned long long)sh->sector, target);
1313         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1314
1315         for (i = disks; i--; )
1316                 if (i != target)
1317                         xor_srcs[count++] = sh->dev[i].page;
1318
1319         atomic_inc(&sh->count);
1320
1321         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1322                           ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1323         if (unlikely(count == 1))
1324                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1325         else
1326                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1327
1328         return tx;
1329 }
1330
1331 /* set_syndrome_sources - populate source buffers for gen_syndrome
1332  * @srcs - (struct page *) array of size sh->disks
1333  * @sh - stripe_head to parse
1334  *
1335  * Populates srcs in proper layout order for the stripe and returns the
1336  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1337  * destination buffer is recorded in srcs[count] and the Q destination
1338  * is recorded in srcs[count+1]].
1339  */
1340 static int set_syndrome_sources(struct page **srcs,
1341                                 struct stripe_head *sh,
1342                                 int srctype)
1343 {
1344         int disks = sh->disks;
1345         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1346         int d0_idx = raid6_d0(sh);
1347         int count;
1348         int i;
1349
1350         for (i = 0; i < disks; i++)
1351                 srcs[i] = NULL;
1352
1353         count = 0;
1354         i = d0_idx;
1355         do {
1356                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1357                 struct r5dev *dev = &sh->dev[i];
1358
1359                 if (i == sh->qd_idx || i == sh->pd_idx ||
1360                     (srctype == SYNDROME_SRC_ALL) ||
1361                     (srctype == SYNDROME_SRC_WANT_DRAIN &&
1362                      test_bit(R5_Wantdrain, &dev->flags)) ||
1363                     (srctype == SYNDROME_SRC_WRITTEN &&
1364                      dev->written))
1365                         srcs[slot] = sh->dev[i].page;
1366                 i = raid6_next_disk(i, disks);
1367         } while (i != d0_idx);
1368
1369         return syndrome_disks;
1370 }
1371
1372 static struct dma_async_tx_descriptor *
1373 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1374 {
1375         int disks = sh->disks;
1376         struct page **blocks = to_addr_page(percpu, 0);
1377         int target;
1378         int qd_idx = sh->qd_idx;
1379         struct dma_async_tx_descriptor *tx;
1380         struct async_submit_ctl submit;
1381         struct r5dev *tgt;
1382         struct page *dest;
1383         int i;
1384         int count;
1385
1386         BUG_ON(sh->batch_head);
1387         if (sh->ops.target < 0)
1388                 target = sh->ops.target2;
1389         else if (sh->ops.target2 < 0)
1390                 target = sh->ops.target;
1391         else
1392                 /* we should only have one valid target */
1393                 BUG();
1394         BUG_ON(target < 0);
1395         pr_debug("%s: stripe %llu block: %d\n",
1396                 __func__, (unsigned long long)sh->sector, target);
1397
1398         tgt = &sh->dev[target];
1399         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1400         dest = tgt->page;
1401
1402         atomic_inc(&sh->count);
1403
1404         if (target == qd_idx) {
1405                 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1406                 blocks[count] = NULL; /* regenerating p is not necessary */
1407                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1408                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1409                                   ops_complete_compute, sh,
1410                                   to_addr_conv(sh, percpu, 0));
1411                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1412         } else {
1413                 /* Compute any data- or p-drive using XOR */
1414                 count = 0;
1415                 for (i = disks; i-- ; ) {
1416                         if (i == target || i == qd_idx)
1417                                 continue;
1418                         blocks[count++] = sh->dev[i].page;
1419                 }
1420
1421                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1422                                   NULL, ops_complete_compute, sh,
1423                                   to_addr_conv(sh, percpu, 0));
1424                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1425         }
1426
1427         return tx;
1428 }
1429
1430 static struct dma_async_tx_descriptor *
1431 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1432 {
1433         int i, count, disks = sh->disks;
1434         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1435         int d0_idx = raid6_d0(sh);
1436         int faila = -1, failb = -1;
1437         int target = sh->ops.target;
1438         int target2 = sh->ops.target2;
1439         struct r5dev *tgt = &sh->dev[target];
1440         struct r5dev *tgt2 = &sh->dev[target2];
1441         struct dma_async_tx_descriptor *tx;
1442         struct page **blocks = to_addr_page(percpu, 0);
1443         struct async_submit_ctl submit;
1444
1445         BUG_ON(sh->batch_head);
1446         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1447                  __func__, (unsigned long long)sh->sector, target, target2);
1448         BUG_ON(target < 0 || target2 < 0);
1449         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1450         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1451
1452         /* we need to open-code set_syndrome_sources to handle the
1453          * slot number conversion for 'faila' and 'failb'
1454          */
1455         for (i = 0; i < disks ; i++)
1456                 blocks[i] = NULL;
1457         count = 0;
1458         i = d0_idx;
1459         do {
1460                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1461
1462                 blocks[slot] = sh->dev[i].page;
1463
1464                 if (i == target)
1465                         faila = slot;
1466                 if (i == target2)
1467                         failb = slot;
1468                 i = raid6_next_disk(i, disks);
1469         } while (i != d0_idx);
1470
1471         BUG_ON(faila == failb);
1472         if (failb < faila)
1473                 swap(faila, failb);
1474         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1475                  __func__, (unsigned long long)sh->sector, faila, failb);
1476
1477         atomic_inc(&sh->count);
1478
1479         if (failb == syndrome_disks+1) {
1480                 /* Q disk is one of the missing disks */
1481                 if (faila == syndrome_disks) {
1482                         /* Missing P+Q, just recompute */
1483                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1484                                           ops_complete_compute, sh,
1485                                           to_addr_conv(sh, percpu, 0));
1486                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1487                                                   STRIPE_SIZE, &submit);
1488                 } else {
1489                         struct page *dest;
1490                         int data_target;
1491                         int qd_idx = sh->qd_idx;
1492
1493                         /* Missing D+Q: recompute D from P, then recompute Q */
1494                         if (target == qd_idx)
1495                                 data_target = target2;
1496                         else
1497                                 data_target = target;
1498
1499                         count = 0;
1500                         for (i = disks; i-- ; ) {
1501                                 if (i == data_target || i == qd_idx)
1502                                         continue;
1503                                 blocks[count++] = sh->dev[i].page;
1504                         }
1505                         dest = sh->dev[data_target].page;
1506                         init_async_submit(&submit,
1507                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1508                                           NULL, NULL, NULL,
1509                                           to_addr_conv(sh, percpu, 0));
1510                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1511                                        &submit);
1512
1513                         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1514                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1515                                           ops_complete_compute, sh,
1516                                           to_addr_conv(sh, percpu, 0));
1517                         return async_gen_syndrome(blocks, 0, count+2,
1518                                                   STRIPE_SIZE, &submit);
1519                 }
1520         } else {
1521                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1522                                   ops_complete_compute, sh,
1523                                   to_addr_conv(sh, percpu, 0));
1524                 if (failb == syndrome_disks) {
1525                         /* We're missing D+P. */
1526                         return async_raid6_datap_recov(syndrome_disks+2,
1527                                                        STRIPE_SIZE, faila,
1528                                                        blocks, &submit);
1529                 } else {
1530                         /* We're missing D+D. */
1531                         return async_raid6_2data_recov(syndrome_disks+2,
1532                                                        STRIPE_SIZE, faila, failb,
1533                                                        blocks, &submit);
1534                 }
1535         }
1536 }
1537
1538 static void ops_complete_prexor(void *stripe_head_ref)
1539 {
1540         struct stripe_head *sh = stripe_head_ref;
1541
1542         pr_debug("%s: stripe %llu\n", __func__,
1543                 (unsigned long long)sh->sector);
1544 }
1545
1546 static struct dma_async_tx_descriptor *
1547 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1548                 struct dma_async_tx_descriptor *tx)
1549 {
1550         int disks = sh->disks;
1551         struct page **xor_srcs = to_addr_page(percpu, 0);
1552         int count = 0, pd_idx = sh->pd_idx, i;
1553         struct async_submit_ctl submit;
1554
1555         /* existing parity data subtracted */
1556         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1557
1558         BUG_ON(sh->batch_head);
1559         pr_debug("%s: stripe %llu\n", __func__,
1560                 (unsigned long long)sh->sector);
1561
1562         for (i = disks; i--; ) {
1563                 struct r5dev *dev = &sh->dev[i];
1564                 /* Only process blocks that are known to be uptodate */
1565                 if (test_bit(R5_Wantdrain, &dev->flags))
1566                         xor_srcs[count++] = dev->page;
1567         }
1568
1569         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1570                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1571         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1572
1573         return tx;
1574 }
1575
1576 static struct dma_async_tx_descriptor *
1577 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1578                 struct dma_async_tx_descriptor *tx)
1579 {
1580         struct page **blocks = to_addr_page(percpu, 0);
1581         int count;
1582         struct async_submit_ctl submit;
1583
1584         pr_debug("%s: stripe %llu\n", __func__,
1585                 (unsigned long long)sh->sector);
1586
1587         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1588
1589         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1590                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1591         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1592
1593         return tx;
1594 }
1595
1596 static struct dma_async_tx_descriptor *
1597 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1598 {
1599         int disks = sh->disks;
1600         int i;
1601         struct stripe_head *head_sh = sh;
1602
1603         pr_debug("%s: stripe %llu\n", __func__,
1604                 (unsigned long long)sh->sector);
1605
1606         for (i = disks; i--; ) {
1607                 struct r5dev *dev;
1608                 struct bio *chosen;
1609
1610                 sh = head_sh;
1611                 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1612                         struct bio *wbi;
1613
1614 again:
1615                         dev = &sh->dev[i];
1616                         spin_lock_irq(&sh->stripe_lock);
1617                         chosen = dev->towrite;
1618                         dev->towrite = NULL;
1619                         sh->overwrite_disks = 0;
1620                         BUG_ON(dev->written);
1621                         wbi = dev->written = chosen;
1622                         spin_unlock_irq(&sh->stripe_lock);
1623                         WARN_ON(dev->page != dev->orig_page);
1624
1625                         while (wbi && wbi->bi_iter.bi_sector <
1626                                 dev->sector + STRIPE_SECTORS) {
1627                                 if (wbi->bi_rw & REQ_FUA)
1628                                         set_bit(R5_WantFUA, &dev->flags);
1629                                 if (wbi->bi_rw & REQ_SYNC)
1630                                         set_bit(R5_SyncIO, &dev->flags);
1631                                 if (wbi->bi_rw & REQ_DISCARD)
1632                                         set_bit(R5_Discard, &dev->flags);
1633                                 else {
1634                                         tx = async_copy_data(1, wbi, &dev->page,
1635                                                 dev->sector, tx, sh);
1636                                         if (dev->page != dev->orig_page) {
1637                                                 set_bit(R5_SkipCopy, &dev->flags);
1638                                                 clear_bit(R5_UPTODATE, &dev->flags);
1639                                                 clear_bit(R5_OVERWRITE, &dev->flags);
1640                                         }
1641                                 }
1642                                 wbi = r5_next_bio(wbi, dev->sector);
1643                         }
1644
1645                         if (head_sh->batch_head) {
1646                                 sh = list_first_entry(&sh->batch_list,
1647                                                       struct stripe_head,
1648                                                       batch_list);
1649                                 if (sh == head_sh)
1650                                         continue;
1651                                 goto again;
1652                         }
1653                 }
1654         }
1655
1656         return tx;
1657 }
1658
1659 static void ops_complete_reconstruct(void *stripe_head_ref)
1660 {
1661         struct stripe_head *sh = stripe_head_ref;
1662         int disks = sh->disks;
1663         int pd_idx = sh->pd_idx;
1664         int qd_idx = sh->qd_idx;
1665         int i;
1666         bool fua = false, sync = false, discard = false;
1667
1668         pr_debug("%s: stripe %llu\n", __func__,
1669                 (unsigned long long)sh->sector);
1670
1671         for (i = disks; i--; ) {
1672                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1673                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1674                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1675         }
1676
1677         for (i = disks; i--; ) {
1678                 struct r5dev *dev = &sh->dev[i];
1679
1680                 if (dev->written || i == pd_idx || i == qd_idx) {
1681                         if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1682                                 set_bit(R5_UPTODATE, &dev->flags);
1683                         if (fua)
1684                                 set_bit(R5_WantFUA, &dev->flags);
1685                         if (sync)
1686                                 set_bit(R5_SyncIO, &dev->flags);
1687                 }
1688         }
1689
1690         if (sh->reconstruct_state == reconstruct_state_drain_run)
1691                 sh->reconstruct_state = reconstruct_state_drain_result;
1692         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1693                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1694         else {
1695                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1696                 sh->reconstruct_state = reconstruct_state_result;
1697         }
1698
1699         set_bit(STRIPE_HANDLE, &sh->state);
1700         release_stripe(sh);
1701 }
1702
1703 static void
1704 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1705                      struct dma_async_tx_descriptor *tx)
1706 {
1707         int disks = sh->disks;
1708         struct page **xor_srcs;
1709         struct async_submit_ctl submit;
1710         int count, pd_idx = sh->pd_idx, i;
1711         struct page *xor_dest;
1712         int prexor = 0;
1713         unsigned long flags;
1714         int j = 0;
1715         struct stripe_head *head_sh = sh;
1716         int last_stripe;
1717
1718         pr_debug("%s: stripe %llu\n", __func__,
1719                 (unsigned long long)sh->sector);
1720
1721         for (i = 0; i < sh->disks; i++) {
1722                 if (pd_idx == i)
1723                         continue;
1724                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1725                         break;
1726         }
1727         if (i >= sh->disks) {
1728                 atomic_inc(&sh->count);
1729                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1730                 ops_complete_reconstruct(sh);
1731                 return;
1732         }
1733 again:
1734         count = 0;
1735         xor_srcs = to_addr_page(percpu, j);
1736         /* check if prexor is active which means only process blocks
1737          * that are part of a read-modify-write (written)
1738          */
1739         if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1740                 prexor = 1;
1741                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1742                 for (i = disks; i--; ) {
1743                         struct r5dev *dev = &sh->dev[i];
1744                         if (head_sh->dev[i].written)
1745                                 xor_srcs[count++] = dev->page;
1746                 }
1747         } else {
1748                 xor_dest = sh->dev[pd_idx].page;
1749                 for (i = disks; i--; ) {
1750                         struct r5dev *dev = &sh->dev[i];
1751                         if (i != pd_idx)
1752                                 xor_srcs[count++] = dev->page;
1753                 }
1754         }
1755
1756         /* 1/ if we prexor'd then the dest is reused as a source
1757          * 2/ if we did not prexor then we are redoing the parity
1758          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1759          * for the synchronous xor case
1760          */
1761         last_stripe = !head_sh->batch_head ||
1762                 list_first_entry(&sh->batch_list,
1763                                  struct stripe_head, batch_list) == head_sh;
1764         if (last_stripe) {
1765                 flags = ASYNC_TX_ACK |
1766                         (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1767
1768                 atomic_inc(&head_sh->count);
1769                 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1770                                   to_addr_conv(sh, percpu, j));
1771         } else {
1772                 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1773                 init_async_submit(&submit, flags, tx, NULL, NULL,
1774                                   to_addr_conv(sh, percpu, j));
1775         }
1776
1777         if (unlikely(count == 1))
1778                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1779         else
1780                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1781         if (!last_stripe) {
1782                 j++;
1783                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1784                                       batch_list);
1785                 goto again;
1786         }
1787 }
1788
1789 static void
1790 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1791                      struct dma_async_tx_descriptor *tx)
1792 {
1793         struct async_submit_ctl submit;
1794         struct page **blocks;
1795         int count, i, j = 0;
1796         struct stripe_head *head_sh = sh;
1797         int last_stripe;
1798         int synflags;
1799         unsigned long txflags;
1800
1801         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1802
1803         for (i = 0; i < sh->disks; i++) {
1804                 if (sh->pd_idx == i || sh->qd_idx == i)
1805                         continue;
1806                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1807                         break;
1808         }
1809         if (i >= sh->disks) {
1810                 atomic_inc(&sh->count);
1811                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1812                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1813                 ops_complete_reconstruct(sh);
1814                 return;
1815         }
1816
1817 again:
1818         blocks = to_addr_page(percpu, j);
1819
1820         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1821                 synflags = SYNDROME_SRC_WRITTEN;
1822                 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1823         } else {
1824                 synflags = SYNDROME_SRC_ALL;
1825                 txflags = ASYNC_TX_ACK;
1826         }
1827
1828         count = set_syndrome_sources(blocks, sh, synflags);
1829         last_stripe = !head_sh->batch_head ||
1830                 list_first_entry(&sh->batch_list,
1831                                  struct stripe_head, batch_list) == head_sh;
1832
1833         if (last_stripe) {
1834                 atomic_inc(&head_sh->count);
1835                 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1836                                   head_sh, to_addr_conv(sh, percpu, j));
1837         } else
1838                 init_async_submit(&submit, 0, tx, NULL, NULL,
1839                                   to_addr_conv(sh, percpu, j));
1840         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1841         if (!last_stripe) {
1842                 j++;
1843                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1844                                       batch_list);
1845                 goto again;
1846         }
1847 }
1848
1849 static void ops_complete_check(void *stripe_head_ref)
1850 {
1851         struct stripe_head *sh = stripe_head_ref;
1852
1853         pr_debug("%s: stripe %llu\n", __func__,
1854                 (unsigned long long)sh->sector);
1855
1856         sh->check_state = check_state_check_result;
1857         set_bit(STRIPE_HANDLE, &sh->state);
1858         release_stripe(sh);
1859 }
1860
1861 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1862 {
1863         int disks = sh->disks;
1864         int pd_idx = sh->pd_idx;
1865         int qd_idx = sh->qd_idx;
1866         struct page *xor_dest;
1867         struct page **xor_srcs = to_addr_page(percpu, 0);
1868         struct dma_async_tx_descriptor *tx;
1869         struct async_submit_ctl submit;
1870         int count;
1871         int i;
1872
1873         pr_debug("%s: stripe %llu\n", __func__,
1874                 (unsigned long long)sh->sector);
1875
1876         BUG_ON(sh->batch_head);
1877         count = 0;
1878         xor_dest = sh->dev[pd_idx].page;
1879         xor_srcs[count++] = xor_dest;
1880         for (i = disks; i--; ) {
1881                 if (i == pd_idx || i == qd_idx)
1882                         continue;
1883                 xor_srcs[count++] = sh->dev[i].page;
1884         }
1885
1886         init_async_submit(&submit, 0, NULL, NULL, NULL,
1887                           to_addr_conv(sh, percpu, 0));
1888         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1889                            &sh->ops.zero_sum_result, &submit);
1890
1891         atomic_inc(&sh->count);
1892         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1893         tx = async_trigger_callback(&submit);
1894 }
1895
1896 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1897 {
1898         struct page **srcs = to_addr_page(percpu, 0);
1899         struct async_submit_ctl submit;
1900         int count;
1901
1902         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1903                 (unsigned long long)sh->sector, checkp);
1904
1905         BUG_ON(sh->batch_head);
1906         count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1907         if (!checkp)
1908                 srcs[count] = NULL;
1909
1910         atomic_inc(&sh->count);
1911         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1912                           sh, to_addr_conv(sh, percpu, 0));
1913         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1914                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1915 }
1916
1917 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1918 {
1919         int overlap_clear = 0, i, disks = sh->disks;
1920         struct dma_async_tx_descriptor *tx = NULL;
1921         struct r5conf *conf = sh->raid_conf;
1922         int level = conf->level;
1923         struct raid5_percpu *percpu;
1924         unsigned long cpu;
1925
1926         cpu = get_cpu();
1927         percpu = per_cpu_ptr(conf->percpu, cpu);
1928         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1929                 ops_run_biofill(sh);
1930                 overlap_clear++;
1931         }
1932
1933         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1934                 if (level < 6)
1935                         tx = ops_run_compute5(sh, percpu);
1936                 else {
1937                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1938                                 tx = ops_run_compute6_1(sh, percpu);
1939                         else
1940                                 tx = ops_run_compute6_2(sh, percpu);
1941                 }
1942                 /* terminate the chain if reconstruct is not set to be run */
1943                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1944                         async_tx_ack(tx);
1945         }
1946
1947         if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1948                 if (level < 6)
1949                         tx = ops_run_prexor5(sh, percpu, tx);
1950                 else
1951                         tx = ops_run_prexor6(sh, percpu, tx);
1952         }
1953
1954         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1955                 tx = ops_run_biodrain(sh, tx);
1956                 overlap_clear++;
1957         }
1958
1959         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1960                 if (level < 6)
1961                         ops_run_reconstruct5(sh, percpu, tx);
1962                 else
1963                         ops_run_reconstruct6(sh, percpu, tx);
1964         }
1965
1966         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1967                 if (sh->check_state == check_state_run)
1968                         ops_run_check_p(sh, percpu);
1969                 else if (sh->check_state == check_state_run_q)
1970                         ops_run_check_pq(sh, percpu, 0);
1971                 else if (sh->check_state == check_state_run_pq)
1972                         ops_run_check_pq(sh, percpu, 1);
1973                 else
1974                         BUG();
1975         }
1976
1977         if (overlap_clear && !sh->batch_head)
1978                 for (i = disks; i--; ) {
1979                         struct r5dev *dev = &sh->dev[i];
1980                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1981                                 wake_up(&sh->raid_conf->wait_for_overlap);
1982                 }
1983         put_cpu();
1984 }
1985
1986 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1987 {
1988         struct stripe_head *sh;
1989
1990         sh = kmem_cache_zalloc(sc, gfp);
1991         if (sh) {
1992                 spin_lock_init(&sh->stripe_lock);
1993                 spin_lock_init(&sh->batch_lock);
1994                 INIT_LIST_HEAD(&sh->batch_list);
1995                 INIT_LIST_HEAD(&sh->lru);
1996                 atomic_set(&sh->count, 1);
1997         }
1998         return sh;
1999 }
2000 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2001 {
2002         struct stripe_head *sh;
2003
2004         sh = alloc_stripe(conf->slab_cache, gfp);
2005         if (!sh)
2006                 return 0;
2007
2008         sh->raid_conf = conf;
2009
2010         if (grow_buffers(sh, gfp)) {
2011                 shrink_buffers(sh);
2012                 kmem_cache_free(conf->slab_cache, sh);
2013                 return 0;
2014         }
2015         sh->hash_lock_index =
2016                 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2017         /* we just created an active stripe so... */
2018         atomic_inc(&conf->active_stripes);
2019
2020         release_stripe(sh);
2021         conf->max_nr_stripes++;
2022         return 1;
2023 }
2024
2025 static int grow_stripes(struct r5conf *conf, int num)
2026 {
2027         struct kmem_cache *sc;
2028         int devs = max(conf->raid_disks, conf->previous_raid_disks);
2029
2030         if (conf->mddev->gendisk)
2031                 sprintf(conf->cache_name[0],
2032                         "raid%d-%s", conf->level, mdname(conf->mddev));
2033         else
2034                 sprintf(conf->cache_name[0],
2035                         "raid%d-%p", conf->level, conf->mddev);
2036         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2037
2038         conf->active_name = 0;
2039         sc = kmem_cache_create(conf->cache_name[conf->active_name],
2040                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2041                                0, 0, NULL);
2042         if (!sc)
2043                 return 1;
2044         conf->slab_cache = sc;
2045         conf->pool_size = devs;
2046         while (num--)
2047                 if (!grow_one_stripe(conf, GFP_KERNEL))
2048                         return 1;
2049
2050         return 0;
2051 }
2052
2053 /**
2054  * scribble_len - return the required size of the scribble region
2055  * @num - total number of disks in the array
2056  *
2057  * The size must be enough to contain:
2058  * 1/ a struct page pointer for each device in the array +2
2059  * 2/ room to convert each entry in (1) to its corresponding dma
2060  *    (dma_map_page()) or page (page_address()) address.
2061  *
2062  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2063  * calculate over all devices (not just the data blocks), using zeros in place
2064  * of the P and Q blocks.
2065  */
2066 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2067 {
2068         struct flex_array *ret;
2069         size_t len;
2070
2071         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2072         ret = flex_array_alloc(len, cnt, flags);
2073         if (!ret)
2074                 return NULL;
2075         /* always prealloc all elements, so no locking is required */
2076         if (flex_array_prealloc(ret, 0, cnt, flags)) {
2077                 flex_array_free(ret);
2078                 return NULL;
2079         }
2080         return ret;
2081 }
2082
2083 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2084 {
2085         unsigned long cpu;
2086         int err = 0;
2087
2088         mddev_suspend(conf->mddev);
2089         get_online_cpus();
2090         for_each_present_cpu(cpu) {
2091                 struct raid5_percpu *percpu;
2092                 struct flex_array *scribble;
2093
2094                 percpu = per_cpu_ptr(conf->percpu, cpu);
2095                 scribble = scribble_alloc(new_disks,
2096                                           new_sectors / STRIPE_SECTORS,
2097                                           GFP_NOIO);
2098
2099                 if (scribble) {
2100                         flex_array_free(percpu->scribble);
2101                         percpu->scribble = scribble;
2102                 } else {
2103                         err = -ENOMEM;
2104                         break;
2105                 }
2106         }
2107         put_online_cpus();
2108         mddev_resume(conf->mddev);
2109         return err;
2110 }
2111
2112 static int resize_stripes(struct r5conf *conf, int newsize)
2113 {
2114         /* Make all the stripes able to hold 'newsize' devices.
2115          * New slots in each stripe get 'page' set to a new page.
2116          *
2117          * This happens in stages:
2118          * 1/ create a new kmem_cache and allocate the required number of
2119          *    stripe_heads.
2120          * 2/ gather all the old stripe_heads and transfer the pages across
2121          *    to the new stripe_heads.  This will have the side effect of
2122          *    freezing the array as once all stripe_heads have been collected,
2123          *    no IO will be possible.  Old stripe heads are freed once their
2124          *    pages have been transferred over, and the old kmem_cache is
2125          *    freed when all stripes are done.
2126          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2127          *    we simple return a failre status - no need to clean anything up.
2128          * 4/ allocate new pages for the new slots in the new stripe_heads.
2129          *    If this fails, we don't bother trying the shrink the
2130          *    stripe_heads down again, we just leave them as they are.
2131          *    As each stripe_head is processed the new one is released into
2132          *    active service.
2133          *
2134          * Once step2 is started, we cannot afford to wait for a write,
2135          * so we use GFP_NOIO allocations.
2136          */
2137         struct stripe_head *osh, *nsh;
2138         LIST_HEAD(newstripes);
2139         struct disk_info *ndisks;
2140         int err;
2141         struct kmem_cache *sc;
2142         int i;
2143         int hash, cnt;
2144
2145         if (newsize <= conf->pool_size)
2146                 return 0; /* never bother to shrink */
2147
2148         err = md_allow_write(conf->mddev);
2149         if (err)
2150                 return err;
2151
2152         /* Step 1 */
2153         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2154                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2155                                0, 0, NULL);
2156         if (!sc)
2157                 return -ENOMEM;
2158
2159         /* Need to ensure auto-resizing doesn't interfere */
2160         mutex_lock(&conf->cache_size_mutex);
2161
2162         for (i = conf->max_nr_stripes; i; i--) {
2163                 nsh = alloc_stripe(sc, GFP_KERNEL);
2164                 if (!nsh)
2165                         break;
2166
2167                 nsh->raid_conf = conf;
2168                 list_add(&nsh->lru, &newstripes);
2169         }
2170         if (i) {
2171                 /* didn't get enough, give up */
2172                 while (!list_empty(&newstripes)) {
2173                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
2174                         list_del(&nsh->lru);
2175                         kmem_cache_free(sc, nsh);
2176                 }
2177                 kmem_cache_destroy(sc);
2178                 mutex_unlock(&conf->cache_size_mutex);
2179                 return -ENOMEM;
2180         }
2181         /* Step 2 - Must use GFP_NOIO now.
2182          * OK, we have enough stripes, start collecting inactive
2183          * stripes and copying them over
2184          */
2185         hash = 0;
2186         cnt = 0;
2187         list_for_each_entry(nsh, &newstripes, lru) {
2188                 lock_device_hash_lock(conf, hash);
2189                 wait_event_exclusive_cmd(conf->wait_for_stripe[hash],
2190                                     !list_empty(conf->inactive_list + hash),
2191                                     unlock_device_hash_lock(conf, hash),
2192                                     lock_device_hash_lock(conf, hash));
2193                 osh = get_free_stripe(conf, hash);
2194                 unlock_device_hash_lock(conf, hash);
2195
2196                 for(i=0; i<conf->pool_size; i++) {
2197                         nsh->dev[i].page = osh->dev[i].page;
2198                         nsh->dev[i].orig_page = osh->dev[i].page;
2199                 }
2200                 nsh->hash_lock_index = hash;
2201                 kmem_cache_free(conf->slab_cache, osh);
2202                 cnt++;
2203                 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2204                     !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2205                         hash++;
2206                         cnt = 0;
2207                 }
2208         }
2209         kmem_cache_destroy(conf->slab_cache);
2210
2211         /* Step 3.
2212          * At this point, we are holding all the stripes so the array
2213          * is completely stalled, so now is a good time to resize
2214          * conf->disks and the scribble region
2215          */
2216         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2217         if (ndisks) {
2218                 for (i=0; i<conf->raid_disks; i++)
2219                         ndisks[i] = conf->disks[i];
2220                 kfree(conf->disks);
2221                 conf->disks = ndisks;
2222         } else
2223                 err = -ENOMEM;
2224
2225         mutex_unlock(&conf->cache_size_mutex);
2226         /* Step 4, return new stripes to service */
2227         while(!list_empty(&newstripes)) {
2228                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2229                 list_del_init(&nsh->lru);
2230
2231                 for (i=conf->raid_disks; i < newsize; i++)
2232                         if (nsh->dev[i].page == NULL) {
2233                                 struct page *p = alloc_page(GFP_NOIO);
2234                                 nsh->dev[i].page = p;
2235                                 nsh->dev[i].orig_page = p;
2236                                 if (!p)
2237                                         err = -ENOMEM;
2238                         }
2239                 release_stripe(nsh);
2240         }
2241         /* critical section pass, GFP_NOIO no longer needed */
2242
2243         conf->slab_cache = sc;
2244         conf->active_name = 1-conf->active_name;
2245         if (!err)
2246                 conf->pool_size = newsize;
2247         return err;
2248 }
2249
2250 static int drop_one_stripe(struct r5conf *conf)
2251 {
2252         struct stripe_head *sh;
2253         int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2254
2255         spin_lock_irq(conf->hash_locks + hash);
2256         sh = get_free_stripe(conf, hash);
2257         spin_unlock_irq(conf->hash_locks + hash);
2258         if (!sh)
2259                 return 0;
2260         BUG_ON(atomic_read(&sh->count));
2261         shrink_buffers(sh);
2262         kmem_cache_free(conf->slab_cache, sh);
2263         atomic_dec(&conf->active_stripes);
2264         conf->max_nr_stripes--;
2265         return 1;
2266 }
2267
2268 static void shrink_stripes(struct r5conf *conf)
2269 {
2270         while (conf->max_nr_stripes &&
2271                drop_one_stripe(conf))
2272                 ;
2273
2274         if (conf->slab_cache)
2275                 kmem_cache_destroy(conf->slab_cache);
2276         conf->slab_cache = NULL;
2277 }
2278
2279 static void raid5_end_read_request(struct bio * bi, int error)
2280 {
2281         struct stripe_head *sh = bi->bi_private;
2282         struct r5conf *conf = sh->raid_conf;
2283         int disks = sh->disks, i;
2284         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2285         char b[BDEVNAME_SIZE];
2286         struct md_rdev *rdev = NULL;
2287         sector_t s;
2288
2289         for (i=0 ; i<disks; i++)
2290                 if (bi == &sh->dev[i].req)
2291                         break;
2292
2293         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
2294                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2295                 uptodate);
2296         if (i == disks) {
2297                 BUG();
2298                 return;
2299         }
2300         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2301                 /* If replacement finished while this request was outstanding,
2302                  * 'replacement' might be NULL already.
2303                  * In that case it moved down to 'rdev'.
2304                  * rdev is not removed until all requests are finished.
2305                  */
2306                 rdev = conf->disks[i].replacement;
2307         if (!rdev)
2308                 rdev = conf->disks[i].rdev;
2309
2310         if (use_new_offset(conf, sh))
2311                 s = sh->sector + rdev->new_data_offset;
2312         else
2313                 s = sh->sector + rdev->data_offset;
2314         if (uptodate) {
2315                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2316                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2317                         /* Note that this cannot happen on a
2318                          * replacement device.  We just fail those on
2319                          * any error
2320                          */
2321                         printk_ratelimited(
2322                                 KERN_INFO
2323                                 "md/raid:%s: read error corrected"
2324                                 " (%lu sectors at %llu on %s)\n",
2325                                 mdname(conf->mddev), STRIPE_SECTORS,
2326                                 (unsigned long long)s,
2327                                 bdevname(rdev->bdev, b));
2328                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2329                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2330                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2331                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2332                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2333
2334                 if (atomic_read(&rdev->read_errors))
2335                         atomic_set(&rdev->read_errors, 0);
2336         } else {
2337                 const char *bdn = bdevname(rdev->bdev, b);
2338                 int retry = 0;
2339                 int set_bad = 0;
2340
2341                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2342                 atomic_inc(&rdev->read_errors);
2343                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2344                         printk_ratelimited(
2345                                 KERN_WARNING
2346                                 "md/raid:%s: read error on replacement device "
2347                                 "(sector %llu on %s).\n",
2348                                 mdname(conf->mddev),
2349                                 (unsigned long long)s,
2350                                 bdn);
2351                 else if (conf->mddev->degraded >= conf->max_degraded) {
2352                         set_bad = 1;
2353                         printk_ratelimited(
2354                                 KERN_WARNING
2355                                 "md/raid:%s: read error not correctable "
2356                                 "(sector %llu on %s).\n",
2357                                 mdname(conf->mddev),
2358                                 (unsigned long long)s,
2359                                 bdn);
2360                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2361                         /* Oh, no!!! */
2362                         set_bad = 1;
2363                         printk_ratelimited(
2364                                 KERN_WARNING
2365                                 "md/raid:%s: read error NOT corrected!! "
2366                                 "(sector %llu on %s).\n",
2367                                 mdname(conf->mddev),
2368                                 (unsigned long long)s,
2369                                 bdn);
2370                 } else if (atomic_read(&rdev->read_errors)
2371                          > conf->max_nr_stripes)
2372                         printk(KERN_WARNING
2373                                "md/raid:%s: Too many read errors, failing device %s.\n",
2374                                mdname(conf->mddev), bdn);
2375                 else
2376                         retry = 1;
2377                 if (set_bad && test_bit(In_sync, &rdev->flags)
2378                     && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2379                         retry = 1;
2380                 if (retry)
2381                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2382                                 set_bit(R5_ReadError, &sh->dev[i].flags);
2383                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2384                         } else
2385                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2386                 else {
2387                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2388                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2389                         if (!(set_bad
2390                               && test_bit(In_sync, &rdev->flags)
2391                               && rdev_set_badblocks(
2392                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
2393                                 md_error(conf->mddev, rdev);
2394                 }
2395         }
2396         rdev_dec_pending(rdev, conf->mddev);
2397         clear_bit(R5_LOCKED, &sh->dev[i].flags);
2398         set_bit(STRIPE_HANDLE, &sh->state);
2399         release_stripe(sh);
2400 }
2401
2402 static void raid5_end_write_request(struct bio *bi, int error)
2403 {
2404         struct stripe_head *sh = bi->bi_private;
2405         struct r5conf *conf = sh->raid_conf;
2406         int disks = sh->disks, i;
2407         struct md_rdev *uninitialized_var(rdev);
2408         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2409         sector_t first_bad;
2410         int bad_sectors;
2411         int replacement = 0;
2412
2413         for (i = 0 ; i < disks; i++) {
2414                 if (bi == &sh->dev[i].req) {
2415                         rdev = conf->disks[i].rdev;
2416                         break;
2417                 }
2418                 if (bi == &sh->dev[i].rreq) {
2419                         rdev = conf->disks[i].replacement;
2420                         if (rdev)
2421                                 replacement = 1;
2422                         else
2423                                 /* rdev was removed and 'replacement'
2424                                  * replaced it.  rdev is not removed
2425                                  * until all requests are finished.
2426                                  */
2427                                 rdev = conf->disks[i].rdev;
2428                         break;
2429                 }
2430         }
2431         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2432                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2433                 uptodate);
2434         if (i == disks) {
2435                 BUG();
2436                 return;
2437         }
2438
2439         if (replacement) {
2440                 if (!uptodate)
2441                         md_error(conf->mddev, rdev);
2442                 else if (is_badblock(rdev, sh->sector,
2443                                      STRIPE_SECTORS,
2444                                      &first_bad, &bad_sectors))
2445                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2446         } else {
2447                 if (!uptodate) {
2448                         set_bit(STRIPE_DEGRADED, &sh->state);
2449                         set_bit(WriteErrorSeen, &rdev->flags);
2450                         set_bit(R5_WriteError, &sh->dev[i].flags);
2451                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2452                                 set_bit(MD_RECOVERY_NEEDED,
2453                                         &rdev->mddev->recovery);
2454                 } else if (is_badblock(rdev, sh->sector,
2455                                        STRIPE_SECTORS,
2456                                        &first_bad, &bad_sectors)) {
2457                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2458                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2459                                 /* That was a successful write so make
2460                                  * sure it looks like we already did
2461                                  * a re-write.
2462                                  */
2463                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2464                 }
2465         }
2466         rdev_dec_pending(rdev, conf->mddev);
2467
2468         if (sh->batch_head && !uptodate && !replacement)
2469                 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2470
2471         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2472                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2473         set_bit(STRIPE_HANDLE, &sh->state);
2474         release_stripe(sh);
2475
2476         if (sh->batch_head && sh != sh->batch_head)
2477                 release_stripe(sh->batch_head);
2478 }
2479
2480 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2481
2482 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2483 {
2484         struct r5dev *dev = &sh->dev[i];
2485
2486         bio_init(&dev->req);
2487         dev->req.bi_io_vec = &dev->vec;
2488         dev->req.bi_max_vecs = 1;
2489         dev->req.bi_private = sh;
2490
2491         bio_init(&dev->rreq);
2492         dev->rreq.bi_io_vec = &dev->rvec;
2493         dev->rreq.bi_max_vecs = 1;
2494         dev->rreq.bi_private = sh;
2495
2496         dev->flags = 0;
2497         dev->sector = compute_blocknr(sh, i, previous);
2498 }
2499
2500 static void error(struct mddev *mddev, struct md_rdev *rdev)
2501 {
2502         char b[BDEVNAME_SIZE];
2503         struct r5conf *conf = mddev->private;
2504         unsigned long flags;
2505         pr_debug("raid456: error called\n");
2506
2507         spin_lock_irqsave(&conf->device_lock, flags);
2508         clear_bit(In_sync, &rdev->flags);
2509         mddev->degraded = calc_degraded(conf);
2510         spin_unlock_irqrestore(&conf->device_lock, flags);
2511         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2512
2513         set_bit(Blocked, &rdev->flags);
2514         set_bit(Faulty, &rdev->flags);
2515         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2516         set_bit(MD_CHANGE_PENDING, &mddev->flags);
2517         printk(KERN_ALERT
2518                "md/raid:%s: Disk failure on %s, disabling device.\n"
2519                "md/raid:%s: Operation continuing on %d devices.\n",
2520                mdname(mddev),
2521                bdevname(rdev->bdev, b),
2522                mdname(mddev),
2523                conf->raid_disks - mddev->degraded);
2524 }
2525
2526 /*
2527  * Input: a 'big' sector number,
2528  * Output: index of the data and parity disk, and the sector # in them.
2529  */
2530 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2531                                      int previous, int *dd_idx,
2532                                      struct stripe_head *sh)
2533 {
2534         sector_t stripe, stripe2;
2535         sector_t chunk_number;
2536         unsigned int chunk_offset;
2537         int pd_idx, qd_idx;
2538         int ddf_layout = 0;
2539         sector_t new_sector;
2540         int algorithm = previous ? conf->prev_algo
2541                                  : conf->algorithm;
2542         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2543                                          : conf->chunk_sectors;
2544         int raid_disks = previous ? conf->previous_raid_disks
2545                                   : conf->raid_disks;
2546         int data_disks = raid_disks - conf->max_degraded;
2547
2548         /* First compute the information on this sector */
2549
2550         /*
2551          * Compute the chunk number and the sector offset inside the chunk
2552          */
2553         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2554         chunk_number = r_sector;
2555
2556         /*
2557          * Compute the stripe number
2558          */
2559         stripe = chunk_number;
2560         *dd_idx = sector_div(stripe, data_disks);
2561         stripe2 = stripe;
2562         /*
2563          * Select the parity disk based on the user selected algorithm.
2564          */
2565         pd_idx = qd_idx = -1;
2566         switch(conf->level) {
2567         case 4:
2568                 pd_idx = data_disks;
2569                 break;
2570         case 5:
2571                 switch (algorithm) {
2572                 case ALGORITHM_LEFT_ASYMMETRIC:
2573                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2574                         if (*dd_idx >= pd_idx)
2575                                 (*dd_idx)++;
2576                         break;
2577                 case ALGORITHM_RIGHT_ASYMMETRIC:
2578                         pd_idx = sector_div(stripe2, raid_disks);
2579                         if (*dd_idx >= pd_idx)
2580                                 (*dd_idx)++;
2581                         break;
2582                 case ALGORITHM_LEFT_SYMMETRIC:
2583                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2584                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2585                         break;
2586                 case ALGORITHM_RIGHT_SYMMETRIC:
2587                         pd_idx = sector_div(stripe2, raid_disks);
2588                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2589                         break;
2590                 case ALGORITHM_PARITY_0:
2591                         pd_idx = 0;
2592                         (*dd_idx)++;
2593                         break;
2594                 case ALGORITHM_PARITY_N:
2595                         pd_idx = data_disks;
2596                         break;
2597                 default:
2598                         BUG();
2599                 }
2600                 break;
2601         case 6:
2602
2603                 switch (algorithm) {
2604                 case ALGORITHM_LEFT_ASYMMETRIC:
2605                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2606                         qd_idx = pd_idx + 1;
2607                         if (pd_idx == raid_disks-1) {
2608                                 (*dd_idx)++;    /* Q D D D P */
2609                                 qd_idx = 0;
2610                         } else if (*dd_idx >= pd_idx)
2611                                 (*dd_idx) += 2; /* D D P Q D */
2612                         break;
2613                 case ALGORITHM_RIGHT_ASYMMETRIC:
2614                         pd_idx = sector_div(stripe2, raid_disks);
2615                         qd_idx = pd_idx + 1;
2616                         if (pd_idx == raid_disks-1) {
2617                                 (*dd_idx)++;    /* Q D D D P */
2618                                 qd_idx = 0;
2619                         } else if (*dd_idx >= pd_idx)
2620                                 (*dd_idx) += 2; /* D D P Q D */
2621                         break;
2622                 case ALGORITHM_LEFT_SYMMETRIC:
2623                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2624                         qd_idx = (pd_idx + 1) % raid_disks;
2625                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2626                         break;
2627                 case ALGORITHM_RIGHT_SYMMETRIC:
2628                         pd_idx = sector_div(stripe2, raid_disks);
2629                         qd_idx = (pd_idx + 1) % raid_disks;
2630                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2631                         break;
2632
2633                 case ALGORITHM_PARITY_0:
2634                         pd_idx = 0;
2635                         qd_idx = 1;
2636                         (*dd_idx) += 2;
2637                         break;
2638                 case ALGORITHM_PARITY_N:
2639                         pd_idx = data_disks;
2640                         qd_idx = data_disks + 1;
2641                         break;
2642
2643                 case ALGORITHM_ROTATING_ZERO_RESTART:
2644                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2645                          * of blocks for computing Q is different.
2646                          */
2647                         pd_idx = sector_div(stripe2, raid_disks);
2648                         qd_idx = pd_idx + 1;
2649                         if (pd_idx == raid_disks-1) {
2650                                 (*dd_idx)++;    /* Q D D D P */
2651                                 qd_idx = 0;
2652                         } else if (*dd_idx >= pd_idx)
2653                                 (*dd_idx) += 2; /* D D P Q D */
2654                         ddf_layout = 1;
2655                         break;
2656
2657                 case ALGORITHM_ROTATING_N_RESTART:
2658                         /* Same a left_asymmetric, by first stripe is
2659                          * D D D P Q  rather than
2660                          * Q D D D P
2661                          */
2662                         stripe2 += 1;
2663                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2664                         qd_idx = pd_idx + 1;
2665                         if (pd_idx == raid_disks-1) {
2666                                 (*dd_idx)++;    /* Q D D D P */
2667                                 qd_idx = 0;
2668                         } else if (*dd_idx >= pd_idx)
2669                                 (*dd_idx) += 2; /* D D P Q D */
2670                         ddf_layout = 1;
2671                         break;
2672
2673                 case ALGORITHM_ROTATING_N_CONTINUE:
2674                         /* Same as left_symmetric but Q is before P */
2675                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2676                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2677                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2678                         ddf_layout = 1;
2679                         break;
2680
2681                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2682                         /* RAID5 left_asymmetric, with Q on last device */
2683                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2684                         if (*dd_idx >= pd_idx)
2685                                 (*dd_idx)++;
2686                         qd_idx = raid_disks - 1;
2687                         break;
2688
2689                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2690                         pd_idx = sector_div(stripe2, raid_disks-1);
2691                         if (*dd_idx >= pd_idx)
2692                                 (*dd_idx)++;
2693                         qd_idx = raid_disks - 1;
2694                         break;
2695
2696                 case ALGORITHM_LEFT_SYMMETRIC_6:
2697                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2698                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2699                         qd_idx = raid_disks - 1;
2700                         break;
2701
2702                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2703                         pd_idx = sector_div(stripe2, raid_disks-1);
2704                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2705                         qd_idx = raid_disks - 1;
2706                         break;
2707
2708                 case ALGORITHM_PARITY_0_6:
2709                         pd_idx = 0;
2710                         (*dd_idx)++;
2711                         qd_idx = raid_disks - 1;
2712                         break;
2713
2714                 default:
2715                         BUG();
2716                 }
2717                 break;
2718         }
2719
2720         if (sh) {
2721                 sh->pd_idx = pd_idx;
2722                 sh->qd_idx = qd_idx;
2723                 sh->ddf_layout = ddf_layout;
2724         }
2725         /*
2726          * Finally, compute the new sector number
2727          */
2728         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2729         return new_sector;
2730 }
2731
2732 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2733 {
2734         struct r5conf *conf = sh->raid_conf;
2735         int raid_disks = sh->disks;
2736         int data_disks = raid_disks - conf->max_degraded;
2737         sector_t new_sector = sh->sector, check;
2738         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2739                                          : conf->chunk_sectors;
2740         int algorithm = previous ? conf->prev_algo
2741                                  : conf->algorithm;
2742         sector_t stripe;
2743         int chunk_offset;
2744         sector_t chunk_number;
2745         int dummy1, dd_idx = i;
2746         sector_t r_sector;
2747         struct stripe_head sh2;
2748
2749         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2750         stripe = new_sector;
2751
2752         if (i == sh->pd_idx)
2753                 return 0;
2754         switch(conf->level) {
2755         case 4: break;
2756         case 5:
2757                 switch (algorithm) {
2758                 case ALGORITHM_LEFT_ASYMMETRIC:
2759                 case ALGORITHM_RIGHT_ASYMMETRIC:
2760                         if (i > sh->pd_idx)
2761                                 i--;
2762                         break;
2763                 case ALGORITHM_LEFT_SYMMETRIC:
2764                 case ALGORITHM_RIGHT_SYMMETRIC:
2765                         if (i < sh->pd_idx)
2766                                 i += raid_disks;
2767                         i -= (sh->pd_idx + 1);
2768                         break;
2769                 case ALGORITHM_PARITY_0:
2770                         i -= 1;
2771                         break;
2772                 case ALGORITHM_PARITY_N:
2773                         break;
2774                 default:
2775                         BUG();
2776                 }
2777                 break;
2778         case 6:
2779                 if (i == sh->qd_idx)
2780                         return 0; /* It is the Q disk */
2781                 switch (algorithm) {
2782                 case ALGORITHM_LEFT_ASYMMETRIC:
2783                 case ALGORITHM_RIGHT_ASYMMETRIC:
2784                 case ALGORITHM_ROTATING_ZERO_RESTART:
2785                 case ALGORITHM_ROTATING_N_RESTART:
2786                         if (sh->pd_idx == raid_disks-1)
2787                                 i--;    /* Q D D D P */
2788                         else if (i > sh->pd_idx)
2789                                 i -= 2; /* D D P Q D */
2790                         break;
2791                 case ALGORITHM_LEFT_SYMMETRIC:
2792                 case ALGORITHM_RIGHT_SYMMETRIC:
2793                         if (sh->pd_idx == raid_disks-1)
2794                                 i--; /* Q D D D P */
2795                         else {
2796                                 /* D D P Q D */
2797                                 if (i < sh->pd_idx)
2798                                         i += raid_disks;
2799                                 i -= (sh->pd_idx + 2);
2800                         }
2801                         break;
2802                 case ALGORITHM_PARITY_0:
2803                         i -= 2;
2804                         break;
2805                 case ALGORITHM_PARITY_N:
2806                         break;
2807                 case ALGORITHM_ROTATING_N_CONTINUE:
2808                         /* Like left_symmetric, but P is before Q */
2809                         if (sh->pd_idx == 0)
2810                                 i--;    /* P D D D Q */
2811                         else {
2812                                 /* D D Q P D */
2813                                 if (i < sh->pd_idx)
2814                                         i += raid_disks;
2815                                 i -= (sh->pd_idx + 1);
2816                         }
2817                         break;
2818                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2819                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2820                         if (i > sh->pd_idx)
2821                                 i--;
2822                         break;
2823                 case ALGORITHM_LEFT_SYMMETRIC_6:
2824                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2825                         if (i < sh->pd_idx)
2826                                 i += data_disks + 1;
2827                         i -= (sh->pd_idx + 1);
2828                         break;
2829                 case ALGORITHM_PARITY_0_6:
2830                         i -= 1;
2831                         break;
2832                 default:
2833                         BUG();
2834                 }
2835                 break;
2836         }
2837
2838         chunk_number = stripe * data_disks + i;
2839         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2840
2841         check = raid5_compute_sector(conf, r_sector,
2842                                      previous, &dummy1, &sh2);
2843         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2844                 || sh2.qd_idx != sh->qd_idx) {
2845                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2846                        mdname(conf->mddev));
2847                 return 0;
2848         }
2849         return r_sector;
2850 }
2851
2852 static void
2853 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2854                          int rcw, int expand)
2855 {
2856         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2857         struct r5conf *conf = sh->raid_conf;
2858         int level = conf->level;
2859
2860         if (rcw) {
2861
2862                 for (i = disks; i--; ) {
2863                         struct r5dev *dev = &sh->dev[i];
2864
2865                         if (dev->towrite) {
2866                                 set_bit(R5_LOCKED, &dev->flags);
2867                                 set_bit(R5_Wantdrain, &dev->flags);
2868                                 if (!expand)
2869                                         clear_bit(R5_UPTODATE, &dev->flags);
2870                                 s->locked++;
2871                         }
2872                 }
2873                 /* if we are not expanding this is a proper write request, and
2874                  * there will be bios with new data to be drained into the
2875                  * stripe cache
2876                  */
2877                 if (!expand) {
2878                         if (!s->locked)
2879                                 /* False alarm, nothing to do */
2880                                 return;
2881                         sh->reconstruct_state = reconstruct_state_drain_run;
2882                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2883                 } else
2884                         sh->reconstruct_state = reconstruct_state_run;
2885
2886                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2887
2888                 if (s->locked + conf->max_degraded == disks)
2889                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2890                                 atomic_inc(&conf->pending_full_writes);
2891         } else {
2892                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2893                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2894                 BUG_ON(level == 6 &&
2895                         (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2896                            test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2897
2898                 for (i = disks; i--; ) {
2899                         struct r5dev *dev = &sh->dev[i];
2900                         if (i == pd_idx || i == qd_idx)
2901                                 continue;
2902
2903                         if (dev->towrite &&
2904                             (test_bit(R5_UPTODATE, &dev->flags) ||
2905                              test_bit(R5_Wantcompute, &dev->flags))) {
2906                                 set_bit(R5_Wantdrain, &dev->flags);
2907                                 set_bit(R5_LOCKED, &dev->flags);
2908                                 clear_bit(R5_UPTODATE, &dev->flags);
2909                                 s->locked++;
2910                         }
2911                 }
2912                 if (!s->locked)
2913                         /* False alarm - nothing to do */
2914                         return;
2915                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2916                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2917                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2918                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2919         }
2920
2921         /* keep the parity disk(s) locked while asynchronous operations
2922          * are in flight
2923          */
2924         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2925         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2926         s->locked++;
2927
2928         if (level == 6) {
2929                 int qd_idx = sh->qd_idx;
2930                 struct r5dev *dev = &sh->dev[qd_idx];
2931
2932                 set_bit(R5_LOCKED, &dev->flags);
2933                 clear_bit(R5_UPTODATE, &dev->flags);
2934                 s->locked++;
2935         }
2936
2937         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2938                 __func__, (unsigned long long)sh->sector,
2939                 s->locked, s->ops_request);
2940 }
2941
2942 /*
2943  * Each stripe/dev can have one or more bion attached.
2944  * toread/towrite point to the first in a chain.
2945  * The bi_next chain must be in order.
2946  */
2947 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2948                           int forwrite, int previous)
2949 {
2950         struct bio **bip;
2951         struct r5conf *conf = sh->raid_conf;
2952         int firstwrite=0;
2953
2954         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2955                 (unsigned long long)bi->bi_iter.bi_sector,
2956                 (unsigned long long)sh->sector);
2957
2958         /*
2959          * If several bio share a stripe. The bio bi_phys_segments acts as a
2960          * reference count to avoid race. The reference count should already be
2961          * increased before this function is called (for example, in
2962          * make_request()), so other bio sharing this stripe will not free the
2963          * stripe. If a stripe is owned by one stripe, the stripe lock will
2964          * protect it.
2965          */
2966         spin_lock_irq(&sh->stripe_lock);
2967         /* Don't allow new IO added to stripes in batch list */
2968         if (sh->batch_head)
2969                 goto overlap;
2970         if (forwrite) {
2971                 bip = &sh->dev[dd_idx].towrite;
2972                 if (*bip == NULL)
2973                         firstwrite = 1;
2974         } else
2975                 bip = &sh->dev[dd_idx].toread;
2976         while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2977                 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2978                         goto overlap;
2979                 bip = & (*bip)->bi_next;
2980         }
2981         if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2982                 goto overlap;
2983
2984         if (!forwrite || previous)
2985                 clear_bit(STRIPE_BATCH_READY, &sh->state);
2986
2987         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2988         if (*bip)
2989                 bi->bi_next = *bip;
2990         *bip = bi;
2991         raid5_inc_bi_active_stripes(bi);
2992
2993         if (forwrite) {
2994                 /* check if page is covered */
2995                 sector_t sector = sh->dev[dd_idx].sector;
2996                 for (bi=sh->dev[dd_idx].towrite;
2997                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2998                              bi && bi->bi_iter.bi_sector <= sector;
2999                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3000                         if (bio_end_sector(bi) >= sector)
3001                                 sector = bio_end_sector(bi);
3002                 }
3003                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3004                         if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3005                                 sh->overwrite_disks++;
3006         }
3007
3008         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3009                 (unsigned long long)(*bip)->bi_iter.bi_sector,
3010                 (unsigned long long)sh->sector, dd_idx);
3011
3012         if (conf->mddev->bitmap && firstwrite) {
3013                 /* Cannot hold spinlock over bitmap_startwrite,
3014                  * but must ensure this isn't added to a batch until
3015                  * we have added to the bitmap and set bm_seq.
3016                  * So set STRIPE_BITMAP_PENDING to prevent
3017                  * batching.
3018                  * If multiple add_stripe_bio() calls race here they
3019                  * much all set STRIPE_BITMAP_PENDING.  So only the first one
3020                  * to complete "bitmap_startwrite" gets to set
3021                  * STRIPE_BIT_DELAY.  This is important as once a stripe
3022                  * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3023                  * any more.
3024                  */
3025                 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3026                 spin_unlock_irq(&sh->stripe_lock);
3027                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3028                                   STRIPE_SECTORS, 0);
3029                 spin_lock_irq(&sh->stripe_lock);
3030                 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3031                 if (!sh->batch_head) {
3032                         sh->bm_seq = conf->seq_flush+1;
3033                         set_bit(STRIPE_BIT_DELAY, &sh->state);
3034                 }
3035         }
3036         spin_unlock_irq(&sh->stripe_lock);
3037
3038         if (stripe_can_batch(sh))
3039                 stripe_add_to_batch_list(conf, sh);
3040         return 1;
3041
3042  overlap:
3043         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3044         spin_unlock_irq(&sh->stripe_lock);
3045         return 0;
3046 }
3047
3048 static void end_reshape(struct r5conf *conf);
3049
3050 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3051                             struct stripe_head *sh)
3052 {
3053         int sectors_per_chunk =
3054                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3055         int dd_idx;
3056         int chunk_offset = sector_div(stripe, sectors_per_chunk);
3057         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3058
3059         raid5_compute_sector(conf,
3060                              stripe * (disks - conf->max_degraded)
3061                              *sectors_per_chunk + chunk_offset,
3062                              previous,
3063                              &dd_idx, sh);
3064 }
3065
3066 static void
3067 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3068                                 struct stripe_head_state *s, int disks,
3069                                 struct bio_list *return_bi)
3070 {
3071         int i;
3072         BUG_ON(sh->batch_head);
3073         for (i = disks; i--; ) {
3074                 struct bio *bi;
3075                 int bitmap_end = 0;
3076
3077                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3078                         struct md_rdev *rdev;
3079                         rcu_read_lock();
3080                         rdev = rcu_dereference(conf->disks[i].rdev);
3081                         if (rdev && test_bit(In_sync, &rdev->flags))
3082                                 atomic_inc(&rdev->nr_pending);
3083                         else
3084                                 rdev = NULL;
3085                         rcu_read_unlock();
3086                         if (rdev) {
3087                                 if (!rdev_set_badblocks(
3088                                             rdev,
3089                                             sh->sector,
3090                                             STRIPE_SECTORS, 0))
3091                                         md_error(conf->mddev, rdev);
3092                                 rdev_dec_pending(rdev, conf->mddev);
3093                         }
3094                 }
3095                 spin_lock_irq(&sh->stripe_lock);
3096                 /* fail all writes first */
3097                 bi = sh->dev[i].towrite;
3098                 sh->dev[i].towrite = NULL;
3099                 sh->overwrite_disks = 0;
3100                 spin_unlock_irq(&sh->stripe_lock);
3101                 if (bi)
3102                         bitmap_end = 1;
3103
3104                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3105                         wake_up(&conf->wait_for_overlap);
3106
3107                 while (bi && bi->bi_iter.bi_sector <
3108                         sh->dev[i].sector + STRIPE_SECTORS) {
3109                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3110                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3111                         if (!raid5_dec_bi_active_stripes(bi)) {
3112                                 md_write_end(conf->mddev);
3113                                 bio_list_add(return_bi, bi);
3114                         }
3115                         bi = nextbi;
3116                 }
3117                 if (bitmap_end)
3118                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3119                                 STRIPE_SECTORS, 0, 0);
3120                 bitmap_end = 0;
3121                 /* and fail all 'written' */
3122                 bi = sh->dev[i].written;
3123                 sh->dev[i].written = NULL;
3124                 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3125                         WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3126                         sh->dev[i].page = sh->dev[i].orig_page;
3127                 }
3128
3129                 if (bi) bitmap_end = 1;
3130                 while (bi && bi->bi_iter.bi_sector <
3131                        sh->dev[i].sector + STRIPE_SECTORS) {
3132                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3133                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3134                         if (!raid5_dec_bi_active_stripes(bi)) {
3135                                 md_write_end(conf->mddev);
3136                                 bio_list_add(return_bi, bi);
3137                         }
3138                         bi = bi2;
3139                 }
3140
3141                 /* fail any reads if this device is non-operational and
3142                  * the data has not reached the cache yet.
3143                  */
3144                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3145                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3146                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
3147                         spin_lock_irq(&sh->stripe_lock);
3148                         bi = sh->dev[i].toread;
3149                         sh->dev[i].toread = NULL;
3150                         spin_unlock_irq(&sh->stripe_lock);
3151                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3152                                 wake_up(&conf->wait_for_overlap);
3153                         while (bi && bi->bi_iter.bi_sector <
3154                                sh->dev[i].sector + STRIPE_SECTORS) {
3155                                 struct bio *nextbi =
3156                                         r5_next_bio(bi, sh->dev[i].sector);
3157                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3158                                 if (!raid5_dec_bi_active_stripes(bi))
3159                                         bio_list_add(return_bi, bi);
3160                                 bi = nextbi;
3161                         }
3162                 }
3163                 if (bitmap_end)
3164                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3165                                         STRIPE_SECTORS, 0, 0);
3166                 /* If we were in the middle of a write the parity block might
3167                  * still be locked - so just clear all R5_LOCKED flags
3168                  */
3169                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3170         }
3171
3172         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3173                 if (atomic_dec_and_test(&conf->pending_full_writes))
3174                         md_wakeup_thread(conf->mddev->thread);
3175 }
3176
3177 static void
3178 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3179                    struct stripe_head_state *s)
3180 {
3181         int abort = 0;
3182         int i;
3183
3184         BUG_ON(sh->batch_head);
3185         clear_bit(STRIPE_SYNCING, &sh->state);
3186         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3187                 wake_up(&conf->wait_for_overlap);
3188         s->syncing = 0;
3189         s->replacing = 0;
3190         /* There is nothing more to do for sync/check/repair.
3191          * Don't even need to abort as that is handled elsewhere
3192          * if needed, and not always wanted e.g. if there is a known
3193          * bad block here.
3194          * For recover/replace we need to record a bad block on all
3195          * non-sync devices, or abort the recovery
3196          */
3197         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3198                 /* During recovery devices cannot be removed, so
3199                  * locking and refcounting of rdevs is not needed
3200                  */
3201                 for (i = 0; i < conf->raid_disks; i++) {
3202                         struct md_rdev *rdev = conf->disks[i].rdev;
3203                         if (rdev
3204                             && !test_bit(Faulty, &rdev->flags)
3205                             && !test_bit(In_sync, &rdev->flags)
3206                             && !rdev_set_badblocks(rdev, sh->sector,
3207                                                    STRIPE_SECTORS, 0))
3208                                 abort = 1;
3209                         rdev = conf->disks[i].replacement;
3210                         if (rdev
3211                             && !test_bit(Faulty, &rdev->flags)
3212                             && !test_bit(In_sync, &rdev->flags)
3213                             && !rdev_set_badblocks(rdev, sh->sector,
3214                                                    STRIPE_SECTORS, 0))
3215                                 abort = 1;
3216                 }
3217                 if (abort)
3218                         conf->recovery_disabled =
3219                                 conf->mddev->recovery_disabled;
3220         }
3221         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3222 }
3223
3224 static int want_replace(struct stripe_head *sh, int disk_idx)
3225 {
3226         struct md_rdev *rdev;
3227         int rv = 0;
3228         /* Doing recovery so rcu locking not required */
3229         rdev = sh->raid_conf->disks[disk_idx].replacement;
3230         if (rdev
3231             && !test_bit(Faulty, &rdev->flags)
3232             && !test_bit(In_sync, &rdev->flags)
3233             && (rdev->recovery_offset <= sh->sector
3234                 || rdev->mddev->recovery_cp <= sh->sector))
3235                 rv = 1;
3236
3237         return rv;
3238 }
3239
3240 /* fetch_block - checks the given member device to see if its data needs
3241  * to be read or computed to satisfy a request.
3242  *
3243  * Returns 1 when no more member devices need to be checked, otherwise returns
3244  * 0 to tell the loop in handle_stripe_fill to continue
3245  */
3246
3247 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3248                            int disk_idx, int disks)
3249 {
3250         struct r5dev *dev = &sh->dev[disk_idx];
3251         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3252                                   &sh->dev[s->failed_num[1]] };
3253         int i;
3254
3255
3256         if (test_bit(R5_LOCKED, &dev->flags) ||
3257             test_bit(R5_UPTODATE, &dev->flags))
3258                 /* No point reading this as we already have it or have
3259                  * decided to get it.
3260                  */
3261                 return 0;
3262
3263         if (dev->toread ||
3264             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3265                 /* We need this block to directly satisfy a request */
3266                 return 1;
3267
3268         if (s->syncing || s->expanding ||
3269             (s->replacing && want_replace(sh, disk_idx)))
3270                 /* When syncing, or expanding we read everything.
3271                  * When replacing, we need the replaced block.
3272                  */
3273                 return 1;
3274
3275         if ((s->failed >= 1 && fdev[0]->toread) ||
3276             (s->failed >= 2 && fdev[1]->toread))
3277                 /* If we want to read from a failed device, then
3278                  * we need to actually read every other device.
3279                  */
3280                 return 1;
3281
3282         /* Sometimes neither read-modify-write nor reconstruct-write
3283          * cycles can work.  In those cases we read every block we
3284          * can.  Then the parity-update is certain to have enough to
3285          * work with.
3286          * This can only be a problem when we need to write something,
3287          * and some device has failed.  If either of those tests
3288          * fail we need look no further.
3289          */
3290         if (!s->failed || !s->to_write)
3291                 return 0;
3292
3293         if (test_bit(R5_Insync, &dev->flags) &&
3294             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3295                 /* Pre-reads at not permitted until after short delay
3296                  * to gather multiple requests.  However if this
3297                  * device is no Insync, the block could only be be computed
3298                  * and there is no need to delay that.
3299                  */
3300                 return 0;
3301
3302         for (i = 0; i < s->failed; i++) {
3303                 if (fdev[i]->towrite &&
3304                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3305                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3306                         /* If we have a partial write to a failed
3307                          * device, then we will need to reconstruct
3308                          * the content of that device, so all other
3309                          * devices must be read.
3310                          */
3311                         return 1;
3312         }
3313
3314         /* If we are forced to do a reconstruct-write, either because
3315          * the current RAID6 implementation only supports that, or
3316          * or because parity cannot be trusted and we are currently
3317          * recovering it, there is extra need to be careful.
3318          * If one of the devices that we would need to read, because
3319          * it is not being overwritten (and maybe not written at all)
3320          * is missing/faulty, then we need to read everything we can.
3321          */
3322         if (sh->raid_conf->level != 6 &&
3323             sh->sector < sh->raid_conf->mddev->recovery_cp)
3324                 /* reconstruct-write isn't being forced */
3325                 return 0;
3326         for (i = 0; i < s->failed; i++) {
3327                 if (s->failed_num[i] != sh->pd_idx &&
3328                     s->failed_num[i] != sh->qd_idx &&
3329                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3330                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3331                         return 1;
3332         }
3333
3334         return 0;
3335 }
3336
3337 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3338                        int disk_idx, int disks)
3339 {
3340         struct r5dev *dev = &sh->dev[disk_idx];
3341
3342         /* is the data in this block needed, and can we get it? */
3343         if (need_this_block(sh, s, disk_idx, disks)) {
3344                 /* we would like to get this block, possibly by computing it,
3345                  * otherwise read it if the backing disk is insync
3346                  */
3347                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3348                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3349                 BUG_ON(sh->batch_head);
3350                 if ((s->uptodate == disks - 1) &&
3351                     (s->failed && (disk_idx == s->failed_num[0] ||
3352                                    disk_idx == s->failed_num[1]))) {
3353                         /* have disk failed, and we're requested to fetch it;
3354                          * do compute it
3355                          */
3356                         pr_debug("Computing stripe %llu block %d\n",
3357                                (unsigned long long)sh->sector, disk_idx);
3358                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3359                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3360                         set_bit(R5_Wantcompute, &dev->flags);
3361                         sh->ops.target = disk_idx;
3362                         sh->ops.target2 = -1; /* no 2nd target */
3363                         s->req_compute = 1;
3364                         /* Careful: from this point on 'uptodate' is in the eye
3365                          * of raid_run_ops which services 'compute' operations
3366                          * before writes. R5_Wantcompute flags a block that will
3367                          * be R5_UPTODATE by the time it is needed for a
3368                          * subsequent operation.
3369                          */
3370                         s->uptodate++;
3371                         return 1;
3372                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3373                         /* Computing 2-failure is *very* expensive; only
3374                          * do it if failed >= 2
3375                          */
3376                         int other;
3377                         for (other = disks; other--; ) {
3378                                 if (other == disk_idx)
3379                                         continue;
3380                                 if (!test_bit(R5_UPTODATE,
3381                                       &sh->dev[other].flags))
3382                                         break;
3383                         }
3384                         BUG_ON(other < 0);
3385                         pr_debug("Computing stripe %llu blocks %d,%d\n",
3386                                (unsigned long long)sh->sector,
3387                                disk_idx, other);
3388                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3389                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3390                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3391                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
3392                         sh->ops.target = disk_idx;
3393                         sh->ops.target2 = other;
3394                         s->uptodate += 2;
3395                         s->req_compute = 1;
3396                         return 1;
3397                 } else if (test_bit(R5_Insync, &dev->flags)) {
3398                         set_bit(R5_LOCKED, &dev->flags);
3399                         set_bit(R5_Wantread, &dev->flags);
3400                         s->locked++;
3401                         pr_debug("Reading block %d (sync=%d)\n",
3402                                 disk_idx, s->syncing);
3403                 }
3404         }
3405
3406         return 0;
3407 }
3408
3409 /**
3410  * handle_stripe_fill - read or compute data to satisfy pending requests.
3411  */
3412 static void handle_stripe_fill(struct stripe_head *sh,
3413                                struct stripe_head_state *s,
3414                                int disks)
3415 {
3416         int i;
3417
3418         /* look for blocks to read/compute, skip this if a compute
3419          * is already in flight, or if the stripe contents are in the
3420          * midst of changing due to a write
3421          */
3422         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3423             !sh->reconstruct_state)
3424                 for (i = disks; i--; )
3425                         if (fetch_block(sh, s, i, disks))
3426                                 break;
3427         set_bit(STRIPE_HANDLE, &sh->state);
3428 }
3429
3430 static void break_stripe_batch_list(struct stripe_head *head_sh,
3431                                     unsigned long handle_flags);
3432 /* handle_stripe_clean_event
3433  * any written block on an uptodate or failed drive can be returned.
3434  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3435  * never LOCKED, so we don't need to test 'failed' directly.
3436  */
3437 static void handle_stripe_clean_event(struct r5conf *conf,
3438         struct stripe_head *sh, int disks, struct bio_list *return_bi)
3439 {
3440         int i;
3441         struct r5dev *dev;
3442         int discard_pending = 0;
3443         struct stripe_head *head_sh = sh;
3444         bool do_endio = false;
3445
3446         for (i = disks; i--; )
3447                 if (sh->dev[i].written) {
3448                         dev = &sh->dev[i];
3449                         if (!test_bit(R5_LOCKED, &dev->flags) &&
3450                             (test_bit(R5_UPTODATE, &dev->flags) ||
3451                              test_bit(R5_Discard, &dev->flags) ||
3452                              test_bit(R5_SkipCopy, &dev->flags))) {
3453                                 /* We can return any write requests */
3454                                 struct bio *wbi, *wbi2;
3455                                 pr_debug("Return write for disc %d\n", i);
3456                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
3457                                         clear_bit(R5_UPTODATE, &dev->flags);
3458                                 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3459                                         WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3460                                 }
3461                                 do_endio = true;
3462
3463 returnbi:
3464                                 dev->page = dev->orig_page;
3465                                 wbi = dev->written;
3466                                 dev->written = NULL;
3467                                 while (wbi && wbi->bi_iter.bi_sector <
3468                                         dev->sector + STRIPE_SECTORS) {
3469                                         wbi2 = r5_next_bio(wbi, dev->sector);
3470                                         if (!raid5_dec_bi_active_stripes(wbi)) {
3471                                                 md_write_end(conf->mddev);
3472                                                 bio_list_add(return_bi, wbi);
3473                                         }
3474                                         wbi = wbi2;
3475                                 }
3476                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3477                                                 STRIPE_SECTORS,
3478                                          !test_bit(STRIPE_DEGRADED, &sh->state),
3479                                                 0);
3480                                 if (head_sh->batch_head) {
3481                                         sh = list_first_entry(&sh->batch_list,
3482                                                               struct stripe_head,
3483                                                               batch_list);
3484                                         if (sh != head_sh) {
3485                                                 dev = &sh->dev[i];
3486                                                 goto returnbi;
3487                                         }
3488                                 }
3489                                 sh = head_sh;
3490                                 dev = &sh->dev[i];
3491                         } else if (test_bit(R5_Discard, &dev->flags))
3492                                 discard_pending = 1;
3493                         WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3494                         WARN_ON(dev->page != dev->orig_page);
3495                 }
3496         if (!discard_pending &&
3497             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3498                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3499                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3500                 if (sh->qd_idx >= 0) {
3501                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3502                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3503                 }
3504                 /* now that discard is done we can proceed with any sync */
3505                 clear_bit(STRIPE_DISCARD, &sh->state);
3506                 /*
3507                  * SCSI discard will change some bio fields and the stripe has
3508                  * no updated data, so remove it from hash list and the stripe
3509                  * will be reinitialized
3510                  */
3511                 spin_lock_irq(&conf->device_lock);
3512 unhash:
3513                 remove_hash(sh);
3514                 if (head_sh->batch_head) {
3515                         sh = list_first_entry(&sh->batch_list,
3516                                               struct stripe_head, batch_list);
3517                         if (sh != head_sh)
3518                                         goto unhash;
3519                 }
3520                 spin_unlock_irq(&conf->device_lock);
3521                 sh = head_sh;
3522
3523                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3524                         set_bit(STRIPE_HANDLE, &sh->state);
3525
3526         }
3527
3528         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3529                 if (atomic_dec_and_test(&conf->pending_full_writes))
3530                         md_wakeup_thread(conf->mddev->thread);
3531
3532         if (head_sh->batch_head && do_endio)
3533                 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3534 }
3535
3536 static void handle_stripe_dirtying(struct r5conf *conf,
3537                                    struct stripe_head *sh,
3538                                    struct stripe_head_state *s,
3539                                    int disks)
3540 {
3541         int rmw = 0, rcw = 0, i;
3542         sector_t recovery_cp = conf->mddev->recovery_cp;
3543
3544         /* Check whether resync is now happening or should start.
3545          * If yes, then the array is dirty (after unclean shutdown or
3546          * initial creation), so parity in some stripes might be inconsistent.
3547          * In this case, we need to always do reconstruct-write, to ensure
3548          * that in case of drive failure or read-error correction, we
3549          * generate correct data from the parity.
3550          */
3551         if (conf->rmw_level == PARITY_DISABLE_RMW ||
3552             (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3553              s->failed == 0)) {
3554                 /* Calculate the real rcw later - for now make it
3555                  * look like rcw is cheaper
3556                  */
3557                 rcw = 1; rmw = 2;
3558                 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3559                          conf->rmw_level, (unsigned long long)recovery_cp,
3560                          (unsigned long long)sh->sector);
3561         } else for (i = disks; i--; ) {
3562                 /* would I have to read this buffer for read_modify_write */
3563                 struct r5dev *dev = &sh->dev[i];
3564                 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3565                     !test_bit(R5_LOCKED, &dev->flags) &&
3566                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3567                       test_bit(R5_Wantcompute, &dev->flags))) {
3568                         if (test_bit(R5_Insync, &dev->flags))
3569                                 rmw++;
3570                         else
3571                                 rmw += 2*disks;  /* cannot read it */
3572                 }
3573                 /* Would I have to read this buffer for reconstruct_write */
3574                 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3575                     i != sh->pd_idx && i != sh->qd_idx &&
3576                     !test_bit(R5_LOCKED, &dev->flags) &&
3577                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3578                     test_bit(R5_Wantcompute, &dev->flags))) {
3579                         if (test_bit(R5_Insync, &dev->flags))
3580                                 rcw++;
3581                         else
3582                                 rcw += 2*disks;
3583                 }
3584         }
3585         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3586                 (unsigned long long)sh->sector, rmw, rcw);
3587         set_bit(STRIPE_HANDLE, &sh->state);
3588         if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3589                 /* prefer read-modify-write, but need to get some data */
3590                 if (conf->mddev->queue)
3591                         blk_add_trace_msg(conf->mddev->queue,
3592                                           "raid5 rmw %llu %d",
3593                                           (unsigned long long)sh->sector, rmw);
3594                 for (i = disks; i--; ) {
3595                         struct r5dev *dev = &sh->dev[i];
3596                         if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3597                             !test_bit(R5_LOCKED, &dev->flags) &&
3598                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3599                             test_bit(R5_Wantcompute, &dev->flags)) &&
3600                             test_bit(R5_Insync, &dev->flags)) {
3601                                 if (test_bit(STRIPE_PREREAD_ACTIVE,
3602                                              &sh->state)) {
3603                                         pr_debug("Read_old block %d for r-m-w\n",
3604                                                  i);
3605                                         set_bit(R5_LOCKED, &dev->flags);
3606                                         set_bit(R5_Wantread, &dev->flags);
3607                                         s->locked++;
3608                                 } else {
3609                                         set_bit(STRIPE_DELAYED, &sh->state);
3610                                         set_bit(STRIPE_HANDLE, &sh->state);
3611                                 }
3612                         }
3613                 }
3614         }
3615         if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3616                 /* want reconstruct write, but need to get some data */
3617                 int qread =0;
3618                 rcw = 0;
3619                 for (i = disks; i--; ) {
3620                         struct r5dev *dev = &sh->dev[i];
3621                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3622                             i != sh->pd_idx && i != sh->qd_idx &&
3623                             !test_bit(R5_LOCKED, &dev->flags) &&
3624                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3625                               test_bit(R5_Wantcompute, &dev->flags))) {
3626                                 rcw++;
3627                                 if (test_bit(R5_Insync, &dev->flags) &&
3628                                     test_bit(STRIPE_PREREAD_ACTIVE,
3629                                              &sh->state)) {
3630                                         pr_debug("Read_old block "
3631                                                 "%d for Reconstruct\n", i);
3632                                         set_bit(R5_LOCKED, &dev->flags);
3633                                         set_bit(R5_Wantread, &dev->flags);
3634                                         s->locked++;
3635                                         qread++;
3636                                 } else {
3637                                         set_bit(STRIPE_DELAYED, &sh->state);
3638                                         set_bit(STRIPE_HANDLE, &sh->state);
3639                                 }
3640                         }
3641                 }
3642                 if (rcw && conf->mddev->queue)
3643                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3644                                           (unsigned long long)sh->sector,
3645                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3646         }
3647
3648         if (rcw > disks && rmw > disks &&
3649             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3650                 set_bit(STRIPE_DELAYED, &sh->state);
3651
3652         /* now if nothing is locked, and if we have enough data,
3653          * we can start a write request
3654          */
3655         /* since handle_stripe can be called at any time we need to handle the
3656          * case where a compute block operation has been submitted and then a
3657          * subsequent call wants to start a write request.  raid_run_ops only
3658          * handles the case where compute block and reconstruct are requested
3659          * simultaneously.  If this is not the case then new writes need to be
3660          * held off until the compute completes.
3661          */
3662         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3663             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3664             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3665                 schedule_reconstruction(sh, s, rcw == 0, 0);
3666 }
3667
3668 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3669                                 struct stripe_head_state *s, int disks)
3670 {
3671         struct r5dev *dev = NULL;
3672
3673         BUG_ON(sh->batch_head);
3674         set_bit(STRIPE_HANDLE, &sh->state);
3675
3676         switch (sh->check_state) {
3677         case check_state_idle:
3678                 /* start a new check operation if there are no failures */
3679                 if (s->failed == 0) {
3680                         BUG_ON(s->uptodate != disks);
3681                         sh->check_state = check_state_run;
3682                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3683                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3684                         s->uptodate--;
3685                         break;
3686                 }
3687                 dev = &sh->dev[s->failed_num[0]];
3688                 /* fall through */
3689         case check_state_compute_result:
3690                 sh->check_state = check_state_idle;
3691                 if (!dev)
3692                         dev = &sh->dev[sh->pd_idx];
3693
3694                 /* check that a write has not made the stripe insync */
3695                 if (test_bit(STRIPE_INSYNC, &sh->state))
3696                         break;
3697
3698                 /* either failed parity check, or recovery is happening */
3699                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3700                 BUG_ON(s->uptodate != disks);
3701
3702                 set_bit(R5_LOCKED, &dev->flags);
3703                 s->locked++;
3704                 set_bit(R5_Wantwrite, &dev->flags);
3705
3706                 clear_bit(STRIPE_DEGRADED, &sh->state);
3707                 set_bit(STRIPE_INSYNC, &sh->state);
3708                 break;
3709         case check_state_run:
3710                 break; /* we will be called again upon completion */
3711         case check_state_check_result:
3712                 sh->check_state = check_state_idle;
3713
3714                 /* if a failure occurred during the check operation, leave
3715                  * STRIPE_INSYNC not set and let the stripe be handled again
3716                  */
3717                 if (s->failed)
3718                         break;
3719
3720                 /* handle a successful check operation, if parity is correct
3721                  * we are done.  Otherwise update the mismatch count and repair
3722                  * parity if !MD_RECOVERY_CHECK
3723                  */
3724                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3725                         /* parity is correct (on disc,
3726                          * not in buffer any more)
3727                          */
3728                         set_bit(STRIPE_INSYNC, &sh->state);
3729                 else {
3730                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3731                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3732                                 /* don't try to repair!! */
3733                                 set_bit(STRIPE_INSYNC, &sh->state);
3734                         else {
3735                                 sh->check_state = check_state_compute_run;
3736                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3737                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3738                                 set_bit(R5_Wantcompute,
3739                                         &sh->dev[sh->pd_idx].flags);
3740                                 sh->ops.target = sh->pd_idx;
3741                                 sh->ops.target2 = -1;
3742                                 s->uptodate++;
3743                         }
3744                 }
3745                 break;
3746         case check_state_compute_run:
3747                 break;
3748         default:
3749                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3750                        __func__, sh->check_state,
3751                        (unsigned long long) sh->sector);
3752                 BUG();
3753         }
3754 }
3755
3756 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3757                                   struct stripe_head_state *s,
3758                                   int disks)
3759 {
3760         int pd_idx = sh->pd_idx;
3761         int qd_idx = sh->qd_idx;
3762         struct r5dev *dev;
3763
3764         BUG_ON(sh->batch_head);
3765         set_bit(STRIPE_HANDLE, &sh->state);
3766
3767         BUG_ON(s->failed > 2);
3768
3769         /* Want to check and possibly repair P and Q.
3770          * However there could be one 'failed' device, in which
3771          * case we can only check one of them, possibly using the
3772          * other to generate missing data
3773          */
3774
3775         switch (sh->check_state) {
3776         case check_state_idle:
3777                 /* start a new check operation if there are < 2 failures */
3778                 if (s->failed == s->q_failed) {
3779                         /* The only possible failed device holds Q, so it
3780                          * makes sense to check P (If anything else were failed,
3781                          * we would have used P to recreate it).
3782                          */
3783                         sh->check_state = check_state_run;
3784                 }
3785                 if (!s->q_failed && s->failed < 2) {
3786                         /* Q is not failed, and we didn't use it to generate
3787                          * anything, so it makes sense to check it
3788                          */
3789                         if (sh->check_state == check_state_run)
3790                                 sh->check_state = check_state_run_pq;
3791                         else
3792                                 sh->check_state = check_state_run_q;
3793                 }
3794
3795                 /* discard potentially stale zero_sum_result */
3796                 sh->ops.zero_sum_result = 0;
3797
3798                 if (sh->check_state == check_state_run) {
3799                         /* async_xor_zero_sum destroys the contents of P */
3800                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3801                         s->uptodate--;
3802                 }
3803                 if (sh->check_state >= check_state_run &&
3804                     sh->check_state <= check_state_run_pq) {
3805                         /* async_syndrome_zero_sum preserves P and Q, so
3806                          * no need to mark them !uptodate here
3807                          */
3808                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3809                         break;
3810                 }
3811
3812                 /* we have 2-disk failure */
3813                 BUG_ON(s->failed != 2);
3814                 /* fall through */
3815         case check_state_compute_result:
3816                 sh->check_state = check_state_idle;
3817
3818                 /* check that a write has not made the stripe insync */
3819                 if (test_bit(STRIPE_INSYNC, &sh->state))
3820                         break;
3821
3822                 /* now write out any block on a failed drive,
3823                  * or P or Q if they were recomputed
3824                  */
3825                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3826                 if (s->failed == 2) {
3827                         dev = &sh->dev[s->failed_num[1]];
3828                         s->locked++;
3829                         set_bit(R5_LOCKED, &dev->flags);
3830                         set_bit(R5_Wantwrite, &dev->flags);
3831                 }
3832                 if (s->failed >= 1) {
3833                         dev = &sh->dev[s->failed_num[0]];
3834                         s->locked++;
3835                         set_bit(R5_LOCKED, &dev->flags);
3836                         set_bit(R5_Wantwrite, &dev->flags);
3837                 }
3838                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3839                         dev = &sh->dev[pd_idx];
3840                         s->locked++;
3841                         set_bit(R5_LOCKED, &dev->flags);
3842                         set_bit(R5_Wantwrite, &dev->flags);
3843                 }
3844                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3845                         dev = &sh->dev[qd_idx];
3846                         s->locked++;
3847                         set_bit(R5_LOCKED, &dev->flags);
3848                         set_bit(R5_Wantwrite, &dev->flags);
3849                 }
3850                 clear_bit(STRIPE_DEGRADED, &sh->state);
3851
3852                 set_bit(STRIPE_INSYNC, &sh->state);
3853                 break;
3854         case check_state_run:
3855         case check_state_run_q:
3856         case check_state_run_pq:
3857                 break; /* we will be called again upon completion */
3858         case check_state_check_result:
3859                 sh->check_state = check_state_idle;
3860
3861                 /* handle a successful check operation, if parity is correct
3862                  * we are done.  Otherwise update the mismatch count and repair
3863                  * parity if !MD_RECOVERY_CHECK
3864                  */
3865                 if (sh->ops.zero_sum_result == 0) {
3866                         /* both parities are correct */
3867                         if (!s->failed)
3868                                 set_bit(STRIPE_INSYNC, &sh->state);
3869                         else {
3870                                 /* in contrast to the raid5 case we can validate
3871                                  * parity, but still have a failure to write
3872                                  * back
3873                                  */
3874                                 sh->check_state = check_state_compute_result;
3875                                 /* Returning at this point means that we may go
3876                                  * off and bring p and/or q uptodate again so
3877                                  * we make sure to check zero_sum_result again
3878                                  * to verify if p or q need writeback
3879                                  */
3880                         }
3881                 } else {
3882                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3883                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3884                                 /* don't try to repair!! */
3885                                 set_bit(STRIPE_INSYNC, &sh->state);
3886                         else {
3887                                 int *target = &sh->ops.target;
3888
3889                                 sh->ops.target = -1;
3890                                 sh->ops.target2 = -1;
3891                                 sh->check_state = check_state_compute_run;
3892                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3893                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3894                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3895                                         set_bit(R5_Wantcompute,
3896                                                 &sh->dev[pd_idx].flags);
3897                                         *target = pd_idx;
3898                                         target = &sh->ops.target2;
3899                                         s->uptodate++;
3900                                 }
3901                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3902                                         set_bit(R5_Wantcompute,
3903                                                 &sh->dev[qd_idx].flags);
3904                                         *target = qd_idx;
3905                                         s->uptodate++;
3906                                 }
3907                         }
3908                 }
3909                 break;
3910         case check_state_compute_run:
3911                 break;
3912         default:
3913                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3914                        __func__, sh->check_state,
3915                        (unsigned long long) sh->sector);
3916                 BUG();
3917         }
3918 }
3919
3920 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3921 {
3922         int i;
3923
3924         /* We have read all the blocks in this stripe and now we need to
3925          * copy some of them into a target stripe for expand.
3926          */
3927         struct dma_async_tx_descriptor *tx = NULL;
3928         BUG_ON(sh->batch_head);
3929         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3930         for (i = 0; i < sh->disks; i++)
3931                 if (i != sh->pd_idx && i != sh->qd_idx) {
3932                         int dd_idx, j;
3933                         struct stripe_head *sh2;
3934                         struct async_submit_ctl submit;
3935
3936                         sector_t bn = compute_blocknr(sh, i, 1);
3937                         sector_t s = raid5_compute_sector(conf, bn, 0,
3938                                                           &dd_idx, NULL);
3939                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3940                         if (sh2 == NULL)
3941                                 /* so far only the early blocks of this stripe
3942                                  * have been requested.  When later blocks
3943                                  * get requested, we will try again
3944                                  */
3945                                 continue;
3946                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3947                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3948                                 /* must have already done this block */
3949                                 release_stripe(sh2);
3950                                 continue;
3951                         }
3952
3953                         /* place all the copies on one channel */
3954                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3955                         tx = async_memcpy(sh2->dev[dd_idx].page,
3956                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3957                                           &submit);
3958
3959                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3960                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3961                         for (j = 0; j < conf->raid_disks; j++)
3962                                 if (j != sh2->pd_idx &&
3963                                     j != sh2->qd_idx &&
3964                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3965                                         break;
3966                         if (j == conf->raid_disks) {
3967                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3968                                 set_bit(STRIPE_HANDLE, &sh2->state);
3969                         }
3970                         release_stripe(sh2);
3971
3972                 }
3973         /* done submitting copies, wait for them to complete */
3974         async_tx_quiesce(&tx);
3975 }
3976
3977 /*
3978  * handle_stripe - do things to a stripe.
3979  *
3980  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3981  * state of various bits to see what needs to be done.
3982  * Possible results:
3983  *    return some read requests which now have data
3984  *    return some write requests which are safely on storage
3985  *    schedule a read on some buffers
3986  *    schedule a write of some buffers
3987  *    return confirmation of parity correctness
3988  *
3989  */
3990
3991 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3992 {
3993         struct r5conf *conf = sh->raid_conf;
3994         int disks = sh->disks;
3995         struct r5dev *dev;
3996         int i;
3997         int do_recovery = 0;
3998
3999         memset(s, 0, sizeof(*s));
4000
4001         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4002         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4003         s->failed_num[0] = -1;
4004         s->failed_num[1] = -1;
4005
4006         /* Now to look around and see what can be done */
4007         rcu_read_lock();
4008         for (i=disks; i--; ) {
4009                 struct md_rdev *rdev;
4010                 sector_t first_bad;
4011                 int bad_sectors;
4012                 int is_bad = 0;
4013
4014                 dev = &sh->dev[i];
4015
4016                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4017                          i, dev->flags,
4018                          dev->toread, dev->towrite, dev->written);
4019                 /* maybe we can reply to a read
4020                  *
4021                  * new wantfill requests are only permitted while
4022                  * ops_complete_biofill is guaranteed to be inactive
4023                  */
4024                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4025                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4026                         set_bit(R5_Wantfill, &dev->flags);
4027
4028                 /* now count some things */
4029                 if (test_bit(R5_LOCKED, &dev->flags))
4030                         s->locked++;
4031                 if (test_bit(R5_UPTODATE, &dev->flags))
4032                         s->uptodate++;
4033                 if (test_bit(R5_Wantcompute, &dev->flags)) {
4034                         s->compute++;
4035                         BUG_ON(s->compute > 2);
4036                 }
4037
4038                 if (test_bit(R5_Wantfill, &dev->flags))
4039                         s->to_fill++;
4040                 else if (dev->toread)
4041                         s->to_read++;
4042                 if (dev->towrite) {
4043                         s->to_write++;
4044                         if (!test_bit(R5_OVERWRITE, &dev->flags))
4045                                 s->non_overwrite++;
4046                 }
4047                 if (dev->written)
4048                         s->written++;
4049                 /* Prefer to use the replacement for reads, but only
4050                  * if it is recovered enough and has no bad blocks.
4051                  */
4052                 rdev = rcu_dereference(conf->disks[i].replacement);
4053                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4054                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4055                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4056                                  &first_bad, &bad_sectors))
4057                         set_bit(R5_ReadRepl, &dev->flags);
4058                 else {
4059                         if (rdev && !test_bit(Faulty, &rdev->flags))
4060                                 set_bit(R5_NeedReplace, &dev->flags);
4061                         else
4062                                 clear_bit(R5_NeedReplace, &dev->flags);
4063                         rdev = rcu_dereference(conf->disks[i].rdev);
4064                         clear_bit(R5_ReadRepl, &dev->flags);
4065                 }
4066                 if (rdev && test_bit(Faulty, &rdev->flags))
4067                         rdev = NULL;
4068                 if (rdev) {
4069                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4070                                              &first_bad, &bad_sectors);
4071                         if (s->blocked_rdev == NULL
4072                             && (test_bit(Blocked, &rdev->flags)
4073                                 || is_bad < 0)) {
4074                                 if (is_bad < 0)
4075                                         set_bit(BlockedBadBlocks,
4076                                                 &rdev->flags);
4077                                 s->blocked_rdev = rdev;
4078                                 atomic_inc(&rdev->nr_pending);
4079                         }
4080                 }
4081                 clear_bit(R5_Insync, &dev->flags);
4082                 if (!rdev)
4083                         /* Not in-sync */;
4084                 else if (is_bad) {
4085                         /* also not in-sync */
4086                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4087                             test_bit(R5_UPTODATE, &dev->flags)) {
4088                                 /* treat as in-sync, but with a read error
4089                                  * which we can now try to correct
4090                                  */
4091                                 set_bit(R5_Insync, &dev->flags);
4092                                 set_bit(R5_ReadError, &dev->flags);
4093                         }
4094                 } else if (test_bit(In_sync, &rdev->flags))
4095                         set_bit(R5_Insync, &dev->flags);
4096                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4097                         /* in sync if before recovery_offset */
4098                         set_bit(R5_Insync, &dev->flags);
4099                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4100                          test_bit(R5_Expanded, &dev->flags))
4101                         /* If we've reshaped into here, we assume it is Insync.
4102                          * We will shortly update recovery_offset to make
4103                          * it official.
4104                          */
4105                         set_bit(R5_Insync, &dev->flags);
4106
4107                 if (test_bit(R5_WriteError, &dev->flags)) {
4108                         /* This flag does not apply to '.replacement'
4109                          * only to .rdev, so make sure to check that*/
4110                         struct md_rdev *rdev2 = rcu_dereference(
4111                                 conf->disks[i].rdev);
4112                         if (rdev2 == rdev)
4113                                 clear_bit(R5_Insync, &dev->flags);
4114                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4115                                 s->handle_bad_blocks = 1;
4116                                 atomic_inc(&rdev2->nr_pending);
4117                         } else
4118                                 clear_bit(R5_WriteError, &dev->flags);
4119                 }
4120                 if (test_bit(R5_MadeGood, &dev->flags)) {
4121                         /* This flag does not apply to '.replacement'
4122                          * only to .rdev, so make sure to check that*/
4123                         struct md_rdev *rdev2 = rcu_dereference(
4124                                 conf->disks[i].rdev);
4125                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4126                                 s->handle_bad_blocks = 1;
4127                                 atomic_inc(&rdev2->nr_pending);
4128                         } else
4129                                 clear_bit(R5_MadeGood, &dev->flags);
4130                 }
4131                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4132                         struct md_rdev *rdev2 = rcu_dereference(
4133                                 conf->disks[i].replacement);
4134                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4135                                 s->handle_bad_blocks = 1;
4136                                 atomic_inc(&rdev2->nr_pending);
4137                         } else
4138                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
4139                 }
4140                 if (!test_bit(R5_Insync, &dev->flags)) {
4141                         /* The ReadError flag will just be confusing now */
4142                         clear_bit(R5_ReadError, &dev->flags);
4143                         clear_bit(R5_ReWrite, &dev->flags);
4144                 }
4145                 if (test_bit(R5_ReadError, &dev->flags))
4146                         clear_bit(R5_Insync, &dev->flags);
4147                 if (!test_bit(R5_Insync, &dev->flags)) {
4148                         if (s->failed < 2)
4149                                 s->failed_num[s->failed] = i;
4150                         s->failed++;
4151                         if (rdev && !test_bit(Faulty, &rdev->flags))
4152                                 do_recovery = 1;
4153                 }
4154         }
4155         if (test_bit(STRIPE_SYNCING, &sh->state)) {
4156                 /* If there is a failed device being replaced,
4157                  *     we must be recovering.
4158                  * else if we are after recovery_cp, we must be syncing
4159                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4160                  * else we can only be replacing
4161                  * sync and recovery both need to read all devices, and so
4162                  * use the same flag.
4163                  */
4164                 if (do_recovery ||
4165                     sh->sector >= conf->mddev->recovery_cp ||
4166                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4167                         s->syncing = 1;
4168                 else
4169                         s->replacing = 1;
4170         }
4171         rcu_read_unlock();
4172 }
4173
4174 static int clear_batch_ready(struct stripe_head *sh)
4175 {
4176         /* Return '1' if this is a member of batch, or
4177          * '0' if it is a lone stripe or a head which can now be
4178          * handled.
4179          */
4180         struct stripe_head *tmp;
4181         if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4182                 return (sh->batch_head && sh->batch_head != sh);
4183         spin_lock(&sh->stripe_lock);
4184         if (!sh->batch_head) {
4185                 spin_unlock(&sh->stripe_lock);
4186                 return 0;
4187         }
4188
4189         /*
4190          * this stripe could be added to a batch list before we check
4191          * BATCH_READY, skips it
4192          */
4193         if (sh->batch_head != sh) {
4194                 spin_unlock(&sh->stripe_lock);
4195                 return 1;
4196         }
4197         spin_lock(&sh->batch_lock);
4198         list_for_each_entry(tmp, &sh->batch_list, batch_list)
4199                 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4200         spin_unlock(&sh->batch_lock);
4201         spin_unlock(&sh->stripe_lock);
4202
4203         /*
4204          * BATCH_READY is cleared, no new stripes can be added.
4205          * batch_list can be accessed without lock
4206          */
4207         return 0;
4208 }
4209
4210 static void break_stripe_batch_list(struct stripe_head *head_sh,
4211                                     unsigned long handle_flags)
4212 {
4213         struct stripe_head *sh, *next;
4214         int i;
4215         int do_wakeup = 0;
4216
4217         list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4218
4219                 list_del_init(&sh->batch_list);
4220
4221                 WARN_ON_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4222                                           (1 << STRIPE_SYNCING) |
4223                                           (1 << STRIPE_REPLACED) |
4224                                           (1 << STRIPE_PREREAD_ACTIVE) |
4225                                           (1 << STRIPE_DELAYED) |
4226                                           (1 << STRIPE_BIT_DELAY) |
4227                                           (1 << STRIPE_FULL_WRITE) |
4228                                           (1 << STRIPE_BIOFILL_RUN) |
4229                                           (1 << STRIPE_COMPUTE_RUN)  |
4230                                           (1 << STRIPE_OPS_REQ_PENDING) |
4231                                           (1 << STRIPE_DISCARD) |
4232                                           (1 << STRIPE_BATCH_READY) |
4233                                           (1 << STRIPE_BATCH_ERR) |
4234                                           (1 << STRIPE_BITMAP_PENDING)));
4235                 WARN_ON_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4236                                               (1 << STRIPE_REPLACED)));
4237
4238                 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4239                                             (1 << STRIPE_DEGRADED)),
4240                               head_sh->state & (1 << STRIPE_INSYNC));
4241
4242                 sh->check_state = head_sh->check_state;
4243                 sh->reconstruct_state = head_sh->reconstruct_state;
4244                 for (i = 0; i < sh->disks; i++) {
4245                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4246                                 do_wakeup = 1;
4247                         sh->dev[i].flags = head_sh->dev[i].flags &
4248                                 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4249                 }
4250                 spin_lock_irq(&sh->stripe_lock);
4251                 sh->batch_head = NULL;
4252                 spin_unlock_irq(&sh->stripe_lock);
4253                 if (handle_flags == 0 ||
4254                     sh->state & handle_flags)
4255                         set_bit(STRIPE_HANDLE, &sh->state);
4256                 release_stripe(sh);
4257         }
4258         spin_lock_irq(&head_sh->stripe_lock);
4259         head_sh->batch_head = NULL;
4260         spin_unlock_irq(&head_sh->stripe_lock);
4261         for (i = 0; i < head_sh->disks; i++)
4262                 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4263                         do_wakeup = 1;
4264         if (head_sh->state & handle_flags)
4265                 set_bit(STRIPE_HANDLE, &head_sh->state);
4266
4267         if (do_wakeup)
4268                 wake_up(&head_sh->raid_conf->wait_for_overlap);
4269 }
4270
4271 static void handle_stripe(struct stripe_head *sh)
4272 {
4273         struct stripe_head_state s;
4274         struct r5conf *conf = sh->raid_conf;
4275         int i;
4276         int prexor;
4277         int disks = sh->disks;
4278         struct r5dev *pdev, *qdev;
4279
4280         clear_bit(STRIPE_HANDLE, &sh->state);
4281         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4282                 /* already being handled, ensure it gets handled
4283                  * again when current action finishes */
4284                 set_bit(STRIPE_HANDLE, &sh->state);
4285                 return;
4286         }
4287
4288         if (clear_batch_ready(sh) ) {
4289                 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4290                 return;
4291         }
4292
4293         if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4294                 break_stripe_batch_list(sh, 0);
4295
4296         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4297                 spin_lock(&sh->stripe_lock);
4298                 /* Cannot process 'sync' concurrently with 'discard' */
4299                 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4300                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4301                         set_bit(STRIPE_SYNCING, &sh->state);
4302                         clear_bit(STRIPE_INSYNC, &sh->state);
4303                         clear_bit(STRIPE_REPLACED, &sh->state);
4304                 }
4305                 spin_unlock(&sh->stripe_lock);
4306         }
4307         clear_bit(STRIPE_DELAYED, &sh->state);
4308
4309         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4310                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4311                (unsigned long long)sh->sector, sh->state,
4312                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4313                sh->check_state, sh->reconstruct_state);
4314
4315         analyse_stripe(sh, &s);
4316
4317         if (s.handle_bad_blocks) {
4318                 set_bit(STRIPE_HANDLE, &sh->state);
4319                 goto finish;
4320         }
4321
4322         if (unlikely(s.blocked_rdev)) {
4323                 if (s.syncing || s.expanding || s.expanded ||
4324                     s.replacing || s.to_write || s.written) {
4325                         set_bit(STRIPE_HANDLE, &sh->state);
4326                         goto finish;
4327                 }
4328                 /* There is nothing for the blocked_rdev to block */
4329                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4330                 s.blocked_rdev = NULL;
4331         }
4332
4333         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4334                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4335                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4336         }
4337
4338         pr_debug("locked=%d uptodate=%d to_read=%d"
4339                " to_write=%d failed=%d failed_num=%d,%d\n",
4340                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4341                s.failed_num[0], s.failed_num[1]);
4342         /* check if the array has lost more than max_degraded devices and,
4343          * if so, some requests might need to be failed.
4344          */
4345         if (s.failed > conf->max_degraded) {
4346                 sh->check_state = 0;
4347                 sh->reconstruct_state = 0;
4348                 break_stripe_batch_list(sh, 0);
4349                 if (s.to_read+s.to_write+s.written)
4350                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4351                 if (s.syncing + s.replacing)
4352                         handle_failed_sync(conf, sh, &s);
4353         }
4354
4355         /* Now we check to see if any write operations have recently
4356          * completed
4357          */
4358         prexor = 0;
4359         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4360                 prexor = 1;
4361         if (sh->reconstruct_state == reconstruct_state_drain_result ||
4362             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4363                 sh->reconstruct_state = reconstruct_state_idle;
4364
4365                 /* All the 'written' buffers and the parity block are ready to
4366                  * be written back to disk
4367                  */
4368                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4369                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4370                 BUG_ON(sh->qd_idx >= 0 &&
4371                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4372                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4373                 for (i = disks; i--; ) {
4374                         struct r5dev *dev = &sh->dev[i];
4375                         if (test_bit(R5_LOCKED, &dev->flags) &&
4376                                 (i == sh->pd_idx || i == sh->qd_idx ||
4377                                  dev->written)) {
4378                                 pr_debug("Writing block %d\n", i);
4379                                 set_bit(R5_Wantwrite, &dev->flags);
4380                                 if (prexor)
4381                                         continue;
4382                                 if (s.failed > 1)
4383                                         continue;
4384                                 if (!test_bit(R5_Insync, &dev->flags) ||
4385                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
4386                                      s.failed == 0))
4387                                         set_bit(STRIPE_INSYNC, &sh->state);
4388                         }
4389                 }
4390                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4391                         s.dec_preread_active = 1;
4392         }
4393
4394         /*
4395          * might be able to return some write requests if the parity blocks
4396          * are safe, or on a failed drive
4397          */
4398         pdev = &sh->dev[sh->pd_idx];
4399         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4400                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4401         qdev = &sh->dev[sh->qd_idx];
4402         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4403                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4404                 || conf->level < 6;
4405
4406         if (s.written &&
4407             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4408                              && !test_bit(R5_LOCKED, &pdev->flags)
4409                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
4410                                  test_bit(R5_Discard, &pdev->flags))))) &&
4411             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4412                              && !test_bit(R5_LOCKED, &qdev->flags)
4413                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
4414                                  test_bit(R5_Discard, &qdev->flags))))))
4415                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4416
4417         /* Now we might consider reading some blocks, either to check/generate
4418          * parity, or to satisfy requests
4419          * or to load a block that is being partially written.
4420          */
4421         if (s.to_read || s.non_overwrite
4422             || (conf->level == 6 && s.to_write && s.failed)
4423             || (s.syncing && (s.uptodate + s.compute < disks))
4424             || s.replacing
4425             || s.expanding)
4426                 handle_stripe_fill(sh, &s, disks);
4427
4428         /* Now to consider new write requests and what else, if anything
4429          * should be read.  We do not handle new writes when:
4430          * 1/ A 'write' operation (copy+xor) is already in flight.
4431          * 2/ A 'check' operation is in flight, as it may clobber the parity
4432          *    block.
4433          */
4434         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4435                 handle_stripe_dirtying(conf, sh, &s, disks);
4436
4437         /* maybe we need to check and possibly fix the parity for this stripe
4438          * Any reads will already have been scheduled, so we just see if enough
4439          * data is available.  The parity check is held off while parity
4440          * dependent operations are in flight.
4441          */
4442         if (sh->check_state ||
4443             (s.syncing && s.locked == 0 &&
4444              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4445              !test_bit(STRIPE_INSYNC, &sh->state))) {
4446                 if (conf->level == 6)
4447                         handle_parity_checks6(conf, sh, &s, disks);
4448                 else
4449                         handle_parity_checks5(conf, sh, &s, disks);
4450         }
4451
4452         if ((s.replacing || s.syncing) && s.locked == 0
4453             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4454             && !test_bit(STRIPE_REPLACED, &sh->state)) {
4455                 /* Write out to replacement devices where possible */
4456                 for (i = 0; i < conf->raid_disks; i++)
4457                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4458                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4459                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
4460                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
4461                                 s.locked++;
4462                         }
4463                 if (s.replacing)
4464                         set_bit(STRIPE_INSYNC, &sh->state);
4465                 set_bit(STRIPE_REPLACED, &sh->state);
4466         }
4467         if ((s.syncing || s.replacing) && s.locked == 0 &&
4468             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4469             test_bit(STRIPE_INSYNC, &sh->state)) {
4470                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4471                 clear_bit(STRIPE_SYNCING, &sh->state);
4472                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4473                         wake_up(&conf->wait_for_overlap);
4474         }
4475
4476         /* If the failed drives are just a ReadError, then we might need
4477          * to progress the repair/check process
4478          */
4479         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4480                 for (i = 0; i < s.failed; i++) {
4481                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
4482                         if (test_bit(R5_ReadError, &dev->flags)
4483                             && !test_bit(R5_LOCKED, &dev->flags)
4484                             && test_bit(R5_UPTODATE, &dev->flags)
4485                                 ) {
4486                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
4487                                         set_bit(R5_Wantwrite, &dev->flags);
4488                                         set_bit(R5_ReWrite, &dev->flags);
4489                                         set_bit(R5_LOCKED, &dev->flags);
4490                                         s.locked++;
4491                                 } else {
4492                                         /* let's read it back */
4493                                         set_bit(R5_Wantread, &dev->flags);
4494                                         set_bit(R5_LOCKED, &dev->flags);
4495                                         s.locked++;
4496                                 }
4497                         }
4498                 }
4499
4500         /* Finish reconstruct operations initiated by the expansion process */
4501         if (sh->reconstruct_state == reconstruct_state_result) {
4502                 struct stripe_head *sh_src
4503                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
4504                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4505                         /* sh cannot be written until sh_src has been read.
4506                          * so arrange for sh to be delayed a little
4507                          */
4508                         set_bit(STRIPE_DELAYED, &sh->state);
4509                         set_bit(STRIPE_HANDLE, &sh->state);
4510                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4511                                               &sh_src->state))
4512                                 atomic_inc(&conf->preread_active_stripes);
4513                         release_stripe(sh_src);
4514                         goto finish;
4515                 }
4516                 if (sh_src)
4517                         release_stripe(sh_src);
4518
4519                 sh->reconstruct_state = reconstruct_state_idle;
4520                 clear_bit(STRIPE_EXPANDING, &sh->state);
4521                 for (i = conf->raid_disks; i--; ) {
4522                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
4523                         set_bit(R5_LOCKED, &sh->dev[i].flags);
4524                         s.locked++;
4525                 }
4526         }
4527
4528         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4529             !sh->reconstruct_state) {
4530                 /* Need to write out all blocks after computing parity */
4531                 sh->disks = conf->raid_disks;
4532                 stripe_set_idx(sh->sector, conf, 0, sh);
4533                 schedule_reconstruction(sh, &s, 1, 1);
4534         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4535                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4536                 atomic_dec(&conf->reshape_stripes);
4537                 wake_up(&conf->wait_for_overlap);
4538                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4539         }
4540
4541         if (s.expanding && s.locked == 0 &&
4542             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4543                 handle_stripe_expansion(conf, sh);
4544
4545 finish:
4546         /* wait for this device to become unblocked */
4547         if (unlikely(s.blocked_rdev)) {
4548                 if (conf->mddev->external)
4549                         md_wait_for_blocked_rdev(s.blocked_rdev,
4550                                                  conf->mddev);
4551                 else
4552                         /* Internal metadata will immediately
4553                          * be written by raid5d, so we don't
4554                          * need to wait here.
4555                          */
4556                         rdev_dec_pending(s.blocked_rdev,
4557                                          conf->mddev);
4558         }
4559
4560         if (s.handle_bad_blocks)
4561                 for (i = disks; i--; ) {
4562                         struct md_rdev *rdev;
4563                         struct r5dev *dev = &sh->dev[i];
4564                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4565                                 /* We own a safe reference to the rdev */
4566                                 rdev = conf->disks[i].rdev;
4567                                 if (!rdev_set_badblocks(rdev, sh->sector,
4568                                                         STRIPE_SECTORS, 0))
4569                                         md_error(conf->mddev, rdev);
4570                                 rdev_dec_pending(rdev, conf->mddev);
4571                         }
4572                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4573                                 rdev = conf->disks[i].rdev;
4574                                 rdev_clear_badblocks(rdev, sh->sector,
4575                                                      STRIPE_SECTORS, 0);
4576                                 rdev_dec_pending(rdev, conf->mddev);
4577                         }
4578                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4579                                 rdev = conf->disks[i].replacement;
4580                                 if (!rdev)
4581                                         /* rdev have been moved down */
4582                                         rdev = conf->disks[i].rdev;
4583                                 rdev_clear_badblocks(rdev, sh->sector,
4584                                                      STRIPE_SECTORS, 0);
4585                                 rdev_dec_pending(rdev, conf->mddev);
4586                         }
4587                 }
4588
4589         if (s.ops_request)
4590                 raid_run_ops(sh, s.ops_request);
4591
4592         ops_run_io(sh, &s);
4593
4594         if (s.dec_preread_active) {
4595                 /* We delay this until after ops_run_io so that if make_request
4596                  * is waiting on a flush, it won't continue until the writes
4597                  * have actually been submitted.
4598                  */
4599                 atomic_dec(&conf->preread_active_stripes);
4600                 if (atomic_read(&conf->preread_active_stripes) <
4601                     IO_THRESHOLD)
4602                         md_wakeup_thread(conf->mddev->thread);
4603         }
4604
4605         if (!bio_list_empty(&s.return_bi)) {
4606                 if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags)) {
4607                         spin_lock_irq(&conf->device_lock);
4608                         bio_list_merge(&conf->return_bi, &s.return_bi);
4609                         spin_unlock_irq(&conf->device_lock);
4610                         md_wakeup_thread(conf->mddev->thread);
4611                 } else
4612                         return_io(&s.return_bi);
4613         }
4614
4615         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4616 }
4617
4618 static void raid5_activate_delayed(struct r5conf *conf)
4619 {
4620         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4621                 while (!list_empty(&conf->delayed_list)) {
4622                         struct list_head *l = conf->delayed_list.next;
4623                         struct stripe_head *sh;
4624                         sh = list_entry(l, struct stripe_head, lru);
4625                         list_del_init(l);
4626                         clear_bit(STRIPE_DELAYED, &sh->state);
4627                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4628                                 atomic_inc(&conf->preread_active_stripes);
4629                         list_add_tail(&sh->lru, &conf->hold_list);
4630                         raid5_wakeup_stripe_thread(sh);
4631                 }
4632         }
4633 }
4634
4635 static void activate_bit_delay(struct r5conf *conf,
4636         struct list_head *temp_inactive_list)
4637 {
4638         /* device_lock is held */
4639         struct list_head head;
4640         list_add(&head, &conf->bitmap_list);
4641         list_del_init(&conf->bitmap_list);
4642         while (!list_empty(&head)) {
4643                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4644                 int hash;
4645                 list_del_init(&sh->lru);
4646                 atomic_inc(&sh->count);
4647                 hash = sh->hash_lock_index;
4648                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4649         }
4650 }
4651
4652 static int raid5_congested(struct mddev *mddev, int bits)
4653 {
4654         struct r5conf *conf = mddev->private;
4655
4656         /* No difference between reads and writes.  Just check
4657          * how busy the stripe_cache is
4658          */
4659
4660         if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4661                 return 1;
4662         if (conf->quiesce)
4663                 return 1;
4664         if (atomic_read(&conf->empty_inactive_list_nr))
4665                 return 1;
4666
4667         return 0;
4668 }
4669
4670 /* We want read requests to align with chunks where possible,
4671  * but write requests don't need to.
4672  */
4673 static int raid5_mergeable_bvec(struct mddev *mddev,
4674                                 struct bvec_merge_data *bvm,
4675                                 struct bio_vec *biovec)
4676 {
4677         struct r5conf *conf = mddev->private;
4678         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4679         int max;
4680         unsigned int chunk_sectors;
4681         unsigned int bio_sectors = bvm->bi_size >> 9;
4682
4683         /*
4684          * always allow writes to be mergeable, read as well if array
4685          * is degraded as we'll go through stripe cache anyway.
4686          */
4687         if ((bvm->bi_rw & 1) == WRITE || mddev->degraded)
4688                 return biovec->bv_len;
4689
4690         chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4691         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4692         if (max < 0) max = 0;
4693         if (max <= biovec->bv_len && bio_sectors == 0)
4694                 return biovec->bv_len;
4695         else
4696                 return max;
4697 }
4698
4699 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4700 {
4701         struct r5conf *conf = mddev->private;
4702         sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4703         unsigned int chunk_sectors;
4704         unsigned int bio_sectors = bio_sectors(bio);
4705
4706         chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4707         return  chunk_sectors >=
4708                 ((sector & (chunk_sectors - 1)) + bio_sectors);
4709 }
4710
4711 /*
4712  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4713  *  later sampled by raid5d.
4714  */
4715 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4716 {
4717         unsigned long flags;
4718
4719         spin_lock_irqsave(&conf->device_lock, flags);
4720
4721         bi->bi_next = conf->retry_read_aligned_list;
4722         conf->retry_read_aligned_list = bi;
4723
4724         spin_unlock_irqrestore(&conf->device_lock, flags);
4725         md_wakeup_thread(conf->mddev->thread);
4726 }
4727
4728 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4729 {
4730         struct bio *bi;
4731
4732         bi = conf->retry_read_aligned;
4733         if (bi) {
4734                 conf->retry_read_aligned = NULL;
4735                 return bi;
4736         }
4737         bi = conf->retry_read_aligned_list;
4738         if(bi) {
4739                 conf->retry_read_aligned_list = bi->bi_next;
4740                 bi->bi_next = NULL;
4741                 /*
4742                  * this sets the active strip count to 1 and the processed
4743                  * strip count to zero (upper 8 bits)
4744                  */
4745                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4746         }
4747
4748         return bi;
4749 }
4750
4751 /*
4752  *  The "raid5_align_endio" should check if the read succeeded and if it
4753  *  did, call bio_endio on the original bio (having bio_put the new bio
4754  *  first).
4755  *  If the read failed..
4756  */
4757 static void raid5_align_endio(struct bio *bi, int error)
4758 {
4759         struct bio* raid_bi  = bi->bi_private;
4760         struct mddev *mddev;
4761         struct r5conf *conf;
4762         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4763         struct md_rdev *rdev;
4764
4765         bio_put(bi);
4766
4767         rdev = (void*)raid_bi->bi_next;
4768         raid_bi->bi_next = NULL;
4769         mddev = rdev->mddev;
4770         conf = mddev->private;
4771
4772         rdev_dec_pending(rdev, conf->mddev);
4773
4774         if (!error && uptodate) {
4775                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4776                                          raid_bi, 0);
4777                 bio_endio(raid_bi, 0);
4778                 if (atomic_dec_and_test(&conf->active_aligned_reads))
4779                         wake_up(&conf->wait_for_quiescent);
4780                 return;
4781         }
4782
4783         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4784
4785         add_bio_to_retry(raid_bi, conf);
4786 }
4787
4788 static int bio_fits_rdev(struct bio *bi)
4789 {
4790         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4791
4792         if (bio_sectors(bi) > queue_max_sectors(q))
4793                 return 0;
4794         blk_recount_segments(q, bi);
4795         if (bi->bi_phys_segments > queue_max_segments(q))
4796                 return 0;
4797
4798         if (q->merge_bvec_fn)
4799                 /* it's too hard to apply the merge_bvec_fn at this stage,
4800                  * just just give up
4801                  */
4802                 return 0;
4803
4804         return 1;
4805 }
4806
4807 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4808 {
4809         struct r5conf *conf = mddev->private;
4810         int dd_idx;
4811         struct bio* align_bi;
4812         struct md_rdev *rdev;
4813         sector_t end_sector;
4814
4815         if (!in_chunk_boundary(mddev, raid_bio)) {
4816                 pr_debug("chunk_aligned_read : non aligned\n");
4817                 return 0;
4818         }
4819         /*
4820          * use bio_clone_mddev to make a copy of the bio
4821          */
4822         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4823         if (!align_bi)
4824                 return 0;
4825         /*
4826          *   set bi_end_io to a new function, and set bi_private to the
4827          *     original bio.
4828          */
4829         align_bi->bi_end_io  = raid5_align_endio;
4830         align_bi->bi_private = raid_bio;
4831         /*
4832          *      compute position
4833          */
4834         align_bi->bi_iter.bi_sector =
4835                 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4836                                      0, &dd_idx, NULL);
4837
4838         end_sector = bio_end_sector(align_bi);
4839         rcu_read_lock();
4840         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4841         if (!rdev || test_bit(Faulty, &rdev->flags) ||
4842             rdev->recovery_offset < end_sector) {
4843                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4844                 if (rdev &&
4845                     (test_bit(Faulty, &rdev->flags) ||
4846                     !(test_bit(In_sync, &rdev->flags) ||
4847                       rdev->recovery_offset >= end_sector)))
4848                         rdev = NULL;
4849         }
4850         if (rdev) {
4851                 sector_t first_bad;
4852                 int bad_sectors;
4853
4854                 atomic_inc(&rdev->nr_pending);
4855                 rcu_read_unlock();
4856                 raid_bio->bi_next = (void*)rdev;
4857                 align_bi->bi_bdev =  rdev->bdev;
4858                 __clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
4859
4860                 if (!bio_fits_rdev(align_bi) ||
4861                     is_badblock(rdev, align_bi->bi_iter.bi_sector,
4862                                 bio_sectors(align_bi),
4863                                 &first_bad, &bad_sectors)) {
4864                         /* too big in some way, or has a known bad block */
4865                         bio_put(align_bi);
4866                         rdev_dec_pending(rdev, mddev);
4867                         return 0;
4868                 }
4869
4870                 /* No reshape active, so we can trust rdev->data_offset */
4871                 align_bi->bi_iter.bi_sector += rdev->data_offset;
4872
4873                 spin_lock_irq(&conf->device_lock);
4874                 wait_event_lock_irq(conf->wait_for_quiescent,
4875                                     conf->quiesce == 0,
4876                                     conf->device_lock);
4877                 atomic_inc(&conf->active_aligned_reads);
4878                 spin_unlock_irq(&conf->device_lock);
4879
4880                 if (mddev->gendisk)
4881                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4882                                               align_bi, disk_devt(mddev->gendisk),
4883                                               raid_bio->bi_iter.bi_sector);
4884                 generic_make_request(align_bi);
4885                 return 1;
4886         } else {
4887                 rcu_read_unlock();
4888                 bio_put(align_bi);
4889                 return 0;
4890         }
4891 }
4892
4893 /* __get_priority_stripe - get the next stripe to process
4894  *
4895  * Full stripe writes are allowed to pass preread active stripes up until
4896  * the bypass_threshold is exceeded.  In general the bypass_count
4897  * increments when the handle_list is handled before the hold_list; however, it
4898  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4899  * stripe with in flight i/o.  The bypass_count will be reset when the
4900  * head of the hold_list has changed, i.e. the head was promoted to the
4901  * handle_list.
4902  */
4903 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4904 {
4905         struct stripe_head *sh = NULL, *tmp;
4906         struct list_head *handle_list = NULL;
4907         struct r5worker_group *wg = NULL;
4908
4909         if (conf->worker_cnt_per_group == 0) {
4910                 handle_list = &conf->handle_list;
4911         } else if (group != ANY_GROUP) {
4912                 handle_list = &conf->worker_groups[group].handle_list;
4913                 wg = &conf->worker_groups[group];
4914         } else {
4915                 int i;
4916                 for (i = 0; i < conf->group_cnt; i++) {
4917                         handle_list = &conf->worker_groups[i].handle_list;
4918                         wg = &conf->worker_groups[i];
4919                         if (!list_empty(handle_list))
4920                                 break;
4921                 }
4922         }
4923
4924         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4925                   __func__,
4926                   list_empty(handle_list) ? "empty" : "busy",
4927                   list_empty(&conf->hold_list) ? "empty" : "busy",
4928                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4929
4930         if (!list_empty(handle_list)) {
4931                 sh = list_entry(handle_list->next, typeof(*sh), lru);
4932
4933                 if (list_empty(&conf->hold_list))
4934                         conf->bypass_count = 0;
4935                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4936                         if (conf->hold_list.next == conf->last_hold)
4937                                 conf->bypass_count++;
4938                         else {
4939                                 conf->last_hold = conf->hold_list.next;
4940                                 conf->bypass_count -= conf->bypass_threshold;
4941                                 if (conf->bypass_count < 0)
4942                                         conf->bypass_count = 0;
4943                         }
4944                 }
4945         } else if (!list_empty(&conf->hold_list) &&
4946                    ((conf->bypass_threshold &&
4947                      conf->bypass_count > conf->bypass_threshold) ||
4948                     atomic_read(&conf->pending_full_writes) == 0)) {
4949
4950                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
4951                         if (conf->worker_cnt_per_group == 0 ||
4952                             group == ANY_GROUP ||
4953                             !cpu_online(tmp->cpu) ||
4954                             cpu_to_group(tmp->cpu) == group) {
4955                                 sh = tmp;
4956                                 break;
4957                         }
4958                 }
4959
4960                 if (sh) {
4961                         conf->bypass_count -= conf->bypass_threshold;
4962                         if (conf->bypass_count < 0)
4963                                 conf->bypass_count = 0;
4964                 }
4965                 wg = NULL;
4966         }
4967
4968         if (!sh)
4969                 return NULL;
4970
4971         if (wg) {
4972                 wg->stripes_cnt--;
4973                 sh->group = NULL;
4974         }
4975         list_del_init(&sh->lru);
4976         BUG_ON(atomic_inc_return(&sh->count) != 1);
4977         return sh;
4978 }
4979
4980 struct raid5_plug_cb {
4981         struct blk_plug_cb      cb;
4982         struct list_head        list;
4983         struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4984 };
4985
4986 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4987 {
4988         struct raid5_plug_cb *cb = container_of(
4989                 blk_cb, struct raid5_plug_cb, cb);
4990         struct stripe_head *sh;
4991         struct mddev *mddev = cb->cb.data;
4992         struct r5conf *conf = mddev->private;
4993         int cnt = 0;
4994         int hash;
4995
4996         if (cb->list.next && !list_empty(&cb->list)) {
4997                 spin_lock_irq(&conf->device_lock);
4998                 while (!list_empty(&cb->list)) {
4999                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
5000                         list_del_init(&sh->lru);
5001                         /*
5002                          * avoid race release_stripe_plug() sees
5003                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
5004                          * is still in our list
5005                          */
5006                         smp_mb__before_atomic();
5007                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5008                         /*
5009                          * STRIPE_ON_RELEASE_LIST could be set here. In that
5010                          * case, the count is always > 1 here
5011                          */
5012                         hash = sh->hash_lock_index;
5013                         __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5014                         cnt++;
5015                 }
5016                 spin_unlock_irq(&conf->device_lock);
5017         }
5018         release_inactive_stripe_list(conf, cb->temp_inactive_list,
5019                                      NR_STRIPE_HASH_LOCKS);
5020         if (mddev->queue)
5021                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5022         kfree(cb);
5023 }
5024
5025 static void release_stripe_plug(struct mddev *mddev,
5026                                 struct stripe_head *sh)
5027 {
5028         struct blk_plug_cb *blk_cb = blk_check_plugged(
5029                 raid5_unplug, mddev,
5030                 sizeof(struct raid5_plug_cb));
5031         struct raid5_plug_cb *cb;
5032
5033         if (!blk_cb) {
5034                 release_stripe(sh);
5035                 return;
5036         }
5037
5038         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5039
5040         if (cb->list.next == NULL) {
5041                 int i;
5042                 INIT_LIST_HEAD(&cb->list);
5043                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5044                         INIT_LIST_HEAD(cb->temp_inactive_list + i);
5045         }
5046
5047         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5048                 list_add_tail(&sh->lru, &cb->list);
5049         else
5050                 release_stripe(sh);
5051 }
5052
5053 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5054 {
5055         struct r5conf *conf = mddev->private;
5056         sector_t logical_sector, last_sector;
5057         struct stripe_head *sh;
5058         int remaining;
5059         int stripe_sectors;
5060
5061         if (mddev->reshape_position != MaxSector)
5062                 /* Skip discard while reshape is happening */
5063                 return;
5064
5065         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5066         last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5067
5068         bi->bi_next = NULL;
5069         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5070
5071         stripe_sectors = conf->chunk_sectors *
5072                 (conf->raid_disks - conf->max_degraded);
5073         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5074                                                stripe_sectors);
5075         sector_div(last_sector, stripe_sectors);
5076
5077         logical_sector *= conf->chunk_sectors;
5078         last_sector *= conf->chunk_sectors;
5079
5080         for (; logical_sector < last_sector;
5081              logical_sector += STRIPE_SECTORS) {
5082                 DEFINE_WAIT(w);
5083                 int d;
5084         again:
5085                 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
5086                 prepare_to_wait(&conf->wait_for_overlap, &w,
5087                                 TASK_UNINTERRUPTIBLE);
5088                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5089                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5090                         release_stripe(sh);
5091                         schedule();
5092                         goto again;
5093                 }
5094                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5095                 spin_lock_irq(&sh->stripe_lock);
5096                 for (d = 0; d < conf->raid_disks; d++) {
5097                         if (d == sh->pd_idx || d == sh->qd_idx)
5098                                 continue;
5099                         if (sh->dev[d].towrite || sh->dev[d].toread) {
5100                                 set_bit(R5_Overlap, &sh->dev[d].flags);
5101                                 spin_unlock_irq(&sh->stripe_lock);
5102                                 release_stripe(sh);
5103                                 schedule();
5104                                 goto again;
5105                         }
5106                 }
5107                 set_bit(STRIPE_DISCARD, &sh->state);
5108                 finish_wait(&conf->wait_for_overlap, &w);
5109                 sh->overwrite_disks = 0;
5110                 for (d = 0; d < conf->raid_disks; d++) {
5111                         if (d == sh->pd_idx || d == sh->qd_idx)
5112                                 continue;
5113                         sh->dev[d].towrite = bi;
5114                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5115                         raid5_inc_bi_active_stripes(bi);
5116                         sh->overwrite_disks++;
5117                 }
5118                 spin_unlock_irq(&sh->stripe_lock);
5119                 if (conf->mddev->bitmap) {
5120                         for (d = 0;
5121                              d < conf->raid_disks - conf->max_degraded;
5122                              d++)
5123                                 bitmap_startwrite(mddev->bitmap,
5124                                                   sh->sector,
5125                                                   STRIPE_SECTORS,
5126                                                   0);
5127                         sh->bm_seq = conf->seq_flush + 1;
5128                         set_bit(STRIPE_BIT_DELAY, &sh->state);
5129                 }
5130
5131                 set_bit(STRIPE_HANDLE, &sh->state);
5132                 clear_bit(STRIPE_DELAYED, &sh->state);
5133                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5134                         atomic_inc(&conf->preread_active_stripes);
5135                 release_stripe_plug(mddev, sh);
5136         }
5137
5138         remaining = raid5_dec_bi_active_stripes(bi);
5139         if (remaining == 0) {
5140                 md_write_end(mddev);
5141                 bio_endio(bi, 0);
5142         }
5143 }
5144
5145 static void make_request(struct mddev *mddev, struct bio * bi)
5146 {
5147         struct r5conf *conf = mddev->private;
5148         int dd_idx;
5149         sector_t new_sector;
5150         sector_t logical_sector, last_sector;
5151         struct stripe_head *sh;
5152         const int rw = bio_data_dir(bi);
5153         int remaining;
5154         DEFINE_WAIT(w);
5155         bool do_prepare;
5156
5157         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5158                 md_flush_request(mddev, bi);
5159                 return;
5160         }
5161
5162         md_write_start(mddev, bi);
5163
5164         /*
5165          * If array is degraded, better not do chunk aligned read because
5166          * later we might have to read it again in order to reconstruct
5167          * data on failed drives.
5168          */
5169         if (rw == READ && mddev->degraded == 0 &&
5170              mddev->reshape_position == MaxSector &&
5171              chunk_aligned_read(mddev,bi))
5172                 return;
5173
5174         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5175                 make_discard_request(mddev, bi);
5176                 return;
5177         }
5178
5179         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5180         last_sector = bio_end_sector(bi);
5181         bi->bi_next = NULL;
5182         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
5183
5184         prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5185         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5186                 int previous;
5187                 int seq;
5188
5189                 do_prepare = false;
5190         retry:
5191                 seq = read_seqcount_begin(&conf->gen_lock);
5192                 previous = 0;
5193                 if (do_prepare)
5194                         prepare_to_wait(&conf->wait_for_overlap, &w,
5195                                 TASK_UNINTERRUPTIBLE);
5196                 if (unlikely(conf->reshape_progress != MaxSector)) {
5197                         /* spinlock is needed as reshape_progress may be
5198                          * 64bit on a 32bit platform, and so it might be
5199                          * possible to see a half-updated value
5200                          * Of course reshape_progress could change after
5201                          * the lock is dropped, so once we get a reference
5202                          * to the stripe that we think it is, we will have
5203                          * to check again.
5204                          */
5205                         spin_lock_irq(&conf->device_lock);
5206                         if (mddev->reshape_backwards
5207                             ? logical_sector < conf->reshape_progress
5208                             : logical_sector >= conf->reshape_progress) {
5209                                 previous = 1;
5210                         } else {
5211                                 if (mddev->reshape_backwards
5212                                     ? logical_sector < conf->reshape_safe
5213                                     : logical_sector >= conf->reshape_safe) {
5214                                         spin_unlock_irq(&conf->device_lock);
5215                                         schedule();
5216                                         do_prepare = true;
5217                                         goto retry;
5218                                 }
5219                         }
5220                         spin_unlock_irq(&conf->device_lock);
5221                 }
5222
5223                 new_sector = raid5_compute_sector(conf, logical_sector,
5224                                                   previous,
5225                                                   &dd_idx, NULL);
5226                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
5227                         (unsigned long long)new_sector,
5228                         (unsigned long long)logical_sector);
5229
5230                 sh = get_active_stripe(conf, new_sector, previous,
5231                                        (bi->bi_rw&RWA_MASK), 0);
5232                 if (sh) {
5233                         if (unlikely(previous)) {
5234                                 /* expansion might have moved on while waiting for a
5235                                  * stripe, so we must do the range check again.
5236                                  * Expansion could still move past after this
5237                                  * test, but as we are holding a reference to
5238                                  * 'sh', we know that if that happens,
5239                                  *  STRIPE_EXPANDING will get set and the expansion
5240                                  * won't proceed until we finish with the stripe.
5241                                  */
5242                                 int must_retry = 0;
5243                                 spin_lock_irq(&conf->device_lock);
5244                                 if (mddev->reshape_backwards
5245                                     ? logical_sector >= conf->reshape_progress
5246                                     : logical_sector < conf->reshape_progress)
5247                                         /* mismatch, need to try again */
5248                                         must_retry = 1;
5249                                 spin_unlock_irq(&conf->device_lock);
5250                                 if (must_retry) {
5251                                         release_stripe(sh);
5252                                         schedule();
5253                                         do_prepare = true;
5254                                         goto retry;
5255                                 }
5256                         }
5257                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
5258                                 /* Might have got the wrong stripe_head
5259                                  * by accident
5260                                  */
5261                                 release_stripe(sh);
5262                                 goto retry;
5263                         }
5264
5265                         if (rw == WRITE &&
5266                             logical_sector >= mddev->suspend_lo &&
5267                             logical_sector < mddev->suspend_hi) {
5268                                 release_stripe(sh);
5269                                 /* As the suspend_* range is controlled by
5270                                  * userspace, we want an interruptible
5271                                  * wait.
5272                                  */
5273                                 flush_signals(current);
5274                                 prepare_to_wait(&conf->wait_for_overlap,
5275                                                 &w, TASK_INTERRUPTIBLE);
5276                                 if (logical_sector >= mddev->suspend_lo &&
5277                                     logical_sector < mddev->suspend_hi) {
5278                                         schedule();
5279                                         do_prepare = true;
5280                                 }
5281                                 goto retry;
5282                         }
5283
5284                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5285                             !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5286                                 /* Stripe is busy expanding or
5287                                  * add failed due to overlap.  Flush everything
5288                                  * and wait a while
5289                                  */
5290                                 md_wakeup_thread(mddev->thread);
5291                                 release_stripe(sh);
5292                                 schedule();
5293                                 do_prepare = true;
5294                                 goto retry;
5295                         }
5296                         set_bit(STRIPE_HANDLE, &sh->state);
5297                         clear_bit(STRIPE_DELAYED, &sh->state);
5298                         if ((!sh->batch_head || sh == sh->batch_head) &&
5299                             (bi->bi_rw & REQ_SYNC) &&
5300                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5301                                 atomic_inc(&conf->preread_active_stripes);
5302                         release_stripe_plug(mddev, sh);
5303                 } else {
5304                         /* cannot get stripe for read-ahead, just give-up */
5305                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
5306                         break;
5307                 }
5308         }
5309         finish_wait(&conf->wait_for_overlap, &w);
5310
5311         remaining = raid5_dec_bi_active_stripes(bi);
5312         if (remaining == 0) {
5313
5314                 if ( rw == WRITE )
5315                         md_write_end(mddev);
5316
5317                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5318                                          bi, 0);
5319                 bio_endio(bi, 0);
5320         }
5321 }
5322
5323 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5324
5325 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5326 {
5327         /* reshaping is quite different to recovery/resync so it is
5328          * handled quite separately ... here.
5329          *
5330          * On each call to sync_request, we gather one chunk worth of
5331          * destination stripes and flag them as expanding.
5332          * Then we find all the source stripes and request reads.
5333          * As the reads complete, handle_stripe will copy the data
5334          * into the destination stripe and release that stripe.
5335          */
5336         struct r5conf *conf = mddev->private;
5337         struct stripe_head *sh;
5338         sector_t first_sector, last_sector;
5339         int raid_disks = conf->previous_raid_disks;
5340         int data_disks = raid_disks - conf->max_degraded;
5341         int new_data_disks = conf->raid_disks - conf->max_degraded;
5342         int i;
5343         int dd_idx;
5344         sector_t writepos, readpos, safepos;
5345         sector_t stripe_addr;
5346         int reshape_sectors;
5347         struct list_head stripes;
5348         sector_t retn;
5349
5350         if (sector_nr == 0) {
5351                 /* If restarting in the middle, skip the initial sectors */
5352                 if (mddev->reshape_backwards &&
5353                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5354                         sector_nr = raid5_size(mddev, 0, 0)
5355                                 - conf->reshape_progress;
5356                 } else if (mddev->reshape_backwards &&
5357                            conf->reshape_progress == MaxSector) {
5358                         /* shouldn't happen, but just in case, finish up.*/
5359                         sector_nr = MaxSector;
5360                 } else if (!mddev->reshape_backwards &&
5361                            conf->reshape_progress > 0)
5362                         sector_nr = conf->reshape_progress;
5363                 sector_div(sector_nr, new_data_disks);
5364                 if (sector_nr) {
5365                         mddev->curr_resync_completed = sector_nr;
5366                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5367                         *skipped = 1;
5368                         retn = sector_nr;
5369                         goto finish;
5370                 }
5371         }
5372
5373         /* We need to process a full chunk at a time.
5374          * If old and new chunk sizes differ, we need to process the
5375          * largest of these
5376          */
5377
5378         reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5379
5380         /* We update the metadata at least every 10 seconds, or when
5381          * the data about to be copied would over-write the source of
5382          * the data at the front of the range.  i.e. one new_stripe
5383          * along from reshape_progress new_maps to after where
5384          * reshape_safe old_maps to
5385          */
5386         writepos = conf->reshape_progress;
5387         sector_div(writepos, new_data_disks);
5388         readpos = conf->reshape_progress;
5389         sector_div(readpos, data_disks);
5390         safepos = conf->reshape_safe;
5391         sector_div(safepos, data_disks);
5392         if (mddev->reshape_backwards) {
5393                 BUG_ON(writepos < reshape_sectors);
5394                 writepos -= reshape_sectors;
5395                 readpos += reshape_sectors;
5396                 safepos += reshape_sectors;
5397         } else {
5398                 writepos += reshape_sectors;
5399                 /* readpos and safepos are worst-case calculations.
5400                  * A negative number is overly pessimistic, and causes
5401                  * obvious problems for unsigned storage.  So clip to 0.
5402                  */
5403                 readpos -= min_t(sector_t, reshape_sectors, readpos);
5404                 safepos -= min_t(sector_t, reshape_sectors, safepos);
5405         }
5406
5407         /* Having calculated the 'writepos' possibly use it
5408          * to set 'stripe_addr' which is where we will write to.
5409          */
5410         if (mddev->reshape_backwards) {
5411                 BUG_ON(conf->reshape_progress == 0);
5412                 stripe_addr = writepos;
5413                 BUG_ON((mddev->dev_sectors &
5414                         ~((sector_t)reshape_sectors - 1))
5415                        - reshape_sectors - stripe_addr
5416                        != sector_nr);
5417         } else {
5418                 BUG_ON(writepos != sector_nr + reshape_sectors);
5419                 stripe_addr = sector_nr;
5420         }
5421
5422         /* 'writepos' is the most advanced device address we might write.
5423          * 'readpos' is the least advanced device address we might read.
5424          * 'safepos' is the least address recorded in the metadata as having
5425          *     been reshaped.
5426          * If there is a min_offset_diff, these are adjusted either by
5427          * increasing the safepos/readpos if diff is negative, or
5428          * increasing writepos if diff is positive.
5429          * If 'readpos' is then behind 'writepos', there is no way that we can
5430          * ensure safety in the face of a crash - that must be done by userspace
5431          * making a backup of the data.  So in that case there is no particular
5432          * rush to update metadata.
5433          * Otherwise if 'safepos' is behind 'writepos', then we really need to
5434          * update the metadata to advance 'safepos' to match 'readpos' so that
5435          * we can be safe in the event of a crash.
5436          * So we insist on updating metadata if safepos is behind writepos and
5437          * readpos is beyond writepos.
5438          * In any case, update the metadata every 10 seconds.
5439          * Maybe that number should be configurable, but I'm not sure it is
5440          * worth it.... maybe it could be a multiple of safemode_delay???
5441          */
5442         if (conf->min_offset_diff < 0) {
5443                 safepos += -conf->min_offset_diff;
5444                 readpos += -conf->min_offset_diff;
5445         } else
5446                 writepos += conf->min_offset_diff;
5447
5448         if ((mddev->reshape_backwards
5449              ? (safepos > writepos && readpos < writepos)
5450              : (safepos < writepos && readpos > writepos)) ||
5451             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5452                 /* Cannot proceed until we've updated the superblock... */
5453                 wait_event(conf->wait_for_overlap,
5454                            atomic_read(&conf->reshape_stripes)==0
5455                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5456                 if (atomic_read(&conf->reshape_stripes) != 0)
5457                         return 0;
5458                 mddev->reshape_position = conf->reshape_progress;
5459                 mddev->curr_resync_completed = sector_nr;
5460                 conf->reshape_checkpoint = jiffies;
5461                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5462                 md_wakeup_thread(mddev->thread);
5463                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
5464                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5465                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5466                         return 0;
5467                 spin_lock_irq(&conf->device_lock);
5468                 conf->reshape_safe = mddev->reshape_position;
5469                 spin_unlock_irq(&conf->device_lock);
5470                 wake_up(&conf->wait_for_overlap);
5471                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5472         }
5473
5474         INIT_LIST_HEAD(&stripes);
5475         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5476                 int j;
5477                 int skipped_disk = 0;
5478                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5479                 set_bit(STRIPE_EXPANDING, &sh->state);
5480                 atomic_inc(&conf->reshape_stripes);
5481                 /* If any of this stripe is beyond the end of the old
5482                  * array, then we need to zero those blocks
5483                  */
5484                 for (j=sh->disks; j--;) {
5485                         sector_t s;
5486                         if (j == sh->pd_idx)
5487                                 continue;
5488                         if (conf->level == 6 &&
5489                             j == sh->qd_idx)
5490                                 continue;
5491                         s = compute_blocknr(sh, j, 0);
5492                         if (s < raid5_size(mddev, 0, 0)) {
5493                                 skipped_disk = 1;
5494                                 continue;
5495                         }
5496                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5497                         set_bit(R5_Expanded, &sh->dev[j].flags);
5498                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
5499                 }
5500                 if (!skipped_disk) {
5501                         set_bit(STRIPE_EXPAND_READY, &sh->state);
5502                         set_bit(STRIPE_HANDLE, &sh->state);
5503                 }
5504                 list_add(&sh->lru, &stripes);
5505         }
5506         spin_lock_irq(&conf->device_lock);
5507         if (mddev->reshape_backwards)
5508                 conf->reshape_progress -= reshape_sectors * new_data_disks;
5509         else
5510                 conf->reshape_progress += reshape_sectors * new_data_disks;
5511         spin_unlock_irq(&conf->device_lock);
5512         /* Ok, those stripe are ready. We can start scheduling
5513          * reads on the source stripes.
5514          * The source stripes are determined by mapping the first and last
5515          * block on the destination stripes.
5516          */
5517         first_sector =
5518                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5519                                      1, &dd_idx, NULL);
5520         last_sector =
5521                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5522                                             * new_data_disks - 1),
5523                                      1, &dd_idx, NULL);
5524         if (last_sector >= mddev->dev_sectors)
5525                 last_sector = mddev->dev_sectors - 1;
5526         while (first_sector <= last_sector) {
5527                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
5528                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5529                 set_bit(STRIPE_HANDLE, &sh->state);
5530                 release_stripe(sh);
5531                 first_sector += STRIPE_SECTORS;
5532         }
5533         /* Now that the sources are clearly marked, we can release
5534          * the destination stripes
5535          */
5536         while (!list_empty(&stripes)) {
5537                 sh = list_entry(stripes.next, struct stripe_head, lru);
5538                 list_del_init(&sh->lru);
5539                 release_stripe(sh);
5540         }
5541         /* If this takes us to the resync_max point where we have to pause,
5542          * then we need to write out the superblock.
5543          */
5544         sector_nr += reshape_sectors;
5545         retn = reshape_sectors;
5546 finish:
5547         if (mddev->curr_resync_completed > mddev->resync_max ||
5548             (sector_nr - mddev->curr_resync_completed) * 2
5549             >= mddev->resync_max - mddev->curr_resync_completed) {
5550                 /* Cannot proceed until we've updated the superblock... */
5551                 wait_event(conf->wait_for_overlap,
5552                            atomic_read(&conf->reshape_stripes) == 0
5553                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5554                 if (atomic_read(&conf->reshape_stripes) != 0)
5555                         goto ret;
5556                 mddev->reshape_position = conf->reshape_progress;
5557                 mddev->curr_resync_completed = sector_nr;
5558                 conf->reshape_checkpoint = jiffies;
5559                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5560                 md_wakeup_thread(mddev->thread);
5561                 wait_event(mddev->sb_wait,
5562                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5563                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5564                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5565                         goto ret;
5566                 spin_lock_irq(&conf->device_lock);
5567                 conf->reshape_safe = mddev->reshape_position;
5568                 spin_unlock_irq(&conf->device_lock);
5569                 wake_up(&conf->wait_for_overlap);
5570                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5571         }
5572 ret:
5573         return retn;
5574 }
5575
5576 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5577 {
5578         struct r5conf *conf = mddev->private;
5579         struct stripe_head *sh;
5580         sector_t max_sector = mddev->dev_sectors;
5581         sector_t sync_blocks;
5582         int still_degraded = 0;
5583         int i;
5584
5585         if (sector_nr >= max_sector) {
5586                 /* just being told to finish up .. nothing much to do */
5587
5588                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5589                         end_reshape(conf);
5590                         return 0;
5591                 }
5592
5593                 if (mddev->curr_resync < max_sector) /* aborted */
5594                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5595                                         &sync_blocks, 1);
5596                 else /* completed sync */
5597                         conf->fullsync = 0;
5598                 bitmap_close_sync(mddev->bitmap);
5599
5600                 return 0;
5601         }
5602
5603         /* Allow raid5_quiesce to complete */
5604         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5605
5606         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5607                 return reshape_request(mddev, sector_nr, skipped);
5608
5609         /* No need to check resync_max as we never do more than one
5610          * stripe, and as resync_max will always be on a chunk boundary,
5611          * if the check in md_do_sync didn't fire, there is no chance
5612          * of overstepping resync_max here
5613          */
5614
5615         /* if there is too many failed drives and we are trying
5616          * to resync, then assert that we are finished, because there is
5617          * nothing we can do.
5618          */
5619         if (mddev->degraded >= conf->max_degraded &&
5620             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5621                 sector_t rv = mddev->dev_sectors - sector_nr;
5622                 *skipped = 1;
5623                 return rv;
5624         }
5625         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5626             !conf->fullsync &&
5627             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5628             sync_blocks >= STRIPE_SECTORS) {
5629                 /* we can skip this block, and probably more */
5630                 sync_blocks /= STRIPE_SECTORS;
5631                 *skipped = 1;
5632                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5633         }
5634
5635         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5636
5637         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5638         if (sh == NULL) {
5639                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5640                 /* make sure we don't swamp the stripe cache if someone else
5641                  * is trying to get access
5642                  */
5643                 schedule_timeout_uninterruptible(1);
5644         }
5645         /* Need to check if array will still be degraded after recovery/resync
5646          * Note in case of > 1 drive failures it's possible we're rebuilding
5647          * one drive while leaving another faulty drive in array.
5648          */
5649         rcu_read_lock();
5650         for (i = 0; i < conf->raid_disks; i++) {
5651                 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5652
5653                 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5654                         still_degraded = 1;
5655         }
5656         rcu_read_unlock();
5657
5658         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5659
5660         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5661         set_bit(STRIPE_HANDLE, &sh->state);
5662
5663         release_stripe(sh);
5664
5665         return STRIPE_SECTORS;
5666 }
5667
5668 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5669 {
5670         /* We may not be able to submit a whole bio at once as there
5671          * may not be enough stripe_heads available.
5672          * We cannot pre-allocate enough stripe_heads as we may need
5673          * more than exist in the cache (if we allow ever large chunks).
5674          * So we do one stripe head at a time and record in
5675          * ->bi_hw_segments how many have been done.
5676          *
5677          * We *know* that this entire raid_bio is in one chunk, so
5678          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5679          */
5680         struct stripe_head *sh;
5681         int dd_idx;
5682         sector_t sector, logical_sector, last_sector;
5683         int scnt = 0;
5684         int remaining;
5685         int handled = 0;
5686
5687         logical_sector = raid_bio->bi_iter.bi_sector &
5688                 ~((sector_t)STRIPE_SECTORS-1);
5689         sector = raid5_compute_sector(conf, logical_sector,
5690                                       0, &dd_idx, NULL);
5691         last_sector = bio_end_sector(raid_bio);
5692
5693         for (; logical_sector < last_sector;
5694              logical_sector += STRIPE_SECTORS,
5695                      sector += STRIPE_SECTORS,
5696                      scnt++) {
5697
5698                 if (scnt < raid5_bi_processed_stripes(raid_bio))
5699                         /* already done this stripe */
5700                         continue;
5701
5702                 sh = get_active_stripe(conf, sector, 0, 1, 1);
5703
5704                 if (!sh) {
5705                         /* failed to get a stripe - must wait */
5706                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5707                         conf->retry_read_aligned = raid_bio;
5708                         return handled;
5709                 }
5710
5711                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5712                         release_stripe(sh);
5713                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5714                         conf->retry_read_aligned = raid_bio;
5715                         return handled;
5716                 }
5717
5718                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5719                 handle_stripe(sh);
5720                 release_stripe(sh);
5721                 handled++;
5722         }
5723         remaining = raid5_dec_bi_active_stripes(raid_bio);
5724         if (remaining == 0) {
5725                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5726                                          raid_bio, 0);
5727                 bio_endio(raid_bio, 0);
5728         }
5729         if (atomic_dec_and_test(&conf->active_aligned_reads))
5730                 wake_up(&conf->wait_for_quiescent);
5731         return handled;
5732 }
5733
5734 static int handle_active_stripes(struct r5conf *conf, int group,
5735                                  struct r5worker *worker,
5736                                  struct list_head *temp_inactive_list)
5737 {
5738         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5739         int i, batch_size = 0, hash;
5740         bool release_inactive = false;
5741
5742         while (batch_size < MAX_STRIPE_BATCH &&
5743                         (sh = __get_priority_stripe(conf, group)) != NULL)
5744                 batch[batch_size++] = sh;
5745
5746         if (batch_size == 0) {
5747                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5748                         if (!list_empty(temp_inactive_list + i))
5749                                 break;
5750                 if (i == NR_STRIPE_HASH_LOCKS)
5751                         return batch_size;
5752                 release_inactive = true;
5753         }
5754         spin_unlock_irq(&conf->device_lock);
5755
5756         release_inactive_stripe_list(conf, temp_inactive_list,
5757                                      NR_STRIPE_HASH_LOCKS);
5758
5759         if (release_inactive) {
5760                 spin_lock_irq(&conf->device_lock);
5761                 return 0;
5762         }
5763
5764         for (i = 0; i < batch_size; i++)
5765                 handle_stripe(batch[i]);
5766
5767         cond_resched();
5768
5769         spin_lock_irq(&conf->device_lock);
5770         for (i = 0; i < batch_size; i++) {
5771                 hash = batch[i]->hash_lock_index;
5772                 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5773         }
5774         return batch_size;
5775 }
5776
5777 static void raid5_do_work(struct work_struct *work)
5778 {
5779         struct r5worker *worker = container_of(work, struct r5worker, work);
5780         struct r5worker_group *group = worker->group;
5781         struct r5conf *conf = group->conf;
5782         int group_id = group - conf->worker_groups;
5783         int handled;
5784         struct blk_plug plug;
5785
5786         pr_debug("+++ raid5worker active\n");
5787
5788         blk_start_plug(&plug);
5789         handled = 0;
5790         spin_lock_irq(&conf->device_lock);
5791         while (1) {
5792                 int batch_size, released;
5793
5794                 released = release_stripe_list(conf, worker->temp_inactive_list);
5795
5796                 batch_size = handle_active_stripes(conf, group_id, worker,
5797                                                    worker->temp_inactive_list);
5798                 worker->working = false;
5799                 if (!batch_size && !released)
5800                         break;
5801                 handled += batch_size;
5802         }
5803         pr_debug("%d stripes handled\n", handled);
5804
5805         spin_unlock_irq(&conf->device_lock);
5806         blk_finish_plug(&plug);
5807
5808         pr_debug("--- raid5worker inactive\n");
5809 }
5810
5811 /*
5812  * This is our raid5 kernel thread.
5813  *
5814  * We scan the hash table for stripes which can be handled now.
5815  * During the scan, completed stripes are saved for us by the interrupt
5816  * handler, so that they will not have to wait for our next wakeup.
5817  */
5818 static void raid5d(struct md_thread *thread)
5819 {
5820         struct mddev *mddev = thread->mddev;
5821         struct r5conf *conf = mddev->private;
5822         int handled;
5823         struct blk_plug plug;
5824
5825         pr_debug("+++ raid5d active\n");
5826
5827         md_check_recovery(mddev);
5828
5829         if (!bio_list_empty(&conf->return_bi) &&
5830             !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5831                 struct bio_list tmp = BIO_EMPTY_LIST;
5832                 spin_lock_irq(&conf->device_lock);
5833                 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5834                         bio_list_merge(&tmp, &conf->return_bi);
5835                         bio_list_init(&conf->return_bi);
5836                 }
5837                 spin_unlock_irq(&conf->device_lock);
5838                 return_io(&tmp);
5839         }
5840
5841         blk_start_plug(&plug);
5842         handled = 0;
5843         spin_lock_irq(&conf->device_lock);
5844         while (1) {
5845                 struct bio *bio;
5846                 int batch_size, released;
5847
5848                 released = release_stripe_list(conf, conf->temp_inactive_list);
5849                 if (released)
5850                         clear_bit(R5_DID_ALLOC, &conf->cache_state);
5851
5852                 if (
5853                     !list_empty(&conf->bitmap_list)) {
5854                         /* Now is a good time to flush some bitmap updates */
5855                         conf->seq_flush++;
5856                         spin_unlock_irq(&conf->device_lock);
5857                         bitmap_unplug(mddev->bitmap);
5858                         spin_lock_irq(&conf->device_lock);
5859                         conf->seq_write = conf->seq_flush;
5860                         activate_bit_delay(conf, conf->temp_inactive_list);
5861                 }
5862                 raid5_activate_delayed(conf);
5863
5864                 while ((bio = remove_bio_from_retry(conf))) {
5865                         int ok;
5866                         spin_unlock_irq(&conf->device_lock);
5867                         ok = retry_aligned_read(conf, bio);
5868                         spin_lock_irq(&conf->device_lock);
5869                         if (!ok)
5870                                 break;
5871                         handled++;
5872                 }
5873
5874                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5875                                                    conf->temp_inactive_list);
5876                 if (!batch_size && !released)
5877                         break;
5878                 handled += batch_size;
5879
5880                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5881                         spin_unlock_irq(&conf->device_lock);
5882                         md_check_recovery(mddev);
5883                         spin_lock_irq(&conf->device_lock);
5884                 }
5885         }
5886         pr_debug("%d stripes handled\n", handled);
5887
5888         spin_unlock_irq(&conf->device_lock);
5889         if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5890             mutex_trylock(&conf->cache_size_mutex)) {
5891                 grow_one_stripe(conf, __GFP_NOWARN);
5892                 /* Set flag even if allocation failed.  This helps
5893                  * slow down allocation requests when mem is short
5894                  */
5895                 set_bit(R5_DID_ALLOC, &conf->cache_state);
5896                 mutex_unlock(&conf->cache_size_mutex);
5897         }
5898
5899         async_tx_issue_pending_all();
5900         blk_finish_plug(&plug);
5901
5902         pr_debug("--- raid5d inactive\n");
5903 }
5904
5905 static ssize_t
5906 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5907 {
5908         struct r5conf *conf;
5909         int ret = 0;
5910         spin_lock(&mddev->lock);
5911         conf = mddev->private;
5912         if (conf)
5913                 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5914         spin_unlock(&mddev->lock);
5915         return ret;
5916 }
5917
5918 int
5919 raid5_set_cache_size(struct mddev *mddev, int size)
5920 {
5921         struct r5conf *conf = mddev->private;
5922         int err;
5923
5924         if (size <= 16 || size > 32768)
5925                 return -EINVAL;
5926
5927         conf->min_nr_stripes = size;
5928         mutex_lock(&conf->cache_size_mutex);
5929         while (size < conf->max_nr_stripes &&
5930                drop_one_stripe(conf))
5931                 ;
5932         mutex_unlock(&conf->cache_size_mutex);
5933
5934
5935         err = md_allow_write(mddev);
5936         if (err)
5937                 return err;
5938
5939         mutex_lock(&conf->cache_size_mutex);
5940         while (size > conf->max_nr_stripes)
5941                 if (!grow_one_stripe(conf, GFP_KERNEL))
5942                         break;
5943         mutex_unlock(&conf->cache_size_mutex);
5944
5945         return 0;
5946 }
5947 EXPORT_SYMBOL(raid5_set_cache_size);
5948
5949 static ssize_t
5950 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5951 {
5952         struct r5conf *conf;
5953         unsigned long new;
5954         int err;
5955
5956         if (len >= PAGE_SIZE)
5957                 return -EINVAL;
5958         if (kstrtoul(page, 10, &new))
5959                 return -EINVAL;
5960         err = mddev_lock(mddev);
5961         if (err)
5962                 return err;
5963         conf = mddev->private;
5964         if (!conf)
5965                 err = -ENODEV;
5966         else
5967                 err = raid5_set_cache_size(mddev, new);
5968         mddev_unlock(mddev);
5969
5970         return err ?: len;
5971 }
5972
5973 static struct md_sysfs_entry
5974 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5975                                 raid5_show_stripe_cache_size,
5976                                 raid5_store_stripe_cache_size);
5977
5978 static ssize_t
5979 raid5_show_rmw_level(struct mddev  *mddev, char *page)
5980 {
5981         struct r5conf *conf = mddev->private;
5982         if (conf)
5983                 return sprintf(page, "%d\n", conf->rmw_level);
5984         else
5985                 return 0;
5986 }
5987
5988 static ssize_t
5989 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
5990 {
5991         struct r5conf *conf = mddev->private;
5992         unsigned long new;
5993
5994         if (!conf)
5995                 return -ENODEV;
5996
5997         if (len >= PAGE_SIZE)
5998                 return -EINVAL;
5999
6000         if (kstrtoul(page, 10, &new))
6001                 return -EINVAL;
6002
6003         if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6004                 return -EINVAL;
6005
6006         if (new != PARITY_DISABLE_RMW &&
6007             new != PARITY_ENABLE_RMW &&
6008             new != PARITY_PREFER_RMW)
6009                 return -EINVAL;
6010
6011         conf->rmw_level = new;
6012         return len;
6013 }
6014
6015 static struct md_sysfs_entry
6016 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6017                          raid5_show_rmw_level,
6018                          raid5_store_rmw_level);
6019
6020
6021 static ssize_t
6022 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6023 {
6024         struct r5conf *conf;
6025         int ret = 0;
6026         spin_lock(&mddev->lock);
6027         conf = mddev->private;
6028         if (conf)
6029                 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6030         spin_unlock(&mddev->lock);
6031         return ret;
6032 }
6033
6034 static ssize_t
6035 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6036 {
6037         struct r5conf *conf;
6038         unsigned long new;
6039         int err;
6040
6041         if (len >= PAGE_SIZE)
6042                 return -EINVAL;
6043         if (kstrtoul(page, 10, &new))
6044                 return -EINVAL;
6045
6046         err = mddev_lock(mddev);
6047         if (err)
6048                 return err;
6049         conf = mddev->private;
6050         if (!conf)
6051                 err = -ENODEV;
6052         else if (new > conf->min_nr_stripes)
6053                 err = -EINVAL;
6054         else
6055                 conf->bypass_threshold = new;
6056         mddev_unlock(mddev);
6057         return err ?: len;
6058 }
6059
6060 static struct md_sysfs_entry
6061 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6062                                         S_IRUGO | S_IWUSR,
6063                                         raid5_show_preread_threshold,
6064                                         raid5_store_preread_threshold);
6065
6066 static ssize_t
6067 raid5_show_skip_copy(struct mddev *mddev, char *page)
6068 {
6069         struct r5conf *conf;
6070         int ret = 0;
6071         spin_lock(&mddev->lock);
6072         conf = mddev->private;
6073         if (conf)
6074                 ret = sprintf(page, "%d\n", conf->skip_copy);
6075         spin_unlock(&mddev->lock);
6076         return ret;
6077 }
6078
6079 static ssize_t
6080 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6081 {
6082         struct r5conf *conf;
6083         unsigned long new;
6084         int err;
6085
6086         if (len >= PAGE_SIZE)
6087                 return -EINVAL;
6088         if (kstrtoul(page, 10, &new))
6089                 return -EINVAL;
6090         new = !!new;
6091
6092         err = mddev_lock(mddev);
6093         if (err)
6094                 return err;
6095         conf = mddev->private;
6096         if (!conf)
6097                 err = -ENODEV;
6098         else if (new != conf->skip_copy) {
6099                 mddev_suspend(mddev);
6100                 conf->skip_copy = new;
6101                 if (new)
6102                         mddev->queue->backing_dev_info.capabilities |=
6103                                 BDI_CAP_STABLE_WRITES;
6104                 else
6105                         mddev->queue->backing_dev_info.capabilities &=
6106                                 ~BDI_CAP_STABLE_WRITES;
6107                 mddev_resume(mddev);
6108         }
6109         mddev_unlock(mddev);
6110         return err ?: len;
6111 }
6112
6113 static struct md_sysfs_entry
6114 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6115                                         raid5_show_skip_copy,
6116                                         raid5_store_skip_copy);
6117
6118 static ssize_t
6119 stripe_cache_active_show(struct mddev *mddev, char *page)
6120 {
6121         struct r5conf *conf = mddev->private;
6122         if (conf)
6123                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6124         else
6125                 return 0;
6126 }
6127
6128 static struct md_sysfs_entry
6129 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6130
6131 static ssize_t
6132 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6133 {
6134         struct r5conf *conf;
6135         int ret = 0;
6136         spin_lock(&mddev->lock);
6137         conf = mddev->private;
6138         if (conf)
6139                 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6140         spin_unlock(&mddev->lock);
6141         return ret;
6142 }
6143
6144 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6145                                int *group_cnt,
6146                                int *worker_cnt_per_group,
6147                                struct r5worker_group **worker_groups);
6148 static ssize_t
6149 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6150 {
6151         struct r5conf *conf;
6152         unsigned long new;
6153         int err;
6154         struct r5worker_group *new_groups, *old_groups;
6155         int group_cnt, worker_cnt_per_group;
6156
6157         if (len >= PAGE_SIZE)
6158                 return -EINVAL;
6159         if (kstrtoul(page, 10, &new))
6160                 return -EINVAL;
6161
6162         err = mddev_lock(mddev);
6163         if (err)
6164                 return err;
6165         conf = mddev->private;
6166         if (!conf)
6167                 err = -ENODEV;
6168         else if (new != conf->worker_cnt_per_group) {
6169                 mddev_suspend(mddev);
6170
6171                 old_groups = conf->worker_groups;
6172                 if (old_groups)
6173                         flush_workqueue(raid5_wq);
6174
6175                 err = alloc_thread_groups(conf, new,
6176                                           &group_cnt, &worker_cnt_per_group,
6177                                           &new_groups);
6178                 if (!err) {
6179                         spin_lock_irq(&conf->device_lock);
6180                         conf->group_cnt = group_cnt;
6181                         conf->worker_cnt_per_group = worker_cnt_per_group;
6182                         conf->worker_groups = new_groups;
6183                         spin_unlock_irq(&conf->device_lock);
6184
6185                         if (old_groups)
6186                                 kfree(old_groups[0].workers);
6187                         kfree(old_groups);
6188                 }
6189                 mddev_resume(mddev);
6190         }
6191         mddev_unlock(mddev);
6192
6193         return err ?: len;
6194 }
6195
6196 static struct md_sysfs_entry
6197 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6198                                 raid5_show_group_thread_cnt,
6199                                 raid5_store_group_thread_cnt);
6200
6201 static struct attribute *raid5_attrs[] =  {
6202         &raid5_stripecache_size.attr,
6203         &raid5_stripecache_active.attr,
6204         &raid5_preread_bypass_threshold.attr,
6205         &raid5_group_thread_cnt.attr,
6206         &raid5_skip_copy.attr,
6207         &raid5_rmw_level.attr,
6208         NULL,
6209 };
6210 static struct attribute_group raid5_attrs_group = {
6211         .name = NULL,
6212         .attrs = raid5_attrs,
6213 };
6214
6215 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6216                                int *group_cnt,
6217                                int *worker_cnt_per_group,
6218                                struct r5worker_group **worker_groups)
6219 {
6220         int i, j, k;
6221         ssize_t size;
6222         struct r5worker *workers;
6223
6224         *worker_cnt_per_group = cnt;
6225         if (cnt == 0) {
6226                 *group_cnt = 0;
6227                 *worker_groups = NULL;
6228                 return 0;
6229         }
6230         *group_cnt = num_possible_nodes();
6231         size = sizeof(struct r5worker) * cnt;
6232         workers = kzalloc(size * *group_cnt, GFP_NOIO);
6233         *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6234                                 *group_cnt, GFP_NOIO);
6235         if (!*worker_groups || !workers) {
6236                 kfree(workers);
6237                 kfree(*worker_groups);
6238                 return -ENOMEM;
6239         }
6240
6241         for (i = 0; i < *group_cnt; i++) {
6242                 struct r5worker_group *group;
6243
6244                 group = &(*worker_groups)[i];
6245                 INIT_LIST_HEAD(&group->handle_list);
6246                 group->conf = conf;
6247                 group->workers = workers + i * cnt;
6248
6249                 for (j = 0; j < cnt; j++) {
6250                         struct r5worker *worker = group->workers + j;
6251                         worker->group = group;
6252                         INIT_WORK(&worker->work, raid5_do_work);
6253
6254                         for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6255                                 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6256                 }
6257         }
6258
6259         return 0;
6260 }
6261
6262 static void free_thread_groups(struct r5conf *conf)
6263 {
6264         if (conf->worker_groups)
6265                 kfree(conf->worker_groups[0].workers);
6266         kfree(conf->worker_groups);
6267         conf->worker_groups = NULL;
6268 }
6269
6270 static sector_t
6271 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6272 {
6273         struct r5conf *conf = mddev->private;
6274
6275         if (!sectors)
6276                 sectors = mddev->dev_sectors;
6277         if (!raid_disks)
6278                 /* size is defined by the smallest of previous and new size */
6279                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6280
6281         sectors &= ~((sector_t)conf->chunk_sectors - 1);
6282         sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6283         return sectors * (raid_disks - conf->max_degraded);
6284 }
6285
6286 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6287 {
6288         safe_put_page(percpu->spare_page);
6289         if (percpu->scribble)
6290                 flex_array_free(percpu->scribble);
6291         percpu->spare_page = NULL;
6292         percpu->scribble = NULL;
6293 }
6294
6295 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6296 {
6297         if (conf->level == 6 && !percpu->spare_page)
6298                 percpu->spare_page = alloc_page(GFP_KERNEL);
6299         if (!percpu->scribble)
6300                 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6301                                                       conf->previous_raid_disks),
6302                                                   max(conf->chunk_sectors,
6303                                                       conf->prev_chunk_sectors)
6304                                                    / STRIPE_SECTORS,
6305                                                   GFP_KERNEL);
6306
6307         if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6308                 free_scratch_buffer(conf, percpu);
6309                 return -ENOMEM;
6310         }
6311
6312         return 0;
6313 }
6314
6315 static void raid5_free_percpu(struct r5conf *conf)
6316 {
6317         unsigned long cpu;
6318
6319         if (!conf->percpu)
6320                 return;
6321
6322 #ifdef CONFIG_HOTPLUG_CPU
6323         unregister_cpu_notifier(&conf->cpu_notify);
6324 #endif
6325
6326         get_online_cpus();
6327         for_each_possible_cpu(cpu)
6328                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6329         put_online_cpus();
6330
6331         free_percpu(conf->percpu);
6332 }
6333
6334 static void free_conf(struct r5conf *conf)
6335 {
6336         if (conf->shrinker.seeks)
6337                 unregister_shrinker(&conf->shrinker);
6338         free_thread_groups(conf);
6339         shrink_stripes(conf);
6340         raid5_free_percpu(conf);
6341         kfree(conf->disks);
6342         kfree(conf->stripe_hashtbl);
6343         kfree(conf);
6344 }
6345
6346 #ifdef CONFIG_HOTPLUG_CPU
6347 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6348                               void *hcpu)
6349 {
6350         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6351         long cpu = (long)hcpu;
6352         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6353
6354         switch (action) {
6355         case CPU_UP_PREPARE:
6356         case CPU_UP_PREPARE_FROZEN:
6357                 if (alloc_scratch_buffer(conf, percpu)) {
6358                         pr_err("%s: failed memory allocation for cpu%ld\n",
6359                                __func__, cpu);
6360                         return notifier_from_errno(-ENOMEM);
6361                 }
6362                 break;
6363         case CPU_DEAD:
6364         case CPU_DEAD_FROZEN:
6365                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6366                 break;
6367         default:
6368                 break;
6369         }
6370         return NOTIFY_OK;
6371 }
6372 #endif
6373
6374 static int raid5_alloc_percpu(struct r5conf *conf)
6375 {
6376         unsigned long cpu;
6377         int err = 0;
6378
6379         conf->percpu = alloc_percpu(struct raid5_percpu);
6380         if (!conf->percpu)
6381                 return -ENOMEM;
6382
6383 #ifdef CONFIG_HOTPLUG_CPU
6384         conf->cpu_notify.notifier_call = raid456_cpu_notify;
6385         conf->cpu_notify.priority = 0;
6386         err = register_cpu_notifier(&conf->cpu_notify);
6387         if (err)
6388                 return err;
6389 #endif
6390
6391         get_online_cpus();
6392         for_each_present_cpu(cpu) {
6393                 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6394                 if (err) {
6395                         pr_err("%s: failed memory allocation for cpu%ld\n",
6396                                __func__, cpu);
6397                         break;
6398                 }
6399         }
6400         put_online_cpus();
6401
6402         return err;
6403 }
6404
6405 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6406                                       struct shrink_control *sc)
6407 {
6408         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6409         unsigned long ret = SHRINK_STOP;
6410
6411         if (mutex_trylock(&conf->cache_size_mutex)) {
6412                 ret= 0;
6413                 while (ret < sc->nr_to_scan &&
6414                        conf->max_nr_stripes > conf->min_nr_stripes) {
6415                         if (drop_one_stripe(conf) == 0) {
6416                                 ret = SHRINK_STOP;
6417                                 break;
6418                         }
6419                         ret++;
6420                 }
6421                 mutex_unlock(&conf->cache_size_mutex);
6422         }
6423         return ret;
6424 }
6425
6426 static unsigned long raid5_cache_count(struct shrinker *shrink,
6427                                        struct shrink_control *sc)
6428 {
6429         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6430
6431         if (conf->max_nr_stripes < conf->min_nr_stripes)
6432                 /* unlikely, but not impossible */
6433                 return 0;
6434         return conf->max_nr_stripes - conf->min_nr_stripes;
6435 }
6436
6437 static struct r5conf *setup_conf(struct mddev *mddev)
6438 {
6439         struct r5conf *conf;
6440         int raid_disk, memory, max_disks;
6441         struct md_rdev *rdev;
6442         struct disk_info *disk;
6443         char pers_name[6];
6444         int i;
6445         int group_cnt, worker_cnt_per_group;
6446         struct r5worker_group *new_group;
6447
6448         if (mddev->new_level != 5
6449             && mddev->new_level != 4
6450             && mddev->new_level != 6) {
6451                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6452                        mdname(mddev), mddev->new_level);
6453                 return ERR_PTR(-EIO);
6454         }
6455         if ((mddev->new_level == 5
6456              && !algorithm_valid_raid5(mddev->new_layout)) ||
6457             (mddev->new_level == 6
6458              && !algorithm_valid_raid6(mddev->new_layout))) {
6459                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6460                        mdname(mddev), mddev->new_layout);
6461                 return ERR_PTR(-EIO);
6462         }
6463         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6464                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6465                        mdname(mddev), mddev->raid_disks);
6466                 return ERR_PTR(-EINVAL);
6467         }
6468
6469         if (!mddev->new_chunk_sectors ||
6470             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6471             !is_power_of_2(mddev->new_chunk_sectors)) {
6472                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6473                        mdname(mddev), mddev->new_chunk_sectors << 9);
6474                 return ERR_PTR(-EINVAL);
6475         }
6476
6477         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6478         if (conf == NULL)
6479                 goto abort;
6480         /* Don't enable multi-threading by default*/
6481         if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6482                                  &new_group)) {
6483                 conf->group_cnt = group_cnt;
6484                 conf->worker_cnt_per_group = worker_cnt_per_group;
6485                 conf->worker_groups = new_group;
6486         } else
6487                 goto abort;
6488         spin_lock_init(&conf->device_lock);
6489         seqcount_init(&conf->gen_lock);
6490         mutex_init(&conf->cache_size_mutex);
6491         init_waitqueue_head(&conf->wait_for_quiescent);
6492         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
6493                 init_waitqueue_head(&conf->wait_for_stripe[i]);
6494         }
6495         init_waitqueue_head(&conf->wait_for_overlap);
6496         INIT_LIST_HEAD(&conf->handle_list);
6497         INIT_LIST_HEAD(&conf->hold_list);
6498         INIT_LIST_HEAD(&conf->delayed_list);
6499         INIT_LIST_HEAD(&conf->bitmap_list);
6500         bio_list_init(&conf->return_bi);
6501         init_llist_head(&conf->released_stripes);
6502         atomic_set(&conf->active_stripes, 0);
6503         atomic_set(&conf->preread_active_stripes, 0);
6504         atomic_set(&conf->active_aligned_reads, 0);
6505         conf->bypass_threshold = BYPASS_THRESHOLD;
6506         conf->recovery_disabled = mddev->recovery_disabled - 1;
6507
6508         conf->raid_disks = mddev->raid_disks;
6509         if (mddev->reshape_position == MaxSector)
6510                 conf->previous_raid_disks = mddev->raid_disks;
6511         else
6512                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6513         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6514
6515         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6516                               GFP_KERNEL);
6517         if (!conf->disks)
6518                 goto abort;
6519
6520         conf->mddev = mddev;
6521
6522         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6523                 goto abort;
6524
6525         /* We init hash_locks[0] separately to that it can be used
6526          * as the reference lock in the spin_lock_nest_lock() call
6527          * in lock_all_device_hash_locks_irq in order to convince
6528          * lockdep that we know what we are doing.
6529          */
6530         spin_lock_init(conf->hash_locks);
6531         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6532                 spin_lock_init(conf->hash_locks + i);
6533
6534         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6535                 INIT_LIST_HEAD(conf->inactive_list + i);
6536
6537         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6538                 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6539
6540         conf->level = mddev->new_level;
6541         conf->chunk_sectors = mddev->new_chunk_sectors;
6542         if (raid5_alloc_percpu(conf) != 0)
6543                 goto abort;
6544
6545         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6546
6547         rdev_for_each(rdev, mddev) {
6548                 raid_disk = rdev->raid_disk;
6549                 if (raid_disk >= max_disks
6550                     || raid_disk < 0)
6551                         continue;
6552                 disk = conf->disks + raid_disk;
6553
6554                 if (test_bit(Replacement, &rdev->flags)) {
6555                         if (disk->replacement)
6556                                 goto abort;
6557                         disk->replacement = rdev;
6558                 } else {
6559                         if (disk->rdev)
6560                                 goto abort;
6561                         disk->rdev = rdev;
6562                 }
6563
6564                 if (test_bit(In_sync, &rdev->flags)) {
6565                         char b[BDEVNAME_SIZE];
6566                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6567                                " disk %d\n",
6568                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6569                 } else if (rdev->saved_raid_disk != raid_disk)
6570                         /* Cannot rely on bitmap to complete recovery */
6571                         conf->fullsync = 1;
6572         }
6573
6574         conf->level = mddev->new_level;
6575         if (conf->level == 6) {
6576                 conf->max_degraded = 2;
6577                 if (raid6_call.xor_syndrome)
6578                         conf->rmw_level = PARITY_ENABLE_RMW;
6579                 else
6580                         conf->rmw_level = PARITY_DISABLE_RMW;
6581         } else {
6582                 conf->max_degraded = 1;
6583                 conf->rmw_level = PARITY_ENABLE_RMW;
6584         }
6585         conf->algorithm = mddev->new_layout;
6586         conf->reshape_progress = mddev->reshape_position;
6587         if (conf->reshape_progress != MaxSector) {
6588                 conf->prev_chunk_sectors = mddev->chunk_sectors;
6589                 conf->prev_algo = mddev->layout;
6590         } else {
6591                 conf->prev_chunk_sectors = conf->chunk_sectors;
6592                 conf->prev_algo = conf->algorithm;
6593         }
6594
6595         conf->min_nr_stripes = NR_STRIPES;
6596         memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6597                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6598         atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6599         if (grow_stripes(conf, conf->min_nr_stripes)) {
6600                 printk(KERN_ERR
6601                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
6602                        mdname(mddev), memory);
6603                 goto abort;
6604         } else
6605                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6606                        mdname(mddev), memory);
6607         /*
6608          * Losing a stripe head costs more than the time to refill it,
6609          * it reduces the queue depth and so can hurt throughput.
6610          * So set it rather large, scaled by number of devices.
6611          */
6612         conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6613         conf->shrinker.scan_objects = raid5_cache_scan;
6614         conf->shrinker.count_objects = raid5_cache_count;
6615         conf->shrinker.batch = 128;
6616         conf->shrinker.flags = 0;
6617         register_shrinker(&conf->shrinker);
6618
6619         sprintf(pers_name, "raid%d", mddev->new_level);
6620         conf->thread = md_register_thread(raid5d, mddev, pers_name);
6621         if (!conf->thread) {
6622                 printk(KERN_ERR
6623                        "md/raid:%s: couldn't allocate thread.\n",
6624                        mdname(mddev));
6625                 goto abort;
6626         }
6627
6628         return conf;
6629
6630  abort:
6631         if (conf) {
6632                 free_conf(conf);
6633                 return ERR_PTR(-EIO);
6634         } else
6635                 return ERR_PTR(-ENOMEM);
6636 }
6637
6638 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6639 {
6640         switch (algo) {
6641         case ALGORITHM_PARITY_0:
6642                 if (raid_disk < max_degraded)
6643                         return 1;
6644                 break;
6645         case ALGORITHM_PARITY_N:
6646                 if (raid_disk >= raid_disks - max_degraded)
6647                         return 1;
6648                 break;
6649         case ALGORITHM_PARITY_0_6:
6650                 if (raid_disk == 0 ||
6651                     raid_disk == raid_disks - 1)
6652                         return 1;
6653                 break;
6654         case ALGORITHM_LEFT_ASYMMETRIC_6:
6655         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6656         case ALGORITHM_LEFT_SYMMETRIC_6:
6657         case ALGORITHM_RIGHT_SYMMETRIC_6:
6658                 if (raid_disk == raid_disks - 1)
6659                         return 1;
6660         }
6661         return 0;
6662 }
6663
6664 static int run(struct mddev *mddev)
6665 {
6666         struct r5conf *conf;
6667         int working_disks = 0;
6668         int dirty_parity_disks = 0;
6669         struct md_rdev *rdev;
6670         sector_t reshape_offset = 0;
6671         int i;
6672         long long min_offset_diff = 0;
6673         int first = 1;
6674
6675         if (mddev->recovery_cp != MaxSector)
6676                 printk(KERN_NOTICE "md/raid:%s: not clean"
6677                        " -- starting background reconstruction\n",
6678                        mdname(mddev));
6679
6680         rdev_for_each(rdev, mddev) {
6681                 long long diff;
6682                 if (rdev->raid_disk < 0)
6683                         continue;
6684                 diff = (rdev->new_data_offset - rdev->data_offset);
6685                 if (first) {
6686                         min_offset_diff = diff;
6687                         first = 0;
6688                 } else if (mddev->reshape_backwards &&
6689                          diff < min_offset_diff)
6690                         min_offset_diff = diff;
6691                 else if (!mddev->reshape_backwards &&
6692                          diff > min_offset_diff)
6693                         min_offset_diff = diff;
6694         }
6695
6696         if (mddev->reshape_position != MaxSector) {
6697                 /* Check that we can continue the reshape.
6698                  * Difficulties arise if the stripe we would write to
6699                  * next is at or after the stripe we would read from next.
6700                  * For a reshape that changes the number of devices, this
6701                  * is only possible for a very short time, and mdadm makes
6702                  * sure that time appears to have past before assembling
6703                  * the array.  So we fail if that time hasn't passed.
6704                  * For a reshape that keeps the number of devices the same
6705                  * mdadm must be monitoring the reshape can keeping the
6706                  * critical areas read-only and backed up.  It will start
6707                  * the array in read-only mode, so we check for that.
6708                  */
6709                 sector_t here_new, here_old;
6710                 int old_disks;
6711                 int max_degraded = (mddev->level == 6 ? 2 : 1);
6712                 int chunk_sectors;
6713                 int new_data_disks;
6714
6715                 if (mddev->new_level != mddev->level) {
6716                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
6717                                "required - aborting.\n",
6718                                mdname(mddev));
6719                         return -EINVAL;
6720                 }
6721                 old_disks = mddev->raid_disks - mddev->delta_disks;
6722                 /* reshape_position must be on a new-stripe boundary, and one
6723                  * further up in new geometry must map after here in old
6724                  * geometry.
6725                  * If the chunk sizes are different, then as we perform reshape
6726                  * in units of the largest of the two, reshape_position needs
6727                  * be a multiple of the largest chunk size times new data disks.
6728                  */
6729                 here_new = mddev->reshape_position;
6730                 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
6731                 new_data_disks = mddev->raid_disks - max_degraded;
6732                 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
6733                         printk(KERN_ERR "md/raid:%s: reshape_position not "
6734                                "on a stripe boundary\n", mdname(mddev));
6735                         return -EINVAL;
6736                 }
6737                 reshape_offset = here_new * chunk_sectors;
6738                 /* here_new is the stripe we will write to */
6739                 here_old = mddev->reshape_position;
6740                 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
6741                 /* here_old is the first stripe that we might need to read
6742                  * from */
6743                 if (mddev->delta_disks == 0) {
6744                         /* We cannot be sure it is safe to start an in-place
6745                          * reshape.  It is only safe if user-space is monitoring
6746                          * and taking constant backups.
6747                          * mdadm always starts a situation like this in
6748                          * readonly mode so it can take control before
6749                          * allowing any writes.  So just check for that.
6750                          */
6751                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6752                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
6753                                 /* not really in-place - so OK */;
6754                         else if (mddev->ro == 0) {
6755                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
6756                                        "must be started in read-only mode "
6757                                        "- aborting\n",
6758                                        mdname(mddev));
6759                                 return -EINVAL;
6760                         }
6761                 } else if (mddev->reshape_backwards
6762                     ? (here_new * chunk_sectors + min_offset_diff <=
6763                        here_old * chunk_sectors)
6764                     : (here_new * chunk_sectors >=
6765                        here_old * chunk_sectors + (-min_offset_diff))) {
6766                         /* Reading from the same stripe as writing to - bad */
6767                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6768                                "auto-recovery - aborting.\n",
6769                                mdname(mddev));
6770                         return -EINVAL;
6771                 }
6772                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6773                        mdname(mddev));
6774                 /* OK, we should be able to continue; */
6775         } else {
6776                 BUG_ON(mddev->level != mddev->new_level);
6777                 BUG_ON(mddev->layout != mddev->new_layout);
6778                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6779                 BUG_ON(mddev->delta_disks != 0);
6780         }
6781
6782         if (mddev->private == NULL)
6783                 conf = setup_conf(mddev);
6784         else
6785                 conf = mddev->private;
6786
6787         if (IS_ERR(conf))
6788                 return PTR_ERR(conf);
6789
6790         conf->min_offset_diff = min_offset_diff;
6791         mddev->thread = conf->thread;
6792         conf->thread = NULL;
6793         mddev->private = conf;
6794
6795         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6796              i++) {
6797                 rdev = conf->disks[i].rdev;
6798                 if (!rdev && conf->disks[i].replacement) {
6799                         /* The replacement is all we have yet */
6800                         rdev = conf->disks[i].replacement;
6801                         conf->disks[i].replacement = NULL;
6802                         clear_bit(Replacement, &rdev->flags);
6803                         conf->disks[i].rdev = rdev;
6804                 }
6805                 if (!rdev)
6806                         continue;
6807                 if (conf->disks[i].replacement &&
6808                     conf->reshape_progress != MaxSector) {
6809                         /* replacements and reshape simply do not mix. */
6810                         printk(KERN_ERR "md: cannot handle concurrent "
6811                                "replacement and reshape.\n");
6812                         goto abort;
6813                 }
6814                 if (test_bit(In_sync, &rdev->flags)) {
6815                         working_disks++;
6816                         continue;
6817                 }
6818                 /* This disc is not fully in-sync.  However if it
6819                  * just stored parity (beyond the recovery_offset),
6820                  * when we don't need to be concerned about the
6821                  * array being dirty.
6822                  * When reshape goes 'backwards', we never have
6823                  * partially completed devices, so we only need
6824                  * to worry about reshape going forwards.
6825                  */
6826                 /* Hack because v0.91 doesn't store recovery_offset properly. */
6827                 if (mddev->major_version == 0 &&
6828                     mddev->minor_version > 90)
6829                         rdev->recovery_offset = reshape_offset;
6830
6831                 if (rdev->recovery_offset < reshape_offset) {
6832                         /* We need to check old and new layout */
6833                         if (!only_parity(rdev->raid_disk,
6834                                          conf->algorithm,
6835                                          conf->raid_disks,
6836                                          conf->max_degraded))
6837                                 continue;
6838                 }
6839                 if (!only_parity(rdev->raid_disk,
6840                                  conf->prev_algo,
6841                                  conf->previous_raid_disks,
6842                                  conf->max_degraded))
6843                         continue;
6844                 dirty_parity_disks++;
6845         }
6846
6847         /*
6848          * 0 for a fully functional array, 1 or 2 for a degraded array.
6849          */
6850         mddev->degraded = calc_degraded(conf);
6851
6852         if (has_failed(conf)) {
6853                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6854                         " (%d/%d failed)\n",
6855                         mdname(mddev), mddev->degraded, conf->raid_disks);
6856                 goto abort;
6857         }
6858
6859         /* device size must be a multiple of chunk size */
6860         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6861         mddev->resync_max_sectors = mddev->dev_sectors;
6862
6863         if (mddev->degraded > dirty_parity_disks &&
6864             mddev->recovery_cp != MaxSector) {
6865                 if (mddev->ok_start_degraded)
6866                         printk(KERN_WARNING
6867                                "md/raid:%s: starting dirty degraded array"
6868                                " - data corruption possible.\n",
6869                                mdname(mddev));
6870                 else {
6871                         printk(KERN_ERR
6872                                "md/raid:%s: cannot start dirty degraded array.\n",
6873                                mdname(mddev));
6874                         goto abort;
6875                 }
6876         }
6877
6878         if (mddev->degraded == 0)
6879                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6880                        " devices, algorithm %d\n", mdname(mddev), conf->level,
6881                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6882                        mddev->new_layout);
6883         else
6884                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6885                        " out of %d devices, algorithm %d\n",
6886                        mdname(mddev), conf->level,
6887                        mddev->raid_disks - mddev->degraded,
6888                        mddev->raid_disks, mddev->new_layout);
6889
6890         print_raid5_conf(conf);
6891
6892         if (conf->reshape_progress != MaxSector) {
6893                 conf->reshape_safe = conf->reshape_progress;
6894                 atomic_set(&conf->reshape_stripes, 0);
6895                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6896                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6897                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6898                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6899                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6900                                                         "reshape");
6901         }
6902
6903         /* Ok, everything is just fine now */
6904         if (mddev->to_remove == &raid5_attrs_group)
6905                 mddev->to_remove = NULL;
6906         else if (mddev->kobj.sd &&
6907             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6908                 printk(KERN_WARNING
6909                        "raid5: failed to create sysfs attributes for %s\n",
6910                        mdname(mddev));
6911         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6912
6913         if (mddev->queue) {
6914                 int chunk_size;
6915                 bool discard_supported = true;
6916                 /* read-ahead size must cover two whole stripes, which
6917                  * is 2 * (datadisks) * chunksize where 'n' is the
6918                  * number of raid devices
6919                  */
6920                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6921                 int stripe = data_disks *
6922                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6923                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6924                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6925
6926                 chunk_size = mddev->chunk_sectors << 9;
6927                 blk_queue_io_min(mddev->queue, chunk_size);
6928                 blk_queue_io_opt(mddev->queue, chunk_size *
6929                                  (conf->raid_disks - conf->max_degraded));
6930                 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6931                 /*
6932                  * We can only discard a whole stripe. It doesn't make sense to
6933                  * discard data disk but write parity disk
6934                  */
6935                 stripe = stripe * PAGE_SIZE;
6936                 /* Round up to power of 2, as discard handling
6937                  * currently assumes that */
6938                 while ((stripe-1) & stripe)
6939                         stripe = (stripe | (stripe-1)) + 1;
6940                 mddev->queue->limits.discard_alignment = stripe;
6941                 mddev->queue->limits.discard_granularity = stripe;
6942                 /*
6943                  * unaligned part of discard request will be ignored, so can't
6944                  * guarantee discard_zeroes_data
6945                  */
6946                 mddev->queue->limits.discard_zeroes_data = 0;
6947
6948                 blk_queue_max_write_same_sectors(mddev->queue, 0);
6949
6950                 rdev_for_each(rdev, mddev) {
6951                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6952                                           rdev->data_offset << 9);
6953                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6954                                           rdev->new_data_offset << 9);
6955                         /*
6956                          * discard_zeroes_data is required, otherwise data
6957                          * could be lost. Consider a scenario: discard a stripe
6958                          * (the stripe could be inconsistent if
6959                          * discard_zeroes_data is 0); write one disk of the
6960                          * stripe (the stripe could be inconsistent again
6961                          * depending on which disks are used to calculate
6962                          * parity); the disk is broken; The stripe data of this
6963                          * disk is lost.
6964                          */
6965                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6966                             !bdev_get_queue(rdev->bdev)->
6967                                                 limits.discard_zeroes_data)
6968                                 discard_supported = false;
6969                         /* Unfortunately, discard_zeroes_data is not currently
6970                          * a guarantee - just a hint.  So we only allow DISCARD
6971                          * if the sysadmin has confirmed that only safe devices
6972                          * are in use by setting a module parameter.
6973                          */
6974                         if (!devices_handle_discard_safely) {
6975                                 if (discard_supported) {
6976                                         pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6977                                         pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6978                                 }
6979                                 discard_supported = false;
6980                         }
6981                 }
6982
6983                 if (discard_supported &&
6984                    mddev->queue->limits.max_discard_sectors >= stripe &&
6985                    mddev->queue->limits.discard_granularity >= stripe)
6986                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6987                                                 mddev->queue);
6988                 else
6989                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6990                                                 mddev->queue);
6991         }
6992
6993         return 0;
6994 abort:
6995         md_unregister_thread(&mddev->thread);
6996         print_raid5_conf(conf);
6997         free_conf(conf);
6998         mddev->private = NULL;
6999         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
7000         return -EIO;
7001 }
7002
7003 static void raid5_free(struct mddev *mddev, void *priv)
7004 {
7005         struct r5conf *conf = priv;
7006
7007         free_conf(conf);
7008         mddev->to_remove = &raid5_attrs_group;
7009 }
7010
7011 static void status(struct seq_file *seq, struct mddev *mddev)
7012 {
7013         struct r5conf *conf = mddev->private;
7014         int i;
7015
7016         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7017                 conf->chunk_sectors / 2, mddev->layout);
7018         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7019         for (i = 0; i < conf->raid_disks; i++)
7020                 seq_printf (seq, "%s",
7021                                conf->disks[i].rdev &&
7022                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
7023         seq_printf (seq, "]");
7024 }
7025
7026 static void print_raid5_conf (struct r5conf *conf)
7027 {
7028         int i;
7029         struct disk_info *tmp;
7030
7031         printk(KERN_DEBUG "RAID conf printout:\n");
7032         if (!conf) {
7033                 printk("(conf==NULL)\n");
7034                 return;
7035         }
7036         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7037                conf->raid_disks,
7038                conf->raid_disks - conf->mddev->degraded);
7039
7040         for (i = 0; i < conf->raid_disks; i++) {
7041                 char b[BDEVNAME_SIZE];
7042                 tmp = conf->disks + i;
7043                 if (tmp->rdev)
7044                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7045                                i, !test_bit(Faulty, &tmp->rdev->flags),
7046                                bdevname(tmp->rdev->bdev, b));
7047         }
7048 }
7049
7050 static int raid5_spare_active(struct mddev *mddev)
7051 {
7052         int i;
7053         struct r5conf *conf = mddev->private;
7054         struct disk_info *tmp;
7055         int count = 0;
7056         unsigned long flags;
7057
7058         for (i = 0; i < conf->raid_disks; i++) {
7059                 tmp = conf->disks + i;
7060                 if (tmp->replacement
7061                     && tmp->replacement->recovery_offset == MaxSector
7062                     && !test_bit(Faulty, &tmp->replacement->flags)
7063                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7064                         /* Replacement has just become active. */
7065                         if (!tmp->rdev
7066                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7067                                 count++;
7068                         if (tmp->rdev) {
7069                                 /* Replaced device not technically faulty,
7070                                  * but we need to be sure it gets removed
7071                                  * and never re-added.
7072                                  */
7073                                 set_bit(Faulty, &tmp->rdev->flags);
7074                                 sysfs_notify_dirent_safe(
7075                                         tmp->rdev->sysfs_state);
7076                         }
7077                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7078                 } else if (tmp->rdev
7079                     && tmp->rdev->recovery_offset == MaxSector
7080                     && !test_bit(Faulty, &tmp->rdev->flags)
7081                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7082                         count++;
7083                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7084                 }
7085         }
7086         spin_lock_irqsave(&conf->device_lock, flags);
7087         mddev->degraded = calc_degraded(conf);
7088         spin_unlock_irqrestore(&conf->device_lock, flags);
7089         print_raid5_conf(conf);
7090         return count;
7091 }
7092
7093 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7094 {
7095         struct r5conf *conf = mddev->private;
7096         int err = 0;
7097         int number = rdev->raid_disk;
7098         struct md_rdev **rdevp;
7099         struct disk_info *p = conf->disks + number;
7100
7101         print_raid5_conf(conf);
7102         if (rdev == p->rdev)
7103                 rdevp = &p->rdev;
7104         else if (rdev == p->replacement)
7105                 rdevp = &p->replacement;
7106         else
7107                 return 0;
7108
7109         if (number >= conf->raid_disks &&
7110             conf->reshape_progress == MaxSector)
7111                 clear_bit(In_sync, &rdev->flags);
7112
7113         if (test_bit(In_sync, &rdev->flags) ||
7114             atomic_read(&rdev->nr_pending)) {
7115                 err = -EBUSY;
7116                 goto abort;
7117         }
7118         /* Only remove non-faulty devices if recovery
7119          * isn't possible.
7120          */
7121         if (!test_bit(Faulty, &rdev->flags) &&
7122             mddev->recovery_disabled != conf->recovery_disabled &&
7123             !has_failed(conf) &&
7124             (!p->replacement || p->replacement == rdev) &&
7125             number < conf->raid_disks) {
7126                 err = -EBUSY;
7127                 goto abort;
7128         }
7129         *rdevp = NULL;
7130         synchronize_rcu();
7131         if (atomic_read(&rdev->nr_pending)) {
7132                 /* lost the race, try later */
7133                 err = -EBUSY;
7134                 *rdevp = rdev;
7135         } else if (p->replacement) {
7136                 /* We must have just cleared 'rdev' */
7137                 p->rdev = p->replacement;
7138                 clear_bit(Replacement, &p->replacement->flags);
7139                 smp_mb(); /* Make sure other CPUs may see both as identical
7140                            * but will never see neither - if they are careful
7141                            */
7142                 p->replacement = NULL;
7143                 clear_bit(WantReplacement, &rdev->flags);
7144         } else
7145                 /* We might have just removed the Replacement as faulty-
7146                  * clear the bit just in case
7147                  */
7148                 clear_bit(WantReplacement, &rdev->flags);
7149 abort:
7150
7151         print_raid5_conf(conf);
7152         return err;
7153 }
7154
7155 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7156 {
7157         struct r5conf *conf = mddev->private;
7158         int err = -EEXIST;
7159         int disk;
7160         struct disk_info *p;
7161         int first = 0;
7162         int last = conf->raid_disks - 1;
7163
7164         if (mddev->recovery_disabled == conf->recovery_disabled)
7165                 return -EBUSY;
7166
7167         if (rdev->saved_raid_disk < 0 && has_failed(conf))
7168                 /* no point adding a device */
7169                 return -EINVAL;
7170
7171         if (rdev->raid_disk >= 0)
7172                 first = last = rdev->raid_disk;
7173
7174         /*
7175          * find the disk ... but prefer rdev->saved_raid_disk
7176          * if possible.
7177          */
7178         if (rdev->saved_raid_disk >= 0 &&
7179             rdev->saved_raid_disk >= first &&
7180             conf->disks[rdev->saved_raid_disk].rdev == NULL)
7181                 first = rdev->saved_raid_disk;
7182
7183         for (disk = first; disk <= last; disk++) {
7184                 p = conf->disks + disk;
7185                 if (p->rdev == NULL) {
7186                         clear_bit(In_sync, &rdev->flags);
7187                         rdev->raid_disk = disk;
7188                         err = 0;
7189                         if (rdev->saved_raid_disk != disk)
7190                                 conf->fullsync = 1;
7191                         rcu_assign_pointer(p->rdev, rdev);
7192                         goto out;
7193                 }
7194         }
7195         for (disk = first; disk <= last; disk++) {
7196                 p = conf->disks + disk;
7197                 if (test_bit(WantReplacement, &p->rdev->flags) &&
7198                     p->replacement == NULL) {
7199                         clear_bit(In_sync, &rdev->flags);
7200                         set_bit(Replacement, &rdev->flags);
7201                         rdev->raid_disk = disk;
7202                         err = 0;
7203                         conf->fullsync = 1;
7204                         rcu_assign_pointer(p->replacement, rdev);
7205                         break;
7206                 }
7207         }
7208 out:
7209         print_raid5_conf(conf);
7210         return err;
7211 }
7212
7213 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7214 {
7215         /* no resync is happening, and there is enough space
7216          * on all devices, so we can resize.
7217          * We need to make sure resync covers any new space.
7218          * If the array is shrinking we should possibly wait until
7219          * any io in the removed space completes, but it hardly seems
7220          * worth it.
7221          */
7222         sector_t newsize;
7223         struct r5conf *conf = mddev->private;
7224
7225         sectors &= ~((sector_t)conf->chunk_sectors - 1);
7226         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7227         if (mddev->external_size &&
7228             mddev->array_sectors > newsize)
7229                 return -EINVAL;
7230         if (mddev->bitmap) {
7231                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7232                 if (ret)
7233                         return ret;
7234         }
7235         md_set_array_sectors(mddev, newsize);
7236         set_capacity(mddev->gendisk, mddev->array_sectors);
7237         revalidate_disk(mddev->gendisk);
7238         if (sectors > mddev->dev_sectors &&
7239             mddev->recovery_cp > mddev->dev_sectors) {
7240                 mddev->recovery_cp = mddev->dev_sectors;
7241                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7242         }
7243         mddev->dev_sectors = sectors;
7244         mddev->resync_max_sectors = sectors;
7245         return 0;
7246 }
7247
7248 static int check_stripe_cache(struct mddev *mddev)
7249 {
7250         /* Can only proceed if there are plenty of stripe_heads.
7251          * We need a minimum of one full stripe,, and for sensible progress
7252          * it is best to have about 4 times that.
7253          * If we require 4 times, then the default 256 4K stripe_heads will
7254          * allow for chunk sizes up to 256K, which is probably OK.
7255          * If the chunk size is greater, user-space should request more
7256          * stripe_heads first.
7257          */
7258         struct r5conf *conf = mddev->private;
7259         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7260             > conf->min_nr_stripes ||
7261             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7262             > conf->min_nr_stripes) {
7263                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7264                        mdname(mddev),
7265                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7266                         / STRIPE_SIZE)*4);
7267                 return 0;
7268         }
7269         return 1;
7270 }
7271
7272 static int check_reshape(struct mddev *mddev)
7273 {
7274         struct r5conf *conf = mddev->private;
7275
7276         if (mddev->delta_disks == 0 &&
7277             mddev->new_layout == mddev->layout &&
7278             mddev->new_chunk_sectors == mddev->chunk_sectors)
7279                 return 0; /* nothing to do */
7280         if (has_failed(conf))
7281                 return -EINVAL;
7282         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7283                 /* We might be able to shrink, but the devices must
7284                  * be made bigger first.
7285                  * For raid6, 4 is the minimum size.
7286                  * Otherwise 2 is the minimum
7287                  */
7288                 int min = 2;
7289                 if (mddev->level == 6)
7290                         min = 4;
7291                 if (mddev->raid_disks + mddev->delta_disks < min)
7292                         return -EINVAL;
7293         }
7294
7295         if (!check_stripe_cache(mddev))
7296                 return -ENOSPC;
7297
7298         if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7299             mddev->delta_disks > 0)
7300                 if (resize_chunks(conf,
7301                                   conf->previous_raid_disks
7302                                   + max(0, mddev->delta_disks),
7303                                   max(mddev->new_chunk_sectors,
7304                                       mddev->chunk_sectors)
7305                             ) < 0)
7306                         return -ENOMEM;
7307         return resize_stripes(conf, (conf->previous_raid_disks
7308                                      + mddev->delta_disks));
7309 }
7310
7311 static int raid5_start_reshape(struct mddev *mddev)
7312 {
7313         struct r5conf *conf = mddev->private;
7314         struct md_rdev *rdev;
7315         int spares = 0;
7316         unsigned long flags;
7317
7318         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7319                 return -EBUSY;
7320
7321         if (!check_stripe_cache(mddev))
7322                 return -ENOSPC;
7323
7324         if (has_failed(conf))
7325                 return -EINVAL;
7326
7327         rdev_for_each(rdev, mddev) {
7328                 if (!test_bit(In_sync, &rdev->flags)
7329                     && !test_bit(Faulty, &rdev->flags))
7330                         spares++;
7331         }
7332
7333         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7334                 /* Not enough devices even to make a degraded array
7335                  * of that size
7336                  */
7337                 return -EINVAL;
7338
7339         /* Refuse to reduce size of the array.  Any reductions in
7340          * array size must be through explicit setting of array_size
7341          * attribute.
7342          */
7343         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7344             < mddev->array_sectors) {
7345                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
7346                        "before number of disks\n", mdname(mddev));
7347                 return -EINVAL;
7348         }
7349
7350         atomic_set(&conf->reshape_stripes, 0);
7351         spin_lock_irq(&conf->device_lock);
7352         write_seqcount_begin(&conf->gen_lock);
7353         conf->previous_raid_disks = conf->raid_disks;
7354         conf->raid_disks += mddev->delta_disks;
7355         conf->prev_chunk_sectors = conf->chunk_sectors;
7356         conf->chunk_sectors = mddev->new_chunk_sectors;
7357         conf->prev_algo = conf->algorithm;
7358         conf->algorithm = mddev->new_layout;
7359         conf->generation++;
7360         /* Code that selects data_offset needs to see the generation update
7361          * if reshape_progress has been set - so a memory barrier needed.
7362          */
7363         smp_mb();
7364         if (mddev->reshape_backwards)
7365                 conf->reshape_progress = raid5_size(mddev, 0, 0);
7366         else
7367                 conf->reshape_progress = 0;
7368         conf->reshape_safe = conf->reshape_progress;
7369         write_seqcount_end(&conf->gen_lock);
7370         spin_unlock_irq(&conf->device_lock);
7371
7372         /* Now make sure any requests that proceeded on the assumption
7373          * the reshape wasn't running - like Discard or Read - have
7374          * completed.
7375          */
7376         mddev_suspend(mddev);
7377         mddev_resume(mddev);
7378
7379         /* Add some new drives, as many as will fit.
7380          * We know there are enough to make the newly sized array work.
7381          * Don't add devices if we are reducing the number of
7382          * devices in the array.  This is because it is not possible
7383          * to correctly record the "partially reconstructed" state of
7384          * such devices during the reshape and confusion could result.
7385          */
7386         if (mddev->delta_disks >= 0) {
7387                 rdev_for_each(rdev, mddev)
7388                         if (rdev->raid_disk < 0 &&
7389                             !test_bit(Faulty, &rdev->flags)) {
7390                                 if (raid5_add_disk(mddev, rdev) == 0) {
7391                                         if (rdev->raid_disk
7392                                             >= conf->previous_raid_disks)
7393                                                 set_bit(In_sync, &rdev->flags);
7394                                         else
7395                                                 rdev->recovery_offset = 0;
7396
7397                                         if (sysfs_link_rdev(mddev, rdev))
7398                                                 /* Failure here is OK */;
7399                                 }
7400                         } else if (rdev->raid_disk >= conf->previous_raid_disks
7401                                    && !test_bit(Faulty, &rdev->flags)) {
7402                                 /* This is a spare that was manually added */
7403                                 set_bit(In_sync, &rdev->flags);
7404                         }
7405
7406                 /* When a reshape changes the number of devices,
7407                  * ->degraded is measured against the larger of the
7408                  * pre and post number of devices.
7409                  */
7410                 spin_lock_irqsave(&conf->device_lock, flags);
7411                 mddev->degraded = calc_degraded(conf);
7412                 spin_unlock_irqrestore(&conf->device_lock, flags);
7413         }
7414         mddev->raid_disks = conf->raid_disks;
7415         mddev->reshape_position = conf->reshape_progress;
7416         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7417
7418         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7419         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7420         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7421         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7422         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7423         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7424                                                 "reshape");
7425         if (!mddev->sync_thread) {
7426                 mddev->recovery = 0;
7427                 spin_lock_irq(&conf->device_lock);
7428                 write_seqcount_begin(&conf->gen_lock);
7429                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7430                 mddev->new_chunk_sectors =
7431                         conf->chunk_sectors = conf->prev_chunk_sectors;
7432                 mddev->new_layout = conf->algorithm = conf->prev_algo;
7433                 rdev_for_each(rdev, mddev)
7434                         rdev->new_data_offset = rdev->data_offset;
7435                 smp_wmb();
7436                 conf->generation --;
7437                 conf->reshape_progress = MaxSector;
7438                 mddev->reshape_position = MaxSector;
7439                 write_seqcount_end(&conf->gen_lock);
7440                 spin_unlock_irq(&conf->device_lock);
7441                 return -EAGAIN;
7442         }
7443         conf->reshape_checkpoint = jiffies;
7444         md_wakeup_thread(mddev->sync_thread);
7445         md_new_event(mddev);
7446         return 0;
7447 }
7448
7449 /* This is called from the reshape thread and should make any
7450  * changes needed in 'conf'
7451  */
7452 static void end_reshape(struct r5conf *conf)
7453 {
7454
7455         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7456                 struct md_rdev *rdev;
7457
7458                 spin_lock_irq(&conf->device_lock);
7459                 conf->previous_raid_disks = conf->raid_disks;
7460                 rdev_for_each(rdev, conf->mddev)
7461                         rdev->data_offset = rdev->new_data_offset;
7462                 smp_wmb();
7463                 conf->reshape_progress = MaxSector;
7464                 conf->mddev->reshape_position = MaxSector;
7465                 spin_unlock_irq(&conf->device_lock);
7466                 wake_up(&conf->wait_for_overlap);
7467
7468                 /* read-ahead size must cover two whole stripes, which is
7469                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7470                  */
7471                 if (conf->mddev->queue) {
7472                         int data_disks = conf->raid_disks - conf->max_degraded;
7473                         int stripe = data_disks * ((conf->chunk_sectors << 9)
7474                                                    / PAGE_SIZE);
7475                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7476                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7477                 }
7478         }
7479 }
7480
7481 /* This is called from the raid5d thread with mddev_lock held.
7482  * It makes config changes to the device.
7483  */
7484 static void raid5_finish_reshape(struct mddev *mddev)
7485 {
7486         struct r5conf *conf = mddev->private;
7487
7488         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7489
7490                 if (mddev->delta_disks > 0) {
7491                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7492                         set_capacity(mddev->gendisk, mddev->array_sectors);
7493                         revalidate_disk(mddev->gendisk);
7494                 } else {
7495                         int d;
7496                         spin_lock_irq(&conf->device_lock);
7497                         mddev->degraded = calc_degraded(conf);
7498                         spin_unlock_irq(&conf->device_lock);
7499                         for (d = conf->raid_disks ;
7500                              d < conf->raid_disks - mddev->delta_disks;
7501                              d++) {
7502                                 struct md_rdev *rdev = conf->disks[d].rdev;
7503                                 if (rdev)
7504                                         clear_bit(In_sync, &rdev->flags);
7505                                 rdev = conf->disks[d].replacement;
7506                                 if (rdev)
7507                                         clear_bit(In_sync, &rdev->flags);
7508                         }
7509                 }
7510                 mddev->layout = conf->algorithm;
7511                 mddev->chunk_sectors = conf->chunk_sectors;
7512                 mddev->reshape_position = MaxSector;
7513                 mddev->delta_disks = 0;
7514                 mddev->reshape_backwards = 0;
7515         }
7516 }
7517
7518 static void raid5_quiesce(struct mddev *mddev, int state)
7519 {
7520         struct r5conf *conf = mddev->private;
7521
7522         switch(state) {
7523         case 2: /* resume for a suspend */
7524                 wake_up(&conf->wait_for_overlap);
7525                 break;
7526
7527         case 1: /* stop all writes */
7528                 lock_all_device_hash_locks_irq(conf);
7529                 /* '2' tells resync/reshape to pause so that all
7530                  * active stripes can drain
7531                  */
7532                 conf->quiesce = 2;
7533                 wait_event_cmd(conf->wait_for_quiescent,
7534                                     atomic_read(&conf->active_stripes) == 0 &&
7535                                     atomic_read(&conf->active_aligned_reads) == 0,
7536                                     unlock_all_device_hash_locks_irq(conf),
7537                                     lock_all_device_hash_locks_irq(conf));
7538                 conf->quiesce = 1;
7539                 unlock_all_device_hash_locks_irq(conf);
7540                 /* allow reshape to continue */
7541                 wake_up(&conf->wait_for_overlap);
7542                 break;
7543
7544         case 0: /* re-enable writes */
7545                 lock_all_device_hash_locks_irq(conf);
7546                 conf->quiesce = 0;
7547                 wake_up(&conf->wait_for_quiescent);
7548                 wake_up(&conf->wait_for_overlap);
7549                 unlock_all_device_hash_locks_irq(conf);
7550                 break;
7551         }
7552 }
7553
7554 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7555 {
7556         struct r0conf *raid0_conf = mddev->private;
7557         sector_t sectors;
7558
7559         /* for raid0 takeover only one zone is supported */
7560         if (raid0_conf->nr_strip_zones > 1) {
7561                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7562                        mdname(mddev));
7563                 return ERR_PTR(-EINVAL);
7564         }
7565
7566         sectors = raid0_conf->strip_zone[0].zone_end;
7567         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7568         mddev->dev_sectors = sectors;
7569         mddev->new_level = level;
7570         mddev->new_layout = ALGORITHM_PARITY_N;
7571         mddev->new_chunk_sectors = mddev->chunk_sectors;
7572         mddev->raid_disks += 1;
7573         mddev->delta_disks = 1;
7574         /* make sure it will be not marked as dirty */
7575         mddev->recovery_cp = MaxSector;
7576
7577         return setup_conf(mddev);
7578 }
7579
7580 static void *raid5_takeover_raid1(struct mddev *mddev)
7581 {
7582         int chunksect;
7583
7584         if (mddev->raid_disks != 2 ||
7585             mddev->degraded > 1)
7586                 return ERR_PTR(-EINVAL);
7587
7588         /* Should check if there are write-behind devices? */
7589
7590         chunksect = 64*2; /* 64K by default */
7591
7592         /* The array must be an exact multiple of chunksize */
7593         while (chunksect && (mddev->array_sectors & (chunksect-1)))
7594                 chunksect >>= 1;
7595
7596         if ((chunksect<<9) < STRIPE_SIZE)
7597                 /* array size does not allow a suitable chunk size */
7598                 return ERR_PTR(-EINVAL);
7599
7600         mddev->new_level = 5;
7601         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7602         mddev->new_chunk_sectors = chunksect;
7603
7604         return setup_conf(mddev);
7605 }
7606
7607 static void *raid5_takeover_raid6(struct mddev *mddev)
7608 {
7609         int new_layout;
7610
7611         switch (mddev->layout) {
7612         case ALGORITHM_LEFT_ASYMMETRIC_6:
7613                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7614                 break;
7615         case ALGORITHM_RIGHT_ASYMMETRIC_6:
7616                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7617                 break;
7618         case ALGORITHM_LEFT_SYMMETRIC_6:
7619                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7620                 break;
7621         case ALGORITHM_RIGHT_SYMMETRIC_6:
7622                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7623                 break;
7624         case ALGORITHM_PARITY_0_6:
7625                 new_layout = ALGORITHM_PARITY_0;
7626                 break;
7627         case ALGORITHM_PARITY_N:
7628                 new_layout = ALGORITHM_PARITY_N;
7629                 break;
7630         default:
7631                 return ERR_PTR(-EINVAL);
7632         }
7633         mddev->new_level = 5;
7634         mddev->new_layout = new_layout;
7635         mddev->delta_disks = -1;
7636         mddev->raid_disks -= 1;
7637         return setup_conf(mddev);
7638 }
7639
7640 static int raid5_check_reshape(struct mddev *mddev)
7641 {
7642         /* For a 2-drive array, the layout and chunk size can be changed
7643          * immediately as not restriping is needed.
7644          * For larger arrays we record the new value - after validation
7645          * to be used by a reshape pass.
7646          */
7647         struct r5conf *conf = mddev->private;
7648         int new_chunk = mddev->new_chunk_sectors;
7649
7650         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7651                 return -EINVAL;
7652         if (new_chunk > 0) {
7653                 if (!is_power_of_2(new_chunk))
7654                         return -EINVAL;
7655                 if (new_chunk < (PAGE_SIZE>>9))
7656                         return -EINVAL;
7657                 if (mddev->array_sectors & (new_chunk-1))
7658                         /* not factor of array size */
7659                         return -EINVAL;
7660         }
7661
7662         /* They look valid */
7663
7664         if (mddev->raid_disks == 2) {
7665                 /* can make the change immediately */
7666                 if (mddev->new_layout >= 0) {
7667                         conf->algorithm = mddev->new_layout;
7668                         mddev->layout = mddev->new_layout;
7669                 }
7670                 if (new_chunk > 0) {
7671                         conf->chunk_sectors = new_chunk ;
7672                         mddev->chunk_sectors = new_chunk;
7673                 }
7674                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7675                 md_wakeup_thread(mddev->thread);
7676         }
7677         return check_reshape(mddev);
7678 }
7679
7680 static int raid6_check_reshape(struct mddev *mddev)
7681 {
7682         int new_chunk = mddev->new_chunk_sectors;
7683
7684         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7685                 return -EINVAL;
7686         if (new_chunk > 0) {
7687                 if (!is_power_of_2(new_chunk))
7688                         return -EINVAL;
7689                 if (new_chunk < (PAGE_SIZE >> 9))
7690                         return -EINVAL;
7691                 if (mddev->array_sectors & (new_chunk-1))
7692                         /* not factor of array size */
7693                         return -EINVAL;
7694         }
7695
7696         /* They look valid */
7697         return check_reshape(mddev);
7698 }
7699
7700 static void *raid5_takeover(struct mddev *mddev)
7701 {
7702         /* raid5 can take over:
7703          *  raid0 - if there is only one strip zone - make it a raid4 layout
7704          *  raid1 - if there are two drives.  We need to know the chunk size
7705          *  raid4 - trivial - just use a raid4 layout.
7706          *  raid6 - Providing it is a *_6 layout
7707          */
7708         if (mddev->level == 0)
7709                 return raid45_takeover_raid0(mddev, 5);
7710         if (mddev->level == 1)
7711                 return raid5_takeover_raid1(mddev);
7712         if (mddev->level == 4) {
7713                 mddev->new_layout = ALGORITHM_PARITY_N;
7714                 mddev->new_level = 5;
7715                 return setup_conf(mddev);
7716         }
7717         if (mddev->level == 6)
7718                 return raid5_takeover_raid6(mddev);
7719
7720         return ERR_PTR(-EINVAL);
7721 }
7722
7723 static void *raid4_takeover(struct mddev *mddev)
7724 {
7725         /* raid4 can take over:
7726          *  raid0 - if there is only one strip zone
7727          *  raid5 - if layout is right
7728          */
7729         if (mddev->level == 0)
7730                 return raid45_takeover_raid0(mddev, 4);
7731         if (mddev->level == 5 &&
7732             mddev->layout == ALGORITHM_PARITY_N) {
7733                 mddev->new_layout = 0;
7734                 mddev->new_level = 4;
7735                 return setup_conf(mddev);
7736         }
7737         return ERR_PTR(-EINVAL);
7738 }
7739
7740 static struct md_personality raid5_personality;
7741
7742 static void *raid6_takeover(struct mddev *mddev)
7743 {
7744         /* Currently can only take over a raid5.  We map the
7745          * personality to an equivalent raid6 personality
7746          * with the Q block at the end.
7747          */
7748         int new_layout;
7749
7750         if (mddev->pers != &raid5_personality)
7751                 return ERR_PTR(-EINVAL);
7752         if (mddev->degraded > 1)
7753                 return ERR_PTR(-EINVAL);
7754         if (mddev->raid_disks > 253)
7755                 return ERR_PTR(-EINVAL);
7756         if (mddev->raid_disks < 3)
7757                 return ERR_PTR(-EINVAL);
7758
7759         switch (mddev->layout) {
7760         case ALGORITHM_LEFT_ASYMMETRIC:
7761                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7762                 break;
7763         case ALGORITHM_RIGHT_ASYMMETRIC:
7764                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7765                 break;
7766         case ALGORITHM_LEFT_SYMMETRIC:
7767                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7768                 break;
7769         case ALGORITHM_RIGHT_SYMMETRIC:
7770                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7771                 break;
7772         case ALGORITHM_PARITY_0:
7773                 new_layout = ALGORITHM_PARITY_0_6;
7774                 break;
7775         case ALGORITHM_PARITY_N:
7776                 new_layout = ALGORITHM_PARITY_N;
7777                 break;
7778         default:
7779                 return ERR_PTR(-EINVAL);
7780         }
7781         mddev->new_level = 6;
7782         mddev->new_layout = new_layout;
7783         mddev->delta_disks = 1;
7784         mddev->raid_disks += 1;
7785         return setup_conf(mddev);
7786 }
7787
7788 static struct md_personality raid6_personality =
7789 {
7790         .name           = "raid6",
7791         .level          = 6,
7792         .owner          = THIS_MODULE,
7793         .make_request   = make_request,
7794         .run            = run,
7795         .free           = raid5_free,
7796         .status         = status,
7797         .error_handler  = error,
7798         .hot_add_disk   = raid5_add_disk,
7799         .hot_remove_disk= raid5_remove_disk,
7800         .spare_active   = raid5_spare_active,
7801         .sync_request   = sync_request,
7802         .resize         = raid5_resize,
7803         .size           = raid5_size,
7804         .check_reshape  = raid6_check_reshape,
7805         .start_reshape  = raid5_start_reshape,
7806         .finish_reshape = raid5_finish_reshape,
7807         .quiesce        = raid5_quiesce,
7808         .takeover       = raid6_takeover,
7809         .congested      = raid5_congested,
7810         .mergeable_bvec = raid5_mergeable_bvec,
7811 };
7812 static struct md_personality raid5_personality =
7813 {
7814         .name           = "raid5",
7815         .level          = 5,
7816         .owner          = THIS_MODULE,
7817         .make_request   = make_request,
7818         .run            = run,
7819         .free           = raid5_free,
7820         .status         = status,
7821         .error_handler  = error,
7822         .hot_add_disk   = raid5_add_disk,
7823         .hot_remove_disk= raid5_remove_disk,
7824         .spare_active   = raid5_spare_active,
7825         .sync_request   = sync_request,
7826         .resize         = raid5_resize,
7827         .size           = raid5_size,
7828         .check_reshape  = raid5_check_reshape,
7829         .start_reshape  = raid5_start_reshape,
7830         .finish_reshape = raid5_finish_reshape,
7831         .quiesce        = raid5_quiesce,
7832         .takeover       = raid5_takeover,
7833         .congested      = raid5_congested,
7834         .mergeable_bvec = raid5_mergeable_bvec,
7835 };
7836
7837 static struct md_personality raid4_personality =
7838 {
7839         .name           = "raid4",
7840         .level          = 4,
7841         .owner          = THIS_MODULE,
7842         .make_request   = make_request,
7843         .run            = run,
7844         .free           = raid5_free,
7845         .status         = status,
7846         .error_handler  = error,
7847         .hot_add_disk   = raid5_add_disk,
7848         .hot_remove_disk= raid5_remove_disk,
7849         .spare_active   = raid5_spare_active,
7850         .sync_request   = sync_request,
7851         .resize         = raid5_resize,
7852         .size           = raid5_size,
7853         .check_reshape  = raid5_check_reshape,
7854         .start_reshape  = raid5_start_reshape,
7855         .finish_reshape = raid5_finish_reshape,
7856         .quiesce        = raid5_quiesce,
7857         .takeover       = raid4_takeover,
7858         .congested      = raid5_congested,
7859         .mergeable_bvec = raid5_mergeable_bvec,
7860 };
7861
7862 static int __init raid5_init(void)
7863 {
7864         raid5_wq = alloc_workqueue("raid5wq",
7865                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7866         if (!raid5_wq)
7867                 return -ENOMEM;
7868         register_md_personality(&raid6_personality);
7869         register_md_personality(&raid5_personality);
7870         register_md_personality(&raid4_personality);
7871         return 0;
7872 }
7873
7874 static void raid5_exit(void)
7875 {
7876         unregister_md_personality(&raid6_personality);
7877         unregister_md_personality(&raid5_personality);
7878         unregister_md_personality(&raid4_personality);
7879         destroy_workqueue(raid5_wq);
7880 }
7881
7882 module_init(raid5_init);
7883 module_exit(raid5_exit);
7884 MODULE_LICENSE("GPL");
7885 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7886 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7887 MODULE_ALIAS("md-raid5");
7888 MODULE_ALIAS("md-raid4");
7889 MODULE_ALIAS("md-level-5");
7890 MODULE_ALIAS("md-level-4");
7891 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7892 MODULE_ALIAS("md-raid6");
7893 MODULE_ALIAS("md-level-6");
7894
7895 /* This used to be two separate modules, they were: */
7896 MODULE_ALIAS("raid5");
7897 MODULE_ALIAS("raid6");