md: Prevent IO hold during accessing to faulty raid5 array
[cascardo/linux.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74  * Stripe cache
75  */
76
77 #define NR_STRIPES              256
78 #define STRIPE_SIZE             PAGE_SIZE
79 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD            1
82 #define BYPASS_THRESHOLD        1
83 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK               (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH        8
86
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90         return &conf->stripe_hashtbl[hash];
91 }
92
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95         return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100         spin_lock_irq(conf->hash_locks + hash);
101         spin_lock(&conf->device_lock);
102 }
103
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106         spin_unlock(&conf->device_lock);
107         spin_unlock_irq(conf->hash_locks + hash);
108 }
109
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112         int i;
113         local_irq_disable();
114         spin_lock(conf->hash_locks);
115         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116                 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117         spin_lock(&conf->device_lock);
118 }
119
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122         int i;
123         spin_unlock(&conf->device_lock);
124         for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125                 spin_unlock(conf->hash_locks + i - 1);
126         local_irq_enable();
127 }
128
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130  * order without overlap.  There may be several bio's per stripe+device, and
131  * a bio could span several devices.
132  * When walking this list for a particular stripe+device, we must never proceed
133  * beyond a bio that extends past this device, as the next bio might no longer
134  * be valid.
135  * This function is used to determine the 'next' bio in the list, given the sector
136  * of the current stripe+device
137  */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140         int sectors = bio_sectors(bio);
141         if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142                 return bio->bi_next;
143         else
144                 return NULL;
145 }
146
147 /*
148  * We maintain a biased count of active stripes in the bottom 16 bits of
149  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150  */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154         return (atomic_read(segments) >> 16) & 0xffff;
155 }
156
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160         return atomic_sub_return(1, segments) & 0xffff;
161 }
162
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166         atomic_inc(segments);
167 }
168
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170         unsigned int cnt)
171 {
172         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173         int old, new;
174
175         do {
176                 old = atomic_read(segments);
177                 new = (old & 0xffff) | (cnt << 16);
178         } while (atomic_cmpxchg(segments, old, new) != old);
179 }
180
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184         atomic_set(segments, cnt);
185 }
186
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190         if (sh->ddf_layout)
191                 /* ddf always start from first device */
192                 return 0;
193         /* md starts just after Q block */
194         if (sh->qd_idx == sh->disks - 1)
195                 return 0;
196         else
197                 return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201         disk++;
202         return (disk < raid_disks) ? disk : 0;
203 }
204
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206  * We need to map each disk to a 'slot', where the data disks are slot
207  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208  * is raid_disks-1.  This help does that mapping.
209  */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211                              int *count, int syndrome_disks)
212 {
213         int slot = *count;
214
215         if (sh->ddf_layout)
216                 (*count)++;
217         if (idx == sh->pd_idx)
218                 return syndrome_disks;
219         if (idx == sh->qd_idx)
220                 return syndrome_disks + 1;
221         if (!sh->ddf_layout)
222                 (*count)++;
223         return slot;
224 }
225
226 static void return_io(struct bio_list *return_bi)
227 {
228         struct bio *bi;
229         while ((bi = bio_list_pop(return_bi)) != NULL) {
230                 bi->bi_iter.bi_size = 0;
231                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
232                                          bi, 0);
233                 bio_endio(bi);
234         }
235 }
236
237 static void print_raid5_conf (struct r5conf *conf);
238
239 static int stripe_operations_active(struct stripe_head *sh)
240 {
241         return sh->check_state || sh->reconstruct_state ||
242                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
243                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
244 }
245
246 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
247 {
248         struct r5conf *conf = sh->raid_conf;
249         struct r5worker_group *group;
250         int thread_cnt;
251         int i, cpu = sh->cpu;
252
253         if (!cpu_online(cpu)) {
254                 cpu = cpumask_any(cpu_online_mask);
255                 sh->cpu = cpu;
256         }
257
258         if (list_empty(&sh->lru)) {
259                 struct r5worker_group *group;
260                 group = conf->worker_groups + cpu_to_group(cpu);
261                 list_add_tail(&sh->lru, &group->handle_list);
262                 group->stripes_cnt++;
263                 sh->group = group;
264         }
265
266         if (conf->worker_cnt_per_group == 0) {
267                 md_wakeup_thread(conf->mddev->thread);
268                 return;
269         }
270
271         group = conf->worker_groups + cpu_to_group(sh->cpu);
272
273         group->workers[0].working = true;
274         /* at least one worker should run to avoid race */
275         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
276
277         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
278         /* wakeup more workers */
279         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
280                 if (group->workers[i].working == false) {
281                         group->workers[i].working = true;
282                         queue_work_on(sh->cpu, raid5_wq,
283                                       &group->workers[i].work);
284                         thread_cnt--;
285                 }
286         }
287 }
288
289 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
290                               struct list_head *temp_inactive_list)
291 {
292         BUG_ON(!list_empty(&sh->lru));
293         BUG_ON(atomic_read(&conf->active_stripes)==0);
294         if (test_bit(STRIPE_HANDLE, &sh->state)) {
295                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
296                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
297                         list_add_tail(&sh->lru, &conf->delayed_list);
298                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
299                            sh->bm_seq - conf->seq_write > 0)
300                         list_add_tail(&sh->lru, &conf->bitmap_list);
301                 else {
302                         clear_bit(STRIPE_DELAYED, &sh->state);
303                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
304                         if (conf->worker_cnt_per_group == 0) {
305                                 list_add_tail(&sh->lru, &conf->handle_list);
306                         } else {
307                                 raid5_wakeup_stripe_thread(sh);
308                                 return;
309                         }
310                 }
311                 md_wakeup_thread(conf->mddev->thread);
312         } else {
313                 BUG_ON(stripe_operations_active(sh));
314                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
315                         if (atomic_dec_return(&conf->preread_active_stripes)
316                             < IO_THRESHOLD)
317                                 md_wakeup_thread(conf->mddev->thread);
318                 atomic_dec(&conf->active_stripes);
319                 if (!test_bit(STRIPE_EXPANDING, &sh->state))
320                         list_add_tail(&sh->lru, temp_inactive_list);
321         }
322 }
323
324 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
325                              struct list_head *temp_inactive_list)
326 {
327         if (atomic_dec_and_test(&sh->count))
328                 do_release_stripe(conf, sh, temp_inactive_list);
329 }
330
331 /*
332  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
333  *
334  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
335  * given time. Adding stripes only takes device lock, while deleting stripes
336  * only takes hash lock.
337  */
338 static void release_inactive_stripe_list(struct r5conf *conf,
339                                          struct list_head *temp_inactive_list,
340                                          int hash)
341 {
342         int size;
343         bool do_wakeup = false;
344         unsigned long flags;
345
346         if (hash == NR_STRIPE_HASH_LOCKS) {
347                 size = NR_STRIPE_HASH_LOCKS;
348                 hash = NR_STRIPE_HASH_LOCKS - 1;
349         } else
350                 size = 1;
351         while (size) {
352                 struct list_head *list = &temp_inactive_list[size - 1];
353
354                 /*
355                  * We don't hold any lock here yet, raid5_get_active_stripe() might
356                  * remove stripes from the list
357                  */
358                 if (!list_empty_careful(list)) {
359                         spin_lock_irqsave(conf->hash_locks + hash, flags);
360                         if (list_empty(conf->inactive_list + hash) &&
361                             !list_empty(list))
362                                 atomic_dec(&conf->empty_inactive_list_nr);
363                         list_splice_tail_init(list, conf->inactive_list + hash);
364                         do_wakeup = true;
365                         spin_unlock_irqrestore(conf->hash_locks + hash, flags);
366                 }
367                 size--;
368                 hash--;
369         }
370
371         if (do_wakeup) {
372                 wake_up(&conf->wait_for_stripe);
373                 if (atomic_read(&conf->active_stripes) == 0)
374                         wake_up(&conf->wait_for_quiescent);
375                 if (conf->retry_read_aligned)
376                         md_wakeup_thread(conf->mddev->thread);
377         }
378 }
379
380 /* should hold conf->device_lock already */
381 static int release_stripe_list(struct r5conf *conf,
382                                struct list_head *temp_inactive_list)
383 {
384         struct stripe_head *sh;
385         int count = 0;
386         struct llist_node *head;
387
388         head = llist_del_all(&conf->released_stripes);
389         head = llist_reverse_order(head);
390         while (head) {
391                 int hash;
392
393                 sh = llist_entry(head, struct stripe_head, release_list);
394                 head = llist_next(head);
395                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
396                 smp_mb();
397                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
398                 /*
399                  * Don't worry the bit is set here, because if the bit is set
400                  * again, the count is always > 1. This is true for
401                  * STRIPE_ON_UNPLUG_LIST bit too.
402                  */
403                 hash = sh->hash_lock_index;
404                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
405                 count++;
406         }
407
408         return count;
409 }
410
411 void raid5_release_stripe(struct stripe_head *sh)
412 {
413         struct r5conf *conf = sh->raid_conf;
414         unsigned long flags;
415         struct list_head list;
416         int hash;
417         bool wakeup;
418
419         /* Avoid release_list until the last reference.
420          */
421         if (atomic_add_unless(&sh->count, -1, 1))
422                 return;
423
424         if (unlikely(!conf->mddev->thread) ||
425                 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
426                 goto slow_path;
427         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
428         if (wakeup)
429                 md_wakeup_thread(conf->mddev->thread);
430         return;
431 slow_path:
432         local_irq_save(flags);
433         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
434         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
435                 INIT_LIST_HEAD(&list);
436                 hash = sh->hash_lock_index;
437                 do_release_stripe(conf, sh, &list);
438                 spin_unlock(&conf->device_lock);
439                 release_inactive_stripe_list(conf, &list, hash);
440         }
441         local_irq_restore(flags);
442 }
443
444 static inline void remove_hash(struct stripe_head *sh)
445 {
446         pr_debug("remove_hash(), stripe %llu\n",
447                 (unsigned long long)sh->sector);
448
449         hlist_del_init(&sh->hash);
450 }
451
452 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
453 {
454         struct hlist_head *hp = stripe_hash(conf, sh->sector);
455
456         pr_debug("insert_hash(), stripe %llu\n",
457                 (unsigned long long)sh->sector);
458
459         hlist_add_head(&sh->hash, hp);
460 }
461
462 /* find an idle stripe, make sure it is unhashed, and return it. */
463 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
464 {
465         struct stripe_head *sh = NULL;
466         struct list_head *first;
467
468         if (list_empty(conf->inactive_list + hash))
469                 goto out;
470         first = (conf->inactive_list + hash)->next;
471         sh = list_entry(first, struct stripe_head, lru);
472         list_del_init(first);
473         remove_hash(sh);
474         atomic_inc(&conf->active_stripes);
475         BUG_ON(hash != sh->hash_lock_index);
476         if (list_empty(conf->inactive_list + hash))
477                 atomic_inc(&conf->empty_inactive_list_nr);
478 out:
479         return sh;
480 }
481
482 static void shrink_buffers(struct stripe_head *sh)
483 {
484         struct page *p;
485         int i;
486         int num = sh->raid_conf->pool_size;
487
488         for (i = 0; i < num ; i++) {
489                 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
490                 p = sh->dev[i].page;
491                 if (!p)
492                         continue;
493                 sh->dev[i].page = NULL;
494                 put_page(p);
495         }
496 }
497
498 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
499 {
500         int i;
501         int num = sh->raid_conf->pool_size;
502
503         for (i = 0; i < num; i++) {
504                 struct page *page;
505
506                 if (!(page = alloc_page(gfp))) {
507                         return 1;
508                 }
509                 sh->dev[i].page = page;
510                 sh->dev[i].orig_page = page;
511         }
512         return 0;
513 }
514
515 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
516 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
517                             struct stripe_head *sh);
518
519 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
520 {
521         struct r5conf *conf = sh->raid_conf;
522         int i, seq;
523
524         BUG_ON(atomic_read(&sh->count) != 0);
525         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
526         BUG_ON(stripe_operations_active(sh));
527         BUG_ON(sh->batch_head);
528
529         pr_debug("init_stripe called, stripe %llu\n",
530                 (unsigned long long)sector);
531 retry:
532         seq = read_seqcount_begin(&conf->gen_lock);
533         sh->generation = conf->generation - previous;
534         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
535         sh->sector = sector;
536         stripe_set_idx(sector, conf, previous, sh);
537         sh->state = 0;
538
539         for (i = sh->disks; i--; ) {
540                 struct r5dev *dev = &sh->dev[i];
541
542                 if (dev->toread || dev->read || dev->towrite || dev->written ||
543                     test_bit(R5_LOCKED, &dev->flags)) {
544                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
545                                (unsigned long long)sh->sector, i, dev->toread,
546                                dev->read, dev->towrite, dev->written,
547                                test_bit(R5_LOCKED, &dev->flags));
548                         WARN_ON(1);
549                 }
550                 dev->flags = 0;
551                 raid5_build_block(sh, i, previous);
552         }
553         if (read_seqcount_retry(&conf->gen_lock, seq))
554                 goto retry;
555         sh->overwrite_disks = 0;
556         insert_hash(conf, sh);
557         sh->cpu = smp_processor_id();
558         set_bit(STRIPE_BATCH_READY, &sh->state);
559 }
560
561 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
562                                          short generation)
563 {
564         struct stripe_head *sh;
565
566         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
567         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
568                 if (sh->sector == sector && sh->generation == generation)
569                         return sh;
570         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
571         return NULL;
572 }
573
574 /*
575  * Need to check if array has failed when deciding whether to:
576  *  - start an array
577  *  - remove non-faulty devices
578  *  - add a spare
579  *  - allow a reshape
580  * This determination is simple when no reshape is happening.
581  * However if there is a reshape, we need to carefully check
582  * both the before and after sections.
583  * This is because some failed devices may only affect one
584  * of the two sections, and some non-in_sync devices may
585  * be insync in the section most affected by failed devices.
586  */
587 static int calc_degraded(struct r5conf *conf)
588 {
589         int degraded, degraded2;
590         int i;
591
592         rcu_read_lock();
593         degraded = 0;
594         for (i = 0; i < conf->previous_raid_disks; i++) {
595                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
596                 if (rdev && test_bit(Faulty, &rdev->flags))
597                         rdev = rcu_dereference(conf->disks[i].replacement);
598                 if (!rdev || test_bit(Faulty, &rdev->flags))
599                         degraded++;
600                 else if (test_bit(In_sync, &rdev->flags))
601                         ;
602                 else
603                         /* not in-sync or faulty.
604                          * If the reshape increases the number of devices,
605                          * this is being recovered by the reshape, so
606                          * this 'previous' section is not in_sync.
607                          * If the number of devices is being reduced however,
608                          * the device can only be part of the array if
609                          * we are reverting a reshape, so this section will
610                          * be in-sync.
611                          */
612                         if (conf->raid_disks >= conf->previous_raid_disks)
613                                 degraded++;
614         }
615         rcu_read_unlock();
616         if (conf->raid_disks == conf->previous_raid_disks)
617                 return degraded;
618         rcu_read_lock();
619         degraded2 = 0;
620         for (i = 0; i < conf->raid_disks; i++) {
621                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
622                 if (rdev && test_bit(Faulty, &rdev->flags))
623                         rdev = rcu_dereference(conf->disks[i].replacement);
624                 if (!rdev || test_bit(Faulty, &rdev->flags))
625                         degraded2++;
626                 else if (test_bit(In_sync, &rdev->flags))
627                         ;
628                 else
629                         /* not in-sync or faulty.
630                          * If reshape increases the number of devices, this
631                          * section has already been recovered, else it
632                          * almost certainly hasn't.
633                          */
634                         if (conf->raid_disks <= conf->previous_raid_disks)
635                                 degraded2++;
636         }
637         rcu_read_unlock();
638         if (degraded2 > degraded)
639                 return degraded2;
640         return degraded;
641 }
642
643 static int has_failed(struct r5conf *conf)
644 {
645         int degraded;
646
647         if (conf->mddev->reshape_position == MaxSector)
648                 return conf->mddev->degraded > conf->max_degraded;
649
650         degraded = calc_degraded(conf);
651         if (degraded > conf->max_degraded)
652                 return 1;
653         return 0;
654 }
655
656 struct stripe_head *
657 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
658                         int previous, int noblock, int noquiesce)
659 {
660         struct stripe_head *sh;
661         int hash = stripe_hash_locks_hash(sector);
662         int inc_empty_inactive_list_flag;
663
664         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
665
666         spin_lock_irq(conf->hash_locks + hash);
667
668         do {
669                 wait_event_lock_irq(conf->wait_for_quiescent,
670                                     conf->quiesce == 0 || noquiesce,
671                                     *(conf->hash_locks + hash));
672                 sh = __find_stripe(conf, sector, conf->generation - previous);
673                 if (!sh) {
674                         if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
675                                 sh = get_free_stripe(conf, hash);
676                                 if (!sh && !test_bit(R5_DID_ALLOC,
677                                                      &conf->cache_state))
678                                         set_bit(R5_ALLOC_MORE,
679                                                 &conf->cache_state);
680                         }
681                         if (noblock && sh == NULL)
682                                 break;
683                         if (!sh) {
684                                 set_bit(R5_INACTIVE_BLOCKED,
685                                         &conf->cache_state);
686                                 wait_event_lock_irq(
687                                         conf->wait_for_stripe,
688                                         !list_empty(conf->inactive_list + hash) &&
689                                         (atomic_read(&conf->active_stripes)
690                                          < (conf->max_nr_stripes * 3 / 4)
691                                          || !test_bit(R5_INACTIVE_BLOCKED,
692                                                       &conf->cache_state)),
693                                         *(conf->hash_locks + hash));
694                                 clear_bit(R5_INACTIVE_BLOCKED,
695                                           &conf->cache_state);
696                         } else {
697                                 init_stripe(sh, sector, previous);
698                                 atomic_inc(&sh->count);
699                         }
700                 } else if (!atomic_inc_not_zero(&sh->count)) {
701                         spin_lock(&conf->device_lock);
702                         if (!atomic_read(&sh->count)) {
703                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
704                                         atomic_inc(&conf->active_stripes);
705                                 BUG_ON(list_empty(&sh->lru) &&
706                                        !test_bit(STRIPE_EXPANDING, &sh->state));
707                                 inc_empty_inactive_list_flag = 0;
708                                 if (!list_empty(conf->inactive_list + hash))
709                                         inc_empty_inactive_list_flag = 1;
710                                 list_del_init(&sh->lru);
711                                 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
712                                         atomic_inc(&conf->empty_inactive_list_nr);
713                                 if (sh->group) {
714                                         sh->group->stripes_cnt--;
715                                         sh->group = NULL;
716                                 }
717                         }
718                         atomic_inc(&sh->count);
719                         spin_unlock(&conf->device_lock);
720                 }
721         } while (sh == NULL);
722
723         spin_unlock_irq(conf->hash_locks + hash);
724         return sh;
725 }
726
727 static bool is_full_stripe_write(struct stripe_head *sh)
728 {
729         BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
730         return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
731 }
732
733 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
734 {
735         local_irq_disable();
736         if (sh1 > sh2) {
737                 spin_lock(&sh2->stripe_lock);
738                 spin_lock_nested(&sh1->stripe_lock, 1);
739         } else {
740                 spin_lock(&sh1->stripe_lock);
741                 spin_lock_nested(&sh2->stripe_lock, 1);
742         }
743 }
744
745 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
746 {
747         spin_unlock(&sh1->stripe_lock);
748         spin_unlock(&sh2->stripe_lock);
749         local_irq_enable();
750 }
751
752 /* Only freshly new full stripe normal write stripe can be added to a batch list */
753 static bool stripe_can_batch(struct stripe_head *sh)
754 {
755         struct r5conf *conf = sh->raid_conf;
756
757         if (conf->log)
758                 return false;
759         return test_bit(STRIPE_BATCH_READY, &sh->state) &&
760                 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
761                 is_full_stripe_write(sh);
762 }
763
764 /* we only do back search */
765 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
766 {
767         struct stripe_head *head;
768         sector_t head_sector, tmp_sec;
769         int hash;
770         int dd_idx;
771         int inc_empty_inactive_list_flag;
772
773         /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
774         tmp_sec = sh->sector;
775         if (!sector_div(tmp_sec, conf->chunk_sectors))
776                 return;
777         head_sector = sh->sector - STRIPE_SECTORS;
778
779         hash = stripe_hash_locks_hash(head_sector);
780         spin_lock_irq(conf->hash_locks + hash);
781         head = __find_stripe(conf, head_sector, conf->generation);
782         if (head && !atomic_inc_not_zero(&head->count)) {
783                 spin_lock(&conf->device_lock);
784                 if (!atomic_read(&head->count)) {
785                         if (!test_bit(STRIPE_HANDLE, &head->state))
786                                 atomic_inc(&conf->active_stripes);
787                         BUG_ON(list_empty(&head->lru) &&
788                                !test_bit(STRIPE_EXPANDING, &head->state));
789                         inc_empty_inactive_list_flag = 0;
790                         if (!list_empty(conf->inactive_list + hash))
791                                 inc_empty_inactive_list_flag = 1;
792                         list_del_init(&head->lru);
793                         if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
794                                 atomic_inc(&conf->empty_inactive_list_nr);
795                         if (head->group) {
796                                 head->group->stripes_cnt--;
797                                 head->group = NULL;
798                         }
799                 }
800                 atomic_inc(&head->count);
801                 spin_unlock(&conf->device_lock);
802         }
803         spin_unlock_irq(conf->hash_locks + hash);
804
805         if (!head)
806                 return;
807         if (!stripe_can_batch(head))
808                 goto out;
809
810         lock_two_stripes(head, sh);
811         /* clear_batch_ready clear the flag */
812         if (!stripe_can_batch(head) || !stripe_can_batch(sh))
813                 goto unlock_out;
814
815         if (sh->batch_head)
816                 goto unlock_out;
817
818         dd_idx = 0;
819         while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
820                 dd_idx++;
821         if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw ||
822             bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
823                 goto unlock_out;
824
825         if (head->batch_head) {
826                 spin_lock(&head->batch_head->batch_lock);
827                 /* This batch list is already running */
828                 if (!stripe_can_batch(head)) {
829                         spin_unlock(&head->batch_head->batch_lock);
830                         goto unlock_out;
831                 }
832
833                 /*
834                  * at this point, head's BATCH_READY could be cleared, but we
835                  * can still add the stripe to batch list
836                  */
837                 list_add(&sh->batch_list, &head->batch_list);
838                 spin_unlock(&head->batch_head->batch_lock);
839
840                 sh->batch_head = head->batch_head;
841         } else {
842                 head->batch_head = head;
843                 sh->batch_head = head->batch_head;
844                 spin_lock(&head->batch_lock);
845                 list_add_tail(&sh->batch_list, &head->batch_list);
846                 spin_unlock(&head->batch_lock);
847         }
848
849         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
850                 if (atomic_dec_return(&conf->preread_active_stripes)
851                     < IO_THRESHOLD)
852                         md_wakeup_thread(conf->mddev->thread);
853
854         if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
855                 int seq = sh->bm_seq;
856                 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
857                     sh->batch_head->bm_seq > seq)
858                         seq = sh->batch_head->bm_seq;
859                 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
860                 sh->batch_head->bm_seq = seq;
861         }
862
863         atomic_inc(&sh->count);
864 unlock_out:
865         unlock_two_stripes(head, sh);
866 out:
867         raid5_release_stripe(head);
868 }
869
870 /* Determine if 'data_offset' or 'new_data_offset' should be used
871  * in this stripe_head.
872  */
873 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
874 {
875         sector_t progress = conf->reshape_progress;
876         /* Need a memory barrier to make sure we see the value
877          * of conf->generation, or ->data_offset that was set before
878          * reshape_progress was updated.
879          */
880         smp_rmb();
881         if (progress == MaxSector)
882                 return 0;
883         if (sh->generation == conf->generation - 1)
884                 return 0;
885         /* We are in a reshape, and this is a new-generation stripe,
886          * so use new_data_offset.
887          */
888         return 1;
889 }
890
891 static void
892 raid5_end_read_request(struct bio *bi);
893 static void
894 raid5_end_write_request(struct bio *bi);
895
896 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
897 {
898         struct r5conf *conf = sh->raid_conf;
899         int i, disks = sh->disks;
900         struct stripe_head *head_sh = sh;
901
902         might_sleep();
903
904         if (r5l_write_stripe(conf->log, sh) == 0)
905                 return;
906         for (i = disks; i--; ) {
907                 int op, op_flags = 0;
908                 int replace_only = 0;
909                 struct bio *bi, *rbi;
910                 struct md_rdev *rdev, *rrdev = NULL;
911
912                 sh = head_sh;
913                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
914                         op = REQ_OP_WRITE;
915                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
916                                 op_flags = WRITE_FUA;
917                         if (test_bit(R5_Discard, &sh->dev[i].flags))
918                                 op = REQ_OP_DISCARD;
919                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
920                         op = REQ_OP_READ;
921                 else if (test_and_clear_bit(R5_WantReplace,
922                                             &sh->dev[i].flags)) {
923                         op = REQ_OP_WRITE;
924                         replace_only = 1;
925                 } else
926                         continue;
927                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
928                         op_flags |= REQ_SYNC;
929
930 again:
931                 bi = &sh->dev[i].req;
932                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
933
934                 rcu_read_lock();
935                 rrdev = rcu_dereference(conf->disks[i].replacement);
936                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
937                 rdev = rcu_dereference(conf->disks[i].rdev);
938                 if (!rdev) {
939                         rdev = rrdev;
940                         rrdev = NULL;
941                 }
942                 if (op_is_write(op)) {
943                         if (replace_only)
944                                 rdev = NULL;
945                         if (rdev == rrdev)
946                                 /* We raced and saw duplicates */
947                                 rrdev = NULL;
948                 } else {
949                         if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
950                                 rdev = rrdev;
951                         rrdev = NULL;
952                 }
953
954                 if (rdev && test_bit(Faulty, &rdev->flags))
955                         rdev = NULL;
956                 if (rdev)
957                         atomic_inc(&rdev->nr_pending);
958                 if (rrdev && test_bit(Faulty, &rrdev->flags))
959                         rrdev = NULL;
960                 if (rrdev)
961                         atomic_inc(&rrdev->nr_pending);
962                 rcu_read_unlock();
963
964                 /* We have already checked bad blocks for reads.  Now
965                  * need to check for writes.  We never accept write errors
966                  * on the replacement, so we don't to check rrdev.
967                  */
968                 while (op_is_write(op) && rdev &&
969                        test_bit(WriteErrorSeen, &rdev->flags)) {
970                         sector_t first_bad;
971                         int bad_sectors;
972                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
973                                               &first_bad, &bad_sectors);
974                         if (!bad)
975                                 break;
976
977                         if (bad < 0) {
978                                 set_bit(BlockedBadBlocks, &rdev->flags);
979                                 if (!conf->mddev->external &&
980                                     conf->mddev->flags) {
981                                         /* It is very unlikely, but we might
982                                          * still need to write out the
983                                          * bad block log - better give it
984                                          * a chance*/
985                                         md_check_recovery(conf->mddev);
986                                 }
987                                 /*
988                                  * Because md_wait_for_blocked_rdev
989                                  * will dec nr_pending, we must
990                                  * increment it first.
991                                  */
992                                 atomic_inc(&rdev->nr_pending);
993                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
994                         } else {
995                                 /* Acknowledged bad block - skip the write */
996                                 rdev_dec_pending(rdev, conf->mddev);
997                                 rdev = NULL;
998                         }
999                 }
1000
1001                 if (rdev) {
1002                         if (s->syncing || s->expanding || s->expanded
1003                             || s->replacing)
1004                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1005
1006                         set_bit(STRIPE_IO_STARTED, &sh->state);
1007
1008                         bio_reset(bi);
1009                         bi->bi_bdev = rdev->bdev;
1010                         bio_set_op_attrs(bi, op, op_flags);
1011                         bi->bi_end_io = op_is_write(op)
1012                                 ? raid5_end_write_request
1013                                 : raid5_end_read_request;
1014                         bi->bi_private = sh;
1015
1016                         pr_debug("%s: for %llu schedule op %d on disc %d\n",
1017                                 __func__, (unsigned long long)sh->sector,
1018                                 bi->bi_rw, i);
1019                         atomic_inc(&sh->count);
1020                         if (sh != head_sh)
1021                                 atomic_inc(&head_sh->count);
1022                         if (use_new_offset(conf, sh))
1023                                 bi->bi_iter.bi_sector = (sh->sector
1024                                                  + rdev->new_data_offset);
1025                         else
1026                                 bi->bi_iter.bi_sector = (sh->sector
1027                                                  + rdev->data_offset);
1028                         if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1029                                 bi->bi_rw |= REQ_NOMERGE;
1030
1031                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1032                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1033                         sh->dev[i].vec.bv_page = sh->dev[i].page;
1034                         bi->bi_vcnt = 1;
1035                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1036                         bi->bi_io_vec[0].bv_offset = 0;
1037                         bi->bi_iter.bi_size = STRIPE_SIZE;
1038                         /*
1039                          * If this is discard request, set bi_vcnt 0. We don't
1040                          * want to confuse SCSI because SCSI will replace payload
1041                          */
1042                         if (op == REQ_OP_DISCARD)
1043                                 bi->bi_vcnt = 0;
1044                         if (rrdev)
1045                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1046
1047                         if (conf->mddev->gendisk)
1048                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1049                                                       bi, disk_devt(conf->mddev->gendisk),
1050                                                       sh->dev[i].sector);
1051                         generic_make_request(bi);
1052                 }
1053                 if (rrdev) {
1054                         if (s->syncing || s->expanding || s->expanded
1055                             || s->replacing)
1056                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1057
1058                         set_bit(STRIPE_IO_STARTED, &sh->state);
1059
1060                         bio_reset(rbi);
1061                         rbi->bi_bdev = rrdev->bdev;
1062                         bio_set_op_attrs(rbi, op, op_flags);
1063                         BUG_ON(!op_is_write(op));
1064                         rbi->bi_end_io = raid5_end_write_request;
1065                         rbi->bi_private = sh;
1066
1067                         pr_debug("%s: for %llu schedule op %d on "
1068                                  "replacement disc %d\n",
1069                                 __func__, (unsigned long long)sh->sector,
1070                                 rbi->bi_rw, i);
1071                         atomic_inc(&sh->count);
1072                         if (sh != head_sh)
1073                                 atomic_inc(&head_sh->count);
1074                         if (use_new_offset(conf, sh))
1075                                 rbi->bi_iter.bi_sector = (sh->sector
1076                                                   + rrdev->new_data_offset);
1077                         else
1078                                 rbi->bi_iter.bi_sector = (sh->sector
1079                                                   + rrdev->data_offset);
1080                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1081                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1082                         sh->dev[i].rvec.bv_page = sh->dev[i].page;
1083                         rbi->bi_vcnt = 1;
1084                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1085                         rbi->bi_io_vec[0].bv_offset = 0;
1086                         rbi->bi_iter.bi_size = STRIPE_SIZE;
1087                         /*
1088                          * If this is discard request, set bi_vcnt 0. We don't
1089                          * want to confuse SCSI because SCSI will replace payload
1090                          */
1091                         if (op == REQ_OP_DISCARD)
1092                                 rbi->bi_vcnt = 0;
1093                         if (conf->mddev->gendisk)
1094                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1095                                                       rbi, disk_devt(conf->mddev->gendisk),
1096                                                       sh->dev[i].sector);
1097                         generic_make_request(rbi);
1098                 }
1099                 if (!rdev && !rrdev) {
1100                         if (op_is_write(op))
1101                                 set_bit(STRIPE_DEGRADED, &sh->state);
1102                         pr_debug("skip op %d on disc %d for sector %llu\n",
1103                                 bi->bi_rw, i, (unsigned long long)sh->sector);
1104                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1105                         set_bit(STRIPE_HANDLE, &sh->state);
1106                 }
1107
1108                 if (!head_sh->batch_head)
1109                         continue;
1110                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1111                                       batch_list);
1112                 if (sh != head_sh)
1113                         goto again;
1114         }
1115 }
1116
1117 static struct dma_async_tx_descriptor *
1118 async_copy_data(int frombio, struct bio *bio, struct page **page,
1119         sector_t sector, struct dma_async_tx_descriptor *tx,
1120         struct stripe_head *sh)
1121 {
1122         struct bio_vec bvl;
1123         struct bvec_iter iter;
1124         struct page *bio_page;
1125         int page_offset;
1126         struct async_submit_ctl submit;
1127         enum async_tx_flags flags = 0;
1128
1129         if (bio->bi_iter.bi_sector >= sector)
1130                 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1131         else
1132                 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1133
1134         if (frombio)
1135                 flags |= ASYNC_TX_FENCE;
1136         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1137
1138         bio_for_each_segment(bvl, bio, iter) {
1139                 int len = bvl.bv_len;
1140                 int clen;
1141                 int b_offset = 0;
1142
1143                 if (page_offset < 0) {
1144                         b_offset = -page_offset;
1145                         page_offset += b_offset;
1146                         len -= b_offset;
1147                 }
1148
1149                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1150                         clen = STRIPE_SIZE - page_offset;
1151                 else
1152                         clen = len;
1153
1154                 if (clen > 0) {
1155                         b_offset += bvl.bv_offset;
1156                         bio_page = bvl.bv_page;
1157                         if (frombio) {
1158                                 if (sh->raid_conf->skip_copy &&
1159                                     b_offset == 0 && page_offset == 0 &&
1160                                     clen == STRIPE_SIZE)
1161                                         *page = bio_page;
1162                                 else
1163                                         tx = async_memcpy(*page, bio_page, page_offset,
1164                                                   b_offset, clen, &submit);
1165                         } else
1166                                 tx = async_memcpy(bio_page, *page, b_offset,
1167                                                   page_offset, clen, &submit);
1168                 }
1169                 /* chain the operations */
1170                 submit.depend_tx = tx;
1171
1172                 if (clen < len) /* hit end of page */
1173                         break;
1174                 page_offset +=  len;
1175         }
1176
1177         return tx;
1178 }
1179
1180 static void ops_complete_biofill(void *stripe_head_ref)
1181 {
1182         struct stripe_head *sh = stripe_head_ref;
1183         struct bio_list return_bi = BIO_EMPTY_LIST;
1184         int i;
1185
1186         pr_debug("%s: stripe %llu\n", __func__,
1187                 (unsigned long long)sh->sector);
1188
1189         /* clear completed biofills */
1190         for (i = sh->disks; i--; ) {
1191                 struct r5dev *dev = &sh->dev[i];
1192
1193                 /* acknowledge completion of a biofill operation */
1194                 /* and check if we need to reply to a read request,
1195                  * new R5_Wantfill requests are held off until
1196                  * !STRIPE_BIOFILL_RUN
1197                  */
1198                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1199                         struct bio *rbi, *rbi2;
1200
1201                         BUG_ON(!dev->read);
1202                         rbi = dev->read;
1203                         dev->read = NULL;
1204                         while (rbi && rbi->bi_iter.bi_sector <
1205                                 dev->sector + STRIPE_SECTORS) {
1206                                 rbi2 = r5_next_bio(rbi, dev->sector);
1207                                 if (!raid5_dec_bi_active_stripes(rbi))
1208                                         bio_list_add(&return_bi, rbi);
1209                                 rbi = rbi2;
1210                         }
1211                 }
1212         }
1213         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1214
1215         return_io(&return_bi);
1216
1217         set_bit(STRIPE_HANDLE, &sh->state);
1218         raid5_release_stripe(sh);
1219 }
1220
1221 static void ops_run_biofill(struct stripe_head *sh)
1222 {
1223         struct dma_async_tx_descriptor *tx = NULL;
1224         struct async_submit_ctl submit;
1225         int i;
1226
1227         BUG_ON(sh->batch_head);
1228         pr_debug("%s: stripe %llu\n", __func__,
1229                 (unsigned long long)sh->sector);
1230
1231         for (i = sh->disks; i--; ) {
1232                 struct r5dev *dev = &sh->dev[i];
1233                 if (test_bit(R5_Wantfill, &dev->flags)) {
1234                         struct bio *rbi;
1235                         spin_lock_irq(&sh->stripe_lock);
1236                         dev->read = rbi = dev->toread;
1237                         dev->toread = NULL;
1238                         spin_unlock_irq(&sh->stripe_lock);
1239                         while (rbi && rbi->bi_iter.bi_sector <
1240                                 dev->sector + STRIPE_SECTORS) {
1241                                 tx = async_copy_data(0, rbi, &dev->page,
1242                                         dev->sector, tx, sh);
1243                                 rbi = r5_next_bio(rbi, dev->sector);
1244                         }
1245                 }
1246         }
1247
1248         atomic_inc(&sh->count);
1249         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1250         async_trigger_callback(&submit);
1251 }
1252
1253 static void mark_target_uptodate(struct stripe_head *sh, int target)
1254 {
1255         struct r5dev *tgt;
1256
1257         if (target < 0)
1258                 return;
1259
1260         tgt = &sh->dev[target];
1261         set_bit(R5_UPTODATE, &tgt->flags);
1262         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1263         clear_bit(R5_Wantcompute, &tgt->flags);
1264 }
1265
1266 static void ops_complete_compute(void *stripe_head_ref)
1267 {
1268         struct stripe_head *sh = stripe_head_ref;
1269
1270         pr_debug("%s: stripe %llu\n", __func__,
1271                 (unsigned long long)sh->sector);
1272
1273         /* mark the computed target(s) as uptodate */
1274         mark_target_uptodate(sh, sh->ops.target);
1275         mark_target_uptodate(sh, sh->ops.target2);
1276
1277         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1278         if (sh->check_state == check_state_compute_run)
1279                 sh->check_state = check_state_compute_result;
1280         set_bit(STRIPE_HANDLE, &sh->state);
1281         raid5_release_stripe(sh);
1282 }
1283
1284 /* return a pointer to the address conversion region of the scribble buffer */
1285 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1286                                  struct raid5_percpu *percpu, int i)
1287 {
1288         void *addr;
1289
1290         addr = flex_array_get(percpu->scribble, i);
1291         return addr + sizeof(struct page *) * (sh->disks + 2);
1292 }
1293
1294 /* return a pointer to the address conversion region of the scribble buffer */
1295 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1296 {
1297         void *addr;
1298
1299         addr = flex_array_get(percpu->scribble, i);
1300         return addr;
1301 }
1302
1303 static struct dma_async_tx_descriptor *
1304 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1305 {
1306         int disks = sh->disks;
1307         struct page **xor_srcs = to_addr_page(percpu, 0);
1308         int target = sh->ops.target;
1309         struct r5dev *tgt = &sh->dev[target];
1310         struct page *xor_dest = tgt->page;
1311         int count = 0;
1312         struct dma_async_tx_descriptor *tx;
1313         struct async_submit_ctl submit;
1314         int i;
1315
1316         BUG_ON(sh->batch_head);
1317
1318         pr_debug("%s: stripe %llu block: %d\n",
1319                 __func__, (unsigned long long)sh->sector, target);
1320         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1321
1322         for (i = disks; i--; )
1323                 if (i != target)
1324                         xor_srcs[count++] = sh->dev[i].page;
1325
1326         atomic_inc(&sh->count);
1327
1328         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1329                           ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1330         if (unlikely(count == 1))
1331                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1332         else
1333                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1334
1335         return tx;
1336 }
1337
1338 /* set_syndrome_sources - populate source buffers for gen_syndrome
1339  * @srcs - (struct page *) array of size sh->disks
1340  * @sh - stripe_head to parse
1341  *
1342  * Populates srcs in proper layout order for the stripe and returns the
1343  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1344  * destination buffer is recorded in srcs[count] and the Q destination
1345  * is recorded in srcs[count+1]].
1346  */
1347 static int set_syndrome_sources(struct page **srcs,
1348                                 struct stripe_head *sh,
1349                                 int srctype)
1350 {
1351         int disks = sh->disks;
1352         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1353         int d0_idx = raid6_d0(sh);
1354         int count;
1355         int i;
1356
1357         for (i = 0; i < disks; i++)
1358                 srcs[i] = NULL;
1359
1360         count = 0;
1361         i = d0_idx;
1362         do {
1363                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1364                 struct r5dev *dev = &sh->dev[i];
1365
1366                 if (i == sh->qd_idx || i == sh->pd_idx ||
1367                     (srctype == SYNDROME_SRC_ALL) ||
1368                     (srctype == SYNDROME_SRC_WANT_DRAIN &&
1369                      test_bit(R5_Wantdrain, &dev->flags)) ||
1370                     (srctype == SYNDROME_SRC_WRITTEN &&
1371                      dev->written))
1372                         srcs[slot] = sh->dev[i].page;
1373                 i = raid6_next_disk(i, disks);
1374         } while (i != d0_idx);
1375
1376         return syndrome_disks;
1377 }
1378
1379 static struct dma_async_tx_descriptor *
1380 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1381 {
1382         int disks = sh->disks;
1383         struct page **blocks = to_addr_page(percpu, 0);
1384         int target;
1385         int qd_idx = sh->qd_idx;
1386         struct dma_async_tx_descriptor *tx;
1387         struct async_submit_ctl submit;
1388         struct r5dev *tgt;
1389         struct page *dest;
1390         int i;
1391         int count;
1392
1393         BUG_ON(sh->batch_head);
1394         if (sh->ops.target < 0)
1395                 target = sh->ops.target2;
1396         else if (sh->ops.target2 < 0)
1397                 target = sh->ops.target;
1398         else
1399                 /* we should only have one valid target */
1400                 BUG();
1401         BUG_ON(target < 0);
1402         pr_debug("%s: stripe %llu block: %d\n",
1403                 __func__, (unsigned long long)sh->sector, target);
1404
1405         tgt = &sh->dev[target];
1406         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1407         dest = tgt->page;
1408
1409         atomic_inc(&sh->count);
1410
1411         if (target == qd_idx) {
1412                 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1413                 blocks[count] = NULL; /* regenerating p is not necessary */
1414                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1415                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1416                                   ops_complete_compute, sh,
1417                                   to_addr_conv(sh, percpu, 0));
1418                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1419         } else {
1420                 /* Compute any data- or p-drive using XOR */
1421                 count = 0;
1422                 for (i = disks; i-- ; ) {
1423                         if (i == target || i == qd_idx)
1424                                 continue;
1425                         blocks[count++] = sh->dev[i].page;
1426                 }
1427
1428                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1429                                   NULL, ops_complete_compute, sh,
1430                                   to_addr_conv(sh, percpu, 0));
1431                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1432         }
1433
1434         return tx;
1435 }
1436
1437 static struct dma_async_tx_descriptor *
1438 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1439 {
1440         int i, count, disks = sh->disks;
1441         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1442         int d0_idx = raid6_d0(sh);
1443         int faila = -1, failb = -1;
1444         int target = sh->ops.target;
1445         int target2 = sh->ops.target2;
1446         struct r5dev *tgt = &sh->dev[target];
1447         struct r5dev *tgt2 = &sh->dev[target2];
1448         struct dma_async_tx_descriptor *tx;
1449         struct page **blocks = to_addr_page(percpu, 0);
1450         struct async_submit_ctl submit;
1451
1452         BUG_ON(sh->batch_head);
1453         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1454                  __func__, (unsigned long long)sh->sector, target, target2);
1455         BUG_ON(target < 0 || target2 < 0);
1456         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1457         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1458
1459         /* we need to open-code set_syndrome_sources to handle the
1460          * slot number conversion for 'faila' and 'failb'
1461          */
1462         for (i = 0; i < disks ; i++)
1463                 blocks[i] = NULL;
1464         count = 0;
1465         i = d0_idx;
1466         do {
1467                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1468
1469                 blocks[slot] = sh->dev[i].page;
1470
1471                 if (i == target)
1472                         faila = slot;
1473                 if (i == target2)
1474                         failb = slot;
1475                 i = raid6_next_disk(i, disks);
1476         } while (i != d0_idx);
1477
1478         BUG_ON(faila == failb);
1479         if (failb < faila)
1480                 swap(faila, failb);
1481         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1482                  __func__, (unsigned long long)sh->sector, faila, failb);
1483
1484         atomic_inc(&sh->count);
1485
1486         if (failb == syndrome_disks+1) {
1487                 /* Q disk is one of the missing disks */
1488                 if (faila == syndrome_disks) {
1489                         /* Missing P+Q, just recompute */
1490                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1491                                           ops_complete_compute, sh,
1492                                           to_addr_conv(sh, percpu, 0));
1493                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1494                                                   STRIPE_SIZE, &submit);
1495                 } else {
1496                         struct page *dest;
1497                         int data_target;
1498                         int qd_idx = sh->qd_idx;
1499
1500                         /* Missing D+Q: recompute D from P, then recompute Q */
1501                         if (target == qd_idx)
1502                                 data_target = target2;
1503                         else
1504                                 data_target = target;
1505
1506                         count = 0;
1507                         for (i = disks; i-- ; ) {
1508                                 if (i == data_target || i == qd_idx)
1509                                         continue;
1510                                 blocks[count++] = sh->dev[i].page;
1511                         }
1512                         dest = sh->dev[data_target].page;
1513                         init_async_submit(&submit,
1514                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1515                                           NULL, NULL, NULL,
1516                                           to_addr_conv(sh, percpu, 0));
1517                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1518                                        &submit);
1519
1520                         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1521                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1522                                           ops_complete_compute, sh,
1523                                           to_addr_conv(sh, percpu, 0));
1524                         return async_gen_syndrome(blocks, 0, count+2,
1525                                                   STRIPE_SIZE, &submit);
1526                 }
1527         } else {
1528                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1529                                   ops_complete_compute, sh,
1530                                   to_addr_conv(sh, percpu, 0));
1531                 if (failb == syndrome_disks) {
1532                         /* We're missing D+P. */
1533                         return async_raid6_datap_recov(syndrome_disks+2,
1534                                                        STRIPE_SIZE, faila,
1535                                                        blocks, &submit);
1536                 } else {
1537                         /* We're missing D+D. */
1538                         return async_raid6_2data_recov(syndrome_disks+2,
1539                                                        STRIPE_SIZE, faila, failb,
1540                                                        blocks, &submit);
1541                 }
1542         }
1543 }
1544
1545 static void ops_complete_prexor(void *stripe_head_ref)
1546 {
1547         struct stripe_head *sh = stripe_head_ref;
1548
1549         pr_debug("%s: stripe %llu\n", __func__,
1550                 (unsigned long long)sh->sector);
1551 }
1552
1553 static struct dma_async_tx_descriptor *
1554 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1555                 struct dma_async_tx_descriptor *tx)
1556 {
1557         int disks = sh->disks;
1558         struct page **xor_srcs = to_addr_page(percpu, 0);
1559         int count = 0, pd_idx = sh->pd_idx, i;
1560         struct async_submit_ctl submit;
1561
1562         /* existing parity data subtracted */
1563         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1564
1565         BUG_ON(sh->batch_head);
1566         pr_debug("%s: stripe %llu\n", __func__,
1567                 (unsigned long long)sh->sector);
1568
1569         for (i = disks; i--; ) {
1570                 struct r5dev *dev = &sh->dev[i];
1571                 /* Only process blocks that are known to be uptodate */
1572                 if (test_bit(R5_Wantdrain, &dev->flags))
1573                         xor_srcs[count++] = dev->page;
1574         }
1575
1576         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1577                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1578         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1579
1580         return tx;
1581 }
1582
1583 static struct dma_async_tx_descriptor *
1584 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1585                 struct dma_async_tx_descriptor *tx)
1586 {
1587         struct page **blocks = to_addr_page(percpu, 0);
1588         int count;
1589         struct async_submit_ctl submit;
1590
1591         pr_debug("%s: stripe %llu\n", __func__,
1592                 (unsigned long long)sh->sector);
1593
1594         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1595
1596         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1597                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1598         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1599
1600         return tx;
1601 }
1602
1603 static struct dma_async_tx_descriptor *
1604 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1605 {
1606         int disks = sh->disks;
1607         int i;
1608         struct stripe_head *head_sh = sh;
1609
1610         pr_debug("%s: stripe %llu\n", __func__,
1611                 (unsigned long long)sh->sector);
1612
1613         for (i = disks; i--; ) {
1614                 struct r5dev *dev;
1615                 struct bio *chosen;
1616
1617                 sh = head_sh;
1618                 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1619                         struct bio *wbi;
1620
1621 again:
1622                         dev = &sh->dev[i];
1623                         spin_lock_irq(&sh->stripe_lock);
1624                         chosen = dev->towrite;
1625                         dev->towrite = NULL;
1626                         sh->overwrite_disks = 0;
1627                         BUG_ON(dev->written);
1628                         wbi = dev->written = chosen;
1629                         spin_unlock_irq(&sh->stripe_lock);
1630                         WARN_ON(dev->page != dev->orig_page);
1631
1632                         while (wbi && wbi->bi_iter.bi_sector <
1633                                 dev->sector + STRIPE_SECTORS) {
1634                                 if (wbi->bi_rw & REQ_FUA)
1635                                         set_bit(R5_WantFUA, &dev->flags);
1636                                 if (wbi->bi_rw & REQ_SYNC)
1637                                         set_bit(R5_SyncIO, &dev->flags);
1638                                 if (bio_op(wbi) == REQ_OP_DISCARD)
1639                                         set_bit(R5_Discard, &dev->flags);
1640                                 else {
1641                                         tx = async_copy_data(1, wbi, &dev->page,
1642                                                 dev->sector, tx, sh);
1643                                         if (dev->page != dev->orig_page) {
1644                                                 set_bit(R5_SkipCopy, &dev->flags);
1645                                                 clear_bit(R5_UPTODATE, &dev->flags);
1646                                                 clear_bit(R5_OVERWRITE, &dev->flags);
1647                                         }
1648                                 }
1649                                 wbi = r5_next_bio(wbi, dev->sector);
1650                         }
1651
1652                         if (head_sh->batch_head) {
1653                                 sh = list_first_entry(&sh->batch_list,
1654                                                       struct stripe_head,
1655                                                       batch_list);
1656                                 if (sh == head_sh)
1657                                         continue;
1658                                 goto again;
1659                         }
1660                 }
1661         }
1662
1663         return tx;
1664 }
1665
1666 static void ops_complete_reconstruct(void *stripe_head_ref)
1667 {
1668         struct stripe_head *sh = stripe_head_ref;
1669         int disks = sh->disks;
1670         int pd_idx = sh->pd_idx;
1671         int qd_idx = sh->qd_idx;
1672         int i;
1673         bool fua = false, sync = false, discard = false;
1674
1675         pr_debug("%s: stripe %llu\n", __func__,
1676                 (unsigned long long)sh->sector);
1677
1678         for (i = disks; i--; ) {
1679                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1680                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1681                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1682         }
1683
1684         for (i = disks; i--; ) {
1685                 struct r5dev *dev = &sh->dev[i];
1686
1687                 if (dev->written || i == pd_idx || i == qd_idx) {
1688                         if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1689                                 set_bit(R5_UPTODATE, &dev->flags);
1690                         if (fua)
1691                                 set_bit(R5_WantFUA, &dev->flags);
1692                         if (sync)
1693                                 set_bit(R5_SyncIO, &dev->flags);
1694                 }
1695         }
1696
1697         if (sh->reconstruct_state == reconstruct_state_drain_run)
1698                 sh->reconstruct_state = reconstruct_state_drain_result;
1699         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1700                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1701         else {
1702                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1703                 sh->reconstruct_state = reconstruct_state_result;
1704         }
1705
1706         set_bit(STRIPE_HANDLE, &sh->state);
1707         raid5_release_stripe(sh);
1708 }
1709
1710 static void
1711 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1712                      struct dma_async_tx_descriptor *tx)
1713 {
1714         int disks = sh->disks;
1715         struct page **xor_srcs;
1716         struct async_submit_ctl submit;
1717         int count, pd_idx = sh->pd_idx, i;
1718         struct page *xor_dest;
1719         int prexor = 0;
1720         unsigned long flags;
1721         int j = 0;
1722         struct stripe_head *head_sh = sh;
1723         int last_stripe;
1724
1725         pr_debug("%s: stripe %llu\n", __func__,
1726                 (unsigned long long)sh->sector);
1727
1728         for (i = 0; i < sh->disks; i++) {
1729                 if (pd_idx == i)
1730                         continue;
1731                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1732                         break;
1733         }
1734         if (i >= sh->disks) {
1735                 atomic_inc(&sh->count);
1736                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1737                 ops_complete_reconstruct(sh);
1738                 return;
1739         }
1740 again:
1741         count = 0;
1742         xor_srcs = to_addr_page(percpu, j);
1743         /* check if prexor is active which means only process blocks
1744          * that are part of a read-modify-write (written)
1745          */
1746         if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1747                 prexor = 1;
1748                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1749                 for (i = disks; i--; ) {
1750                         struct r5dev *dev = &sh->dev[i];
1751                         if (head_sh->dev[i].written)
1752                                 xor_srcs[count++] = dev->page;
1753                 }
1754         } else {
1755                 xor_dest = sh->dev[pd_idx].page;
1756                 for (i = disks; i--; ) {
1757                         struct r5dev *dev = &sh->dev[i];
1758                         if (i != pd_idx)
1759                                 xor_srcs[count++] = dev->page;
1760                 }
1761         }
1762
1763         /* 1/ if we prexor'd then the dest is reused as a source
1764          * 2/ if we did not prexor then we are redoing the parity
1765          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1766          * for the synchronous xor case
1767          */
1768         last_stripe = !head_sh->batch_head ||
1769                 list_first_entry(&sh->batch_list,
1770                                  struct stripe_head, batch_list) == head_sh;
1771         if (last_stripe) {
1772                 flags = ASYNC_TX_ACK |
1773                         (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1774
1775                 atomic_inc(&head_sh->count);
1776                 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1777                                   to_addr_conv(sh, percpu, j));
1778         } else {
1779                 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1780                 init_async_submit(&submit, flags, tx, NULL, NULL,
1781                                   to_addr_conv(sh, percpu, j));
1782         }
1783
1784         if (unlikely(count == 1))
1785                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1786         else
1787                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1788         if (!last_stripe) {
1789                 j++;
1790                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1791                                       batch_list);
1792                 goto again;
1793         }
1794 }
1795
1796 static void
1797 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1798                      struct dma_async_tx_descriptor *tx)
1799 {
1800         struct async_submit_ctl submit;
1801         struct page **blocks;
1802         int count, i, j = 0;
1803         struct stripe_head *head_sh = sh;
1804         int last_stripe;
1805         int synflags;
1806         unsigned long txflags;
1807
1808         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1809
1810         for (i = 0; i < sh->disks; i++) {
1811                 if (sh->pd_idx == i || sh->qd_idx == i)
1812                         continue;
1813                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1814                         break;
1815         }
1816         if (i >= sh->disks) {
1817                 atomic_inc(&sh->count);
1818                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1819                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1820                 ops_complete_reconstruct(sh);
1821                 return;
1822         }
1823
1824 again:
1825         blocks = to_addr_page(percpu, j);
1826
1827         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1828                 synflags = SYNDROME_SRC_WRITTEN;
1829                 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1830         } else {
1831                 synflags = SYNDROME_SRC_ALL;
1832                 txflags = ASYNC_TX_ACK;
1833         }
1834
1835         count = set_syndrome_sources(blocks, sh, synflags);
1836         last_stripe = !head_sh->batch_head ||
1837                 list_first_entry(&sh->batch_list,
1838                                  struct stripe_head, batch_list) == head_sh;
1839
1840         if (last_stripe) {
1841                 atomic_inc(&head_sh->count);
1842                 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1843                                   head_sh, to_addr_conv(sh, percpu, j));
1844         } else
1845                 init_async_submit(&submit, 0, tx, NULL, NULL,
1846                                   to_addr_conv(sh, percpu, j));
1847         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1848         if (!last_stripe) {
1849                 j++;
1850                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1851                                       batch_list);
1852                 goto again;
1853         }
1854 }
1855
1856 static void ops_complete_check(void *stripe_head_ref)
1857 {
1858         struct stripe_head *sh = stripe_head_ref;
1859
1860         pr_debug("%s: stripe %llu\n", __func__,
1861                 (unsigned long long)sh->sector);
1862
1863         sh->check_state = check_state_check_result;
1864         set_bit(STRIPE_HANDLE, &sh->state);
1865         raid5_release_stripe(sh);
1866 }
1867
1868 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1869 {
1870         int disks = sh->disks;
1871         int pd_idx = sh->pd_idx;
1872         int qd_idx = sh->qd_idx;
1873         struct page *xor_dest;
1874         struct page **xor_srcs = to_addr_page(percpu, 0);
1875         struct dma_async_tx_descriptor *tx;
1876         struct async_submit_ctl submit;
1877         int count;
1878         int i;
1879
1880         pr_debug("%s: stripe %llu\n", __func__,
1881                 (unsigned long long)sh->sector);
1882
1883         BUG_ON(sh->batch_head);
1884         count = 0;
1885         xor_dest = sh->dev[pd_idx].page;
1886         xor_srcs[count++] = xor_dest;
1887         for (i = disks; i--; ) {
1888                 if (i == pd_idx || i == qd_idx)
1889                         continue;
1890                 xor_srcs[count++] = sh->dev[i].page;
1891         }
1892
1893         init_async_submit(&submit, 0, NULL, NULL, NULL,
1894                           to_addr_conv(sh, percpu, 0));
1895         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1896                            &sh->ops.zero_sum_result, &submit);
1897
1898         atomic_inc(&sh->count);
1899         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1900         tx = async_trigger_callback(&submit);
1901 }
1902
1903 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1904 {
1905         struct page **srcs = to_addr_page(percpu, 0);
1906         struct async_submit_ctl submit;
1907         int count;
1908
1909         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1910                 (unsigned long long)sh->sector, checkp);
1911
1912         BUG_ON(sh->batch_head);
1913         count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1914         if (!checkp)
1915                 srcs[count] = NULL;
1916
1917         atomic_inc(&sh->count);
1918         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1919                           sh, to_addr_conv(sh, percpu, 0));
1920         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1921                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1922 }
1923
1924 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1925 {
1926         int overlap_clear = 0, i, disks = sh->disks;
1927         struct dma_async_tx_descriptor *tx = NULL;
1928         struct r5conf *conf = sh->raid_conf;
1929         int level = conf->level;
1930         struct raid5_percpu *percpu;
1931         unsigned long cpu;
1932
1933         cpu = get_cpu();
1934         percpu = per_cpu_ptr(conf->percpu, cpu);
1935         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1936                 ops_run_biofill(sh);
1937                 overlap_clear++;
1938         }
1939
1940         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1941                 if (level < 6)
1942                         tx = ops_run_compute5(sh, percpu);
1943                 else {
1944                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1945                                 tx = ops_run_compute6_1(sh, percpu);
1946                         else
1947                                 tx = ops_run_compute6_2(sh, percpu);
1948                 }
1949                 /* terminate the chain if reconstruct is not set to be run */
1950                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1951                         async_tx_ack(tx);
1952         }
1953
1954         if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1955                 if (level < 6)
1956                         tx = ops_run_prexor5(sh, percpu, tx);
1957                 else
1958                         tx = ops_run_prexor6(sh, percpu, tx);
1959         }
1960
1961         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1962                 tx = ops_run_biodrain(sh, tx);
1963                 overlap_clear++;
1964         }
1965
1966         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1967                 if (level < 6)
1968                         ops_run_reconstruct5(sh, percpu, tx);
1969                 else
1970                         ops_run_reconstruct6(sh, percpu, tx);
1971         }
1972
1973         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1974                 if (sh->check_state == check_state_run)
1975                         ops_run_check_p(sh, percpu);
1976                 else if (sh->check_state == check_state_run_q)
1977                         ops_run_check_pq(sh, percpu, 0);
1978                 else if (sh->check_state == check_state_run_pq)
1979                         ops_run_check_pq(sh, percpu, 1);
1980                 else
1981                         BUG();
1982         }
1983
1984         if (overlap_clear && !sh->batch_head)
1985                 for (i = disks; i--; ) {
1986                         struct r5dev *dev = &sh->dev[i];
1987                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1988                                 wake_up(&sh->raid_conf->wait_for_overlap);
1989                 }
1990         put_cpu();
1991 }
1992
1993 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1994 {
1995         struct stripe_head *sh;
1996
1997         sh = kmem_cache_zalloc(sc, gfp);
1998         if (sh) {
1999                 spin_lock_init(&sh->stripe_lock);
2000                 spin_lock_init(&sh->batch_lock);
2001                 INIT_LIST_HEAD(&sh->batch_list);
2002                 INIT_LIST_HEAD(&sh->lru);
2003                 atomic_set(&sh->count, 1);
2004         }
2005         return sh;
2006 }
2007 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2008 {
2009         struct stripe_head *sh;
2010
2011         sh = alloc_stripe(conf->slab_cache, gfp);
2012         if (!sh)
2013                 return 0;
2014
2015         sh->raid_conf = conf;
2016
2017         if (grow_buffers(sh, gfp)) {
2018                 shrink_buffers(sh);
2019                 kmem_cache_free(conf->slab_cache, sh);
2020                 return 0;
2021         }
2022         sh->hash_lock_index =
2023                 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2024         /* we just created an active stripe so... */
2025         atomic_inc(&conf->active_stripes);
2026
2027         raid5_release_stripe(sh);
2028         conf->max_nr_stripes++;
2029         return 1;
2030 }
2031
2032 static int grow_stripes(struct r5conf *conf, int num)
2033 {
2034         struct kmem_cache *sc;
2035         int devs = max(conf->raid_disks, conf->previous_raid_disks);
2036
2037         if (conf->mddev->gendisk)
2038                 sprintf(conf->cache_name[0],
2039                         "raid%d-%s", conf->level, mdname(conf->mddev));
2040         else
2041                 sprintf(conf->cache_name[0],
2042                         "raid%d-%p", conf->level, conf->mddev);
2043         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2044
2045         conf->active_name = 0;
2046         sc = kmem_cache_create(conf->cache_name[conf->active_name],
2047                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2048                                0, 0, NULL);
2049         if (!sc)
2050                 return 1;
2051         conf->slab_cache = sc;
2052         conf->pool_size = devs;
2053         while (num--)
2054                 if (!grow_one_stripe(conf, GFP_KERNEL))
2055                         return 1;
2056
2057         return 0;
2058 }
2059
2060 /**
2061  * scribble_len - return the required size of the scribble region
2062  * @num - total number of disks in the array
2063  *
2064  * The size must be enough to contain:
2065  * 1/ a struct page pointer for each device in the array +2
2066  * 2/ room to convert each entry in (1) to its corresponding dma
2067  *    (dma_map_page()) or page (page_address()) address.
2068  *
2069  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2070  * calculate over all devices (not just the data blocks), using zeros in place
2071  * of the P and Q blocks.
2072  */
2073 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2074 {
2075         struct flex_array *ret;
2076         size_t len;
2077
2078         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2079         ret = flex_array_alloc(len, cnt, flags);
2080         if (!ret)
2081                 return NULL;
2082         /* always prealloc all elements, so no locking is required */
2083         if (flex_array_prealloc(ret, 0, cnt, flags)) {
2084                 flex_array_free(ret);
2085                 return NULL;
2086         }
2087         return ret;
2088 }
2089
2090 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2091 {
2092         unsigned long cpu;
2093         int err = 0;
2094
2095         /*
2096          * Never shrink. And mddev_suspend() could deadlock if this is called
2097          * from raid5d. In that case, scribble_disks and scribble_sectors
2098          * should equal to new_disks and new_sectors
2099          */
2100         if (conf->scribble_disks >= new_disks &&
2101             conf->scribble_sectors >= new_sectors)
2102                 return 0;
2103         mddev_suspend(conf->mddev);
2104         get_online_cpus();
2105         for_each_present_cpu(cpu) {
2106                 struct raid5_percpu *percpu;
2107                 struct flex_array *scribble;
2108
2109                 percpu = per_cpu_ptr(conf->percpu, cpu);
2110                 scribble = scribble_alloc(new_disks,
2111                                           new_sectors / STRIPE_SECTORS,
2112                                           GFP_NOIO);
2113
2114                 if (scribble) {
2115                         flex_array_free(percpu->scribble);
2116                         percpu->scribble = scribble;
2117                 } else {
2118                         err = -ENOMEM;
2119                         break;
2120                 }
2121         }
2122         put_online_cpus();
2123         mddev_resume(conf->mddev);
2124         if (!err) {
2125                 conf->scribble_disks = new_disks;
2126                 conf->scribble_sectors = new_sectors;
2127         }
2128         return err;
2129 }
2130
2131 static int resize_stripes(struct r5conf *conf, int newsize)
2132 {
2133         /* Make all the stripes able to hold 'newsize' devices.
2134          * New slots in each stripe get 'page' set to a new page.
2135          *
2136          * This happens in stages:
2137          * 1/ create a new kmem_cache and allocate the required number of
2138          *    stripe_heads.
2139          * 2/ gather all the old stripe_heads and transfer the pages across
2140          *    to the new stripe_heads.  This will have the side effect of
2141          *    freezing the array as once all stripe_heads have been collected,
2142          *    no IO will be possible.  Old stripe heads are freed once their
2143          *    pages have been transferred over, and the old kmem_cache is
2144          *    freed when all stripes are done.
2145          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2146          *    we simple return a failre status - no need to clean anything up.
2147          * 4/ allocate new pages for the new slots in the new stripe_heads.
2148          *    If this fails, we don't bother trying the shrink the
2149          *    stripe_heads down again, we just leave them as they are.
2150          *    As each stripe_head is processed the new one is released into
2151          *    active service.
2152          *
2153          * Once step2 is started, we cannot afford to wait for a write,
2154          * so we use GFP_NOIO allocations.
2155          */
2156         struct stripe_head *osh, *nsh;
2157         LIST_HEAD(newstripes);
2158         struct disk_info *ndisks;
2159         int err;
2160         struct kmem_cache *sc;
2161         int i;
2162         int hash, cnt;
2163
2164         if (newsize <= conf->pool_size)
2165                 return 0; /* never bother to shrink */
2166
2167         err = md_allow_write(conf->mddev);
2168         if (err)
2169                 return err;
2170
2171         /* Step 1 */
2172         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2173                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2174                                0, 0, NULL);
2175         if (!sc)
2176                 return -ENOMEM;
2177
2178         /* Need to ensure auto-resizing doesn't interfere */
2179         mutex_lock(&conf->cache_size_mutex);
2180
2181         for (i = conf->max_nr_stripes; i; i--) {
2182                 nsh = alloc_stripe(sc, GFP_KERNEL);
2183                 if (!nsh)
2184                         break;
2185
2186                 nsh->raid_conf = conf;
2187                 list_add(&nsh->lru, &newstripes);
2188         }
2189         if (i) {
2190                 /* didn't get enough, give up */
2191                 while (!list_empty(&newstripes)) {
2192                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
2193                         list_del(&nsh->lru);
2194                         kmem_cache_free(sc, nsh);
2195                 }
2196                 kmem_cache_destroy(sc);
2197                 mutex_unlock(&conf->cache_size_mutex);
2198                 return -ENOMEM;
2199         }
2200         /* Step 2 - Must use GFP_NOIO now.
2201          * OK, we have enough stripes, start collecting inactive
2202          * stripes and copying them over
2203          */
2204         hash = 0;
2205         cnt = 0;
2206         list_for_each_entry(nsh, &newstripes, lru) {
2207                 lock_device_hash_lock(conf, hash);
2208                 wait_event_cmd(conf->wait_for_stripe,
2209                                     !list_empty(conf->inactive_list + hash),
2210                                     unlock_device_hash_lock(conf, hash),
2211                                     lock_device_hash_lock(conf, hash));
2212                 osh = get_free_stripe(conf, hash);
2213                 unlock_device_hash_lock(conf, hash);
2214
2215                 for(i=0; i<conf->pool_size; i++) {
2216                         nsh->dev[i].page = osh->dev[i].page;
2217                         nsh->dev[i].orig_page = osh->dev[i].page;
2218                 }
2219                 nsh->hash_lock_index = hash;
2220                 kmem_cache_free(conf->slab_cache, osh);
2221                 cnt++;
2222                 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2223                     !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2224                         hash++;
2225                         cnt = 0;
2226                 }
2227         }
2228         kmem_cache_destroy(conf->slab_cache);
2229
2230         /* Step 3.
2231          * At this point, we are holding all the stripes so the array
2232          * is completely stalled, so now is a good time to resize
2233          * conf->disks and the scribble region
2234          */
2235         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2236         if (ndisks) {
2237                 for (i=0; i<conf->raid_disks; i++)
2238                         ndisks[i] = conf->disks[i];
2239                 kfree(conf->disks);
2240                 conf->disks = ndisks;
2241         } else
2242                 err = -ENOMEM;
2243
2244         mutex_unlock(&conf->cache_size_mutex);
2245         /* Step 4, return new stripes to service */
2246         while(!list_empty(&newstripes)) {
2247                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2248                 list_del_init(&nsh->lru);
2249
2250                 for (i=conf->raid_disks; i < newsize; i++)
2251                         if (nsh->dev[i].page == NULL) {
2252                                 struct page *p = alloc_page(GFP_NOIO);
2253                                 nsh->dev[i].page = p;
2254                                 nsh->dev[i].orig_page = p;
2255                                 if (!p)
2256                                         err = -ENOMEM;
2257                         }
2258                 raid5_release_stripe(nsh);
2259         }
2260         /* critical section pass, GFP_NOIO no longer needed */
2261
2262         conf->slab_cache = sc;
2263         conf->active_name = 1-conf->active_name;
2264         if (!err)
2265                 conf->pool_size = newsize;
2266         return err;
2267 }
2268
2269 static int drop_one_stripe(struct r5conf *conf)
2270 {
2271         struct stripe_head *sh;
2272         int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2273
2274         spin_lock_irq(conf->hash_locks + hash);
2275         sh = get_free_stripe(conf, hash);
2276         spin_unlock_irq(conf->hash_locks + hash);
2277         if (!sh)
2278                 return 0;
2279         BUG_ON(atomic_read(&sh->count));
2280         shrink_buffers(sh);
2281         kmem_cache_free(conf->slab_cache, sh);
2282         atomic_dec(&conf->active_stripes);
2283         conf->max_nr_stripes--;
2284         return 1;
2285 }
2286
2287 static void shrink_stripes(struct r5conf *conf)
2288 {
2289         while (conf->max_nr_stripes &&
2290                drop_one_stripe(conf))
2291                 ;
2292
2293         kmem_cache_destroy(conf->slab_cache);
2294         conf->slab_cache = NULL;
2295 }
2296
2297 static void raid5_end_read_request(struct bio * bi)
2298 {
2299         struct stripe_head *sh = bi->bi_private;
2300         struct r5conf *conf = sh->raid_conf;
2301         int disks = sh->disks, i;
2302         char b[BDEVNAME_SIZE];
2303         struct md_rdev *rdev = NULL;
2304         sector_t s;
2305
2306         for (i=0 ; i<disks; i++)
2307                 if (bi == &sh->dev[i].req)
2308                         break;
2309
2310         pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2311                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2312                 bi->bi_error);
2313         if (i == disks) {
2314                 BUG();
2315                 return;
2316         }
2317         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2318                 /* If replacement finished while this request was outstanding,
2319                  * 'replacement' might be NULL already.
2320                  * In that case it moved down to 'rdev'.
2321                  * rdev is not removed until all requests are finished.
2322                  */
2323                 rdev = conf->disks[i].replacement;
2324         if (!rdev)
2325                 rdev = conf->disks[i].rdev;
2326
2327         if (use_new_offset(conf, sh))
2328                 s = sh->sector + rdev->new_data_offset;
2329         else
2330                 s = sh->sector + rdev->data_offset;
2331         if (!bi->bi_error) {
2332                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2333                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2334                         /* Note that this cannot happen on a
2335                          * replacement device.  We just fail those on
2336                          * any error
2337                          */
2338                         printk_ratelimited(
2339                                 KERN_INFO
2340                                 "md/raid:%s: read error corrected"
2341                                 " (%lu sectors at %llu on %s)\n",
2342                                 mdname(conf->mddev), STRIPE_SECTORS,
2343                                 (unsigned long long)s,
2344                                 bdevname(rdev->bdev, b));
2345                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2346                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2347                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2348                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2349                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2350
2351                 if (atomic_read(&rdev->read_errors))
2352                         atomic_set(&rdev->read_errors, 0);
2353         } else {
2354                 const char *bdn = bdevname(rdev->bdev, b);
2355                 int retry = 0;
2356                 int set_bad = 0;
2357
2358                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2359                 atomic_inc(&rdev->read_errors);
2360                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2361                         printk_ratelimited(
2362                                 KERN_WARNING
2363                                 "md/raid:%s: read error on replacement device "
2364                                 "(sector %llu on %s).\n",
2365                                 mdname(conf->mddev),
2366                                 (unsigned long long)s,
2367                                 bdn);
2368                 else if (conf->mddev->degraded >= conf->max_degraded) {
2369                         set_bad = 1;
2370                         printk_ratelimited(
2371                                 KERN_WARNING
2372                                 "md/raid:%s: read error not correctable "
2373                                 "(sector %llu on %s).\n",
2374                                 mdname(conf->mddev),
2375                                 (unsigned long long)s,
2376                                 bdn);
2377                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2378                         /* Oh, no!!! */
2379                         set_bad = 1;
2380                         printk_ratelimited(
2381                                 KERN_WARNING
2382                                 "md/raid:%s: read error NOT corrected!! "
2383                                 "(sector %llu on %s).\n",
2384                                 mdname(conf->mddev),
2385                                 (unsigned long long)s,
2386                                 bdn);
2387                 } else if (atomic_read(&rdev->read_errors)
2388                          > conf->max_nr_stripes)
2389                         printk(KERN_WARNING
2390                                "md/raid:%s: Too many read errors, failing device %s.\n",
2391                                mdname(conf->mddev), bdn);
2392                 else
2393                         retry = 1;
2394                 if (set_bad && test_bit(In_sync, &rdev->flags)
2395                     && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2396                         retry = 1;
2397                 if (retry)
2398                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2399                                 set_bit(R5_ReadError, &sh->dev[i].flags);
2400                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2401                         } else
2402                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2403                 else {
2404                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2405                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2406                         if (!(set_bad
2407                               && test_bit(In_sync, &rdev->flags)
2408                               && rdev_set_badblocks(
2409                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
2410                                 md_error(conf->mddev, rdev);
2411                 }
2412         }
2413         rdev_dec_pending(rdev, conf->mddev);
2414         clear_bit(R5_LOCKED, &sh->dev[i].flags);
2415         set_bit(STRIPE_HANDLE, &sh->state);
2416         raid5_release_stripe(sh);
2417 }
2418
2419 static void raid5_end_write_request(struct bio *bi)
2420 {
2421         struct stripe_head *sh = bi->bi_private;
2422         struct r5conf *conf = sh->raid_conf;
2423         int disks = sh->disks, i;
2424         struct md_rdev *uninitialized_var(rdev);
2425         sector_t first_bad;
2426         int bad_sectors;
2427         int replacement = 0;
2428
2429         for (i = 0 ; i < disks; i++) {
2430                 if (bi == &sh->dev[i].req) {
2431                         rdev = conf->disks[i].rdev;
2432                         break;
2433                 }
2434                 if (bi == &sh->dev[i].rreq) {
2435                         rdev = conf->disks[i].replacement;
2436                         if (rdev)
2437                                 replacement = 1;
2438                         else
2439                                 /* rdev was removed and 'replacement'
2440                                  * replaced it.  rdev is not removed
2441                                  * until all requests are finished.
2442                                  */
2443                                 rdev = conf->disks[i].rdev;
2444                         break;
2445                 }
2446         }
2447         pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2448                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2449                 bi->bi_error);
2450         if (i == disks) {
2451                 BUG();
2452                 return;
2453         }
2454
2455         if (replacement) {
2456                 if (bi->bi_error)
2457                         md_error(conf->mddev, rdev);
2458                 else if (is_badblock(rdev, sh->sector,
2459                                      STRIPE_SECTORS,
2460                                      &first_bad, &bad_sectors))
2461                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2462         } else {
2463                 if (bi->bi_error) {
2464                         set_bit(STRIPE_DEGRADED, &sh->state);
2465                         set_bit(WriteErrorSeen, &rdev->flags);
2466                         set_bit(R5_WriteError, &sh->dev[i].flags);
2467                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2468                                 set_bit(MD_RECOVERY_NEEDED,
2469                                         &rdev->mddev->recovery);
2470                 } else if (is_badblock(rdev, sh->sector,
2471                                        STRIPE_SECTORS,
2472                                        &first_bad, &bad_sectors)) {
2473                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2474                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2475                                 /* That was a successful write so make
2476                                  * sure it looks like we already did
2477                                  * a re-write.
2478                                  */
2479                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2480                 }
2481         }
2482         rdev_dec_pending(rdev, conf->mddev);
2483
2484         if (sh->batch_head && bi->bi_error && !replacement)
2485                 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2486
2487         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2488                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2489         set_bit(STRIPE_HANDLE, &sh->state);
2490         raid5_release_stripe(sh);
2491
2492         if (sh->batch_head && sh != sh->batch_head)
2493                 raid5_release_stripe(sh->batch_head);
2494 }
2495
2496 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2497 {
2498         struct r5dev *dev = &sh->dev[i];
2499
2500         bio_init(&dev->req);
2501         dev->req.bi_io_vec = &dev->vec;
2502         dev->req.bi_max_vecs = 1;
2503         dev->req.bi_private = sh;
2504
2505         bio_init(&dev->rreq);
2506         dev->rreq.bi_io_vec = &dev->rvec;
2507         dev->rreq.bi_max_vecs = 1;
2508         dev->rreq.bi_private = sh;
2509
2510         dev->flags = 0;
2511         dev->sector = raid5_compute_blocknr(sh, i, previous);
2512 }
2513
2514 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2515 {
2516         char b[BDEVNAME_SIZE];
2517         struct r5conf *conf = mddev->private;
2518         unsigned long flags;
2519         pr_debug("raid456: error called\n");
2520
2521         spin_lock_irqsave(&conf->device_lock, flags);
2522         clear_bit(In_sync, &rdev->flags);
2523         mddev->degraded = calc_degraded(conf);
2524         spin_unlock_irqrestore(&conf->device_lock, flags);
2525         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2526
2527         set_bit(Blocked, &rdev->flags);
2528         set_bit(Faulty, &rdev->flags);
2529         set_mask_bits(&mddev->flags, 0,
2530                       BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
2531         printk(KERN_ALERT
2532                "md/raid:%s: Disk failure on %s, disabling device.\n"
2533                "md/raid:%s: Operation continuing on %d devices.\n",
2534                mdname(mddev),
2535                bdevname(rdev->bdev, b),
2536                mdname(mddev),
2537                conf->raid_disks - mddev->degraded);
2538 }
2539
2540 /*
2541  * Input: a 'big' sector number,
2542  * Output: index of the data and parity disk, and the sector # in them.
2543  */
2544 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2545                               int previous, int *dd_idx,
2546                               struct stripe_head *sh)
2547 {
2548         sector_t stripe, stripe2;
2549         sector_t chunk_number;
2550         unsigned int chunk_offset;
2551         int pd_idx, qd_idx;
2552         int ddf_layout = 0;
2553         sector_t new_sector;
2554         int algorithm = previous ? conf->prev_algo
2555                                  : conf->algorithm;
2556         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2557                                          : conf->chunk_sectors;
2558         int raid_disks = previous ? conf->previous_raid_disks
2559                                   : conf->raid_disks;
2560         int data_disks = raid_disks - conf->max_degraded;
2561
2562         /* First compute the information on this sector */
2563
2564         /*
2565          * Compute the chunk number and the sector offset inside the chunk
2566          */
2567         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2568         chunk_number = r_sector;
2569
2570         /*
2571          * Compute the stripe number
2572          */
2573         stripe = chunk_number;
2574         *dd_idx = sector_div(stripe, data_disks);
2575         stripe2 = stripe;
2576         /*
2577          * Select the parity disk based on the user selected algorithm.
2578          */
2579         pd_idx = qd_idx = -1;
2580         switch(conf->level) {
2581         case 4:
2582                 pd_idx = data_disks;
2583                 break;
2584         case 5:
2585                 switch (algorithm) {
2586                 case ALGORITHM_LEFT_ASYMMETRIC:
2587                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2588                         if (*dd_idx >= pd_idx)
2589                                 (*dd_idx)++;
2590                         break;
2591                 case ALGORITHM_RIGHT_ASYMMETRIC:
2592                         pd_idx = sector_div(stripe2, raid_disks);
2593                         if (*dd_idx >= pd_idx)
2594                                 (*dd_idx)++;
2595                         break;
2596                 case ALGORITHM_LEFT_SYMMETRIC:
2597                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2598                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2599                         break;
2600                 case ALGORITHM_RIGHT_SYMMETRIC:
2601                         pd_idx = sector_div(stripe2, raid_disks);
2602                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2603                         break;
2604                 case ALGORITHM_PARITY_0:
2605                         pd_idx = 0;
2606                         (*dd_idx)++;
2607                         break;
2608                 case ALGORITHM_PARITY_N:
2609                         pd_idx = data_disks;
2610                         break;
2611                 default:
2612                         BUG();
2613                 }
2614                 break;
2615         case 6:
2616
2617                 switch (algorithm) {
2618                 case ALGORITHM_LEFT_ASYMMETRIC:
2619                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2620                         qd_idx = pd_idx + 1;
2621                         if (pd_idx == raid_disks-1) {
2622                                 (*dd_idx)++;    /* Q D D D P */
2623                                 qd_idx = 0;
2624                         } else if (*dd_idx >= pd_idx)
2625                                 (*dd_idx) += 2; /* D D P Q D */
2626                         break;
2627                 case ALGORITHM_RIGHT_ASYMMETRIC:
2628                         pd_idx = sector_div(stripe2, raid_disks);
2629                         qd_idx = pd_idx + 1;
2630                         if (pd_idx == raid_disks-1) {
2631                                 (*dd_idx)++;    /* Q D D D P */
2632                                 qd_idx = 0;
2633                         } else if (*dd_idx >= pd_idx)
2634                                 (*dd_idx) += 2; /* D D P Q D */
2635                         break;
2636                 case ALGORITHM_LEFT_SYMMETRIC:
2637                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2638                         qd_idx = (pd_idx + 1) % raid_disks;
2639                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2640                         break;
2641                 case ALGORITHM_RIGHT_SYMMETRIC:
2642                         pd_idx = sector_div(stripe2, raid_disks);
2643                         qd_idx = (pd_idx + 1) % raid_disks;
2644                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2645                         break;
2646
2647                 case ALGORITHM_PARITY_0:
2648                         pd_idx = 0;
2649                         qd_idx = 1;
2650                         (*dd_idx) += 2;
2651                         break;
2652                 case ALGORITHM_PARITY_N:
2653                         pd_idx = data_disks;
2654                         qd_idx = data_disks + 1;
2655                         break;
2656
2657                 case ALGORITHM_ROTATING_ZERO_RESTART:
2658                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2659                          * of blocks for computing Q is different.
2660                          */
2661                         pd_idx = sector_div(stripe2, raid_disks);
2662                         qd_idx = pd_idx + 1;
2663                         if (pd_idx == raid_disks-1) {
2664                                 (*dd_idx)++;    /* Q D D D P */
2665                                 qd_idx = 0;
2666                         } else if (*dd_idx >= pd_idx)
2667                                 (*dd_idx) += 2; /* D D P Q D */
2668                         ddf_layout = 1;
2669                         break;
2670
2671                 case ALGORITHM_ROTATING_N_RESTART:
2672                         /* Same a left_asymmetric, by first stripe is
2673                          * D D D P Q  rather than
2674                          * Q D D D P
2675                          */
2676                         stripe2 += 1;
2677                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2678                         qd_idx = pd_idx + 1;
2679                         if (pd_idx == raid_disks-1) {
2680                                 (*dd_idx)++;    /* Q D D D P */
2681                                 qd_idx = 0;
2682                         } else if (*dd_idx >= pd_idx)
2683                                 (*dd_idx) += 2; /* D D P Q D */
2684                         ddf_layout = 1;
2685                         break;
2686
2687                 case ALGORITHM_ROTATING_N_CONTINUE:
2688                         /* Same as left_symmetric but Q is before P */
2689                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2690                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2691                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2692                         ddf_layout = 1;
2693                         break;
2694
2695                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2696                         /* RAID5 left_asymmetric, with Q on last device */
2697                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2698                         if (*dd_idx >= pd_idx)
2699                                 (*dd_idx)++;
2700                         qd_idx = raid_disks - 1;
2701                         break;
2702
2703                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2704                         pd_idx = sector_div(stripe2, raid_disks-1);
2705                         if (*dd_idx >= pd_idx)
2706                                 (*dd_idx)++;
2707                         qd_idx = raid_disks - 1;
2708                         break;
2709
2710                 case ALGORITHM_LEFT_SYMMETRIC_6:
2711                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2712                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2713                         qd_idx = raid_disks - 1;
2714                         break;
2715
2716                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2717                         pd_idx = sector_div(stripe2, raid_disks-1);
2718                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2719                         qd_idx = raid_disks - 1;
2720                         break;
2721
2722                 case ALGORITHM_PARITY_0_6:
2723                         pd_idx = 0;
2724                         (*dd_idx)++;
2725                         qd_idx = raid_disks - 1;
2726                         break;
2727
2728                 default:
2729                         BUG();
2730                 }
2731                 break;
2732         }
2733
2734         if (sh) {
2735                 sh->pd_idx = pd_idx;
2736                 sh->qd_idx = qd_idx;
2737                 sh->ddf_layout = ddf_layout;
2738         }
2739         /*
2740          * Finally, compute the new sector number
2741          */
2742         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2743         return new_sector;
2744 }
2745
2746 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2747 {
2748         struct r5conf *conf = sh->raid_conf;
2749         int raid_disks = sh->disks;
2750         int data_disks = raid_disks - conf->max_degraded;
2751         sector_t new_sector = sh->sector, check;
2752         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2753                                          : conf->chunk_sectors;
2754         int algorithm = previous ? conf->prev_algo
2755                                  : conf->algorithm;
2756         sector_t stripe;
2757         int chunk_offset;
2758         sector_t chunk_number;
2759         int dummy1, dd_idx = i;
2760         sector_t r_sector;
2761         struct stripe_head sh2;
2762
2763         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2764         stripe = new_sector;
2765
2766         if (i == sh->pd_idx)
2767                 return 0;
2768         switch(conf->level) {
2769         case 4: break;
2770         case 5:
2771                 switch (algorithm) {
2772                 case ALGORITHM_LEFT_ASYMMETRIC:
2773                 case ALGORITHM_RIGHT_ASYMMETRIC:
2774                         if (i > sh->pd_idx)
2775                                 i--;
2776                         break;
2777                 case ALGORITHM_LEFT_SYMMETRIC:
2778                 case ALGORITHM_RIGHT_SYMMETRIC:
2779                         if (i < sh->pd_idx)
2780                                 i += raid_disks;
2781                         i -= (sh->pd_idx + 1);
2782                         break;
2783                 case ALGORITHM_PARITY_0:
2784                         i -= 1;
2785                         break;
2786                 case ALGORITHM_PARITY_N:
2787                         break;
2788                 default:
2789                         BUG();
2790                 }
2791                 break;
2792         case 6:
2793                 if (i == sh->qd_idx)
2794                         return 0; /* It is the Q disk */
2795                 switch (algorithm) {
2796                 case ALGORITHM_LEFT_ASYMMETRIC:
2797                 case ALGORITHM_RIGHT_ASYMMETRIC:
2798                 case ALGORITHM_ROTATING_ZERO_RESTART:
2799                 case ALGORITHM_ROTATING_N_RESTART:
2800                         if (sh->pd_idx == raid_disks-1)
2801                                 i--;    /* Q D D D P */
2802                         else if (i > sh->pd_idx)
2803                                 i -= 2; /* D D P Q D */
2804                         break;
2805                 case ALGORITHM_LEFT_SYMMETRIC:
2806                 case ALGORITHM_RIGHT_SYMMETRIC:
2807                         if (sh->pd_idx == raid_disks-1)
2808                                 i--; /* Q D D D P */
2809                         else {
2810                                 /* D D P Q D */
2811                                 if (i < sh->pd_idx)
2812                                         i += raid_disks;
2813                                 i -= (sh->pd_idx + 2);
2814                         }
2815                         break;
2816                 case ALGORITHM_PARITY_0:
2817                         i -= 2;
2818                         break;
2819                 case ALGORITHM_PARITY_N:
2820                         break;
2821                 case ALGORITHM_ROTATING_N_CONTINUE:
2822                         /* Like left_symmetric, but P is before Q */
2823                         if (sh->pd_idx == 0)
2824                                 i--;    /* P D D D Q */
2825                         else {
2826                                 /* D D Q P D */
2827                                 if (i < sh->pd_idx)
2828                                         i += raid_disks;
2829                                 i -= (sh->pd_idx + 1);
2830                         }
2831                         break;
2832                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2833                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2834                         if (i > sh->pd_idx)
2835                                 i--;
2836                         break;
2837                 case ALGORITHM_LEFT_SYMMETRIC_6:
2838                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2839                         if (i < sh->pd_idx)
2840                                 i += data_disks + 1;
2841                         i -= (sh->pd_idx + 1);
2842                         break;
2843                 case ALGORITHM_PARITY_0_6:
2844                         i -= 1;
2845                         break;
2846                 default:
2847                         BUG();
2848                 }
2849                 break;
2850         }
2851
2852         chunk_number = stripe * data_disks + i;
2853         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2854
2855         check = raid5_compute_sector(conf, r_sector,
2856                                      previous, &dummy1, &sh2);
2857         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2858                 || sh2.qd_idx != sh->qd_idx) {
2859                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2860                        mdname(conf->mddev));
2861                 return 0;
2862         }
2863         return r_sector;
2864 }
2865
2866 static void
2867 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2868                          int rcw, int expand)
2869 {
2870         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2871         struct r5conf *conf = sh->raid_conf;
2872         int level = conf->level;
2873
2874         if (rcw) {
2875
2876                 for (i = disks; i--; ) {
2877                         struct r5dev *dev = &sh->dev[i];
2878
2879                         if (dev->towrite) {
2880                                 set_bit(R5_LOCKED, &dev->flags);
2881                                 set_bit(R5_Wantdrain, &dev->flags);
2882                                 if (!expand)
2883                                         clear_bit(R5_UPTODATE, &dev->flags);
2884                                 s->locked++;
2885                         }
2886                 }
2887                 /* if we are not expanding this is a proper write request, and
2888                  * there will be bios with new data to be drained into the
2889                  * stripe cache
2890                  */
2891                 if (!expand) {
2892                         if (!s->locked)
2893                                 /* False alarm, nothing to do */
2894                                 return;
2895                         sh->reconstruct_state = reconstruct_state_drain_run;
2896                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2897                 } else
2898                         sh->reconstruct_state = reconstruct_state_run;
2899
2900                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2901
2902                 if (s->locked + conf->max_degraded == disks)
2903                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2904                                 atomic_inc(&conf->pending_full_writes);
2905         } else {
2906                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2907                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2908                 BUG_ON(level == 6 &&
2909                         (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2910                            test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2911
2912                 for (i = disks; i--; ) {
2913                         struct r5dev *dev = &sh->dev[i];
2914                         if (i == pd_idx || i == qd_idx)
2915                                 continue;
2916
2917                         if (dev->towrite &&
2918                             (test_bit(R5_UPTODATE, &dev->flags) ||
2919                              test_bit(R5_Wantcompute, &dev->flags))) {
2920                                 set_bit(R5_Wantdrain, &dev->flags);
2921                                 set_bit(R5_LOCKED, &dev->flags);
2922                                 clear_bit(R5_UPTODATE, &dev->flags);
2923                                 s->locked++;
2924                         }
2925                 }
2926                 if (!s->locked)
2927                         /* False alarm - nothing to do */
2928                         return;
2929                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2930                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2931                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2932                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2933         }
2934
2935         /* keep the parity disk(s) locked while asynchronous operations
2936          * are in flight
2937          */
2938         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2939         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2940         s->locked++;
2941
2942         if (level == 6) {
2943                 int qd_idx = sh->qd_idx;
2944                 struct r5dev *dev = &sh->dev[qd_idx];
2945
2946                 set_bit(R5_LOCKED, &dev->flags);
2947                 clear_bit(R5_UPTODATE, &dev->flags);
2948                 s->locked++;
2949         }
2950
2951         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2952                 __func__, (unsigned long long)sh->sector,
2953                 s->locked, s->ops_request);
2954 }
2955
2956 /*
2957  * Each stripe/dev can have one or more bion attached.
2958  * toread/towrite point to the first in a chain.
2959  * The bi_next chain must be in order.
2960  */
2961 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2962                           int forwrite, int previous)
2963 {
2964         struct bio **bip;
2965         struct r5conf *conf = sh->raid_conf;
2966         int firstwrite=0;
2967
2968         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2969                 (unsigned long long)bi->bi_iter.bi_sector,
2970                 (unsigned long long)sh->sector);
2971
2972         /*
2973          * If several bio share a stripe. The bio bi_phys_segments acts as a
2974          * reference count to avoid race. The reference count should already be
2975          * increased before this function is called (for example, in
2976          * raid5_make_request()), so other bio sharing this stripe will not free the
2977          * stripe. If a stripe is owned by one stripe, the stripe lock will
2978          * protect it.
2979          */
2980         spin_lock_irq(&sh->stripe_lock);
2981         /* Don't allow new IO added to stripes in batch list */
2982         if (sh->batch_head)
2983                 goto overlap;
2984         if (forwrite) {
2985                 bip = &sh->dev[dd_idx].towrite;
2986                 if (*bip == NULL)
2987                         firstwrite = 1;
2988         } else
2989                 bip = &sh->dev[dd_idx].toread;
2990         while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2991                 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2992                         goto overlap;
2993                 bip = & (*bip)->bi_next;
2994         }
2995         if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2996                 goto overlap;
2997
2998         if (!forwrite || previous)
2999                 clear_bit(STRIPE_BATCH_READY, &sh->state);
3000
3001         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3002         if (*bip)
3003                 bi->bi_next = *bip;
3004         *bip = bi;
3005         raid5_inc_bi_active_stripes(bi);
3006
3007         if (forwrite) {
3008                 /* check if page is covered */
3009                 sector_t sector = sh->dev[dd_idx].sector;
3010                 for (bi=sh->dev[dd_idx].towrite;
3011                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3012                              bi && bi->bi_iter.bi_sector <= sector;
3013                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3014                         if (bio_end_sector(bi) >= sector)
3015                                 sector = bio_end_sector(bi);
3016                 }
3017                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3018                         if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3019                                 sh->overwrite_disks++;
3020         }
3021
3022         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3023                 (unsigned long long)(*bip)->bi_iter.bi_sector,
3024                 (unsigned long long)sh->sector, dd_idx);
3025
3026         if (conf->mddev->bitmap && firstwrite) {
3027                 /* Cannot hold spinlock over bitmap_startwrite,
3028                  * but must ensure this isn't added to a batch until
3029                  * we have added to the bitmap and set bm_seq.
3030                  * So set STRIPE_BITMAP_PENDING to prevent
3031                  * batching.
3032                  * If multiple add_stripe_bio() calls race here they
3033                  * much all set STRIPE_BITMAP_PENDING.  So only the first one
3034                  * to complete "bitmap_startwrite" gets to set
3035                  * STRIPE_BIT_DELAY.  This is important as once a stripe
3036                  * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3037                  * any more.
3038                  */
3039                 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3040                 spin_unlock_irq(&sh->stripe_lock);
3041                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3042                                   STRIPE_SECTORS, 0);
3043                 spin_lock_irq(&sh->stripe_lock);
3044                 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3045                 if (!sh->batch_head) {
3046                         sh->bm_seq = conf->seq_flush+1;
3047                         set_bit(STRIPE_BIT_DELAY, &sh->state);
3048                 }
3049         }
3050         spin_unlock_irq(&sh->stripe_lock);
3051
3052         if (stripe_can_batch(sh))
3053                 stripe_add_to_batch_list(conf, sh);
3054         return 1;
3055
3056  overlap:
3057         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3058         spin_unlock_irq(&sh->stripe_lock);
3059         return 0;
3060 }
3061
3062 static void end_reshape(struct r5conf *conf);
3063
3064 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3065                             struct stripe_head *sh)
3066 {
3067         int sectors_per_chunk =
3068                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3069         int dd_idx;
3070         int chunk_offset = sector_div(stripe, sectors_per_chunk);
3071         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3072
3073         raid5_compute_sector(conf,
3074                              stripe * (disks - conf->max_degraded)
3075                              *sectors_per_chunk + chunk_offset,
3076                              previous,
3077                              &dd_idx, sh);
3078 }
3079
3080 static void
3081 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3082                                 struct stripe_head_state *s, int disks,
3083                                 struct bio_list *return_bi)
3084 {
3085         int i;
3086         BUG_ON(sh->batch_head);
3087         for (i = disks; i--; ) {
3088                 struct bio *bi;
3089                 int bitmap_end = 0;
3090
3091                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3092                         struct md_rdev *rdev;
3093                         rcu_read_lock();
3094                         rdev = rcu_dereference(conf->disks[i].rdev);
3095                         if (rdev && test_bit(In_sync, &rdev->flags) &&
3096                             !test_bit(Faulty, &rdev->flags))
3097                                 atomic_inc(&rdev->nr_pending);
3098                         else
3099                                 rdev = NULL;
3100                         rcu_read_unlock();
3101                         if (rdev) {
3102                                 if (!rdev_set_badblocks(
3103                                             rdev,
3104                                             sh->sector,
3105                                             STRIPE_SECTORS, 0))
3106                                         md_error(conf->mddev, rdev);
3107                                 rdev_dec_pending(rdev, conf->mddev);
3108                         }
3109                 }
3110                 spin_lock_irq(&sh->stripe_lock);
3111                 /* fail all writes first */
3112                 bi = sh->dev[i].towrite;
3113                 sh->dev[i].towrite = NULL;
3114                 sh->overwrite_disks = 0;
3115                 spin_unlock_irq(&sh->stripe_lock);
3116                 if (bi)
3117                         bitmap_end = 1;
3118
3119                 r5l_stripe_write_finished(sh);
3120
3121                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3122                         wake_up(&conf->wait_for_overlap);
3123
3124                 while (bi && bi->bi_iter.bi_sector <
3125                         sh->dev[i].sector + STRIPE_SECTORS) {
3126                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3127
3128                         bi->bi_error = -EIO;
3129                         if (!raid5_dec_bi_active_stripes(bi)) {
3130                                 md_write_end(conf->mddev);
3131                                 bio_list_add(return_bi, bi);
3132                         }
3133                         bi = nextbi;
3134                 }
3135                 if (bitmap_end)
3136                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3137                                 STRIPE_SECTORS, 0, 0);
3138                 bitmap_end = 0;
3139                 /* and fail all 'written' */
3140                 bi = sh->dev[i].written;
3141                 sh->dev[i].written = NULL;
3142                 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3143                         WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3144                         sh->dev[i].page = sh->dev[i].orig_page;
3145                 }
3146
3147                 if (bi) bitmap_end = 1;
3148                 while (bi && bi->bi_iter.bi_sector <
3149                        sh->dev[i].sector + STRIPE_SECTORS) {
3150                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3151
3152                         bi->bi_error = -EIO;
3153                         if (!raid5_dec_bi_active_stripes(bi)) {
3154                                 md_write_end(conf->mddev);
3155                                 bio_list_add(return_bi, bi);
3156                         }
3157                         bi = bi2;
3158                 }
3159
3160                 /* fail any reads if this device is non-operational and
3161                  * the data has not reached the cache yet.
3162                  */
3163                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3164                     s->failed > conf->max_degraded &&
3165                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3166                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
3167                         spin_lock_irq(&sh->stripe_lock);
3168                         bi = sh->dev[i].toread;
3169                         sh->dev[i].toread = NULL;
3170                         spin_unlock_irq(&sh->stripe_lock);
3171                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3172                                 wake_up(&conf->wait_for_overlap);
3173                         if (bi)
3174                                 s->to_read--;
3175                         while (bi && bi->bi_iter.bi_sector <
3176                                sh->dev[i].sector + STRIPE_SECTORS) {
3177                                 struct bio *nextbi =
3178                                         r5_next_bio(bi, sh->dev[i].sector);
3179
3180                                 bi->bi_error = -EIO;
3181                                 if (!raid5_dec_bi_active_stripes(bi))
3182                                         bio_list_add(return_bi, bi);
3183                                 bi = nextbi;
3184                         }
3185                 }
3186                 if (bitmap_end)
3187                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3188                                         STRIPE_SECTORS, 0, 0);
3189                 /* If we were in the middle of a write the parity block might
3190                  * still be locked - so just clear all R5_LOCKED flags
3191                  */
3192                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3193         }
3194         s->to_write = 0;
3195         s->written = 0;
3196
3197         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3198                 if (atomic_dec_and_test(&conf->pending_full_writes))
3199                         md_wakeup_thread(conf->mddev->thread);
3200 }
3201
3202 static void
3203 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3204                    struct stripe_head_state *s)
3205 {
3206         int abort = 0;
3207         int i;
3208
3209         BUG_ON(sh->batch_head);
3210         clear_bit(STRIPE_SYNCING, &sh->state);
3211         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3212                 wake_up(&conf->wait_for_overlap);
3213         s->syncing = 0;
3214         s->replacing = 0;
3215         /* There is nothing more to do for sync/check/repair.
3216          * Don't even need to abort as that is handled elsewhere
3217          * if needed, and not always wanted e.g. if there is a known
3218          * bad block here.
3219          * For recover/replace we need to record a bad block on all
3220          * non-sync devices, or abort the recovery
3221          */
3222         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3223                 /* During recovery devices cannot be removed, so
3224                  * locking and refcounting of rdevs is not needed
3225                  */
3226                 rcu_read_lock();
3227                 for (i = 0; i < conf->raid_disks; i++) {
3228                         struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3229                         if (rdev
3230                             && !test_bit(Faulty, &rdev->flags)
3231                             && !test_bit(In_sync, &rdev->flags)
3232                             && !rdev_set_badblocks(rdev, sh->sector,
3233                                                    STRIPE_SECTORS, 0))
3234                                 abort = 1;
3235                         rdev = rcu_dereference(conf->disks[i].replacement);
3236                         if (rdev
3237                             && !test_bit(Faulty, &rdev->flags)
3238                             && !test_bit(In_sync, &rdev->flags)
3239                             && !rdev_set_badblocks(rdev, sh->sector,
3240                                                    STRIPE_SECTORS, 0))
3241                                 abort = 1;
3242                 }
3243                 rcu_read_unlock();
3244                 if (abort)
3245                         conf->recovery_disabled =
3246                                 conf->mddev->recovery_disabled;
3247         }
3248         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3249 }
3250
3251 static int want_replace(struct stripe_head *sh, int disk_idx)
3252 {
3253         struct md_rdev *rdev;
3254         int rv = 0;
3255
3256         rcu_read_lock();
3257         rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3258         if (rdev
3259             && !test_bit(Faulty, &rdev->flags)
3260             && !test_bit(In_sync, &rdev->flags)
3261             && (rdev->recovery_offset <= sh->sector
3262                 || rdev->mddev->recovery_cp <= sh->sector))
3263                 rv = 1;
3264         rcu_read_unlock();
3265         return rv;
3266 }
3267
3268 /* fetch_block - checks the given member device to see if its data needs
3269  * to be read or computed to satisfy a request.
3270  *
3271  * Returns 1 when no more member devices need to be checked, otherwise returns
3272  * 0 to tell the loop in handle_stripe_fill to continue
3273  */
3274
3275 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3276                            int disk_idx, int disks)
3277 {
3278         struct r5dev *dev = &sh->dev[disk_idx];
3279         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3280                                   &sh->dev[s->failed_num[1]] };
3281         int i;
3282
3283
3284         if (test_bit(R5_LOCKED, &dev->flags) ||
3285             test_bit(R5_UPTODATE, &dev->flags))
3286                 /* No point reading this as we already have it or have
3287                  * decided to get it.
3288                  */
3289                 return 0;
3290
3291         if (dev->toread ||
3292             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3293                 /* We need this block to directly satisfy a request */
3294                 return 1;
3295
3296         if (s->syncing || s->expanding ||
3297             (s->replacing && want_replace(sh, disk_idx)))
3298                 /* When syncing, or expanding we read everything.
3299                  * When replacing, we need the replaced block.
3300                  */
3301                 return 1;
3302
3303         if ((s->failed >= 1 && fdev[0]->toread) ||
3304             (s->failed >= 2 && fdev[1]->toread))
3305                 /* If we want to read from a failed device, then
3306                  * we need to actually read every other device.
3307                  */
3308                 return 1;
3309
3310         /* Sometimes neither read-modify-write nor reconstruct-write
3311          * cycles can work.  In those cases we read every block we
3312          * can.  Then the parity-update is certain to have enough to
3313          * work with.
3314          * This can only be a problem when we need to write something,
3315          * and some device has failed.  If either of those tests
3316          * fail we need look no further.
3317          */
3318         if (!s->failed || !s->to_write)
3319                 return 0;
3320
3321         if (test_bit(R5_Insync, &dev->flags) &&
3322             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3323                 /* Pre-reads at not permitted until after short delay
3324                  * to gather multiple requests.  However if this
3325                  * device is no Insync, the block could only be be computed
3326                  * and there is no need to delay that.
3327                  */
3328                 return 0;
3329
3330         for (i = 0; i < s->failed && i < 2; i++) {
3331                 if (fdev[i]->towrite &&
3332                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3333                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3334                         /* If we have a partial write to a failed
3335                          * device, then we will need to reconstruct
3336                          * the content of that device, so all other
3337                          * devices must be read.
3338                          */
3339                         return 1;
3340         }
3341
3342         /* If we are forced to do a reconstruct-write, either because
3343          * the current RAID6 implementation only supports that, or
3344          * or because parity cannot be trusted and we are currently
3345          * recovering it, there is extra need to be careful.
3346          * If one of the devices that we would need to read, because
3347          * it is not being overwritten (and maybe not written at all)
3348          * is missing/faulty, then we need to read everything we can.
3349          */
3350         if (sh->raid_conf->level != 6 &&
3351             sh->sector < sh->raid_conf->mddev->recovery_cp)
3352                 /* reconstruct-write isn't being forced */
3353                 return 0;
3354         for (i = 0; i < s->failed && i < 2; i++) {
3355                 if (s->failed_num[i] != sh->pd_idx &&
3356                     s->failed_num[i] != sh->qd_idx &&
3357                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3358                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3359                         return 1;
3360         }
3361
3362         return 0;
3363 }
3364
3365 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3366                        int disk_idx, int disks)
3367 {
3368         struct r5dev *dev = &sh->dev[disk_idx];
3369
3370         /* is the data in this block needed, and can we get it? */
3371         if (need_this_block(sh, s, disk_idx, disks)) {
3372                 /* we would like to get this block, possibly by computing it,
3373                  * otherwise read it if the backing disk is insync
3374                  */
3375                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3376                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3377                 BUG_ON(sh->batch_head);
3378                 if ((s->uptodate == disks - 1) &&
3379                     (s->failed && (disk_idx == s->failed_num[0] ||
3380                                    disk_idx == s->failed_num[1]))) {
3381                         /* have disk failed, and we're requested to fetch it;
3382                          * do compute it
3383                          */
3384                         pr_debug("Computing stripe %llu block %d\n",
3385                                (unsigned long long)sh->sector, disk_idx);
3386                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3387                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3388                         set_bit(R5_Wantcompute, &dev->flags);
3389                         sh->ops.target = disk_idx;
3390                         sh->ops.target2 = -1; /* no 2nd target */
3391                         s->req_compute = 1;
3392                         /* Careful: from this point on 'uptodate' is in the eye
3393                          * of raid_run_ops which services 'compute' operations
3394                          * before writes. R5_Wantcompute flags a block that will
3395                          * be R5_UPTODATE by the time it is needed for a
3396                          * subsequent operation.
3397                          */
3398                         s->uptodate++;
3399                         return 1;
3400                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3401                         /* Computing 2-failure is *very* expensive; only
3402                          * do it if failed >= 2
3403                          */
3404                         int other;
3405                         for (other = disks; other--; ) {
3406                                 if (other == disk_idx)
3407                                         continue;
3408                                 if (!test_bit(R5_UPTODATE,
3409                                       &sh->dev[other].flags))
3410                                         break;
3411                         }
3412                         BUG_ON(other < 0);
3413                         pr_debug("Computing stripe %llu blocks %d,%d\n",
3414                                (unsigned long long)sh->sector,
3415                                disk_idx, other);
3416                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3417                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3418                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3419                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
3420                         sh->ops.target = disk_idx;
3421                         sh->ops.target2 = other;
3422                         s->uptodate += 2;
3423                         s->req_compute = 1;
3424                         return 1;
3425                 } else if (test_bit(R5_Insync, &dev->flags)) {
3426                         set_bit(R5_LOCKED, &dev->flags);
3427                         set_bit(R5_Wantread, &dev->flags);
3428                         s->locked++;
3429                         pr_debug("Reading block %d (sync=%d)\n",
3430                                 disk_idx, s->syncing);
3431                 }
3432         }
3433
3434         return 0;
3435 }
3436
3437 /**
3438  * handle_stripe_fill - read or compute data to satisfy pending requests.
3439  */
3440 static void handle_stripe_fill(struct stripe_head *sh,
3441                                struct stripe_head_state *s,
3442                                int disks)
3443 {
3444         int i;
3445
3446         /* look for blocks to read/compute, skip this if a compute
3447          * is already in flight, or if the stripe contents are in the
3448          * midst of changing due to a write
3449          */
3450         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3451             !sh->reconstruct_state)
3452                 for (i = disks; i--; )
3453                         if (fetch_block(sh, s, i, disks))
3454                                 break;
3455         set_bit(STRIPE_HANDLE, &sh->state);
3456 }
3457
3458 static void break_stripe_batch_list(struct stripe_head *head_sh,
3459                                     unsigned long handle_flags);
3460 /* handle_stripe_clean_event
3461  * any written block on an uptodate or failed drive can be returned.
3462  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3463  * never LOCKED, so we don't need to test 'failed' directly.
3464  */
3465 static void handle_stripe_clean_event(struct r5conf *conf,
3466         struct stripe_head *sh, int disks, struct bio_list *return_bi)
3467 {
3468         int i;
3469         struct r5dev *dev;
3470         int discard_pending = 0;
3471         struct stripe_head *head_sh = sh;
3472         bool do_endio = false;
3473
3474         for (i = disks; i--; )
3475                 if (sh->dev[i].written) {
3476                         dev = &sh->dev[i];
3477                         if (!test_bit(R5_LOCKED, &dev->flags) &&
3478                             (test_bit(R5_UPTODATE, &dev->flags) ||
3479                              test_bit(R5_Discard, &dev->flags) ||
3480                              test_bit(R5_SkipCopy, &dev->flags))) {
3481                                 /* We can return any write requests */
3482                                 struct bio *wbi, *wbi2;
3483                                 pr_debug("Return write for disc %d\n", i);
3484                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
3485                                         clear_bit(R5_UPTODATE, &dev->flags);
3486                                 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3487                                         WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3488                                 }
3489                                 do_endio = true;
3490
3491 returnbi:
3492                                 dev->page = dev->orig_page;
3493                                 wbi = dev->written;
3494                                 dev->written = NULL;
3495                                 while (wbi && wbi->bi_iter.bi_sector <
3496                                         dev->sector + STRIPE_SECTORS) {
3497                                         wbi2 = r5_next_bio(wbi, dev->sector);
3498                                         if (!raid5_dec_bi_active_stripes(wbi)) {
3499                                                 md_write_end(conf->mddev);
3500                                                 bio_list_add(return_bi, wbi);
3501                                         }
3502                                         wbi = wbi2;
3503                                 }
3504                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3505                                                 STRIPE_SECTORS,
3506                                          !test_bit(STRIPE_DEGRADED, &sh->state),
3507                                                 0);
3508                                 if (head_sh->batch_head) {
3509                                         sh = list_first_entry(&sh->batch_list,
3510                                                               struct stripe_head,
3511                                                               batch_list);
3512                                         if (sh != head_sh) {
3513                                                 dev = &sh->dev[i];
3514                                                 goto returnbi;
3515                                         }
3516                                 }
3517                                 sh = head_sh;
3518                                 dev = &sh->dev[i];
3519                         } else if (test_bit(R5_Discard, &dev->flags))
3520                                 discard_pending = 1;
3521                 }
3522
3523         r5l_stripe_write_finished(sh);
3524
3525         if (!discard_pending &&
3526             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3527                 int hash;
3528                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3529                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3530                 if (sh->qd_idx >= 0) {
3531                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3532                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3533                 }
3534                 /* now that discard is done we can proceed with any sync */
3535                 clear_bit(STRIPE_DISCARD, &sh->state);
3536                 /*
3537                  * SCSI discard will change some bio fields and the stripe has
3538                  * no updated data, so remove it from hash list and the stripe
3539                  * will be reinitialized
3540                  */
3541 unhash:
3542                 hash = sh->hash_lock_index;
3543                 spin_lock_irq(conf->hash_locks + hash);
3544                 remove_hash(sh);
3545                 spin_unlock_irq(conf->hash_locks + hash);
3546                 if (head_sh->batch_head) {
3547                         sh = list_first_entry(&sh->batch_list,
3548                                               struct stripe_head, batch_list);
3549                         if (sh != head_sh)
3550                                         goto unhash;
3551                 }
3552                 sh = head_sh;
3553
3554                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3555                         set_bit(STRIPE_HANDLE, &sh->state);
3556
3557         }
3558
3559         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3560                 if (atomic_dec_and_test(&conf->pending_full_writes))
3561                         md_wakeup_thread(conf->mddev->thread);
3562
3563         if (head_sh->batch_head && do_endio)
3564                 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3565 }
3566
3567 static void handle_stripe_dirtying(struct r5conf *conf,
3568                                    struct stripe_head *sh,
3569                                    struct stripe_head_state *s,
3570                                    int disks)
3571 {
3572         int rmw = 0, rcw = 0, i;
3573         sector_t recovery_cp = conf->mddev->recovery_cp;
3574
3575         /* Check whether resync is now happening or should start.
3576          * If yes, then the array is dirty (after unclean shutdown or
3577          * initial creation), so parity in some stripes might be inconsistent.
3578          * In this case, we need to always do reconstruct-write, to ensure
3579          * that in case of drive failure or read-error correction, we
3580          * generate correct data from the parity.
3581          */
3582         if (conf->rmw_level == PARITY_DISABLE_RMW ||
3583             (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3584              s->failed == 0)) {
3585                 /* Calculate the real rcw later - for now make it
3586                  * look like rcw is cheaper
3587                  */
3588                 rcw = 1; rmw = 2;
3589                 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3590                          conf->rmw_level, (unsigned long long)recovery_cp,
3591                          (unsigned long long)sh->sector);
3592         } else for (i = disks; i--; ) {
3593                 /* would I have to read this buffer for read_modify_write */
3594                 struct r5dev *dev = &sh->dev[i];
3595                 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3596                     !test_bit(R5_LOCKED, &dev->flags) &&
3597                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3598                       test_bit(R5_Wantcompute, &dev->flags))) {
3599                         if (test_bit(R5_Insync, &dev->flags))
3600                                 rmw++;
3601                         else
3602                                 rmw += 2*disks;  /* cannot read it */
3603                 }
3604                 /* Would I have to read this buffer for reconstruct_write */
3605                 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3606                     i != sh->pd_idx && i != sh->qd_idx &&
3607                     !test_bit(R5_LOCKED, &dev->flags) &&
3608                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3609                     test_bit(R5_Wantcompute, &dev->flags))) {
3610                         if (test_bit(R5_Insync, &dev->flags))
3611                                 rcw++;
3612                         else
3613                                 rcw += 2*disks;
3614                 }
3615         }
3616         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3617                 (unsigned long long)sh->sector, rmw, rcw);
3618         set_bit(STRIPE_HANDLE, &sh->state);
3619         if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3620                 /* prefer read-modify-write, but need to get some data */
3621                 if (conf->mddev->queue)
3622                         blk_add_trace_msg(conf->mddev->queue,
3623                                           "raid5 rmw %llu %d",
3624                                           (unsigned long long)sh->sector, rmw);
3625                 for (i = disks; i--; ) {
3626                         struct r5dev *dev = &sh->dev[i];
3627                         if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3628                             !test_bit(R5_LOCKED, &dev->flags) &&
3629                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3630                             test_bit(R5_Wantcompute, &dev->flags)) &&
3631                             test_bit(R5_Insync, &dev->flags)) {
3632                                 if (test_bit(STRIPE_PREREAD_ACTIVE,
3633                                              &sh->state)) {
3634                                         pr_debug("Read_old block %d for r-m-w\n",
3635                                                  i);
3636                                         set_bit(R5_LOCKED, &dev->flags);
3637                                         set_bit(R5_Wantread, &dev->flags);
3638                                         s->locked++;
3639                                 } else {
3640                                         set_bit(STRIPE_DELAYED, &sh->state);
3641                                         set_bit(STRIPE_HANDLE, &sh->state);
3642                                 }
3643                         }
3644                 }
3645         }
3646         if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3647                 /* want reconstruct write, but need to get some data */
3648                 int qread =0;
3649                 rcw = 0;
3650                 for (i = disks; i--; ) {
3651                         struct r5dev *dev = &sh->dev[i];
3652                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3653                             i != sh->pd_idx && i != sh->qd_idx &&
3654                             !test_bit(R5_LOCKED, &dev->flags) &&
3655                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3656                               test_bit(R5_Wantcompute, &dev->flags))) {
3657                                 rcw++;
3658                                 if (test_bit(R5_Insync, &dev->flags) &&
3659                                     test_bit(STRIPE_PREREAD_ACTIVE,
3660                                              &sh->state)) {
3661                                         pr_debug("Read_old block "
3662                                                 "%d for Reconstruct\n", i);
3663                                         set_bit(R5_LOCKED, &dev->flags);
3664                                         set_bit(R5_Wantread, &dev->flags);
3665                                         s->locked++;
3666                                         qread++;
3667                                 } else {
3668                                         set_bit(STRIPE_DELAYED, &sh->state);
3669                                         set_bit(STRIPE_HANDLE, &sh->state);
3670                                 }
3671                         }
3672                 }
3673                 if (rcw && conf->mddev->queue)
3674                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3675                                           (unsigned long long)sh->sector,
3676                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3677         }
3678
3679         if (rcw > disks && rmw > disks &&
3680             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3681                 set_bit(STRIPE_DELAYED, &sh->state);
3682
3683         /* now if nothing is locked, and if we have enough data,
3684          * we can start a write request
3685          */
3686         /* since handle_stripe can be called at any time we need to handle the
3687          * case where a compute block operation has been submitted and then a
3688          * subsequent call wants to start a write request.  raid_run_ops only
3689          * handles the case where compute block and reconstruct are requested
3690          * simultaneously.  If this is not the case then new writes need to be
3691          * held off until the compute completes.
3692          */
3693         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3694             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3695             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3696                 schedule_reconstruction(sh, s, rcw == 0, 0);
3697 }
3698
3699 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3700                                 struct stripe_head_state *s, int disks)
3701 {
3702         struct r5dev *dev = NULL;
3703
3704         BUG_ON(sh->batch_head);
3705         set_bit(STRIPE_HANDLE, &sh->state);
3706
3707         switch (sh->check_state) {
3708         case check_state_idle:
3709                 /* start a new check operation if there are no failures */
3710                 if (s->failed == 0) {
3711                         BUG_ON(s->uptodate != disks);
3712                         sh->check_state = check_state_run;
3713                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3714                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3715                         s->uptodate--;
3716                         break;
3717                 }
3718                 dev = &sh->dev[s->failed_num[0]];
3719                 /* fall through */
3720         case check_state_compute_result:
3721                 sh->check_state = check_state_idle;
3722                 if (!dev)
3723                         dev = &sh->dev[sh->pd_idx];
3724
3725                 /* check that a write has not made the stripe insync */
3726                 if (test_bit(STRIPE_INSYNC, &sh->state))
3727                         break;
3728
3729                 /* either failed parity check, or recovery is happening */
3730                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3731                 BUG_ON(s->uptodate != disks);
3732
3733                 set_bit(R5_LOCKED, &dev->flags);
3734                 s->locked++;
3735                 set_bit(R5_Wantwrite, &dev->flags);
3736
3737                 clear_bit(STRIPE_DEGRADED, &sh->state);
3738                 set_bit(STRIPE_INSYNC, &sh->state);
3739                 break;
3740         case check_state_run:
3741                 break; /* we will be called again upon completion */
3742         case check_state_check_result:
3743                 sh->check_state = check_state_idle;
3744
3745                 /* if a failure occurred during the check operation, leave
3746                  * STRIPE_INSYNC not set and let the stripe be handled again
3747                  */
3748                 if (s->failed)
3749                         break;
3750
3751                 /* handle a successful check operation, if parity is correct
3752                  * we are done.  Otherwise update the mismatch count and repair
3753                  * parity if !MD_RECOVERY_CHECK
3754                  */
3755                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3756                         /* parity is correct (on disc,
3757                          * not in buffer any more)
3758                          */
3759                         set_bit(STRIPE_INSYNC, &sh->state);
3760                 else {
3761                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3762                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3763                                 /* don't try to repair!! */
3764                                 set_bit(STRIPE_INSYNC, &sh->state);
3765                         else {
3766                                 sh->check_state = check_state_compute_run;
3767                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3768                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3769                                 set_bit(R5_Wantcompute,
3770                                         &sh->dev[sh->pd_idx].flags);
3771                                 sh->ops.target = sh->pd_idx;
3772                                 sh->ops.target2 = -1;
3773                                 s->uptodate++;
3774                         }
3775                 }
3776                 break;
3777         case check_state_compute_run:
3778                 break;
3779         default:
3780                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3781                        __func__, sh->check_state,
3782                        (unsigned long long) sh->sector);
3783                 BUG();
3784         }
3785 }
3786
3787 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3788                                   struct stripe_head_state *s,
3789                                   int disks)
3790 {
3791         int pd_idx = sh->pd_idx;
3792         int qd_idx = sh->qd_idx;
3793         struct r5dev *dev;
3794
3795         BUG_ON(sh->batch_head);
3796         set_bit(STRIPE_HANDLE, &sh->state);
3797
3798         BUG_ON(s->failed > 2);
3799
3800         /* Want to check and possibly repair P and Q.
3801          * However there could be one 'failed' device, in which
3802          * case we can only check one of them, possibly using the
3803          * other to generate missing data
3804          */
3805
3806         switch (sh->check_state) {
3807         case check_state_idle:
3808                 /* start a new check operation if there are < 2 failures */
3809                 if (s->failed == s->q_failed) {
3810                         /* The only possible failed device holds Q, so it
3811                          * makes sense to check P (If anything else were failed,
3812                          * we would have used P to recreate it).
3813                          */
3814                         sh->check_state = check_state_run;
3815                 }
3816                 if (!s->q_failed && s->failed < 2) {
3817                         /* Q is not failed, and we didn't use it to generate
3818                          * anything, so it makes sense to check it
3819                          */
3820                         if (sh->check_state == check_state_run)
3821                                 sh->check_state = check_state_run_pq;
3822                         else
3823                                 sh->check_state = check_state_run_q;
3824                 }
3825
3826                 /* discard potentially stale zero_sum_result */
3827                 sh->ops.zero_sum_result = 0;
3828
3829                 if (sh->check_state == check_state_run) {
3830                         /* async_xor_zero_sum destroys the contents of P */
3831                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3832                         s->uptodate--;
3833                 }
3834                 if (sh->check_state >= check_state_run &&
3835                     sh->check_state <= check_state_run_pq) {
3836                         /* async_syndrome_zero_sum preserves P and Q, so
3837                          * no need to mark them !uptodate here
3838                          */
3839                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3840                         break;
3841                 }
3842
3843                 /* we have 2-disk failure */
3844                 BUG_ON(s->failed != 2);
3845                 /* fall through */
3846         case check_state_compute_result:
3847                 sh->check_state = check_state_idle;
3848
3849                 /* check that a write has not made the stripe insync */
3850                 if (test_bit(STRIPE_INSYNC, &sh->state))
3851                         break;
3852
3853                 /* now write out any block on a failed drive,
3854                  * or P or Q if they were recomputed
3855                  */
3856                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3857                 if (s->failed == 2) {
3858                         dev = &sh->dev[s->failed_num[1]];
3859                         s->locked++;
3860                         set_bit(R5_LOCKED, &dev->flags);
3861                         set_bit(R5_Wantwrite, &dev->flags);
3862                 }
3863                 if (s->failed >= 1) {
3864                         dev = &sh->dev[s->failed_num[0]];
3865                         s->locked++;
3866                         set_bit(R5_LOCKED, &dev->flags);
3867                         set_bit(R5_Wantwrite, &dev->flags);
3868                 }
3869                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3870                         dev = &sh->dev[pd_idx];
3871                         s->locked++;
3872                         set_bit(R5_LOCKED, &dev->flags);
3873                         set_bit(R5_Wantwrite, &dev->flags);
3874                 }
3875                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3876                         dev = &sh->dev[qd_idx];
3877                         s->locked++;
3878                         set_bit(R5_LOCKED, &dev->flags);
3879                         set_bit(R5_Wantwrite, &dev->flags);
3880                 }
3881                 clear_bit(STRIPE_DEGRADED, &sh->state);
3882
3883                 set_bit(STRIPE_INSYNC, &sh->state);
3884                 break;
3885         case check_state_run:
3886         case check_state_run_q:
3887         case check_state_run_pq:
3888                 break; /* we will be called again upon completion */
3889         case check_state_check_result:
3890                 sh->check_state = check_state_idle;
3891
3892                 /* handle a successful check operation, if parity is correct
3893                  * we are done.  Otherwise update the mismatch count and repair
3894                  * parity if !MD_RECOVERY_CHECK
3895                  */
3896                 if (sh->ops.zero_sum_result == 0) {
3897                         /* both parities are correct */
3898                         if (!s->failed)
3899                                 set_bit(STRIPE_INSYNC, &sh->state);
3900                         else {
3901                                 /* in contrast to the raid5 case we can validate
3902                                  * parity, but still have a failure to write
3903                                  * back
3904                                  */
3905                                 sh->check_state = check_state_compute_result;
3906                                 /* Returning at this point means that we may go
3907                                  * off and bring p and/or q uptodate again so
3908                                  * we make sure to check zero_sum_result again
3909                                  * to verify if p or q need writeback
3910                                  */
3911                         }
3912                 } else {
3913                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3914                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3915                                 /* don't try to repair!! */
3916                                 set_bit(STRIPE_INSYNC, &sh->state);
3917                         else {
3918                                 int *target = &sh->ops.target;
3919
3920                                 sh->ops.target = -1;
3921                                 sh->ops.target2 = -1;
3922                                 sh->check_state = check_state_compute_run;
3923                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3924                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3925                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3926                                         set_bit(R5_Wantcompute,
3927                                                 &sh->dev[pd_idx].flags);
3928                                         *target = pd_idx;
3929                                         target = &sh->ops.target2;
3930                                         s->uptodate++;
3931                                 }
3932                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3933                                         set_bit(R5_Wantcompute,
3934                                                 &sh->dev[qd_idx].flags);
3935                                         *target = qd_idx;
3936                                         s->uptodate++;
3937                                 }
3938                         }
3939                 }
3940                 break;
3941         case check_state_compute_run:
3942                 break;
3943         default:
3944                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3945                        __func__, sh->check_state,
3946                        (unsigned long long) sh->sector);
3947                 BUG();
3948         }
3949 }
3950
3951 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3952 {
3953         int i;
3954
3955         /* We have read all the blocks in this stripe and now we need to
3956          * copy some of them into a target stripe for expand.
3957          */
3958         struct dma_async_tx_descriptor *tx = NULL;
3959         BUG_ON(sh->batch_head);
3960         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3961         for (i = 0; i < sh->disks; i++)
3962                 if (i != sh->pd_idx && i != sh->qd_idx) {
3963                         int dd_idx, j;
3964                         struct stripe_head *sh2;
3965                         struct async_submit_ctl submit;
3966
3967                         sector_t bn = raid5_compute_blocknr(sh, i, 1);
3968                         sector_t s = raid5_compute_sector(conf, bn, 0,
3969                                                           &dd_idx, NULL);
3970                         sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
3971                         if (sh2 == NULL)
3972                                 /* so far only the early blocks of this stripe
3973                                  * have been requested.  When later blocks
3974                                  * get requested, we will try again
3975                                  */
3976                                 continue;
3977                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3978                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3979                                 /* must have already done this block */
3980                                 raid5_release_stripe(sh2);
3981                                 continue;
3982                         }
3983
3984                         /* place all the copies on one channel */
3985                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3986                         tx = async_memcpy(sh2->dev[dd_idx].page,
3987                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3988                                           &submit);
3989
3990                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3991                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3992                         for (j = 0; j < conf->raid_disks; j++)
3993                                 if (j != sh2->pd_idx &&
3994                                     j != sh2->qd_idx &&
3995                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3996                                         break;
3997                         if (j == conf->raid_disks) {
3998                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3999                                 set_bit(STRIPE_HANDLE, &sh2->state);
4000                         }
4001                         raid5_release_stripe(sh2);
4002
4003                 }
4004         /* done submitting copies, wait for them to complete */
4005         async_tx_quiesce(&tx);
4006 }
4007
4008 /*
4009  * handle_stripe - do things to a stripe.
4010  *
4011  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4012  * state of various bits to see what needs to be done.
4013  * Possible results:
4014  *    return some read requests which now have data
4015  *    return some write requests which are safely on storage
4016  *    schedule a read on some buffers
4017  *    schedule a write of some buffers
4018  *    return confirmation of parity correctness
4019  *
4020  */
4021
4022 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4023 {
4024         struct r5conf *conf = sh->raid_conf;
4025         int disks = sh->disks;
4026         struct r5dev *dev;
4027         int i;
4028         int do_recovery = 0;
4029
4030         memset(s, 0, sizeof(*s));
4031
4032         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4033         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4034         s->failed_num[0] = -1;
4035         s->failed_num[1] = -1;
4036         s->log_failed = r5l_log_disk_error(conf);
4037
4038         /* Now to look around and see what can be done */
4039         rcu_read_lock();
4040         for (i=disks; i--; ) {
4041                 struct md_rdev *rdev;
4042                 sector_t first_bad;
4043                 int bad_sectors;
4044                 int is_bad = 0;
4045
4046                 dev = &sh->dev[i];
4047
4048                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4049                          i, dev->flags,
4050                          dev->toread, dev->towrite, dev->written);
4051                 /* maybe we can reply to a read
4052                  *
4053                  * new wantfill requests are only permitted while
4054                  * ops_complete_biofill is guaranteed to be inactive
4055                  */
4056                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4057                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4058                         set_bit(R5_Wantfill, &dev->flags);
4059
4060                 /* now count some things */
4061                 if (test_bit(R5_LOCKED, &dev->flags))
4062                         s->locked++;
4063                 if (test_bit(R5_UPTODATE, &dev->flags))
4064                         s->uptodate++;
4065                 if (test_bit(R5_Wantcompute, &dev->flags)) {
4066                         s->compute++;
4067                         BUG_ON(s->compute > 2);
4068                 }
4069
4070                 if (test_bit(R5_Wantfill, &dev->flags))
4071                         s->to_fill++;
4072                 else if (dev->toread)
4073                         s->to_read++;
4074                 if (dev->towrite) {
4075                         s->to_write++;
4076                         if (!test_bit(R5_OVERWRITE, &dev->flags))
4077                                 s->non_overwrite++;
4078                 }
4079                 if (dev->written)
4080                         s->written++;
4081                 /* Prefer to use the replacement for reads, but only
4082                  * if it is recovered enough and has no bad blocks.
4083                  */
4084                 rdev = rcu_dereference(conf->disks[i].replacement);
4085                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4086                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4087                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4088                                  &first_bad, &bad_sectors))
4089                         set_bit(R5_ReadRepl, &dev->flags);
4090                 else {
4091                         if (rdev && !test_bit(Faulty, &rdev->flags))
4092                                 set_bit(R5_NeedReplace, &dev->flags);
4093                         else
4094                                 clear_bit(R5_NeedReplace, &dev->flags);
4095                         rdev = rcu_dereference(conf->disks[i].rdev);
4096                         clear_bit(R5_ReadRepl, &dev->flags);
4097                 }
4098                 if (rdev && test_bit(Faulty, &rdev->flags))
4099                         rdev = NULL;
4100                 if (rdev) {
4101                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4102                                              &first_bad, &bad_sectors);
4103                         if (s->blocked_rdev == NULL
4104                             && (test_bit(Blocked, &rdev->flags)
4105                                 || is_bad < 0)) {
4106                                 if (is_bad < 0)
4107                                         set_bit(BlockedBadBlocks,
4108                                                 &rdev->flags);
4109                                 s->blocked_rdev = rdev;
4110                                 atomic_inc(&rdev->nr_pending);
4111                         }
4112                 }
4113                 clear_bit(R5_Insync, &dev->flags);
4114                 if (!rdev)
4115                         /* Not in-sync */;
4116                 else if (is_bad) {
4117                         /* also not in-sync */
4118                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4119                             test_bit(R5_UPTODATE, &dev->flags)) {
4120                                 /* treat as in-sync, but with a read error
4121                                  * which we can now try to correct
4122                                  */
4123                                 set_bit(R5_Insync, &dev->flags);
4124                                 set_bit(R5_ReadError, &dev->flags);
4125                         }
4126                 } else if (test_bit(In_sync, &rdev->flags))
4127                         set_bit(R5_Insync, &dev->flags);
4128                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4129                         /* in sync if before recovery_offset */
4130                         set_bit(R5_Insync, &dev->flags);
4131                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4132                          test_bit(R5_Expanded, &dev->flags))
4133                         /* If we've reshaped into here, we assume it is Insync.
4134                          * We will shortly update recovery_offset to make
4135                          * it official.
4136                          */
4137                         set_bit(R5_Insync, &dev->flags);
4138
4139                 if (test_bit(R5_WriteError, &dev->flags)) {
4140                         /* This flag does not apply to '.replacement'
4141                          * only to .rdev, so make sure to check that*/
4142                         struct md_rdev *rdev2 = rcu_dereference(
4143                                 conf->disks[i].rdev);
4144                         if (rdev2 == rdev)
4145                                 clear_bit(R5_Insync, &dev->flags);
4146                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4147                                 s->handle_bad_blocks = 1;
4148                                 atomic_inc(&rdev2->nr_pending);
4149                         } else
4150                                 clear_bit(R5_WriteError, &dev->flags);
4151                 }
4152                 if (test_bit(R5_MadeGood, &dev->flags)) {
4153                         /* This flag does not apply to '.replacement'
4154                          * only to .rdev, so make sure to check that*/
4155                         struct md_rdev *rdev2 = rcu_dereference(
4156                                 conf->disks[i].rdev);
4157                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4158                                 s->handle_bad_blocks = 1;
4159                                 atomic_inc(&rdev2->nr_pending);
4160                         } else
4161                                 clear_bit(R5_MadeGood, &dev->flags);
4162                 }
4163                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4164                         struct md_rdev *rdev2 = rcu_dereference(
4165                                 conf->disks[i].replacement);
4166                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4167                                 s->handle_bad_blocks = 1;
4168                                 atomic_inc(&rdev2->nr_pending);
4169                         } else
4170                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
4171                 }
4172                 if (!test_bit(R5_Insync, &dev->flags)) {
4173                         /* The ReadError flag will just be confusing now */
4174                         clear_bit(R5_ReadError, &dev->flags);
4175                         clear_bit(R5_ReWrite, &dev->flags);
4176                 }
4177                 if (test_bit(R5_ReadError, &dev->flags))
4178                         clear_bit(R5_Insync, &dev->flags);
4179                 if (!test_bit(R5_Insync, &dev->flags)) {
4180                         if (s->failed < 2)
4181                                 s->failed_num[s->failed] = i;
4182                         s->failed++;
4183                         if (rdev && !test_bit(Faulty, &rdev->flags))
4184                                 do_recovery = 1;
4185                 }
4186         }
4187         if (test_bit(STRIPE_SYNCING, &sh->state)) {
4188                 /* If there is a failed device being replaced,
4189                  *     we must be recovering.
4190                  * else if we are after recovery_cp, we must be syncing
4191                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4192                  * else we can only be replacing
4193                  * sync and recovery both need to read all devices, and so
4194                  * use the same flag.
4195                  */
4196                 if (do_recovery ||
4197                     sh->sector >= conf->mddev->recovery_cp ||
4198                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4199                         s->syncing = 1;
4200                 else
4201                         s->replacing = 1;
4202         }
4203         rcu_read_unlock();
4204 }
4205
4206 static int clear_batch_ready(struct stripe_head *sh)
4207 {
4208         /* Return '1' if this is a member of batch, or
4209          * '0' if it is a lone stripe or a head which can now be
4210          * handled.
4211          */
4212         struct stripe_head *tmp;
4213         if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4214                 return (sh->batch_head && sh->batch_head != sh);
4215         spin_lock(&sh->stripe_lock);
4216         if (!sh->batch_head) {
4217                 spin_unlock(&sh->stripe_lock);
4218                 return 0;
4219         }
4220
4221         /*
4222          * this stripe could be added to a batch list before we check
4223          * BATCH_READY, skips it
4224          */
4225         if (sh->batch_head != sh) {
4226                 spin_unlock(&sh->stripe_lock);
4227                 return 1;
4228         }
4229         spin_lock(&sh->batch_lock);
4230         list_for_each_entry(tmp, &sh->batch_list, batch_list)
4231                 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4232         spin_unlock(&sh->batch_lock);
4233         spin_unlock(&sh->stripe_lock);
4234
4235         /*
4236          * BATCH_READY is cleared, no new stripes can be added.
4237          * batch_list can be accessed without lock
4238          */
4239         return 0;
4240 }
4241
4242 static void break_stripe_batch_list(struct stripe_head *head_sh,
4243                                     unsigned long handle_flags)
4244 {
4245         struct stripe_head *sh, *next;
4246         int i;
4247         int do_wakeup = 0;
4248
4249         list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4250
4251                 list_del_init(&sh->batch_list);
4252
4253                 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4254                                           (1 << STRIPE_SYNCING) |
4255                                           (1 << STRIPE_REPLACED) |
4256                                           (1 << STRIPE_DELAYED) |
4257                                           (1 << STRIPE_BIT_DELAY) |
4258                                           (1 << STRIPE_FULL_WRITE) |
4259                                           (1 << STRIPE_BIOFILL_RUN) |
4260                                           (1 << STRIPE_COMPUTE_RUN)  |
4261                                           (1 << STRIPE_OPS_REQ_PENDING) |
4262                                           (1 << STRIPE_DISCARD) |
4263                                           (1 << STRIPE_BATCH_READY) |
4264                                           (1 << STRIPE_BATCH_ERR) |
4265                                           (1 << STRIPE_BITMAP_PENDING)),
4266                         "stripe state: %lx\n", sh->state);
4267                 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4268                                               (1 << STRIPE_REPLACED)),
4269                         "head stripe state: %lx\n", head_sh->state);
4270
4271                 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4272                                             (1 << STRIPE_PREREAD_ACTIVE) |
4273                                             (1 << STRIPE_DEGRADED)),
4274                               head_sh->state & (1 << STRIPE_INSYNC));
4275
4276                 sh->check_state = head_sh->check_state;
4277                 sh->reconstruct_state = head_sh->reconstruct_state;
4278                 for (i = 0; i < sh->disks; i++) {
4279                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4280                                 do_wakeup = 1;
4281                         sh->dev[i].flags = head_sh->dev[i].flags &
4282                                 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4283                 }
4284                 spin_lock_irq(&sh->stripe_lock);
4285                 sh->batch_head = NULL;
4286                 spin_unlock_irq(&sh->stripe_lock);
4287                 if (handle_flags == 0 ||
4288                     sh->state & handle_flags)
4289                         set_bit(STRIPE_HANDLE, &sh->state);
4290                 raid5_release_stripe(sh);
4291         }
4292         spin_lock_irq(&head_sh->stripe_lock);
4293         head_sh->batch_head = NULL;
4294         spin_unlock_irq(&head_sh->stripe_lock);
4295         for (i = 0; i < head_sh->disks; i++)
4296                 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4297                         do_wakeup = 1;
4298         if (head_sh->state & handle_flags)
4299                 set_bit(STRIPE_HANDLE, &head_sh->state);
4300
4301         if (do_wakeup)
4302                 wake_up(&head_sh->raid_conf->wait_for_overlap);
4303 }
4304
4305 static void handle_stripe(struct stripe_head *sh)
4306 {
4307         struct stripe_head_state s;
4308         struct r5conf *conf = sh->raid_conf;
4309         int i;
4310         int prexor;
4311         int disks = sh->disks;
4312         struct r5dev *pdev, *qdev;
4313
4314         clear_bit(STRIPE_HANDLE, &sh->state);
4315         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4316                 /* already being handled, ensure it gets handled
4317                  * again when current action finishes */
4318                 set_bit(STRIPE_HANDLE, &sh->state);
4319                 return;
4320         }
4321
4322         if (clear_batch_ready(sh) ) {
4323                 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4324                 return;
4325         }
4326
4327         if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4328                 break_stripe_batch_list(sh, 0);
4329
4330         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4331                 spin_lock(&sh->stripe_lock);
4332                 /* Cannot process 'sync' concurrently with 'discard' */
4333                 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4334                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4335                         set_bit(STRIPE_SYNCING, &sh->state);
4336                         clear_bit(STRIPE_INSYNC, &sh->state);
4337                         clear_bit(STRIPE_REPLACED, &sh->state);
4338                 }
4339                 spin_unlock(&sh->stripe_lock);
4340         }
4341         clear_bit(STRIPE_DELAYED, &sh->state);
4342
4343         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4344                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4345                (unsigned long long)sh->sector, sh->state,
4346                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4347                sh->check_state, sh->reconstruct_state);
4348
4349         analyse_stripe(sh, &s);
4350
4351         if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4352                 goto finish;
4353
4354         if (s.handle_bad_blocks) {
4355                 set_bit(STRIPE_HANDLE, &sh->state);
4356                 goto finish;
4357         }
4358
4359         if (unlikely(s.blocked_rdev)) {
4360                 if (s.syncing || s.expanding || s.expanded ||
4361                     s.replacing || s.to_write || s.written) {
4362                         set_bit(STRIPE_HANDLE, &sh->state);
4363                         goto finish;
4364                 }
4365                 /* There is nothing for the blocked_rdev to block */
4366                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4367                 s.blocked_rdev = NULL;
4368         }
4369
4370         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4371                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4372                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4373         }
4374
4375         pr_debug("locked=%d uptodate=%d to_read=%d"
4376                " to_write=%d failed=%d failed_num=%d,%d\n",
4377                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4378                s.failed_num[0], s.failed_num[1]);
4379         /* check if the array has lost more than max_degraded devices and,
4380          * if so, some requests might need to be failed.
4381          */
4382         if (s.failed > conf->max_degraded || s.log_failed) {
4383                 sh->check_state = 0;
4384                 sh->reconstruct_state = 0;
4385                 break_stripe_batch_list(sh, 0);
4386                 if (s.to_read+s.to_write+s.written)
4387                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4388                 if (s.syncing + s.replacing)
4389                         handle_failed_sync(conf, sh, &s);
4390         }
4391
4392         /* Now we check to see if any write operations have recently
4393          * completed
4394          */
4395         prexor = 0;
4396         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4397                 prexor = 1;
4398         if (sh->reconstruct_state == reconstruct_state_drain_result ||
4399             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4400                 sh->reconstruct_state = reconstruct_state_idle;
4401
4402                 /* All the 'written' buffers and the parity block are ready to
4403                  * be written back to disk
4404                  */
4405                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4406                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4407                 BUG_ON(sh->qd_idx >= 0 &&
4408                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4409                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4410                 for (i = disks; i--; ) {
4411                         struct r5dev *dev = &sh->dev[i];
4412                         if (test_bit(R5_LOCKED, &dev->flags) &&
4413                                 (i == sh->pd_idx || i == sh->qd_idx ||
4414                                  dev->written)) {
4415                                 pr_debug("Writing block %d\n", i);
4416                                 set_bit(R5_Wantwrite, &dev->flags);
4417                                 if (prexor)
4418                                         continue;
4419                                 if (s.failed > 1)
4420                                         continue;
4421                                 if (!test_bit(R5_Insync, &dev->flags) ||
4422                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
4423                                      s.failed == 0))
4424                                         set_bit(STRIPE_INSYNC, &sh->state);
4425                         }
4426                 }
4427                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4428                         s.dec_preread_active = 1;
4429         }
4430
4431         /*
4432          * might be able to return some write requests if the parity blocks
4433          * are safe, or on a failed drive
4434          */
4435         pdev = &sh->dev[sh->pd_idx];
4436         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4437                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4438         qdev = &sh->dev[sh->qd_idx];
4439         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4440                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4441                 || conf->level < 6;
4442
4443         if (s.written &&
4444             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4445                              && !test_bit(R5_LOCKED, &pdev->flags)
4446                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
4447                                  test_bit(R5_Discard, &pdev->flags))))) &&
4448             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4449                              && !test_bit(R5_LOCKED, &qdev->flags)
4450                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
4451                                  test_bit(R5_Discard, &qdev->flags))))))
4452                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4453
4454         /* Now we might consider reading some blocks, either to check/generate
4455          * parity, or to satisfy requests
4456          * or to load a block that is being partially written.
4457          */
4458         if (s.to_read || s.non_overwrite
4459             || (conf->level == 6 && s.to_write && s.failed)
4460             || (s.syncing && (s.uptodate + s.compute < disks))
4461             || s.replacing
4462             || s.expanding)
4463                 handle_stripe_fill(sh, &s, disks);
4464
4465         /* Now to consider new write requests and what else, if anything
4466          * should be read.  We do not handle new writes when:
4467          * 1/ A 'write' operation (copy+xor) is already in flight.
4468          * 2/ A 'check' operation is in flight, as it may clobber the parity
4469          *    block.
4470          */
4471         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4472                 handle_stripe_dirtying(conf, sh, &s, disks);
4473
4474         /* maybe we need to check and possibly fix the parity for this stripe
4475          * Any reads will already have been scheduled, so we just see if enough
4476          * data is available.  The parity check is held off while parity
4477          * dependent operations are in flight.
4478          */
4479         if (sh->check_state ||
4480             (s.syncing && s.locked == 0 &&
4481              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4482              !test_bit(STRIPE_INSYNC, &sh->state))) {
4483                 if (conf->level == 6)
4484                         handle_parity_checks6(conf, sh, &s, disks);
4485                 else
4486                         handle_parity_checks5(conf, sh, &s, disks);
4487         }
4488
4489         if ((s.replacing || s.syncing) && s.locked == 0
4490             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4491             && !test_bit(STRIPE_REPLACED, &sh->state)) {
4492                 /* Write out to replacement devices where possible */
4493                 for (i = 0; i < conf->raid_disks; i++)
4494                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4495                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4496                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
4497                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
4498                                 s.locked++;
4499                         }
4500                 if (s.replacing)
4501                         set_bit(STRIPE_INSYNC, &sh->state);
4502                 set_bit(STRIPE_REPLACED, &sh->state);
4503         }
4504         if ((s.syncing || s.replacing) && s.locked == 0 &&
4505             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4506             test_bit(STRIPE_INSYNC, &sh->state)) {
4507                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4508                 clear_bit(STRIPE_SYNCING, &sh->state);
4509                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4510                         wake_up(&conf->wait_for_overlap);
4511         }
4512
4513         /* If the failed drives are just a ReadError, then we might need
4514          * to progress the repair/check process
4515          */
4516         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4517                 for (i = 0; i < s.failed; i++) {
4518                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
4519                         if (test_bit(R5_ReadError, &dev->flags)
4520                             && !test_bit(R5_LOCKED, &dev->flags)
4521                             && test_bit(R5_UPTODATE, &dev->flags)
4522                                 ) {
4523                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
4524                                         set_bit(R5_Wantwrite, &dev->flags);
4525                                         set_bit(R5_ReWrite, &dev->flags);
4526                                         set_bit(R5_LOCKED, &dev->flags);
4527                                         s.locked++;
4528                                 } else {
4529                                         /* let's read it back */
4530                                         set_bit(R5_Wantread, &dev->flags);
4531                                         set_bit(R5_LOCKED, &dev->flags);
4532                                         s.locked++;
4533                                 }
4534                         }
4535                 }
4536
4537         /* Finish reconstruct operations initiated by the expansion process */
4538         if (sh->reconstruct_state == reconstruct_state_result) {
4539                 struct stripe_head *sh_src
4540                         = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4541                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4542                         /* sh cannot be written until sh_src has been read.
4543                          * so arrange for sh to be delayed a little
4544                          */
4545                         set_bit(STRIPE_DELAYED, &sh->state);
4546                         set_bit(STRIPE_HANDLE, &sh->state);
4547                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4548                                               &sh_src->state))
4549                                 atomic_inc(&conf->preread_active_stripes);
4550                         raid5_release_stripe(sh_src);
4551                         goto finish;
4552                 }
4553                 if (sh_src)
4554                         raid5_release_stripe(sh_src);
4555
4556                 sh->reconstruct_state = reconstruct_state_idle;
4557                 clear_bit(STRIPE_EXPANDING, &sh->state);
4558                 for (i = conf->raid_disks; i--; ) {
4559                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
4560                         set_bit(R5_LOCKED, &sh->dev[i].flags);
4561                         s.locked++;
4562                 }
4563         }
4564
4565         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4566             !sh->reconstruct_state) {
4567                 /* Need to write out all blocks after computing parity */
4568                 sh->disks = conf->raid_disks;
4569                 stripe_set_idx(sh->sector, conf, 0, sh);
4570                 schedule_reconstruction(sh, &s, 1, 1);
4571         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4572                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4573                 atomic_dec(&conf->reshape_stripes);
4574                 wake_up(&conf->wait_for_overlap);
4575                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4576         }
4577
4578         if (s.expanding && s.locked == 0 &&
4579             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4580                 handle_stripe_expansion(conf, sh);
4581
4582 finish:
4583         /* wait for this device to become unblocked */
4584         if (unlikely(s.blocked_rdev)) {
4585                 if (conf->mddev->external)
4586                         md_wait_for_blocked_rdev(s.blocked_rdev,
4587                                                  conf->mddev);
4588                 else
4589                         /* Internal metadata will immediately
4590                          * be written by raid5d, so we don't
4591                          * need to wait here.
4592                          */
4593                         rdev_dec_pending(s.blocked_rdev,
4594                                          conf->mddev);
4595         }
4596
4597         if (s.handle_bad_blocks)
4598                 for (i = disks; i--; ) {
4599                         struct md_rdev *rdev;
4600                         struct r5dev *dev = &sh->dev[i];
4601                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4602                                 /* We own a safe reference to the rdev */
4603                                 rdev = conf->disks[i].rdev;
4604                                 if (!rdev_set_badblocks(rdev, sh->sector,
4605                                                         STRIPE_SECTORS, 0))
4606                                         md_error(conf->mddev, rdev);
4607                                 rdev_dec_pending(rdev, conf->mddev);
4608                         }
4609                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4610                                 rdev = conf->disks[i].rdev;
4611                                 rdev_clear_badblocks(rdev, sh->sector,
4612                                                      STRIPE_SECTORS, 0);
4613                                 rdev_dec_pending(rdev, conf->mddev);
4614                         }
4615                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4616                                 rdev = conf->disks[i].replacement;
4617                                 if (!rdev)
4618                                         /* rdev have been moved down */
4619                                         rdev = conf->disks[i].rdev;
4620                                 rdev_clear_badblocks(rdev, sh->sector,
4621                                                      STRIPE_SECTORS, 0);
4622                                 rdev_dec_pending(rdev, conf->mddev);
4623                         }
4624                 }
4625
4626         if (s.ops_request)
4627                 raid_run_ops(sh, s.ops_request);
4628
4629         ops_run_io(sh, &s);
4630
4631         if (s.dec_preread_active) {
4632                 /* We delay this until after ops_run_io so that if make_request
4633                  * is waiting on a flush, it won't continue until the writes
4634                  * have actually been submitted.
4635                  */
4636                 atomic_dec(&conf->preread_active_stripes);
4637                 if (atomic_read(&conf->preread_active_stripes) <
4638                     IO_THRESHOLD)
4639                         md_wakeup_thread(conf->mddev->thread);
4640         }
4641
4642         if (!bio_list_empty(&s.return_bi)) {
4643                 if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags) &&
4644                                 (s.failed <= conf->max_degraded ||
4645                                         conf->mddev->external == 0)) {
4646                         spin_lock_irq(&conf->device_lock);
4647                         bio_list_merge(&conf->return_bi, &s.return_bi);
4648                         spin_unlock_irq(&conf->device_lock);
4649                         md_wakeup_thread(conf->mddev->thread);
4650                 } else
4651                         return_io(&s.return_bi);
4652         }
4653
4654         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4655 }
4656
4657 static void raid5_activate_delayed(struct r5conf *conf)
4658 {
4659         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4660                 while (!list_empty(&conf->delayed_list)) {
4661                         struct list_head *l = conf->delayed_list.next;
4662                         struct stripe_head *sh;
4663                         sh = list_entry(l, struct stripe_head, lru);
4664                         list_del_init(l);
4665                         clear_bit(STRIPE_DELAYED, &sh->state);
4666                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4667                                 atomic_inc(&conf->preread_active_stripes);
4668                         list_add_tail(&sh->lru, &conf->hold_list);
4669                         raid5_wakeup_stripe_thread(sh);
4670                 }
4671         }
4672 }
4673
4674 static void activate_bit_delay(struct r5conf *conf,
4675         struct list_head *temp_inactive_list)
4676 {
4677         /* device_lock is held */
4678         struct list_head head;
4679         list_add(&head, &conf->bitmap_list);
4680         list_del_init(&conf->bitmap_list);
4681         while (!list_empty(&head)) {
4682                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4683                 int hash;
4684                 list_del_init(&sh->lru);
4685                 atomic_inc(&sh->count);
4686                 hash = sh->hash_lock_index;
4687                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4688         }
4689 }
4690
4691 static int raid5_congested(struct mddev *mddev, int bits)
4692 {
4693         struct r5conf *conf = mddev->private;
4694
4695         /* No difference between reads and writes.  Just check
4696          * how busy the stripe_cache is
4697          */
4698
4699         if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4700                 return 1;
4701         if (conf->quiesce)
4702                 return 1;
4703         if (atomic_read(&conf->empty_inactive_list_nr))
4704                 return 1;
4705
4706         return 0;
4707 }
4708
4709 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4710 {
4711         struct r5conf *conf = mddev->private;
4712         sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4713         unsigned int chunk_sectors;
4714         unsigned int bio_sectors = bio_sectors(bio);
4715
4716         chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4717         return  chunk_sectors >=
4718                 ((sector & (chunk_sectors - 1)) + bio_sectors);
4719 }
4720
4721 /*
4722  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4723  *  later sampled by raid5d.
4724  */
4725 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4726 {
4727         unsigned long flags;
4728
4729         spin_lock_irqsave(&conf->device_lock, flags);
4730
4731         bi->bi_next = conf->retry_read_aligned_list;
4732         conf->retry_read_aligned_list = bi;
4733
4734         spin_unlock_irqrestore(&conf->device_lock, flags);
4735         md_wakeup_thread(conf->mddev->thread);
4736 }
4737
4738 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4739 {
4740         struct bio *bi;
4741
4742         bi = conf->retry_read_aligned;
4743         if (bi) {
4744                 conf->retry_read_aligned = NULL;
4745                 return bi;
4746         }
4747         bi = conf->retry_read_aligned_list;
4748         if(bi) {
4749                 conf->retry_read_aligned_list = bi->bi_next;
4750                 bi->bi_next = NULL;
4751                 /*
4752                  * this sets the active strip count to 1 and the processed
4753                  * strip count to zero (upper 8 bits)
4754                  */
4755                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4756         }
4757
4758         return bi;
4759 }
4760
4761 /*
4762  *  The "raid5_align_endio" should check if the read succeeded and if it
4763  *  did, call bio_endio on the original bio (having bio_put the new bio
4764  *  first).
4765  *  If the read failed..
4766  */
4767 static void raid5_align_endio(struct bio *bi)
4768 {
4769         struct bio* raid_bi  = bi->bi_private;
4770         struct mddev *mddev;
4771         struct r5conf *conf;
4772         struct md_rdev *rdev;
4773         int error = bi->bi_error;
4774
4775         bio_put(bi);
4776
4777         rdev = (void*)raid_bi->bi_next;
4778         raid_bi->bi_next = NULL;
4779         mddev = rdev->mddev;
4780         conf = mddev->private;
4781
4782         rdev_dec_pending(rdev, conf->mddev);
4783
4784         if (!error) {
4785                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4786                                          raid_bi, 0);
4787                 bio_endio(raid_bi);
4788                 if (atomic_dec_and_test(&conf->active_aligned_reads))
4789                         wake_up(&conf->wait_for_quiescent);
4790                 return;
4791         }
4792
4793         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4794
4795         add_bio_to_retry(raid_bi, conf);
4796 }
4797
4798 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
4799 {
4800         struct r5conf *conf = mddev->private;
4801         int dd_idx;
4802         struct bio* align_bi;
4803         struct md_rdev *rdev;
4804         sector_t end_sector;
4805
4806         if (!in_chunk_boundary(mddev, raid_bio)) {
4807                 pr_debug("%s: non aligned\n", __func__);
4808                 return 0;
4809         }
4810         /*
4811          * use bio_clone_mddev to make a copy of the bio
4812          */
4813         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4814         if (!align_bi)
4815                 return 0;
4816         /*
4817          *   set bi_end_io to a new function, and set bi_private to the
4818          *     original bio.
4819          */
4820         align_bi->bi_end_io  = raid5_align_endio;
4821         align_bi->bi_private = raid_bio;
4822         /*
4823          *      compute position
4824          */
4825         align_bi->bi_iter.bi_sector =
4826                 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4827                                      0, &dd_idx, NULL);
4828
4829         end_sector = bio_end_sector(align_bi);
4830         rcu_read_lock();
4831         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4832         if (!rdev || test_bit(Faulty, &rdev->flags) ||
4833             rdev->recovery_offset < end_sector) {
4834                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4835                 if (rdev &&
4836                     (test_bit(Faulty, &rdev->flags) ||
4837                     !(test_bit(In_sync, &rdev->flags) ||
4838                       rdev->recovery_offset >= end_sector)))
4839                         rdev = NULL;
4840         }
4841         if (rdev) {
4842                 sector_t first_bad;
4843                 int bad_sectors;
4844
4845                 atomic_inc(&rdev->nr_pending);
4846                 rcu_read_unlock();
4847                 raid_bio->bi_next = (void*)rdev;
4848                 align_bi->bi_bdev =  rdev->bdev;
4849                 bio_clear_flag(align_bi, BIO_SEG_VALID);
4850
4851                 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4852                                 bio_sectors(align_bi),
4853                                 &first_bad, &bad_sectors)) {
4854                         bio_put(align_bi);
4855                         rdev_dec_pending(rdev, mddev);
4856                         return 0;
4857                 }
4858
4859                 /* No reshape active, so we can trust rdev->data_offset */
4860                 align_bi->bi_iter.bi_sector += rdev->data_offset;
4861
4862                 spin_lock_irq(&conf->device_lock);
4863                 wait_event_lock_irq(conf->wait_for_quiescent,
4864                                     conf->quiesce == 0,
4865                                     conf->device_lock);
4866                 atomic_inc(&conf->active_aligned_reads);
4867                 spin_unlock_irq(&conf->device_lock);
4868
4869                 if (mddev->gendisk)
4870                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4871                                               align_bi, disk_devt(mddev->gendisk),
4872                                               raid_bio->bi_iter.bi_sector);
4873                 generic_make_request(align_bi);
4874                 return 1;
4875         } else {
4876                 rcu_read_unlock();
4877                 bio_put(align_bi);
4878                 return 0;
4879         }
4880 }
4881
4882 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
4883 {
4884         struct bio *split;
4885
4886         do {
4887                 sector_t sector = raid_bio->bi_iter.bi_sector;
4888                 unsigned chunk_sects = mddev->chunk_sectors;
4889                 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
4890
4891                 if (sectors < bio_sectors(raid_bio)) {
4892                         split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
4893                         bio_chain(split, raid_bio);
4894                 } else
4895                         split = raid_bio;
4896
4897                 if (!raid5_read_one_chunk(mddev, split)) {
4898                         if (split != raid_bio)
4899                                 generic_make_request(raid_bio);
4900                         return split;
4901                 }
4902         } while (split != raid_bio);
4903
4904         return NULL;
4905 }
4906
4907 /* __get_priority_stripe - get the next stripe to process
4908  *
4909  * Full stripe writes are allowed to pass preread active stripes up until
4910  * the bypass_threshold is exceeded.  In general the bypass_count
4911  * increments when the handle_list is handled before the hold_list; however, it
4912  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4913  * stripe with in flight i/o.  The bypass_count will be reset when the
4914  * head of the hold_list has changed, i.e. the head was promoted to the
4915  * handle_list.
4916  */
4917 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4918 {
4919         struct stripe_head *sh = NULL, *tmp;
4920         struct list_head *handle_list = NULL;
4921         struct r5worker_group *wg = NULL;
4922
4923         if (conf->worker_cnt_per_group == 0) {
4924                 handle_list = &conf->handle_list;
4925         } else if (group != ANY_GROUP) {
4926                 handle_list = &conf->worker_groups[group].handle_list;
4927                 wg = &conf->worker_groups[group];
4928         } else {
4929                 int i;
4930                 for (i = 0; i < conf->group_cnt; i++) {
4931                         handle_list = &conf->worker_groups[i].handle_list;
4932                         wg = &conf->worker_groups[i];
4933                         if (!list_empty(handle_list))
4934                                 break;
4935                 }
4936         }
4937
4938         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4939                   __func__,
4940                   list_empty(handle_list) ? "empty" : "busy",
4941                   list_empty(&conf->hold_list) ? "empty" : "busy",
4942                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4943
4944         if (!list_empty(handle_list)) {
4945                 sh = list_entry(handle_list->next, typeof(*sh), lru);
4946
4947                 if (list_empty(&conf->hold_list))
4948                         conf->bypass_count = 0;
4949                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4950                         if (conf->hold_list.next == conf->last_hold)
4951                                 conf->bypass_count++;
4952                         else {
4953                                 conf->last_hold = conf->hold_list.next;
4954                                 conf->bypass_count -= conf->bypass_threshold;
4955                                 if (conf->bypass_count < 0)
4956                                         conf->bypass_count = 0;
4957                         }
4958                 }
4959         } else if (!list_empty(&conf->hold_list) &&
4960                    ((conf->bypass_threshold &&
4961                      conf->bypass_count > conf->bypass_threshold) ||
4962                     atomic_read(&conf->pending_full_writes) == 0)) {
4963
4964                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
4965                         if (conf->worker_cnt_per_group == 0 ||
4966                             group == ANY_GROUP ||
4967                             !cpu_online(tmp->cpu) ||
4968                             cpu_to_group(tmp->cpu) == group) {
4969                                 sh = tmp;
4970                                 break;
4971                         }
4972                 }
4973
4974                 if (sh) {
4975                         conf->bypass_count -= conf->bypass_threshold;
4976                         if (conf->bypass_count < 0)
4977                                 conf->bypass_count = 0;
4978                 }
4979                 wg = NULL;
4980         }
4981
4982         if (!sh)
4983                 return NULL;
4984
4985         if (wg) {
4986                 wg->stripes_cnt--;
4987                 sh->group = NULL;
4988         }
4989         list_del_init(&sh->lru);
4990         BUG_ON(atomic_inc_return(&sh->count) != 1);
4991         return sh;
4992 }
4993
4994 struct raid5_plug_cb {
4995         struct blk_plug_cb      cb;
4996         struct list_head        list;
4997         struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4998 };
4999
5000 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5001 {
5002         struct raid5_plug_cb *cb = container_of(
5003                 blk_cb, struct raid5_plug_cb, cb);
5004         struct stripe_head *sh;
5005         struct mddev *mddev = cb->cb.data;
5006         struct r5conf *conf = mddev->private;
5007         int cnt = 0;
5008         int hash;
5009
5010         if (cb->list.next && !list_empty(&cb->list)) {
5011                 spin_lock_irq(&conf->device_lock);
5012                 while (!list_empty(&cb->list)) {
5013                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
5014                         list_del_init(&sh->lru);
5015                         /*
5016                          * avoid race release_stripe_plug() sees
5017                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
5018                          * is still in our list
5019                          */
5020                         smp_mb__before_atomic();
5021                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5022                         /*
5023                          * STRIPE_ON_RELEASE_LIST could be set here. In that
5024                          * case, the count is always > 1 here
5025                          */
5026                         hash = sh->hash_lock_index;
5027                         __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5028                         cnt++;
5029                 }
5030                 spin_unlock_irq(&conf->device_lock);
5031         }
5032         release_inactive_stripe_list(conf, cb->temp_inactive_list,
5033                                      NR_STRIPE_HASH_LOCKS);
5034         if (mddev->queue)
5035                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5036         kfree(cb);
5037 }
5038
5039 static void release_stripe_plug(struct mddev *mddev,
5040                                 struct stripe_head *sh)
5041 {
5042         struct blk_plug_cb *blk_cb = blk_check_plugged(
5043                 raid5_unplug, mddev,
5044                 sizeof(struct raid5_plug_cb));
5045         struct raid5_plug_cb *cb;
5046
5047         if (!blk_cb) {
5048                 raid5_release_stripe(sh);
5049                 return;
5050         }
5051
5052         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5053
5054         if (cb->list.next == NULL) {
5055                 int i;
5056                 INIT_LIST_HEAD(&cb->list);
5057                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5058                         INIT_LIST_HEAD(cb->temp_inactive_list + i);
5059         }
5060
5061         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5062                 list_add_tail(&sh->lru, &cb->list);
5063         else
5064                 raid5_release_stripe(sh);
5065 }
5066
5067 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5068 {
5069         struct r5conf *conf = mddev->private;
5070         sector_t logical_sector, last_sector;
5071         struct stripe_head *sh;
5072         int remaining;
5073         int stripe_sectors;
5074
5075         if (mddev->reshape_position != MaxSector)
5076                 /* Skip discard while reshape is happening */
5077                 return;
5078
5079         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5080         last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5081
5082         bi->bi_next = NULL;
5083         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5084
5085         stripe_sectors = conf->chunk_sectors *
5086                 (conf->raid_disks - conf->max_degraded);
5087         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5088                                                stripe_sectors);
5089         sector_div(last_sector, stripe_sectors);
5090
5091         logical_sector *= conf->chunk_sectors;
5092         last_sector *= conf->chunk_sectors;
5093
5094         for (; logical_sector < last_sector;
5095              logical_sector += STRIPE_SECTORS) {
5096                 DEFINE_WAIT(w);
5097                 int d;
5098         again:
5099                 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5100                 prepare_to_wait(&conf->wait_for_overlap, &w,
5101                                 TASK_UNINTERRUPTIBLE);
5102                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5103                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5104                         raid5_release_stripe(sh);
5105                         schedule();
5106                         goto again;
5107                 }
5108                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5109                 spin_lock_irq(&sh->stripe_lock);
5110                 for (d = 0; d < conf->raid_disks; d++) {
5111                         if (d == sh->pd_idx || d == sh->qd_idx)
5112                                 continue;
5113                         if (sh->dev[d].towrite || sh->dev[d].toread) {
5114                                 set_bit(R5_Overlap, &sh->dev[d].flags);
5115                                 spin_unlock_irq(&sh->stripe_lock);
5116                                 raid5_release_stripe(sh);
5117                                 schedule();
5118                                 goto again;
5119                         }
5120                 }
5121                 set_bit(STRIPE_DISCARD, &sh->state);
5122                 finish_wait(&conf->wait_for_overlap, &w);
5123                 sh->overwrite_disks = 0;
5124                 for (d = 0; d < conf->raid_disks; d++) {
5125                         if (d == sh->pd_idx || d == sh->qd_idx)
5126                                 continue;
5127                         sh->dev[d].towrite = bi;
5128                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5129                         raid5_inc_bi_active_stripes(bi);
5130                         sh->overwrite_disks++;
5131                 }
5132                 spin_unlock_irq(&sh->stripe_lock);
5133                 if (conf->mddev->bitmap) {
5134                         for (d = 0;
5135                              d < conf->raid_disks - conf->max_degraded;
5136                              d++)
5137                                 bitmap_startwrite(mddev->bitmap,
5138                                                   sh->sector,
5139                                                   STRIPE_SECTORS,
5140                                                   0);
5141                         sh->bm_seq = conf->seq_flush + 1;
5142                         set_bit(STRIPE_BIT_DELAY, &sh->state);
5143                 }
5144
5145                 set_bit(STRIPE_HANDLE, &sh->state);
5146                 clear_bit(STRIPE_DELAYED, &sh->state);
5147                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5148                         atomic_inc(&conf->preread_active_stripes);
5149                 release_stripe_plug(mddev, sh);
5150         }
5151
5152         remaining = raid5_dec_bi_active_stripes(bi);
5153         if (remaining == 0) {
5154                 md_write_end(mddev);
5155                 bio_endio(bi);
5156         }
5157 }
5158
5159 static void raid5_make_request(struct mddev *mddev, struct bio * bi)
5160 {
5161         struct r5conf *conf = mddev->private;
5162         int dd_idx;
5163         sector_t new_sector;
5164         sector_t logical_sector, last_sector;
5165         struct stripe_head *sh;
5166         const int rw = bio_data_dir(bi);
5167         int remaining;
5168         DEFINE_WAIT(w);
5169         bool do_prepare;
5170
5171         if (unlikely(bi->bi_rw & REQ_PREFLUSH)) {
5172                 int ret = r5l_handle_flush_request(conf->log, bi);
5173
5174                 if (ret == 0)
5175                         return;
5176                 if (ret == -ENODEV) {
5177                         md_flush_request(mddev, bi);
5178                         return;
5179                 }
5180                 /* ret == -EAGAIN, fallback */
5181         }
5182
5183         md_write_start(mddev, bi);
5184
5185         /*
5186          * If array is degraded, better not do chunk aligned read because
5187          * later we might have to read it again in order to reconstruct
5188          * data on failed drives.
5189          */
5190         if (rw == READ && mddev->degraded == 0 &&
5191             mddev->reshape_position == MaxSector) {
5192                 bi = chunk_aligned_read(mddev, bi);
5193                 if (!bi)
5194                         return;
5195         }
5196
5197         if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5198                 make_discard_request(mddev, bi);
5199                 return;
5200         }
5201
5202         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5203         last_sector = bio_end_sector(bi);
5204         bi->bi_next = NULL;
5205         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
5206
5207         prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5208         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5209                 int previous;
5210                 int seq;
5211
5212                 do_prepare = false;
5213         retry:
5214                 seq = read_seqcount_begin(&conf->gen_lock);
5215                 previous = 0;
5216                 if (do_prepare)
5217                         prepare_to_wait(&conf->wait_for_overlap, &w,
5218                                 TASK_UNINTERRUPTIBLE);
5219                 if (unlikely(conf->reshape_progress != MaxSector)) {
5220                         /* spinlock is needed as reshape_progress may be
5221                          * 64bit on a 32bit platform, and so it might be
5222                          * possible to see a half-updated value
5223                          * Of course reshape_progress could change after
5224                          * the lock is dropped, so once we get a reference
5225                          * to the stripe that we think it is, we will have
5226                          * to check again.
5227                          */
5228                         spin_lock_irq(&conf->device_lock);
5229                         if (mddev->reshape_backwards
5230                             ? logical_sector < conf->reshape_progress
5231                             : logical_sector >= conf->reshape_progress) {
5232                                 previous = 1;
5233                         } else {
5234                                 if (mddev->reshape_backwards
5235                                     ? logical_sector < conf->reshape_safe
5236                                     : logical_sector >= conf->reshape_safe) {
5237                                         spin_unlock_irq(&conf->device_lock);
5238                                         schedule();
5239                                         do_prepare = true;
5240                                         goto retry;
5241                                 }
5242                         }
5243                         spin_unlock_irq(&conf->device_lock);
5244                 }
5245
5246                 new_sector = raid5_compute_sector(conf, logical_sector,
5247                                                   previous,
5248                                                   &dd_idx, NULL);
5249                 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5250                         (unsigned long long)new_sector,
5251                         (unsigned long long)logical_sector);
5252
5253                 sh = raid5_get_active_stripe(conf, new_sector, previous,
5254                                        (bi->bi_rw & REQ_RAHEAD), 0);
5255                 if (sh) {
5256                         if (unlikely(previous)) {
5257                                 /* expansion might have moved on while waiting for a
5258                                  * stripe, so we must do the range check again.
5259                                  * Expansion could still move past after this
5260                                  * test, but as we are holding a reference to
5261                                  * 'sh', we know that if that happens,
5262                                  *  STRIPE_EXPANDING will get set and the expansion
5263                                  * won't proceed until we finish with the stripe.
5264                                  */
5265                                 int must_retry = 0;
5266                                 spin_lock_irq(&conf->device_lock);
5267                                 if (mddev->reshape_backwards
5268                                     ? logical_sector >= conf->reshape_progress
5269                                     : logical_sector < conf->reshape_progress)
5270                                         /* mismatch, need to try again */
5271                                         must_retry = 1;
5272                                 spin_unlock_irq(&conf->device_lock);
5273                                 if (must_retry) {
5274                                         raid5_release_stripe(sh);
5275                                         schedule();
5276                                         do_prepare = true;
5277                                         goto retry;
5278                                 }
5279                         }
5280                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
5281                                 /* Might have got the wrong stripe_head
5282                                  * by accident
5283                                  */
5284                                 raid5_release_stripe(sh);
5285                                 goto retry;
5286                         }
5287
5288                         if (rw == WRITE &&
5289                             logical_sector >= mddev->suspend_lo &&
5290                             logical_sector < mddev->suspend_hi) {
5291                                 raid5_release_stripe(sh);
5292                                 /* As the suspend_* range is controlled by
5293                                  * userspace, we want an interruptible
5294                                  * wait.
5295                                  */
5296                                 flush_signals(current);
5297                                 prepare_to_wait(&conf->wait_for_overlap,
5298                                                 &w, TASK_INTERRUPTIBLE);
5299                                 if (logical_sector >= mddev->suspend_lo &&
5300                                     logical_sector < mddev->suspend_hi) {
5301                                         schedule();
5302                                         do_prepare = true;
5303                                 }
5304                                 goto retry;
5305                         }
5306
5307                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5308                             !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5309                                 /* Stripe is busy expanding or
5310                                  * add failed due to overlap.  Flush everything
5311                                  * and wait a while
5312                                  */
5313                                 md_wakeup_thread(mddev->thread);
5314                                 raid5_release_stripe(sh);
5315                                 schedule();
5316                                 do_prepare = true;
5317                                 goto retry;
5318                         }
5319                         set_bit(STRIPE_HANDLE, &sh->state);
5320                         clear_bit(STRIPE_DELAYED, &sh->state);
5321                         if ((!sh->batch_head || sh == sh->batch_head) &&
5322                             (bi->bi_rw & REQ_SYNC) &&
5323                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5324                                 atomic_inc(&conf->preread_active_stripes);
5325                         release_stripe_plug(mddev, sh);
5326                 } else {
5327                         /* cannot get stripe for read-ahead, just give-up */
5328                         bi->bi_error = -EIO;
5329                         break;
5330                 }
5331         }
5332         finish_wait(&conf->wait_for_overlap, &w);
5333
5334         remaining = raid5_dec_bi_active_stripes(bi);
5335         if (remaining == 0) {
5336
5337                 if ( rw == WRITE )
5338                         md_write_end(mddev);
5339
5340                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5341                                          bi, 0);
5342                 bio_endio(bi);
5343         }
5344 }
5345
5346 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5347
5348 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5349 {
5350         /* reshaping is quite different to recovery/resync so it is
5351          * handled quite separately ... here.
5352          *
5353          * On each call to sync_request, we gather one chunk worth of
5354          * destination stripes and flag them as expanding.
5355          * Then we find all the source stripes and request reads.
5356          * As the reads complete, handle_stripe will copy the data
5357          * into the destination stripe and release that stripe.
5358          */
5359         struct r5conf *conf = mddev->private;
5360         struct stripe_head *sh;
5361         sector_t first_sector, last_sector;
5362         int raid_disks = conf->previous_raid_disks;
5363         int data_disks = raid_disks - conf->max_degraded;
5364         int new_data_disks = conf->raid_disks - conf->max_degraded;
5365         int i;
5366         int dd_idx;
5367         sector_t writepos, readpos, safepos;
5368         sector_t stripe_addr;
5369         int reshape_sectors;
5370         struct list_head stripes;
5371         sector_t retn;
5372
5373         if (sector_nr == 0) {
5374                 /* If restarting in the middle, skip the initial sectors */
5375                 if (mddev->reshape_backwards &&
5376                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5377                         sector_nr = raid5_size(mddev, 0, 0)
5378                                 - conf->reshape_progress;
5379                 } else if (mddev->reshape_backwards &&
5380                            conf->reshape_progress == MaxSector) {
5381                         /* shouldn't happen, but just in case, finish up.*/
5382                         sector_nr = MaxSector;
5383                 } else if (!mddev->reshape_backwards &&
5384                            conf->reshape_progress > 0)
5385                         sector_nr = conf->reshape_progress;
5386                 sector_div(sector_nr, new_data_disks);
5387                 if (sector_nr) {
5388                         mddev->curr_resync_completed = sector_nr;
5389                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5390                         *skipped = 1;
5391                         retn = sector_nr;
5392                         goto finish;
5393                 }
5394         }
5395
5396         /* We need to process a full chunk at a time.
5397          * If old and new chunk sizes differ, we need to process the
5398          * largest of these
5399          */
5400
5401         reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5402
5403         /* We update the metadata at least every 10 seconds, or when
5404          * the data about to be copied would over-write the source of
5405          * the data at the front of the range.  i.e. one new_stripe
5406          * along from reshape_progress new_maps to after where
5407          * reshape_safe old_maps to
5408          */
5409         writepos = conf->reshape_progress;
5410         sector_div(writepos, new_data_disks);
5411         readpos = conf->reshape_progress;
5412         sector_div(readpos, data_disks);
5413         safepos = conf->reshape_safe;
5414         sector_div(safepos, data_disks);
5415         if (mddev->reshape_backwards) {
5416                 BUG_ON(writepos < reshape_sectors);
5417                 writepos -= reshape_sectors;
5418                 readpos += reshape_sectors;
5419                 safepos += reshape_sectors;
5420         } else {
5421                 writepos += reshape_sectors;
5422                 /* readpos and safepos are worst-case calculations.
5423                  * A negative number is overly pessimistic, and causes
5424                  * obvious problems for unsigned storage.  So clip to 0.
5425                  */
5426                 readpos -= min_t(sector_t, reshape_sectors, readpos);
5427                 safepos -= min_t(sector_t, reshape_sectors, safepos);
5428         }
5429
5430         /* Having calculated the 'writepos' possibly use it
5431          * to set 'stripe_addr' which is where we will write to.
5432          */
5433         if (mddev->reshape_backwards) {
5434                 BUG_ON(conf->reshape_progress == 0);
5435                 stripe_addr = writepos;
5436                 BUG_ON((mddev->dev_sectors &
5437                         ~((sector_t)reshape_sectors - 1))
5438                        - reshape_sectors - stripe_addr
5439                        != sector_nr);
5440         } else {
5441                 BUG_ON(writepos != sector_nr + reshape_sectors);
5442                 stripe_addr = sector_nr;
5443         }
5444
5445         /* 'writepos' is the most advanced device address we might write.
5446          * 'readpos' is the least advanced device address we might read.
5447          * 'safepos' is the least address recorded in the metadata as having
5448          *     been reshaped.
5449          * If there is a min_offset_diff, these are adjusted either by
5450          * increasing the safepos/readpos if diff is negative, or
5451          * increasing writepos if diff is positive.
5452          * If 'readpos' is then behind 'writepos', there is no way that we can
5453          * ensure safety in the face of a crash - that must be done by userspace
5454          * making a backup of the data.  So in that case there is no particular
5455          * rush to update metadata.
5456          * Otherwise if 'safepos' is behind 'writepos', then we really need to
5457          * update the metadata to advance 'safepos' to match 'readpos' so that
5458          * we can be safe in the event of a crash.
5459          * So we insist on updating metadata if safepos is behind writepos and
5460          * readpos is beyond writepos.
5461          * In any case, update the metadata every 10 seconds.
5462          * Maybe that number should be configurable, but I'm not sure it is
5463          * worth it.... maybe it could be a multiple of safemode_delay???
5464          */
5465         if (conf->min_offset_diff < 0) {
5466                 safepos += -conf->min_offset_diff;
5467                 readpos += -conf->min_offset_diff;
5468         } else
5469                 writepos += conf->min_offset_diff;
5470
5471         if ((mddev->reshape_backwards
5472              ? (safepos > writepos && readpos < writepos)
5473              : (safepos < writepos && readpos > writepos)) ||
5474             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5475                 /* Cannot proceed until we've updated the superblock... */
5476                 wait_event(conf->wait_for_overlap,
5477                            atomic_read(&conf->reshape_stripes)==0
5478                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5479                 if (atomic_read(&conf->reshape_stripes) != 0)
5480                         return 0;
5481                 mddev->reshape_position = conf->reshape_progress;
5482                 mddev->curr_resync_completed = sector_nr;
5483                 conf->reshape_checkpoint = jiffies;
5484                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5485                 md_wakeup_thread(mddev->thread);
5486                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
5487                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5488                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5489                         return 0;
5490                 spin_lock_irq(&conf->device_lock);
5491                 conf->reshape_safe = mddev->reshape_position;
5492                 spin_unlock_irq(&conf->device_lock);
5493                 wake_up(&conf->wait_for_overlap);
5494                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5495         }
5496
5497         INIT_LIST_HEAD(&stripes);
5498         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5499                 int j;
5500                 int skipped_disk = 0;
5501                 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5502                 set_bit(STRIPE_EXPANDING, &sh->state);
5503                 atomic_inc(&conf->reshape_stripes);
5504                 /* If any of this stripe is beyond the end of the old
5505                  * array, then we need to zero those blocks
5506                  */
5507                 for (j=sh->disks; j--;) {
5508                         sector_t s;
5509                         if (j == sh->pd_idx)
5510                                 continue;
5511                         if (conf->level == 6 &&
5512                             j == sh->qd_idx)
5513                                 continue;
5514                         s = raid5_compute_blocknr(sh, j, 0);
5515                         if (s < raid5_size(mddev, 0, 0)) {
5516                                 skipped_disk = 1;
5517                                 continue;
5518                         }
5519                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5520                         set_bit(R5_Expanded, &sh->dev[j].flags);
5521                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
5522                 }
5523                 if (!skipped_disk) {
5524                         set_bit(STRIPE_EXPAND_READY, &sh->state);
5525                         set_bit(STRIPE_HANDLE, &sh->state);
5526                 }
5527                 list_add(&sh->lru, &stripes);
5528         }
5529         spin_lock_irq(&conf->device_lock);
5530         if (mddev->reshape_backwards)
5531                 conf->reshape_progress -= reshape_sectors * new_data_disks;
5532         else
5533                 conf->reshape_progress += reshape_sectors * new_data_disks;
5534         spin_unlock_irq(&conf->device_lock);
5535         /* Ok, those stripe are ready. We can start scheduling
5536          * reads on the source stripes.
5537          * The source stripes are determined by mapping the first and last
5538          * block on the destination stripes.
5539          */
5540         first_sector =
5541                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5542                                      1, &dd_idx, NULL);
5543         last_sector =
5544                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5545                                             * new_data_disks - 1),
5546                                      1, &dd_idx, NULL);
5547         if (last_sector >= mddev->dev_sectors)
5548                 last_sector = mddev->dev_sectors - 1;
5549         while (first_sector <= last_sector) {
5550                 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5551                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5552                 set_bit(STRIPE_HANDLE, &sh->state);
5553                 raid5_release_stripe(sh);
5554                 first_sector += STRIPE_SECTORS;
5555         }
5556         /* Now that the sources are clearly marked, we can release
5557          * the destination stripes
5558          */
5559         while (!list_empty(&stripes)) {
5560                 sh = list_entry(stripes.next, struct stripe_head, lru);
5561                 list_del_init(&sh->lru);
5562                 raid5_release_stripe(sh);
5563         }
5564         /* If this takes us to the resync_max point where we have to pause,
5565          * then we need to write out the superblock.
5566          */
5567         sector_nr += reshape_sectors;
5568         retn = reshape_sectors;
5569 finish:
5570         if (mddev->curr_resync_completed > mddev->resync_max ||
5571             (sector_nr - mddev->curr_resync_completed) * 2
5572             >= mddev->resync_max - mddev->curr_resync_completed) {
5573                 /* Cannot proceed until we've updated the superblock... */
5574                 wait_event(conf->wait_for_overlap,
5575                            atomic_read(&conf->reshape_stripes) == 0
5576                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5577                 if (atomic_read(&conf->reshape_stripes) != 0)
5578                         goto ret;
5579                 mddev->reshape_position = conf->reshape_progress;
5580                 mddev->curr_resync_completed = sector_nr;
5581                 conf->reshape_checkpoint = jiffies;
5582                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5583                 md_wakeup_thread(mddev->thread);
5584                 wait_event(mddev->sb_wait,
5585                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5586                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5587                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5588                         goto ret;
5589                 spin_lock_irq(&conf->device_lock);
5590                 conf->reshape_safe = mddev->reshape_position;
5591                 spin_unlock_irq(&conf->device_lock);
5592                 wake_up(&conf->wait_for_overlap);
5593                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5594         }
5595 ret:
5596         return retn;
5597 }
5598
5599 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5600                                           int *skipped)
5601 {
5602         struct r5conf *conf = mddev->private;
5603         struct stripe_head *sh;
5604         sector_t max_sector = mddev->dev_sectors;
5605         sector_t sync_blocks;
5606         int still_degraded = 0;
5607         int i;
5608
5609         if (sector_nr >= max_sector) {
5610                 /* just being told to finish up .. nothing much to do */
5611
5612                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5613                         end_reshape(conf);
5614                         return 0;
5615                 }
5616
5617                 if (mddev->curr_resync < max_sector) /* aborted */
5618                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5619                                         &sync_blocks, 1);
5620                 else /* completed sync */
5621                         conf->fullsync = 0;
5622                 bitmap_close_sync(mddev->bitmap);
5623
5624                 return 0;
5625         }
5626
5627         /* Allow raid5_quiesce to complete */
5628         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5629
5630         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5631                 return reshape_request(mddev, sector_nr, skipped);
5632
5633         /* No need to check resync_max as we never do more than one
5634          * stripe, and as resync_max will always be on a chunk boundary,
5635          * if the check in md_do_sync didn't fire, there is no chance
5636          * of overstepping resync_max here
5637          */
5638
5639         /* if there is too many failed drives and we are trying
5640          * to resync, then assert that we are finished, because there is
5641          * nothing we can do.
5642          */
5643         if (mddev->degraded >= conf->max_degraded &&
5644             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5645                 sector_t rv = mddev->dev_sectors - sector_nr;
5646                 *skipped = 1;
5647                 return rv;
5648         }
5649         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5650             !conf->fullsync &&
5651             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5652             sync_blocks >= STRIPE_SECTORS) {
5653                 /* we can skip this block, and probably more */
5654                 sync_blocks /= STRIPE_SECTORS;
5655                 *skipped = 1;
5656                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5657         }
5658
5659         bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
5660
5661         sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
5662         if (sh == NULL) {
5663                 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
5664                 /* make sure we don't swamp the stripe cache if someone else
5665                  * is trying to get access
5666                  */
5667                 schedule_timeout_uninterruptible(1);
5668         }
5669         /* Need to check if array will still be degraded after recovery/resync
5670          * Note in case of > 1 drive failures it's possible we're rebuilding
5671          * one drive while leaving another faulty drive in array.
5672          */
5673         rcu_read_lock();
5674         for (i = 0; i < conf->raid_disks; i++) {
5675                 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5676
5677                 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5678                         still_degraded = 1;
5679         }
5680         rcu_read_unlock();
5681
5682         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5683
5684         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5685         set_bit(STRIPE_HANDLE, &sh->state);
5686
5687         raid5_release_stripe(sh);
5688
5689         return STRIPE_SECTORS;
5690 }
5691
5692 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5693 {
5694         /* We may not be able to submit a whole bio at once as there
5695          * may not be enough stripe_heads available.
5696          * We cannot pre-allocate enough stripe_heads as we may need
5697          * more than exist in the cache (if we allow ever large chunks).
5698          * So we do one stripe head at a time and record in
5699          * ->bi_hw_segments how many have been done.
5700          *
5701          * We *know* that this entire raid_bio is in one chunk, so
5702          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5703          */
5704         struct stripe_head *sh;
5705         int dd_idx;
5706         sector_t sector, logical_sector, last_sector;
5707         int scnt = 0;
5708         int remaining;
5709         int handled = 0;
5710
5711         logical_sector = raid_bio->bi_iter.bi_sector &
5712                 ~((sector_t)STRIPE_SECTORS-1);
5713         sector = raid5_compute_sector(conf, logical_sector,
5714                                       0, &dd_idx, NULL);
5715         last_sector = bio_end_sector(raid_bio);
5716
5717         for (; logical_sector < last_sector;
5718              logical_sector += STRIPE_SECTORS,
5719                      sector += STRIPE_SECTORS,
5720                      scnt++) {
5721
5722                 if (scnt < raid5_bi_processed_stripes(raid_bio))
5723                         /* already done this stripe */
5724                         continue;
5725
5726                 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
5727
5728                 if (!sh) {
5729                         /* failed to get a stripe - must wait */
5730                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5731                         conf->retry_read_aligned = raid_bio;
5732                         return handled;
5733                 }
5734
5735                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5736                         raid5_release_stripe(sh);
5737                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5738                         conf->retry_read_aligned = raid_bio;
5739                         return handled;
5740                 }
5741
5742                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5743                 handle_stripe(sh);
5744                 raid5_release_stripe(sh);
5745                 handled++;
5746         }
5747         remaining = raid5_dec_bi_active_stripes(raid_bio);
5748         if (remaining == 0) {
5749                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5750                                          raid_bio, 0);
5751                 bio_endio(raid_bio);
5752         }
5753         if (atomic_dec_and_test(&conf->active_aligned_reads))
5754                 wake_up(&conf->wait_for_quiescent);
5755         return handled;
5756 }
5757
5758 static int handle_active_stripes(struct r5conf *conf, int group,
5759                                  struct r5worker *worker,
5760                                  struct list_head *temp_inactive_list)
5761 {
5762         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5763         int i, batch_size = 0, hash;
5764         bool release_inactive = false;
5765
5766         while (batch_size < MAX_STRIPE_BATCH &&
5767                         (sh = __get_priority_stripe(conf, group)) != NULL)
5768                 batch[batch_size++] = sh;
5769
5770         if (batch_size == 0) {
5771                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5772                         if (!list_empty(temp_inactive_list + i))
5773                                 break;
5774                 if (i == NR_STRIPE_HASH_LOCKS) {
5775                         spin_unlock_irq(&conf->device_lock);
5776                         r5l_flush_stripe_to_raid(conf->log);
5777                         spin_lock_irq(&conf->device_lock);
5778                         return batch_size;
5779                 }
5780                 release_inactive = true;
5781         }
5782         spin_unlock_irq(&conf->device_lock);
5783
5784         release_inactive_stripe_list(conf, temp_inactive_list,
5785                                      NR_STRIPE_HASH_LOCKS);
5786
5787         r5l_flush_stripe_to_raid(conf->log);
5788         if (release_inactive) {
5789                 spin_lock_irq(&conf->device_lock);
5790                 return 0;
5791         }
5792
5793         for (i = 0; i < batch_size; i++)
5794                 handle_stripe(batch[i]);
5795         r5l_write_stripe_run(conf->log);
5796
5797         cond_resched();
5798
5799         spin_lock_irq(&conf->device_lock);
5800         for (i = 0; i < batch_size; i++) {
5801                 hash = batch[i]->hash_lock_index;
5802                 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5803         }
5804         return batch_size;
5805 }
5806
5807 static void raid5_do_work(struct work_struct *work)
5808 {
5809         struct r5worker *worker = container_of(work, struct r5worker, work);
5810         struct r5worker_group *group = worker->group;
5811         struct r5conf *conf = group->conf;
5812         int group_id = group - conf->worker_groups;
5813         int handled;
5814         struct blk_plug plug;
5815
5816         pr_debug("+++ raid5worker active\n");
5817
5818         blk_start_plug(&plug);
5819         handled = 0;
5820         spin_lock_irq(&conf->device_lock);
5821         while (1) {
5822                 int batch_size, released;
5823
5824                 released = release_stripe_list(conf, worker->temp_inactive_list);
5825
5826                 batch_size = handle_active_stripes(conf, group_id, worker,
5827                                                    worker->temp_inactive_list);
5828                 worker->working = false;
5829                 if (!batch_size && !released)
5830                         break;
5831                 handled += batch_size;
5832         }
5833         pr_debug("%d stripes handled\n", handled);
5834
5835         spin_unlock_irq(&conf->device_lock);
5836         blk_finish_plug(&plug);
5837
5838         pr_debug("--- raid5worker inactive\n");
5839 }
5840
5841 /*
5842  * This is our raid5 kernel thread.
5843  *
5844  * We scan the hash table for stripes which can be handled now.
5845  * During the scan, completed stripes are saved for us by the interrupt
5846  * handler, so that they will not have to wait for our next wakeup.
5847  */
5848 static void raid5d(struct md_thread *thread)
5849 {
5850         struct mddev *mddev = thread->mddev;
5851         struct r5conf *conf = mddev->private;
5852         int handled;
5853         struct blk_plug plug;
5854
5855         pr_debug("+++ raid5d active\n");
5856
5857         md_check_recovery(mddev);
5858
5859         if (!bio_list_empty(&conf->return_bi) &&
5860             !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5861                 struct bio_list tmp = BIO_EMPTY_LIST;
5862                 spin_lock_irq(&conf->device_lock);
5863                 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5864                         bio_list_merge(&tmp, &conf->return_bi);
5865                         bio_list_init(&conf->return_bi);
5866                 }
5867                 spin_unlock_irq(&conf->device_lock);
5868                 return_io(&tmp);
5869         }
5870
5871         blk_start_plug(&plug);
5872         handled = 0;
5873         spin_lock_irq(&conf->device_lock);
5874         while (1) {
5875                 struct bio *bio;
5876                 int batch_size, released;
5877
5878                 released = release_stripe_list(conf, conf->temp_inactive_list);
5879                 if (released)
5880                         clear_bit(R5_DID_ALLOC, &conf->cache_state);
5881
5882                 if (
5883                     !list_empty(&conf->bitmap_list)) {
5884                         /* Now is a good time to flush some bitmap updates */
5885                         conf->seq_flush++;
5886                         spin_unlock_irq(&conf->device_lock);
5887                         bitmap_unplug(mddev->bitmap);
5888                         spin_lock_irq(&conf->device_lock);
5889                         conf->seq_write = conf->seq_flush;
5890                         activate_bit_delay(conf, conf->temp_inactive_list);
5891                 }
5892                 raid5_activate_delayed(conf);
5893
5894                 while ((bio = remove_bio_from_retry(conf))) {
5895                         int ok;
5896                         spin_unlock_irq(&conf->device_lock);
5897                         ok = retry_aligned_read(conf, bio);
5898                         spin_lock_irq(&conf->device_lock);
5899                         if (!ok)
5900                                 break;
5901                         handled++;
5902                 }
5903
5904                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5905                                                    conf->temp_inactive_list);
5906                 if (!batch_size && !released)
5907                         break;
5908                 handled += batch_size;
5909
5910                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5911                         spin_unlock_irq(&conf->device_lock);
5912                         md_check_recovery(mddev);
5913                         spin_lock_irq(&conf->device_lock);
5914                 }
5915         }
5916         pr_debug("%d stripes handled\n", handled);
5917
5918         spin_unlock_irq(&conf->device_lock);
5919         if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5920             mutex_trylock(&conf->cache_size_mutex)) {
5921                 grow_one_stripe(conf, __GFP_NOWARN);
5922                 /* Set flag even if allocation failed.  This helps
5923                  * slow down allocation requests when mem is short
5924                  */
5925                 set_bit(R5_DID_ALLOC, &conf->cache_state);
5926                 mutex_unlock(&conf->cache_size_mutex);
5927         }
5928
5929         r5l_flush_stripe_to_raid(conf->log);
5930
5931         async_tx_issue_pending_all();
5932         blk_finish_plug(&plug);
5933
5934         pr_debug("--- raid5d inactive\n");
5935 }
5936
5937 static ssize_t
5938 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5939 {
5940         struct r5conf *conf;
5941         int ret = 0;
5942         spin_lock(&mddev->lock);
5943         conf = mddev->private;
5944         if (conf)
5945                 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5946         spin_unlock(&mddev->lock);
5947         return ret;
5948 }
5949
5950 int
5951 raid5_set_cache_size(struct mddev *mddev, int size)
5952 {
5953         struct r5conf *conf = mddev->private;
5954         int err;
5955
5956         if (size <= 16 || size > 32768)
5957                 return -EINVAL;
5958
5959         conf->min_nr_stripes = size;
5960         mutex_lock(&conf->cache_size_mutex);
5961         while (size < conf->max_nr_stripes &&
5962                drop_one_stripe(conf))
5963                 ;
5964         mutex_unlock(&conf->cache_size_mutex);
5965
5966
5967         err = md_allow_write(mddev);
5968         if (err)
5969                 return err;
5970
5971         mutex_lock(&conf->cache_size_mutex);
5972         while (size > conf->max_nr_stripes)
5973                 if (!grow_one_stripe(conf, GFP_KERNEL))
5974                         break;
5975         mutex_unlock(&conf->cache_size_mutex);
5976
5977         return 0;
5978 }
5979 EXPORT_SYMBOL(raid5_set_cache_size);
5980
5981 static ssize_t
5982 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5983 {
5984         struct r5conf *conf;
5985         unsigned long new;
5986         int err;
5987
5988         if (len >= PAGE_SIZE)
5989                 return -EINVAL;
5990         if (kstrtoul(page, 10, &new))
5991                 return -EINVAL;
5992         err = mddev_lock(mddev);
5993         if (err)
5994                 return err;
5995         conf = mddev->private;
5996         if (!conf)
5997                 err = -ENODEV;
5998         else
5999                 err = raid5_set_cache_size(mddev, new);
6000         mddev_unlock(mddev);
6001
6002         return err ?: len;
6003 }
6004
6005 static struct md_sysfs_entry
6006 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6007                                 raid5_show_stripe_cache_size,
6008                                 raid5_store_stripe_cache_size);
6009
6010 static ssize_t
6011 raid5_show_rmw_level(struct mddev  *mddev, char *page)
6012 {
6013         struct r5conf *conf = mddev->private;
6014         if (conf)
6015                 return sprintf(page, "%d\n", conf->rmw_level);
6016         else
6017                 return 0;
6018 }
6019
6020 static ssize_t
6021 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6022 {
6023         struct r5conf *conf = mddev->private;
6024         unsigned long new;
6025
6026         if (!conf)
6027                 return -ENODEV;
6028
6029         if (len >= PAGE_SIZE)
6030                 return -EINVAL;
6031
6032         if (kstrtoul(page, 10, &new))
6033                 return -EINVAL;
6034
6035         if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6036                 return -EINVAL;
6037
6038         if (new != PARITY_DISABLE_RMW &&
6039             new != PARITY_ENABLE_RMW &&
6040             new != PARITY_PREFER_RMW)
6041                 return -EINVAL;
6042
6043         conf->rmw_level = new;
6044         return len;
6045 }
6046
6047 static struct md_sysfs_entry
6048 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6049                          raid5_show_rmw_level,
6050                          raid5_store_rmw_level);
6051
6052
6053 static ssize_t
6054 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6055 {
6056         struct r5conf *conf;
6057         int ret = 0;
6058         spin_lock(&mddev->lock);
6059         conf = mddev->private;
6060         if (conf)
6061                 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6062         spin_unlock(&mddev->lock);
6063         return ret;
6064 }
6065
6066 static ssize_t
6067 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6068 {
6069         struct r5conf *conf;
6070         unsigned long new;
6071         int err;
6072
6073         if (len >= PAGE_SIZE)
6074                 return -EINVAL;
6075         if (kstrtoul(page, 10, &new))
6076                 return -EINVAL;
6077
6078         err = mddev_lock(mddev);
6079         if (err)
6080                 return err;
6081         conf = mddev->private;
6082         if (!conf)
6083                 err = -ENODEV;
6084         else if (new > conf->min_nr_stripes)
6085                 err = -EINVAL;
6086         else
6087                 conf->bypass_threshold = new;
6088         mddev_unlock(mddev);
6089         return err ?: len;
6090 }
6091
6092 static struct md_sysfs_entry
6093 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6094                                         S_IRUGO | S_IWUSR,
6095                                         raid5_show_preread_threshold,
6096                                         raid5_store_preread_threshold);
6097
6098 static ssize_t
6099 raid5_show_skip_copy(struct mddev *mddev, char *page)
6100 {
6101         struct r5conf *conf;
6102         int ret = 0;
6103         spin_lock(&mddev->lock);
6104         conf = mddev->private;
6105         if (conf)
6106                 ret = sprintf(page, "%d\n", conf->skip_copy);
6107         spin_unlock(&mddev->lock);
6108         return ret;
6109 }
6110
6111 static ssize_t
6112 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6113 {
6114         struct r5conf *conf;
6115         unsigned long new;
6116         int err;
6117
6118         if (len >= PAGE_SIZE)
6119                 return -EINVAL;
6120         if (kstrtoul(page, 10, &new))
6121                 return -EINVAL;
6122         new = !!new;
6123
6124         err = mddev_lock(mddev);
6125         if (err)
6126                 return err;
6127         conf = mddev->private;
6128         if (!conf)
6129                 err = -ENODEV;
6130         else if (new != conf->skip_copy) {
6131                 mddev_suspend(mddev);
6132                 conf->skip_copy = new;
6133                 if (new)
6134                         mddev->queue->backing_dev_info.capabilities |=
6135                                 BDI_CAP_STABLE_WRITES;
6136                 else
6137                         mddev->queue->backing_dev_info.capabilities &=
6138                                 ~BDI_CAP_STABLE_WRITES;
6139                 mddev_resume(mddev);
6140         }
6141         mddev_unlock(mddev);
6142         return err ?: len;
6143 }
6144
6145 static struct md_sysfs_entry
6146 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6147                                         raid5_show_skip_copy,
6148                                         raid5_store_skip_copy);
6149
6150 static ssize_t
6151 stripe_cache_active_show(struct mddev *mddev, char *page)
6152 {
6153         struct r5conf *conf = mddev->private;
6154         if (conf)
6155                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6156         else
6157                 return 0;
6158 }
6159
6160 static struct md_sysfs_entry
6161 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6162
6163 static ssize_t
6164 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6165 {
6166         struct r5conf *conf;
6167         int ret = 0;
6168         spin_lock(&mddev->lock);
6169         conf = mddev->private;
6170         if (conf)
6171                 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6172         spin_unlock(&mddev->lock);
6173         return ret;
6174 }
6175
6176 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6177                                int *group_cnt,
6178                                int *worker_cnt_per_group,
6179                                struct r5worker_group **worker_groups);
6180 static ssize_t
6181 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6182 {
6183         struct r5conf *conf;
6184         unsigned long new;
6185         int err;
6186         struct r5worker_group *new_groups, *old_groups;
6187         int group_cnt, worker_cnt_per_group;
6188
6189         if (len >= PAGE_SIZE)
6190                 return -EINVAL;
6191         if (kstrtoul(page, 10, &new))
6192                 return -EINVAL;
6193
6194         err = mddev_lock(mddev);
6195         if (err)
6196                 return err;
6197         conf = mddev->private;
6198         if (!conf)
6199                 err = -ENODEV;
6200         else if (new != conf->worker_cnt_per_group) {
6201                 mddev_suspend(mddev);
6202
6203                 old_groups = conf->worker_groups;
6204                 if (old_groups)
6205                         flush_workqueue(raid5_wq);
6206
6207                 err = alloc_thread_groups(conf, new,
6208                                           &group_cnt, &worker_cnt_per_group,
6209                                           &new_groups);
6210                 if (!err) {
6211                         spin_lock_irq(&conf->device_lock);
6212                         conf->group_cnt = group_cnt;
6213                         conf->worker_cnt_per_group = worker_cnt_per_group;
6214                         conf->worker_groups = new_groups;
6215                         spin_unlock_irq(&conf->device_lock);
6216
6217                         if (old_groups)
6218                                 kfree(old_groups[0].workers);
6219                         kfree(old_groups);
6220                 }
6221                 mddev_resume(mddev);
6222         }
6223         mddev_unlock(mddev);
6224
6225         return err ?: len;
6226 }
6227
6228 static struct md_sysfs_entry
6229 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6230                                 raid5_show_group_thread_cnt,
6231                                 raid5_store_group_thread_cnt);
6232
6233 static struct attribute *raid5_attrs[] =  {
6234         &raid5_stripecache_size.attr,
6235         &raid5_stripecache_active.attr,
6236         &raid5_preread_bypass_threshold.attr,
6237         &raid5_group_thread_cnt.attr,
6238         &raid5_skip_copy.attr,
6239         &raid5_rmw_level.attr,
6240         NULL,
6241 };
6242 static struct attribute_group raid5_attrs_group = {
6243         .name = NULL,
6244         .attrs = raid5_attrs,
6245 };
6246
6247 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6248                                int *group_cnt,
6249                                int *worker_cnt_per_group,
6250                                struct r5worker_group **worker_groups)
6251 {
6252         int i, j, k;
6253         ssize_t size;
6254         struct r5worker *workers;
6255
6256         *worker_cnt_per_group = cnt;
6257         if (cnt == 0) {
6258                 *group_cnt = 0;
6259                 *worker_groups = NULL;
6260                 return 0;
6261         }
6262         *group_cnt = num_possible_nodes();
6263         size = sizeof(struct r5worker) * cnt;
6264         workers = kzalloc(size * *group_cnt, GFP_NOIO);
6265         *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6266                                 *group_cnt, GFP_NOIO);
6267         if (!*worker_groups || !workers) {
6268                 kfree(workers);
6269                 kfree(*worker_groups);
6270                 return -ENOMEM;
6271         }
6272
6273         for (i = 0; i < *group_cnt; i++) {
6274                 struct r5worker_group *group;
6275
6276                 group = &(*worker_groups)[i];
6277                 INIT_LIST_HEAD(&group->handle_list);
6278                 group->conf = conf;
6279                 group->workers = workers + i * cnt;
6280
6281                 for (j = 0; j < cnt; j++) {
6282                         struct r5worker *worker = group->workers + j;
6283                         worker->group = group;
6284                         INIT_WORK(&worker->work, raid5_do_work);
6285
6286                         for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6287                                 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6288                 }
6289         }
6290
6291         return 0;
6292 }
6293
6294 static void free_thread_groups(struct r5conf *conf)
6295 {
6296         if (conf->worker_groups)
6297                 kfree(conf->worker_groups[0].workers);
6298         kfree(conf->worker_groups);
6299         conf->worker_groups = NULL;
6300 }
6301
6302 static sector_t
6303 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6304 {
6305         struct r5conf *conf = mddev->private;
6306
6307         if (!sectors)
6308                 sectors = mddev->dev_sectors;
6309         if (!raid_disks)
6310                 /* size is defined by the smallest of previous and new size */
6311                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6312
6313         sectors &= ~((sector_t)conf->chunk_sectors - 1);
6314         sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6315         return sectors * (raid_disks - conf->max_degraded);
6316 }
6317
6318 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6319 {
6320         safe_put_page(percpu->spare_page);
6321         if (percpu->scribble)
6322                 flex_array_free(percpu->scribble);
6323         percpu->spare_page = NULL;
6324         percpu->scribble = NULL;
6325 }
6326
6327 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6328 {
6329         if (conf->level == 6 && !percpu->spare_page)
6330                 percpu->spare_page = alloc_page(GFP_KERNEL);
6331         if (!percpu->scribble)
6332                 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6333                                                       conf->previous_raid_disks),
6334                                                   max(conf->chunk_sectors,
6335                                                       conf->prev_chunk_sectors)
6336                                                    / STRIPE_SECTORS,
6337                                                   GFP_KERNEL);
6338
6339         if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6340                 free_scratch_buffer(conf, percpu);
6341                 return -ENOMEM;
6342         }
6343
6344         return 0;
6345 }
6346
6347 static void raid5_free_percpu(struct r5conf *conf)
6348 {
6349         unsigned long cpu;
6350
6351         if (!conf->percpu)
6352                 return;
6353
6354 #ifdef CONFIG_HOTPLUG_CPU
6355         unregister_cpu_notifier(&conf->cpu_notify);
6356 #endif
6357
6358         get_online_cpus();
6359         for_each_possible_cpu(cpu)
6360                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6361         put_online_cpus();
6362
6363         free_percpu(conf->percpu);
6364 }
6365
6366 static void free_conf(struct r5conf *conf)
6367 {
6368         if (conf->log)
6369                 r5l_exit_log(conf->log);
6370         if (conf->shrinker.seeks)
6371                 unregister_shrinker(&conf->shrinker);
6372
6373         free_thread_groups(conf);
6374         shrink_stripes(conf);
6375         raid5_free_percpu(conf);
6376         kfree(conf->disks);
6377         kfree(conf->stripe_hashtbl);
6378         kfree(conf);
6379 }
6380
6381 #ifdef CONFIG_HOTPLUG_CPU
6382 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6383                               void *hcpu)
6384 {
6385         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6386         long cpu = (long)hcpu;
6387         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6388
6389         switch (action) {
6390         case CPU_UP_PREPARE:
6391         case CPU_UP_PREPARE_FROZEN:
6392                 if (alloc_scratch_buffer(conf, percpu)) {
6393                         pr_err("%s: failed memory allocation for cpu%ld\n",
6394                                __func__, cpu);
6395                         return notifier_from_errno(-ENOMEM);
6396                 }
6397                 break;
6398         case CPU_DEAD:
6399         case CPU_DEAD_FROZEN:
6400         case CPU_UP_CANCELED:
6401         case CPU_UP_CANCELED_FROZEN:
6402                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6403                 break;
6404         default:
6405                 break;
6406         }
6407         return NOTIFY_OK;
6408 }
6409 #endif
6410
6411 static int raid5_alloc_percpu(struct r5conf *conf)
6412 {
6413         unsigned long cpu;
6414         int err = 0;
6415
6416         conf->percpu = alloc_percpu(struct raid5_percpu);
6417         if (!conf->percpu)
6418                 return -ENOMEM;
6419
6420 #ifdef CONFIG_HOTPLUG_CPU
6421         conf->cpu_notify.notifier_call = raid456_cpu_notify;
6422         conf->cpu_notify.priority = 0;
6423         err = register_cpu_notifier(&conf->cpu_notify);
6424         if (err)
6425                 return err;
6426 #endif
6427
6428         get_online_cpus();
6429         for_each_present_cpu(cpu) {
6430                 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6431                 if (err) {
6432                         pr_err("%s: failed memory allocation for cpu%ld\n",
6433                                __func__, cpu);
6434                         break;
6435                 }
6436         }
6437         put_online_cpus();
6438
6439         if (!err) {
6440                 conf->scribble_disks = max(conf->raid_disks,
6441                         conf->previous_raid_disks);
6442                 conf->scribble_sectors = max(conf->chunk_sectors,
6443                         conf->prev_chunk_sectors);
6444         }
6445         return err;
6446 }
6447
6448 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6449                                       struct shrink_control *sc)
6450 {
6451         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6452         unsigned long ret = SHRINK_STOP;
6453
6454         if (mutex_trylock(&conf->cache_size_mutex)) {
6455                 ret= 0;
6456                 while (ret < sc->nr_to_scan &&
6457                        conf->max_nr_stripes > conf->min_nr_stripes) {
6458                         if (drop_one_stripe(conf) == 0) {
6459                                 ret = SHRINK_STOP;
6460                                 break;
6461                         }
6462                         ret++;
6463                 }
6464                 mutex_unlock(&conf->cache_size_mutex);
6465         }
6466         return ret;
6467 }
6468
6469 static unsigned long raid5_cache_count(struct shrinker *shrink,
6470                                        struct shrink_control *sc)
6471 {
6472         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6473
6474         if (conf->max_nr_stripes < conf->min_nr_stripes)
6475                 /* unlikely, but not impossible */
6476                 return 0;
6477         return conf->max_nr_stripes - conf->min_nr_stripes;
6478 }
6479
6480 static struct r5conf *setup_conf(struct mddev *mddev)
6481 {
6482         struct r5conf *conf;
6483         int raid_disk, memory, max_disks;
6484         struct md_rdev *rdev;
6485         struct disk_info *disk;
6486         char pers_name[6];
6487         int i;
6488         int group_cnt, worker_cnt_per_group;
6489         struct r5worker_group *new_group;
6490
6491         if (mddev->new_level != 5
6492             && mddev->new_level != 4
6493             && mddev->new_level != 6) {
6494                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6495                        mdname(mddev), mddev->new_level);
6496                 return ERR_PTR(-EIO);
6497         }
6498         if ((mddev->new_level == 5
6499              && !algorithm_valid_raid5(mddev->new_layout)) ||
6500             (mddev->new_level == 6
6501              && !algorithm_valid_raid6(mddev->new_layout))) {
6502                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6503                        mdname(mddev), mddev->new_layout);
6504                 return ERR_PTR(-EIO);
6505         }
6506         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6507                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6508                        mdname(mddev), mddev->raid_disks);
6509                 return ERR_PTR(-EINVAL);
6510         }
6511
6512         if (!mddev->new_chunk_sectors ||
6513             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6514             !is_power_of_2(mddev->new_chunk_sectors)) {
6515                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6516                        mdname(mddev), mddev->new_chunk_sectors << 9);
6517                 return ERR_PTR(-EINVAL);
6518         }
6519
6520         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6521         if (conf == NULL)
6522                 goto abort;
6523         /* Don't enable multi-threading by default*/
6524         if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6525                                  &new_group)) {
6526                 conf->group_cnt = group_cnt;
6527                 conf->worker_cnt_per_group = worker_cnt_per_group;
6528                 conf->worker_groups = new_group;
6529         } else
6530                 goto abort;
6531         spin_lock_init(&conf->device_lock);
6532         seqcount_init(&conf->gen_lock);
6533         mutex_init(&conf->cache_size_mutex);
6534         init_waitqueue_head(&conf->wait_for_quiescent);
6535         init_waitqueue_head(&conf->wait_for_stripe);
6536         init_waitqueue_head(&conf->wait_for_overlap);
6537         INIT_LIST_HEAD(&conf->handle_list);
6538         INIT_LIST_HEAD(&conf->hold_list);
6539         INIT_LIST_HEAD(&conf->delayed_list);
6540         INIT_LIST_HEAD(&conf->bitmap_list);
6541         bio_list_init(&conf->return_bi);
6542         init_llist_head(&conf->released_stripes);
6543         atomic_set(&conf->active_stripes, 0);
6544         atomic_set(&conf->preread_active_stripes, 0);
6545         atomic_set(&conf->active_aligned_reads, 0);
6546         conf->bypass_threshold = BYPASS_THRESHOLD;
6547         conf->recovery_disabled = mddev->recovery_disabled - 1;
6548
6549         conf->raid_disks = mddev->raid_disks;
6550         if (mddev->reshape_position == MaxSector)
6551                 conf->previous_raid_disks = mddev->raid_disks;
6552         else
6553                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6554         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6555
6556         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6557                               GFP_KERNEL);
6558         if (!conf->disks)
6559                 goto abort;
6560
6561         conf->mddev = mddev;
6562
6563         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6564                 goto abort;
6565
6566         /* We init hash_locks[0] separately to that it can be used
6567          * as the reference lock in the spin_lock_nest_lock() call
6568          * in lock_all_device_hash_locks_irq in order to convince
6569          * lockdep that we know what we are doing.
6570          */
6571         spin_lock_init(conf->hash_locks);
6572         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6573                 spin_lock_init(conf->hash_locks + i);
6574
6575         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6576                 INIT_LIST_HEAD(conf->inactive_list + i);
6577
6578         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6579                 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6580
6581         conf->level = mddev->new_level;
6582         conf->chunk_sectors = mddev->new_chunk_sectors;
6583         if (raid5_alloc_percpu(conf) != 0)
6584                 goto abort;
6585
6586         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6587
6588         rdev_for_each(rdev, mddev) {
6589                 raid_disk = rdev->raid_disk;
6590                 if (raid_disk >= max_disks
6591                     || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6592                         continue;
6593                 disk = conf->disks + raid_disk;
6594
6595                 if (test_bit(Replacement, &rdev->flags)) {
6596                         if (disk->replacement)
6597                                 goto abort;
6598                         disk->replacement = rdev;
6599                 } else {
6600                         if (disk->rdev)
6601                                 goto abort;
6602                         disk->rdev = rdev;
6603                 }
6604
6605                 if (test_bit(In_sync, &rdev->flags)) {
6606                         char b[BDEVNAME_SIZE];
6607                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6608                                " disk %d\n",
6609                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6610                 } else if (rdev->saved_raid_disk != raid_disk)
6611                         /* Cannot rely on bitmap to complete recovery */
6612                         conf->fullsync = 1;
6613         }
6614
6615         conf->level = mddev->new_level;
6616         if (conf->level == 6) {
6617                 conf->max_degraded = 2;
6618                 if (raid6_call.xor_syndrome)
6619                         conf->rmw_level = PARITY_ENABLE_RMW;
6620                 else
6621                         conf->rmw_level = PARITY_DISABLE_RMW;
6622         } else {
6623                 conf->max_degraded = 1;
6624                 conf->rmw_level = PARITY_ENABLE_RMW;
6625         }
6626         conf->algorithm = mddev->new_layout;
6627         conf->reshape_progress = mddev->reshape_position;
6628         if (conf->reshape_progress != MaxSector) {
6629                 conf->prev_chunk_sectors = mddev->chunk_sectors;
6630                 conf->prev_algo = mddev->layout;
6631         } else {
6632                 conf->prev_chunk_sectors = conf->chunk_sectors;
6633                 conf->prev_algo = conf->algorithm;
6634         }
6635
6636         conf->min_nr_stripes = NR_STRIPES;
6637         memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6638                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6639         atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6640         if (grow_stripes(conf, conf->min_nr_stripes)) {
6641                 printk(KERN_ERR
6642                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
6643                        mdname(mddev), memory);
6644                 goto abort;
6645         } else
6646                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6647                        mdname(mddev), memory);
6648         /*
6649          * Losing a stripe head costs more than the time to refill it,
6650          * it reduces the queue depth and so can hurt throughput.
6651          * So set it rather large, scaled by number of devices.
6652          */
6653         conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6654         conf->shrinker.scan_objects = raid5_cache_scan;
6655         conf->shrinker.count_objects = raid5_cache_count;
6656         conf->shrinker.batch = 128;
6657         conf->shrinker.flags = 0;
6658         register_shrinker(&conf->shrinker);
6659
6660         sprintf(pers_name, "raid%d", mddev->new_level);
6661         conf->thread = md_register_thread(raid5d, mddev, pers_name);
6662         if (!conf->thread) {
6663                 printk(KERN_ERR
6664                        "md/raid:%s: couldn't allocate thread.\n",
6665                        mdname(mddev));
6666                 goto abort;
6667         }
6668
6669         return conf;
6670
6671  abort:
6672         if (conf) {
6673                 free_conf(conf);
6674                 return ERR_PTR(-EIO);
6675         } else
6676                 return ERR_PTR(-ENOMEM);
6677 }
6678
6679 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6680 {
6681         switch (algo) {
6682         case ALGORITHM_PARITY_0:
6683                 if (raid_disk < max_degraded)
6684                         return 1;
6685                 break;
6686         case ALGORITHM_PARITY_N:
6687                 if (raid_disk >= raid_disks - max_degraded)
6688                         return 1;
6689                 break;
6690         case ALGORITHM_PARITY_0_6:
6691                 if (raid_disk == 0 ||
6692                     raid_disk == raid_disks - 1)
6693                         return 1;
6694                 break;
6695         case ALGORITHM_LEFT_ASYMMETRIC_6:
6696         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6697         case ALGORITHM_LEFT_SYMMETRIC_6:
6698         case ALGORITHM_RIGHT_SYMMETRIC_6:
6699                 if (raid_disk == raid_disks - 1)
6700                         return 1;
6701         }
6702         return 0;
6703 }
6704
6705 static int raid5_run(struct mddev *mddev)
6706 {
6707         struct r5conf *conf;
6708         int working_disks = 0;
6709         int dirty_parity_disks = 0;
6710         struct md_rdev *rdev;
6711         struct md_rdev *journal_dev = NULL;
6712         sector_t reshape_offset = 0;
6713         int i;
6714         long long min_offset_diff = 0;
6715         int first = 1;
6716
6717         if (mddev->recovery_cp != MaxSector)
6718                 printk(KERN_NOTICE "md/raid:%s: not clean"
6719                        " -- starting background reconstruction\n",
6720                        mdname(mddev));
6721
6722         rdev_for_each(rdev, mddev) {
6723                 long long diff;
6724
6725                 if (test_bit(Journal, &rdev->flags)) {
6726                         journal_dev = rdev;
6727                         continue;
6728                 }
6729                 if (rdev->raid_disk < 0)
6730                         continue;
6731                 diff = (rdev->new_data_offset - rdev->data_offset);
6732                 if (first) {
6733                         min_offset_diff = diff;
6734                         first = 0;
6735                 } else if (mddev->reshape_backwards &&
6736                          diff < min_offset_diff)
6737                         min_offset_diff = diff;
6738                 else if (!mddev->reshape_backwards &&
6739                          diff > min_offset_diff)
6740                         min_offset_diff = diff;
6741         }
6742
6743         if (mddev->reshape_position != MaxSector) {
6744                 /* Check that we can continue the reshape.
6745                  * Difficulties arise if the stripe we would write to
6746                  * next is at or after the stripe we would read from next.
6747                  * For a reshape that changes the number of devices, this
6748                  * is only possible for a very short time, and mdadm makes
6749                  * sure that time appears to have past before assembling
6750                  * the array.  So we fail if that time hasn't passed.
6751                  * For a reshape that keeps the number of devices the same
6752                  * mdadm must be monitoring the reshape can keeping the
6753                  * critical areas read-only and backed up.  It will start
6754                  * the array in read-only mode, so we check for that.
6755                  */
6756                 sector_t here_new, here_old;
6757                 int old_disks;
6758                 int max_degraded = (mddev->level == 6 ? 2 : 1);
6759                 int chunk_sectors;
6760                 int new_data_disks;
6761
6762                 if (journal_dev) {
6763                         printk(KERN_ERR "md/raid:%s: don't support reshape with journal - aborting.\n",
6764                                mdname(mddev));
6765                         return -EINVAL;
6766                 }
6767
6768                 if (mddev->new_level != mddev->level) {
6769                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
6770                                "required - aborting.\n",
6771                                mdname(mddev));
6772                         return -EINVAL;
6773                 }
6774                 old_disks = mddev->raid_disks - mddev->delta_disks;
6775                 /* reshape_position must be on a new-stripe boundary, and one
6776                  * further up in new geometry must map after here in old
6777                  * geometry.
6778                  * If the chunk sizes are different, then as we perform reshape
6779                  * in units of the largest of the two, reshape_position needs
6780                  * be a multiple of the largest chunk size times new data disks.
6781                  */
6782                 here_new = mddev->reshape_position;
6783                 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
6784                 new_data_disks = mddev->raid_disks - max_degraded;
6785                 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
6786                         printk(KERN_ERR "md/raid:%s: reshape_position not "
6787                                "on a stripe boundary\n", mdname(mddev));
6788                         return -EINVAL;
6789                 }
6790                 reshape_offset = here_new * chunk_sectors;
6791                 /* here_new is the stripe we will write to */
6792                 here_old = mddev->reshape_position;
6793                 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
6794                 /* here_old is the first stripe that we might need to read
6795                  * from */
6796                 if (mddev->delta_disks == 0) {
6797                         /* We cannot be sure it is safe to start an in-place
6798                          * reshape.  It is only safe if user-space is monitoring
6799                          * and taking constant backups.
6800                          * mdadm always starts a situation like this in
6801                          * readonly mode so it can take control before
6802                          * allowing any writes.  So just check for that.
6803                          */
6804                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6805                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
6806                                 /* not really in-place - so OK */;
6807                         else if (mddev->ro == 0) {
6808                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
6809                                        "must be started in read-only mode "
6810                                        "- aborting\n",
6811                                        mdname(mddev));
6812                                 return -EINVAL;
6813                         }
6814                 } else if (mddev->reshape_backwards
6815                     ? (here_new * chunk_sectors + min_offset_diff <=
6816                        here_old * chunk_sectors)
6817                     : (here_new * chunk_sectors >=
6818                        here_old * chunk_sectors + (-min_offset_diff))) {
6819                         /* Reading from the same stripe as writing to - bad */
6820                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6821                                "auto-recovery - aborting.\n",
6822                                mdname(mddev));
6823                         return -EINVAL;
6824                 }
6825                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6826                        mdname(mddev));
6827                 /* OK, we should be able to continue; */
6828         } else {
6829                 BUG_ON(mddev->level != mddev->new_level);
6830                 BUG_ON(mddev->layout != mddev->new_layout);
6831                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6832                 BUG_ON(mddev->delta_disks != 0);
6833         }
6834
6835         if (mddev->private == NULL)
6836                 conf = setup_conf(mddev);
6837         else
6838                 conf = mddev->private;
6839
6840         if (IS_ERR(conf))
6841                 return PTR_ERR(conf);
6842
6843         if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !journal_dev) {
6844                 printk(KERN_ERR "md/raid:%s: journal disk is missing, force array readonly\n",
6845                        mdname(mddev));
6846                 mddev->ro = 1;
6847                 set_disk_ro(mddev->gendisk, 1);
6848         }
6849
6850         conf->min_offset_diff = min_offset_diff;
6851         mddev->thread = conf->thread;
6852         conf->thread = NULL;
6853         mddev->private = conf;
6854
6855         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6856              i++) {
6857                 rdev = conf->disks[i].rdev;
6858                 if (!rdev && conf->disks[i].replacement) {
6859                         /* The replacement is all we have yet */
6860                         rdev = conf->disks[i].replacement;
6861                         conf->disks[i].replacement = NULL;
6862                         clear_bit(Replacement, &rdev->flags);
6863                         conf->disks[i].rdev = rdev;
6864                 }
6865                 if (!rdev)
6866                         continue;
6867                 if (conf->disks[i].replacement &&
6868                     conf->reshape_progress != MaxSector) {
6869                         /* replacements and reshape simply do not mix. */
6870                         printk(KERN_ERR "md: cannot handle concurrent "
6871                                "replacement and reshape.\n");
6872                         goto abort;
6873                 }
6874                 if (test_bit(In_sync, &rdev->flags)) {
6875                         working_disks++;
6876                         continue;
6877                 }
6878                 /* This disc is not fully in-sync.  However if it
6879                  * just stored parity (beyond the recovery_offset),
6880                  * when we don't need to be concerned about the
6881                  * array being dirty.
6882                  * When reshape goes 'backwards', we never have
6883                  * partially completed devices, so we only need
6884                  * to worry about reshape going forwards.
6885                  */
6886                 /* Hack because v0.91 doesn't store recovery_offset properly. */
6887                 if (mddev->major_version == 0 &&
6888                     mddev->minor_version > 90)
6889                         rdev->recovery_offset = reshape_offset;
6890
6891                 if (rdev->recovery_offset < reshape_offset) {
6892                         /* We need to check old and new layout */
6893                         if (!only_parity(rdev->raid_disk,
6894                                          conf->algorithm,
6895                                          conf->raid_disks,
6896                                          conf->max_degraded))
6897                                 continue;
6898                 }
6899                 if (!only_parity(rdev->raid_disk,
6900                                  conf->prev_algo,
6901                                  conf->previous_raid_disks,
6902                                  conf->max_degraded))
6903                         continue;
6904                 dirty_parity_disks++;
6905         }
6906
6907         /*
6908          * 0 for a fully functional array, 1 or 2 for a degraded array.
6909          */
6910         mddev->degraded = calc_degraded(conf);
6911
6912         if (has_failed(conf)) {
6913                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6914                         " (%d/%d failed)\n",
6915                         mdname(mddev), mddev->degraded, conf->raid_disks);
6916                 goto abort;
6917         }
6918
6919         /* device size must be a multiple of chunk size */
6920         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6921         mddev->resync_max_sectors = mddev->dev_sectors;
6922
6923         if (mddev->degraded > dirty_parity_disks &&
6924             mddev->recovery_cp != MaxSector) {
6925                 if (mddev->ok_start_degraded)
6926                         printk(KERN_WARNING
6927                                "md/raid:%s: starting dirty degraded array"
6928                                " - data corruption possible.\n",
6929                                mdname(mddev));
6930                 else {
6931                         printk(KERN_ERR
6932                                "md/raid:%s: cannot start dirty degraded array.\n",
6933                                mdname(mddev));
6934                         goto abort;
6935                 }
6936         }
6937
6938         if (mddev->degraded == 0)
6939                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6940                        " devices, algorithm %d\n", mdname(mddev), conf->level,
6941                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6942                        mddev->new_layout);
6943         else
6944                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6945                        " out of %d devices, algorithm %d\n",
6946                        mdname(mddev), conf->level,
6947                        mddev->raid_disks - mddev->degraded,
6948                        mddev->raid_disks, mddev->new_layout);
6949
6950         print_raid5_conf(conf);
6951
6952         if (conf->reshape_progress != MaxSector) {
6953                 conf->reshape_safe = conf->reshape_progress;
6954                 atomic_set(&conf->reshape_stripes, 0);
6955                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6956                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6957                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6958                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6959                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6960                                                         "reshape");
6961         }
6962
6963         /* Ok, everything is just fine now */
6964         if (mddev->to_remove == &raid5_attrs_group)
6965                 mddev->to_remove = NULL;
6966         else if (mddev->kobj.sd &&
6967             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6968                 printk(KERN_WARNING
6969                        "raid5: failed to create sysfs attributes for %s\n",
6970                        mdname(mddev));
6971         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6972
6973         if (mddev->queue) {
6974                 int chunk_size;
6975                 bool discard_supported = true;
6976                 /* read-ahead size must cover two whole stripes, which
6977                  * is 2 * (datadisks) * chunksize where 'n' is the
6978                  * number of raid devices
6979                  */
6980                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6981                 int stripe = data_disks *
6982                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6983                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6984                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6985
6986                 chunk_size = mddev->chunk_sectors << 9;
6987                 blk_queue_io_min(mddev->queue, chunk_size);
6988                 blk_queue_io_opt(mddev->queue, chunk_size *
6989                                  (conf->raid_disks - conf->max_degraded));
6990                 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6991                 /*
6992                  * We can only discard a whole stripe. It doesn't make sense to
6993                  * discard data disk but write parity disk
6994                  */
6995                 stripe = stripe * PAGE_SIZE;
6996                 /* Round up to power of 2, as discard handling
6997                  * currently assumes that */
6998                 while ((stripe-1) & stripe)
6999                         stripe = (stripe | (stripe-1)) + 1;
7000                 mddev->queue->limits.discard_alignment = stripe;
7001                 mddev->queue->limits.discard_granularity = stripe;
7002                 /*
7003                  * unaligned part of discard request will be ignored, so can't
7004                  * guarantee discard_zeroes_data
7005                  */
7006                 mddev->queue->limits.discard_zeroes_data = 0;
7007
7008                 blk_queue_max_write_same_sectors(mddev->queue, 0);
7009
7010                 rdev_for_each(rdev, mddev) {
7011                         disk_stack_limits(mddev->gendisk, rdev->bdev,
7012                                           rdev->data_offset << 9);
7013                         disk_stack_limits(mddev->gendisk, rdev->bdev,
7014                                           rdev->new_data_offset << 9);
7015                         /*
7016                          * discard_zeroes_data is required, otherwise data
7017                          * could be lost. Consider a scenario: discard a stripe
7018                          * (the stripe could be inconsistent if
7019                          * discard_zeroes_data is 0); write one disk of the
7020                          * stripe (the stripe could be inconsistent again
7021                          * depending on which disks are used to calculate
7022                          * parity); the disk is broken; The stripe data of this
7023                          * disk is lost.
7024                          */
7025                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
7026                             !bdev_get_queue(rdev->bdev)->
7027                                                 limits.discard_zeroes_data)
7028                                 discard_supported = false;
7029                         /* Unfortunately, discard_zeroes_data is not currently
7030                          * a guarantee - just a hint.  So we only allow DISCARD
7031                          * if the sysadmin has confirmed that only safe devices
7032                          * are in use by setting a module parameter.
7033                          */
7034                         if (!devices_handle_discard_safely) {
7035                                 if (discard_supported) {
7036                                         pr_info("md/raid456: discard support disabled due to uncertainty.\n");
7037                                         pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
7038                                 }
7039                                 discard_supported = false;
7040                         }
7041                 }
7042
7043                 if (discard_supported &&
7044                     mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7045                     mddev->queue->limits.discard_granularity >= stripe)
7046                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7047                                                 mddev->queue);
7048                 else
7049                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7050                                                 mddev->queue);
7051         }
7052
7053         if (journal_dev) {
7054                 char b[BDEVNAME_SIZE];
7055
7056                 printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7057                        mdname(mddev), bdevname(journal_dev->bdev, b));
7058                 r5l_init_log(conf, journal_dev);
7059         }
7060
7061         return 0;
7062 abort:
7063         md_unregister_thread(&mddev->thread);
7064         print_raid5_conf(conf);
7065         free_conf(conf);
7066         mddev->private = NULL;
7067         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
7068         return -EIO;
7069 }
7070
7071 static void raid5_free(struct mddev *mddev, void *priv)
7072 {
7073         struct r5conf *conf = priv;
7074
7075         free_conf(conf);
7076         mddev->to_remove = &raid5_attrs_group;
7077 }
7078
7079 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7080 {
7081         struct r5conf *conf = mddev->private;
7082         int i;
7083
7084         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7085                 conf->chunk_sectors / 2, mddev->layout);
7086         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7087         rcu_read_lock();
7088         for (i = 0; i < conf->raid_disks; i++) {
7089                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7090                 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7091         }
7092         rcu_read_unlock();
7093         seq_printf (seq, "]");
7094 }
7095
7096 static void print_raid5_conf (struct r5conf *conf)
7097 {
7098         int i;
7099         struct disk_info *tmp;
7100
7101         printk(KERN_DEBUG "RAID conf printout:\n");
7102         if (!conf) {
7103                 printk("(conf==NULL)\n");
7104                 return;
7105         }
7106         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7107                conf->raid_disks,
7108                conf->raid_disks - conf->mddev->degraded);
7109
7110         for (i = 0; i < conf->raid_disks; i++) {
7111                 char b[BDEVNAME_SIZE];
7112                 tmp = conf->disks + i;
7113                 if (tmp->rdev)
7114                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7115                                i, !test_bit(Faulty, &tmp->rdev->flags),
7116                                bdevname(tmp->rdev->bdev, b));
7117         }
7118 }
7119
7120 static int raid5_spare_active(struct mddev *mddev)
7121 {
7122         int i;
7123         struct r5conf *conf = mddev->private;
7124         struct disk_info *tmp;
7125         int count = 0;
7126         unsigned long flags;
7127
7128         for (i = 0; i < conf->raid_disks; i++) {
7129                 tmp = conf->disks + i;
7130                 if (tmp->replacement
7131                     && tmp->replacement->recovery_offset == MaxSector
7132                     && !test_bit(Faulty, &tmp->replacement->flags)
7133                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7134                         /* Replacement has just become active. */
7135                         if (!tmp->rdev
7136                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7137                                 count++;
7138                         if (tmp->rdev) {
7139                                 /* Replaced device not technically faulty,
7140                                  * but we need to be sure it gets removed
7141                                  * and never re-added.
7142                                  */
7143                                 set_bit(Faulty, &tmp->rdev->flags);
7144                                 sysfs_notify_dirent_safe(
7145                                         tmp->rdev->sysfs_state);
7146                         }
7147                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7148                 } else if (tmp->rdev
7149                     && tmp->rdev->recovery_offset == MaxSector
7150                     && !test_bit(Faulty, &tmp->rdev->flags)
7151                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7152                         count++;
7153                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7154                 }
7155         }
7156         spin_lock_irqsave(&conf->device_lock, flags);
7157         mddev->degraded = calc_degraded(conf);
7158         spin_unlock_irqrestore(&conf->device_lock, flags);
7159         print_raid5_conf(conf);
7160         return count;
7161 }
7162
7163 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7164 {
7165         struct r5conf *conf = mddev->private;
7166         int err = 0;
7167         int number = rdev->raid_disk;
7168         struct md_rdev **rdevp;
7169         struct disk_info *p = conf->disks + number;
7170
7171         print_raid5_conf(conf);
7172         if (test_bit(Journal, &rdev->flags) && conf->log) {
7173                 struct r5l_log *log;
7174                 /*
7175                  * we can't wait pending write here, as this is called in
7176                  * raid5d, wait will deadlock.
7177                  */
7178                 if (atomic_read(&mddev->writes_pending))
7179                         return -EBUSY;
7180                 log = conf->log;
7181                 conf->log = NULL;
7182                 synchronize_rcu();
7183                 r5l_exit_log(log);
7184                 return 0;
7185         }
7186         if (rdev == p->rdev)
7187                 rdevp = &p->rdev;
7188         else if (rdev == p->replacement)
7189                 rdevp = &p->replacement;
7190         else
7191                 return 0;
7192
7193         if (number >= conf->raid_disks &&
7194             conf->reshape_progress == MaxSector)
7195                 clear_bit(In_sync, &rdev->flags);
7196
7197         if (test_bit(In_sync, &rdev->flags) ||
7198             atomic_read(&rdev->nr_pending)) {
7199                 err = -EBUSY;
7200                 goto abort;
7201         }
7202         /* Only remove non-faulty devices if recovery
7203          * isn't possible.
7204          */
7205         if (!test_bit(Faulty, &rdev->flags) &&
7206             mddev->recovery_disabled != conf->recovery_disabled &&
7207             !has_failed(conf) &&
7208             (!p->replacement || p->replacement == rdev) &&
7209             number < conf->raid_disks) {
7210                 err = -EBUSY;
7211                 goto abort;
7212         }
7213         *rdevp = NULL;
7214         if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7215                 synchronize_rcu();
7216                 if (atomic_read(&rdev->nr_pending)) {
7217                         /* lost the race, try later */
7218                         err = -EBUSY;
7219                         *rdevp = rdev;
7220                 }
7221         }
7222         if (p->replacement) {
7223                 /* We must have just cleared 'rdev' */
7224                 p->rdev = p->replacement;
7225                 clear_bit(Replacement, &p->replacement->flags);
7226                 smp_mb(); /* Make sure other CPUs may see both as identical
7227                            * but will never see neither - if they are careful
7228                            */
7229                 p->replacement = NULL;
7230                 clear_bit(WantReplacement, &rdev->flags);
7231         } else
7232                 /* We might have just removed the Replacement as faulty-
7233                  * clear the bit just in case
7234                  */
7235                 clear_bit(WantReplacement, &rdev->flags);
7236 abort:
7237
7238         print_raid5_conf(conf);
7239         return err;
7240 }
7241
7242 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7243 {
7244         struct r5conf *conf = mddev->private;
7245         int err = -EEXIST;
7246         int disk;
7247         struct disk_info *p;
7248         int first = 0;
7249         int last = conf->raid_disks - 1;
7250
7251         if (test_bit(Journal, &rdev->flags)) {
7252                 char b[BDEVNAME_SIZE];
7253                 if (conf->log)
7254                         return -EBUSY;
7255
7256                 rdev->raid_disk = 0;
7257                 /*
7258                  * The array is in readonly mode if journal is missing, so no
7259                  * write requests running. We should be safe
7260                  */
7261                 r5l_init_log(conf, rdev);
7262                 printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7263                        mdname(mddev), bdevname(rdev->bdev, b));
7264                 return 0;
7265         }
7266         if (mddev->recovery_disabled == conf->recovery_disabled)
7267                 return -EBUSY;
7268
7269         if (rdev->saved_raid_disk < 0 && has_failed(conf))
7270                 /* no point adding a device */
7271                 return -EINVAL;
7272
7273         if (rdev->raid_disk >= 0)
7274                 first = last = rdev->raid_disk;
7275
7276         /*
7277          * find the disk ... but prefer rdev->saved_raid_disk
7278          * if possible.
7279          */
7280         if (rdev->saved_raid_disk >= 0 &&
7281             rdev->saved_raid_disk >= first &&
7282             conf->disks[rdev->saved_raid_disk].rdev == NULL)
7283                 first = rdev->saved_raid_disk;
7284
7285         for (disk = first; disk <= last; disk++) {
7286                 p = conf->disks + disk;
7287                 if (p->rdev == NULL) {
7288                         clear_bit(In_sync, &rdev->flags);
7289                         rdev->raid_disk = disk;
7290                         err = 0;
7291                         if (rdev->saved_raid_disk != disk)
7292                                 conf->fullsync = 1;
7293                         rcu_assign_pointer(p->rdev, rdev);
7294                         goto out;
7295                 }
7296         }
7297         for (disk = first; disk <= last; disk++) {
7298                 p = conf->disks + disk;
7299                 if (test_bit(WantReplacement, &p->rdev->flags) &&
7300                     p->replacement == NULL) {
7301                         clear_bit(In_sync, &rdev->flags);
7302                         set_bit(Replacement, &rdev->flags);
7303                         rdev->raid_disk = disk;
7304                         err = 0;
7305                         conf->fullsync = 1;
7306                         rcu_assign_pointer(p->replacement, rdev);
7307                         break;
7308                 }
7309         }
7310 out:
7311         print_raid5_conf(conf);
7312         return err;
7313 }
7314
7315 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7316 {
7317         /* no resync is happening, and there is enough space
7318          * on all devices, so we can resize.
7319          * We need to make sure resync covers any new space.
7320          * If the array is shrinking we should possibly wait until
7321          * any io in the removed space completes, but it hardly seems
7322          * worth it.
7323          */
7324         sector_t newsize;
7325         struct r5conf *conf = mddev->private;
7326
7327         if (conf->log)
7328                 return -EINVAL;
7329         sectors &= ~((sector_t)conf->chunk_sectors - 1);
7330         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7331         if (mddev->external_size &&
7332             mddev->array_sectors > newsize)
7333                 return -EINVAL;
7334         if (mddev->bitmap) {
7335                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7336                 if (ret)
7337                         return ret;
7338         }
7339         md_set_array_sectors(mddev, newsize);
7340         set_capacity(mddev->gendisk, mddev->array_sectors);
7341         revalidate_disk(mddev->gendisk);
7342         if (sectors > mddev->dev_sectors &&
7343             mddev->recovery_cp > mddev->dev_sectors) {
7344                 mddev->recovery_cp = mddev->dev_sectors;
7345                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7346         }
7347         mddev->dev_sectors = sectors;
7348         mddev->resync_max_sectors = sectors;
7349         return 0;
7350 }
7351
7352 static int check_stripe_cache(struct mddev *mddev)
7353 {
7354         /* Can only proceed if there are plenty of stripe_heads.
7355          * We need a minimum of one full stripe,, and for sensible progress
7356          * it is best to have about 4 times that.
7357          * If we require 4 times, then the default 256 4K stripe_heads will
7358          * allow for chunk sizes up to 256K, which is probably OK.
7359          * If the chunk size is greater, user-space should request more
7360          * stripe_heads first.
7361          */
7362         struct r5conf *conf = mddev->private;
7363         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7364             > conf->min_nr_stripes ||
7365             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7366             > conf->min_nr_stripes) {
7367                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7368                        mdname(mddev),
7369                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7370                         / STRIPE_SIZE)*4);
7371                 return 0;
7372         }
7373         return 1;
7374 }
7375
7376 static int check_reshape(struct mddev *mddev)
7377 {
7378         struct r5conf *conf = mddev->private;
7379
7380         if (conf->log)
7381                 return -EINVAL;
7382         if (mddev->delta_disks == 0 &&
7383             mddev->new_layout == mddev->layout &&
7384             mddev->new_chunk_sectors == mddev->chunk_sectors)
7385                 return 0; /* nothing to do */
7386         if (has_failed(conf))
7387                 return -EINVAL;
7388         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7389                 /* We might be able to shrink, but the devices must
7390                  * be made bigger first.
7391                  * For raid6, 4 is the minimum size.
7392                  * Otherwise 2 is the minimum
7393                  */
7394                 int min = 2;
7395                 if (mddev->level == 6)
7396                         min = 4;
7397                 if (mddev->raid_disks + mddev->delta_disks < min)
7398                         return -EINVAL;
7399         }
7400
7401         if (!check_stripe_cache(mddev))
7402                 return -ENOSPC;
7403
7404         if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7405             mddev->delta_disks > 0)
7406                 if (resize_chunks(conf,
7407                                   conf->previous_raid_disks
7408                                   + max(0, mddev->delta_disks),
7409                                   max(mddev->new_chunk_sectors,
7410                                       mddev->chunk_sectors)
7411                             ) < 0)
7412                         return -ENOMEM;
7413         return resize_stripes(conf, (conf->previous_raid_disks
7414                                      + mddev->delta_disks));
7415 }
7416
7417 static int raid5_start_reshape(struct mddev *mddev)
7418 {
7419         struct r5conf *conf = mddev->private;
7420         struct md_rdev *rdev;
7421         int spares = 0;
7422         unsigned long flags;
7423
7424         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7425                 return -EBUSY;
7426
7427         if (!check_stripe_cache(mddev))
7428                 return -ENOSPC;
7429
7430         if (has_failed(conf))
7431                 return -EINVAL;
7432
7433         rdev_for_each(rdev, mddev) {
7434                 if (!test_bit(In_sync, &rdev->flags)
7435                     && !test_bit(Faulty, &rdev->flags))
7436                         spares++;
7437         }
7438
7439         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7440                 /* Not enough devices even to make a degraded array
7441                  * of that size
7442                  */
7443                 return -EINVAL;
7444
7445         /* Refuse to reduce size of the array.  Any reductions in
7446          * array size must be through explicit setting of array_size
7447          * attribute.
7448          */
7449         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7450             < mddev->array_sectors) {
7451                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
7452                        "before number of disks\n", mdname(mddev));
7453                 return -EINVAL;
7454         }
7455
7456         atomic_set(&conf->reshape_stripes, 0);
7457         spin_lock_irq(&conf->device_lock);
7458         write_seqcount_begin(&conf->gen_lock);
7459         conf->previous_raid_disks = conf->raid_disks;
7460         conf->raid_disks += mddev->delta_disks;
7461         conf->prev_chunk_sectors = conf->chunk_sectors;
7462         conf->chunk_sectors = mddev->new_chunk_sectors;
7463         conf->prev_algo = conf->algorithm;
7464         conf->algorithm = mddev->new_layout;
7465         conf->generation++;
7466         /* Code that selects data_offset needs to see the generation update
7467          * if reshape_progress has been set - so a memory barrier needed.
7468          */
7469         smp_mb();
7470         if (mddev->reshape_backwards)
7471                 conf->reshape_progress = raid5_size(mddev, 0, 0);
7472         else
7473                 conf->reshape_progress = 0;
7474         conf->reshape_safe = conf->reshape_progress;
7475         write_seqcount_end(&conf->gen_lock);
7476         spin_unlock_irq(&conf->device_lock);
7477
7478         /* Now make sure any requests that proceeded on the assumption
7479          * the reshape wasn't running - like Discard or Read - have
7480          * completed.
7481          */
7482         mddev_suspend(mddev);
7483         mddev_resume(mddev);
7484
7485         /* Add some new drives, as many as will fit.
7486          * We know there are enough to make the newly sized array work.
7487          * Don't add devices if we are reducing the number of
7488          * devices in the array.  This is because it is not possible
7489          * to correctly record the "partially reconstructed" state of
7490          * such devices during the reshape and confusion could result.
7491          */
7492         if (mddev->delta_disks >= 0) {
7493                 rdev_for_each(rdev, mddev)
7494                         if (rdev->raid_disk < 0 &&
7495                             !test_bit(Faulty, &rdev->flags)) {
7496                                 if (raid5_add_disk(mddev, rdev) == 0) {
7497                                         if (rdev->raid_disk
7498                                             >= conf->previous_raid_disks)
7499                                                 set_bit(In_sync, &rdev->flags);
7500                                         else
7501                                                 rdev->recovery_offset = 0;
7502
7503                                         if (sysfs_link_rdev(mddev, rdev))
7504                                                 /* Failure here is OK */;
7505                                 }
7506                         } else if (rdev->raid_disk >= conf->previous_raid_disks
7507                                    && !test_bit(Faulty, &rdev->flags)) {
7508                                 /* This is a spare that was manually added */
7509                                 set_bit(In_sync, &rdev->flags);
7510                         }
7511
7512                 /* When a reshape changes the number of devices,
7513                  * ->degraded is measured against the larger of the
7514                  * pre and post number of devices.
7515                  */
7516                 spin_lock_irqsave(&conf->device_lock, flags);
7517                 mddev->degraded = calc_degraded(conf);
7518                 spin_unlock_irqrestore(&conf->device_lock, flags);
7519         }
7520         mddev->raid_disks = conf->raid_disks;
7521         mddev->reshape_position = conf->reshape_progress;
7522         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7523
7524         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7525         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7526         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7527         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7528         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7529         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7530                                                 "reshape");
7531         if (!mddev->sync_thread) {
7532                 mddev->recovery = 0;
7533                 spin_lock_irq(&conf->device_lock);
7534                 write_seqcount_begin(&conf->gen_lock);
7535                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7536                 mddev->new_chunk_sectors =
7537                         conf->chunk_sectors = conf->prev_chunk_sectors;
7538                 mddev->new_layout = conf->algorithm = conf->prev_algo;
7539                 rdev_for_each(rdev, mddev)
7540                         rdev->new_data_offset = rdev->data_offset;
7541                 smp_wmb();
7542                 conf->generation --;
7543                 conf->reshape_progress = MaxSector;
7544                 mddev->reshape_position = MaxSector;
7545                 write_seqcount_end(&conf->gen_lock);
7546                 spin_unlock_irq(&conf->device_lock);
7547                 return -EAGAIN;
7548         }
7549         conf->reshape_checkpoint = jiffies;
7550         md_wakeup_thread(mddev->sync_thread);
7551         md_new_event(mddev);
7552         return 0;
7553 }
7554
7555 /* This is called from the reshape thread and should make any
7556  * changes needed in 'conf'
7557  */
7558 static void end_reshape(struct r5conf *conf)
7559 {
7560
7561         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7562                 struct md_rdev *rdev;
7563
7564                 spin_lock_irq(&conf->device_lock);
7565                 conf->previous_raid_disks = conf->raid_disks;
7566                 rdev_for_each(rdev, conf->mddev)
7567                         rdev->data_offset = rdev->new_data_offset;
7568                 smp_wmb();
7569                 conf->reshape_progress = MaxSector;
7570                 conf->mddev->reshape_position = MaxSector;
7571                 spin_unlock_irq(&conf->device_lock);
7572                 wake_up(&conf->wait_for_overlap);
7573
7574                 /* read-ahead size must cover two whole stripes, which is
7575                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7576                  */
7577                 if (conf->mddev->queue) {
7578                         int data_disks = conf->raid_disks - conf->max_degraded;
7579                         int stripe = data_disks * ((conf->chunk_sectors << 9)
7580                                                    / PAGE_SIZE);
7581                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7582                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7583                 }
7584         }
7585 }
7586
7587 /* This is called from the raid5d thread with mddev_lock held.
7588  * It makes config changes to the device.
7589  */
7590 static void raid5_finish_reshape(struct mddev *mddev)
7591 {
7592         struct r5conf *conf = mddev->private;
7593
7594         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7595
7596                 if (mddev->delta_disks > 0) {
7597                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7598                         if (mddev->queue) {
7599                                 set_capacity(mddev->gendisk, mddev->array_sectors);
7600                                 revalidate_disk(mddev->gendisk);
7601                         }
7602                 } else {
7603                         int d;
7604                         spin_lock_irq(&conf->device_lock);
7605                         mddev->degraded = calc_degraded(conf);
7606                         spin_unlock_irq(&conf->device_lock);
7607                         for (d = conf->raid_disks ;
7608                              d < conf->raid_disks - mddev->delta_disks;
7609                              d++) {
7610                                 struct md_rdev *rdev = conf->disks[d].rdev;
7611                                 if (rdev)
7612                                         clear_bit(In_sync, &rdev->flags);
7613                                 rdev = conf->disks[d].replacement;
7614                                 if (rdev)
7615                                         clear_bit(In_sync, &rdev->flags);
7616                         }
7617                 }
7618                 mddev->layout = conf->algorithm;
7619                 mddev->chunk_sectors = conf->chunk_sectors;
7620                 mddev->reshape_position = MaxSector;
7621                 mddev->delta_disks = 0;
7622                 mddev->reshape_backwards = 0;
7623         }
7624 }
7625
7626 static void raid5_quiesce(struct mddev *mddev, int state)
7627 {
7628         struct r5conf *conf = mddev->private;
7629
7630         switch(state) {
7631         case 2: /* resume for a suspend */
7632                 wake_up(&conf->wait_for_overlap);
7633                 break;
7634
7635         case 1: /* stop all writes */
7636                 lock_all_device_hash_locks_irq(conf);
7637                 /* '2' tells resync/reshape to pause so that all
7638                  * active stripes can drain
7639                  */
7640                 conf->quiesce = 2;
7641                 wait_event_cmd(conf->wait_for_quiescent,
7642                                     atomic_read(&conf->active_stripes) == 0 &&
7643                                     atomic_read(&conf->active_aligned_reads) == 0,
7644                                     unlock_all_device_hash_locks_irq(conf),
7645                                     lock_all_device_hash_locks_irq(conf));
7646                 conf->quiesce = 1;
7647                 unlock_all_device_hash_locks_irq(conf);
7648                 /* allow reshape to continue */
7649                 wake_up(&conf->wait_for_overlap);
7650                 break;
7651
7652         case 0: /* re-enable writes */
7653                 lock_all_device_hash_locks_irq(conf);
7654                 conf->quiesce = 0;
7655                 wake_up(&conf->wait_for_quiescent);
7656                 wake_up(&conf->wait_for_overlap);
7657                 unlock_all_device_hash_locks_irq(conf);
7658                 break;
7659         }
7660         r5l_quiesce(conf->log, state);
7661 }
7662
7663 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7664 {
7665         struct r0conf *raid0_conf = mddev->private;
7666         sector_t sectors;
7667
7668         /* for raid0 takeover only one zone is supported */
7669         if (raid0_conf->nr_strip_zones > 1) {
7670                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7671                        mdname(mddev));
7672                 return ERR_PTR(-EINVAL);
7673         }
7674
7675         sectors = raid0_conf->strip_zone[0].zone_end;
7676         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7677         mddev->dev_sectors = sectors;
7678         mddev->new_level = level;
7679         mddev->new_layout = ALGORITHM_PARITY_N;
7680         mddev->new_chunk_sectors = mddev->chunk_sectors;
7681         mddev->raid_disks += 1;
7682         mddev->delta_disks = 1;
7683         /* make sure it will be not marked as dirty */
7684         mddev->recovery_cp = MaxSector;
7685
7686         return setup_conf(mddev);
7687 }
7688
7689 static void *raid5_takeover_raid1(struct mddev *mddev)
7690 {
7691         int chunksect;
7692
7693         if (mddev->raid_disks != 2 ||
7694             mddev->degraded > 1)
7695                 return ERR_PTR(-EINVAL);
7696
7697         /* Should check if there are write-behind devices? */
7698
7699         chunksect = 64*2; /* 64K by default */
7700
7701         /* The array must be an exact multiple of chunksize */
7702         while (chunksect && (mddev->array_sectors & (chunksect-1)))
7703                 chunksect >>= 1;
7704
7705         if ((chunksect<<9) < STRIPE_SIZE)
7706                 /* array size does not allow a suitable chunk size */
7707                 return ERR_PTR(-EINVAL);
7708
7709         mddev->new_level = 5;
7710         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7711         mddev->new_chunk_sectors = chunksect;
7712
7713         return setup_conf(mddev);
7714 }
7715
7716 static void *raid5_takeover_raid6(struct mddev *mddev)
7717 {
7718         int new_layout;
7719
7720         switch (mddev->layout) {
7721         case ALGORITHM_LEFT_ASYMMETRIC_6:
7722                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7723                 break;
7724         case ALGORITHM_RIGHT_ASYMMETRIC_6:
7725                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7726                 break;
7727         case ALGORITHM_LEFT_SYMMETRIC_6:
7728                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7729                 break;
7730         case ALGORITHM_RIGHT_SYMMETRIC_6:
7731                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7732                 break;
7733         case ALGORITHM_PARITY_0_6:
7734                 new_layout = ALGORITHM_PARITY_0;
7735                 break;
7736         case ALGORITHM_PARITY_N:
7737                 new_layout = ALGORITHM_PARITY_N;
7738                 break;
7739         default:
7740                 return ERR_PTR(-EINVAL);
7741         }
7742         mddev->new_level = 5;
7743         mddev->new_layout = new_layout;
7744         mddev->delta_disks = -1;
7745         mddev->raid_disks -= 1;
7746         return setup_conf(mddev);
7747 }
7748
7749 static int raid5_check_reshape(struct mddev *mddev)
7750 {
7751         /* For a 2-drive array, the layout and chunk size can be changed
7752          * immediately as not restriping is needed.
7753          * For larger arrays we record the new value - after validation
7754          * to be used by a reshape pass.
7755          */
7756         struct r5conf *conf = mddev->private;
7757         int new_chunk = mddev->new_chunk_sectors;
7758
7759         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7760                 return -EINVAL;
7761         if (new_chunk > 0) {
7762                 if (!is_power_of_2(new_chunk))
7763                         return -EINVAL;
7764                 if (new_chunk < (PAGE_SIZE>>9))
7765                         return -EINVAL;
7766                 if (mddev->array_sectors & (new_chunk-1))
7767                         /* not factor of array size */
7768                         return -EINVAL;
7769         }
7770
7771         /* They look valid */
7772
7773         if (mddev->raid_disks == 2) {
7774                 /* can make the change immediately */
7775                 if (mddev->new_layout >= 0) {
7776                         conf->algorithm = mddev->new_layout;
7777                         mddev->layout = mddev->new_layout;
7778                 }
7779                 if (new_chunk > 0) {
7780                         conf->chunk_sectors = new_chunk ;
7781                         mddev->chunk_sectors = new_chunk;
7782                 }
7783                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7784                 md_wakeup_thread(mddev->thread);
7785         }
7786         return check_reshape(mddev);
7787 }
7788
7789 static int raid6_check_reshape(struct mddev *mddev)
7790 {
7791         int new_chunk = mddev->new_chunk_sectors;
7792
7793         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7794                 return -EINVAL;
7795         if (new_chunk > 0) {
7796                 if (!is_power_of_2(new_chunk))
7797                         return -EINVAL;
7798                 if (new_chunk < (PAGE_SIZE >> 9))
7799                         return -EINVAL;
7800                 if (mddev->array_sectors & (new_chunk-1))
7801                         /* not factor of array size */
7802                         return -EINVAL;
7803         }
7804
7805         /* They look valid */
7806         return check_reshape(mddev);
7807 }
7808
7809 static void *raid5_takeover(struct mddev *mddev)
7810 {
7811         /* raid5 can take over:
7812          *  raid0 - if there is only one strip zone - make it a raid4 layout
7813          *  raid1 - if there are two drives.  We need to know the chunk size
7814          *  raid4 - trivial - just use a raid4 layout.
7815          *  raid6 - Providing it is a *_6 layout
7816          */
7817         if (mddev->level == 0)
7818                 return raid45_takeover_raid0(mddev, 5);
7819         if (mddev->level == 1)
7820                 return raid5_takeover_raid1(mddev);
7821         if (mddev->level == 4) {
7822                 mddev->new_layout = ALGORITHM_PARITY_N;
7823                 mddev->new_level = 5;
7824                 return setup_conf(mddev);
7825         }
7826         if (mddev->level == 6)
7827                 return raid5_takeover_raid6(mddev);
7828
7829         return ERR_PTR(-EINVAL);
7830 }
7831
7832 static void *raid4_takeover(struct mddev *mddev)
7833 {
7834         /* raid4 can take over:
7835          *  raid0 - if there is only one strip zone
7836          *  raid5 - if layout is right
7837          */
7838         if (mddev->level == 0)
7839                 return raid45_takeover_raid0(mddev, 4);
7840         if (mddev->level == 5 &&
7841             mddev->layout == ALGORITHM_PARITY_N) {
7842                 mddev->new_layout = 0;
7843                 mddev->new_level = 4;
7844                 return setup_conf(mddev);
7845         }
7846         return ERR_PTR(-EINVAL);
7847 }
7848
7849 static struct md_personality raid5_personality;
7850
7851 static void *raid6_takeover(struct mddev *mddev)
7852 {
7853         /* Currently can only take over a raid5.  We map the
7854          * personality to an equivalent raid6 personality
7855          * with the Q block at the end.
7856          */
7857         int new_layout;
7858
7859         if (mddev->pers != &raid5_personality)
7860                 return ERR_PTR(-EINVAL);
7861         if (mddev->degraded > 1)
7862                 return ERR_PTR(-EINVAL);
7863         if (mddev->raid_disks > 253)
7864                 return ERR_PTR(-EINVAL);
7865         if (mddev->raid_disks < 3)
7866                 return ERR_PTR(-EINVAL);
7867
7868         switch (mddev->layout) {
7869         case ALGORITHM_LEFT_ASYMMETRIC:
7870                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7871                 break;
7872         case ALGORITHM_RIGHT_ASYMMETRIC:
7873                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7874                 break;
7875         case ALGORITHM_LEFT_SYMMETRIC:
7876                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7877                 break;
7878         case ALGORITHM_RIGHT_SYMMETRIC:
7879                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7880                 break;
7881         case ALGORITHM_PARITY_0:
7882                 new_layout = ALGORITHM_PARITY_0_6;
7883                 break;
7884         case ALGORITHM_PARITY_N:
7885                 new_layout = ALGORITHM_PARITY_N;
7886                 break;
7887         default:
7888                 return ERR_PTR(-EINVAL);
7889         }
7890         mddev->new_level = 6;
7891         mddev->new_layout = new_layout;
7892         mddev->delta_disks = 1;
7893         mddev->raid_disks += 1;
7894         return setup_conf(mddev);
7895 }
7896
7897 static struct md_personality raid6_personality =
7898 {
7899         .name           = "raid6",
7900         .level          = 6,
7901         .owner          = THIS_MODULE,
7902         .make_request   = raid5_make_request,
7903         .run            = raid5_run,
7904         .free           = raid5_free,
7905         .status         = raid5_status,
7906         .error_handler  = raid5_error,
7907         .hot_add_disk   = raid5_add_disk,
7908         .hot_remove_disk= raid5_remove_disk,
7909         .spare_active   = raid5_spare_active,
7910         .sync_request   = raid5_sync_request,
7911         .resize         = raid5_resize,
7912         .size           = raid5_size,
7913         .check_reshape  = raid6_check_reshape,
7914         .start_reshape  = raid5_start_reshape,
7915         .finish_reshape = raid5_finish_reshape,
7916         .quiesce        = raid5_quiesce,
7917         .takeover       = raid6_takeover,
7918         .congested      = raid5_congested,
7919 };
7920 static struct md_personality raid5_personality =
7921 {
7922         .name           = "raid5",
7923         .level          = 5,
7924         .owner          = THIS_MODULE,
7925         .make_request   = raid5_make_request,
7926         .run            = raid5_run,
7927         .free           = raid5_free,
7928         .status         = raid5_status,
7929         .error_handler  = raid5_error,
7930         .hot_add_disk   = raid5_add_disk,
7931         .hot_remove_disk= raid5_remove_disk,
7932         .spare_active   = raid5_spare_active,
7933         .sync_request   = raid5_sync_request,
7934         .resize         = raid5_resize,
7935         .size           = raid5_size,
7936         .check_reshape  = raid5_check_reshape,
7937         .start_reshape  = raid5_start_reshape,
7938         .finish_reshape = raid5_finish_reshape,
7939         .quiesce        = raid5_quiesce,
7940         .takeover       = raid5_takeover,
7941         .congested      = raid5_congested,
7942 };
7943
7944 static struct md_personality raid4_personality =
7945 {
7946         .name           = "raid4",
7947         .level          = 4,
7948         .owner          = THIS_MODULE,
7949         .make_request   = raid5_make_request,
7950         .run            = raid5_run,
7951         .free           = raid5_free,
7952         .status         = raid5_status,
7953         .error_handler  = raid5_error,
7954         .hot_add_disk   = raid5_add_disk,
7955         .hot_remove_disk= raid5_remove_disk,
7956         .spare_active   = raid5_spare_active,
7957         .sync_request   = raid5_sync_request,
7958         .resize         = raid5_resize,
7959         .size           = raid5_size,
7960         .check_reshape  = raid5_check_reshape,
7961         .start_reshape  = raid5_start_reshape,
7962         .finish_reshape = raid5_finish_reshape,
7963         .quiesce        = raid5_quiesce,
7964         .takeover       = raid4_takeover,
7965         .congested      = raid5_congested,
7966 };
7967
7968 static int __init raid5_init(void)
7969 {
7970         raid5_wq = alloc_workqueue("raid5wq",
7971                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7972         if (!raid5_wq)
7973                 return -ENOMEM;
7974         register_md_personality(&raid6_personality);
7975         register_md_personality(&raid5_personality);
7976         register_md_personality(&raid4_personality);
7977         return 0;
7978 }
7979
7980 static void raid5_exit(void)
7981 {
7982         unregister_md_personality(&raid6_personality);
7983         unregister_md_personality(&raid5_personality);
7984         unregister_md_personality(&raid4_personality);
7985         destroy_workqueue(raid5_wq);
7986 }
7987
7988 module_init(raid5_init);
7989 module_exit(raid5_exit);
7990 MODULE_LICENSE("GPL");
7991 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7992 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7993 MODULE_ALIAS("md-raid5");
7994 MODULE_ALIAS("md-raid4");
7995 MODULE_ALIAS("md-level-5");
7996 MODULE_ALIAS("md-level-4");
7997 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7998 MODULE_ALIAS("md-raid6");
7999 MODULE_ALIAS("md-level-6");
8000
8001 /* This used to be two separate modules, they were: */
8002 MODULE_ALIAS("raid5");
8003 MODULE_ALIAS("raid6");