wext: Fix 32 bit iwpriv compatibility issue with 64 bit Kernel
[cascardo/linux.git] / drivers / mtd / nand / bf5xx_nand.c
1 /* linux/drivers/mtd/nand/bf5xx_nand.c
2  *
3  * Copyright 2006-2008 Analog Devices Inc.
4  *      http://blackfin.uclinux.org/
5  *      Bryan Wu <bryan.wu@analog.com>
6  *
7  * Blackfin BF5xx on-chip NAND flash controller driver
8  *
9  * Derived from drivers/mtd/nand/s3c2410.c
10  * Copyright (c) 2007 Ben Dooks <ben@simtec.co.uk>
11  *
12  * Derived from drivers/mtd/nand/cafe.c
13  * Copyright © 2006 Red Hat, Inc.
14  * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
15  *
16  * Changelog:
17  *      12-Jun-2007  Bryan Wu:  Initial version
18  *      18-Jul-2007  Bryan Wu:
19  *              - ECC_HW and ECC_SW supported
20  *              - DMA supported in ECC_HW
21  *              - YAFFS tested as rootfs in both ECC_HW and ECC_SW
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  *
33  * You should have received a copy of the GNU General Public License
34  * along with this program; if not, write to the Free Software
35  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
36 */
37
38 #include <linux/module.h>
39 #include <linux/types.h>
40 #include <linux/kernel.h>
41 #include <linux/string.h>
42 #include <linux/ioport.h>
43 #include <linux/platform_device.h>
44 #include <linux/delay.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/err.h>
47 #include <linux/slab.h>
48 #include <linux/io.h>
49 #include <linux/bitops.h>
50
51 #include <linux/mtd/mtd.h>
52 #include <linux/mtd/nand.h>
53 #include <linux/mtd/nand_ecc.h>
54 #include <linux/mtd/partitions.h>
55
56 #include <asm/blackfin.h>
57 #include <asm/dma.h>
58 #include <asm/cacheflush.h>
59 #include <asm/nand.h>
60 #include <asm/portmux.h>
61
62 #define DRV_NAME        "bf5xx-nand"
63 #define DRV_VERSION     "1.2"
64 #define DRV_AUTHOR      "Bryan Wu <bryan.wu@analog.com>"
65 #define DRV_DESC        "BF5xx on-chip NAND FLash Controller Driver"
66
67 /* NFC_STAT Masks */
68 #define NBUSY       0x01  /* Not Busy */
69 #define WB_FULL     0x02  /* Write Buffer Full */
70 #define PG_WR_STAT  0x04  /* Page Write Pending */
71 #define PG_RD_STAT  0x08  /* Page Read Pending */
72 #define WB_EMPTY    0x10  /* Write Buffer Empty */
73
74 /* NFC_IRQSTAT Masks */
75 #define NBUSYIRQ    0x01  /* Not Busy IRQ */
76 #define WB_OVF      0x02  /* Write Buffer Overflow */
77 #define WB_EDGE     0x04  /* Write Buffer Edge Detect */
78 #define RD_RDY      0x08  /* Read Data Ready */
79 #define WR_DONE     0x10  /* Page Write Done */
80
81 /* NFC_RST Masks */
82 #define ECC_RST     0x01  /* ECC (and NFC counters) Reset */
83
84 /* NFC_PGCTL Masks */
85 #define PG_RD_START 0x01  /* Page Read Start */
86 #define PG_WR_START 0x02  /* Page Write Start */
87
88 #ifdef CONFIG_MTD_NAND_BF5XX_HWECC
89 static int hardware_ecc = 1;
90 #else
91 static int hardware_ecc;
92 #endif
93
94 static const unsigned short bfin_nfc_pin_req[] =
95         {P_NAND_CE,
96          P_NAND_RB,
97          P_NAND_D0,
98          P_NAND_D1,
99          P_NAND_D2,
100          P_NAND_D3,
101          P_NAND_D4,
102          P_NAND_D5,
103          P_NAND_D6,
104          P_NAND_D7,
105          P_NAND_WE,
106          P_NAND_RE,
107          P_NAND_CLE,
108          P_NAND_ALE,
109          0};
110
111 #ifdef CONFIG_MTD_NAND_BF5XX_BOOTROM_ECC
112 static struct nand_ecclayout bootrom_ecclayout = {
113         .eccbytes = 24,
114         .eccpos = {
115                 0x8 * 0, 0x8 * 0 + 1, 0x8 * 0 + 2,
116                 0x8 * 1, 0x8 * 1 + 1, 0x8 * 1 + 2,
117                 0x8 * 2, 0x8 * 2 + 1, 0x8 * 2 + 2,
118                 0x8 * 3, 0x8 * 3 + 1, 0x8 * 3 + 2,
119                 0x8 * 4, 0x8 * 4 + 1, 0x8 * 4 + 2,
120                 0x8 * 5, 0x8 * 5 + 1, 0x8 * 5 + 2,
121                 0x8 * 6, 0x8 * 6 + 1, 0x8 * 6 + 2,
122                 0x8 * 7, 0x8 * 7 + 1, 0x8 * 7 + 2
123         },
124         .oobfree = {
125                 { 0x8 * 0 + 3, 5 },
126                 { 0x8 * 1 + 3, 5 },
127                 { 0x8 * 2 + 3, 5 },
128                 { 0x8 * 3 + 3, 5 },
129                 { 0x8 * 4 + 3, 5 },
130                 { 0x8 * 5 + 3, 5 },
131                 { 0x8 * 6 + 3, 5 },
132                 { 0x8 * 7 + 3, 5 },
133         }
134 };
135 #endif
136
137 /*
138  * Data structures for bf5xx nand flash controller driver
139  */
140
141 /* bf5xx nand info */
142 struct bf5xx_nand_info {
143         /* mtd info */
144         struct nand_hw_control          controller;
145         struct nand_chip                chip;
146
147         /* platform info */
148         struct bf5xx_nand_platform      *platform;
149
150         /* device info */
151         struct device                   *device;
152
153         /* DMA stuff */
154         struct completion               dma_completion;
155 };
156
157 /*
158  * Conversion functions
159  */
160 static struct bf5xx_nand_info *mtd_to_nand_info(struct mtd_info *mtd)
161 {
162         return container_of(mtd_to_nand(mtd), struct bf5xx_nand_info,
163                             chip);
164 }
165
166 static struct bf5xx_nand_info *to_nand_info(struct platform_device *pdev)
167 {
168         return platform_get_drvdata(pdev);
169 }
170
171 static struct bf5xx_nand_platform *to_nand_plat(struct platform_device *pdev)
172 {
173         return dev_get_platdata(&pdev->dev);
174 }
175
176 /*
177  * struct nand_chip interface function pointers
178  */
179
180 /*
181  * bf5xx_nand_hwcontrol
182  *
183  * Issue command and address cycles to the chip
184  */
185 static void bf5xx_nand_hwcontrol(struct mtd_info *mtd, int cmd,
186                                    unsigned int ctrl)
187 {
188         if (cmd == NAND_CMD_NONE)
189                 return;
190
191         while (bfin_read_NFC_STAT() & WB_FULL)
192                 cpu_relax();
193
194         if (ctrl & NAND_CLE)
195                 bfin_write_NFC_CMD(cmd);
196         else if (ctrl & NAND_ALE)
197                 bfin_write_NFC_ADDR(cmd);
198         SSYNC();
199 }
200
201 /*
202  * bf5xx_nand_devready()
203  *
204  * returns 0 if the nand is busy, 1 if it is ready
205  */
206 static int bf5xx_nand_devready(struct mtd_info *mtd)
207 {
208         unsigned short val = bfin_read_NFC_STAT();
209
210         if ((val & NBUSY) == NBUSY)
211                 return 1;
212         else
213                 return 0;
214 }
215
216 /*
217  * ECC functions
218  * These allow the bf5xx to use the controller's ECC
219  * generator block to ECC the data as it passes through
220  */
221
222 /*
223  * ECC error correction function
224  */
225 static int bf5xx_nand_correct_data_256(struct mtd_info *mtd, u_char *dat,
226                                         u_char *read_ecc, u_char *calc_ecc)
227 {
228         struct bf5xx_nand_info *info = mtd_to_nand_info(mtd);
229         u32 syndrome[5];
230         u32 calced, stored;
231         int i;
232         unsigned short failing_bit, failing_byte;
233         u_char data;
234
235         calced = calc_ecc[0] | (calc_ecc[1] << 8) | (calc_ecc[2] << 16);
236         stored = read_ecc[0] | (read_ecc[1] << 8) | (read_ecc[2] << 16);
237
238         syndrome[0] = (calced ^ stored);
239
240         /*
241          * syndrome 0: all zero
242          * No error in data
243          * No action
244          */
245         if (!syndrome[0] || !calced || !stored)
246                 return 0;
247
248         /*
249          * sysdrome 0: only one bit is one
250          * ECC data was incorrect
251          * No action
252          */
253         if (hweight32(syndrome[0]) == 1) {
254                 dev_err(info->device, "ECC data was incorrect!\n");
255                 return -EBADMSG;
256         }
257
258         syndrome[1] = (calced & 0x7FF) ^ (stored & 0x7FF);
259         syndrome[2] = (calced & 0x7FF) ^ ((calced >> 11) & 0x7FF);
260         syndrome[3] = (stored & 0x7FF) ^ ((stored >> 11) & 0x7FF);
261         syndrome[4] = syndrome[2] ^ syndrome[3];
262
263         for (i = 0; i < 5; i++)
264                 dev_info(info->device, "syndrome[%d] 0x%08x\n", i, syndrome[i]);
265
266         dev_info(info->device,
267                 "calced[0x%08x], stored[0x%08x]\n",
268                 calced, stored);
269
270         /*
271          * sysdrome 0: exactly 11 bits are one, each parity
272          * and parity' pair is 1 & 0 or 0 & 1.
273          * 1-bit correctable error
274          * Correct the error
275          */
276         if (hweight32(syndrome[0]) == 11 && syndrome[4] == 0x7FF) {
277                 dev_info(info->device,
278                         "1-bit correctable error, correct it.\n");
279                 dev_info(info->device,
280                         "syndrome[1] 0x%08x\n", syndrome[1]);
281
282                 failing_bit = syndrome[1] & 0x7;
283                 failing_byte = syndrome[1] >> 0x3;
284                 data = *(dat + failing_byte);
285                 data = data ^ (0x1 << failing_bit);
286                 *(dat + failing_byte) = data;
287
288                 return 1;
289         }
290
291         /*
292          * sysdrome 0: random data
293          * More than 1-bit error, non-correctable error
294          * Discard data, mark bad block
295          */
296         dev_err(info->device,
297                 "More than 1-bit error, non-correctable error.\n");
298         dev_err(info->device,
299                 "Please discard data, mark bad block\n");
300
301         return -EBADMSG;
302 }
303
304 static int bf5xx_nand_correct_data(struct mtd_info *mtd, u_char *dat,
305                                         u_char *read_ecc, u_char *calc_ecc)
306 {
307         struct nand_chip *chip = mtd_to_nand(mtd);
308         int ret, bitflips = 0;
309
310         ret = bf5xx_nand_correct_data_256(mtd, dat, read_ecc, calc_ecc);
311         if (ret < 0)
312                 return ret;
313
314         bitflips = ret;
315
316         /* If ecc size is 512, correct second 256 bytes */
317         if (chip->ecc.size == 512) {
318                 dat += 256;
319                 read_ecc += 3;
320                 calc_ecc += 3;
321                 ret = bf5xx_nand_correct_data_256(mtd, dat, read_ecc, calc_ecc);
322                 if (ret < 0)
323                         return ret;
324
325                 bitflips += ret;
326         }
327
328         return bitflips;
329 }
330
331 static void bf5xx_nand_enable_hwecc(struct mtd_info *mtd, int mode)
332 {
333         return;
334 }
335
336 static int bf5xx_nand_calculate_ecc(struct mtd_info *mtd,
337                 const u_char *dat, u_char *ecc_code)
338 {
339         struct bf5xx_nand_info *info = mtd_to_nand_info(mtd);
340         struct nand_chip *chip = mtd_to_nand(mtd);
341         u16 ecc0, ecc1;
342         u32 code[2];
343         u8 *p;
344
345         /* first 3 bytes ECC code for 256 page size */
346         ecc0 = bfin_read_NFC_ECC0();
347         ecc1 = bfin_read_NFC_ECC1();
348
349         code[0] = (ecc0 & 0x7ff) | ((ecc1 & 0x7ff) << 11);
350
351         dev_dbg(info->device, "returning ecc 0x%08x\n", code[0]);
352
353         p = (u8 *) code;
354         memcpy(ecc_code, p, 3);
355
356         /* second 3 bytes ECC code for 512 ecc size */
357         if (chip->ecc.size == 512) {
358                 ecc0 = bfin_read_NFC_ECC2();
359                 ecc1 = bfin_read_NFC_ECC3();
360                 code[1] = (ecc0 & 0x7ff) | ((ecc1 & 0x7ff) << 11);
361
362                 /* second 3 bytes in ecc_code for second 256
363                  * bytes of 512 page size
364                  */
365                 p = (u8 *) (code + 1);
366                 memcpy((ecc_code + 3), p, 3);
367                 dev_dbg(info->device, "returning ecc 0x%08x\n", code[1]);
368         }
369
370         return 0;
371 }
372
373 /*
374  * PIO mode for buffer writing and reading
375  */
376 static void bf5xx_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
377 {
378         int i;
379         unsigned short val;
380
381         /*
382          * Data reads are requested by first writing to NFC_DATA_RD
383          * and then reading back from NFC_READ.
384          */
385         for (i = 0; i < len; i++) {
386                 while (bfin_read_NFC_STAT() & WB_FULL)
387                         cpu_relax();
388
389                 /* Contents do not matter */
390                 bfin_write_NFC_DATA_RD(0x0000);
391                 SSYNC();
392
393                 while ((bfin_read_NFC_IRQSTAT() & RD_RDY) != RD_RDY)
394                         cpu_relax();
395
396                 buf[i] = bfin_read_NFC_READ();
397
398                 val = bfin_read_NFC_IRQSTAT();
399                 val |= RD_RDY;
400                 bfin_write_NFC_IRQSTAT(val);
401                 SSYNC();
402         }
403 }
404
405 static uint8_t bf5xx_nand_read_byte(struct mtd_info *mtd)
406 {
407         uint8_t val;
408
409         bf5xx_nand_read_buf(mtd, &val, 1);
410
411         return val;
412 }
413
414 static void bf5xx_nand_write_buf(struct mtd_info *mtd,
415                                 const uint8_t *buf, int len)
416 {
417         int i;
418
419         for (i = 0; i < len; i++) {
420                 while (bfin_read_NFC_STAT() & WB_FULL)
421                         cpu_relax();
422
423                 bfin_write_NFC_DATA_WR(buf[i]);
424                 SSYNC();
425         }
426 }
427
428 static void bf5xx_nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
429 {
430         int i;
431         u16 *p = (u16 *) buf;
432         len >>= 1;
433
434         /*
435          * Data reads are requested by first writing to NFC_DATA_RD
436          * and then reading back from NFC_READ.
437          */
438         bfin_write_NFC_DATA_RD(0x5555);
439
440         SSYNC();
441
442         for (i = 0; i < len; i++)
443                 p[i] = bfin_read_NFC_READ();
444 }
445
446 static void bf5xx_nand_write_buf16(struct mtd_info *mtd,
447                                 const uint8_t *buf, int len)
448 {
449         int i;
450         u16 *p = (u16 *) buf;
451         len >>= 1;
452
453         for (i = 0; i < len; i++)
454                 bfin_write_NFC_DATA_WR(p[i]);
455
456         SSYNC();
457 }
458
459 /*
460  * DMA functions for buffer writing and reading
461  */
462 static irqreturn_t bf5xx_nand_dma_irq(int irq, void *dev_id)
463 {
464         struct bf5xx_nand_info *info = dev_id;
465
466         clear_dma_irqstat(CH_NFC);
467         disable_dma(CH_NFC);
468         complete(&info->dma_completion);
469
470         return IRQ_HANDLED;
471 }
472
473 static void bf5xx_nand_dma_rw(struct mtd_info *mtd,
474                                 uint8_t *buf, int is_read)
475 {
476         struct bf5xx_nand_info *info = mtd_to_nand_info(mtd);
477         struct nand_chip *chip = mtd_to_nand(mtd);
478         unsigned short val;
479
480         dev_dbg(info->device, " mtd->%p, buf->%p, is_read %d\n",
481                         mtd, buf, is_read);
482
483         /*
484          * Before starting a dma transfer, be sure to invalidate/flush
485          * the cache over the address range of your DMA buffer to
486          * prevent cache coherency problems. Otherwise very subtle bugs
487          * can be introduced to your driver.
488          */
489         if (is_read)
490                 invalidate_dcache_range((unsigned int)buf,
491                                 (unsigned int)(buf + chip->ecc.size));
492         else
493                 flush_dcache_range((unsigned int)buf,
494                                 (unsigned int)(buf + chip->ecc.size));
495
496         /*
497          * This register must be written before each page is
498          * transferred to generate the correct ECC register
499          * values.
500          */
501         bfin_write_NFC_RST(ECC_RST);
502         SSYNC();
503         while (bfin_read_NFC_RST() & ECC_RST)
504                 cpu_relax();
505
506         disable_dma(CH_NFC);
507         clear_dma_irqstat(CH_NFC);
508
509         /* setup DMA register with Blackfin DMA API */
510         set_dma_config(CH_NFC, 0x0);
511         set_dma_start_addr(CH_NFC, (unsigned long) buf);
512
513         /* The DMAs have different size on BF52x and BF54x */
514 #ifdef CONFIG_BF52x
515         set_dma_x_count(CH_NFC, (chip->ecc.size >> 1));
516         set_dma_x_modify(CH_NFC, 2);
517         val = DI_EN | WDSIZE_16;
518 #endif
519
520 #ifdef CONFIG_BF54x
521         set_dma_x_count(CH_NFC, (chip->ecc.size >> 2));
522         set_dma_x_modify(CH_NFC, 4);
523         val = DI_EN | WDSIZE_32;
524 #endif
525         /* setup write or read operation */
526         if (is_read)
527                 val |= WNR;
528         set_dma_config(CH_NFC, val);
529         enable_dma(CH_NFC);
530
531         /* Start PAGE read/write operation */
532         if (is_read)
533                 bfin_write_NFC_PGCTL(PG_RD_START);
534         else
535                 bfin_write_NFC_PGCTL(PG_WR_START);
536         wait_for_completion(&info->dma_completion);
537 }
538
539 static void bf5xx_nand_dma_read_buf(struct mtd_info *mtd,
540                                         uint8_t *buf, int len)
541 {
542         struct bf5xx_nand_info *info = mtd_to_nand_info(mtd);
543         struct nand_chip *chip = mtd_to_nand(mtd);
544
545         dev_dbg(info->device, "mtd->%p, buf->%p, int %d\n", mtd, buf, len);
546
547         if (len == chip->ecc.size)
548                 bf5xx_nand_dma_rw(mtd, buf, 1);
549         else
550                 bf5xx_nand_read_buf(mtd, buf, len);
551 }
552
553 static void bf5xx_nand_dma_write_buf(struct mtd_info *mtd,
554                                 const uint8_t *buf, int len)
555 {
556         struct bf5xx_nand_info *info = mtd_to_nand_info(mtd);
557         struct nand_chip *chip = mtd_to_nand(mtd);
558
559         dev_dbg(info->device, "mtd->%p, buf->%p, len %d\n", mtd, buf, len);
560
561         if (len == chip->ecc.size)
562                 bf5xx_nand_dma_rw(mtd, (uint8_t *)buf, 0);
563         else
564                 bf5xx_nand_write_buf(mtd, buf, len);
565 }
566
567 static int bf5xx_nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
568                 uint8_t *buf, int oob_required, int page)
569 {
570         bf5xx_nand_read_buf(mtd, buf, mtd->writesize);
571         bf5xx_nand_read_buf(mtd, chip->oob_poi, mtd->oobsize);
572
573         return 0;
574 }
575
576 static int bf5xx_nand_write_page_raw(struct mtd_info *mtd,
577                 struct nand_chip *chip, const uint8_t *buf, int oob_required,
578                 int page)
579 {
580         bf5xx_nand_write_buf(mtd, buf, mtd->writesize);
581         bf5xx_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
582
583         return 0;
584 }
585
586 /*
587  * System initialization functions
588  */
589 static int bf5xx_nand_dma_init(struct bf5xx_nand_info *info)
590 {
591         int ret;
592
593         /* Do not use dma */
594         if (!hardware_ecc)
595                 return 0;
596
597         init_completion(&info->dma_completion);
598
599         /* Request NFC DMA channel */
600         ret = request_dma(CH_NFC, "BF5XX NFC driver");
601         if (ret < 0) {
602                 dev_err(info->device, " unable to get DMA channel\n");
603                 return ret;
604         }
605
606 #ifdef CONFIG_BF54x
607         /* Setup DMAC1 channel mux for NFC which shared with SDH */
608         bfin_write_DMAC1_PERIMUX(bfin_read_DMAC1_PERIMUX() & ~1);
609         SSYNC();
610 #endif
611
612         set_dma_callback(CH_NFC, bf5xx_nand_dma_irq, info);
613
614         /* Turn off the DMA channel first */
615         disable_dma(CH_NFC);
616         return 0;
617 }
618
619 static void bf5xx_nand_dma_remove(struct bf5xx_nand_info *info)
620 {
621         /* Free NFC DMA channel */
622         if (hardware_ecc)
623                 free_dma(CH_NFC);
624 }
625
626 /*
627  * BF5XX NFC hardware initialization
628  *  - pin mux setup
629  *  - clear interrupt status
630  */
631 static int bf5xx_nand_hw_init(struct bf5xx_nand_info *info)
632 {
633         int err = 0;
634         unsigned short val;
635         struct bf5xx_nand_platform *plat = info->platform;
636
637         /* setup NFC_CTL register */
638         dev_info(info->device,
639                 "data_width=%d, wr_dly=%d, rd_dly=%d\n",
640                 (plat->data_width ? 16 : 8),
641                 plat->wr_dly, plat->rd_dly);
642
643         val = (1 << NFC_PG_SIZE_OFFSET) |
644                 (plat->data_width << NFC_NWIDTH_OFFSET) |
645                 (plat->rd_dly << NFC_RDDLY_OFFSET) |
646                 (plat->wr_dly << NFC_WRDLY_OFFSET);
647         dev_dbg(info->device, "NFC_CTL is 0x%04x\n", val);
648
649         bfin_write_NFC_CTL(val);
650         SSYNC();
651
652         /* clear interrupt status */
653         bfin_write_NFC_IRQMASK(0x0);
654         SSYNC();
655         val = bfin_read_NFC_IRQSTAT();
656         bfin_write_NFC_IRQSTAT(val);
657         SSYNC();
658
659         /* DMA initialization  */
660         if (bf5xx_nand_dma_init(info))
661                 err = -ENXIO;
662
663         return err;
664 }
665
666 /*
667  * Device management interface
668  */
669 static int bf5xx_nand_add_partition(struct bf5xx_nand_info *info)
670 {
671         struct mtd_info *mtd = nand_to_mtd(&info->chip);
672         struct mtd_partition *parts = info->platform->partitions;
673         int nr = info->platform->nr_partitions;
674
675         return mtd_device_register(mtd, parts, nr);
676 }
677
678 static int bf5xx_nand_remove(struct platform_device *pdev)
679 {
680         struct bf5xx_nand_info *info = to_nand_info(pdev);
681
682         /* first thing we need to do is release all our mtds
683          * and their partitions, then go through freeing the
684          * resources used
685          */
686         nand_release(nand_to_mtd(&info->chip));
687
688         peripheral_free_list(bfin_nfc_pin_req);
689         bf5xx_nand_dma_remove(info);
690
691         return 0;
692 }
693
694 static int bf5xx_nand_scan(struct mtd_info *mtd)
695 {
696         struct nand_chip *chip = mtd_to_nand(mtd);
697         int ret;
698
699         ret = nand_scan_ident(mtd, 1, NULL);
700         if (ret)
701                 return ret;
702
703         if (hardware_ecc) {
704                 /*
705                  * for nand with page size > 512B, think it as several sections with 512B
706                  */
707                 if (likely(mtd->writesize >= 512)) {
708                         chip->ecc.size = 512;
709                         chip->ecc.bytes = 6;
710                         chip->ecc.strength = 2;
711                 } else {
712                         chip->ecc.size = 256;
713                         chip->ecc.bytes = 3;
714                         chip->ecc.strength = 1;
715                         bfin_write_NFC_CTL(bfin_read_NFC_CTL() & ~(1 << NFC_PG_SIZE_OFFSET));
716                         SSYNC();
717                 }
718         }
719
720         return  nand_scan_tail(mtd);
721 }
722
723 /*
724  * bf5xx_nand_probe
725  *
726  * called by device layer when it finds a device matching
727  * one our driver can handled. This code checks to see if
728  * it can allocate all necessary resources then calls the
729  * nand layer to look for devices
730  */
731 static int bf5xx_nand_probe(struct platform_device *pdev)
732 {
733         struct bf5xx_nand_platform *plat = to_nand_plat(pdev);
734         struct bf5xx_nand_info *info = NULL;
735         struct nand_chip *chip = NULL;
736         struct mtd_info *mtd = NULL;
737         int err = 0;
738
739         dev_dbg(&pdev->dev, "(%p)\n", pdev);
740
741         if (!plat) {
742                 dev_err(&pdev->dev, "no platform specific information\n");
743                 return -EINVAL;
744         }
745
746         if (peripheral_request_list(bfin_nfc_pin_req, DRV_NAME)) {
747                 dev_err(&pdev->dev, "requesting Peripherals failed\n");
748                 return -EFAULT;
749         }
750
751         info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
752         if (info == NULL) {
753                 err = -ENOMEM;
754                 goto out_err;
755         }
756
757         platform_set_drvdata(pdev, info);
758
759         spin_lock_init(&info->controller.lock);
760         init_waitqueue_head(&info->controller.wq);
761
762         info->device     = &pdev->dev;
763         info->platform   = plat;
764
765         /* initialise chip data struct */
766         chip = &info->chip;
767         mtd = nand_to_mtd(&info->chip);
768
769         if (plat->data_width)
770                 chip->options |= NAND_BUSWIDTH_16;
771
772         chip->options |= NAND_CACHEPRG | NAND_SKIP_BBTSCAN;
773
774         chip->read_buf = (plat->data_width) ?
775                 bf5xx_nand_read_buf16 : bf5xx_nand_read_buf;
776         chip->write_buf = (plat->data_width) ?
777                 bf5xx_nand_write_buf16 : bf5xx_nand_write_buf;
778
779         chip->read_byte    = bf5xx_nand_read_byte;
780
781         chip->cmd_ctrl     = bf5xx_nand_hwcontrol;
782         chip->dev_ready    = bf5xx_nand_devready;
783
784         nand_set_controller_data(chip, mtd);
785         chip->controller   = &info->controller;
786
787         chip->IO_ADDR_R    = (void __iomem *) NFC_READ;
788         chip->IO_ADDR_W    = (void __iomem *) NFC_DATA_WR;
789
790         chip->chip_delay   = 0;
791
792         /* initialise mtd info data struct */
793         mtd->dev.parent = &pdev->dev;
794
795         /* initialise the hardware */
796         err = bf5xx_nand_hw_init(info);
797         if (err)
798                 goto out_err;
799
800         /* setup hardware ECC data struct */
801         if (hardware_ecc) {
802 #ifdef CONFIG_MTD_NAND_BF5XX_BOOTROM_ECC
803                 chip->ecc.layout = &bootrom_ecclayout;
804 #endif
805                 chip->read_buf      = bf5xx_nand_dma_read_buf;
806                 chip->write_buf     = bf5xx_nand_dma_write_buf;
807                 chip->ecc.calculate = bf5xx_nand_calculate_ecc;
808                 chip->ecc.correct   = bf5xx_nand_correct_data;
809                 chip->ecc.mode      = NAND_ECC_HW;
810                 chip->ecc.hwctl     = bf5xx_nand_enable_hwecc;
811                 chip->ecc.read_page_raw = bf5xx_nand_read_page_raw;
812                 chip->ecc.write_page_raw = bf5xx_nand_write_page_raw;
813         } else {
814                 chip->ecc.mode      = NAND_ECC_SOFT;
815         }
816
817         /* scan hardware nand chip and setup mtd info data struct */
818         if (bf5xx_nand_scan(mtd)) {
819                 err = -ENXIO;
820                 goto out_err_nand_scan;
821         }
822
823 #ifdef CONFIG_MTD_NAND_BF5XX_BOOTROM_ECC
824         chip->badblockpos = 63;
825 #endif
826
827         /* add NAND partition */
828         bf5xx_nand_add_partition(info);
829
830         dev_dbg(&pdev->dev, "initialised ok\n");
831         return 0;
832
833 out_err_nand_scan:
834         bf5xx_nand_dma_remove(info);
835 out_err:
836         peripheral_free_list(bfin_nfc_pin_req);
837
838         return err;
839 }
840
841 /* driver device registration */
842 static struct platform_driver bf5xx_nand_driver = {
843         .probe          = bf5xx_nand_probe,
844         .remove         = bf5xx_nand_remove,
845         .driver         = {
846                 .name   = DRV_NAME,
847         },
848 };
849
850 module_platform_driver(bf5xx_nand_driver);
851
852 MODULE_LICENSE("GPL");
853 MODULE_AUTHOR(DRV_AUTHOR);
854 MODULE_DESCRIPTION(DRV_DESC);
855 MODULE_ALIAS("platform:" DRV_NAME);