lkdtm: fix memory leak of base
[cascardo/linux.git] / drivers / misc / lkdtm.c
1 /*
2  * Kprobe module for testing crash dumps
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2006
19  *
20  * Author: Ankita Garg <ankita@in.ibm.com>
21  *
22  * This module induces system failures at predefined crashpoints to
23  * evaluate the reliability of crash dumps obtained using different dumping
24  * solutions.
25  *
26  * It is adapted from the Linux Kernel Dump Test Tool by
27  * Fernando Luis Vazquez Cao <http://lkdtt.sourceforge.net>
28  *
29  * Debugfs support added by Simon Kagstrom <simon.kagstrom@netinsight.net>
30  *
31  * See Documentation/fault-injection/provoke-crashes.txt for instructions
32  */
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #include <linux/kernel.h>
36 #include <linux/fs.h>
37 #include <linux/module.h>
38 #include <linux/buffer_head.h>
39 #include <linux/kprobes.h>
40 #include <linux/list.h>
41 #include <linux/init.h>
42 #include <linux/interrupt.h>
43 #include <linux/hrtimer.h>
44 #include <linux/slab.h>
45 #include <scsi/scsi_cmnd.h>
46 #include <linux/debugfs.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mman.h>
49 #include <asm/cacheflush.h>
50
51 #ifdef CONFIG_IDE
52 #include <linux/ide.h>
53 #endif
54
55 /*
56  * Make sure our attempts to over run the kernel stack doesn't trigger
57  * a compiler warning when CONFIG_FRAME_WARN is set. Then make sure we
58  * recurse past the end of THREAD_SIZE by default.
59  */
60 #if defined(CONFIG_FRAME_WARN) && (CONFIG_FRAME_WARN > 0)
61 #define REC_STACK_SIZE (CONFIG_FRAME_WARN / 2)
62 #else
63 #define REC_STACK_SIZE (THREAD_SIZE / 8)
64 #endif
65 #define REC_NUM_DEFAULT ((THREAD_SIZE / REC_STACK_SIZE) * 2)
66
67 #define DEFAULT_COUNT 10
68 #define EXEC_SIZE 64
69
70 enum cname {
71         CN_INVALID,
72         CN_INT_HARDWARE_ENTRY,
73         CN_INT_HW_IRQ_EN,
74         CN_INT_TASKLET_ENTRY,
75         CN_FS_DEVRW,
76         CN_MEM_SWAPOUT,
77         CN_TIMERADD,
78         CN_SCSI_DISPATCH_CMD,
79         CN_IDE_CORE_CP,
80         CN_DIRECT,
81 };
82
83 enum ctype {
84         CT_NONE,
85         CT_PANIC,
86         CT_BUG,
87         CT_WARNING,
88         CT_EXCEPTION,
89         CT_LOOP,
90         CT_OVERFLOW,
91         CT_CORRUPT_STACK,
92         CT_UNALIGNED_LOAD_STORE_WRITE,
93         CT_OVERWRITE_ALLOCATION,
94         CT_WRITE_AFTER_FREE,
95         CT_READ_AFTER_FREE,
96         CT_WRITE_BUDDY_AFTER_FREE,
97         CT_READ_BUDDY_AFTER_FREE,
98         CT_SOFTLOCKUP,
99         CT_HARDLOCKUP,
100         CT_SPINLOCKUP,
101         CT_HUNG_TASK,
102         CT_EXEC_DATA,
103         CT_EXEC_STACK,
104         CT_EXEC_KMALLOC,
105         CT_EXEC_VMALLOC,
106         CT_EXEC_USERSPACE,
107         CT_ACCESS_USERSPACE,
108         CT_WRITE_RO,
109         CT_WRITE_RO_AFTER_INIT,
110         CT_WRITE_KERN,
111         CT_WRAP_ATOMIC
112 };
113
114 static char* cp_name[] = {
115         "INT_HARDWARE_ENTRY",
116         "INT_HW_IRQ_EN",
117         "INT_TASKLET_ENTRY",
118         "FS_DEVRW",
119         "MEM_SWAPOUT",
120         "TIMERADD",
121         "SCSI_DISPATCH_CMD",
122         "IDE_CORE_CP",
123         "DIRECT",
124 };
125
126 static char* cp_type[] = {
127         "PANIC",
128         "BUG",
129         "WARNING",
130         "EXCEPTION",
131         "LOOP",
132         "OVERFLOW",
133         "CORRUPT_STACK",
134         "UNALIGNED_LOAD_STORE_WRITE",
135         "OVERWRITE_ALLOCATION",
136         "WRITE_AFTER_FREE",
137         "READ_AFTER_FREE",
138         "WRITE_BUDDY_AFTER_FREE",
139         "READ_BUDDY_AFTER_FREE",
140         "SOFTLOCKUP",
141         "HARDLOCKUP",
142         "SPINLOCKUP",
143         "HUNG_TASK",
144         "EXEC_DATA",
145         "EXEC_STACK",
146         "EXEC_KMALLOC",
147         "EXEC_VMALLOC",
148         "EXEC_USERSPACE",
149         "ACCESS_USERSPACE",
150         "WRITE_RO",
151         "WRITE_RO_AFTER_INIT",
152         "WRITE_KERN",
153         "WRAP_ATOMIC"
154 };
155
156 static struct jprobe lkdtm;
157
158 static int lkdtm_parse_commandline(void);
159 static void lkdtm_handler(void);
160
161 static char* cpoint_name;
162 static char* cpoint_type;
163 static int cpoint_count = DEFAULT_COUNT;
164 static int recur_count = REC_NUM_DEFAULT;
165
166 static enum cname cpoint = CN_INVALID;
167 static enum ctype cptype = CT_NONE;
168 static int count = DEFAULT_COUNT;
169 static DEFINE_SPINLOCK(count_lock);
170 static DEFINE_SPINLOCK(lock_me_up);
171
172 static u8 data_area[EXEC_SIZE];
173
174 static const unsigned long rodata = 0xAA55AA55;
175 static unsigned long ro_after_init __ro_after_init = 0x55AA5500;
176
177 module_param(recur_count, int, 0644);
178 MODULE_PARM_DESC(recur_count, " Recursion level for the stack overflow test");
179 module_param(cpoint_name, charp, 0444);
180 MODULE_PARM_DESC(cpoint_name, " Crash Point, where kernel is to be crashed");
181 module_param(cpoint_type, charp, 0444);
182 MODULE_PARM_DESC(cpoint_type, " Crash Point Type, action to be taken on "\
183                                 "hitting the crash point");
184 module_param(cpoint_count, int, 0644);
185 MODULE_PARM_DESC(cpoint_count, " Crash Point Count, number of times the "\
186                                 "crash point is to be hit to trigger action");
187
188 static unsigned int jp_do_irq(unsigned int irq)
189 {
190         lkdtm_handler();
191         jprobe_return();
192         return 0;
193 }
194
195 static irqreturn_t jp_handle_irq_event(unsigned int irq,
196                                        struct irqaction *action)
197 {
198         lkdtm_handler();
199         jprobe_return();
200         return 0;
201 }
202
203 static void jp_tasklet_action(struct softirq_action *a)
204 {
205         lkdtm_handler();
206         jprobe_return();
207 }
208
209 static void jp_ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
210 {
211         lkdtm_handler();
212         jprobe_return();
213 }
214
215 struct scan_control;
216
217 static unsigned long jp_shrink_inactive_list(unsigned long max_scan,
218                                              struct zone *zone,
219                                              struct scan_control *sc)
220 {
221         lkdtm_handler();
222         jprobe_return();
223         return 0;
224 }
225
226 static int jp_hrtimer_start(struct hrtimer *timer, ktime_t tim,
227                             const enum hrtimer_mode mode)
228 {
229         lkdtm_handler();
230         jprobe_return();
231         return 0;
232 }
233
234 static int jp_scsi_dispatch_cmd(struct scsi_cmnd *cmd)
235 {
236         lkdtm_handler();
237         jprobe_return();
238         return 0;
239 }
240
241 #ifdef CONFIG_IDE
242 static int jp_generic_ide_ioctl(ide_drive_t *drive, struct file *file,
243                         struct block_device *bdev, unsigned int cmd,
244                         unsigned long arg)
245 {
246         lkdtm_handler();
247         jprobe_return();
248         return 0;
249 }
250 #endif
251
252 /* Return the crashpoint number or NONE if the name is invalid */
253 static enum ctype parse_cp_type(const char *what, size_t count)
254 {
255         int i;
256
257         for (i = 0; i < ARRAY_SIZE(cp_type); i++) {
258                 if (!strcmp(what, cp_type[i]))
259                         return i + 1;
260         }
261
262         return CT_NONE;
263 }
264
265 static const char *cp_type_to_str(enum ctype type)
266 {
267         if (type == CT_NONE || type < 0 || type > ARRAY_SIZE(cp_type))
268                 return "None";
269
270         return cp_type[type - 1];
271 }
272
273 static const char *cp_name_to_str(enum cname name)
274 {
275         if (name == CN_INVALID || name < 0 || name > ARRAY_SIZE(cp_name))
276                 return "INVALID";
277
278         return cp_name[name - 1];
279 }
280
281
282 static int lkdtm_parse_commandline(void)
283 {
284         int i;
285         unsigned long flags;
286
287         if (cpoint_count < 1 || recur_count < 1)
288                 return -EINVAL;
289
290         spin_lock_irqsave(&count_lock, flags);
291         count = cpoint_count;
292         spin_unlock_irqrestore(&count_lock, flags);
293
294         /* No special parameters */
295         if (!cpoint_type && !cpoint_name)
296                 return 0;
297
298         /* Neither or both of these need to be set */
299         if (!cpoint_type || !cpoint_name)
300                 return -EINVAL;
301
302         cptype = parse_cp_type(cpoint_type, strlen(cpoint_type));
303         if (cptype == CT_NONE)
304                 return -EINVAL;
305
306         for (i = 0; i < ARRAY_SIZE(cp_name); i++) {
307                 if (!strcmp(cpoint_name, cp_name[i])) {
308                         cpoint = i + 1;
309                         return 0;
310                 }
311         }
312
313         /* Could not find a valid crash point */
314         return -EINVAL;
315 }
316
317 static int recursive_loop(int remaining)
318 {
319         char buf[REC_STACK_SIZE];
320
321         /* Make sure compiler does not optimize this away. */
322         memset(buf, (remaining & 0xff) | 0x1, REC_STACK_SIZE);
323         if (!remaining)
324                 return 0;
325         else
326                 return recursive_loop(remaining - 1);
327 }
328
329 static void do_nothing(void)
330 {
331         return;
332 }
333
334 /* Must immediately follow do_nothing for size calculuations to work out. */
335 static void do_overwritten(void)
336 {
337         pr_info("do_overwritten wasn't overwritten!\n");
338         return;
339 }
340
341 static noinline void corrupt_stack(void)
342 {
343         /* Use default char array length that triggers stack protection. */
344         char data[8];
345
346         memset((void *)data, 0, 64);
347 }
348
349 static void noinline execute_location(void *dst)
350 {
351         void (*func)(void) = dst;
352
353         pr_info("attempting ok execution at %p\n", do_nothing);
354         do_nothing();
355
356         memcpy(dst, do_nothing, EXEC_SIZE);
357         flush_icache_range((unsigned long)dst, (unsigned long)dst + EXEC_SIZE);
358         pr_info("attempting bad execution at %p\n", func);
359         func();
360 }
361
362 static void execute_user_location(void *dst)
363 {
364         /* Intentionally crossing kernel/user memory boundary. */
365         void (*func)(void) = dst;
366
367         pr_info("attempting ok execution at %p\n", do_nothing);
368         do_nothing();
369
370         if (copy_to_user((void __user *)dst, do_nothing, EXEC_SIZE))
371                 return;
372         flush_icache_range((unsigned long)dst, (unsigned long)dst + EXEC_SIZE);
373         pr_info("attempting bad execution at %p\n", func);
374         func();
375 }
376
377 static void lkdtm_do_action(enum ctype which)
378 {
379         switch (which) {
380         case CT_PANIC:
381                 panic("dumptest");
382                 break;
383         case CT_BUG:
384                 BUG();
385                 break;
386         case CT_WARNING:
387                 WARN_ON(1);
388                 break;
389         case CT_EXCEPTION:
390                 *((int *) 0) = 0;
391                 break;
392         case CT_LOOP:
393                 for (;;)
394                         ;
395                 break;
396         case CT_OVERFLOW:
397                 (void) recursive_loop(recur_count);
398                 break;
399         case CT_CORRUPT_STACK:
400                 corrupt_stack();
401                 break;
402         case CT_UNALIGNED_LOAD_STORE_WRITE: {
403                 static u8 data[5] __attribute__((aligned(4))) = {1, 2,
404                                 3, 4, 5};
405                 u32 *p;
406                 u32 val = 0x12345678;
407
408                 p = (u32 *)(data + 1);
409                 if (*p == 0)
410                         val = 0x87654321;
411                 *p = val;
412                  break;
413         }
414         case CT_OVERWRITE_ALLOCATION: {
415                 size_t len = 1020;
416                 u32 *data = kmalloc(len, GFP_KERNEL);
417
418                 data[1024 / sizeof(u32)] = 0x12345678;
419                 kfree(data);
420                 break;
421         }
422         case CT_WRITE_AFTER_FREE: {
423                 int *base, *again;
424                 size_t len = 1024;
425                 /*
426                  * The slub allocator uses the first word to store the free
427                  * pointer in some configurations. Use the middle of the
428                  * allocation to avoid running into the freelist
429                  */
430                 size_t offset = (len / sizeof(*base)) / 2;
431
432                 base = kmalloc(len, GFP_KERNEL);
433                 pr_info("Allocated memory %p-%p\n", base, &base[offset * 2]);
434                 pr_info("Attempting bad write to freed memory at %p\n",
435                         &base[offset]);
436                 kfree(base);
437                 base[offset] = 0x0abcdef0;
438                 /* Attempt to notice the overwrite. */
439                 again = kmalloc(len, GFP_KERNEL);
440                 kfree(again);
441                 if (again != base)
442                         pr_info("Hmm, didn't get the same memory range.\n");
443
444                 break;
445         }
446         case CT_READ_AFTER_FREE: {
447                 int *base, *val, saw;
448                 size_t len = 1024;
449                 /*
450                  * The slub allocator uses the first word to store the free
451                  * pointer in some configurations. Use the middle of the
452                  * allocation to avoid running into the freelist
453                  */
454                 size_t offset = (len / sizeof(*base)) / 2;
455
456                 base = kmalloc(len, GFP_KERNEL);
457                 if (!base)
458                         break;
459
460                 val = kmalloc(len, GFP_KERNEL);
461                 if (!val) {
462                         kfree(base);
463                         break;
464                 }
465
466                 *val = 0x12345678;
467                 base[offset] = *val;
468                 pr_info("Value in memory before free: %x\n", base[offset]);
469
470                 kfree(base);
471
472                 pr_info("Attempting bad read from freed memory\n");
473                 saw = base[offset];
474                 if (saw != *val) {
475                         /* Good! Poisoning happened, so declare a win. */
476                         pr_info("Memory correctly poisoned (%x)\n", saw);
477                         BUG();
478                 }
479                 pr_info("Memory was not poisoned\n");
480
481                 kfree(val);
482                 break;
483         }
484         case CT_WRITE_BUDDY_AFTER_FREE: {
485                 unsigned long p = __get_free_page(GFP_KERNEL);
486                 if (!p)
487                         break;
488                 pr_info("Writing to the buddy page before free\n");
489                 memset((void *)p, 0x3, PAGE_SIZE);
490                 free_page(p);
491                 schedule();
492                 pr_info("Attempting bad write to the buddy page after free\n");
493                 memset((void *)p, 0x78, PAGE_SIZE);
494                 /* Attempt to notice the overwrite. */
495                 p = __get_free_page(GFP_KERNEL);
496                 free_page(p);
497                 schedule();
498
499                 break;
500         }
501         case CT_READ_BUDDY_AFTER_FREE: {
502                 unsigned long p = __get_free_page(GFP_KERNEL);
503                 int saw, *val;
504                 int *base;
505
506                 if (!p)
507                         break;
508
509                 val = kmalloc(1024, GFP_KERNEL);
510                 if (!val)
511                         break;
512
513                 base = (int *)p;
514
515                 *val = 0x12345678;
516                 base[0] = *val;
517                 pr_info("Value in memory before free: %x\n", base[0]);
518                 free_page(p);
519                 pr_info("Attempting to read from freed memory\n");
520                 saw = base[0];
521                 if (saw != *val) {
522                         /* Good! Poisoning happened, so declare a win. */
523                         pr_info("Memory correctly poisoned (%x)\n", saw);
524                         BUG();
525                 }
526                 pr_info("Buddy page was not poisoned\n");
527
528                 kfree(val);
529                 break;
530         }
531         case CT_SOFTLOCKUP:
532                 preempt_disable();
533                 for (;;)
534                         cpu_relax();
535                 break;
536         case CT_HARDLOCKUP:
537                 local_irq_disable();
538                 for (;;)
539                         cpu_relax();
540                 break;
541         case CT_SPINLOCKUP:
542                 /* Must be called twice to trigger. */
543                 spin_lock(&lock_me_up);
544                 /* Let sparse know we intended to exit holding the lock. */
545                 __release(&lock_me_up);
546                 break;
547         case CT_HUNG_TASK:
548                 set_current_state(TASK_UNINTERRUPTIBLE);
549                 schedule();
550                 break;
551         case CT_EXEC_DATA:
552                 execute_location(data_area);
553                 break;
554         case CT_EXEC_STACK: {
555                 u8 stack_area[EXEC_SIZE];
556                 execute_location(stack_area);
557                 break;
558         }
559         case CT_EXEC_KMALLOC: {
560                 u32 *kmalloc_area = kmalloc(EXEC_SIZE, GFP_KERNEL);
561                 execute_location(kmalloc_area);
562                 kfree(kmalloc_area);
563                 break;
564         }
565         case CT_EXEC_VMALLOC: {
566                 u32 *vmalloc_area = vmalloc(EXEC_SIZE);
567                 execute_location(vmalloc_area);
568                 vfree(vmalloc_area);
569                 break;
570         }
571         case CT_EXEC_USERSPACE: {
572                 unsigned long user_addr;
573
574                 user_addr = vm_mmap(NULL, 0, PAGE_SIZE,
575                                     PROT_READ | PROT_WRITE | PROT_EXEC,
576                                     MAP_ANONYMOUS | MAP_PRIVATE, 0);
577                 if (user_addr >= TASK_SIZE) {
578                         pr_warn("Failed to allocate user memory\n");
579                         return;
580                 }
581                 execute_user_location((void *)user_addr);
582                 vm_munmap(user_addr, PAGE_SIZE);
583                 break;
584         }
585         case CT_ACCESS_USERSPACE: {
586                 unsigned long user_addr, tmp = 0;
587                 unsigned long *ptr;
588
589                 user_addr = vm_mmap(NULL, 0, PAGE_SIZE,
590                                     PROT_READ | PROT_WRITE | PROT_EXEC,
591                                     MAP_ANONYMOUS | MAP_PRIVATE, 0);
592                 if (user_addr >= TASK_SIZE) {
593                         pr_warn("Failed to allocate user memory\n");
594                         return;
595                 }
596
597                 if (copy_to_user((void __user *)user_addr, &tmp, sizeof(tmp))) {
598                         pr_warn("copy_to_user failed\n");
599                         vm_munmap(user_addr, PAGE_SIZE);
600                         return;
601                 }
602
603                 ptr = (unsigned long *)user_addr;
604
605                 pr_info("attempting bad read at %p\n", ptr);
606                 tmp = *ptr;
607                 tmp += 0xc0dec0de;
608
609                 pr_info("attempting bad write at %p\n", ptr);
610                 *ptr = tmp;
611
612                 vm_munmap(user_addr, PAGE_SIZE);
613
614                 break;
615         }
616         case CT_WRITE_RO: {
617                 /* Explicitly cast away "const" for the test. */
618                 unsigned long *ptr = (unsigned long *)&rodata;
619
620                 pr_info("attempting bad rodata write at %p\n", ptr);
621                 *ptr ^= 0xabcd1234;
622
623                 break;
624         }
625         case CT_WRITE_RO_AFTER_INIT: {
626                 unsigned long *ptr = &ro_after_init;
627
628                 /*
629                  * Verify we were written to during init. Since an Oops
630                  * is considered a "success", a failure is to just skip the
631                  * real test.
632                  */
633                 if ((*ptr & 0xAA) != 0xAA) {
634                         pr_info("%p was NOT written during init!?\n", ptr);
635                         break;
636                 }
637
638                 pr_info("attempting bad ro_after_init write at %p\n", ptr);
639                 *ptr ^= 0xabcd1234;
640
641                 break;
642         }
643         case CT_WRITE_KERN: {
644                 size_t size;
645                 unsigned char *ptr;
646
647                 size = (unsigned long)do_overwritten -
648                        (unsigned long)do_nothing;
649                 ptr = (unsigned char *)do_overwritten;
650
651                 pr_info("attempting bad %zu byte write at %p\n", size, ptr);
652                 memcpy(ptr, (unsigned char *)do_nothing, size);
653                 flush_icache_range((unsigned long)ptr,
654                                    (unsigned long)(ptr + size));
655
656                 do_overwritten();
657                 break;
658         }
659         case CT_WRAP_ATOMIC: {
660                 atomic_t under = ATOMIC_INIT(INT_MIN);
661                 atomic_t over = ATOMIC_INIT(INT_MAX);
662
663                 pr_info("attempting atomic underflow\n");
664                 atomic_dec(&under);
665                 pr_info("attempting atomic overflow\n");
666                 atomic_inc(&over);
667
668                 return;
669         }
670         case CT_NONE:
671         default:
672                 break;
673         }
674
675 }
676
677 static void lkdtm_handler(void)
678 {
679         unsigned long flags;
680         bool do_it = false;
681
682         spin_lock_irqsave(&count_lock, flags);
683         count--;
684         pr_info("Crash point %s of type %s hit, trigger in %d rounds\n",
685                 cp_name_to_str(cpoint), cp_type_to_str(cptype), count);
686
687         if (count == 0) {
688                 do_it = true;
689                 count = cpoint_count;
690         }
691         spin_unlock_irqrestore(&count_lock, flags);
692
693         if (do_it)
694                 lkdtm_do_action(cptype);
695 }
696
697 static int lkdtm_register_cpoint(enum cname which)
698 {
699         int ret;
700
701         cpoint = CN_INVALID;
702         if (lkdtm.entry != NULL)
703                 unregister_jprobe(&lkdtm);
704
705         switch (which) {
706         case CN_DIRECT:
707                 lkdtm_do_action(cptype);
708                 return 0;
709         case CN_INT_HARDWARE_ENTRY:
710                 lkdtm.kp.symbol_name = "do_IRQ";
711                 lkdtm.entry = (kprobe_opcode_t*) jp_do_irq;
712                 break;
713         case CN_INT_HW_IRQ_EN:
714                 lkdtm.kp.symbol_name = "handle_IRQ_event";
715                 lkdtm.entry = (kprobe_opcode_t*) jp_handle_irq_event;
716                 break;
717         case CN_INT_TASKLET_ENTRY:
718                 lkdtm.kp.symbol_name = "tasklet_action";
719                 lkdtm.entry = (kprobe_opcode_t*) jp_tasklet_action;
720                 break;
721         case CN_FS_DEVRW:
722                 lkdtm.kp.symbol_name = "ll_rw_block";
723                 lkdtm.entry = (kprobe_opcode_t*) jp_ll_rw_block;
724                 break;
725         case CN_MEM_SWAPOUT:
726                 lkdtm.kp.symbol_name = "shrink_inactive_list";
727                 lkdtm.entry = (kprobe_opcode_t*) jp_shrink_inactive_list;
728                 break;
729         case CN_TIMERADD:
730                 lkdtm.kp.symbol_name = "hrtimer_start";
731                 lkdtm.entry = (kprobe_opcode_t*) jp_hrtimer_start;
732                 break;
733         case CN_SCSI_DISPATCH_CMD:
734                 lkdtm.kp.symbol_name = "scsi_dispatch_cmd";
735                 lkdtm.entry = (kprobe_opcode_t*) jp_scsi_dispatch_cmd;
736                 break;
737         case CN_IDE_CORE_CP:
738 #ifdef CONFIG_IDE
739                 lkdtm.kp.symbol_name = "generic_ide_ioctl";
740                 lkdtm.entry = (kprobe_opcode_t*) jp_generic_ide_ioctl;
741 #else
742                 pr_info("Crash point not available\n");
743                 return -EINVAL;
744 #endif
745                 break;
746         default:
747                 pr_info("Invalid Crash Point\n");
748                 return -EINVAL;
749         }
750
751         cpoint = which;
752         if ((ret = register_jprobe(&lkdtm)) < 0) {
753                 pr_info("Couldn't register jprobe\n");
754                 cpoint = CN_INVALID;
755         }
756
757         return ret;
758 }
759
760 static ssize_t do_register_entry(enum cname which, struct file *f,
761                 const char __user *user_buf, size_t count, loff_t *off)
762 {
763         char *buf;
764         int err;
765
766         if (count >= PAGE_SIZE)
767                 return -EINVAL;
768
769         buf = (char *)__get_free_page(GFP_KERNEL);
770         if (!buf)
771                 return -ENOMEM;
772         if (copy_from_user(buf, user_buf, count)) {
773                 free_page((unsigned long) buf);
774                 return -EFAULT;
775         }
776         /* NULL-terminate and remove enter */
777         buf[count] = '\0';
778         strim(buf);
779
780         cptype = parse_cp_type(buf, count);
781         free_page((unsigned long) buf);
782
783         if (cptype == CT_NONE)
784                 return -EINVAL;
785
786         err = lkdtm_register_cpoint(which);
787         if (err < 0)
788                 return err;
789
790         *off += count;
791
792         return count;
793 }
794
795 /* Generic read callback that just prints out the available crash types */
796 static ssize_t lkdtm_debugfs_read(struct file *f, char __user *user_buf,
797                 size_t count, loff_t *off)
798 {
799         char *buf;
800         int i, n, out;
801
802         buf = (char *)__get_free_page(GFP_KERNEL);
803         if (buf == NULL)
804                 return -ENOMEM;
805
806         n = snprintf(buf, PAGE_SIZE, "Available crash types:\n");
807         for (i = 0; i < ARRAY_SIZE(cp_type); i++)
808                 n += snprintf(buf + n, PAGE_SIZE - n, "%s\n", cp_type[i]);
809         buf[n] = '\0';
810
811         out = simple_read_from_buffer(user_buf, count, off,
812                                       buf, n);
813         free_page((unsigned long) buf);
814
815         return out;
816 }
817
818 static int lkdtm_debugfs_open(struct inode *inode, struct file *file)
819 {
820         return 0;
821 }
822
823
824 static ssize_t int_hardware_entry(struct file *f, const char __user *buf,
825                 size_t count, loff_t *off)
826 {
827         return do_register_entry(CN_INT_HARDWARE_ENTRY, f, buf, count, off);
828 }
829
830 static ssize_t int_hw_irq_en(struct file *f, const char __user *buf,
831                 size_t count, loff_t *off)
832 {
833         return do_register_entry(CN_INT_HW_IRQ_EN, f, buf, count, off);
834 }
835
836 static ssize_t int_tasklet_entry(struct file *f, const char __user *buf,
837                 size_t count, loff_t *off)
838 {
839         return do_register_entry(CN_INT_TASKLET_ENTRY, f, buf, count, off);
840 }
841
842 static ssize_t fs_devrw_entry(struct file *f, const char __user *buf,
843                 size_t count, loff_t *off)
844 {
845         return do_register_entry(CN_FS_DEVRW, f, buf, count, off);
846 }
847
848 static ssize_t mem_swapout_entry(struct file *f, const char __user *buf,
849                 size_t count, loff_t *off)
850 {
851         return do_register_entry(CN_MEM_SWAPOUT, f, buf, count, off);
852 }
853
854 static ssize_t timeradd_entry(struct file *f, const char __user *buf,
855                 size_t count, loff_t *off)
856 {
857         return do_register_entry(CN_TIMERADD, f, buf, count, off);
858 }
859
860 static ssize_t scsi_dispatch_cmd_entry(struct file *f,
861                 const char __user *buf, size_t count, loff_t *off)
862 {
863         return do_register_entry(CN_SCSI_DISPATCH_CMD, f, buf, count, off);
864 }
865
866 static ssize_t ide_core_cp_entry(struct file *f, const char __user *buf,
867                 size_t count, loff_t *off)
868 {
869         return do_register_entry(CN_IDE_CORE_CP, f, buf, count, off);
870 }
871
872 /* Special entry to just crash directly. Available without KPROBEs */
873 static ssize_t direct_entry(struct file *f, const char __user *user_buf,
874                 size_t count, loff_t *off)
875 {
876         enum ctype type;
877         char *buf;
878
879         if (count >= PAGE_SIZE)
880                 return -EINVAL;
881         if (count < 1)
882                 return -EINVAL;
883
884         buf = (char *)__get_free_page(GFP_KERNEL);
885         if (!buf)
886                 return -ENOMEM;
887         if (copy_from_user(buf, user_buf, count)) {
888                 free_page((unsigned long) buf);
889                 return -EFAULT;
890         }
891         /* NULL-terminate and remove enter */
892         buf[count] = '\0';
893         strim(buf);
894
895         type = parse_cp_type(buf, count);
896         free_page((unsigned long) buf);
897         if (type == CT_NONE)
898                 return -EINVAL;
899
900         pr_info("Performing direct entry %s\n", cp_type_to_str(type));
901         lkdtm_do_action(type);
902         *off += count;
903
904         return count;
905 }
906
907 struct crash_entry {
908         const char *name;
909         const struct file_operations fops;
910 };
911
912 static const struct crash_entry crash_entries[] = {
913         {"DIRECT", {.read = lkdtm_debugfs_read,
914                         .llseek = generic_file_llseek,
915                         .open = lkdtm_debugfs_open,
916                         .write = direct_entry} },
917         {"INT_HARDWARE_ENTRY", {.read = lkdtm_debugfs_read,
918                         .llseek = generic_file_llseek,
919                         .open = lkdtm_debugfs_open,
920                         .write = int_hardware_entry} },
921         {"INT_HW_IRQ_EN", {.read = lkdtm_debugfs_read,
922                         .llseek = generic_file_llseek,
923                         .open = lkdtm_debugfs_open,
924                         .write = int_hw_irq_en} },
925         {"INT_TASKLET_ENTRY", {.read = lkdtm_debugfs_read,
926                         .llseek = generic_file_llseek,
927                         .open = lkdtm_debugfs_open,
928                         .write = int_tasklet_entry} },
929         {"FS_DEVRW", {.read = lkdtm_debugfs_read,
930                         .llseek = generic_file_llseek,
931                         .open = lkdtm_debugfs_open,
932                         .write = fs_devrw_entry} },
933         {"MEM_SWAPOUT", {.read = lkdtm_debugfs_read,
934                         .llseek = generic_file_llseek,
935                         .open = lkdtm_debugfs_open,
936                         .write = mem_swapout_entry} },
937         {"TIMERADD", {.read = lkdtm_debugfs_read,
938                         .llseek = generic_file_llseek,
939                         .open = lkdtm_debugfs_open,
940                         .write = timeradd_entry} },
941         {"SCSI_DISPATCH_CMD", {.read = lkdtm_debugfs_read,
942                         .llseek = generic_file_llseek,
943                         .open = lkdtm_debugfs_open,
944                         .write = scsi_dispatch_cmd_entry} },
945         {"IDE_CORE_CP", {.read = lkdtm_debugfs_read,
946                         .llseek = generic_file_llseek,
947                         .open = lkdtm_debugfs_open,
948                         .write = ide_core_cp_entry} },
949 };
950
951 static struct dentry *lkdtm_debugfs_root;
952
953 static int __init lkdtm_module_init(void)
954 {
955         int ret = -EINVAL;
956         int n_debugfs_entries = 1; /* Assume only the direct entry */
957         int i;
958
959         /* Make sure we can write to __ro_after_init values during __init */
960         ro_after_init |= 0xAA;
961
962         /* Register debugfs interface */
963         lkdtm_debugfs_root = debugfs_create_dir("provoke-crash", NULL);
964         if (!lkdtm_debugfs_root) {
965                 pr_err("creating root dir failed\n");
966                 return -ENODEV;
967         }
968
969 #ifdef CONFIG_KPROBES
970         n_debugfs_entries = ARRAY_SIZE(crash_entries);
971 #endif
972
973         for (i = 0; i < n_debugfs_entries; i++) {
974                 const struct crash_entry *cur = &crash_entries[i];
975                 struct dentry *de;
976
977                 de = debugfs_create_file(cur->name, 0644, lkdtm_debugfs_root,
978                                 NULL, &cur->fops);
979                 if (de == NULL) {
980                         pr_err("could not create %s\n", cur->name);
981                         goto out_err;
982                 }
983         }
984
985         if (lkdtm_parse_commandline() == -EINVAL) {
986                 pr_info("Invalid command\n");
987                 goto out_err;
988         }
989
990         if (cpoint != CN_INVALID && cptype != CT_NONE) {
991                 ret = lkdtm_register_cpoint(cpoint);
992                 if (ret < 0) {
993                         pr_info("Invalid crash point %d\n", cpoint);
994                         goto out_err;
995                 }
996                 pr_info("Crash point %s of type %s registered\n",
997                         cpoint_name, cpoint_type);
998         } else {
999                 pr_info("No crash points registered, enable through debugfs\n");
1000         }
1001
1002         return 0;
1003
1004 out_err:
1005         debugfs_remove_recursive(lkdtm_debugfs_root);
1006         return ret;
1007 }
1008
1009 static void __exit lkdtm_module_exit(void)
1010 {
1011         debugfs_remove_recursive(lkdtm_debugfs_root);
1012
1013         unregister_jprobe(&lkdtm);
1014         pr_info("Crash point unregistered\n");
1015 }
1016
1017 module_init(lkdtm_module_init);
1018 module_exit(lkdtm_module_exit);
1019
1020 MODULE_LICENSE("GPL");
1021 MODULE_DESCRIPTION("Kprobe module for testing crash dumps");