Merge tag 'iwlwifi-next-for-kalle-2016-03-02' of https://git.kernel.org/pub/scm/linux...
[cascardo/linux.git] / drivers / mtd / nand / omap2.c
1 /*
2  * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3  * Copyright © 2004 Micron Technology Inc.
4  * Copyright © 2004 David Brownell
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10
11 #include <linux/platform_device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/delay.h>
15 #include <linux/module.h>
16 #include <linux/interrupt.h>
17 #include <linux/jiffies.h>
18 #include <linux/sched.h>
19 #include <linux/mtd/mtd.h>
20 #include <linux/mtd/nand.h>
21 #include <linux/mtd/partitions.h>
22 #include <linux/omap-dma.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/of.h>
26 #include <linux/of_device.h>
27
28 #include <linux/mtd/nand_bch.h>
29 #include <linux/platform_data/elm.h>
30
31 #include <linux/platform_data/mtd-nand-omap2.h>
32
33 #define DRIVER_NAME     "omap2-nand"
34 #define OMAP_NAND_TIMEOUT_MS    5000
35
36 #define NAND_Ecc_P1e            (1 << 0)
37 #define NAND_Ecc_P2e            (1 << 1)
38 #define NAND_Ecc_P4e            (1 << 2)
39 #define NAND_Ecc_P8e            (1 << 3)
40 #define NAND_Ecc_P16e           (1 << 4)
41 #define NAND_Ecc_P32e           (1 << 5)
42 #define NAND_Ecc_P64e           (1 << 6)
43 #define NAND_Ecc_P128e          (1 << 7)
44 #define NAND_Ecc_P256e          (1 << 8)
45 #define NAND_Ecc_P512e          (1 << 9)
46 #define NAND_Ecc_P1024e         (1 << 10)
47 #define NAND_Ecc_P2048e         (1 << 11)
48
49 #define NAND_Ecc_P1o            (1 << 16)
50 #define NAND_Ecc_P2o            (1 << 17)
51 #define NAND_Ecc_P4o            (1 << 18)
52 #define NAND_Ecc_P8o            (1 << 19)
53 #define NAND_Ecc_P16o           (1 << 20)
54 #define NAND_Ecc_P32o           (1 << 21)
55 #define NAND_Ecc_P64o           (1 << 22)
56 #define NAND_Ecc_P128o          (1 << 23)
57 #define NAND_Ecc_P256o          (1 << 24)
58 #define NAND_Ecc_P512o          (1 << 25)
59 #define NAND_Ecc_P1024o         (1 << 26)
60 #define NAND_Ecc_P2048o         (1 << 27)
61
62 #define TF(value)       (value ? 1 : 0)
63
64 #define P2048e(a)       (TF(a & NAND_Ecc_P2048e)        << 0)
65 #define P2048o(a)       (TF(a & NAND_Ecc_P2048o)        << 1)
66 #define P1e(a)          (TF(a & NAND_Ecc_P1e)           << 2)
67 #define P1o(a)          (TF(a & NAND_Ecc_P1o)           << 3)
68 #define P2e(a)          (TF(a & NAND_Ecc_P2e)           << 4)
69 #define P2o(a)          (TF(a & NAND_Ecc_P2o)           << 5)
70 #define P4e(a)          (TF(a & NAND_Ecc_P4e)           << 6)
71 #define P4o(a)          (TF(a & NAND_Ecc_P4o)           << 7)
72
73 #define P8e(a)          (TF(a & NAND_Ecc_P8e)           << 0)
74 #define P8o(a)          (TF(a & NAND_Ecc_P8o)           << 1)
75 #define P16e(a)         (TF(a & NAND_Ecc_P16e)          << 2)
76 #define P16o(a)         (TF(a & NAND_Ecc_P16o)          << 3)
77 #define P32e(a)         (TF(a & NAND_Ecc_P32e)          << 4)
78 #define P32o(a)         (TF(a & NAND_Ecc_P32o)          << 5)
79 #define P64e(a)         (TF(a & NAND_Ecc_P64e)          << 6)
80 #define P64o(a)         (TF(a & NAND_Ecc_P64o)          << 7)
81
82 #define P128e(a)        (TF(a & NAND_Ecc_P128e)         << 0)
83 #define P128o(a)        (TF(a & NAND_Ecc_P128o)         << 1)
84 #define P256e(a)        (TF(a & NAND_Ecc_P256e)         << 2)
85 #define P256o(a)        (TF(a & NAND_Ecc_P256o)         << 3)
86 #define P512e(a)        (TF(a & NAND_Ecc_P512e)         << 4)
87 #define P512o(a)        (TF(a & NAND_Ecc_P512o)         << 5)
88 #define P1024e(a)       (TF(a & NAND_Ecc_P1024e)        << 6)
89 #define P1024o(a)       (TF(a & NAND_Ecc_P1024o)        << 7)
90
91 #define P8e_s(a)        (TF(a & NAND_Ecc_P8e)           << 0)
92 #define P8o_s(a)        (TF(a & NAND_Ecc_P8o)           << 1)
93 #define P16e_s(a)       (TF(a & NAND_Ecc_P16e)          << 2)
94 #define P16o_s(a)       (TF(a & NAND_Ecc_P16o)          << 3)
95 #define P1e_s(a)        (TF(a & NAND_Ecc_P1e)           << 4)
96 #define P1o_s(a)        (TF(a & NAND_Ecc_P1o)           << 5)
97 #define P2e_s(a)        (TF(a & NAND_Ecc_P2e)           << 6)
98 #define P2o_s(a)        (TF(a & NAND_Ecc_P2o)           << 7)
99
100 #define P4e_s(a)        (TF(a & NAND_Ecc_P4e)           << 0)
101 #define P4o_s(a)        (TF(a & NAND_Ecc_P4o)           << 1)
102
103 #define PREFETCH_CONFIG1_CS_SHIFT       24
104 #define ECC_CONFIG_CS_SHIFT             1
105 #define CS_MASK                         0x7
106 #define ENABLE_PREFETCH                 (0x1 << 7)
107 #define DMA_MPU_MODE_SHIFT              2
108 #define ECCSIZE0_SHIFT                  12
109 #define ECCSIZE1_SHIFT                  22
110 #define ECC1RESULTSIZE                  0x1
111 #define ECCCLEAR                        0x100
112 #define ECC1                            0x1
113 #define PREFETCH_FIFOTHRESHOLD_MAX      0x40
114 #define PREFETCH_FIFOTHRESHOLD(val)     ((val) << 8)
115 #define PREFETCH_STATUS_COUNT(val)      (val & 0x00003fff)
116 #define PREFETCH_STATUS_FIFO_CNT(val)   ((val >> 24) & 0x7F)
117 #define STATUS_BUFF_EMPTY               0x00000001
118
119 #define OMAP24XX_DMA_GPMC               4
120
121 #define SECTOR_BYTES            512
122 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
123 #define BCH4_BIT_PAD            4
124
125 /* GPMC ecc engine settings for read */
126 #define BCH_WRAPMODE_1          1       /* BCH wrap mode 1 */
127 #define BCH8R_ECC_SIZE0         0x1a    /* ecc_size0 = 26 */
128 #define BCH8R_ECC_SIZE1         0x2     /* ecc_size1 = 2 */
129 #define BCH4R_ECC_SIZE0         0xd     /* ecc_size0 = 13 */
130 #define BCH4R_ECC_SIZE1         0x3     /* ecc_size1 = 3 */
131
132 /* GPMC ecc engine settings for write */
133 #define BCH_WRAPMODE_6          6       /* BCH wrap mode 6 */
134 #define BCH_ECC_SIZE0           0x0     /* ecc_size0 = 0, no oob protection */
135 #define BCH_ECC_SIZE1           0x20    /* ecc_size1 = 32 */
136
137 #define BADBLOCK_MARKER_LENGTH          2
138
139 static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
140                                 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
141                                 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
142                                 0x07, 0x0e};
143 static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
144         0xac, 0x6b, 0xff, 0x99, 0x7b};
145 static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
146
147 /* Shared among all NAND instances to synchronize access to the ECC Engine */
148 static struct nand_hw_control omap_gpmc_controller = {
149         .lock = __SPIN_LOCK_UNLOCKED(omap_gpmc_controller.lock),
150         .wq = __WAIT_QUEUE_HEAD_INITIALIZER(omap_gpmc_controller.wq),
151 };
152
153 struct omap_nand_info {
154         struct omap_nand_platform_data  *pdata;
155         struct nand_chip                nand;
156         struct platform_device          *pdev;
157
158         int                             gpmc_cs;
159         unsigned long                   phys_base;
160         enum omap_ecc                   ecc_opt;
161         struct completion               comp;
162         struct dma_chan                 *dma;
163         int                             gpmc_irq_fifo;
164         int                             gpmc_irq_count;
165         enum {
166                 OMAP_NAND_IO_READ = 0,  /* read */
167                 OMAP_NAND_IO_WRITE,     /* write */
168         } iomode;
169         u_char                          *buf;
170         int                                     buf_len;
171         struct gpmc_nand_regs           reg;
172         /* generated at runtime depending on ECC algorithm and layout selected */
173         struct nand_ecclayout           oobinfo;
174         /* fields specific for BCHx_HW ECC scheme */
175         struct device                   *elm_dev;
176         struct device_node              *of_node;
177 };
178
179 static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd)
180 {
181         return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand);
182 }
183
184 /**
185  * omap_prefetch_enable - configures and starts prefetch transfer
186  * @cs: cs (chip select) number
187  * @fifo_th: fifo threshold to be used for read/ write
188  * @dma_mode: dma mode enable (1) or disable (0)
189  * @u32_count: number of bytes to be transferred
190  * @is_write: prefetch read(0) or write post(1) mode
191  */
192 static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
193         unsigned int u32_count, int is_write, struct omap_nand_info *info)
194 {
195         u32 val;
196
197         if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
198                 return -1;
199
200         if (readl(info->reg.gpmc_prefetch_control))
201                 return -EBUSY;
202
203         /* Set the amount of bytes to be prefetched */
204         writel(u32_count, info->reg.gpmc_prefetch_config2);
205
206         /* Set dma/mpu mode, the prefetch read / post write and
207          * enable the engine. Set which cs is has requested for.
208          */
209         val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
210                 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
211                 (dma_mode << DMA_MPU_MODE_SHIFT) | (0x1 & is_write));
212         writel(val, info->reg.gpmc_prefetch_config1);
213
214         /*  Start the prefetch engine */
215         writel(0x1, info->reg.gpmc_prefetch_control);
216
217         return 0;
218 }
219
220 /**
221  * omap_prefetch_reset - disables and stops the prefetch engine
222  */
223 static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
224 {
225         u32 config1;
226
227         /* check if the same module/cs is trying to reset */
228         config1 = readl(info->reg.gpmc_prefetch_config1);
229         if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
230                 return -EINVAL;
231
232         /* Stop the PFPW engine */
233         writel(0x0, info->reg.gpmc_prefetch_control);
234
235         /* Reset/disable the PFPW engine */
236         writel(0x0, info->reg.gpmc_prefetch_config1);
237
238         return 0;
239 }
240
241 /**
242  * omap_hwcontrol - hardware specific access to control-lines
243  * @mtd: MTD device structure
244  * @cmd: command to device
245  * @ctrl:
246  * NAND_NCE: bit 0 -> don't care
247  * NAND_CLE: bit 1 -> Command Latch
248  * NAND_ALE: bit 2 -> Address Latch
249  *
250  * NOTE: boards may use different bits for these!!
251  */
252 static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
253 {
254         struct omap_nand_info *info = mtd_to_omap(mtd);
255
256         if (cmd != NAND_CMD_NONE) {
257                 if (ctrl & NAND_CLE)
258                         writeb(cmd, info->reg.gpmc_nand_command);
259
260                 else if (ctrl & NAND_ALE)
261                         writeb(cmd, info->reg.gpmc_nand_address);
262
263                 else /* NAND_NCE */
264                         writeb(cmd, info->reg.gpmc_nand_data);
265         }
266 }
267
268 /**
269  * omap_read_buf8 - read data from NAND controller into buffer
270  * @mtd: MTD device structure
271  * @buf: buffer to store date
272  * @len: number of bytes to read
273  */
274 static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
275 {
276         struct nand_chip *nand = mtd_to_nand(mtd);
277
278         ioread8_rep(nand->IO_ADDR_R, buf, len);
279 }
280
281 /**
282  * omap_write_buf8 - write buffer to NAND controller
283  * @mtd: MTD device structure
284  * @buf: data buffer
285  * @len: number of bytes to write
286  */
287 static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
288 {
289         struct omap_nand_info *info = mtd_to_omap(mtd);
290         u_char *p = (u_char *)buf;
291         u32     status = 0;
292
293         while (len--) {
294                 iowrite8(*p++, info->nand.IO_ADDR_W);
295                 /* wait until buffer is available for write */
296                 do {
297                         status = readl(info->reg.gpmc_status) &
298                                         STATUS_BUFF_EMPTY;
299                 } while (!status);
300         }
301 }
302
303 /**
304  * omap_read_buf16 - read data from NAND controller into buffer
305  * @mtd: MTD device structure
306  * @buf: buffer to store date
307  * @len: number of bytes to read
308  */
309 static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
310 {
311         struct nand_chip *nand = mtd_to_nand(mtd);
312
313         ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
314 }
315
316 /**
317  * omap_write_buf16 - write buffer to NAND controller
318  * @mtd: MTD device structure
319  * @buf: data buffer
320  * @len: number of bytes to write
321  */
322 static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
323 {
324         struct omap_nand_info *info = mtd_to_omap(mtd);
325         u16 *p = (u16 *) buf;
326         u32     status = 0;
327         /* FIXME try bursts of writesw() or DMA ... */
328         len >>= 1;
329
330         while (len--) {
331                 iowrite16(*p++, info->nand.IO_ADDR_W);
332                 /* wait until buffer is available for write */
333                 do {
334                         status = readl(info->reg.gpmc_status) &
335                                         STATUS_BUFF_EMPTY;
336                 } while (!status);
337         }
338 }
339
340 /**
341  * omap_read_buf_pref - read data from NAND controller into buffer
342  * @mtd: MTD device structure
343  * @buf: buffer to store date
344  * @len: number of bytes to read
345  */
346 static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
347 {
348         struct omap_nand_info *info = mtd_to_omap(mtd);
349         uint32_t r_count = 0;
350         int ret = 0;
351         u32 *p = (u32 *)buf;
352
353         /* take care of subpage reads */
354         if (len % 4) {
355                 if (info->nand.options & NAND_BUSWIDTH_16)
356                         omap_read_buf16(mtd, buf, len % 4);
357                 else
358                         omap_read_buf8(mtd, buf, len % 4);
359                 p = (u32 *) (buf + len % 4);
360                 len -= len % 4;
361         }
362
363         /* configure and start prefetch transfer */
364         ret = omap_prefetch_enable(info->gpmc_cs,
365                         PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
366         if (ret) {
367                 /* PFPW engine is busy, use cpu copy method */
368                 if (info->nand.options & NAND_BUSWIDTH_16)
369                         omap_read_buf16(mtd, (u_char *)p, len);
370                 else
371                         omap_read_buf8(mtd, (u_char *)p, len);
372         } else {
373                 do {
374                         r_count = readl(info->reg.gpmc_prefetch_status);
375                         r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
376                         r_count = r_count >> 2;
377                         ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
378                         p += r_count;
379                         len -= r_count << 2;
380                 } while (len);
381                 /* disable and stop the PFPW engine */
382                 omap_prefetch_reset(info->gpmc_cs, info);
383         }
384 }
385
386 /**
387  * omap_write_buf_pref - write buffer to NAND controller
388  * @mtd: MTD device structure
389  * @buf: data buffer
390  * @len: number of bytes to write
391  */
392 static void omap_write_buf_pref(struct mtd_info *mtd,
393                                         const u_char *buf, int len)
394 {
395         struct omap_nand_info *info = mtd_to_omap(mtd);
396         uint32_t w_count = 0;
397         int i = 0, ret = 0;
398         u16 *p = (u16 *)buf;
399         unsigned long tim, limit;
400         u32 val;
401
402         /* take care of subpage writes */
403         if (len % 2 != 0) {
404                 writeb(*buf, info->nand.IO_ADDR_W);
405                 p = (u16 *)(buf + 1);
406                 len--;
407         }
408
409         /*  configure and start prefetch transfer */
410         ret = omap_prefetch_enable(info->gpmc_cs,
411                         PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
412         if (ret) {
413                 /* PFPW engine is busy, use cpu copy method */
414                 if (info->nand.options & NAND_BUSWIDTH_16)
415                         omap_write_buf16(mtd, (u_char *)p, len);
416                 else
417                         omap_write_buf8(mtd, (u_char *)p, len);
418         } else {
419                 while (len) {
420                         w_count = readl(info->reg.gpmc_prefetch_status);
421                         w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
422                         w_count = w_count >> 1;
423                         for (i = 0; (i < w_count) && len; i++, len -= 2)
424                                 iowrite16(*p++, info->nand.IO_ADDR_W);
425                 }
426                 /* wait for data to flushed-out before reset the prefetch */
427                 tim = 0;
428                 limit = (loops_per_jiffy *
429                                         msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
430                 do {
431                         cpu_relax();
432                         val = readl(info->reg.gpmc_prefetch_status);
433                         val = PREFETCH_STATUS_COUNT(val);
434                 } while (val && (tim++ < limit));
435
436                 /* disable and stop the PFPW engine */
437                 omap_prefetch_reset(info->gpmc_cs, info);
438         }
439 }
440
441 /*
442  * omap_nand_dma_callback: callback on the completion of dma transfer
443  * @data: pointer to completion data structure
444  */
445 static void omap_nand_dma_callback(void *data)
446 {
447         complete((struct completion *) data);
448 }
449
450 /*
451  * omap_nand_dma_transfer: configure and start dma transfer
452  * @mtd: MTD device structure
453  * @addr: virtual address in RAM of source/destination
454  * @len: number of data bytes to be transferred
455  * @is_write: flag for read/write operation
456  */
457 static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
458                                         unsigned int len, int is_write)
459 {
460         struct omap_nand_info *info = mtd_to_omap(mtd);
461         struct dma_async_tx_descriptor *tx;
462         enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
463                                                         DMA_FROM_DEVICE;
464         struct scatterlist sg;
465         unsigned long tim, limit;
466         unsigned n;
467         int ret;
468         u32 val;
469
470         if (addr >= high_memory) {
471                 struct page *p1;
472
473                 if (((size_t)addr & PAGE_MASK) !=
474                         ((size_t)(addr + len - 1) & PAGE_MASK))
475                         goto out_copy;
476                 p1 = vmalloc_to_page(addr);
477                 if (!p1)
478                         goto out_copy;
479                 addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
480         }
481
482         sg_init_one(&sg, addr, len);
483         n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
484         if (n == 0) {
485                 dev_err(&info->pdev->dev,
486                         "Couldn't DMA map a %d byte buffer\n", len);
487                 goto out_copy;
488         }
489
490         tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
491                 is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
492                 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
493         if (!tx)
494                 goto out_copy_unmap;
495
496         tx->callback = omap_nand_dma_callback;
497         tx->callback_param = &info->comp;
498         dmaengine_submit(tx);
499
500         /*  configure and start prefetch transfer */
501         ret = omap_prefetch_enable(info->gpmc_cs,
502                 PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
503         if (ret)
504                 /* PFPW engine is busy, use cpu copy method */
505                 goto out_copy_unmap;
506
507         init_completion(&info->comp);
508         dma_async_issue_pending(info->dma);
509
510         /* setup and start DMA using dma_addr */
511         wait_for_completion(&info->comp);
512         tim = 0;
513         limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
514
515         do {
516                 cpu_relax();
517                 val = readl(info->reg.gpmc_prefetch_status);
518                 val = PREFETCH_STATUS_COUNT(val);
519         } while (val && (tim++ < limit));
520
521         /* disable and stop the PFPW engine */
522         omap_prefetch_reset(info->gpmc_cs, info);
523
524         dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
525         return 0;
526
527 out_copy_unmap:
528         dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
529 out_copy:
530         if (info->nand.options & NAND_BUSWIDTH_16)
531                 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
532                         : omap_write_buf16(mtd, (u_char *) addr, len);
533         else
534                 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
535                         : omap_write_buf8(mtd, (u_char *) addr, len);
536         return 0;
537 }
538
539 /**
540  * omap_read_buf_dma_pref - read data from NAND controller into buffer
541  * @mtd: MTD device structure
542  * @buf: buffer to store date
543  * @len: number of bytes to read
544  */
545 static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
546 {
547         if (len <= mtd->oobsize)
548                 omap_read_buf_pref(mtd, buf, len);
549         else
550                 /* start transfer in DMA mode */
551                 omap_nand_dma_transfer(mtd, buf, len, 0x0);
552 }
553
554 /**
555  * omap_write_buf_dma_pref - write buffer to NAND controller
556  * @mtd: MTD device structure
557  * @buf: data buffer
558  * @len: number of bytes to write
559  */
560 static void omap_write_buf_dma_pref(struct mtd_info *mtd,
561                                         const u_char *buf, int len)
562 {
563         if (len <= mtd->oobsize)
564                 omap_write_buf_pref(mtd, buf, len);
565         else
566                 /* start transfer in DMA mode */
567                 omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
568 }
569
570 /*
571  * omap_nand_irq - GPMC irq handler
572  * @this_irq: gpmc irq number
573  * @dev: omap_nand_info structure pointer is passed here
574  */
575 static irqreturn_t omap_nand_irq(int this_irq, void *dev)
576 {
577         struct omap_nand_info *info = (struct omap_nand_info *) dev;
578         u32 bytes;
579
580         bytes = readl(info->reg.gpmc_prefetch_status);
581         bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
582         bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
583         if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
584                 if (this_irq == info->gpmc_irq_count)
585                         goto done;
586
587                 if (info->buf_len && (info->buf_len < bytes))
588                         bytes = info->buf_len;
589                 else if (!info->buf_len)
590                         bytes = 0;
591                 iowrite32_rep(info->nand.IO_ADDR_W,
592                                                 (u32 *)info->buf, bytes >> 2);
593                 info->buf = info->buf + bytes;
594                 info->buf_len -= bytes;
595
596         } else {
597                 ioread32_rep(info->nand.IO_ADDR_R,
598                                                 (u32 *)info->buf, bytes >> 2);
599                 info->buf = info->buf + bytes;
600
601                 if (this_irq == info->gpmc_irq_count)
602                         goto done;
603         }
604
605         return IRQ_HANDLED;
606
607 done:
608         complete(&info->comp);
609
610         disable_irq_nosync(info->gpmc_irq_fifo);
611         disable_irq_nosync(info->gpmc_irq_count);
612
613         return IRQ_HANDLED;
614 }
615
616 /*
617  * omap_read_buf_irq_pref - read data from NAND controller into buffer
618  * @mtd: MTD device structure
619  * @buf: buffer to store date
620  * @len: number of bytes to read
621  */
622 static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
623 {
624         struct omap_nand_info *info = mtd_to_omap(mtd);
625         int ret = 0;
626
627         if (len <= mtd->oobsize) {
628                 omap_read_buf_pref(mtd, buf, len);
629                 return;
630         }
631
632         info->iomode = OMAP_NAND_IO_READ;
633         info->buf = buf;
634         init_completion(&info->comp);
635
636         /*  configure and start prefetch transfer */
637         ret = omap_prefetch_enable(info->gpmc_cs,
638                         PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
639         if (ret)
640                 /* PFPW engine is busy, use cpu copy method */
641                 goto out_copy;
642
643         info->buf_len = len;
644
645         enable_irq(info->gpmc_irq_count);
646         enable_irq(info->gpmc_irq_fifo);
647
648         /* waiting for read to complete */
649         wait_for_completion(&info->comp);
650
651         /* disable and stop the PFPW engine */
652         omap_prefetch_reset(info->gpmc_cs, info);
653         return;
654
655 out_copy:
656         if (info->nand.options & NAND_BUSWIDTH_16)
657                 omap_read_buf16(mtd, buf, len);
658         else
659                 omap_read_buf8(mtd, buf, len);
660 }
661
662 /*
663  * omap_write_buf_irq_pref - write buffer to NAND controller
664  * @mtd: MTD device structure
665  * @buf: data buffer
666  * @len: number of bytes to write
667  */
668 static void omap_write_buf_irq_pref(struct mtd_info *mtd,
669                                         const u_char *buf, int len)
670 {
671         struct omap_nand_info *info = mtd_to_omap(mtd);
672         int ret = 0;
673         unsigned long tim, limit;
674         u32 val;
675
676         if (len <= mtd->oobsize) {
677                 omap_write_buf_pref(mtd, buf, len);
678                 return;
679         }
680
681         info->iomode = OMAP_NAND_IO_WRITE;
682         info->buf = (u_char *) buf;
683         init_completion(&info->comp);
684
685         /* configure and start prefetch transfer : size=24 */
686         ret = omap_prefetch_enable(info->gpmc_cs,
687                 (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
688         if (ret)
689                 /* PFPW engine is busy, use cpu copy method */
690                 goto out_copy;
691
692         info->buf_len = len;
693
694         enable_irq(info->gpmc_irq_count);
695         enable_irq(info->gpmc_irq_fifo);
696
697         /* waiting for write to complete */
698         wait_for_completion(&info->comp);
699
700         /* wait for data to flushed-out before reset the prefetch */
701         tim = 0;
702         limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
703         do {
704                 val = readl(info->reg.gpmc_prefetch_status);
705                 val = PREFETCH_STATUS_COUNT(val);
706                 cpu_relax();
707         } while (val && (tim++ < limit));
708
709         /* disable and stop the PFPW engine */
710         omap_prefetch_reset(info->gpmc_cs, info);
711         return;
712
713 out_copy:
714         if (info->nand.options & NAND_BUSWIDTH_16)
715                 omap_write_buf16(mtd, buf, len);
716         else
717                 omap_write_buf8(mtd, buf, len);
718 }
719
720 /**
721  * gen_true_ecc - This function will generate true ECC value
722  * @ecc_buf: buffer to store ecc code
723  *
724  * This generated true ECC value can be used when correcting
725  * data read from NAND flash memory core
726  */
727 static void gen_true_ecc(u8 *ecc_buf)
728 {
729         u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
730                 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
731
732         ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
733                         P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
734         ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
735                         P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
736         ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
737                         P1e(tmp) | P2048o(tmp) | P2048e(tmp));
738 }
739
740 /**
741  * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
742  * @ecc_data1:  ecc code from nand spare area
743  * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
744  * @page_data:  page data
745  *
746  * This function compares two ECC's and indicates if there is an error.
747  * If the error can be corrected it will be corrected to the buffer.
748  * If there is no error, %0 is returned. If there is an error but it
749  * was corrected, %1 is returned. Otherwise, %-1 is returned.
750  */
751 static int omap_compare_ecc(u8 *ecc_data1,      /* read from NAND memory */
752                             u8 *ecc_data2,      /* read from register */
753                             u8 *page_data)
754 {
755         uint    i;
756         u8      tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
757         u8      comp0_bit[8], comp1_bit[8], comp2_bit[8];
758         u8      ecc_bit[24];
759         u8      ecc_sum = 0;
760         u8      find_bit = 0;
761         uint    find_byte = 0;
762         int     isEccFF;
763
764         isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
765
766         gen_true_ecc(ecc_data1);
767         gen_true_ecc(ecc_data2);
768
769         for (i = 0; i <= 2; i++) {
770                 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
771                 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
772         }
773
774         for (i = 0; i < 8; i++) {
775                 tmp0_bit[i]     = *ecc_data1 % 2;
776                 *ecc_data1      = *ecc_data1 / 2;
777         }
778
779         for (i = 0; i < 8; i++) {
780                 tmp1_bit[i]      = *(ecc_data1 + 1) % 2;
781                 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
782         }
783
784         for (i = 0; i < 8; i++) {
785                 tmp2_bit[i]      = *(ecc_data1 + 2) % 2;
786                 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
787         }
788
789         for (i = 0; i < 8; i++) {
790                 comp0_bit[i]     = *ecc_data2 % 2;
791                 *ecc_data2       = *ecc_data2 / 2;
792         }
793
794         for (i = 0; i < 8; i++) {
795                 comp1_bit[i]     = *(ecc_data2 + 1) % 2;
796                 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
797         }
798
799         for (i = 0; i < 8; i++) {
800                 comp2_bit[i]     = *(ecc_data2 + 2) % 2;
801                 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
802         }
803
804         for (i = 0; i < 6; i++)
805                 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
806
807         for (i = 0; i < 8; i++)
808                 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
809
810         for (i = 0; i < 8; i++)
811                 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
812
813         ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
814         ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
815
816         for (i = 0; i < 24; i++)
817                 ecc_sum += ecc_bit[i];
818
819         switch (ecc_sum) {
820         case 0:
821                 /* Not reached because this function is not called if
822                  *  ECC values are equal
823                  */
824                 return 0;
825
826         case 1:
827                 /* Uncorrectable error */
828                 pr_debug("ECC UNCORRECTED_ERROR 1\n");
829                 return -EBADMSG;
830
831         case 11:
832                 /* UN-Correctable error */
833                 pr_debug("ECC UNCORRECTED_ERROR B\n");
834                 return -EBADMSG;
835
836         case 12:
837                 /* Correctable error */
838                 find_byte = (ecc_bit[23] << 8) +
839                             (ecc_bit[21] << 7) +
840                             (ecc_bit[19] << 6) +
841                             (ecc_bit[17] << 5) +
842                             (ecc_bit[15] << 4) +
843                             (ecc_bit[13] << 3) +
844                             (ecc_bit[11] << 2) +
845                             (ecc_bit[9]  << 1) +
846                             ecc_bit[7];
847
848                 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
849
850                 pr_debug("Correcting single bit ECC error at offset: "
851                                 "%d, bit: %d\n", find_byte, find_bit);
852
853                 page_data[find_byte] ^= (1 << find_bit);
854
855                 return 1;
856         default:
857                 if (isEccFF) {
858                         if (ecc_data2[0] == 0 &&
859                             ecc_data2[1] == 0 &&
860                             ecc_data2[2] == 0)
861                                 return 0;
862                 }
863                 pr_debug("UNCORRECTED_ERROR default\n");
864                 return -EBADMSG;
865         }
866 }
867
868 /**
869  * omap_correct_data - Compares the ECC read with HW generated ECC
870  * @mtd: MTD device structure
871  * @dat: page data
872  * @read_ecc: ecc read from nand flash
873  * @calc_ecc: ecc read from HW ECC registers
874  *
875  * Compares the ecc read from nand spare area with ECC registers values
876  * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
877  * detection and correction. If there are no errors, %0 is returned. If
878  * there were errors and all of the errors were corrected, the number of
879  * corrected errors is returned. If uncorrectable errors exist, %-1 is
880  * returned.
881  */
882 static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
883                                 u_char *read_ecc, u_char *calc_ecc)
884 {
885         struct omap_nand_info *info = mtd_to_omap(mtd);
886         int blockCnt = 0, i = 0, ret = 0;
887         int stat = 0;
888
889         /* Ex NAND_ECC_HW12_2048 */
890         if ((info->nand.ecc.mode == NAND_ECC_HW) &&
891                         (info->nand.ecc.size  == 2048))
892                 blockCnt = 4;
893         else
894                 blockCnt = 1;
895
896         for (i = 0; i < blockCnt; i++) {
897                 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
898                         ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
899                         if (ret < 0)
900                                 return ret;
901                         /* keep track of the number of corrected errors */
902                         stat += ret;
903                 }
904                 read_ecc += 3;
905                 calc_ecc += 3;
906                 dat      += 512;
907         }
908         return stat;
909 }
910
911 /**
912  * omap_calcuate_ecc - Generate non-inverted ECC bytes.
913  * @mtd: MTD device structure
914  * @dat: The pointer to data on which ecc is computed
915  * @ecc_code: The ecc_code buffer
916  *
917  * Using noninverted ECC can be considered ugly since writing a blank
918  * page ie. padding will clear the ECC bytes. This is no problem as long
919  * nobody is trying to write data on the seemingly unused page. Reading
920  * an erased page will produce an ECC mismatch between generated and read
921  * ECC bytes that has to be dealt with separately.
922  */
923 static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
924                                 u_char *ecc_code)
925 {
926         struct omap_nand_info *info = mtd_to_omap(mtd);
927         u32 val;
928
929         val = readl(info->reg.gpmc_ecc_config);
930         if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs)
931                 return -EINVAL;
932
933         /* read ecc result */
934         val = readl(info->reg.gpmc_ecc1_result);
935         *ecc_code++ = val;          /* P128e, ..., P1e */
936         *ecc_code++ = val >> 16;    /* P128o, ..., P1o */
937         /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
938         *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
939
940         return 0;
941 }
942
943 /**
944  * omap_enable_hwecc - This function enables the hardware ecc functionality
945  * @mtd: MTD device structure
946  * @mode: Read/Write mode
947  */
948 static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
949 {
950         struct omap_nand_info *info = mtd_to_omap(mtd);
951         struct nand_chip *chip = mtd_to_nand(mtd);
952         unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
953         u32 val;
954
955         /* clear ecc and enable bits */
956         val = ECCCLEAR | ECC1;
957         writel(val, info->reg.gpmc_ecc_control);
958
959         /* program ecc and result sizes */
960         val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
961                          ECC1RESULTSIZE);
962         writel(val, info->reg.gpmc_ecc_size_config);
963
964         switch (mode) {
965         case NAND_ECC_READ:
966         case NAND_ECC_WRITE:
967                 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
968                 break;
969         case NAND_ECC_READSYN:
970                 writel(ECCCLEAR, info->reg.gpmc_ecc_control);
971                 break;
972         default:
973                 dev_info(&info->pdev->dev,
974                         "error: unrecognized Mode[%d]!\n", mode);
975                 break;
976         }
977
978         /* (ECC 16 or 8 bit col) | ( CS  )  | ECC Enable */
979         val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
980         writel(val, info->reg.gpmc_ecc_config);
981 }
982
983 /**
984  * omap_wait - wait until the command is done
985  * @mtd: MTD device structure
986  * @chip: NAND Chip structure
987  *
988  * Wait function is called during Program and erase operations and
989  * the way it is called from MTD layer, we should wait till the NAND
990  * chip is ready after the programming/erase operation has completed.
991  *
992  * Erase can take up to 400ms and program up to 20ms according to
993  * general NAND and SmartMedia specs
994  */
995 static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
996 {
997         struct nand_chip *this = mtd_to_nand(mtd);
998         struct omap_nand_info *info = mtd_to_omap(mtd);
999         unsigned long timeo = jiffies;
1000         int status, state = this->state;
1001
1002         if (state == FL_ERASING)
1003                 timeo += msecs_to_jiffies(400);
1004         else
1005                 timeo += msecs_to_jiffies(20);
1006
1007         writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
1008         while (time_before(jiffies, timeo)) {
1009                 status = readb(info->reg.gpmc_nand_data);
1010                 if (status & NAND_STATUS_READY)
1011                         break;
1012                 cond_resched();
1013         }
1014
1015         status = readb(info->reg.gpmc_nand_data);
1016         return status;
1017 }
1018
1019 /**
1020  * omap_dev_ready - calls the platform specific dev_ready function
1021  * @mtd: MTD device structure
1022  */
1023 static int omap_dev_ready(struct mtd_info *mtd)
1024 {
1025         unsigned int val = 0;
1026         struct omap_nand_info *info = mtd_to_omap(mtd);
1027
1028         val = readl(info->reg.gpmc_status);
1029
1030         if ((val & 0x100) == 0x100) {
1031                 return 1;
1032         } else {
1033                 return 0;
1034         }
1035 }
1036
1037 /**
1038  * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
1039  * @mtd: MTD device structure
1040  * @mode: Read/Write mode
1041  *
1042  * When using BCH with SW correction (i.e. no ELM), sector size is set
1043  * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
1044  * for both reading and writing with:
1045  * eccsize0 = 0  (no additional protected byte in spare area)
1046  * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1047  */
1048 static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd, int mode)
1049 {
1050         unsigned int bch_type;
1051         unsigned int dev_width, nsectors;
1052         struct omap_nand_info *info = mtd_to_omap(mtd);
1053         enum omap_ecc ecc_opt = info->ecc_opt;
1054         struct nand_chip *chip = mtd_to_nand(mtd);
1055         u32 val, wr_mode;
1056         unsigned int ecc_size1, ecc_size0;
1057
1058         /* GPMC configurations for calculating ECC */
1059         switch (ecc_opt) {
1060         case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1061                 bch_type = 0;
1062                 nsectors = 1;
1063                 wr_mode   = BCH_WRAPMODE_6;
1064                 ecc_size0 = BCH_ECC_SIZE0;
1065                 ecc_size1 = BCH_ECC_SIZE1;
1066                 break;
1067         case OMAP_ECC_BCH4_CODE_HW:
1068                 bch_type = 0;
1069                 nsectors = chip->ecc.steps;
1070                 if (mode == NAND_ECC_READ) {
1071                         wr_mode   = BCH_WRAPMODE_1;
1072                         ecc_size0 = BCH4R_ECC_SIZE0;
1073                         ecc_size1 = BCH4R_ECC_SIZE1;
1074                 } else {
1075                         wr_mode   = BCH_WRAPMODE_6;
1076                         ecc_size0 = BCH_ECC_SIZE0;
1077                         ecc_size1 = BCH_ECC_SIZE1;
1078                 }
1079                 break;
1080         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1081                 bch_type = 1;
1082                 nsectors = 1;
1083                 wr_mode   = BCH_WRAPMODE_6;
1084                 ecc_size0 = BCH_ECC_SIZE0;
1085                 ecc_size1 = BCH_ECC_SIZE1;
1086                 break;
1087         case OMAP_ECC_BCH8_CODE_HW:
1088                 bch_type = 1;
1089                 nsectors = chip->ecc.steps;
1090                 if (mode == NAND_ECC_READ) {
1091                         wr_mode   = BCH_WRAPMODE_1;
1092                         ecc_size0 = BCH8R_ECC_SIZE0;
1093                         ecc_size1 = BCH8R_ECC_SIZE1;
1094                 } else {
1095                         wr_mode   = BCH_WRAPMODE_6;
1096                         ecc_size0 = BCH_ECC_SIZE0;
1097                         ecc_size1 = BCH_ECC_SIZE1;
1098                 }
1099                 break;
1100         case OMAP_ECC_BCH16_CODE_HW:
1101                 bch_type = 0x2;
1102                 nsectors = chip->ecc.steps;
1103                 if (mode == NAND_ECC_READ) {
1104                         wr_mode   = 0x01;
1105                         ecc_size0 = 52; /* ECC bits in nibbles per sector */
1106                         ecc_size1 = 0;  /* non-ECC bits in nibbles per sector */
1107                 } else {
1108                         wr_mode   = 0x01;
1109                         ecc_size0 = 0;  /* extra bits in nibbles per sector */
1110                         ecc_size1 = 52; /* OOB bits in nibbles per sector */
1111                 }
1112                 break;
1113         default:
1114                 return;
1115         }
1116
1117         writel(ECC1, info->reg.gpmc_ecc_control);
1118
1119         /* Configure ecc size for BCH */
1120         val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
1121         writel(val, info->reg.gpmc_ecc_size_config);
1122
1123         dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
1124
1125         /* BCH configuration */
1126         val = ((1                        << 16) | /* enable BCH */
1127                (bch_type                 << 12) | /* BCH4/BCH8/BCH16 */
1128                (wr_mode                  <<  8) | /* wrap mode */
1129                (dev_width                <<  7) | /* bus width */
1130                (((nsectors-1) & 0x7)     <<  4) | /* number of sectors */
1131                (info->gpmc_cs            <<  1) | /* ECC CS */
1132                (0x1));                            /* enable ECC */
1133
1134         writel(val, info->reg.gpmc_ecc_config);
1135
1136         /* Clear ecc and enable bits */
1137         writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
1138 }
1139
1140 static u8  bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
1141 static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
1142                                 0x97, 0x79, 0xe5, 0x24, 0xb5};
1143
1144 /**
1145  * omap_calculate_ecc_bch - Generate bytes of ECC bytes
1146  * @mtd:        MTD device structure
1147  * @dat:        The pointer to data on which ecc is computed
1148  * @ecc_code:   The ecc_code buffer
1149  *
1150  * Support calculating of BCH4/8 ecc vectors for the page
1151  */
1152 static int __maybe_unused omap_calculate_ecc_bch(struct mtd_info *mtd,
1153                                         const u_char *dat, u_char *ecc_calc)
1154 {
1155         struct omap_nand_info *info = mtd_to_omap(mtd);
1156         int eccbytes    = info->nand.ecc.bytes;
1157         struct gpmc_nand_regs   *gpmc_regs = &info->reg;
1158         u8 *ecc_code;
1159         unsigned long nsectors, bch_val1, bch_val2, bch_val3, bch_val4;
1160         u32 val;
1161         int i, j;
1162
1163         nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1164         for (i = 0; i < nsectors; i++) {
1165                 ecc_code = ecc_calc;
1166                 switch (info->ecc_opt) {
1167                 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1168                 case OMAP_ECC_BCH8_CODE_HW:
1169                         bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1170                         bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1171                         bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
1172                         bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
1173                         *ecc_code++ = (bch_val4 & 0xFF);
1174                         *ecc_code++ = ((bch_val3 >> 24) & 0xFF);
1175                         *ecc_code++ = ((bch_val3 >> 16) & 0xFF);
1176                         *ecc_code++ = ((bch_val3 >> 8) & 0xFF);
1177                         *ecc_code++ = (bch_val3 & 0xFF);
1178                         *ecc_code++ = ((bch_val2 >> 24) & 0xFF);
1179                         *ecc_code++ = ((bch_val2 >> 16) & 0xFF);
1180                         *ecc_code++ = ((bch_val2 >> 8) & 0xFF);
1181                         *ecc_code++ = (bch_val2 & 0xFF);
1182                         *ecc_code++ = ((bch_val1 >> 24) & 0xFF);
1183                         *ecc_code++ = ((bch_val1 >> 16) & 0xFF);
1184                         *ecc_code++ = ((bch_val1 >> 8) & 0xFF);
1185                         *ecc_code++ = (bch_val1 & 0xFF);
1186                         break;
1187                 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1188                 case OMAP_ECC_BCH4_CODE_HW:
1189                         bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1190                         bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1191                         *ecc_code++ = ((bch_val2 >> 12) & 0xFF);
1192                         *ecc_code++ = ((bch_val2 >> 4) & 0xFF);
1193                         *ecc_code++ = ((bch_val2 & 0xF) << 4) |
1194                                 ((bch_val1 >> 28) & 0xF);
1195                         *ecc_code++ = ((bch_val1 >> 20) & 0xFF);
1196                         *ecc_code++ = ((bch_val1 >> 12) & 0xFF);
1197                         *ecc_code++ = ((bch_val1 >> 4) & 0xFF);
1198                         *ecc_code++ = ((bch_val1 & 0xF) << 4);
1199                         break;
1200                 case OMAP_ECC_BCH16_CODE_HW:
1201                         val = readl(gpmc_regs->gpmc_bch_result6[i]);
1202                         ecc_code[0]  = ((val >>  8) & 0xFF);
1203                         ecc_code[1]  = ((val >>  0) & 0xFF);
1204                         val = readl(gpmc_regs->gpmc_bch_result5[i]);
1205                         ecc_code[2]  = ((val >> 24) & 0xFF);
1206                         ecc_code[3]  = ((val >> 16) & 0xFF);
1207                         ecc_code[4]  = ((val >>  8) & 0xFF);
1208                         ecc_code[5]  = ((val >>  0) & 0xFF);
1209                         val = readl(gpmc_regs->gpmc_bch_result4[i]);
1210                         ecc_code[6]  = ((val >> 24) & 0xFF);
1211                         ecc_code[7]  = ((val >> 16) & 0xFF);
1212                         ecc_code[8]  = ((val >>  8) & 0xFF);
1213                         ecc_code[9]  = ((val >>  0) & 0xFF);
1214                         val = readl(gpmc_regs->gpmc_bch_result3[i]);
1215                         ecc_code[10] = ((val >> 24) & 0xFF);
1216                         ecc_code[11] = ((val >> 16) & 0xFF);
1217                         ecc_code[12] = ((val >>  8) & 0xFF);
1218                         ecc_code[13] = ((val >>  0) & 0xFF);
1219                         val = readl(gpmc_regs->gpmc_bch_result2[i]);
1220                         ecc_code[14] = ((val >> 24) & 0xFF);
1221                         ecc_code[15] = ((val >> 16) & 0xFF);
1222                         ecc_code[16] = ((val >>  8) & 0xFF);
1223                         ecc_code[17] = ((val >>  0) & 0xFF);
1224                         val = readl(gpmc_regs->gpmc_bch_result1[i]);
1225                         ecc_code[18] = ((val >> 24) & 0xFF);
1226                         ecc_code[19] = ((val >> 16) & 0xFF);
1227                         ecc_code[20] = ((val >>  8) & 0xFF);
1228                         ecc_code[21] = ((val >>  0) & 0xFF);
1229                         val = readl(gpmc_regs->gpmc_bch_result0[i]);
1230                         ecc_code[22] = ((val >> 24) & 0xFF);
1231                         ecc_code[23] = ((val >> 16) & 0xFF);
1232                         ecc_code[24] = ((val >>  8) & 0xFF);
1233                         ecc_code[25] = ((val >>  0) & 0xFF);
1234                         break;
1235                 default:
1236                         return -EINVAL;
1237                 }
1238
1239                 /* ECC scheme specific syndrome customizations */
1240                 switch (info->ecc_opt) {
1241                 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1242                         /* Add constant polynomial to remainder, so that
1243                          * ECC of blank pages results in 0x0 on reading back */
1244                         for (j = 0; j < eccbytes; j++)
1245                                 ecc_calc[j] ^= bch4_polynomial[j];
1246                         break;
1247                 case OMAP_ECC_BCH4_CODE_HW:
1248                         /* Set  8th ECC byte as 0x0 for ROM compatibility */
1249                         ecc_calc[eccbytes - 1] = 0x0;
1250                         break;
1251                 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1252                         /* Add constant polynomial to remainder, so that
1253                          * ECC of blank pages results in 0x0 on reading back */
1254                         for (j = 0; j < eccbytes; j++)
1255                                 ecc_calc[j] ^= bch8_polynomial[j];
1256                         break;
1257                 case OMAP_ECC_BCH8_CODE_HW:
1258                         /* Set 14th ECC byte as 0x0 for ROM compatibility */
1259                         ecc_calc[eccbytes - 1] = 0x0;
1260                         break;
1261                 case OMAP_ECC_BCH16_CODE_HW:
1262                         break;
1263                 default:
1264                         return -EINVAL;
1265                 }
1266
1267         ecc_calc += eccbytes;
1268         }
1269
1270         return 0;
1271 }
1272
1273 /**
1274  * erased_sector_bitflips - count bit flips
1275  * @data:       data sector buffer
1276  * @oob:        oob buffer
1277  * @info:       omap_nand_info
1278  *
1279  * Check the bit flips in erased page falls below correctable level.
1280  * If falls below, report the page as erased with correctable bit
1281  * flip, else report as uncorrectable page.
1282  */
1283 static int erased_sector_bitflips(u_char *data, u_char *oob,
1284                 struct omap_nand_info *info)
1285 {
1286         int flip_bits = 0, i;
1287
1288         for (i = 0; i < info->nand.ecc.size; i++) {
1289                 flip_bits += hweight8(~data[i]);
1290                 if (flip_bits > info->nand.ecc.strength)
1291                         return 0;
1292         }
1293
1294         for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
1295                 flip_bits += hweight8(~oob[i]);
1296                 if (flip_bits > info->nand.ecc.strength)
1297                         return 0;
1298         }
1299
1300         /*
1301          * Bit flips falls in correctable level.
1302          * Fill data area with 0xFF
1303          */
1304         if (flip_bits) {
1305                 memset(data, 0xFF, info->nand.ecc.size);
1306                 memset(oob, 0xFF, info->nand.ecc.bytes);
1307         }
1308
1309         return flip_bits;
1310 }
1311
1312 /**
1313  * omap_elm_correct_data - corrects page data area in case error reported
1314  * @mtd:        MTD device structure
1315  * @data:       page data
1316  * @read_ecc:   ecc read from nand flash
1317  * @calc_ecc:   ecc read from HW ECC registers
1318  *
1319  * Calculated ecc vector reported as zero in case of non-error pages.
1320  * In case of non-zero ecc vector, first filter out erased-pages, and
1321  * then process data via ELM to detect bit-flips.
1322  */
1323 static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
1324                                 u_char *read_ecc, u_char *calc_ecc)
1325 {
1326         struct omap_nand_info *info = mtd_to_omap(mtd);
1327         struct nand_ecc_ctrl *ecc = &info->nand.ecc;
1328         int eccsteps = info->nand.ecc.steps;
1329         int i , j, stat = 0;
1330         int eccflag, actual_eccbytes;
1331         struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
1332         u_char *ecc_vec = calc_ecc;
1333         u_char *spare_ecc = read_ecc;
1334         u_char *erased_ecc_vec;
1335         u_char *buf;
1336         int bitflip_count;
1337         bool is_error_reported = false;
1338         u32 bit_pos, byte_pos, error_max, pos;
1339         int err;
1340
1341         switch (info->ecc_opt) {
1342         case OMAP_ECC_BCH4_CODE_HW:
1343                 /* omit  7th ECC byte reserved for ROM code compatibility */
1344                 actual_eccbytes = ecc->bytes - 1;
1345                 erased_ecc_vec = bch4_vector;
1346                 break;
1347         case OMAP_ECC_BCH8_CODE_HW:
1348                 /* omit 14th ECC byte reserved for ROM code compatibility */
1349                 actual_eccbytes = ecc->bytes - 1;
1350                 erased_ecc_vec = bch8_vector;
1351                 break;
1352         case OMAP_ECC_BCH16_CODE_HW:
1353                 actual_eccbytes = ecc->bytes;
1354                 erased_ecc_vec = bch16_vector;
1355                 break;
1356         default:
1357                 dev_err(&info->pdev->dev, "invalid driver configuration\n");
1358                 return -EINVAL;
1359         }
1360
1361         /* Initialize elm error vector to zero */
1362         memset(err_vec, 0, sizeof(err_vec));
1363
1364         for (i = 0; i < eccsteps ; i++) {
1365                 eccflag = 0;    /* initialize eccflag */
1366
1367                 /*
1368                  * Check any error reported,
1369                  * In case of error, non zero ecc reported.
1370                  */
1371                 for (j = 0; j < actual_eccbytes; j++) {
1372                         if (calc_ecc[j] != 0) {
1373                                 eccflag = 1; /* non zero ecc, error present */
1374                                 break;
1375                         }
1376                 }
1377
1378                 if (eccflag == 1) {
1379                         if (memcmp(calc_ecc, erased_ecc_vec,
1380                                                 actual_eccbytes) == 0) {
1381                                 /*
1382                                  * calc_ecc[] matches pattern for ECC(all 0xff)
1383                                  * so this is definitely an erased-page
1384                                  */
1385                         } else {
1386                                 buf = &data[info->nand.ecc.size * i];
1387                                 /*
1388                                  * count number of 0-bits in read_buf.
1389                                  * This check can be removed once a similar
1390                                  * check is introduced in generic NAND driver
1391                                  */
1392                                 bitflip_count = erased_sector_bitflips(
1393                                                 buf, read_ecc, info);
1394                                 if (bitflip_count) {
1395                                         /*
1396                                          * number of 0-bits within ECC limits
1397                                          * So this may be an erased-page
1398                                          */
1399                                         stat += bitflip_count;
1400                                 } else {
1401                                         /*
1402                                          * Too many 0-bits. It may be a
1403                                          * - programmed-page, OR
1404                                          * - erased-page with many bit-flips
1405                                          * So this page requires check by ELM
1406                                          */
1407                                         err_vec[i].error_reported = true;
1408                                         is_error_reported = true;
1409                                 }
1410                         }
1411                 }
1412
1413                 /* Update the ecc vector */
1414                 calc_ecc += ecc->bytes;
1415                 read_ecc += ecc->bytes;
1416         }
1417
1418         /* Check if any error reported */
1419         if (!is_error_reported)
1420                 return stat;
1421
1422         /* Decode BCH error using ELM module */
1423         elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
1424
1425         err = 0;
1426         for (i = 0; i < eccsteps; i++) {
1427                 if (err_vec[i].error_uncorrectable) {
1428                         dev_err(&info->pdev->dev,
1429                                 "uncorrectable bit-flips found\n");
1430                         err = -EBADMSG;
1431                 } else if (err_vec[i].error_reported) {
1432                         for (j = 0; j < err_vec[i].error_count; j++) {
1433                                 switch (info->ecc_opt) {
1434                                 case OMAP_ECC_BCH4_CODE_HW:
1435                                         /* Add 4 bits to take care of padding */
1436                                         pos = err_vec[i].error_loc[j] +
1437                                                 BCH4_BIT_PAD;
1438                                         break;
1439                                 case OMAP_ECC_BCH8_CODE_HW:
1440                                 case OMAP_ECC_BCH16_CODE_HW:
1441                                         pos = err_vec[i].error_loc[j];
1442                                         break;
1443                                 default:
1444                                         return -EINVAL;
1445                                 }
1446                                 error_max = (ecc->size + actual_eccbytes) * 8;
1447                                 /* Calculate bit position of error */
1448                                 bit_pos = pos % 8;
1449
1450                                 /* Calculate byte position of error */
1451                                 byte_pos = (error_max - pos - 1) / 8;
1452
1453                                 if (pos < error_max) {
1454                                         if (byte_pos < 512) {
1455                                                 pr_debug("bitflip@dat[%d]=%x\n",
1456                                                      byte_pos, data[byte_pos]);
1457                                                 data[byte_pos] ^= 1 << bit_pos;
1458                                         } else {
1459                                                 pr_debug("bitflip@oob[%d]=%x\n",
1460                                                         (byte_pos - 512),
1461                                                      spare_ecc[byte_pos - 512]);
1462                                                 spare_ecc[byte_pos - 512] ^=
1463                                                         1 << bit_pos;
1464                                         }
1465                                 } else {
1466                                         dev_err(&info->pdev->dev,
1467                                                 "invalid bit-flip @ %d:%d\n",
1468                                                 byte_pos, bit_pos);
1469                                         err = -EBADMSG;
1470                                 }
1471                         }
1472                 }
1473
1474                 /* Update number of correctable errors */
1475                 stat += err_vec[i].error_count;
1476
1477                 /* Update page data with sector size */
1478                 data += ecc->size;
1479                 spare_ecc += ecc->bytes;
1480         }
1481
1482         return (err) ? err : stat;
1483 }
1484
1485 /**
1486  * omap_write_page_bch - BCH ecc based write page function for entire page
1487  * @mtd:                mtd info structure
1488  * @chip:               nand chip info structure
1489  * @buf:                data buffer
1490  * @oob_required:       must write chip->oob_poi to OOB
1491  * @page:               page
1492  *
1493  * Custom write page method evolved to support multi sector writing in one shot
1494  */
1495 static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1496                                const uint8_t *buf, int oob_required, int page)
1497 {
1498         int i;
1499         uint8_t *ecc_calc = chip->buffers->ecccalc;
1500         uint32_t *eccpos = chip->ecc.layout->eccpos;
1501
1502         /* Enable GPMC ecc engine */
1503         chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1504
1505         /* Write data */
1506         chip->write_buf(mtd, buf, mtd->writesize);
1507
1508         /* Update ecc vector from GPMC result registers */
1509         chip->ecc.calculate(mtd, buf, &ecc_calc[0]);
1510
1511         for (i = 0; i < chip->ecc.total; i++)
1512                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1513
1514         /* Write ecc vector to OOB area */
1515         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1516         return 0;
1517 }
1518
1519 /**
1520  * omap_read_page_bch - BCH ecc based page read function for entire page
1521  * @mtd:                mtd info structure
1522  * @chip:               nand chip info structure
1523  * @buf:                buffer to store read data
1524  * @oob_required:       caller requires OOB data read to chip->oob_poi
1525  * @page:               page number to read
1526  *
1527  * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
1528  * used for error correction.
1529  * Custom method evolved to support ELM error correction & multi sector
1530  * reading. On reading page data area is read along with OOB data with
1531  * ecc engine enabled. ecc vector updated after read of OOB data.
1532  * For non error pages ecc vector reported as zero.
1533  */
1534 static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1535                                 uint8_t *buf, int oob_required, int page)
1536 {
1537         uint8_t *ecc_calc = chip->buffers->ecccalc;
1538         uint8_t *ecc_code = chip->buffers->ecccode;
1539         uint32_t *eccpos = chip->ecc.layout->eccpos;
1540         uint8_t *oob = &chip->oob_poi[eccpos[0]];
1541         uint32_t oob_pos = mtd->writesize + chip->ecc.layout->eccpos[0];
1542         int stat;
1543         unsigned int max_bitflips = 0;
1544
1545         /* Enable GPMC ecc engine */
1546         chip->ecc.hwctl(mtd, NAND_ECC_READ);
1547
1548         /* Read data */
1549         chip->read_buf(mtd, buf, mtd->writesize);
1550
1551         /* Read oob bytes */
1552         chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
1553         chip->read_buf(mtd, oob, chip->ecc.total);
1554
1555         /* Calculate ecc bytes */
1556         chip->ecc.calculate(mtd, buf, ecc_calc);
1557
1558         memcpy(ecc_code, &chip->oob_poi[eccpos[0]], chip->ecc.total);
1559
1560         stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc);
1561
1562         if (stat < 0) {
1563                 mtd->ecc_stats.failed++;
1564         } else {
1565                 mtd->ecc_stats.corrected += stat;
1566                 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1567         }
1568
1569         return max_bitflips;
1570 }
1571
1572 /**
1573  * is_elm_present - checks for presence of ELM module by scanning DT nodes
1574  * @omap_nand_info: NAND device structure containing platform data
1575  */
1576 static bool is_elm_present(struct omap_nand_info *info,
1577                            struct device_node *elm_node)
1578 {
1579         struct platform_device *pdev;
1580
1581         /* check whether elm-id is passed via DT */
1582         if (!elm_node) {
1583                 dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
1584                 return false;
1585         }
1586         pdev = of_find_device_by_node(elm_node);
1587         /* check whether ELM device is registered */
1588         if (!pdev) {
1589                 dev_err(&info->pdev->dev, "ELM device not found\n");
1590                 return false;
1591         }
1592         /* ELM module available, now configure it */
1593         info->elm_dev = &pdev->dev;
1594         return true;
1595 }
1596
1597 static bool omap2_nand_ecc_check(struct omap_nand_info *info,
1598                                  struct omap_nand_platform_data *pdata)
1599 {
1600         bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;
1601
1602         switch (info->ecc_opt) {
1603         case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1604         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1605                 ecc_needs_omap_bch = false;
1606                 ecc_needs_bch = true;
1607                 ecc_needs_elm = false;
1608                 break;
1609         case OMAP_ECC_BCH4_CODE_HW:
1610         case OMAP_ECC_BCH8_CODE_HW:
1611         case OMAP_ECC_BCH16_CODE_HW:
1612                 ecc_needs_omap_bch = true;
1613                 ecc_needs_bch = false;
1614                 ecc_needs_elm = true;
1615                 break;
1616         default:
1617                 ecc_needs_omap_bch = false;
1618                 ecc_needs_bch = false;
1619                 ecc_needs_elm = false;
1620                 break;
1621         }
1622
1623         if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_BCH)) {
1624                 dev_err(&info->pdev->dev,
1625                         "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
1626                 return false;
1627         }
1628         if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
1629                 dev_err(&info->pdev->dev,
1630                         "CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1631                 return false;
1632         }
1633         if (ecc_needs_elm && !is_elm_present(info, pdata->elm_of_node)) {
1634                 dev_err(&info->pdev->dev, "ELM not available\n");
1635                 return false;
1636         }
1637
1638         return true;
1639 }
1640
1641 static int omap_nand_probe(struct platform_device *pdev)
1642 {
1643         struct omap_nand_info           *info;
1644         struct omap_nand_platform_data  *pdata;
1645         struct mtd_info                 *mtd;
1646         struct nand_chip                *nand_chip;
1647         struct nand_ecclayout           *ecclayout;
1648         int                             err;
1649         int                             i;
1650         dma_cap_mask_t                  mask;
1651         unsigned                        sig;
1652         unsigned                        oob_index;
1653         struct resource                 *res;
1654
1655         pdata = dev_get_platdata(&pdev->dev);
1656         if (pdata == NULL) {
1657                 dev_err(&pdev->dev, "platform data missing\n");
1658                 return -ENODEV;
1659         }
1660
1661         info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
1662                                 GFP_KERNEL);
1663         if (!info)
1664                 return -ENOMEM;
1665
1666         platform_set_drvdata(pdev, info);
1667
1668         info->pdev              = pdev;
1669         info->gpmc_cs           = pdata->cs;
1670         info->reg               = pdata->reg;
1671         info->of_node           = pdata->of_node;
1672         info->ecc_opt           = pdata->ecc_opt;
1673         nand_chip               = &info->nand;
1674         mtd                     = nand_to_mtd(nand_chip);
1675         mtd->dev.parent         = &pdev->dev;
1676         nand_chip->ecc.priv     = NULL;
1677         nand_set_flash_node(nand_chip, pdata->of_node);
1678
1679         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1680         nand_chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
1681         if (IS_ERR(nand_chip->IO_ADDR_R))
1682                 return PTR_ERR(nand_chip->IO_ADDR_R);
1683
1684         info->phys_base = res->start;
1685
1686         nand_chip->controller = &omap_gpmc_controller;
1687
1688         nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R;
1689         nand_chip->cmd_ctrl  = omap_hwcontrol;
1690
1691         /*
1692          * If RDY/BSY line is connected to OMAP then use the omap ready
1693          * function and the generic nand_wait function which reads the status
1694          * register after monitoring the RDY/BSY line. Otherwise use a standard
1695          * chip delay which is slightly more than tR (AC Timing) of the NAND
1696          * device and read status register until you get a failure or success
1697          */
1698         if (pdata->dev_ready) {
1699                 nand_chip->dev_ready = omap_dev_ready;
1700                 nand_chip->chip_delay = 0;
1701         } else {
1702                 nand_chip->waitfunc = omap_wait;
1703                 nand_chip->chip_delay = 50;
1704         }
1705
1706         if (pdata->flash_bbt)
1707                 nand_chip->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
1708         else
1709                 nand_chip->options |= NAND_SKIP_BBTSCAN;
1710
1711         /* scan NAND device connected to chip controller */
1712         nand_chip->options |= pdata->devsize & NAND_BUSWIDTH_16;
1713         if (nand_scan_ident(mtd, 1, NULL)) {
1714                 dev_err(&info->pdev->dev, "scan failed, may be bus-width mismatch\n");
1715                 err = -ENXIO;
1716                 goto return_error;
1717         }
1718
1719         /* re-populate low-level callbacks based on xfer modes */
1720         switch (pdata->xfer_type) {
1721         case NAND_OMAP_PREFETCH_POLLED:
1722                 nand_chip->read_buf   = omap_read_buf_pref;
1723                 nand_chip->write_buf  = omap_write_buf_pref;
1724                 break;
1725
1726         case NAND_OMAP_POLLED:
1727                 /* Use nand_base defaults for {read,write}_buf */
1728                 break;
1729
1730         case NAND_OMAP_PREFETCH_DMA:
1731                 dma_cap_zero(mask);
1732                 dma_cap_set(DMA_SLAVE, mask);
1733                 sig = OMAP24XX_DMA_GPMC;
1734                 info->dma = dma_request_channel(mask, omap_dma_filter_fn, &sig);
1735                 if (!info->dma) {
1736                         dev_err(&pdev->dev, "DMA engine request failed\n");
1737                         err = -ENXIO;
1738                         goto return_error;
1739                 } else {
1740                         struct dma_slave_config cfg;
1741
1742                         memset(&cfg, 0, sizeof(cfg));
1743                         cfg.src_addr = info->phys_base;
1744                         cfg.dst_addr = info->phys_base;
1745                         cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1746                         cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1747                         cfg.src_maxburst = 16;
1748                         cfg.dst_maxburst = 16;
1749                         err = dmaengine_slave_config(info->dma, &cfg);
1750                         if (err) {
1751                                 dev_err(&pdev->dev, "DMA engine slave config failed: %d\n",
1752                                         err);
1753                                 goto return_error;
1754                         }
1755                         nand_chip->read_buf   = omap_read_buf_dma_pref;
1756                         nand_chip->write_buf  = omap_write_buf_dma_pref;
1757                 }
1758                 break;
1759
1760         case NAND_OMAP_PREFETCH_IRQ:
1761                 info->gpmc_irq_fifo = platform_get_irq(pdev, 0);
1762                 if (info->gpmc_irq_fifo <= 0) {
1763                         dev_err(&pdev->dev, "error getting fifo irq\n");
1764                         err = -ENODEV;
1765                         goto return_error;
1766                 }
1767                 err = devm_request_irq(&pdev->dev, info->gpmc_irq_fifo,
1768                                         omap_nand_irq, IRQF_SHARED,
1769                                         "gpmc-nand-fifo", info);
1770                 if (err) {
1771                         dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1772                                                 info->gpmc_irq_fifo, err);
1773                         info->gpmc_irq_fifo = 0;
1774                         goto return_error;
1775                 }
1776
1777                 info->gpmc_irq_count = platform_get_irq(pdev, 1);
1778                 if (info->gpmc_irq_count <= 0) {
1779                         dev_err(&pdev->dev, "error getting count irq\n");
1780                         err = -ENODEV;
1781                         goto return_error;
1782                 }
1783                 err = devm_request_irq(&pdev->dev, info->gpmc_irq_count,
1784                                         omap_nand_irq, IRQF_SHARED,
1785                                         "gpmc-nand-count", info);
1786                 if (err) {
1787                         dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1788                                                 info->gpmc_irq_count, err);
1789                         info->gpmc_irq_count = 0;
1790                         goto return_error;
1791                 }
1792
1793                 nand_chip->read_buf  = omap_read_buf_irq_pref;
1794                 nand_chip->write_buf = omap_write_buf_irq_pref;
1795
1796                 break;
1797
1798         default:
1799                 dev_err(&pdev->dev,
1800                         "xfer_type(%d) not supported!\n", pdata->xfer_type);
1801                 err = -EINVAL;
1802                 goto return_error;
1803         }
1804
1805         if (!omap2_nand_ecc_check(info, pdata)) {
1806                 err = -EINVAL;
1807                 goto return_error;
1808         }
1809
1810         /* populate MTD interface based on ECC scheme */
1811         ecclayout               = &info->oobinfo;
1812         switch (info->ecc_opt) {
1813         case OMAP_ECC_HAM1_CODE_SW:
1814                 nand_chip->ecc.mode = NAND_ECC_SOFT;
1815                 break;
1816
1817         case OMAP_ECC_HAM1_CODE_HW:
1818                 pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n");
1819                 nand_chip->ecc.mode             = NAND_ECC_HW;
1820                 nand_chip->ecc.bytes            = 3;
1821                 nand_chip->ecc.size             = 512;
1822                 nand_chip->ecc.strength         = 1;
1823                 nand_chip->ecc.calculate        = omap_calculate_ecc;
1824                 nand_chip->ecc.hwctl            = omap_enable_hwecc;
1825                 nand_chip->ecc.correct          = omap_correct_data;
1826                 /* define ECC layout */
1827                 ecclayout->eccbytes             = nand_chip->ecc.bytes *
1828                                                         (mtd->writesize /
1829                                                         nand_chip->ecc.size);
1830                 if (nand_chip->options & NAND_BUSWIDTH_16)
1831                         oob_index               = BADBLOCK_MARKER_LENGTH;
1832                 else
1833                         oob_index               = 1;
1834                 for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1835                         ecclayout->eccpos[i]    = oob_index;
1836                 /* no reserved-marker in ecclayout for this ecc-scheme */
1837                 ecclayout->oobfree->offset      =
1838                                 ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1839                 break;
1840
1841         case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1842                 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
1843                 nand_chip->ecc.mode             = NAND_ECC_HW;
1844                 nand_chip->ecc.size             = 512;
1845                 nand_chip->ecc.bytes            = 7;
1846                 nand_chip->ecc.strength         = 4;
1847                 nand_chip->ecc.hwctl            = omap_enable_hwecc_bch;
1848                 nand_chip->ecc.correct          = nand_bch_correct_data;
1849                 nand_chip->ecc.calculate        = omap_calculate_ecc_bch;
1850                 /* define ECC layout */
1851                 ecclayout->eccbytes             = nand_chip->ecc.bytes *
1852                                                         (mtd->writesize /
1853                                                         nand_chip->ecc.size);
1854                 oob_index                       = BADBLOCK_MARKER_LENGTH;
1855                 for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) {
1856                         ecclayout->eccpos[i] = oob_index;
1857                         if (((i + 1) % nand_chip->ecc.bytes) == 0)
1858                                 oob_index++;
1859                 }
1860                 /* include reserved-marker in ecclayout->oobfree calculation */
1861                 ecclayout->oobfree->offset      = 1 +
1862                                 ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1863                 /* software bch library is used for locating errors */
1864                 nand_chip->ecc.priv             = nand_bch_init(mtd,
1865                                                         nand_chip->ecc.size,
1866                                                         nand_chip->ecc.bytes,
1867                                                         &ecclayout);
1868                 if (!nand_chip->ecc.priv) {
1869                         dev_err(&info->pdev->dev, "unable to use BCH library\n");
1870                         err = -EINVAL;
1871                         goto return_error;
1872                 }
1873                 break;
1874
1875         case OMAP_ECC_BCH4_CODE_HW:
1876                 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
1877                 nand_chip->ecc.mode             = NAND_ECC_HW;
1878                 nand_chip->ecc.size             = 512;
1879                 /* 14th bit is kept reserved for ROM-code compatibility */
1880                 nand_chip->ecc.bytes            = 7 + 1;
1881                 nand_chip->ecc.strength         = 4;
1882                 nand_chip->ecc.hwctl            = omap_enable_hwecc_bch;
1883                 nand_chip->ecc.correct          = omap_elm_correct_data;
1884                 nand_chip->ecc.calculate        = omap_calculate_ecc_bch;
1885                 nand_chip->ecc.read_page        = omap_read_page_bch;
1886                 nand_chip->ecc.write_page       = omap_write_page_bch;
1887                 /* define ECC layout */
1888                 ecclayout->eccbytes             = nand_chip->ecc.bytes *
1889                                                         (mtd->writesize /
1890                                                         nand_chip->ecc.size);
1891                 oob_index                       = BADBLOCK_MARKER_LENGTH;
1892                 for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1893                         ecclayout->eccpos[i]    = oob_index;
1894                 /* reserved marker already included in ecclayout->eccbytes */
1895                 ecclayout->oobfree->offset      =
1896                                 ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1897
1898                 err = elm_config(info->elm_dev, BCH4_ECC,
1899                                  mtd->writesize / nand_chip->ecc.size,
1900                                  nand_chip->ecc.size, nand_chip->ecc.bytes);
1901                 if (err < 0)
1902                         goto return_error;
1903                 break;
1904
1905         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1906                 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
1907                 nand_chip->ecc.mode             = NAND_ECC_HW;
1908                 nand_chip->ecc.size             = 512;
1909                 nand_chip->ecc.bytes            = 13;
1910                 nand_chip->ecc.strength         = 8;
1911                 nand_chip->ecc.hwctl            = omap_enable_hwecc_bch;
1912                 nand_chip->ecc.correct          = nand_bch_correct_data;
1913                 nand_chip->ecc.calculate        = omap_calculate_ecc_bch;
1914                 /* define ECC layout */
1915                 ecclayout->eccbytes             = nand_chip->ecc.bytes *
1916                                                         (mtd->writesize /
1917                                                         nand_chip->ecc.size);
1918                 oob_index                       = BADBLOCK_MARKER_LENGTH;
1919                 for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) {
1920                         ecclayout->eccpos[i] = oob_index;
1921                         if (((i + 1) % nand_chip->ecc.bytes) == 0)
1922                                 oob_index++;
1923                 }
1924                 /* include reserved-marker in ecclayout->oobfree calculation */
1925                 ecclayout->oobfree->offset      = 1 +
1926                                 ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1927                 /* software bch library is used for locating errors */
1928                 nand_chip->ecc.priv             = nand_bch_init(mtd,
1929                                                         nand_chip->ecc.size,
1930                                                         nand_chip->ecc.bytes,
1931                                                         &ecclayout);
1932                 if (!nand_chip->ecc.priv) {
1933                         dev_err(&info->pdev->dev, "unable to use BCH library\n");
1934                         err = -EINVAL;
1935                         goto return_error;
1936                 }
1937                 break;
1938
1939         case OMAP_ECC_BCH8_CODE_HW:
1940                 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
1941                 nand_chip->ecc.mode             = NAND_ECC_HW;
1942                 nand_chip->ecc.size             = 512;
1943                 /* 14th bit is kept reserved for ROM-code compatibility */
1944                 nand_chip->ecc.bytes            = 13 + 1;
1945                 nand_chip->ecc.strength         = 8;
1946                 nand_chip->ecc.hwctl            = omap_enable_hwecc_bch;
1947                 nand_chip->ecc.correct          = omap_elm_correct_data;
1948                 nand_chip->ecc.calculate        = omap_calculate_ecc_bch;
1949                 nand_chip->ecc.read_page        = omap_read_page_bch;
1950                 nand_chip->ecc.write_page       = omap_write_page_bch;
1951
1952                 err = elm_config(info->elm_dev, BCH8_ECC,
1953                                  mtd->writesize / nand_chip->ecc.size,
1954                                  nand_chip->ecc.size, nand_chip->ecc.bytes);
1955                 if (err < 0)
1956                         goto return_error;
1957
1958                 /* define ECC layout */
1959                 ecclayout->eccbytes             = nand_chip->ecc.bytes *
1960                                                         (mtd->writesize /
1961                                                         nand_chip->ecc.size);
1962                 oob_index                       = BADBLOCK_MARKER_LENGTH;
1963                 for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1964                         ecclayout->eccpos[i]    = oob_index;
1965                 /* reserved marker already included in ecclayout->eccbytes */
1966                 ecclayout->oobfree->offset      =
1967                                 ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1968                 break;
1969
1970         case OMAP_ECC_BCH16_CODE_HW:
1971                 pr_info("using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
1972                 nand_chip->ecc.mode             = NAND_ECC_HW;
1973                 nand_chip->ecc.size             = 512;
1974                 nand_chip->ecc.bytes            = 26;
1975                 nand_chip->ecc.strength         = 16;
1976                 nand_chip->ecc.hwctl            = omap_enable_hwecc_bch;
1977                 nand_chip->ecc.correct          = omap_elm_correct_data;
1978                 nand_chip->ecc.calculate        = omap_calculate_ecc_bch;
1979                 nand_chip->ecc.read_page        = omap_read_page_bch;
1980                 nand_chip->ecc.write_page       = omap_write_page_bch;
1981
1982                 err = elm_config(info->elm_dev, BCH16_ECC,
1983                                  mtd->writesize / nand_chip->ecc.size,
1984                                  nand_chip->ecc.size, nand_chip->ecc.bytes);
1985                 if (err < 0)
1986                         goto return_error;
1987
1988                 /* define ECC layout */
1989                 ecclayout->eccbytes             = nand_chip->ecc.bytes *
1990                                                         (mtd->writesize /
1991                                                         nand_chip->ecc.size);
1992                 oob_index                       = BADBLOCK_MARKER_LENGTH;
1993                 for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1994                         ecclayout->eccpos[i]    = oob_index;
1995                 /* reserved marker already included in ecclayout->eccbytes */
1996                 ecclayout->oobfree->offset      =
1997                                 ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
1998                 break;
1999         default:
2000                 dev_err(&info->pdev->dev, "invalid or unsupported ECC scheme\n");
2001                 err = -EINVAL;
2002                 goto return_error;
2003         }
2004
2005         if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW)
2006                 goto scan_tail;
2007
2008         /* all OOB bytes from oobfree->offset till end off OOB are free */
2009         ecclayout->oobfree->length = mtd->oobsize - ecclayout->oobfree->offset;
2010         /* check if NAND device's OOB is enough to store ECC signatures */
2011         if (mtd->oobsize < (ecclayout->eccbytes + BADBLOCK_MARKER_LENGTH)) {
2012                 dev_err(&info->pdev->dev,
2013                         "not enough OOB bytes required = %d, available=%d\n",
2014                         ecclayout->eccbytes, mtd->oobsize);
2015                 err = -EINVAL;
2016                 goto return_error;
2017         }
2018         nand_chip->ecc.layout = ecclayout;
2019
2020 scan_tail:
2021         /* second phase scan */
2022         if (nand_scan_tail(mtd)) {
2023                 err = -ENXIO;
2024                 goto return_error;
2025         }
2026
2027         mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
2028
2029         platform_set_drvdata(pdev, mtd);
2030
2031         return 0;
2032
2033 return_error:
2034         if (info->dma)
2035                 dma_release_channel(info->dma);
2036         if (nand_chip->ecc.priv) {
2037                 nand_bch_free(nand_chip->ecc.priv);
2038                 nand_chip->ecc.priv = NULL;
2039         }
2040         return err;
2041 }
2042
2043 static int omap_nand_remove(struct platform_device *pdev)
2044 {
2045         struct mtd_info *mtd = platform_get_drvdata(pdev);
2046         struct nand_chip *nand_chip = mtd_to_nand(mtd);
2047         struct omap_nand_info *info = mtd_to_omap(mtd);
2048         if (nand_chip->ecc.priv) {
2049                 nand_bch_free(nand_chip->ecc.priv);
2050                 nand_chip->ecc.priv = NULL;
2051         }
2052         if (info->dma)
2053                 dma_release_channel(info->dma);
2054         nand_release(mtd);
2055         return 0;
2056 }
2057
2058 static struct platform_driver omap_nand_driver = {
2059         .probe          = omap_nand_probe,
2060         .remove         = omap_nand_remove,
2061         .driver         = {
2062                 .name   = DRIVER_NAME,
2063         },
2064 };
2065
2066 module_platform_driver(omap_nand_driver);
2067
2068 MODULE_ALIAS("platform:" DRIVER_NAME);
2069 MODULE_LICENSE("GPL");
2070 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");