MAINTAINERS: mmc: Move the mmc tree to kernel.org
[cascardo/linux.git] / drivers / media / dvb-frontends / mb86a20s.c
1 /*
2  *   Fujitu mb86a20s ISDB-T/ISDB-Tsb Module driver
3  *
4  *   Copyright (C) 2010-2013 Mauro Carvalho Chehab
5  *   Copyright (C) 2009-2010 Douglas Landgraf <dougsland@redhat.com>
6  *
7  *   This program is free software; you can redistribute it and/or
8  *   modify it under the terms of the GNU General Public License as
9  *   published by the Free Software Foundation version 2.
10  *
11  *   This program is distributed in the hope that it will be useful,
12  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  *   General Public License for more details.
15  */
16
17 #include <linux/kernel.h>
18 #include <asm/div64.h>
19
20 #include "dvb_frontend.h"
21 #include "mb86a20s.h"
22
23 #define NUM_LAYERS 3
24
25 enum mb86a20s_bandwidth {
26         MB86A20S_13SEG = 0,
27         MB86A20S_13SEG_PARTIAL = 1,
28         MB86A20S_1SEG = 2,
29         MB86A20S_3SEG = 3,
30 };
31
32 static u8 mb86a20s_subchannel[] = {
33         0xb0, 0xc0, 0xd0, 0xe0,
34         0xf0, 0x00, 0x10, 0x20,
35 };
36
37 struct mb86a20s_state {
38         struct i2c_adapter *i2c;
39         const struct mb86a20s_config *config;
40         u32 last_frequency;
41
42         struct dvb_frontend frontend;
43
44         u32 if_freq;
45         enum mb86a20s_bandwidth bw;
46         bool inversion;
47         u32 subchannel;
48
49         u32 estimated_rate[NUM_LAYERS];
50         unsigned long get_strength_time;
51
52         bool need_init;
53 };
54
55 struct regdata {
56         u8 reg;
57         u8 data;
58 };
59
60 #define BER_SAMPLING_RATE       1       /* Seconds */
61
62 /*
63  * Initialization sequence: Use whatevere default values that PV SBTVD
64  * does on its initialisation, obtained via USB snoop
65  */
66 static struct regdata mb86a20s_init1[] = {
67         { 0x70, 0x0f },
68         { 0x70, 0xff },
69         { 0x08, 0x01 },
70         { 0x50, 0xd1 }, { 0x51, 0x20 },
71 };
72
73 static struct regdata mb86a20s_init2[] = {
74         { 0x28, 0x22 }, { 0x29, 0x00 }, { 0x2a, 0x1f }, { 0x2b, 0xf0 },
75         { 0x3b, 0x21 },
76         { 0x3c, 0x38 },
77         { 0x01, 0x0d },
78         { 0x04, 0x08 }, { 0x05, 0x03 },
79         { 0x04, 0x0e }, { 0x05, 0x00 },
80         { 0x04, 0x0f }, { 0x05, 0x37 },
81         { 0x04, 0x0b }, { 0x05, 0x78 },
82         { 0x04, 0x00 }, { 0x05, 0x00 },
83         { 0x04, 0x01 }, { 0x05, 0x1e },
84         { 0x04, 0x02 }, { 0x05, 0x07 },
85         { 0x04, 0x03 }, { 0x05, 0xd0 },
86         { 0x04, 0x09 }, { 0x05, 0x00 },
87         { 0x04, 0x0a }, { 0x05, 0xff },
88         { 0x04, 0x27 }, { 0x05, 0x00 },
89         { 0x04, 0x28 }, { 0x05, 0x00 },
90         { 0x04, 0x1e }, { 0x05, 0x00 },
91         { 0x04, 0x29 }, { 0x05, 0x64 },
92         { 0x04, 0x32 }, { 0x05, 0x02 },
93         { 0x04, 0x14 }, { 0x05, 0x02 },
94         { 0x04, 0x04 }, { 0x05, 0x00 },
95         { 0x04, 0x05 }, { 0x05, 0x22 },
96         { 0x04, 0x06 }, { 0x05, 0x0e },
97         { 0x04, 0x07 }, { 0x05, 0xd8 },
98         { 0x04, 0x12 }, { 0x05, 0x00 },
99         { 0x04, 0x13 }, { 0x05, 0xff },
100         { 0x04, 0x15 }, { 0x05, 0x4e },
101         { 0x04, 0x16 }, { 0x05, 0x20 },
102
103         /*
104          * On this demod, when the bit count reaches the count below,
105          * it collects the bit error count. The bit counters are initialized
106          * to 65535 here. This warrants that all of them will be quickly
107          * calculated when device gets locked. As TMCC is parsed, the values
108          * will be adjusted later in the driver's code.
109          */
110         { 0x52, 0x01 },                         /* Turn on BER before Viterbi */
111         { 0x50, 0xa7 }, { 0x51, 0x00 },
112         { 0x50, 0xa8 }, { 0x51, 0xff },
113         { 0x50, 0xa9 }, { 0x51, 0xff },
114         { 0x50, 0xaa }, { 0x51, 0x00 },
115         { 0x50, 0xab }, { 0x51, 0xff },
116         { 0x50, 0xac }, { 0x51, 0xff },
117         { 0x50, 0xad }, { 0x51, 0x00 },
118         { 0x50, 0xae }, { 0x51, 0xff },
119         { 0x50, 0xaf }, { 0x51, 0xff },
120
121         /*
122          * On this demod, post BER counts blocks. When the count reaches the
123          * value below, it collects the block error count. The block counters
124          * are initialized to 127 here. This warrants that all of them will be
125          * quickly calculated when device gets locked. As TMCC is parsed, the
126          * values will be adjusted later in the driver's code.
127          */
128         { 0x5e, 0x07 },                         /* Turn on BER after Viterbi */
129         { 0x50, 0xdc }, { 0x51, 0x00 },
130         { 0x50, 0xdd }, { 0x51, 0x7f },
131         { 0x50, 0xde }, { 0x51, 0x00 },
132         { 0x50, 0xdf }, { 0x51, 0x7f },
133         { 0x50, 0xe0 }, { 0x51, 0x00 },
134         { 0x50, 0xe1 }, { 0x51, 0x7f },
135
136         /*
137          * On this demod, when the block count reaches the count below,
138          * it collects the block error count. The block counters are initialized
139          * to 127 here. This warrants that all of them will be quickly
140          * calculated when device gets locked. As TMCC is parsed, the values
141          * will be adjusted later in the driver's code.
142          */
143         { 0x50, 0xb0 }, { 0x51, 0x07 },         /* Enable PER */
144         { 0x50, 0xb2 }, { 0x51, 0x00 },
145         { 0x50, 0xb3 }, { 0x51, 0x7f },
146         { 0x50, 0xb4 }, { 0x51, 0x00 },
147         { 0x50, 0xb5 }, { 0x51, 0x7f },
148         { 0x50, 0xb6 }, { 0x51, 0x00 },
149         { 0x50, 0xb7 }, { 0x51, 0x7f },
150
151         { 0x50, 0x50 }, { 0x51, 0x02 },         /* MER manual mode */
152         { 0x50, 0x51 }, { 0x51, 0x04 },         /* MER symbol 4 */
153         { 0x45, 0x04 },                         /* CN symbol 4 */
154         { 0x48, 0x04 },                         /* CN manual mode */
155
156         { 0x50, 0xd6 }, { 0x51, 0x1f },
157         { 0x50, 0xd2 }, { 0x51, 0x03 },
158         { 0x50, 0xd7 }, { 0x51, 0xbf },
159         { 0x28, 0x74 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0xff },
160         { 0x28, 0x46 }, { 0x29, 0x00 }, { 0x2a, 0x1a }, { 0x2b, 0x0c },
161
162         { 0x04, 0x40 }, { 0x05, 0x00 },
163         { 0x28, 0x00 }, { 0x2b, 0x08 },
164         { 0x28, 0x05 }, { 0x2b, 0x00 },
165         { 0x1c, 0x01 },
166         { 0x28, 0x06 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x1f },
167         { 0x28, 0x07 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x18 },
168         { 0x28, 0x08 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x12 },
169         { 0x28, 0x09 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x30 },
170         { 0x28, 0x0a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x37 },
171         { 0x28, 0x0b }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x02 },
172         { 0x28, 0x0c }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x09 },
173         { 0x28, 0x0d }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x06 },
174         { 0x28, 0x0e }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x7b },
175         { 0x28, 0x0f }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x76 },
176         { 0x28, 0x10 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x7d },
177         { 0x28, 0x11 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x08 },
178         { 0x28, 0x12 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0b },
179         { 0x28, 0x13 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x00 },
180         { 0x28, 0x14 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xf2 },
181         { 0x28, 0x15 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xf3 },
182         { 0x28, 0x16 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x05 },
183         { 0x28, 0x17 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x16 },
184         { 0x28, 0x18 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0f },
185         { 0x28, 0x19 }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xef },
186         { 0x28, 0x1a }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xd8 },
187         { 0x28, 0x1b }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xf1 },
188         { 0x28, 0x1c }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x3d },
189         { 0x28, 0x1d }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x94 },
190         { 0x28, 0x1e }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0xba },
191         { 0x50, 0x1e }, { 0x51, 0x5d },
192         { 0x50, 0x22 }, { 0x51, 0x00 },
193         { 0x50, 0x23 }, { 0x51, 0xc8 },
194         { 0x50, 0x24 }, { 0x51, 0x00 },
195         { 0x50, 0x25 }, { 0x51, 0xf0 },
196         { 0x50, 0x26 }, { 0x51, 0x00 },
197         { 0x50, 0x27 }, { 0x51, 0xc3 },
198         { 0x50, 0x39 }, { 0x51, 0x02 },
199         { 0xec, 0x0f },
200         { 0xeb, 0x1f },
201         { 0x28, 0x6a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x00 },
202         { 0xd0, 0x00 },
203 };
204
205 static struct regdata mb86a20s_reset_reception[] = {
206         { 0x70, 0xf0 },
207         { 0x70, 0xff },
208         { 0x08, 0x01 },
209         { 0x08, 0x00 },
210 };
211
212 static struct regdata mb86a20s_per_ber_reset[] = {
213         { 0x53, 0x00 }, /* pre BER Counter reset */
214         { 0x53, 0x07 },
215
216         { 0x5f, 0x00 }, /* post BER Counter reset */
217         { 0x5f, 0x07 },
218
219         { 0x50, 0xb1 }, /* PER Counter reset */
220         { 0x51, 0x07 },
221         { 0x51, 0x00 },
222 };
223
224 /*
225  * I2C read/write functions and macros
226  */
227
228 static int mb86a20s_i2c_writereg(struct mb86a20s_state *state,
229                              u8 i2c_addr, u8 reg, u8 data)
230 {
231         u8 buf[] = { reg, data };
232         struct i2c_msg msg = {
233                 .addr = i2c_addr, .flags = 0, .buf = buf, .len = 2
234         };
235         int rc;
236
237         rc = i2c_transfer(state->i2c, &msg, 1);
238         if (rc != 1) {
239                 dev_err(&state->i2c->dev,
240                         "%s: writereg error (rc == %i, reg == 0x%02x, data == 0x%02x)\n",
241                         __func__, rc, reg, data);
242                 return rc;
243         }
244
245         return 0;
246 }
247
248 static int mb86a20s_i2c_writeregdata(struct mb86a20s_state *state,
249                                      u8 i2c_addr, struct regdata *rd, int size)
250 {
251         int i, rc;
252
253         for (i = 0; i < size; i++) {
254                 rc = mb86a20s_i2c_writereg(state, i2c_addr, rd[i].reg,
255                                            rd[i].data);
256                 if (rc < 0)
257                         return rc;
258         }
259         return 0;
260 }
261
262 static int mb86a20s_i2c_readreg(struct mb86a20s_state *state,
263                                 u8 i2c_addr, u8 reg)
264 {
265         u8 val;
266         int rc;
267         struct i2c_msg msg[] = {
268                 { .addr = i2c_addr, .flags = 0, .buf = &reg, .len = 1 },
269                 { .addr = i2c_addr, .flags = I2C_M_RD, .buf = &val, .len = 1 }
270         };
271
272         rc = i2c_transfer(state->i2c, msg, 2);
273
274         if (rc != 2) {
275                 dev_err(&state->i2c->dev, "%s: reg=0x%x (error=%d)\n",
276                         __func__, reg, rc);
277                 return (rc < 0) ? rc : -EIO;
278         }
279
280         return val;
281 }
282
283 #define mb86a20s_readreg(state, reg) \
284         mb86a20s_i2c_readreg(state, state->config->demod_address, reg)
285 #define mb86a20s_writereg(state, reg, val) \
286         mb86a20s_i2c_writereg(state, state->config->demod_address, reg, val)
287 #define mb86a20s_writeregdata(state, regdata) \
288         mb86a20s_i2c_writeregdata(state, state->config->demod_address, \
289         regdata, ARRAY_SIZE(regdata))
290
291 /*
292  * Ancillary internal routines (likely compiled inlined)
293  *
294  * The functions below assume that gateway lock has already obtained
295  */
296
297 static int mb86a20s_read_status(struct dvb_frontend *fe, enum fe_status *status)
298 {
299         struct mb86a20s_state *state = fe->demodulator_priv;
300         int val;
301
302         *status = 0;
303
304         val = mb86a20s_readreg(state, 0x0a);
305         if (val < 0)
306                 return val;
307
308         val &= 0xf;
309         if (val >= 2)
310                 *status |= FE_HAS_SIGNAL;
311
312         if (val >= 4)
313                 *status |= FE_HAS_CARRIER;
314
315         if (val >= 5)
316                 *status |= FE_HAS_VITERBI;
317
318         if (val >= 7)
319                 *status |= FE_HAS_SYNC;
320
321         if (val >= 8)                           /* Maybe 9? */
322                 *status |= FE_HAS_LOCK;
323
324         dev_dbg(&state->i2c->dev, "%s: Status = 0x%02x (state = %d)\n",
325                  __func__, *status, val);
326
327         return val;
328 }
329
330 static int mb86a20s_read_signal_strength(struct dvb_frontend *fe)
331 {
332         struct mb86a20s_state *state = fe->demodulator_priv;
333         struct dtv_frontend_properties *c = &fe->dtv_property_cache;
334         int rc;
335         unsigned rf_max, rf_min, rf;
336
337         if (state->get_strength_time &&
338            (!time_after(jiffies, state->get_strength_time)))
339                 return c->strength.stat[0].uvalue;
340
341         /* Reset its value if an error happen */
342         c->strength.stat[0].uvalue = 0;
343
344         /* Does a binary search to get RF strength */
345         rf_max = 0xfff;
346         rf_min = 0;
347         do {
348                 rf = (rf_max + rf_min) / 2;
349                 rc = mb86a20s_writereg(state, 0x04, 0x1f);
350                 if (rc < 0)
351                         return rc;
352                 rc = mb86a20s_writereg(state, 0x05, rf >> 8);
353                 if (rc < 0)
354                         return rc;
355                 rc = mb86a20s_writereg(state, 0x04, 0x20);
356                 if (rc < 0)
357                         return rc;
358                 rc = mb86a20s_writereg(state, 0x05, rf);
359                 if (rc < 0)
360                         return rc;
361
362                 rc = mb86a20s_readreg(state, 0x02);
363                 if (rc < 0)
364                         return rc;
365                 if (rc & 0x08)
366                         rf_min = (rf_max + rf_min) / 2;
367                 else
368                         rf_max = (rf_max + rf_min) / 2;
369                 if (rf_max - rf_min < 4) {
370                         rf = (rf_max + rf_min) / 2;
371
372                         /* Rescale it from 2^12 (4096) to 2^16 */
373                         rf = rf << (16 - 12);
374                         if (rf)
375                                 rf |= (1 << 12) - 1;
376
377                         dev_dbg(&state->i2c->dev,
378                                 "%s: signal strength = %d (%d < RF=%d < %d)\n",
379                                 __func__, rf, rf_min, rf >> 4, rf_max);
380                         c->strength.stat[0].uvalue = rf;
381                         state->get_strength_time = jiffies +
382                                                    msecs_to_jiffies(1000);
383                         return 0;
384                 }
385         } while (1);
386 }
387
388 static int mb86a20s_get_modulation(struct mb86a20s_state *state,
389                                    unsigned layer)
390 {
391         int rc;
392         static unsigned char reg[] = {
393                 [0] = 0x86,     /* Layer A */
394                 [1] = 0x8a,     /* Layer B */
395                 [2] = 0x8e,     /* Layer C */
396         };
397
398         if (layer >= ARRAY_SIZE(reg))
399                 return -EINVAL;
400         rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
401         if (rc < 0)
402                 return rc;
403         rc = mb86a20s_readreg(state, 0x6e);
404         if (rc < 0)
405                 return rc;
406         switch ((rc >> 4) & 0x07) {
407         case 0:
408                 return DQPSK;
409         case 1:
410                 return QPSK;
411         case 2:
412                 return QAM_16;
413         case 3:
414                 return QAM_64;
415         default:
416                 return QAM_AUTO;
417         }
418 }
419
420 static int mb86a20s_get_fec(struct mb86a20s_state *state,
421                             unsigned layer)
422 {
423         int rc;
424
425         static unsigned char reg[] = {
426                 [0] = 0x87,     /* Layer A */
427                 [1] = 0x8b,     /* Layer B */
428                 [2] = 0x8f,     /* Layer C */
429         };
430
431         if (layer >= ARRAY_SIZE(reg))
432                 return -EINVAL;
433         rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
434         if (rc < 0)
435                 return rc;
436         rc = mb86a20s_readreg(state, 0x6e);
437         if (rc < 0)
438                 return rc;
439         switch ((rc >> 4) & 0x07) {
440         case 0:
441                 return FEC_1_2;
442         case 1:
443                 return FEC_2_3;
444         case 2:
445                 return FEC_3_4;
446         case 3:
447                 return FEC_5_6;
448         case 4:
449                 return FEC_7_8;
450         default:
451                 return FEC_AUTO;
452         }
453 }
454
455 static int mb86a20s_get_interleaving(struct mb86a20s_state *state,
456                                      unsigned layer)
457 {
458         int rc;
459         int interleaving[] = {
460                 0, 1, 2, 4, 8
461         };
462
463         static unsigned char reg[] = {
464                 [0] = 0x88,     /* Layer A */
465                 [1] = 0x8c,     /* Layer B */
466                 [2] = 0x90,     /* Layer C */
467         };
468
469         if (layer >= ARRAY_SIZE(reg))
470                 return -EINVAL;
471         rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
472         if (rc < 0)
473                 return rc;
474         rc = mb86a20s_readreg(state, 0x6e);
475         if (rc < 0)
476                 return rc;
477
478         return interleaving[(rc >> 4) & 0x07];
479 }
480
481 static int mb86a20s_get_segment_count(struct mb86a20s_state *state,
482                                       unsigned layer)
483 {
484         int rc, count;
485         static unsigned char reg[] = {
486                 [0] = 0x89,     /* Layer A */
487                 [1] = 0x8d,     /* Layer B */
488                 [2] = 0x91,     /* Layer C */
489         };
490
491         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
492
493         if (layer >= ARRAY_SIZE(reg))
494                 return -EINVAL;
495
496         rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
497         if (rc < 0)
498                 return rc;
499         rc = mb86a20s_readreg(state, 0x6e);
500         if (rc < 0)
501                 return rc;
502         count = (rc >> 4) & 0x0f;
503
504         dev_dbg(&state->i2c->dev, "%s: segments: %d.\n", __func__, count);
505
506         return count;
507 }
508
509 static void mb86a20s_reset_frontend_cache(struct dvb_frontend *fe)
510 {
511         struct mb86a20s_state *state = fe->demodulator_priv;
512         struct dtv_frontend_properties *c = &fe->dtv_property_cache;
513
514         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
515
516         /* Fixed parameters */
517         c->delivery_system = SYS_ISDBT;
518         c->bandwidth_hz = 6000000;
519
520         /* Initialize values that will be later autodetected */
521         c->isdbt_layer_enabled = 0;
522         c->transmission_mode = TRANSMISSION_MODE_AUTO;
523         c->guard_interval = GUARD_INTERVAL_AUTO;
524         c->isdbt_sb_mode = 0;
525         c->isdbt_sb_segment_count = 0;
526 }
527
528 /*
529  * Estimates the bit rate using the per-segment bit rate given by
530  * ABNT/NBR 15601 spec (table 4).
531  */
532 static u32 isdbt_rate[3][5][4] = {
533         {       /* DQPSK/QPSK */
534                 {  280850,  312060,  330420,  340430 }, /* 1/2 */
535                 {  374470,  416080,  440560,  453910 }, /* 2/3 */
536                 {  421280,  468090,  495630,  510650 }, /* 3/4 */
537                 {  468090,  520100,  550700,  567390 }, /* 5/6 */
538                 {  491500,  546110,  578230,  595760 }, /* 7/8 */
539         }, {    /* QAM16 */
540                 {  561710,  624130,  660840,  680870 }, /* 1/2 */
541                 {  748950,  832170,  881120,  907820 }, /* 2/3 */
542                 {  842570,  936190,  991260, 1021300 }, /* 3/4 */
543                 {  936190, 1040210, 1101400, 1134780 }, /* 5/6 */
544                 {  983000, 1092220, 1156470, 1191520 }, /* 7/8 */
545         }, {    /* QAM64 */
546                 {  842570,  936190,  991260, 1021300 }, /* 1/2 */
547                 { 1123430, 1248260, 1321680, 1361740 }, /* 2/3 */
548                 { 1263860, 1404290, 1486900, 1531950 }, /* 3/4 */
549                 { 1404290, 1560320, 1652110, 1702170 }, /* 5/6 */
550                 { 1474500, 1638340, 1734710, 1787280 }, /* 7/8 */
551         }
552 };
553
554 static void mb86a20s_layer_bitrate(struct dvb_frontend *fe, u32 layer,
555                                    u32 modulation, u32 forward_error_correction,
556                                    u32 guard_interval,
557                                    u32 segment)
558 {
559         struct mb86a20s_state *state = fe->demodulator_priv;
560         u32 rate;
561         int mod, fec, guard;
562
563         /*
564          * If modulation/fec/guard is not detected, the default is
565          * to consider the lowest bit rate, to avoid taking too long time
566          * to get BER.
567          */
568         switch (modulation) {
569         case DQPSK:
570         case QPSK:
571         default:
572                 mod = 0;
573                 break;
574         case QAM_16:
575                 mod = 1;
576                 break;
577         case QAM_64:
578                 mod = 2;
579                 break;
580         }
581
582         switch (forward_error_correction) {
583         default:
584         case FEC_1_2:
585         case FEC_AUTO:
586                 fec = 0;
587                 break;
588         case FEC_2_3:
589                 fec = 1;
590                 break;
591         case FEC_3_4:
592                 fec = 2;
593                 break;
594         case FEC_5_6:
595                 fec = 3;
596                 break;
597         case FEC_7_8:
598                 fec = 4;
599                 break;
600         }
601
602         switch (guard_interval) {
603         default:
604         case GUARD_INTERVAL_1_4:
605                 guard = 0;
606                 break;
607         case GUARD_INTERVAL_1_8:
608                 guard = 1;
609                 break;
610         case GUARD_INTERVAL_1_16:
611                 guard = 2;
612                 break;
613         case GUARD_INTERVAL_1_32:
614                 guard = 3;
615                 break;
616         }
617
618         /* Samples BER at BER_SAMPLING_RATE seconds */
619         rate = isdbt_rate[mod][fec][guard] * segment * BER_SAMPLING_RATE;
620
621         /* Avoids sampling too quickly or to overflow the register */
622         if (rate < 256)
623                 rate = 256;
624         else if (rate > (1 << 24) - 1)
625                 rate = (1 << 24) - 1;
626
627         dev_dbg(&state->i2c->dev,
628                 "%s: layer %c bitrate: %d kbps; counter = %d (0x%06x)\n",
629                 __func__, 'A' + layer,
630                 segment * isdbt_rate[mod][fec][guard]/1000,
631                 rate, rate);
632
633         state->estimated_rate[layer] = rate;
634 }
635
636 static int mb86a20s_get_frontend(struct dvb_frontend *fe)
637 {
638         struct mb86a20s_state *state = fe->demodulator_priv;
639         struct dtv_frontend_properties *c = &fe->dtv_property_cache;
640         int layer, rc;
641
642         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
643
644         /* Reset frontend cache to default values */
645         mb86a20s_reset_frontend_cache(fe);
646
647         /* Check for partial reception */
648         rc = mb86a20s_writereg(state, 0x6d, 0x85);
649         if (rc < 0)
650                 return rc;
651         rc = mb86a20s_readreg(state, 0x6e);
652         if (rc < 0)
653                 return rc;
654         c->isdbt_partial_reception = (rc & 0x10) ? 1 : 0;
655
656         /* Get per-layer data */
657
658         for (layer = 0; layer < NUM_LAYERS; layer++) {
659                 dev_dbg(&state->i2c->dev, "%s: getting data for layer %c.\n",
660                         __func__, 'A' + layer);
661
662                 rc = mb86a20s_get_segment_count(state, layer);
663                 if (rc < 0)
664                         goto noperlayer_error;
665                 if (rc >= 0 && rc < 14) {
666                         c->layer[layer].segment_count = rc;
667                 } else {
668                         c->layer[layer].segment_count = 0;
669                         state->estimated_rate[layer] = 0;
670                         continue;
671                 }
672                 c->isdbt_layer_enabled |= 1 << layer;
673                 rc = mb86a20s_get_modulation(state, layer);
674                 if (rc < 0)
675                         goto noperlayer_error;
676                 dev_dbg(&state->i2c->dev, "%s: modulation %d.\n",
677                         __func__, rc);
678                 c->layer[layer].modulation = rc;
679                 rc = mb86a20s_get_fec(state, layer);
680                 if (rc < 0)
681                         goto noperlayer_error;
682                 dev_dbg(&state->i2c->dev, "%s: FEC %d.\n",
683                         __func__, rc);
684                 c->layer[layer].fec = rc;
685                 rc = mb86a20s_get_interleaving(state, layer);
686                 if (rc < 0)
687                         goto noperlayer_error;
688                 dev_dbg(&state->i2c->dev, "%s: interleaving %d.\n",
689                         __func__, rc);
690                 c->layer[layer].interleaving = rc;
691                 mb86a20s_layer_bitrate(fe, layer, c->layer[layer].modulation,
692                                        c->layer[layer].fec,
693                                        c->guard_interval,
694                                        c->layer[layer].segment_count);
695         }
696
697         rc = mb86a20s_writereg(state, 0x6d, 0x84);
698         if (rc < 0)
699                 return rc;
700         if ((rc & 0x60) == 0x20) {
701                 c->isdbt_sb_mode = 1;
702                 /* At least, one segment should exist */
703                 if (!c->isdbt_sb_segment_count)
704                         c->isdbt_sb_segment_count = 1;
705         }
706
707         /* Get transmission mode and guard interval */
708         rc = mb86a20s_readreg(state, 0x07);
709         if (rc < 0)
710                 return rc;
711         c->transmission_mode = TRANSMISSION_MODE_AUTO;
712         if ((rc & 0x60) == 0x20) {
713                 /* Only modes 2 and 3 are supported */
714                 switch ((rc >> 2) & 0x03) {
715                 case 1:
716                         c->transmission_mode = TRANSMISSION_MODE_4K;
717                         break;
718                 case 2:
719                         c->transmission_mode = TRANSMISSION_MODE_8K;
720                         break;
721                 }
722         }
723         c->guard_interval = GUARD_INTERVAL_AUTO;
724         if (!(rc & 0x10)) {
725                 /* Guard interval 1/32 is not supported */
726                 switch (rc & 0x3) {
727                 case 0:
728                         c->guard_interval = GUARD_INTERVAL_1_4;
729                         break;
730                 case 1:
731                         c->guard_interval = GUARD_INTERVAL_1_8;
732                         break;
733                 case 2:
734                         c->guard_interval = GUARD_INTERVAL_1_16;
735                         break;
736                 }
737         }
738         return 0;
739
740 noperlayer_error:
741
742         /* per-layer info is incomplete; discard all per-layer */
743         c->isdbt_layer_enabled = 0;
744
745         return rc;
746 }
747
748 static int mb86a20s_reset_counters(struct dvb_frontend *fe)
749 {
750         struct mb86a20s_state *state = fe->demodulator_priv;
751         struct dtv_frontend_properties *c = &fe->dtv_property_cache;
752         int rc, val;
753
754         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
755
756         /* Reset the counters, if the channel changed */
757         if (state->last_frequency != c->frequency) {
758                 memset(&c->cnr, 0, sizeof(c->cnr));
759                 memset(&c->pre_bit_error, 0, sizeof(c->pre_bit_error));
760                 memset(&c->pre_bit_count, 0, sizeof(c->pre_bit_count));
761                 memset(&c->post_bit_error, 0, sizeof(c->post_bit_error));
762                 memset(&c->post_bit_count, 0, sizeof(c->post_bit_count));
763                 memset(&c->block_error, 0, sizeof(c->block_error));
764                 memset(&c->block_count, 0, sizeof(c->block_count));
765
766                 state->last_frequency = c->frequency;
767         }
768
769         /* Clear status for most stats */
770
771         /* BER/PER counter reset */
772         rc = mb86a20s_writeregdata(state, mb86a20s_per_ber_reset);
773         if (rc < 0)
774                 goto err;
775
776         /* CNR counter reset */
777         rc = mb86a20s_readreg(state, 0x45);
778         if (rc < 0)
779                 goto err;
780         val = rc;
781         rc = mb86a20s_writereg(state, 0x45, val | 0x10);
782         if (rc < 0)
783                 goto err;
784         rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
785         if (rc < 0)
786                 goto err;
787
788         /* MER counter reset */
789         rc = mb86a20s_writereg(state, 0x50, 0x50);
790         if (rc < 0)
791                 goto err;
792         rc = mb86a20s_readreg(state, 0x51);
793         if (rc < 0)
794                 goto err;
795         val = rc;
796         rc = mb86a20s_writereg(state, 0x51, val | 0x01);
797         if (rc < 0)
798                 goto err;
799         rc = mb86a20s_writereg(state, 0x51, val & 0x06);
800         if (rc < 0)
801                 goto err;
802
803         goto ok;
804 err:
805         dev_err(&state->i2c->dev,
806                 "%s: Can't reset FE statistics (error %d).\n",
807                 __func__, rc);
808 ok:
809         return rc;
810 }
811
812 static int mb86a20s_get_pre_ber(struct dvb_frontend *fe,
813                                 unsigned layer,
814                                 u32 *error, u32 *count)
815 {
816         struct mb86a20s_state *state = fe->demodulator_priv;
817         int rc, val;
818
819         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
820
821         if (layer >= NUM_LAYERS)
822                 return -EINVAL;
823
824         /* Check if the BER measures are already available */
825         rc = mb86a20s_readreg(state, 0x54);
826         if (rc < 0)
827                 return rc;
828
829         /* Check if data is available for that layer */
830         if (!(rc & (1 << layer))) {
831                 dev_dbg(&state->i2c->dev,
832                         "%s: preBER for layer %c is not available yet.\n",
833                         __func__, 'A' + layer);
834                 return -EBUSY;
835         }
836
837         /* Read Bit Error Count */
838         rc = mb86a20s_readreg(state, 0x55 + layer * 3);
839         if (rc < 0)
840                 return rc;
841         *error = rc << 16;
842         rc = mb86a20s_readreg(state, 0x56 + layer * 3);
843         if (rc < 0)
844                 return rc;
845         *error |= rc << 8;
846         rc = mb86a20s_readreg(state, 0x57 + layer * 3);
847         if (rc < 0)
848                 return rc;
849         *error |= rc;
850
851         dev_dbg(&state->i2c->dev,
852                 "%s: bit error before Viterbi for layer %c: %d.\n",
853                 __func__, 'A' + layer, *error);
854
855         /* Read Bit Count */
856         rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
857         if (rc < 0)
858                 return rc;
859         rc = mb86a20s_readreg(state, 0x51);
860         if (rc < 0)
861                 return rc;
862         *count = rc << 16;
863         rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
864         if (rc < 0)
865                 return rc;
866         rc = mb86a20s_readreg(state, 0x51);
867         if (rc < 0)
868                 return rc;
869         *count |= rc << 8;
870         rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
871         if (rc < 0)
872                 return rc;
873         rc = mb86a20s_readreg(state, 0x51);
874         if (rc < 0)
875                 return rc;
876         *count |= rc;
877
878         dev_dbg(&state->i2c->dev,
879                 "%s: bit count before Viterbi for layer %c: %d.\n",
880                 __func__, 'A' + layer, *count);
881
882
883         /*
884          * As we get TMCC data from the frontend, we can better estimate the
885          * BER bit counters, in order to do the BER measure during a longer
886          * time. Use those data, if available, to update the bit count
887          * measure.
888          */
889
890         if (state->estimated_rate[layer]
891             && state->estimated_rate[layer] != *count) {
892                 dev_dbg(&state->i2c->dev,
893                         "%s: updating layer %c preBER counter to %d.\n",
894                         __func__, 'A' + layer, state->estimated_rate[layer]);
895
896                 /* Turn off BER before Viterbi */
897                 rc = mb86a20s_writereg(state, 0x52, 0x00);
898
899                 /* Update counter for this layer */
900                 rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
901                 if (rc < 0)
902                         return rc;
903                 rc = mb86a20s_writereg(state, 0x51,
904                                        state->estimated_rate[layer] >> 16);
905                 if (rc < 0)
906                         return rc;
907                 rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
908                 if (rc < 0)
909                         return rc;
910                 rc = mb86a20s_writereg(state, 0x51,
911                                        state->estimated_rate[layer] >> 8);
912                 if (rc < 0)
913                         return rc;
914                 rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
915                 if (rc < 0)
916                         return rc;
917                 rc = mb86a20s_writereg(state, 0x51,
918                                        state->estimated_rate[layer]);
919                 if (rc < 0)
920                         return rc;
921
922                 /* Turn on BER before Viterbi */
923                 rc = mb86a20s_writereg(state, 0x52, 0x01);
924
925                 /* Reset all preBER counters */
926                 rc = mb86a20s_writereg(state, 0x53, 0x00);
927                 if (rc < 0)
928                         return rc;
929                 rc = mb86a20s_writereg(state, 0x53, 0x07);
930         } else {
931                 /* Reset counter to collect new data */
932                 rc = mb86a20s_readreg(state, 0x53);
933                 if (rc < 0)
934                         return rc;
935                 val = rc;
936                 rc = mb86a20s_writereg(state, 0x53, val & ~(1 << layer));
937                 if (rc < 0)
938                         return rc;
939                 rc = mb86a20s_writereg(state, 0x53, val | (1 << layer));
940         }
941
942         return rc;
943 }
944
945 static int mb86a20s_get_post_ber(struct dvb_frontend *fe,
946                                  unsigned layer,
947                                   u32 *error, u32 *count)
948 {
949         struct mb86a20s_state *state = fe->demodulator_priv;
950         u32 counter, collect_rate;
951         int rc, val;
952
953         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
954
955         if (layer >= NUM_LAYERS)
956                 return -EINVAL;
957
958         /* Check if the BER measures are already available */
959         rc = mb86a20s_readreg(state, 0x60);
960         if (rc < 0)
961                 return rc;
962
963         /* Check if data is available for that layer */
964         if (!(rc & (1 << layer))) {
965                 dev_dbg(&state->i2c->dev,
966                         "%s: post BER for layer %c is not available yet.\n",
967                         __func__, 'A' + layer);
968                 return -EBUSY;
969         }
970
971         /* Read Bit Error Count */
972         rc = mb86a20s_readreg(state, 0x64 + layer * 3);
973         if (rc < 0)
974                 return rc;
975         *error = rc << 16;
976         rc = mb86a20s_readreg(state, 0x65 + layer * 3);
977         if (rc < 0)
978                 return rc;
979         *error |= rc << 8;
980         rc = mb86a20s_readreg(state, 0x66 + layer * 3);
981         if (rc < 0)
982                 return rc;
983         *error |= rc;
984
985         dev_dbg(&state->i2c->dev,
986                 "%s: post bit error for layer %c: %d.\n",
987                 __func__, 'A' + layer, *error);
988
989         /* Read Bit Count */
990         rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
991         if (rc < 0)
992                 return rc;
993         rc = mb86a20s_readreg(state, 0x51);
994         if (rc < 0)
995                 return rc;
996         counter = rc << 8;
997         rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
998         if (rc < 0)
999                 return rc;
1000         rc = mb86a20s_readreg(state, 0x51);
1001         if (rc < 0)
1002                 return rc;
1003         counter |= rc;
1004         *count = counter * 204 * 8;
1005
1006         dev_dbg(&state->i2c->dev,
1007                 "%s: post bit count for layer %c: %d.\n",
1008                 __func__, 'A' + layer, *count);
1009
1010         /*
1011          * As we get TMCC data from the frontend, we can better estimate the
1012          * BER bit counters, in order to do the BER measure during a longer
1013          * time. Use those data, if available, to update the bit count
1014          * measure.
1015          */
1016
1017         if (!state->estimated_rate[layer])
1018                 goto reset_measurement;
1019
1020         collect_rate = state->estimated_rate[layer] / 204 / 8;
1021         if (collect_rate < 32)
1022                 collect_rate = 32;
1023         if (collect_rate > 65535)
1024                 collect_rate = 65535;
1025         if (collect_rate != counter) {
1026                 dev_dbg(&state->i2c->dev,
1027                         "%s: updating postBER counter on layer %c to %d.\n",
1028                         __func__, 'A' + layer, collect_rate);
1029
1030                 /* Turn off BER after Viterbi */
1031                 rc = mb86a20s_writereg(state, 0x5e, 0x00);
1032
1033                 /* Update counter for this layer */
1034                 rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
1035                 if (rc < 0)
1036                         return rc;
1037                 rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
1038                 if (rc < 0)
1039                         return rc;
1040                 rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
1041                 if (rc < 0)
1042                         return rc;
1043                 rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
1044                 if (rc < 0)
1045                         return rc;
1046
1047                 /* Turn on BER after Viterbi */
1048                 rc = mb86a20s_writereg(state, 0x5e, 0x07);
1049
1050                 /* Reset all preBER counters */
1051                 rc = mb86a20s_writereg(state, 0x5f, 0x00);
1052                 if (rc < 0)
1053                         return rc;
1054                 rc = mb86a20s_writereg(state, 0x5f, 0x07);
1055
1056                 return rc;
1057         }
1058
1059 reset_measurement:
1060         /* Reset counter to collect new data */
1061         rc = mb86a20s_readreg(state, 0x5f);
1062         if (rc < 0)
1063                 return rc;
1064         val = rc;
1065         rc = mb86a20s_writereg(state, 0x5f, val & ~(1 << layer));
1066         if (rc < 0)
1067                 return rc;
1068         rc = mb86a20s_writereg(state, 0x5f, val | (1 << layer));
1069
1070         return rc;
1071 }
1072
1073 static int mb86a20s_get_blk_error(struct dvb_frontend *fe,
1074                             unsigned layer,
1075                             u32 *error, u32 *count)
1076 {
1077         struct mb86a20s_state *state = fe->demodulator_priv;
1078         int rc, val;
1079         u32 collect_rate;
1080         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1081
1082         if (layer >= NUM_LAYERS)
1083                 return -EINVAL;
1084
1085         /* Check if the PER measures are already available */
1086         rc = mb86a20s_writereg(state, 0x50, 0xb8);
1087         if (rc < 0)
1088                 return rc;
1089         rc = mb86a20s_readreg(state, 0x51);
1090         if (rc < 0)
1091                 return rc;
1092
1093         /* Check if data is available for that layer */
1094
1095         if (!(rc & (1 << layer))) {
1096                 dev_dbg(&state->i2c->dev,
1097                         "%s: block counts for layer %c aren't available yet.\n",
1098                         __func__, 'A' + layer);
1099                 return -EBUSY;
1100         }
1101
1102         /* Read Packet error Count */
1103         rc = mb86a20s_writereg(state, 0x50, 0xb9 + layer * 2);
1104         if (rc < 0)
1105                 return rc;
1106         rc = mb86a20s_readreg(state, 0x51);
1107         if (rc < 0)
1108                 return rc;
1109         *error = rc << 8;
1110         rc = mb86a20s_writereg(state, 0x50, 0xba + layer * 2);
1111         if (rc < 0)
1112                 return rc;
1113         rc = mb86a20s_readreg(state, 0x51);
1114         if (rc < 0)
1115                 return rc;
1116         *error |= rc;
1117         dev_dbg(&state->i2c->dev, "%s: block error for layer %c: %d.\n",
1118                 __func__, 'A' + layer, *error);
1119
1120         /* Read Bit Count */
1121         rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
1122         if (rc < 0)
1123                 return rc;
1124         rc = mb86a20s_readreg(state, 0x51);
1125         if (rc < 0)
1126                 return rc;
1127         *count = rc << 8;
1128         rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
1129         if (rc < 0)
1130                 return rc;
1131         rc = mb86a20s_readreg(state, 0x51);
1132         if (rc < 0)
1133                 return rc;
1134         *count |= rc;
1135
1136         dev_dbg(&state->i2c->dev,
1137                 "%s: block count for layer %c: %d.\n",
1138                 __func__, 'A' + layer, *count);
1139
1140         /*
1141          * As we get TMCC data from the frontend, we can better estimate the
1142          * BER bit counters, in order to do the BER measure during a longer
1143          * time. Use those data, if available, to update the bit count
1144          * measure.
1145          */
1146
1147         if (!state->estimated_rate[layer])
1148                 goto reset_measurement;
1149
1150         collect_rate = state->estimated_rate[layer] / 204 / 8;
1151         if (collect_rate < 32)
1152                 collect_rate = 32;
1153         if (collect_rate > 65535)
1154                 collect_rate = 65535;
1155
1156         if (collect_rate != *count) {
1157                 dev_dbg(&state->i2c->dev,
1158                         "%s: updating PER counter on layer %c to %d.\n",
1159                         __func__, 'A' + layer, collect_rate);
1160
1161                 /* Stop PER measurement */
1162                 rc = mb86a20s_writereg(state, 0x50, 0xb0);
1163                 if (rc < 0)
1164                         return rc;
1165                 rc = mb86a20s_writereg(state, 0x51, 0x00);
1166                 if (rc < 0)
1167                         return rc;
1168
1169                 /* Update this layer's counter */
1170                 rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
1171                 if (rc < 0)
1172                         return rc;
1173                 rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
1174                 if (rc < 0)
1175                         return rc;
1176                 rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
1177                 if (rc < 0)
1178                         return rc;
1179                 rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
1180                 if (rc < 0)
1181                         return rc;
1182
1183                 /* start PER measurement */
1184                 rc = mb86a20s_writereg(state, 0x50, 0xb0);
1185                 if (rc < 0)
1186                         return rc;
1187                 rc = mb86a20s_writereg(state, 0x51, 0x07);
1188                 if (rc < 0)
1189                         return rc;
1190
1191                 /* Reset all counters to collect new data */
1192                 rc = mb86a20s_writereg(state, 0x50, 0xb1);
1193                 if (rc < 0)
1194                         return rc;
1195                 rc = mb86a20s_writereg(state, 0x51, 0x07);
1196                 if (rc < 0)
1197                         return rc;
1198                 rc = mb86a20s_writereg(state, 0x51, 0x00);
1199
1200                 return rc;
1201         }
1202
1203 reset_measurement:
1204         /* Reset counter to collect new data */
1205         rc = mb86a20s_writereg(state, 0x50, 0xb1);
1206         if (rc < 0)
1207                 return rc;
1208         rc = mb86a20s_readreg(state, 0x51);
1209         if (rc < 0)
1210                 return rc;
1211         val = rc;
1212         rc = mb86a20s_writereg(state, 0x51, val | (1 << layer));
1213         if (rc < 0)
1214                 return rc;
1215         rc = mb86a20s_writereg(state, 0x51, val & ~(1 << layer));
1216
1217         return rc;
1218 }
1219
1220 struct linear_segments {
1221         unsigned x, y;
1222 };
1223
1224 /*
1225  * All tables below return a dB/1000 measurement
1226  */
1227
1228 static const struct linear_segments cnr_to_db_table[] = {
1229         { 19648,     0},
1230         { 18187,  1000},
1231         { 16534,  2000},
1232         { 14823,  3000},
1233         { 13161,  4000},
1234         { 11622,  5000},
1235         { 10279,  6000},
1236         {  9089,  7000},
1237         {  8042,  8000},
1238         {  7137,  9000},
1239         {  6342, 10000},
1240         {  5641, 11000},
1241         {  5030, 12000},
1242         {  4474, 13000},
1243         {  3988, 14000},
1244         {  3556, 15000},
1245         {  3180, 16000},
1246         {  2841, 17000},
1247         {  2541, 18000},
1248         {  2276, 19000},
1249         {  2038, 20000},
1250         {  1800, 21000},
1251         {  1625, 22000},
1252         {  1462, 23000},
1253         {  1324, 24000},
1254         {  1175, 25000},
1255         {  1063, 26000},
1256         {   980, 27000},
1257         {   907, 28000},
1258         {   840, 29000},
1259         {   788, 30000},
1260 };
1261
1262 static const struct linear_segments cnr_64qam_table[] = {
1263         { 3922688,     0},
1264         { 3920384,  1000},
1265         { 3902720,  2000},
1266         { 3894784,  3000},
1267         { 3882496,  4000},
1268         { 3872768,  5000},
1269         { 3858944,  6000},
1270         { 3851520,  7000},
1271         { 3838976,  8000},
1272         { 3829248,  9000},
1273         { 3818240, 10000},
1274         { 3806976, 11000},
1275         { 3791872, 12000},
1276         { 3767040, 13000},
1277         { 3720960, 14000},
1278         { 3637504, 15000},
1279         { 3498496, 16000},
1280         { 3296000, 17000},
1281         { 3031040, 18000},
1282         { 2715392, 19000},
1283         { 2362624, 20000},
1284         { 1963264, 21000},
1285         { 1649664, 22000},
1286         { 1366784, 23000},
1287         { 1120768, 24000},
1288         {  890880, 25000},
1289         {  723456, 26000},
1290         {  612096, 27000},
1291         {  518912, 28000},
1292         {  448256, 29000},
1293         {  388864, 30000},
1294 };
1295
1296 static const struct linear_segments cnr_16qam_table[] = {
1297         { 5314816,     0},
1298         { 5219072,  1000},
1299         { 5118720,  2000},
1300         { 4998912,  3000},
1301         { 4875520,  4000},
1302         { 4736000,  5000},
1303         { 4604160,  6000},
1304         { 4458752,  7000},
1305         { 4300288,  8000},
1306         { 4092928,  9000},
1307         { 3836160, 10000},
1308         { 3521024, 11000},
1309         { 3155968, 12000},
1310         { 2756864, 13000},
1311         { 2347008, 14000},
1312         { 1955072, 15000},
1313         { 1593600, 16000},
1314         { 1297920, 17000},
1315         { 1043968, 18000},
1316         {  839680, 19000},
1317         {  672256, 20000},
1318         {  523008, 21000},
1319         {  424704, 22000},
1320         {  345088, 23000},
1321         {  280064, 24000},
1322         {  221440, 25000},
1323         {  179712, 26000},
1324         {  151040, 27000},
1325         {  128512, 28000},
1326         {  110080, 29000},
1327         {   95744, 30000},
1328 };
1329
1330 static const struct linear_segments cnr_qpsk_table[] = {
1331         { 2834176,     0},
1332         { 2683648,  1000},
1333         { 2536960,  2000},
1334         { 2391808,  3000},
1335         { 2133248,  4000},
1336         { 1906176,  5000},
1337         { 1666560,  6000},
1338         { 1422080,  7000},
1339         { 1189632,  8000},
1340         {  976384,  9000},
1341         {  790272, 10000},
1342         {  633344, 11000},
1343         {  505600, 12000},
1344         {  402944, 13000},
1345         {  320768, 14000},
1346         {  255488, 15000},
1347         {  204032, 16000},
1348         {  163072, 17000},
1349         {  130304, 18000},
1350         {  105216, 19000},
1351         {   83456, 20000},
1352         {   65024, 21000},
1353         {   52480, 22000},
1354         {   42752, 23000},
1355         {   34560, 24000},
1356         {   27136, 25000},
1357         {   22016, 26000},
1358         {   18432, 27000},
1359         {   15616, 28000},
1360         {   13312, 29000},
1361         {   11520, 30000},
1362 };
1363
1364 static u32 interpolate_value(u32 value, const struct linear_segments *segments,
1365                              unsigned len)
1366 {
1367         u64 tmp64;
1368         u32 dx, dy;
1369         int i, ret;
1370
1371         if (value >= segments[0].x)
1372                 return segments[0].y;
1373         if (value < segments[len-1].x)
1374                 return segments[len-1].y;
1375
1376         for (i = 1; i < len - 1; i++) {
1377                 /* If value is identical, no need to interpolate */
1378                 if (value == segments[i].x)
1379                         return segments[i].y;
1380                 if (value > segments[i].x)
1381                         break;
1382         }
1383
1384         /* Linear interpolation between the two (x,y) points */
1385         dy = segments[i].y - segments[i - 1].y;
1386         dx = segments[i - 1].x - segments[i].x;
1387         tmp64 = value - segments[i].x;
1388         tmp64 *= dy;
1389         do_div(tmp64, dx);
1390         ret = segments[i].y - tmp64;
1391
1392         return ret;
1393 }
1394
1395 static int mb86a20s_get_main_CNR(struct dvb_frontend *fe)
1396 {
1397         struct mb86a20s_state *state = fe->demodulator_priv;
1398         struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1399         u32 cnr_linear, cnr;
1400         int rc, val;
1401
1402         /* Check if CNR is available */
1403         rc = mb86a20s_readreg(state, 0x45);
1404         if (rc < 0)
1405                 return rc;
1406
1407         if (!(rc & 0x40)) {
1408                 dev_dbg(&state->i2c->dev, "%s: CNR is not available yet.\n",
1409                          __func__);
1410                 return -EBUSY;
1411         }
1412         val = rc;
1413
1414         rc = mb86a20s_readreg(state, 0x46);
1415         if (rc < 0)
1416                 return rc;
1417         cnr_linear = rc << 8;
1418
1419         rc = mb86a20s_readreg(state, 0x46);
1420         if (rc < 0)
1421                 return rc;
1422         cnr_linear |= rc;
1423
1424         cnr = interpolate_value(cnr_linear,
1425                                 cnr_to_db_table, ARRAY_SIZE(cnr_to_db_table));
1426
1427         c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
1428         c->cnr.stat[0].svalue = cnr;
1429
1430         dev_dbg(&state->i2c->dev, "%s: CNR is %d.%03d dB (%d)\n",
1431                 __func__, cnr / 1000, cnr % 1000, cnr_linear);
1432
1433         /* CNR counter reset */
1434         rc = mb86a20s_writereg(state, 0x45, val | 0x10);
1435         if (rc < 0)
1436                 return rc;
1437         rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
1438
1439         return rc;
1440 }
1441
1442 static int mb86a20s_get_blk_error_layer_CNR(struct dvb_frontend *fe)
1443 {
1444         struct mb86a20s_state *state = fe->demodulator_priv;
1445         struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1446         u32 mer, cnr;
1447         int rc, val, layer;
1448         const struct linear_segments *segs;
1449         unsigned segs_len;
1450
1451         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1452
1453         /* Check if the measures are already available */
1454         rc = mb86a20s_writereg(state, 0x50, 0x5b);
1455         if (rc < 0)
1456                 return rc;
1457         rc = mb86a20s_readreg(state, 0x51);
1458         if (rc < 0)
1459                 return rc;
1460
1461         /* Check if data is available */
1462         if (!(rc & 0x01)) {
1463                 dev_dbg(&state->i2c->dev,
1464                         "%s: MER measures aren't available yet.\n", __func__);
1465                 return -EBUSY;
1466         }
1467
1468         /* Read all layers */
1469         for (layer = 0; layer < NUM_LAYERS; layer++) {
1470                 if (!(c->isdbt_layer_enabled & (1 << layer))) {
1471                         c->cnr.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1472                         continue;
1473                 }
1474
1475                 rc = mb86a20s_writereg(state, 0x50, 0x52 + layer * 3);
1476                 if (rc < 0)
1477                         return rc;
1478                 rc = mb86a20s_readreg(state, 0x51);
1479                 if (rc < 0)
1480                         return rc;
1481                 mer = rc << 16;
1482                 rc = mb86a20s_writereg(state, 0x50, 0x53 + layer * 3);
1483                 if (rc < 0)
1484                         return rc;
1485                 rc = mb86a20s_readreg(state, 0x51);
1486                 if (rc < 0)
1487                         return rc;
1488                 mer |= rc << 8;
1489                 rc = mb86a20s_writereg(state, 0x50, 0x54 + layer * 3);
1490                 if (rc < 0)
1491                         return rc;
1492                 rc = mb86a20s_readreg(state, 0x51);
1493                 if (rc < 0)
1494                         return rc;
1495                 mer |= rc;
1496
1497                 switch (c->layer[layer].modulation) {
1498                 case DQPSK:
1499                 case QPSK:
1500                         segs = cnr_qpsk_table;
1501                         segs_len = ARRAY_SIZE(cnr_qpsk_table);
1502                         break;
1503                 case QAM_16:
1504                         segs = cnr_16qam_table;
1505                         segs_len = ARRAY_SIZE(cnr_16qam_table);
1506                         break;
1507                 default:
1508                 case QAM_64:
1509                         segs = cnr_64qam_table;
1510                         segs_len = ARRAY_SIZE(cnr_64qam_table);
1511                         break;
1512                 }
1513                 cnr = interpolate_value(mer, segs, segs_len);
1514
1515                 c->cnr.stat[1 + layer].scale = FE_SCALE_DECIBEL;
1516                 c->cnr.stat[1 + layer].svalue = cnr;
1517
1518                 dev_dbg(&state->i2c->dev,
1519                         "%s: CNR for layer %c is %d.%03d dB (MER = %d).\n",
1520                         __func__, 'A' + layer, cnr / 1000, cnr % 1000, mer);
1521
1522         }
1523
1524         /* Start a new MER measurement */
1525         /* MER counter reset */
1526         rc = mb86a20s_writereg(state, 0x50, 0x50);
1527         if (rc < 0)
1528                 return rc;
1529         rc = mb86a20s_readreg(state, 0x51);
1530         if (rc < 0)
1531                 return rc;
1532         val = rc;
1533
1534         rc = mb86a20s_writereg(state, 0x51, val | 0x01);
1535         if (rc < 0)
1536                 return rc;
1537         rc = mb86a20s_writereg(state, 0x51, val & 0x06);
1538         if (rc < 0)
1539                 return rc;
1540
1541         return 0;
1542 }
1543
1544 static void mb86a20s_stats_not_ready(struct dvb_frontend *fe)
1545 {
1546         struct mb86a20s_state *state = fe->demodulator_priv;
1547         struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1548         int layer;
1549
1550         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1551
1552         /* Fill the length of each status counter */
1553
1554         /* Only global stats */
1555         c->strength.len = 1;
1556
1557         /* Per-layer stats - 3 layers + global */
1558         c->cnr.len = NUM_LAYERS + 1;
1559         c->pre_bit_error.len = NUM_LAYERS + 1;
1560         c->pre_bit_count.len = NUM_LAYERS + 1;
1561         c->post_bit_error.len = NUM_LAYERS + 1;
1562         c->post_bit_count.len = NUM_LAYERS + 1;
1563         c->block_error.len = NUM_LAYERS + 1;
1564         c->block_count.len = NUM_LAYERS + 1;
1565
1566         /* Signal is always available */
1567         c->strength.stat[0].scale = FE_SCALE_RELATIVE;
1568         c->strength.stat[0].uvalue = 0;
1569
1570         /* Put all of them at FE_SCALE_NOT_AVAILABLE */
1571         for (layer = 0; layer < NUM_LAYERS + 1; layer++) {
1572                 c->cnr.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1573                 c->pre_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1574                 c->pre_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1575                 c->post_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1576                 c->post_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1577                 c->block_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1578                 c->block_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1579         }
1580 }
1581
1582 static int mb86a20s_get_stats(struct dvb_frontend *fe, int status_nr)
1583 {
1584         struct mb86a20s_state *state = fe->demodulator_priv;
1585         struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1586         int rc = 0, layer;
1587         u32 bit_error = 0, bit_count = 0;
1588         u32 t_pre_bit_error = 0, t_pre_bit_count = 0;
1589         u32 t_post_bit_error = 0, t_post_bit_count = 0;
1590         u32 block_error = 0, block_count = 0;
1591         u32 t_block_error = 0, t_block_count = 0;
1592         int active_layers = 0, pre_ber_layers = 0, post_ber_layers = 0;
1593         int per_layers = 0;
1594
1595         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1596
1597         mb86a20s_get_main_CNR(fe);
1598
1599         /* Get per-layer stats */
1600         mb86a20s_get_blk_error_layer_CNR(fe);
1601
1602         /*
1603          * At state 7, only CNR is available
1604          * For BER measures, state=9 is required
1605          * FIXME: we may get MER measures with state=8
1606          */
1607         if (status_nr < 9)
1608                 return 0;
1609
1610         for (layer = 0; layer < NUM_LAYERS; layer++) {
1611                 if (c->isdbt_layer_enabled & (1 << layer)) {
1612                         /* Layer is active and has rc segments */
1613                         active_layers++;
1614
1615                         /* Handle BER before vterbi */
1616                         rc = mb86a20s_get_pre_ber(fe, layer,
1617                                                   &bit_error, &bit_count);
1618                         if (rc >= 0) {
1619                                 c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1620                                 c->pre_bit_error.stat[1 + layer].uvalue += bit_error;
1621                                 c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1622                                 c->pre_bit_count.stat[1 + layer].uvalue += bit_count;
1623                         } else if (rc != -EBUSY) {
1624                                 /*
1625                                         * If an I/O error happened,
1626                                         * measures are now unavailable
1627                                         */
1628                                 c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1629                                 c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1630                                 dev_err(&state->i2c->dev,
1631                                         "%s: Can't get BER for layer %c (error %d).\n",
1632                                         __func__, 'A' + layer, rc);
1633                         }
1634                         if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1635                                 pre_ber_layers++;
1636
1637                         /* Handle BER post vterbi */
1638                         rc = mb86a20s_get_post_ber(fe, layer,
1639                                                    &bit_error, &bit_count);
1640                         if (rc >= 0) {
1641                                 c->post_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1642                                 c->post_bit_error.stat[1 + layer].uvalue += bit_error;
1643                                 c->post_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1644                                 c->post_bit_count.stat[1 + layer].uvalue += bit_count;
1645                         } else if (rc != -EBUSY) {
1646                                 /*
1647                                         * If an I/O error happened,
1648                                         * measures are now unavailable
1649                                         */
1650                                 c->post_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1651                                 c->post_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1652                                 dev_err(&state->i2c->dev,
1653                                         "%s: Can't get BER for layer %c (error %d).\n",
1654                                         __func__, 'A' + layer, rc);
1655                         }
1656                         if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1657                                 post_ber_layers++;
1658
1659                         /* Handle Block errors for PER/UCB reports */
1660                         rc = mb86a20s_get_blk_error(fe, layer,
1661                                                 &block_error,
1662                                                 &block_count);
1663                         if (rc >= 0) {
1664                                 c->block_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1665                                 c->block_error.stat[1 + layer].uvalue += block_error;
1666                                 c->block_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1667                                 c->block_count.stat[1 + layer].uvalue += block_count;
1668                         } else if (rc != -EBUSY) {
1669                                 /*
1670                                         * If an I/O error happened,
1671                                         * measures are now unavailable
1672                                         */
1673                                 c->block_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1674                                 c->block_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1675                                 dev_err(&state->i2c->dev,
1676                                         "%s: Can't get PER for layer %c (error %d).\n",
1677                                         __func__, 'A' + layer, rc);
1678
1679                         }
1680                         if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1681                                 per_layers++;
1682
1683                         /* Update total preBER */
1684                         t_pre_bit_error += c->pre_bit_error.stat[1 + layer].uvalue;
1685                         t_pre_bit_count += c->pre_bit_count.stat[1 + layer].uvalue;
1686
1687                         /* Update total postBER */
1688                         t_post_bit_error += c->post_bit_error.stat[1 + layer].uvalue;
1689                         t_post_bit_count += c->post_bit_count.stat[1 + layer].uvalue;
1690
1691                         /* Update total PER */
1692                         t_block_error += c->block_error.stat[1 + layer].uvalue;
1693                         t_block_count += c->block_count.stat[1 + layer].uvalue;
1694                 }
1695         }
1696
1697         /*
1698          * Start showing global count if at least one error count is
1699          * available.
1700          */
1701         if (pre_ber_layers) {
1702                 /*
1703                  * At least one per-layer BER measure was read. We can now
1704                  * calculate the total BER
1705                  *
1706                  * Total Bit Error/Count is calculated as the sum of the
1707                  * bit errors on all active layers.
1708                  */
1709                 c->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
1710                 c->pre_bit_error.stat[0].uvalue = t_pre_bit_error;
1711                 c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1712                 c->pre_bit_count.stat[0].uvalue = t_pre_bit_count;
1713         } else {
1714                 c->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1715                 c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1716         }
1717
1718         /*
1719          * Start showing global count if at least one error count is
1720          * available.
1721          */
1722         if (post_ber_layers) {
1723                 /*
1724                  * At least one per-layer BER measure was read. We can now
1725                  * calculate the total BER
1726                  *
1727                  * Total Bit Error/Count is calculated as the sum of the
1728                  * bit errors on all active layers.
1729                  */
1730                 c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
1731                 c->post_bit_error.stat[0].uvalue = t_post_bit_error;
1732                 c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1733                 c->post_bit_count.stat[0].uvalue = t_post_bit_count;
1734         } else {
1735                 c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1736                 c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1737         }
1738
1739         if (per_layers) {
1740                 /*
1741                  * At least one per-layer UCB measure was read. We can now
1742                  * calculate the total UCB
1743                  *
1744                  * Total block Error/Count is calculated as the sum of the
1745                  * block errors on all active layers.
1746                  */
1747                 c->block_error.stat[0].scale = FE_SCALE_COUNTER;
1748                 c->block_error.stat[0].uvalue = t_block_error;
1749                 c->block_count.stat[0].scale = FE_SCALE_COUNTER;
1750                 c->block_count.stat[0].uvalue = t_block_count;
1751         } else {
1752                 c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1753                 c->block_count.stat[0].scale = FE_SCALE_COUNTER;
1754         }
1755
1756         return rc;
1757 }
1758
1759 /*
1760  * The functions below are called via DVB callbacks, so they need to
1761  * properly use the I2C gate control
1762  */
1763
1764 static int mb86a20s_initfe(struct dvb_frontend *fe)
1765 {
1766         struct mb86a20s_state *state = fe->demodulator_priv;
1767         u64 pll;
1768         u32 fclk;
1769         int rc;
1770         u8  regD5 = 1, reg71, reg09 = 0x3a;
1771
1772         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1773
1774         if (fe->ops.i2c_gate_ctrl)
1775                 fe->ops.i2c_gate_ctrl(fe, 0);
1776
1777         /* Initialize the frontend */
1778         rc = mb86a20s_writeregdata(state, mb86a20s_init1);
1779         if (rc < 0)
1780                 goto err;
1781
1782         if (!state->inversion)
1783                 reg09 |= 0x04;
1784         rc = mb86a20s_writereg(state, 0x09, reg09);
1785         if (rc < 0)
1786                 goto err;
1787         if (!state->bw)
1788                 reg71 = 1;
1789         else
1790                 reg71 = 0;
1791         rc = mb86a20s_writereg(state, 0x39, reg71);
1792         if (rc < 0)
1793                 goto err;
1794         rc = mb86a20s_writereg(state, 0x71, state->bw);
1795         if (rc < 0)
1796                 goto err;
1797         if (state->subchannel) {
1798                 rc = mb86a20s_writereg(state, 0x44, state->subchannel);
1799                 if (rc < 0)
1800                         goto err;
1801         }
1802
1803         fclk = state->config->fclk;
1804         if (!fclk)
1805                 fclk = 32571428;
1806
1807         /* Adjust IF frequency to match tuner */
1808         if (fe->ops.tuner_ops.get_if_frequency)
1809                 fe->ops.tuner_ops.get_if_frequency(fe, &state->if_freq);
1810
1811         if (!state->if_freq)
1812                 state->if_freq = 3300000;
1813
1814         pll = (((u64)1) << 34) * state->if_freq;
1815         do_div(pll, 63 * fclk);
1816         pll = (1 << 25) - pll;
1817         rc = mb86a20s_writereg(state, 0x28, 0x2a);
1818         if (rc < 0)
1819                 goto err;
1820         rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff);
1821         if (rc < 0)
1822                 goto err;
1823         rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff);
1824         if (rc < 0)
1825                 goto err;
1826         rc = mb86a20s_writereg(state, 0x2b, pll & 0xff);
1827         if (rc < 0)
1828                 goto err;
1829         dev_dbg(&state->i2c->dev, "%s: fclk=%d, IF=%d, clock reg=0x%06llx\n",
1830                 __func__, fclk, state->if_freq, (long long)pll);
1831
1832         /* pll = freq[Hz] * 2^24/10^6 / 16.285714286 */
1833         pll = state->if_freq * 1677721600L;
1834         do_div(pll, 1628571429L);
1835         rc = mb86a20s_writereg(state, 0x28, 0x20);
1836         if (rc < 0)
1837                 goto err;
1838         rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff);
1839         if (rc < 0)
1840                 goto err;
1841         rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff);
1842         if (rc < 0)
1843                 goto err;
1844         rc = mb86a20s_writereg(state, 0x2b, pll & 0xff);
1845         if (rc < 0)
1846                 goto err;
1847         dev_dbg(&state->i2c->dev, "%s: IF=%d, IF reg=0x%06llx\n",
1848                 __func__, state->if_freq, (long long)pll);
1849
1850         if (!state->config->is_serial)
1851                 regD5 &= ~1;
1852
1853         rc = mb86a20s_writereg(state, 0x50, 0xd5);
1854         if (rc < 0)
1855                 goto err;
1856         rc = mb86a20s_writereg(state, 0x51, regD5);
1857         if (rc < 0)
1858                 goto err;
1859
1860         rc = mb86a20s_writeregdata(state, mb86a20s_init2);
1861         if (rc < 0)
1862                 goto err;
1863
1864
1865 err:
1866         if (fe->ops.i2c_gate_ctrl)
1867                 fe->ops.i2c_gate_ctrl(fe, 1);
1868
1869         if (rc < 0) {
1870                 state->need_init = true;
1871                 dev_info(&state->i2c->dev,
1872                          "mb86a20s: Init failed. Will try again later\n");
1873         } else {
1874                 state->need_init = false;
1875                 dev_dbg(&state->i2c->dev, "Initialization succeeded.\n");
1876         }
1877         return rc;
1878 }
1879
1880 static int mb86a20s_set_frontend(struct dvb_frontend *fe)
1881 {
1882         struct mb86a20s_state *state = fe->demodulator_priv;
1883         struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1884         int rc, if_freq;
1885         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1886
1887         if (!c->isdbt_layer_enabled)
1888                 c->isdbt_layer_enabled = 7;
1889
1890         if (c->isdbt_layer_enabled == 1)
1891                 state->bw = MB86A20S_1SEG;
1892         else if (c->isdbt_partial_reception)
1893                 state->bw = MB86A20S_13SEG_PARTIAL;
1894         else
1895                 state->bw = MB86A20S_13SEG;
1896
1897         if (c->inversion == INVERSION_ON)
1898                 state->inversion = true;
1899         else
1900                 state->inversion = false;
1901
1902         if (!c->isdbt_sb_mode) {
1903                 state->subchannel = 0;
1904         } else {
1905                 if (c->isdbt_sb_subchannel >= ARRAY_SIZE(mb86a20s_subchannel))
1906                         c->isdbt_sb_subchannel = 0;
1907
1908                 state->subchannel = mb86a20s_subchannel[c->isdbt_sb_subchannel];
1909         }
1910
1911         /*
1912          * Gate should already be opened, but it doesn't hurt to
1913          * double-check
1914          */
1915         if (fe->ops.i2c_gate_ctrl)
1916                 fe->ops.i2c_gate_ctrl(fe, 1);
1917         fe->ops.tuner_ops.set_params(fe);
1918
1919         if (fe->ops.tuner_ops.get_if_frequency)
1920                 fe->ops.tuner_ops.get_if_frequency(fe, &if_freq);
1921
1922         /*
1923          * Make it more reliable: if, for some reason, the initial
1924          * device initialization doesn't happen, initialize it when
1925          * a SBTVD parameters are adjusted.
1926          *
1927          * Unfortunately, due to a hard to track bug at tda829x/tda18271,
1928          * the agc callback logic is not called during DVB attach time,
1929          * causing mb86a20s to not be initialized with Kworld SBTVD.
1930          * So, this hack is needed, in order to make Kworld SBTVD to work.
1931          *
1932          * It is also needed to change the IF after the initial init.
1933          *
1934          * HACK: Always init the frontend when set_frontend is called:
1935          * it was noticed that, on some devices, it fails to lock on a
1936          * different channel. So, it is better to reset everything, even
1937          * wasting some time, than to loose channel lock.
1938          */
1939         mb86a20s_initfe(fe);
1940
1941         if (fe->ops.i2c_gate_ctrl)
1942                 fe->ops.i2c_gate_ctrl(fe, 0);
1943
1944         rc = mb86a20s_writeregdata(state, mb86a20s_reset_reception);
1945         mb86a20s_reset_counters(fe);
1946         mb86a20s_stats_not_ready(fe);
1947
1948         if (fe->ops.i2c_gate_ctrl)
1949                 fe->ops.i2c_gate_ctrl(fe, 1);
1950
1951         return rc;
1952 }
1953
1954 static int mb86a20s_read_status_and_stats(struct dvb_frontend *fe,
1955                                           enum fe_status *status)
1956 {
1957         struct mb86a20s_state *state = fe->demodulator_priv;
1958         int rc, status_nr;
1959
1960         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1961
1962         if (fe->ops.i2c_gate_ctrl)
1963                 fe->ops.i2c_gate_ctrl(fe, 0);
1964
1965         /* Get lock */
1966         status_nr = mb86a20s_read_status(fe, status);
1967         if (status_nr < 7) {
1968                 mb86a20s_stats_not_ready(fe);
1969                 mb86a20s_reset_frontend_cache(fe);
1970         }
1971         if (status_nr < 0) {
1972                 dev_err(&state->i2c->dev,
1973                         "%s: Can't read frontend lock status\n", __func__);
1974                 goto error;
1975         }
1976
1977         /* Get signal strength */
1978         rc = mb86a20s_read_signal_strength(fe);
1979         if (rc < 0) {
1980                 dev_err(&state->i2c->dev,
1981                         "%s: Can't reset VBER registers.\n", __func__);
1982                 mb86a20s_stats_not_ready(fe);
1983                 mb86a20s_reset_frontend_cache(fe);
1984
1985                 rc = 0;         /* Status is OK */
1986                 goto error;
1987         }
1988
1989         if (status_nr >= 7) {
1990                 /* Get TMCC info*/
1991                 rc = mb86a20s_get_frontend(fe);
1992                 if (rc < 0) {
1993                         dev_err(&state->i2c->dev,
1994                                 "%s: Can't get FE TMCC data.\n", __func__);
1995                         rc = 0;         /* Status is OK */
1996                         goto error;
1997                 }
1998
1999                 /* Get statistics */
2000                 rc = mb86a20s_get_stats(fe, status_nr);
2001                 if (rc < 0 && rc != -EBUSY) {
2002                         dev_err(&state->i2c->dev,
2003                                 "%s: Can't get FE statistics.\n", __func__);
2004                         rc = 0;
2005                         goto error;
2006                 }
2007                 rc = 0; /* Don't return EBUSY to userspace */
2008         }
2009         goto ok;
2010
2011 error:
2012         mb86a20s_stats_not_ready(fe);
2013
2014 ok:
2015         if (fe->ops.i2c_gate_ctrl)
2016                 fe->ops.i2c_gate_ctrl(fe, 1);
2017
2018         return rc;
2019 }
2020
2021 static int mb86a20s_read_signal_strength_from_cache(struct dvb_frontend *fe,
2022                                                     u16 *strength)
2023 {
2024         struct dtv_frontend_properties *c = &fe->dtv_property_cache;
2025
2026
2027         *strength = c->strength.stat[0].uvalue;
2028
2029         return 0;
2030 }
2031
2032 static int mb86a20s_tune(struct dvb_frontend *fe,
2033                         bool re_tune,
2034                         unsigned int mode_flags,
2035                         unsigned int *delay,
2036                         enum fe_status *status)
2037 {
2038         struct mb86a20s_state *state = fe->demodulator_priv;
2039         int rc = 0;
2040
2041         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
2042
2043         if (re_tune)
2044                 rc = mb86a20s_set_frontend(fe);
2045
2046         if (!(mode_flags & FE_TUNE_MODE_ONESHOT))
2047                 mb86a20s_read_status_and_stats(fe, status);
2048
2049         return rc;
2050 }
2051
2052 static void mb86a20s_release(struct dvb_frontend *fe)
2053 {
2054         struct mb86a20s_state *state = fe->demodulator_priv;
2055
2056         dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
2057
2058         kfree(state);
2059 }
2060
2061 static struct dvb_frontend_ops mb86a20s_ops;
2062
2063 struct dvb_frontend *mb86a20s_attach(const struct mb86a20s_config *config,
2064                                     struct i2c_adapter *i2c)
2065 {
2066         struct mb86a20s_state *state;
2067         u8      rev;
2068
2069         dev_dbg(&i2c->dev, "%s called.\n", __func__);
2070
2071         /* allocate memory for the internal state */
2072         state = kzalloc(sizeof(struct mb86a20s_state), GFP_KERNEL);
2073         if (state == NULL) {
2074                 dev_err(&i2c->dev,
2075                         "%s: unable to allocate memory for state\n", __func__);
2076                 goto error;
2077         }
2078
2079         /* setup the state */
2080         state->config = config;
2081         state->i2c = i2c;
2082
2083         /* create dvb_frontend */
2084         memcpy(&state->frontend.ops, &mb86a20s_ops,
2085                 sizeof(struct dvb_frontend_ops));
2086         state->frontend.demodulator_priv = state;
2087
2088         /* Check if it is a mb86a20s frontend */
2089         rev = mb86a20s_readreg(state, 0);
2090
2091         if (rev == 0x13) {
2092                 dev_info(&i2c->dev,
2093                          "Detected a Fujitsu mb86a20s frontend\n");
2094         } else {
2095                 dev_dbg(&i2c->dev,
2096                         "Frontend revision %d is unknown - aborting.\n",
2097                        rev);
2098                 goto error;
2099         }
2100
2101         return &state->frontend;
2102
2103 error:
2104         kfree(state);
2105         return NULL;
2106 }
2107 EXPORT_SYMBOL(mb86a20s_attach);
2108
2109 static struct dvb_frontend_ops mb86a20s_ops = {
2110         .delsys = { SYS_ISDBT },
2111         /* Use dib8000 values per default */
2112         .info = {
2113                 .name = "Fujitsu mb86A20s",
2114                 .caps = FE_CAN_RECOVER  |
2115                         FE_CAN_FEC_1_2  | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
2116                         FE_CAN_FEC_5_6  | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
2117                         FE_CAN_QPSK     | FE_CAN_QAM_16  | FE_CAN_QAM_64 |
2118                         FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_QAM_AUTO |
2119                         FE_CAN_GUARD_INTERVAL_AUTO    | FE_CAN_HIERARCHY_AUTO,
2120                 /* Actually, those values depend on the used tuner */
2121                 .frequency_min = 45000000,
2122                 .frequency_max = 864000000,
2123                 .frequency_stepsize = 62500,
2124         },
2125
2126         .release = mb86a20s_release,
2127
2128         .init = mb86a20s_initfe,
2129         .set_frontend = mb86a20s_set_frontend,
2130         .read_status = mb86a20s_read_status_and_stats,
2131         .read_signal_strength = mb86a20s_read_signal_strength_from_cache,
2132         .tune = mb86a20s_tune,
2133 };
2134
2135 MODULE_DESCRIPTION("DVB Frontend module for Fujitsu mb86A20s hardware");
2136 MODULE_AUTHOR("Mauro Carvalho Chehab");
2137 MODULE_LICENSE("GPL");