Bluetooth: Use single return in hci_uart_tty_ioctl() call
[cascardo/linux.git] / drivers / net / dsa / mv88e6xxx / chip.c
1 /*
2  * Marvell 88e6xxx Ethernet switch single-chip support
3  *
4  * Copyright (c) 2008 Marvell Semiconductor
5  *
6  * Copyright (c) 2015 CMC Electronics, Inc.
7  *      Added support for VLAN Table Unit operations
8  *
9  * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  */
16
17 #include <linux/delay.h>
18 #include <linux/etherdevice.h>
19 #include <linux/ethtool.h>
20 #include <linux/if_bridge.h>
21 #include <linux/jiffies.h>
22 #include <linux/list.h>
23 #include <linux/mdio.h>
24 #include <linux/module.h>
25 #include <linux/of_device.h>
26 #include <linux/of_mdio.h>
27 #include <linux/netdevice.h>
28 #include <linux/gpio/consumer.h>
29 #include <linux/phy.h>
30 #include <net/dsa.h>
31 #include <net/switchdev.h>
32
33 #include "mv88e6xxx.h"
34 #include "global2.h"
35
36 static void assert_reg_lock(struct mv88e6xxx_chip *chip)
37 {
38         if (unlikely(!mutex_is_locked(&chip->reg_lock))) {
39                 dev_err(chip->dev, "Switch registers lock not held!\n");
40                 dump_stack();
41         }
42 }
43
44 /* The switch ADDR[4:1] configuration pins define the chip SMI device address
45  * (ADDR[0] is always zero, thus only even SMI addresses can be strapped).
46  *
47  * When ADDR is all zero, the chip uses Single-chip Addressing Mode, assuming it
48  * is the only device connected to the SMI master. In this mode it responds to
49  * all 32 possible SMI addresses, and thus maps directly the internal devices.
50  *
51  * When ADDR is non-zero, the chip uses Multi-chip Addressing Mode, allowing
52  * multiple devices to share the SMI interface. In this mode it responds to only
53  * 2 registers, used to indirectly access the internal SMI devices.
54  */
55
56 static int mv88e6xxx_smi_read(struct mv88e6xxx_chip *chip,
57                               int addr, int reg, u16 *val)
58 {
59         if (!chip->smi_ops)
60                 return -EOPNOTSUPP;
61
62         return chip->smi_ops->read(chip, addr, reg, val);
63 }
64
65 static int mv88e6xxx_smi_write(struct mv88e6xxx_chip *chip,
66                                int addr, int reg, u16 val)
67 {
68         if (!chip->smi_ops)
69                 return -EOPNOTSUPP;
70
71         return chip->smi_ops->write(chip, addr, reg, val);
72 }
73
74 static int mv88e6xxx_smi_single_chip_read(struct mv88e6xxx_chip *chip,
75                                           int addr, int reg, u16 *val)
76 {
77         int ret;
78
79         ret = mdiobus_read_nested(chip->bus, addr, reg);
80         if (ret < 0)
81                 return ret;
82
83         *val = ret & 0xffff;
84
85         return 0;
86 }
87
88 static int mv88e6xxx_smi_single_chip_write(struct mv88e6xxx_chip *chip,
89                                            int addr, int reg, u16 val)
90 {
91         int ret;
92
93         ret = mdiobus_write_nested(chip->bus, addr, reg, val);
94         if (ret < 0)
95                 return ret;
96
97         return 0;
98 }
99
100 static const struct mv88e6xxx_ops mv88e6xxx_smi_single_chip_ops = {
101         .read = mv88e6xxx_smi_single_chip_read,
102         .write = mv88e6xxx_smi_single_chip_write,
103 };
104
105 static int mv88e6xxx_smi_multi_chip_wait(struct mv88e6xxx_chip *chip)
106 {
107         int ret;
108         int i;
109
110         for (i = 0; i < 16; i++) {
111                 ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_CMD);
112                 if (ret < 0)
113                         return ret;
114
115                 if ((ret & SMI_CMD_BUSY) == 0)
116                         return 0;
117         }
118
119         return -ETIMEDOUT;
120 }
121
122 static int mv88e6xxx_smi_multi_chip_read(struct mv88e6xxx_chip *chip,
123                                          int addr, int reg, u16 *val)
124 {
125         int ret;
126
127         /* Wait for the bus to become free. */
128         ret = mv88e6xxx_smi_multi_chip_wait(chip);
129         if (ret < 0)
130                 return ret;
131
132         /* Transmit the read command. */
133         ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
134                                    SMI_CMD_OP_22_READ | (addr << 5) | reg);
135         if (ret < 0)
136                 return ret;
137
138         /* Wait for the read command to complete. */
139         ret = mv88e6xxx_smi_multi_chip_wait(chip);
140         if (ret < 0)
141                 return ret;
142
143         /* Read the data. */
144         ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_DATA);
145         if (ret < 0)
146                 return ret;
147
148         *val = ret & 0xffff;
149
150         return 0;
151 }
152
153 static int mv88e6xxx_smi_multi_chip_write(struct mv88e6xxx_chip *chip,
154                                           int addr, int reg, u16 val)
155 {
156         int ret;
157
158         /* Wait for the bus to become free. */
159         ret = mv88e6xxx_smi_multi_chip_wait(chip);
160         if (ret < 0)
161                 return ret;
162
163         /* Transmit the data to write. */
164         ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_DATA, val);
165         if (ret < 0)
166                 return ret;
167
168         /* Transmit the write command. */
169         ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
170                                    SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
171         if (ret < 0)
172                 return ret;
173
174         /* Wait for the write command to complete. */
175         ret = mv88e6xxx_smi_multi_chip_wait(chip);
176         if (ret < 0)
177                 return ret;
178
179         return 0;
180 }
181
182 static const struct mv88e6xxx_ops mv88e6xxx_smi_multi_chip_ops = {
183         .read = mv88e6xxx_smi_multi_chip_read,
184         .write = mv88e6xxx_smi_multi_chip_write,
185 };
186
187 int mv88e6xxx_read(struct mv88e6xxx_chip *chip, int addr, int reg, u16 *val)
188 {
189         int err;
190
191         assert_reg_lock(chip);
192
193         err = mv88e6xxx_smi_read(chip, addr, reg, val);
194         if (err)
195                 return err;
196
197         dev_dbg(chip->dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
198                 addr, reg, *val);
199
200         return 0;
201 }
202
203 int mv88e6xxx_write(struct mv88e6xxx_chip *chip, int addr, int reg, u16 val)
204 {
205         int err;
206
207         assert_reg_lock(chip);
208
209         err = mv88e6xxx_smi_write(chip, addr, reg, val);
210         if (err)
211                 return err;
212
213         dev_dbg(chip->dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
214                 addr, reg, val);
215
216         return 0;
217 }
218
219 int mv88e6xxx_port_read(struct mv88e6xxx_chip *chip, int port, int reg,
220                         u16 *val)
221 {
222         int addr = chip->info->port_base_addr + port;
223
224         return mv88e6xxx_read(chip, addr, reg, val);
225 }
226
227 int mv88e6xxx_port_write(struct mv88e6xxx_chip *chip, int port, int reg,
228                          u16 val)
229 {
230         int addr = chip->info->port_base_addr + port;
231
232         return mv88e6xxx_write(chip, addr, reg, val);
233 }
234
235 static int mv88e6xxx_phy_read(struct mv88e6xxx_chip *chip, int phy,
236                               int reg, u16 *val)
237 {
238         int addr = phy; /* PHY devices addresses start at 0x0 */
239
240         if (!chip->phy_ops)
241                 return -EOPNOTSUPP;
242
243         return chip->phy_ops->read(chip, addr, reg, val);
244 }
245
246 static int mv88e6xxx_phy_write(struct mv88e6xxx_chip *chip, int phy,
247                                int reg, u16 val)
248 {
249         int addr = phy; /* PHY devices addresses start at 0x0 */
250
251         if (!chip->phy_ops)
252                 return -EOPNOTSUPP;
253
254         return chip->phy_ops->write(chip, addr, reg, val);
255 }
256
257 static int mv88e6xxx_phy_page_get(struct mv88e6xxx_chip *chip, int phy, u8 page)
258 {
259         if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_PHY_PAGE))
260                 return -EOPNOTSUPP;
261
262         return mv88e6xxx_phy_write(chip, phy, PHY_PAGE, page);
263 }
264
265 static void mv88e6xxx_phy_page_put(struct mv88e6xxx_chip *chip, int phy)
266 {
267         int err;
268
269         /* Restore PHY page Copper 0x0 for access via the registered MDIO bus */
270         err = mv88e6xxx_phy_write(chip, phy, PHY_PAGE, PHY_PAGE_COPPER);
271         if (unlikely(err)) {
272                 dev_err(chip->dev, "failed to restore PHY %d page Copper (%d)\n",
273                         phy, err);
274         }
275 }
276
277 static int mv88e6xxx_phy_page_read(struct mv88e6xxx_chip *chip, int phy,
278                                    u8 page, int reg, u16 *val)
279 {
280         int err;
281
282         /* There is no paging for registers 22 */
283         if (reg == PHY_PAGE)
284                 return -EINVAL;
285
286         err = mv88e6xxx_phy_page_get(chip, phy, page);
287         if (!err) {
288                 err = mv88e6xxx_phy_read(chip, phy, reg, val);
289                 mv88e6xxx_phy_page_put(chip, phy);
290         }
291
292         return err;
293 }
294
295 static int mv88e6xxx_phy_page_write(struct mv88e6xxx_chip *chip, int phy,
296                                     u8 page, int reg, u16 val)
297 {
298         int err;
299
300         /* There is no paging for registers 22 */
301         if (reg == PHY_PAGE)
302                 return -EINVAL;
303
304         err = mv88e6xxx_phy_page_get(chip, phy, page);
305         if (!err) {
306                 err = mv88e6xxx_phy_write(chip, phy, PHY_PAGE, page);
307                 mv88e6xxx_phy_page_put(chip, phy);
308         }
309
310         return err;
311 }
312
313 static int mv88e6xxx_serdes_read(struct mv88e6xxx_chip *chip, int reg, u16 *val)
314 {
315         return mv88e6xxx_phy_page_read(chip, ADDR_SERDES, SERDES_PAGE_FIBER,
316                                        reg, val);
317 }
318
319 static int mv88e6xxx_serdes_write(struct mv88e6xxx_chip *chip, int reg, u16 val)
320 {
321         return mv88e6xxx_phy_page_write(chip, ADDR_SERDES, SERDES_PAGE_FIBER,
322                                         reg, val);
323 }
324
325 int mv88e6xxx_wait(struct mv88e6xxx_chip *chip, int addr, int reg, u16 mask)
326 {
327         int i;
328
329         for (i = 0; i < 16; i++) {
330                 u16 val;
331                 int err;
332
333                 err = mv88e6xxx_read(chip, addr, reg, &val);
334                 if (err)
335                         return err;
336
337                 if (!(val & mask))
338                         return 0;
339
340                 usleep_range(1000, 2000);
341         }
342
343         dev_err(chip->dev, "Timeout while waiting for switch\n");
344         return -ETIMEDOUT;
345 }
346
347 /* Indirect write to single pointer-data register with an Update bit */
348 int mv88e6xxx_update(struct mv88e6xxx_chip *chip, int addr, int reg, u16 update)
349 {
350         u16 val;
351         int err;
352
353         /* Wait until the previous operation is completed */
354         err = mv88e6xxx_wait(chip, addr, reg, BIT(15));
355         if (err)
356                 return err;
357
358         /* Set the Update bit to trigger a write operation */
359         val = BIT(15) | update;
360
361         return mv88e6xxx_write(chip, addr, reg, val);
362 }
363
364 static int _mv88e6xxx_reg_read(struct mv88e6xxx_chip *chip, int addr, int reg)
365 {
366         u16 val;
367         int err;
368
369         err = mv88e6xxx_read(chip, addr, reg, &val);
370         if (err)
371                 return err;
372
373         return val;
374 }
375
376 static int _mv88e6xxx_reg_write(struct mv88e6xxx_chip *chip, int addr,
377                                 int reg, u16 val)
378 {
379         return mv88e6xxx_write(chip, addr, reg, val);
380 }
381
382 static int mv88e6xxx_ppu_disable(struct mv88e6xxx_chip *chip)
383 {
384         int ret;
385         int i;
386
387         ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_CONTROL);
388         if (ret < 0)
389                 return ret;
390
391         ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL,
392                                    ret & ~GLOBAL_CONTROL_PPU_ENABLE);
393         if (ret)
394                 return ret;
395
396         for (i = 0; i < 16; i++) {
397                 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATUS);
398                 if (ret < 0)
399                         return ret;
400
401                 usleep_range(1000, 2000);
402                 if ((ret & GLOBAL_STATUS_PPU_MASK) !=
403                     GLOBAL_STATUS_PPU_POLLING)
404                         return 0;
405         }
406
407         return -ETIMEDOUT;
408 }
409
410 static int mv88e6xxx_ppu_enable(struct mv88e6xxx_chip *chip)
411 {
412         int ret, err, i;
413
414         ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_CONTROL);
415         if (ret < 0)
416                 return ret;
417
418         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL,
419                                    ret | GLOBAL_CONTROL_PPU_ENABLE);
420         if (err)
421                 return err;
422
423         for (i = 0; i < 16; i++) {
424                 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATUS);
425                 if (ret < 0)
426                         return ret;
427
428                 usleep_range(1000, 2000);
429                 if ((ret & GLOBAL_STATUS_PPU_MASK) ==
430                     GLOBAL_STATUS_PPU_POLLING)
431                         return 0;
432         }
433
434         return -ETIMEDOUT;
435 }
436
437 static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
438 {
439         struct mv88e6xxx_chip *chip;
440
441         chip = container_of(ugly, struct mv88e6xxx_chip, ppu_work);
442
443         mutex_lock(&chip->reg_lock);
444
445         if (mutex_trylock(&chip->ppu_mutex)) {
446                 if (mv88e6xxx_ppu_enable(chip) == 0)
447                         chip->ppu_disabled = 0;
448                 mutex_unlock(&chip->ppu_mutex);
449         }
450
451         mutex_unlock(&chip->reg_lock);
452 }
453
454 static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
455 {
456         struct mv88e6xxx_chip *chip = (void *)_ps;
457
458         schedule_work(&chip->ppu_work);
459 }
460
461 static int mv88e6xxx_ppu_access_get(struct mv88e6xxx_chip *chip)
462 {
463         int ret;
464
465         mutex_lock(&chip->ppu_mutex);
466
467         /* If the PHY polling unit is enabled, disable it so that
468          * we can access the PHY registers.  If it was already
469          * disabled, cancel the timer that is going to re-enable
470          * it.
471          */
472         if (!chip->ppu_disabled) {
473                 ret = mv88e6xxx_ppu_disable(chip);
474                 if (ret < 0) {
475                         mutex_unlock(&chip->ppu_mutex);
476                         return ret;
477                 }
478                 chip->ppu_disabled = 1;
479         } else {
480                 del_timer(&chip->ppu_timer);
481                 ret = 0;
482         }
483
484         return ret;
485 }
486
487 static void mv88e6xxx_ppu_access_put(struct mv88e6xxx_chip *chip)
488 {
489         /* Schedule a timer to re-enable the PHY polling unit. */
490         mod_timer(&chip->ppu_timer, jiffies + msecs_to_jiffies(10));
491         mutex_unlock(&chip->ppu_mutex);
492 }
493
494 static void mv88e6xxx_ppu_state_init(struct mv88e6xxx_chip *chip)
495 {
496         mutex_init(&chip->ppu_mutex);
497         INIT_WORK(&chip->ppu_work, mv88e6xxx_ppu_reenable_work);
498         init_timer(&chip->ppu_timer);
499         chip->ppu_timer.data = (unsigned long)chip;
500         chip->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
501 }
502
503 static void mv88e6xxx_ppu_state_destroy(struct mv88e6xxx_chip *chip)
504 {
505         del_timer_sync(&chip->ppu_timer);
506 }
507
508 static int mv88e6xxx_phy_ppu_read(struct mv88e6xxx_chip *chip, int addr,
509                                   int reg, u16 *val)
510 {
511         int err;
512
513         err = mv88e6xxx_ppu_access_get(chip);
514         if (!err) {
515                 err = mv88e6xxx_read(chip, addr, reg, val);
516                 mv88e6xxx_ppu_access_put(chip);
517         }
518
519         return err;
520 }
521
522 static int mv88e6xxx_phy_ppu_write(struct mv88e6xxx_chip *chip, int addr,
523                                    int reg, u16 val)
524 {
525         int err;
526
527         err = mv88e6xxx_ppu_access_get(chip);
528         if (!err) {
529                 err = mv88e6xxx_write(chip, addr, reg, val);
530                 mv88e6xxx_ppu_access_put(chip);
531         }
532
533         return err;
534 }
535
536 static const struct mv88e6xxx_ops mv88e6xxx_phy_ppu_ops = {
537         .read = mv88e6xxx_phy_ppu_read,
538         .write = mv88e6xxx_phy_ppu_write,
539 };
540
541 static bool mv88e6xxx_6065_family(struct mv88e6xxx_chip *chip)
542 {
543         return chip->info->family == MV88E6XXX_FAMILY_6065;
544 }
545
546 static bool mv88e6xxx_6095_family(struct mv88e6xxx_chip *chip)
547 {
548         return chip->info->family == MV88E6XXX_FAMILY_6095;
549 }
550
551 static bool mv88e6xxx_6097_family(struct mv88e6xxx_chip *chip)
552 {
553         return chip->info->family == MV88E6XXX_FAMILY_6097;
554 }
555
556 static bool mv88e6xxx_6165_family(struct mv88e6xxx_chip *chip)
557 {
558         return chip->info->family == MV88E6XXX_FAMILY_6165;
559 }
560
561 static bool mv88e6xxx_6185_family(struct mv88e6xxx_chip *chip)
562 {
563         return chip->info->family == MV88E6XXX_FAMILY_6185;
564 }
565
566 static bool mv88e6xxx_6320_family(struct mv88e6xxx_chip *chip)
567 {
568         return chip->info->family == MV88E6XXX_FAMILY_6320;
569 }
570
571 static bool mv88e6xxx_6351_family(struct mv88e6xxx_chip *chip)
572 {
573         return chip->info->family == MV88E6XXX_FAMILY_6351;
574 }
575
576 static bool mv88e6xxx_6352_family(struct mv88e6xxx_chip *chip)
577 {
578         return chip->info->family == MV88E6XXX_FAMILY_6352;
579 }
580
581 static unsigned int mv88e6xxx_num_databases(struct mv88e6xxx_chip *chip)
582 {
583         return chip->info->num_databases;
584 }
585
586 static bool mv88e6xxx_has_fid_reg(struct mv88e6xxx_chip *chip)
587 {
588         /* Does the device have dedicated FID registers for ATU and VTU ops? */
589         if (mv88e6xxx_6097_family(chip) || mv88e6xxx_6165_family(chip) ||
590             mv88e6xxx_6351_family(chip) || mv88e6xxx_6352_family(chip))
591                 return true;
592
593         return false;
594 }
595
596 /* We expect the switch to perform auto negotiation if there is a real
597  * phy. However, in the case of a fixed link phy, we force the port
598  * settings from the fixed link settings.
599  */
600 static void mv88e6xxx_adjust_link(struct dsa_switch *ds, int port,
601                                   struct phy_device *phydev)
602 {
603         struct mv88e6xxx_chip *chip = ds->priv;
604         u16 reg;
605         int err;
606
607         if (!phy_is_pseudo_fixed_link(phydev))
608                 return;
609
610         mutex_lock(&chip->reg_lock);
611
612         err = mv88e6xxx_port_read(chip, port, PORT_PCS_CTRL, &reg);
613         if (err)
614                 goto out;
615
616         reg &= ~(PORT_PCS_CTRL_LINK_UP |
617                  PORT_PCS_CTRL_FORCE_LINK |
618                  PORT_PCS_CTRL_DUPLEX_FULL |
619                  PORT_PCS_CTRL_FORCE_DUPLEX |
620                  PORT_PCS_CTRL_UNFORCED);
621
622         reg |= PORT_PCS_CTRL_FORCE_LINK;
623         if (phydev->link)
624                 reg |= PORT_PCS_CTRL_LINK_UP;
625
626         if (mv88e6xxx_6065_family(chip) && phydev->speed > SPEED_100)
627                 goto out;
628
629         switch (phydev->speed) {
630         case SPEED_1000:
631                 reg |= PORT_PCS_CTRL_1000;
632                 break;
633         case SPEED_100:
634                 reg |= PORT_PCS_CTRL_100;
635                 break;
636         case SPEED_10:
637                 reg |= PORT_PCS_CTRL_10;
638                 break;
639         default:
640                 pr_info("Unknown speed");
641                 goto out;
642         }
643
644         reg |= PORT_PCS_CTRL_FORCE_DUPLEX;
645         if (phydev->duplex == DUPLEX_FULL)
646                 reg |= PORT_PCS_CTRL_DUPLEX_FULL;
647
648         if ((mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip)) &&
649             (port >= chip->info->num_ports - 2)) {
650                 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
651                         reg |= PORT_PCS_CTRL_RGMII_DELAY_RXCLK;
652                 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
653                         reg |= PORT_PCS_CTRL_RGMII_DELAY_TXCLK;
654                 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID)
655                         reg |= (PORT_PCS_CTRL_RGMII_DELAY_RXCLK |
656                                 PORT_PCS_CTRL_RGMII_DELAY_TXCLK);
657         }
658         mv88e6xxx_port_write(chip, port, PORT_PCS_CTRL, reg);
659
660 out:
661         mutex_unlock(&chip->reg_lock);
662 }
663
664 static int _mv88e6xxx_stats_wait(struct mv88e6xxx_chip *chip)
665 {
666         int ret;
667         int i;
668
669         for (i = 0; i < 10; i++) {
670                 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_OP);
671                 if ((ret & GLOBAL_STATS_OP_BUSY) == 0)
672                         return 0;
673         }
674
675         return -ETIMEDOUT;
676 }
677
678 static int _mv88e6xxx_stats_snapshot(struct mv88e6xxx_chip *chip, int port)
679 {
680         int ret;
681
682         if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
683                 port = (port + 1) << 5;
684
685         /* Snapshot the hardware statistics counters for this port. */
686         ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
687                                    GLOBAL_STATS_OP_CAPTURE_PORT |
688                                    GLOBAL_STATS_OP_HIST_RX_TX | port);
689         if (ret < 0)
690                 return ret;
691
692         /* Wait for the snapshotting to complete. */
693         ret = _mv88e6xxx_stats_wait(chip);
694         if (ret < 0)
695                 return ret;
696
697         return 0;
698 }
699
700 static void _mv88e6xxx_stats_read(struct mv88e6xxx_chip *chip,
701                                   int stat, u32 *val)
702 {
703         u32 _val;
704         int ret;
705
706         *val = 0;
707
708         ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
709                                    GLOBAL_STATS_OP_READ_CAPTURED |
710                                    GLOBAL_STATS_OP_HIST_RX_TX | stat);
711         if (ret < 0)
712                 return;
713
714         ret = _mv88e6xxx_stats_wait(chip);
715         if (ret < 0)
716                 return;
717
718         ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_COUNTER_32);
719         if (ret < 0)
720                 return;
721
722         _val = ret << 16;
723
724         ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_COUNTER_01);
725         if (ret < 0)
726                 return;
727
728         *val = _val | ret;
729 }
730
731 static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
732         { "in_good_octets",     8, 0x00, BANK0, },
733         { "in_bad_octets",      4, 0x02, BANK0, },
734         { "in_unicast",         4, 0x04, BANK0, },
735         { "in_broadcasts",      4, 0x06, BANK0, },
736         { "in_multicasts",      4, 0x07, BANK0, },
737         { "in_pause",           4, 0x16, BANK0, },
738         { "in_undersize",       4, 0x18, BANK0, },
739         { "in_fragments",       4, 0x19, BANK0, },
740         { "in_oversize",        4, 0x1a, BANK0, },
741         { "in_jabber",          4, 0x1b, BANK0, },
742         { "in_rx_error",        4, 0x1c, BANK0, },
743         { "in_fcs_error",       4, 0x1d, BANK0, },
744         { "out_octets",         8, 0x0e, BANK0, },
745         { "out_unicast",        4, 0x10, BANK0, },
746         { "out_broadcasts",     4, 0x13, BANK0, },
747         { "out_multicasts",     4, 0x12, BANK0, },
748         { "out_pause",          4, 0x15, BANK0, },
749         { "excessive",          4, 0x11, BANK0, },
750         { "collisions",         4, 0x1e, BANK0, },
751         { "deferred",           4, 0x05, BANK0, },
752         { "single",             4, 0x14, BANK0, },
753         { "multiple",           4, 0x17, BANK0, },
754         { "out_fcs_error",      4, 0x03, BANK0, },
755         { "late",               4, 0x1f, BANK0, },
756         { "hist_64bytes",       4, 0x08, BANK0, },
757         { "hist_65_127bytes",   4, 0x09, BANK0, },
758         { "hist_128_255bytes",  4, 0x0a, BANK0, },
759         { "hist_256_511bytes",  4, 0x0b, BANK0, },
760         { "hist_512_1023bytes", 4, 0x0c, BANK0, },
761         { "hist_1024_max_bytes", 4, 0x0d, BANK0, },
762         { "sw_in_discards",     4, 0x10, PORT, },
763         { "sw_in_filtered",     2, 0x12, PORT, },
764         { "sw_out_filtered",    2, 0x13, PORT, },
765         { "in_discards",        4, 0x00 | GLOBAL_STATS_OP_BANK_1, BANK1, },
766         { "in_filtered",        4, 0x01 | GLOBAL_STATS_OP_BANK_1, BANK1, },
767         { "in_accepted",        4, 0x02 | GLOBAL_STATS_OP_BANK_1, BANK1, },
768         { "in_bad_accepted",    4, 0x03 | GLOBAL_STATS_OP_BANK_1, BANK1, },
769         { "in_good_avb_class_a", 4, 0x04 | GLOBAL_STATS_OP_BANK_1, BANK1, },
770         { "in_good_avb_class_b", 4, 0x05 | GLOBAL_STATS_OP_BANK_1, BANK1, },
771         { "in_bad_avb_class_a", 4, 0x06 | GLOBAL_STATS_OP_BANK_1, BANK1, },
772         { "in_bad_avb_class_b", 4, 0x07 | GLOBAL_STATS_OP_BANK_1, BANK1, },
773         { "tcam_counter_0",     4, 0x08 | GLOBAL_STATS_OP_BANK_1, BANK1, },
774         { "tcam_counter_1",     4, 0x09 | GLOBAL_STATS_OP_BANK_1, BANK1, },
775         { "tcam_counter_2",     4, 0x0a | GLOBAL_STATS_OP_BANK_1, BANK1, },
776         { "tcam_counter_3",     4, 0x0b | GLOBAL_STATS_OP_BANK_1, BANK1, },
777         { "in_da_unknown",      4, 0x0e | GLOBAL_STATS_OP_BANK_1, BANK1, },
778         { "in_management",      4, 0x0f | GLOBAL_STATS_OP_BANK_1, BANK1, },
779         { "out_queue_0",        4, 0x10 | GLOBAL_STATS_OP_BANK_1, BANK1, },
780         { "out_queue_1",        4, 0x11 | GLOBAL_STATS_OP_BANK_1, BANK1, },
781         { "out_queue_2",        4, 0x12 | GLOBAL_STATS_OP_BANK_1, BANK1, },
782         { "out_queue_3",        4, 0x13 | GLOBAL_STATS_OP_BANK_1, BANK1, },
783         { "out_queue_4",        4, 0x14 | GLOBAL_STATS_OP_BANK_1, BANK1, },
784         { "out_queue_5",        4, 0x15 | GLOBAL_STATS_OP_BANK_1, BANK1, },
785         { "out_queue_6",        4, 0x16 | GLOBAL_STATS_OP_BANK_1, BANK1, },
786         { "out_queue_7",        4, 0x17 | GLOBAL_STATS_OP_BANK_1, BANK1, },
787         { "out_cut_through",    4, 0x18 | GLOBAL_STATS_OP_BANK_1, BANK1, },
788         { "out_octets_a",       4, 0x1a | GLOBAL_STATS_OP_BANK_1, BANK1, },
789         { "out_octets_b",       4, 0x1b | GLOBAL_STATS_OP_BANK_1, BANK1, },
790         { "out_management",     4, 0x1f | GLOBAL_STATS_OP_BANK_1, BANK1, },
791 };
792
793 static bool mv88e6xxx_has_stat(struct mv88e6xxx_chip *chip,
794                                struct mv88e6xxx_hw_stat *stat)
795 {
796         switch (stat->type) {
797         case BANK0:
798                 return true;
799         case BANK1:
800                 return mv88e6xxx_6320_family(chip);
801         case PORT:
802                 return mv88e6xxx_6095_family(chip) ||
803                         mv88e6xxx_6185_family(chip) ||
804                         mv88e6xxx_6097_family(chip) ||
805                         mv88e6xxx_6165_family(chip) ||
806                         mv88e6xxx_6351_family(chip) ||
807                         mv88e6xxx_6352_family(chip);
808         }
809         return false;
810 }
811
812 static uint64_t _mv88e6xxx_get_ethtool_stat(struct mv88e6xxx_chip *chip,
813                                             struct mv88e6xxx_hw_stat *s,
814                                             int port)
815 {
816         u32 low;
817         u32 high = 0;
818         int err;
819         u16 reg;
820         u64 value;
821
822         switch (s->type) {
823         case PORT:
824                 err = mv88e6xxx_port_read(chip, port, s->reg, &reg);
825                 if (err)
826                         return UINT64_MAX;
827
828                 low = reg;
829                 if (s->sizeof_stat == 4) {
830                         err = mv88e6xxx_port_read(chip, port, s->reg + 1, &reg);
831                         if (err)
832                                 return UINT64_MAX;
833                         high = reg;
834                 }
835                 break;
836         case BANK0:
837         case BANK1:
838                 _mv88e6xxx_stats_read(chip, s->reg, &low);
839                 if (s->sizeof_stat == 8)
840                         _mv88e6xxx_stats_read(chip, s->reg + 1, &high);
841         }
842         value = (((u64)high) << 16) | low;
843         return value;
844 }
845
846 static void mv88e6xxx_get_strings(struct dsa_switch *ds, int port,
847                                   uint8_t *data)
848 {
849         struct mv88e6xxx_chip *chip = ds->priv;
850         struct mv88e6xxx_hw_stat *stat;
851         int i, j;
852
853         for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
854                 stat = &mv88e6xxx_hw_stats[i];
855                 if (mv88e6xxx_has_stat(chip, stat)) {
856                         memcpy(data + j * ETH_GSTRING_LEN, stat->string,
857                                ETH_GSTRING_LEN);
858                         j++;
859                 }
860         }
861 }
862
863 static int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
864 {
865         struct mv88e6xxx_chip *chip = ds->priv;
866         struct mv88e6xxx_hw_stat *stat;
867         int i, j;
868
869         for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
870                 stat = &mv88e6xxx_hw_stats[i];
871                 if (mv88e6xxx_has_stat(chip, stat))
872                         j++;
873         }
874         return j;
875 }
876
877 static void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds, int port,
878                                         uint64_t *data)
879 {
880         struct mv88e6xxx_chip *chip = ds->priv;
881         struct mv88e6xxx_hw_stat *stat;
882         int ret;
883         int i, j;
884
885         mutex_lock(&chip->reg_lock);
886
887         ret = _mv88e6xxx_stats_snapshot(chip, port);
888         if (ret < 0) {
889                 mutex_unlock(&chip->reg_lock);
890                 return;
891         }
892         for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
893                 stat = &mv88e6xxx_hw_stats[i];
894                 if (mv88e6xxx_has_stat(chip, stat)) {
895                         data[j] = _mv88e6xxx_get_ethtool_stat(chip, stat, port);
896                         j++;
897                 }
898         }
899
900         mutex_unlock(&chip->reg_lock);
901 }
902
903 static int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
904 {
905         return 32 * sizeof(u16);
906 }
907
908 static void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
909                                struct ethtool_regs *regs, void *_p)
910 {
911         struct mv88e6xxx_chip *chip = ds->priv;
912         int err;
913         u16 reg;
914         u16 *p = _p;
915         int i;
916
917         regs->version = 0;
918
919         memset(p, 0xff, 32 * sizeof(u16));
920
921         mutex_lock(&chip->reg_lock);
922
923         for (i = 0; i < 32; i++) {
924
925                 err = mv88e6xxx_port_read(chip, port, i, &reg);
926                 if (!err)
927                         p[i] = reg;
928         }
929
930         mutex_unlock(&chip->reg_lock);
931 }
932
933 static int _mv88e6xxx_atu_wait(struct mv88e6xxx_chip *chip)
934 {
935         return mv88e6xxx_wait(chip, REG_GLOBAL, GLOBAL_ATU_OP,
936                               GLOBAL_ATU_OP_BUSY);
937 }
938
939 static int mv88e6xxx_get_eee(struct dsa_switch *ds, int port,
940                              struct ethtool_eee *e)
941 {
942         struct mv88e6xxx_chip *chip = ds->priv;
943         u16 reg;
944         int err;
945
946         if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
947                 return -EOPNOTSUPP;
948
949         mutex_lock(&chip->reg_lock);
950
951         err = mv88e6xxx_phy_read(chip, port, 16, &reg);
952         if (err)
953                 goto out;
954
955         e->eee_enabled = !!(reg & 0x0200);
956         e->tx_lpi_enabled = !!(reg & 0x0100);
957
958         err = mv88e6xxx_port_read(chip, port, PORT_STATUS, &reg);
959         if (err)
960                 goto out;
961
962         e->eee_active = !!(reg & PORT_STATUS_EEE);
963 out:
964         mutex_unlock(&chip->reg_lock);
965
966         return err;
967 }
968
969 static int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
970                              struct phy_device *phydev, struct ethtool_eee *e)
971 {
972         struct mv88e6xxx_chip *chip = ds->priv;
973         u16 reg;
974         int err;
975
976         if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
977                 return -EOPNOTSUPP;
978
979         mutex_lock(&chip->reg_lock);
980
981         err = mv88e6xxx_phy_read(chip, port, 16, &reg);
982         if (err)
983                 goto out;
984
985         reg &= ~0x0300;
986         if (e->eee_enabled)
987                 reg |= 0x0200;
988         if (e->tx_lpi_enabled)
989                 reg |= 0x0100;
990
991         err = mv88e6xxx_phy_write(chip, port, 16, reg);
992 out:
993         mutex_unlock(&chip->reg_lock);
994
995         return err;
996 }
997
998 static int _mv88e6xxx_atu_cmd(struct mv88e6xxx_chip *chip, u16 fid, u16 cmd)
999 {
1000         int ret;
1001
1002         if (mv88e6xxx_has_fid_reg(chip)) {
1003                 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_FID,
1004                                            fid);
1005                 if (ret < 0)
1006                         return ret;
1007         } else if (mv88e6xxx_num_databases(chip) == 256) {
1008                 /* ATU DBNum[7:4] are located in ATU Control 15:12 */
1009                 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL);
1010                 if (ret < 0)
1011                         return ret;
1012
1013                 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL,
1014                                            (ret & 0xfff) |
1015                                            ((fid << 8) & 0xf000));
1016                 if (ret < 0)
1017                         return ret;
1018
1019                 /* ATU DBNum[3:0] are located in ATU Operation 3:0 */
1020                 cmd |= fid & 0xf;
1021         }
1022
1023         ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_OP, cmd);
1024         if (ret < 0)
1025                 return ret;
1026
1027         return _mv88e6xxx_atu_wait(chip);
1028 }
1029
1030 static int _mv88e6xxx_atu_data_write(struct mv88e6xxx_chip *chip,
1031                                      struct mv88e6xxx_atu_entry *entry)
1032 {
1033         u16 data = entry->state & GLOBAL_ATU_DATA_STATE_MASK;
1034
1035         if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) {
1036                 unsigned int mask, shift;
1037
1038                 if (entry->trunk) {
1039                         data |= GLOBAL_ATU_DATA_TRUNK;
1040                         mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
1041                         shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
1042                 } else {
1043                         mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
1044                         shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
1045                 }
1046
1047                 data |= (entry->portv_trunkid << shift) & mask;
1048         }
1049
1050         return _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_DATA, data);
1051 }
1052
1053 static int _mv88e6xxx_atu_flush_move(struct mv88e6xxx_chip *chip,
1054                                      struct mv88e6xxx_atu_entry *entry,
1055                                      bool static_too)
1056 {
1057         int op;
1058         int err;
1059
1060         err = _mv88e6xxx_atu_wait(chip);
1061         if (err)
1062                 return err;
1063
1064         err = _mv88e6xxx_atu_data_write(chip, entry);
1065         if (err)
1066                 return err;
1067
1068         if (entry->fid) {
1069                 op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL_DB :
1070                         GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC_DB;
1071         } else {
1072                 op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL :
1073                         GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC;
1074         }
1075
1076         return _mv88e6xxx_atu_cmd(chip, entry->fid, op);
1077 }
1078
1079 static int _mv88e6xxx_atu_flush(struct mv88e6xxx_chip *chip,
1080                                 u16 fid, bool static_too)
1081 {
1082         struct mv88e6xxx_atu_entry entry = {
1083                 .fid = fid,
1084                 .state = 0, /* EntryState bits must be 0 */
1085         };
1086
1087         return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
1088 }
1089
1090 static int _mv88e6xxx_atu_move(struct mv88e6xxx_chip *chip, u16 fid,
1091                                int from_port, int to_port, bool static_too)
1092 {
1093         struct mv88e6xxx_atu_entry entry = {
1094                 .trunk = false,
1095                 .fid = fid,
1096         };
1097
1098         /* EntryState bits must be 0xF */
1099         entry.state = GLOBAL_ATU_DATA_STATE_MASK;
1100
1101         /* ToPort and FromPort are respectively in PortVec bits 7:4 and 3:0 */
1102         entry.portv_trunkid = (to_port & 0x0f) << 4;
1103         entry.portv_trunkid |= from_port & 0x0f;
1104
1105         return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
1106 }
1107
1108 static int _mv88e6xxx_atu_remove(struct mv88e6xxx_chip *chip, u16 fid,
1109                                  int port, bool static_too)
1110 {
1111         /* Destination port 0xF means remove the entries */
1112         return _mv88e6xxx_atu_move(chip, fid, port, 0x0f, static_too);
1113 }
1114
1115 static const char * const mv88e6xxx_port_state_names[] = {
1116         [PORT_CONTROL_STATE_DISABLED] = "Disabled",
1117         [PORT_CONTROL_STATE_BLOCKING] = "Blocking/Listening",
1118         [PORT_CONTROL_STATE_LEARNING] = "Learning",
1119         [PORT_CONTROL_STATE_FORWARDING] = "Forwarding",
1120 };
1121
1122 static int _mv88e6xxx_port_state(struct mv88e6xxx_chip *chip, int port,
1123                                  u8 state)
1124 {
1125         struct dsa_switch *ds = chip->ds;
1126         u16 reg;
1127         int err;
1128         u8 oldstate;
1129
1130         err = mv88e6xxx_port_read(chip, port, PORT_CONTROL, &reg);
1131         if (err)
1132                 return err;
1133
1134         oldstate = reg & PORT_CONTROL_STATE_MASK;
1135
1136         if (oldstate != state) {
1137                 /* Flush forwarding database if we're moving a port
1138                  * from Learning or Forwarding state to Disabled or
1139                  * Blocking or Listening state.
1140                  */
1141                 if ((oldstate == PORT_CONTROL_STATE_LEARNING ||
1142                      oldstate == PORT_CONTROL_STATE_FORWARDING) &&
1143                     (state == PORT_CONTROL_STATE_DISABLED ||
1144                      state == PORT_CONTROL_STATE_BLOCKING)) {
1145                         err = _mv88e6xxx_atu_remove(chip, 0, port, false);
1146                         if (err)
1147                                 return err;
1148                 }
1149
1150                 reg = (reg & ~PORT_CONTROL_STATE_MASK) | state;
1151                 err = mv88e6xxx_port_write(chip, port, PORT_CONTROL, reg);
1152                 if (err)
1153                         return err;
1154
1155                 netdev_dbg(ds->ports[port].netdev, "PortState %s (was %s)\n",
1156                            mv88e6xxx_port_state_names[state],
1157                            mv88e6xxx_port_state_names[oldstate]);
1158         }
1159
1160         return err;
1161 }
1162
1163 static int _mv88e6xxx_port_based_vlan_map(struct mv88e6xxx_chip *chip, int port)
1164 {
1165         struct net_device *bridge = chip->ports[port].bridge_dev;
1166         const u16 mask = (1 << chip->info->num_ports) - 1;
1167         struct dsa_switch *ds = chip->ds;
1168         u16 output_ports = 0;
1169         u16 reg;
1170         int err;
1171         int i;
1172
1173         /* allow CPU port or DSA link(s) to send frames to every port */
1174         if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
1175                 output_ports = mask;
1176         } else {
1177                 for (i = 0; i < chip->info->num_ports; ++i) {
1178                         /* allow sending frames to every group member */
1179                         if (bridge && chip->ports[i].bridge_dev == bridge)
1180                                 output_ports |= BIT(i);
1181
1182                         /* allow sending frames to CPU port and DSA link(s) */
1183                         if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
1184                                 output_ports |= BIT(i);
1185                 }
1186         }
1187
1188         /* prevent frames from going back out of the port they came in on */
1189         output_ports &= ~BIT(port);
1190
1191         err = mv88e6xxx_port_read(chip, port, PORT_BASE_VLAN, &reg);
1192         if (err)
1193                 return err;
1194
1195         reg &= ~mask;
1196         reg |= output_ports & mask;
1197
1198         return mv88e6xxx_port_write(chip, port, PORT_BASE_VLAN, reg);
1199 }
1200
1201 static void mv88e6xxx_port_stp_state_set(struct dsa_switch *ds, int port,
1202                                          u8 state)
1203 {
1204         struct mv88e6xxx_chip *chip = ds->priv;
1205         int stp_state;
1206         int err;
1207
1208         switch (state) {
1209         case BR_STATE_DISABLED:
1210                 stp_state = PORT_CONTROL_STATE_DISABLED;
1211                 break;
1212         case BR_STATE_BLOCKING:
1213         case BR_STATE_LISTENING:
1214                 stp_state = PORT_CONTROL_STATE_BLOCKING;
1215                 break;
1216         case BR_STATE_LEARNING:
1217                 stp_state = PORT_CONTROL_STATE_LEARNING;
1218                 break;
1219         case BR_STATE_FORWARDING:
1220         default:
1221                 stp_state = PORT_CONTROL_STATE_FORWARDING;
1222                 break;
1223         }
1224
1225         mutex_lock(&chip->reg_lock);
1226         err = _mv88e6xxx_port_state(chip, port, stp_state);
1227         mutex_unlock(&chip->reg_lock);
1228
1229         if (err)
1230                 netdev_err(ds->ports[port].netdev,
1231                            "failed to update state to %s\n",
1232                            mv88e6xxx_port_state_names[stp_state]);
1233 }
1234
1235 static int _mv88e6xxx_port_pvid(struct mv88e6xxx_chip *chip, int port,
1236                                 u16 *new, u16 *old)
1237 {
1238         struct dsa_switch *ds = chip->ds;
1239         u16 pvid, reg;
1240         int err;
1241
1242         err = mv88e6xxx_port_read(chip, port, PORT_DEFAULT_VLAN, &reg);
1243         if (err)
1244                 return err;
1245
1246         pvid = reg & PORT_DEFAULT_VLAN_MASK;
1247
1248         if (new) {
1249                 reg &= ~PORT_DEFAULT_VLAN_MASK;
1250                 reg |= *new & PORT_DEFAULT_VLAN_MASK;
1251
1252                 err = mv88e6xxx_port_write(chip, port, PORT_DEFAULT_VLAN, reg);
1253                 if (err)
1254                         return err;
1255
1256                 netdev_dbg(ds->ports[port].netdev,
1257                            "DefaultVID %d (was %d)\n", *new, pvid);
1258         }
1259
1260         if (old)
1261                 *old = pvid;
1262
1263         return 0;
1264 }
1265
1266 static int _mv88e6xxx_port_pvid_get(struct mv88e6xxx_chip *chip,
1267                                     int port, u16 *pvid)
1268 {
1269         return _mv88e6xxx_port_pvid(chip, port, NULL, pvid);
1270 }
1271
1272 static int _mv88e6xxx_port_pvid_set(struct mv88e6xxx_chip *chip,
1273                                     int port, u16 pvid)
1274 {
1275         return _mv88e6xxx_port_pvid(chip, port, &pvid, NULL);
1276 }
1277
1278 static int _mv88e6xxx_vtu_wait(struct mv88e6xxx_chip *chip)
1279 {
1280         return mv88e6xxx_wait(chip, REG_GLOBAL, GLOBAL_VTU_OP,
1281                               GLOBAL_VTU_OP_BUSY);
1282 }
1283
1284 static int _mv88e6xxx_vtu_cmd(struct mv88e6xxx_chip *chip, u16 op)
1285 {
1286         int ret;
1287
1288         ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_OP, op);
1289         if (ret < 0)
1290                 return ret;
1291
1292         return _mv88e6xxx_vtu_wait(chip);
1293 }
1294
1295 static int _mv88e6xxx_vtu_stu_flush(struct mv88e6xxx_chip *chip)
1296 {
1297         int ret;
1298
1299         ret = _mv88e6xxx_vtu_wait(chip);
1300         if (ret < 0)
1301                 return ret;
1302
1303         return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_FLUSH_ALL);
1304 }
1305
1306 static int _mv88e6xxx_vtu_stu_data_read(struct mv88e6xxx_chip *chip,
1307                                         struct mv88e6xxx_vtu_stu_entry *entry,
1308                                         unsigned int nibble_offset)
1309 {
1310         u16 regs[3];
1311         int i;
1312         int ret;
1313
1314         for (i = 0; i < 3; ++i) {
1315                 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1316                                           GLOBAL_VTU_DATA_0_3 + i);
1317                 if (ret < 0)
1318                         return ret;
1319
1320                 regs[i] = ret;
1321         }
1322
1323         for (i = 0; i < chip->info->num_ports; ++i) {
1324                 unsigned int shift = (i % 4) * 4 + nibble_offset;
1325                 u16 reg = regs[i / 4];
1326
1327                 entry->data[i] = (reg >> shift) & GLOBAL_VTU_STU_DATA_MASK;
1328         }
1329
1330         return 0;
1331 }
1332
1333 static int mv88e6xxx_vtu_data_read(struct mv88e6xxx_chip *chip,
1334                                    struct mv88e6xxx_vtu_stu_entry *entry)
1335 {
1336         return _mv88e6xxx_vtu_stu_data_read(chip, entry, 0);
1337 }
1338
1339 static int mv88e6xxx_stu_data_read(struct mv88e6xxx_chip *chip,
1340                                    struct mv88e6xxx_vtu_stu_entry *entry)
1341 {
1342         return _mv88e6xxx_vtu_stu_data_read(chip, entry, 2);
1343 }
1344
1345 static int _mv88e6xxx_vtu_stu_data_write(struct mv88e6xxx_chip *chip,
1346                                          struct mv88e6xxx_vtu_stu_entry *entry,
1347                                          unsigned int nibble_offset)
1348 {
1349         u16 regs[3] = { 0 };
1350         int i;
1351         int ret;
1352
1353         for (i = 0; i < chip->info->num_ports; ++i) {
1354                 unsigned int shift = (i % 4) * 4 + nibble_offset;
1355                 u8 data = entry->data[i];
1356
1357                 regs[i / 4] |= (data & GLOBAL_VTU_STU_DATA_MASK) << shift;
1358         }
1359
1360         for (i = 0; i < 3; ++i) {
1361                 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL,
1362                                            GLOBAL_VTU_DATA_0_3 + i, regs[i]);
1363                 if (ret < 0)
1364                         return ret;
1365         }
1366
1367         return 0;
1368 }
1369
1370 static int mv88e6xxx_vtu_data_write(struct mv88e6xxx_chip *chip,
1371                                     struct mv88e6xxx_vtu_stu_entry *entry)
1372 {
1373         return _mv88e6xxx_vtu_stu_data_write(chip, entry, 0);
1374 }
1375
1376 static int mv88e6xxx_stu_data_write(struct mv88e6xxx_chip *chip,
1377                                     struct mv88e6xxx_vtu_stu_entry *entry)
1378 {
1379         return _mv88e6xxx_vtu_stu_data_write(chip, entry, 2);
1380 }
1381
1382 static int _mv88e6xxx_vtu_vid_write(struct mv88e6xxx_chip *chip, u16 vid)
1383 {
1384         return _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID,
1385                                     vid & GLOBAL_VTU_VID_MASK);
1386 }
1387
1388 static int _mv88e6xxx_vtu_getnext(struct mv88e6xxx_chip *chip,
1389                                   struct mv88e6xxx_vtu_stu_entry *entry)
1390 {
1391         struct mv88e6xxx_vtu_stu_entry next = { 0 };
1392         int ret;
1393
1394         ret = _mv88e6xxx_vtu_wait(chip);
1395         if (ret < 0)
1396                 return ret;
1397
1398         ret = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_VTU_GET_NEXT);
1399         if (ret < 0)
1400                 return ret;
1401
1402         ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_VID);
1403         if (ret < 0)
1404                 return ret;
1405
1406         next.vid = ret & GLOBAL_VTU_VID_MASK;
1407         next.valid = !!(ret & GLOBAL_VTU_VID_VALID);
1408
1409         if (next.valid) {
1410                 ret = mv88e6xxx_vtu_data_read(chip, &next);
1411                 if (ret < 0)
1412                         return ret;
1413
1414                 if (mv88e6xxx_has_fid_reg(chip)) {
1415                         ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1416                                                   GLOBAL_VTU_FID);
1417                         if (ret < 0)
1418                                 return ret;
1419
1420                         next.fid = ret & GLOBAL_VTU_FID_MASK;
1421                 } else if (mv88e6xxx_num_databases(chip) == 256) {
1422                         /* VTU DBNum[7:4] are located in VTU Operation 11:8, and
1423                          * VTU DBNum[3:0] are located in VTU Operation 3:0
1424                          */
1425                         ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1426                                                   GLOBAL_VTU_OP);
1427                         if (ret < 0)
1428                                 return ret;
1429
1430                         next.fid = (ret & 0xf00) >> 4;
1431                         next.fid |= ret & 0xf;
1432                 }
1433
1434                 if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
1435                         ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1436                                                   GLOBAL_VTU_SID);
1437                         if (ret < 0)
1438                                 return ret;
1439
1440                         next.sid = ret & GLOBAL_VTU_SID_MASK;
1441                 }
1442         }
1443
1444         *entry = next;
1445         return 0;
1446 }
1447
1448 static int mv88e6xxx_port_vlan_dump(struct dsa_switch *ds, int port,
1449                                     struct switchdev_obj_port_vlan *vlan,
1450                                     int (*cb)(struct switchdev_obj *obj))
1451 {
1452         struct mv88e6xxx_chip *chip = ds->priv;
1453         struct mv88e6xxx_vtu_stu_entry next;
1454         u16 pvid;
1455         int err;
1456
1457         if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1458                 return -EOPNOTSUPP;
1459
1460         mutex_lock(&chip->reg_lock);
1461
1462         err = _mv88e6xxx_port_pvid_get(chip, port, &pvid);
1463         if (err)
1464                 goto unlock;
1465
1466         err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
1467         if (err)
1468                 goto unlock;
1469
1470         do {
1471                 err = _mv88e6xxx_vtu_getnext(chip, &next);
1472                 if (err)
1473                         break;
1474
1475                 if (!next.valid)
1476                         break;
1477
1478                 if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
1479                         continue;
1480
1481                 /* reinit and dump this VLAN obj */
1482                 vlan->vid_begin = next.vid;
1483                 vlan->vid_end = next.vid;
1484                 vlan->flags = 0;
1485
1486                 if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
1487                         vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED;
1488
1489                 if (next.vid == pvid)
1490                         vlan->flags |= BRIDGE_VLAN_INFO_PVID;
1491
1492                 err = cb(&vlan->obj);
1493                 if (err)
1494                         break;
1495         } while (next.vid < GLOBAL_VTU_VID_MASK);
1496
1497 unlock:
1498         mutex_unlock(&chip->reg_lock);
1499
1500         return err;
1501 }
1502
1503 static int _mv88e6xxx_vtu_loadpurge(struct mv88e6xxx_chip *chip,
1504                                     struct mv88e6xxx_vtu_stu_entry *entry)
1505 {
1506         u16 op = GLOBAL_VTU_OP_VTU_LOAD_PURGE;
1507         u16 reg = 0;
1508         int ret;
1509
1510         ret = _mv88e6xxx_vtu_wait(chip);
1511         if (ret < 0)
1512                 return ret;
1513
1514         if (!entry->valid)
1515                 goto loadpurge;
1516
1517         /* Write port member tags */
1518         ret = mv88e6xxx_vtu_data_write(chip, entry);
1519         if (ret < 0)
1520                 return ret;
1521
1522         if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
1523                 reg = entry->sid & GLOBAL_VTU_SID_MASK;
1524                 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID,
1525                                            reg);
1526                 if (ret < 0)
1527                         return ret;
1528         }
1529
1530         if (mv88e6xxx_has_fid_reg(chip)) {
1531                 reg = entry->fid & GLOBAL_VTU_FID_MASK;
1532                 ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_FID,
1533                                            reg);
1534                 if (ret < 0)
1535                         return ret;
1536         } else if (mv88e6xxx_num_databases(chip) == 256) {
1537                 /* VTU DBNum[7:4] are located in VTU Operation 11:8, and
1538                  * VTU DBNum[3:0] are located in VTU Operation 3:0
1539                  */
1540                 op |= (entry->fid & 0xf0) << 8;
1541                 op |= entry->fid & 0xf;
1542         }
1543
1544         reg = GLOBAL_VTU_VID_VALID;
1545 loadpurge:
1546         reg |= entry->vid & GLOBAL_VTU_VID_MASK;
1547         ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID, reg);
1548         if (ret < 0)
1549                 return ret;
1550
1551         return _mv88e6xxx_vtu_cmd(chip, op);
1552 }
1553
1554 static int _mv88e6xxx_stu_getnext(struct mv88e6xxx_chip *chip, u8 sid,
1555                                   struct mv88e6xxx_vtu_stu_entry *entry)
1556 {
1557         struct mv88e6xxx_vtu_stu_entry next = { 0 };
1558         int ret;
1559
1560         ret = _mv88e6xxx_vtu_wait(chip);
1561         if (ret < 0)
1562                 return ret;
1563
1564         ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID,
1565                                    sid & GLOBAL_VTU_SID_MASK);
1566         if (ret < 0)
1567                 return ret;
1568
1569         ret = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_GET_NEXT);
1570         if (ret < 0)
1571                 return ret;
1572
1573         ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_SID);
1574         if (ret < 0)
1575                 return ret;
1576
1577         next.sid = ret & GLOBAL_VTU_SID_MASK;
1578
1579         ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_VID);
1580         if (ret < 0)
1581                 return ret;
1582
1583         next.valid = !!(ret & GLOBAL_VTU_VID_VALID);
1584
1585         if (next.valid) {
1586                 ret = mv88e6xxx_stu_data_read(chip, &next);
1587                 if (ret < 0)
1588                         return ret;
1589         }
1590
1591         *entry = next;
1592         return 0;
1593 }
1594
1595 static int _mv88e6xxx_stu_loadpurge(struct mv88e6xxx_chip *chip,
1596                                     struct mv88e6xxx_vtu_stu_entry *entry)
1597 {
1598         u16 reg = 0;
1599         int ret;
1600
1601         ret = _mv88e6xxx_vtu_wait(chip);
1602         if (ret < 0)
1603                 return ret;
1604
1605         if (!entry->valid)
1606                 goto loadpurge;
1607
1608         /* Write port states */
1609         ret = mv88e6xxx_stu_data_write(chip, entry);
1610         if (ret < 0)
1611                 return ret;
1612
1613         reg = GLOBAL_VTU_VID_VALID;
1614 loadpurge:
1615         ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID, reg);
1616         if (ret < 0)
1617                 return ret;
1618
1619         reg = entry->sid & GLOBAL_VTU_SID_MASK;
1620         ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID, reg);
1621         if (ret < 0)
1622                 return ret;
1623
1624         return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_LOAD_PURGE);
1625 }
1626
1627 static int _mv88e6xxx_port_fid(struct mv88e6xxx_chip *chip, int port,
1628                                u16 *new, u16 *old)
1629 {
1630         struct dsa_switch *ds = chip->ds;
1631         u16 upper_mask;
1632         u16 fid;
1633         u16 reg;
1634         int err;
1635
1636         if (mv88e6xxx_num_databases(chip) == 4096)
1637                 upper_mask = 0xff;
1638         else if (mv88e6xxx_num_databases(chip) == 256)
1639                 upper_mask = 0xf;
1640         else
1641                 return -EOPNOTSUPP;
1642
1643         /* Port's default FID bits 3:0 are located in reg 0x06, offset 12 */
1644         err = mv88e6xxx_port_read(chip, port, PORT_BASE_VLAN, &reg);
1645         if (err)
1646                 return err;
1647
1648         fid = (reg & PORT_BASE_VLAN_FID_3_0_MASK) >> 12;
1649
1650         if (new) {
1651                 reg &= ~PORT_BASE_VLAN_FID_3_0_MASK;
1652                 reg |= (*new << 12) & PORT_BASE_VLAN_FID_3_0_MASK;
1653
1654                 err = mv88e6xxx_port_write(chip, port, PORT_BASE_VLAN, reg);
1655                 if (err)
1656                         return err;
1657         }
1658
1659         /* Port's default FID bits 11:4 are located in reg 0x05, offset 0 */
1660         err = mv88e6xxx_port_read(chip, port, PORT_CONTROL_1, &reg);
1661         if (err)
1662                 return err;
1663
1664         fid |= (reg & upper_mask) << 4;
1665
1666         if (new) {
1667                 reg &= ~upper_mask;
1668                 reg |= (*new >> 4) & upper_mask;
1669
1670                 err = mv88e6xxx_port_write(chip, port, PORT_CONTROL_1, reg);
1671                 if (err)
1672                         return err;
1673
1674                 netdev_dbg(ds->ports[port].netdev,
1675                            "FID %d (was %d)\n", *new, fid);
1676         }
1677
1678         if (old)
1679                 *old = fid;
1680
1681         return 0;
1682 }
1683
1684 static int _mv88e6xxx_port_fid_get(struct mv88e6xxx_chip *chip,
1685                                    int port, u16 *fid)
1686 {
1687         return _mv88e6xxx_port_fid(chip, port, NULL, fid);
1688 }
1689
1690 static int _mv88e6xxx_port_fid_set(struct mv88e6xxx_chip *chip,
1691                                    int port, u16 fid)
1692 {
1693         return _mv88e6xxx_port_fid(chip, port, &fid, NULL);
1694 }
1695
1696 static int _mv88e6xxx_fid_new(struct mv88e6xxx_chip *chip, u16 *fid)
1697 {
1698         DECLARE_BITMAP(fid_bitmap, MV88E6XXX_N_FID);
1699         struct mv88e6xxx_vtu_stu_entry vlan;
1700         int i, err;
1701
1702         bitmap_zero(fid_bitmap, MV88E6XXX_N_FID);
1703
1704         /* Set every FID bit used by the (un)bridged ports */
1705         for (i = 0; i < chip->info->num_ports; ++i) {
1706                 err = _mv88e6xxx_port_fid_get(chip, i, fid);
1707                 if (err)
1708                         return err;
1709
1710                 set_bit(*fid, fid_bitmap);
1711         }
1712
1713         /* Set every FID bit used by the VLAN entries */
1714         err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
1715         if (err)
1716                 return err;
1717
1718         do {
1719                 err = _mv88e6xxx_vtu_getnext(chip, &vlan);
1720                 if (err)
1721                         return err;
1722
1723                 if (!vlan.valid)
1724                         break;
1725
1726                 set_bit(vlan.fid, fid_bitmap);
1727         } while (vlan.vid < GLOBAL_VTU_VID_MASK);
1728
1729         /* The reset value 0x000 is used to indicate that multiple address
1730          * databases are not needed. Return the next positive available.
1731          */
1732         *fid = find_next_zero_bit(fid_bitmap, MV88E6XXX_N_FID, 1);
1733         if (unlikely(*fid >= mv88e6xxx_num_databases(chip)))
1734                 return -ENOSPC;
1735
1736         /* Clear the database */
1737         return _mv88e6xxx_atu_flush(chip, *fid, true);
1738 }
1739
1740 static int _mv88e6xxx_vtu_new(struct mv88e6xxx_chip *chip, u16 vid,
1741                               struct mv88e6xxx_vtu_stu_entry *entry)
1742 {
1743         struct dsa_switch *ds = chip->ds;
1744         struct mv88e6xxx_vtu_stu_entry vlan = {
1745                 .valid = true,
1746                 .vid = vid,
1747         };
1748         int i, err;
1749
1750         err = _mv88e6xxx_fid_new(chip, &vlan.fid);
1751         if (err)
1752                 return err;
1753
1754         /* exclude all ports except the CPU and DSA ports */
1755         for (i = 0; i < chip->info->num_ports; ++i)
1756                 vlan.data[i] = dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)
1757                         ? GLOBAL_VTU_DATA_MEMBER_TAG_UNMODIFIED
1758                         : GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
1759
1760         if (mv88e6xxx_6097_family(chip) || mv88e6xxx_6165_family(chip) ||
1761             mv88e6xxx_6351_family(chip) || mv88e6xxx_6352_family(chip)) {
1762                 struct mv88e6xxx_vtu_stu_entry vstp;
1763
1764                 /* Adding a VTU entry requires a valid STU entry. As VSTP is not
1765                  * implemented, only one STU entry is needed to cover all VTU
1766                  * entries. Thus, validate the SID 0.
1767                  */
1768                 vlan.sid = 0;
1769                 err = _mv88e6xxx_stu_getnext(chip, GLOBAL_VTU_SID_MASK, &vstp);
1770                 if (err)
1771                         return err;
1772
1773                 if (vstp.sid != vlan.sid || !vstp.valid) {
1774                         memset(&vstp, 0, sizeof(vstp));
1775                         vstp.valid = true;
1776                         vstp.sid = vlan.sid;
1777
1778                         err = _mv88e6xxx_stu_loadpurge(chip, &vstp);
1779                         if (err)
1780                                 return err;
1781                 }
1782         }
1783
1784         *entry = vlan;
1785         return 0;
1786 }
1787
1788 static int _mv88e6xxx_vtu_get(struct mv88e6xxx_chip *chip, u16 vid,
1789                               struct mv88e6xxx_vtu_stu_entry *entry, bool creat)
1790 {
1791         int err;
1792
1793         if (!vid)
1794                 return -EINVAL;
1795
1796         err = _mv88e6xxx_vtu_vid_write(chip, vid - 1);
1797         if (err)
1798                 return err;
1799
1800         err = _mv88e6xxx_vtu_getnext(chip, entry);
1801         if (err)
1802                 return err;
1803
1804         if (entry->vid != vid || !entry->valid) {
1805                 if (!creat)
1806                         return -EOPNOTSUPP;
1807                 /* -ENOENT would've been more appropriate, but switchdev expects
1808                  * -EOPNOTSUPP to inform bridge about an eventual software VLAN.
1809                  */
1810
1811                 err = _mv88e6xxx_vtu_new(chip, vid, entry);
1812         }
1813
1814         return err;
1815 }
1816
1817 static int mv88e6xxx_port_check_hw_vlan(struct dsa_switch *ds, int port,
1818                                         u16 vid_begin, u16 vid_end)
1819 {
1820         struct mv88e6xxx_chip *chip = ds->priv;
1821         struct mv88e6xxx_vtu_stu_entry vlan;
1822         int i, err;
1823
1824         if (!vid_begin)
1825                 return -EOPNOTSUPP;
1826
1827         mutex_lock(&chip->reg_lock);
1828
1829         err = _mv88e6xxx_vtu_vid_write(chip, vid_begin - 1);
1830         if (err)
1831                 goto unlock;
1832
1833         do {
1834                 err = _mv88e6xxx_vtu_getnext(chip, &vlan);
1835                 if (err)
1836                         goto unlock;
1837
1838                 if (!vlan.valid)
1839                         break;
1840
1841                 if (vlan.vid > vid_end)
1842                         break;
1843
1844                 for (i = 0; i < chip->info->num_ports; ++i) {
1845                         if (dsa_is_dsa_port(ds, i) || dsa_is_cpu_port(ds, i))
1846                                 continue;
1847
1848                         if (vlan.data[i] ==
1849                             GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
1850                                 continue;
1851
1852                         if (chip->ports[i].bridge_dev ==
1853                             chip->ports[port].bridge_dev)
1854                                 break; /* same bridge, check next VLAN */
1855
1856                         netdev_warn(ds->ports[port].netdev,
1857                                     "hardware VLAN %d already used by %s\n",
1858                                     vlan.vid,
1859                                     netdev_name(chip->ports[i].bridge_dev));
1860                         err = -EOPNOTSUPP;
1861                         goto unlock;
1862                 }
1863         } while (vlan.vid < vid_end);
1864
1865 unlock:
1866         mutex_unlock(&chip->reg_lock);
1867
1868         return err;
1869 }
1870
1871 static const char * const mv88e6xxx_port_8021q_mode_names[] = {
1872         [PORT_CONTROL_2_8021Q_DISABLED] = "Disabled",
1873         [PORT_CONTROL_2_8021Q_FALLBACK] = "Fallback",
1874         [PORT_CONTROL_2_8021Q_CHECK] = "Check",
1875         [PORT_CONTROL_2_8021Q_SECURE] = "Secure",
1876 };
1877
1878 static int mv88e6xxx_port_vlan_filtering(struct dsa_switch *ds, int port,
1879                                          bool vlan_filtering)
1880 {
1881         struct mv88e6xxx_chip *chip = ds->priv;
1882         u16 old, new = vlan_filtering ? PORT_CONTROL_2_8021Q_SECURE :
1883                 PORT_CONTROL_2_8021Q_DISABLED;
1884         u16 reg;
1885         int err;
1886
1887         if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1888                 return -EOPNOTSUPP;
1889
1890         mutex_lock(&chip->reg_lock);
1891
1892         err = mv88e6xxx_port_read(chip, port, PORT_CONTROL_2, &reg);
1893         if (err)
1894                 goto unlock;
1895
1896         old = reg & PORT_CONTROL_2_8021Q_MASK;
1897
1898         if (new != old) {
1899                 reg &= ~PORT_CONTROL_2_8021Q_MASK;
1900                 reg |= new & PORT_CONTROL_2_8021Q_MASK;
1901
1902                 err = mv88e6xxx_port_write(chip, port, PORT_CONTROL_2, reg);
1903                 if (err)
1904                         goto unlock;
1905
1906                 netdev_dbg(ds->ports[port].netdev, "802.1Q Mode %s (was %s)\n",
1907                            mv88e6xxx_port_8021q_mode_names[new],
1908                            mv88e6xxx_port_8021q_mode_names[old]);
1909         }
1910
1911         err = 0;
1912 unlock:
1913         mutex_unlock(&chip->reg_lock);
1914
1915         return err;
1916 }
1917
1918 static int
1919 mv88e6xxx_port_vlan_prepare(struct dsa_switch *ds, int port,
1920                             const struct switchdev_obj_port_vlan *vlan,
1921                             struct switchdev_trans *trans)
1922 {
1923         struct mv88e6xxx_chip *chip = ds->priv;
1924         int err;
1925
1926         if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1927                 return -EOPNOTSUPP;
1928
1929         /* If the requested port doesn't belong to the same bridge as the VLAN
1930          * members, do not support it (yet) and fallback to software VLAN.
1931          */
1932         err = mv88e6xxx_port_check_hw_vlan(ds, port, vlan->vid_begin,
1933                                            vlan->vid_end);
1934         if (err)
1935                 return err;
1936
1937         /* We don't need any dynamic resource from the kernel (yet),
1938          * so skip the prepare phase.
1939          */
1940         return 0;
1941 }
1942
1943 static int _mv88e6xxx_port_vlan_add(struct mv88e6xxx_chip *chip, int port,
1944                                     u16 vid, bool untagged)
1945 {
1946         struct mv88e6xxx_vtu_stu_entry vlan;
1947         int err;
1948
1949         err = _mv88e6xxx_vtu_get(chip, vid, &vlan, true);
1950         if (err)
1951                 return err;
1952
1953         vlan.data[port] = untagged ?
1954                 GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED :
1955                 GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED;
1956
1957         return _mv88e6xxx_vtu_loadpurge(chip, &vlan);
1958 }
1959
1960 static void mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port,
1961                                     const struct switchdev_obj_port_vlan *vlan,
1962                                     struct switchdev_trans *trans)
1963 {
1964         struct mv88e6xxx_chip *chip = ds->priv;
1965         bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1966         bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1967         u16 vid;
1968
1969         if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1970                 return;
1971
1972         mutex_lock(&chip->reg_lock);
1973
1974         for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid)
1975                 if (_mv88e6xxx_port_vlan_add(chip, port, vid, untagged))
1976                         netdev_err(ds->ports[port].netdev,
1977                                    "failed to add VLAN %d%c\n",
1978                                    vid, untagged ? 'u' : 't');
1979
1980         if (pvid && _mv88e6xxx_port_pvid_set(chip, port, vlan->vid_end))
1981                 netdev_err(ds->ports[port].netdev, "failed to set PVID %d\n",
1982                            vlan->vid_end);
1983
1984         mutex_unlock(&chip->reg_lock);
1985 }
1986
1987 static int _mv88e6xxx_port_vlan_del(struct mv88e6xxx_chip *chip,
1988                                     int port, u16 vid)
1989 {
1990         struct dsa_switch *ds = chip->ds;
1991         struct mv88e6xxx_vtu_stu_entry vlan;
1992         int i, err;
1993
1994         err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
1995         if (err)
1996                 return err;
1997
1998         /* Tell switchdev if this VLAN is handled in software */
1999         if (vlan.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
2000                 return -EOPNOTSUPP;
2001
2002         vlan.data[port] = GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
2003
2004         /* keep the VLAN unless all ports are excluded */
2005         vlan.valid = false;
2006         for (i = 0; i < chip->info->num_ports; ++i) {
2007                 if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
2008                         continue;
2009
2010                 if (vlan.data[i] != GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) {
2011                         vlan.valid = true;
2012                         break;
2013                 }
2014         }
2015
2016         err = _mv88e6xxx_vtu_loadpurge(chip, &vlan);
2017         if (err)
2018                 return err;
2019
2020         return _mv88e6xxx_atu_remove(chip, vlan.fid, port, false);
2021 }
2022
2023 static int mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port,
2024                                    const struct switchdev_obj_port_vlan *vlan)
2025 {
2026         struct mv88e6xxx_chip *chip = ds->priv;
2027         u16 pvid, vid;
2028         int err = 0;
2029
2030         if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
2031                 return -EOPNOTSUPP;
2032
2033         mutex_lock(&chip->reg_lock);
2034
2035         err = _mv88e6xxx_port_pvid_get(chip, port, &pvid);
2036         if (err)
2037                 goto unlock;
2038
2039         for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
2040                 err = _mv88e6xxx_port_vlan_del(chip, port, vid);
2041                 if (err)
2042                         goto unlock;
2043
2044                 if (vid == pvid) {
2045                         err = _mv88e6xxx_port_pvid_set(chip, port, 0);
2046                         if (err)
2047                                 goto unlock;
2048                 }
2049         }
2050
2051 unlock:
2052         mutex_unlock(&chip->reg_lock);
2053
2054         return err;
2055 }
2056
2057 static int _mv88e6xxx_atu_mac_write(struct mv88e6xxx_chip *chip,
2058                                     const unsigned char *addr)
2059 {
2060         int i, ret;
2061
2062         for (i = 0; i < 3; i++) {
2063                 ret = _mv88e6xxx_reg_write(
2064                         chip, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i,
2065                         (addr[i * 2] << 8) | addr[i * 2 + 1]);
2066                 if (ret < 0)
2067                         return ret;
2068         }
2069
2070         return 0;
2071 }
2072
2073 static int _mv88e6xxx_atu_mac_read(struct mv88e6xxx_chip *chip,
2074                                    unsigned char *addr)
2075 {
2076         int i, ret;
2077
2078         for (i = 0; i < 3; i++) {
2079                 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
2080                                           GLOBAL_ATU_MAC_01 + i);
2081                 if (ret < 0)
2082                         return ret;
2083                 addr[i * 2] = ret >> 8;
2084                 addr[i * 2 + 1] = ret & 0xff;
2085         }
2086
2087         return 0;
2088 }
2089
2090 static int _mv88e6xxx_atu_load(struct mv88e6xxx_chip *chip,
2091                                struct mv88e6xxx_atu_entry *entry)
2092 {
2093         int ret;
2094
2095         ret = _mv88e6xxx_atu_wait(chip);
2096         if (ret < 0)
2097                 return ret;
2098
2099         ret = _mv88e6xxx_atu_mac_write(chip, entry->mac);
2100         if (ret < 0)
2101                 return ret;
2102
2103         ret = _mv88e6xxx_atu_data_write(chip, entry);
2104         if (ret < 0)
2105                 return ret;
2106
2107         return _mv88e6xxx_atu_cmd(chip, entry->fid, GLOBAL_ATU_OP_LOAD_DB);
2108 }
2109
2110 static int _mv88e6xxx_atu_getnext(struct mv88e6xxx_chip *chip, u16 fid,
2111                                   struct mv88e6xxx_atu_entry *entry);
2112
2113 static int mv88e6xxx_atu_get(struct mv88e6xxx_chip *chip, int fid,
2114                              const u8 *addr, struct mv88e6xxx_atu_entry *entry)
2115 {
2116         struct mv88e6xxx_atu_entry next;
2117         int err;
2118
2119         eth_broadcast_addr(next.mac);
2120
2121         err = _mv88e6xxx_atu_mac_write(chip, next.mac);
2122         if (err)
2123                 return err;
2124
2125         do {
2126                 err = _mv88e6xxx_atu_getnext(chip, fid, &next);
2127                 if (err)
2128                         return err;
2129
2130                 if (next.state == GLOBAL_ATU_DATA_STATE_UNUSED)
2131                         break;
2132
2133                 if (ether_addr_equal(next.mac, addr)) {
2134                         *entry = next;
2135                         return 0;
2136                 }
2137         } while (!is_broadcast_ether_addr(next.mac));
2138
2139         memset(entry, 0, sizeof(*entry));
2140         entry->fid = fid;
2141         ether_addr_copy(entry->mac, addr);
2142
2143         return 0;
2144 }
2145
2146 static int mv88e6xxx_port_db_load_purge(struct mv88e6xxx_chip *chip, int port,
2147                                         const unsigned char *addr, u16 vid,
2148                                         u8 state)
2149 {
2150         struct mv88e6xxx_vtu_stu_entry vlan;
2151         struct mv88e6xxx_atu_entry entry;
2152         int err;
2153
2154         /* Null VLAN ID corresponds to the port private database */
2155         if (vid == 0)
2156                 err = _mv88e6xxx_port_fid_get(chip, port, &vlan.fid);
2157         else
2158                 err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
2159         if (err)
2160                 return err;
2161
2162         err = mv88e6xxx_atu_get(chip, vlan.fid, addr, &entry);
2163         if (err)
2164                 return err;
2165
2166         /* Purge the ATU entry only if no port is using it anymore */
2167         if (state == GLOBAL_ATU_DATA_STATE_UNUSED) {
2168                 entry.portv_trunkid &= ~BIT(port);
2169                 if (!entry.portv_trunkid)
2170                         entry.state = GLOBAL_ATU_DATA_STATE_UNUSED;
2171         } else {
2172                 entry.portv_trunkid |= BIT(port);
2173                 entry.state = state;
2174         }
2175
2176         return _mv88e6xxx_atu_load(chip, &entry);
2177 }
2178
2179 static int mv88e6xxx_port_fdb_prepare(struct dsa_switch *ds, int port,
2180                                       const struct switchdev_obj_port_fdb *fdb,
2181                                       struct switchdev_trans *trans)
2182 {
2183         /* We don't need any dynamic resource from the kernel (yet),
2184          * so skip the prepare phase.
2185          */
2186         return 0;
2187 }
2188
2189 static void mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
2190                                    const struct switchdev_obj_port_fdb *fdb,
2191                                    struct switchdev_trans *trans)
2192 {
2193         struct mv88e6xxx_chip *chip = ds->priv;
2194
2195         mutex_lock(&chip->reg_lock);
2196         if (mv88e6xxx_port_db_load_purge(chip, port, fdb->addr, fdb->vid,
2197                                          GLOBAL_ATU_DATA_STATE_UC_STATIC))
2198                 netdev_err(ds->ports[port].netdev, "failed to load unicast MAC address\n");
2199         mutex_unlock(&chip->reg_lock);
2200 }
2201
2202 static int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
2203                                   const struct switchdev_obj_port_fdb *fdb)
2204 {
2205         struct mv88e6xxx_chip *chip = ds->priv;
2206         int err;
2207
2208         mutex_lock(&chip->reg_lock);
2209         err = mv88e6xxx_port_db_load_purge(chip, port, fdb->addr, fdb->vid,
2210                                            GLOBAL_ATU_DATA_STATE_UNUSED);
2211         mutex_unlock(&chip->reg_lock);
2212
2213         return err;
2214 }
2215
2216 static int _mv88e6xxx_atu_getnext(struct mv88e6xxx_chip *chip, u16 fid,
2217                                   struct mv88e6xxx_atu_entry *entry)
2218 {
2219         struct mv88e6xxx_atu_entry next = { 0 };
2220         int ret;
2221
2222         next.fid = fid;
2223
2224         ret = _mv88e6xxx_atu_wait(chip);
2225         if (ret < 0)
2226                 return ret;
2227
2228         ret = _mv88e6xxx_atu_cmd(chip, fid, GLOBAL_ATU_OP_GET_NEXT_DB);
2229         if (ret < 0)
2230                 return ret;
2231
2232         ret = _mv88e6xxx_atu_mac_read(chip, next.mac);
2233         if (ret < 0)
2234                 return ret;
2235
2236         ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_ATU_DATA);
2237         if (ret < 0)
2238                 return ret;
2239
2240         next.state = ret & GLOBAL_ATU_DATA_STATE_MASK;
2241         if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) {
2242                 unsigned int mask, shift;
2243
2244                 if (ret & GLOBAL_ATU_DATA_TRUNK) {
2245                         next.trunk = true;
2246                         mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
2247                         shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
2248                 } else {
2249                         next.trunk = false;
2250                         mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
2251                         shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
2252                 }
2253
2254                 next.portv_trunkid = (ret & mask) >> shift;
2255         }
2256
2257         *entry = next;
2258         return 0;
2259 }
2260
2261 static int mv88e6xxx_port_db_dump_fid(struct mv88e6xxx_chip *chip,
2262                                       u16 fid, u16 vid, int port,
2263                                       struct switchdev_obj *obj,
2264                                       int (*cb)(struct switchdev_obj *obj))
2265 {
2266         struct mv88e6xxx_atu_entry addr = {
2267                 .mac = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
2268         };
2269         int err;
2270
2271         err = _mv88e6xxx_atu_mac_write(chip, addr.mac);
2272         if (err)
2273                 return err;
2274
2275         do {
2276                 err = _mv88e6xxx_atu_getnext(chip, fid, &addr);
2277                 if (err)
2278                         return err;
2279
2280                 if (addr.state == GLOBAL_ATU_DATA_STATE_UNUSED)
2281                         break;
2282
2283                 if (addr.trunk || (addr.portv_trunkid & BIT(port)) == 0)
2284                         continue;
2285
2286                 if (obj->id == SWITCHDEV_OBJ_ID_PORT_FDB) {
2287                         struct switchdev_obj_port_fdb *fdb;
2288
2289                         if (!is_unicast_ether_addr(addr.mac))
2290                                 continue;
2291
2292                         fdb = SWITCHDEV_OBJ_PORT_FDB(obj);
2293                         fdb->vid = vid;
2294                         ether_addr_copy(fdb->addr, addr.mac);
2295                         if (addr.state == GLOBAL_ATU_DATA_STATE_UC_STATIC)
2296                                 fdb->ndm_state = NUD_NOARP;
2297                         else
2298                                 fdb->ndm_state = NUD_REACHABLE;
2299                 } else if (obj->id == SWITCHDEV_OBJ_ID_PORT_MDB) {
2300                         struct switchdev_obj_port_mdb *mdb;
2301
2302                         if (!is_multicast_ether_addr(addr.mac))
2303                                 continue;
2304
2305                         mdb = SWITCHDEV_OBJ_PORT_MDB(obj);
2306                         mdb->vid = vid;
2307                         ether_addr_copy(mdb->addr, addr.mac);
2308                 } else {
2309                         return -EOPNOTSUPP;
2310                 }
2311
2312                 err = cb(obj);
2313                 if (err)
2314                         return err;
2315         } while (!is_broadcast_ether_addr(addr.mac));
2316
2317         return err;
2318 }
2319
2320 static int mv88e6xxx_port_db_dump(struct mv88e6xxx_chip *chip, int port,
2321                                   struct switchdev_obj *obj,
2322                                   int (*cb)(struct switchdev_obj *obj))
2323 {
2324         struct mv88e6xxx_vtu_stu_entry vlan = {
2325                 .vid = GLOBAL_VTU_VID_MASK, /* all ones */
2326         };
2327         u16 fid;
2328         int err;
2329
2330         /* Dump port's default Filtering Information Database (VLAN ID 0) */
2331         err = _mv88e6xxx_port_fid_get(chip, port, &fid);
2332         if (err)
2333                 return err;
2334
2335         err = mv88e6xxx_port_db_dump_fid(chip, fid, 0, port, obj, cb);
2336         if (err)
2337                 return err;
2338
2339         /* Dump VLANs' Filtering Information Databases */
2340         err = _mv88e6xxx_vtu_vid_write(chip, vlan.vid);
2341         if (err)
2342                 return err;
2343
2344         do {
2345                 err = _mv88e6xxx_vtu_getnext(chip, &vlan);
2346                 if (err)
2347                         return err;
2348
2349                 if (!vlan.valid)
2350                         break;
2351
2352                 err = mv88e6xxx_port_db_dump_fid(chip, vlan.fid, vlan.vid, port,
2353                                                  obj, cb);
2354                 if (err)
2355                         return err;
2356         } while (vlan.vid < GLOBAL_VTU_VID_MASK);
2357
2358         return err;
2359 }
2360
2361 static int mv88e6xxx_port_fdb_dump(struct dsa_switch *ds, int port,
2362                                    struct switchdev_obj_port_fdb *fdb,
2363                                    int (*cb)(struct switchdev_obj *obj))
2364 {
2365         struct mv88e6xxx_chip *chip = ds->priv;
2366         int err;
2367
2368         mutex_lock(&chip->reg_lock);
2369         err = mv88e6xxx_port_db_dump(chip, port, &fdb->obj, cb);
2370         mutex_unlock(&chip->reg_lock);
2371
2372         return err;
2373 }
2374
2375 static int mv88e6xxx_port_bridge_join(struct dsa_switch *ds, int port,
2376                                       struct net_device *bridge)
2377 {
2378         struct mv88e6xxx_chip *chip = ds->priv;
2379         int i, err = 0;
2380
2381         mutex_lock(&chip->reg_lock);
2382
2383         /* Assign the bridge and remap each port's VLANTable */
2384         chip->ports[port].bridge_dev = bridge;
2385
2386         for (i = 0; i < chip->info->num_ports; ++i) {
2387                 if (chip->ports[i].bridge_dev == bridge) {
2388                         err = _mv88e6xxx_port_based_vlan_map(chip, i);
2389                         if (err)
2390                                 break;
2391                 }
2392         }
2393
2394         mutex_unlock(&chip->reg_lock);
2395
2396         return err;
2397 }
2398
2399 static void mv88e6xxx_port_bridge_leave(struct dsa_switch *ds, int port)
2400 {
2401         struct mv88e6xxx_chip *chip = ds->priv;
2402         struct net_device *bridge = chip->ports[port].bridge_dev;
2403         int i;
2404
2405         mutex_lock(&chip->reg_lock);
2406
2407         /* Unassign the bridge and remap each port's VLANTable */
2408         chip->ports[port].bridge_dev = NULL;
2409
2410         for (i = 0; i < chip->info->num_ports; ++i)
2411                 if (i == port || chip->ports[i].bridge_dev == bridge)
2412                         if (_mv88e6xxx_port_based_vlan_map(chip, i))
2413                                 netdev_warn(ds->ports[i].netdev,
2414                                             "failed to remap\n");
2415
2416         mutex_unlock(&chip->reg_lock);
2417 }
2418
2419 static int mv88e6xxx_switch_reset(struct mv88e6xxx_chip *chip)
2420 {
2421         bool ppu_active = mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE);
2422         u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
2423         struct gpio_desc *gpiod = chip->reset;
2424         unsigned long timeout;
2425         int err, ret;
2426         u16 reg;
2427         int i;
2428
2429         /* Set all ports to the disabled state. */
2430         for (i = 0; i < chip->info->num_ports; i++) {
2431                 err = mv88e6xxx_port_read(chip, i, PORT_CONTROL, &reg);
2432                 if (err)
2433                         return err;
2434
2435                 err = mv88e6xxx_port_write(chip, i, PORT_CONTROL,
2436                                            reg & 0xfffc);
2437                 if (err)
2438                         return err;
2439         }
2440
2441         /* Wait for transmit queues to drain. */
2442         usleep_range(2000, 4000);
2443
2444         /* If there is a gpio connected to the reset pin, toggle it */
2445         if (gpiod) {
2446                 gpiod_set_value_cansleep(gpiod, 1);
2447                 usleep_range(10000, 20000);
2448                 gpiod_set_value_cansleep(gpiod, 0);
2449                 usleep_range(10000, 20000);
2450         }
2451
2452         /* Reset the switch. Keep the PPU active if requested. The PPU
2453          * needs to be active to support indirect phy register access
2454          * through global registers 0x18 and 0x19.
2455          */
2456         if (ppu_active)
2457                 err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, 0x04, 0xc000);
2458         else
2459                 err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, 0x04, 0xc400);
2460         if (err)
2461                 return err;
2462
2463         /* Wait up to one second for reset to complete. */
2464         timeout = jiffies + 1 * HZ;
2465         while (time_before(jiffies, timeout)) {
2466                 ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, 0x00);
2467                 if (ret < 0)
2468                         return ret;
2469
2470                 if ((ret & is_reset) == is_reset)
2471                         break;
2472                 usleep_range(1000, 2000);
2473         }
2474         if (time_after(jiffies, timeout))
2475                 err = -ETIMEDOUT;
2476         else
2477                 err = 0;
2478
2479         return err;
2480 }
2481
2482 static int mv88e6xxx_serdes_power_on(struct mv88e6xxx_chip *chip)
2483 {
2484         u16 val;
2485         int err;
2486
2487         /* Clear Power Down bit */
2488         err = mv88e6xxx_serdes_read(chip, MII_BMCR, &val);
2489         if (err)
2490                 return err;
2491
2492         if (val & BMCR_PDOWN) {
2493                 val &= ~BMCR_PDOWN;
2494                 err = mv88e6xxx_serdes_write(chip, MII_BMCR, val);
2495         }
2496
2497         return err;
2498 }
2499
2500 static int mv88e6xxx_setup_port(struct mv88e6xxx_chip *chip, int port)
2501 {
2502         struct dsa_switch *ds = chip->ds;
2503         int err;
2504         u16 reg;
2505
2506         if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2507             mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
2508             mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip) ||
2509             mv88e6xxx_6065_family(chip) || mv88e6xxx_6320_family(chip)) {
2510                 /* MAC Forcing register: don't force link, speed,
2511                  * duplex or flow control state to any particular
2512                  * values on physical ports, but force the CPU port
2513                  * and all DSA ports to their maximum bandwidth and
2514                  * full duplex.
2515                  */
2516                 err = mv88e6xxx_port_read(chip, port, PORT_PCS_CTRL, &reg);
2517                 if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
2518                         reg &= ~PORT_PCS_CTRL_UNFORCED;
2519                         reg |= PORT_PCS_CTRL_FORCE_LINK |
2520                                 PORT_PCS_CTRL_LINK_UP |
2521                                 PORT_PCS_CTRL_DUPLEX_FULL |
2522                                 PORT_PCS_CTRL_FORCE_DUPLEX;
2523                         if (mv88e6xxx_6065_family(chip))
2524                                 reg |= PORT_PCS_CTRL_100;
2525                         else
2526                                 reg |= PORT_PCS_CTRL_1000;
2527                 } else {
2528                         reg |= PORT_PCS_CTRL_UNFORCED;
2529                 }
2530
2531                 err = mv88e6xxx_port_write(chip, port, PORT_PCS_CTRL, reg);
2532                 if (err)
2533                         return err;
2534         }
2535
2536         /* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
2537          * disable Header mode, enable IGMP/MLD snooping, disable VLAN
2538          * tunneling, determine priority by looking at 802.1p and IP
2539          * priority fields (IP prio has precedence), and set STP state
2540          * to Forwarding.
2541          *
2542          * If this is the CPU link, use DSA or EDSA tagging depending
2543          * on which tagging mode was configured.
2544          *
2545          * If this is a link to another switch, use DSA tagging mode.
2546          *
2547          * If this is the upstream port for this switch, enable
2548          * forwarding of unknown unicasts and multicasts.
2549          */
2550         reg = 0;
2551         if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2552             mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
2553             mv88e6xxx_6095_family(chip) || mv88e6xxx_6065_family(chip) ||
2554             mv88e6xxx_6185_family(chip) || mv88e6xxx_6320_family(chip))
2555                 reg = PORT_CONTROL_IGMP_MLD_SNOOP |
2556                 PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP |
2557                 PORT_CONTROL_STATE_FORWARDING;
2558         if (dsa_is_cpu_port(ds, port)) {
2559                 if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_EDSA))
2560                         reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA |
2561                                 PORT_CONTROL_FORWARD_UNKNOWN_MC;
2562                 else
2563                         reg |= PORT_CONTROL_DSA_TAG;
2564                 reg |= PORT_CONTROL_EGRESS_ADD_TAG |
2565                         PORT_CONTROL_FORWARD_UNKNOWN;
2566         }
2567         if (dsa_is_dsa_port(ds, port)) {
2568                 if (mv88e6xxx_6095_family(chip) ||
2569                     mv88e6xxx_6185_family(chip))
2570                         reg |= PORT_CONTROL_DSA_TAG;
2571                 if (mv88e6xxx_6352_family(chip) ||
2572                     mv88e6xxx_6351_family(chip) ||
2573                     mv88e6xxx_6165_family(chip) ||
2574                     mv88e6xxx_6097_family(chip) ||
2575                     mv88e6xxx_6320_family(chip)) {
2576                         reg |= PORT_CONTROL_FRAME_MODE_DSA;
2577                 }
2578
2579                 if (port == dsa_upstream_port(ds))
2580                         reg |= PORT_CONTROL_FORWARD_UNKNOWN |
2581                                 PORT_CONTROL_FORWARD_UNKNOWN_MC;
2582         }
2583         if (reg) {
2584                 err = mv88e6xxx_port_write(chip, port, PORT_CONTROL, reg);
2585                 if (err)
2586                         return err;
2587         }
2588
2589         /* If this port is connected to a SerDes, make sure the SerDes is not
2590          * powered down.
2591          */
2592         if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_SERDES)) {
2593                 err = mv88e6xxx_port_read(chip, port, PORT_STATUS, &reg);
2594                 if (err)
2595                         return err;
2596                 reg &= PORT_STATUS_CMODE_MASK;
2597                 if ((reg == PORT_STATUS_CMODE_100BASE_X) ||
2598                     (reg == PORT_STATUS_CMODE_1000BASE_X) ||
2599                     (reg == PORT_STATUS_CMODE_SGMII)) {
2600                         err = mv88e6xxx_serdes_power_on(chip);
2601                         if (err < 0)
2602                                 return err;
2603                 }
2604         }
2605
2606         /* Port Control 2: don't force a good FCS, set the maximum frame size to
2607          * 10240 bytes, disable 802.1q tags checking, don't discard tagged or
2608          * untagged frames on this port, do a destination address lookup on all
2609          * received packets as usual, disable ARP mirroring and don't send a
2610          * copy of all transmitted/received frames on this port to the CPU.
2611          */
2612         reg = 0;
2613         if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2614             mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
2615             mv88e6xxx_6095_family(chip) || mv88e6xxx_6320_family(chip) ||
2616             mv88e6xxx_6185_family(chip))
2617                 reg = PORT_CONTROL_2_MAP_DA;
2618
2619         if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2620             mv88e6xxx_6165_family(chip) || mv88e6xxx_6320_family(chip))
2621                 reg |= PORT_CONTROL_2_JUMBO_10240;
2622
2623         if (mv88e6xxx_6095_family(chip) || mv88e6xxx_6185_family(chip)) {
2624                 /* Set the upstream port this port should use */
2625                 reg |= dsa_upstream_port(ds);
2626                 /* enable forwarding of unknown multicast addresses to
2627                  * the upstream port
2628                  */
2629                 if (port == dsa_upstream_port(ds))
2630                         reg |= PORT_CONTROL_2_FORWARD_UNKNOWN;
2631         }
2632
2633         reg |= PORT_CONTROL_2_8021Q_DISABLED;
2634
2635         if (reg) {
2636                 err = mv88e6xxx_port_write(chip, port, PORT_CONTROL_2, reg);
2637                 if (err)
2638                         return err;
2639         }
2640
2641         /* Port Association Vector: when learning source addresses
2642          * of packets, add the address to the address database using
2643          * a port bitmap that has only the bit for this port set and
2644          * the other bits clear.
2645          */
2646         reg = 1 << port;
2647         /* Disable learning for CPU port */
2648         if (dsa_is_cpu_port(ds, port))
2649                 reg = 0;
2650
2651         err = mv88e6xxx_port_write(chip, port, PORT_ASSOC_VECTOR, reg);
2652         if (err)
2653                 return err;
2654
2655         /* Egress rate control 2: disable egress rate control. */
2656         err = mv88e6xxx_port_write(chip, port, PORT_RATE_CONTROL_2, 0x0000);
2657         if (err)
2658                 return err;
2659
2660         if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2661             mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
2662             mv88e6xxx_6320_family(chip)) {
2663                 /* Do not limit the period of time that this port can
2664                  * be paused for by the remote end or the period of
2665                  * time that this port can pause the remote end.
2666                  */
2667                 err = mv88e6xxx_port_write(chip, port, PORT_PAUSE_CTRL, 0x0000);
2668                 if (err)
2669                         return err;
2670
2671                 /* Port ATU control: disable limiting the number of
2672                  * address database entries that this port is allowed
2673                  * to use.
2674                  */
2675                 err = mv88e6xxx_port_write(chip, port, PORT_ATU_CONTROL,
2676                                            0x0000);
2677                 /* Priority Override: disable DA, SA and VTU priority
2678                  * override.
2679                  */
2680                 err = mv88e6xxx_port_write(chip, port, PORT_PRI_OVERRIDE,
2681                                            0x0000);
2682                 if (err)
2683                         return err;
2684
2685                 /* Port Ethertype: use the Ethertype DSA Ethertype
2686                  * value.
2687                  */
2688                 if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_EDSA)) {
2689                         err = mv88e6xxx_port_write(chip, port, PORT_ETH_TYPE,
2690                                                    ETH_P_EDSA);
2691                         if (err)
2692                                 return err;
2693                 }
2694
2695                 /* Tag Remap: use an identity 802.1p prio -> switch
2696                  * prio mapping.
2697                  */
2698                 err = mv88e6xxx_port_write(chip, port, PORT_TAG_REGMAP_0123,
2699                                            0x3210);
2700                 if (err)
2701                         return err;
2702
2703                 /* Tag Remap 2: use an identity 802.1p prio -> switch
2704                  * prio mapping.
2705                  */
2706                 err = mv88e6xxx_port_write(chip, port, PORT_TAG_REGMAP_4567,
2707                                            0x7654);
2708                 if (err)
2709                         return err;
2710         }
2711
2712         /* Rate Control: disable ingress rate limiting. */
2713         if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2714             mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
2715             mv88e6xxx_6320_family(chip)) {
2716                 err = mv88e6xxx_port_write(chip, port, PORT_RATE_CONTROL,
2717                                            0x0001);
2718                 if (err)
2719                         return err;
2720         } else if (mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip)) {
2721                 err = mv88e6xxx_port_write(chip, port, PORT_RATE_CONTROL,
2722                                            0x0000);
2723                 if (err)
2724                         return err;
2725         }
2726
2727         /* Port Control 1: disable trunking, disable sending
2728          * learning messages to this port.
2729          */
2730         err = mv88e6xxx_port_write(chip, port, PORT_CONTROL_1, 0x0000);
2731         if (err)
2732                 return err;
2733
2734         /* Port based VLAN map: give each port the same default address
2735          * database, and allow bidirectional communication between the
2736          * CPU and DSA port(s), and the other ports.
2737          */
2738         err = _mv88e6xxx_port_fid_set(chip, port, 0);
2739         if (err)
2740                 return err;
2741
2742         err = _mv88e6xxx_port_based_vlan_map(chip, port);
2743         if (err)
2744                 return err;
2745
2746         /* Default VLAN ID and priority: don't set a default VLAN
2747          * ID, and set the default packet priority to zero.
2748          */
2749         return mv88e6xxx_port_write(chip, port, PORT_DEFAULT_VLAN, 0x0000);
2750 }
2751
2752 static int mv88e6xxx_g1_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr)
2753 {
2754         int err;
2755
2756         err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_01,
2757                               (addr[0] << 8) | addr[1]);
2758         if (err)
2759                 return err;
2760
2761         err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_23,
2762                               (addr[2] << 8) | addr[3]);
2763         if (err)
2764                 return err;
2765
2766         return mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_45,
2767                                (addr[4] << 8) | addr[5]);
2768 }
2769
2770 static int mv88e6xxx_g1_set_age_time(struct mv88e6xxx_chip *chip,
2771                                      unsigned int msecs)
2772 {
2773         const unsigned int coeff = chip->info->age_time_coeff;
2774         const unsigned int min = 0x01 * coeff;
2775         const unsigned int max = 0xff * coeff;
2776         u8 age_time;
2777         u16 val;
2778         int err;
2779
2780         if (msecs < min || msecs > max)
2781                 return -ERANGE;
2782
2783         /* Round to nearest multiple of coeff */
2784         age_time = (msecs + coeff / 2) / coeff;
2785
2786         err = mv88e6xxx_read(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL, &val);
2787         if (err)
2788                 return err;
2789
2790         /* AgeTime is 11:4 bits */
2791         val &= ~0xff0;
2792         val |= age_time << 4;
2793
2794         return mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL, val);
2795 }
2796
2797 static int mv88e6xxx_set_ageing_time(struct dsa_switch *ds,
2798                                      unsigned int ageing_time)
2799 {
2800         struct mv88e6xxx_chip *chip = ds->priv;
2801         int err;
2802
2803         mutex_lock(&chip->reg_lock);
2804         err = mv88e6xxx_g1_set_age_time(chip, ageing_time);
2805         mutex_unlock(&chip->reg_lock);
2806
2807         return err;
2808 }
2809
2810 static int mv88e6xxx_g1_setup(struct mv88e6xxx_chip *chip)
2811 {
2812         struct dsa_switch *ds = chip->ds;
2813         u32 upstream_port = dsa_upstream_port(ds);
2814         u16 reg;
2815         int err;
2816
2817         /* Enable the PHY Polling Unit if present, don't discard any packets,
2818          * and mask all interrupt sources.
2819          */
2820         reg = 0;
2821         if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU) ||
2822             mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE))
2823                 reg |= GLOBAL_CONTROL_PPU_ENABLE;
2824
2825         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL, reg);
2826         if (err)
2827                 return err;
2828
2829         /* Configure the upstream port, and configure it as the port to which
2830          * ingress and egress and ARP monitor frames are to be sent.
2831          */
2832         reg = upstream_port << GLOBAL_MONITOR_CONTROL_INGRESS_SHIFT |
2833                 upstream_port << GLOBAL_MONITOR_CONTROL_EGRESS_SHIFT |
2834                 upstream_port << GLOBAL_MONITOR_CONTROL_ARP_SHIFT;
2835         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_MONITOR_CONTROL,
2836                                    reg);
2837         if (err)
2838                 return err;
2839
2840         /* Disable remote management, and set the switch's DSA device number. */
2841         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL_2,
2842                                    GLOBAL_CONTROL_2_MULTIPLE_CASCADE |
2843                                    (ds->index & 0x1f));
2844         if (err)
2845                 return err;
2846
2847         /* Clear all the VTU and STU entries */
2848         err = _mv88e6xxx_vtu_stu_flush(chip);
2849         if (err < 0)
2850                 return err;
2851
2852         /* Set the default address aging time to 5 minutes, and
2853          * enable address learn messages to be sent to all message
2854          * ports.
2855          */
2856         err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL,
2857                               GLOBAL_ATU_CONTROL_LEARN2ALL);
2858         if (err)
2859                 return err;
2860
2861         err = mv88e6xxx_g1_set_age_time(chip, 300000);
2862         if (err)
2863                 return err;
2864
2865         /* Clear all ATU entries */
2866         err = _mv88e6xxx_atu_flush(chip, 0, true);
2867         if (err)
2868                 return err;
2869
2870         /* Configure the IP ToS mapping registers. */
2871         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000);
2872         if (err)
2873                 return err;
2874         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000);
2875         if (err)
2876                 return err;
2877         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555);
2878         if (err)
2879                 return err;
2880         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555);
2881         if (err)
2882                 return err;
2883         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa);
2884         if (err)
2885                 return err;
2886         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa);
2887         if (err)
2888                 return err;
2889         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff);
2890         if (err)
2891                 return err;
2892         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff);
2893         if (err)
2894                 return err;
2895
2896         /* Configure the IEEE 802.1p priority mapping register. */
2897         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41);
2898         if (err)
2899                 return err;
2900
2901         /* Clear the statistics counters for all ports */
2902         err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
2903                                    GLOBAL_STATS_OP_FLUSH_ALL);
2904         if (err)
2905                 return err;
2906
2907         /* Wait for the flush to complete. */
2908         err = _mv88e6xxx_stats_wait(chip);
2909         if (err)
2910                 return err;
2911
2912         return 0;
2913 }
2914
2915 static int mv88e6xxx_setup(struct dsa_switch *ds)
2916 {
2917         struct mv88e6xxx_chip *chip = ds->priv;
2918         int err;
2919         int i;
2920
2921         chip->ds = ds;
2922         ds->slave_mii_bus = chip->mdio_bus;
2923
2924         mutex_lock(&chip->reg_lock);
2925
2926         err = mv88e6xxx_switch_reset(chip);
2927         if (err)
2928                 goto unlock;
2929
2930         /* Setup Switch Port Registers */
2931         for (i = 0; i < chip->info->num_ports; i++) {
2932                 err = mv88e6xxx_setup_port(chip, i);
2933                 if (err)
2934                         goto unlock;
2935         }
2936
2937         /* Setup Switch Global 1 Registers */
2938         err = mv88e6xxx_g1_setup(chip);
2939         if (err)
2940                 goto unlock;
2941
2942         /* Setup Switch Global 2 Registers */
2943         if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_GLOBAL2)) {
2944                 err = mv88e6xxx_g2_setup(chip);
2945                 if (err)
2946                         goto unlock;
2947         }
2948
2949 unlock:
2950         mutex_unlock(&chip->reg_lock);
2951
2952         return err;
2953 }
2954
2955 static int mv88e6xxx_set_addr(struct dsa_switch *ds, u8 *addr)
2956 {
2957         struct mv88e6xxx_chip *chip = ds->priv;
2958         int err;
2959
2960         mutex_lock(&chip->reg_lock);
2961
2962         /* Has an indirect Switch MAC/WoL/WoF register in Global 2? */
2963         if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_SWITCH_MAC))
2964                 err = mv88e6xxx_g2_set_switch_mac(chip, addr);
2965         else
2966                 err = mv88e6xxx_g1_set_switch_mac(chip, addr);
2967
2968         mutex_unlock(&chip->reg_lock);
2969
2970         return err;
2971 }
2972
2973 static int mv88e6xxx_mdio_read(struct mii_bus *bus, int phy, int reg)
2974 {
2975         struct mv88e6xxx_chip *chip = bus->priv;
2976         u16 val;
2977         int err;
2978
2979         if (phy >= chip->info->num_ports)
2980                 return 0xffff;
2981
2982         mutex_lock(&chip->reg_lock);
2983         err = mv88e6xxx_phy_read(chip, phy, reg, &val);
2984         mutex_unlock(&chip->reg_lock);
2985
2986         return err ? err : val;
2987 }
2988
2989 static int mv88e6xxx_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val)
2990 {
2991         struct mv88e6xxx_chip *chip = bus->priv;
2992         int err;
2993
2994         if (phy >= chip->info->num_ports)
2995                 return 0xffff;
2996
2997         mutex_lock(&chip->reg_lock);
2998         err = mv88e6xxx_phy_write(chip, phy, reg, val);
2999         mutex_unlock(&chip->reg_lock);
3000
3001         return err;
3002 }
3003
3004 static int mv88e6xxx_mdio_register(struct mv88e6xxx_chip *chip,
3005                                    struct device_node *np)
3006 {
3007         static int index;
3008         struct mii_bus *bus;
3009         int err;
3010
3011         if (np)
3012                 chip->mdio_np = of_get_child_by_name(np, "mdio");
3013
3014         bus = devm_mdiobus_alloc(chip->dev);
3015         if (!bus)
3016                 return -ENOMEM;
3017
3018         bus->priv = (void *)chip;
3019         if (np) {
3020                 bus->name = np->full_name;
3021                 snprintf(bus->id, MII_BUS_ID_SIZE, "%s", np->full_name);
3022         } else {
3023                 bus->name = "mv88e6xxx SMI";
3024                 snprintf(bus->id, MII_BUS_ID_SIZE, "mv88e6xxx-%d", index++);
3025         }
3026
3027         bus->read = mv88e6xxx_mdio_read;
3028         bus->write = mv88e6xxx_mdio_write;
3029         bus->parent = chip->dev;
3030
3031         if (chip->mdio_np)
3032                 err = of_mdiobus_register(bus, chip->mdio_np);
3033         else
3034                 err = mdiobus_register(bus);
3035         if (err) {
3036                 dev_err(chip->dev, "Cannot register MDIO bus (%d)\n", err);
3037                 goto out;
3038         }
3039         chip->mdio_bus = bus;
3040
3041         return 0;
3042
3043 out:
3044         if (chip->mdio_np)
3045                 of_node_put(chip->mdio_np);
3046
3047         return err;
3048 }
3049
3050 static void mv88e6xxx_mdio_unregister(struct mv88e6xxx_chip *chip)
3051
3052 {
3053         struct mii_bus *bus = chip->mdio_bus;
3054
3055         mdiobus_unregister(bus);
3056
3057         if (chip->mdio_np)
3058                 of_node_put(chip->mdio_np);
3059 }
3060
3061 #ifdef CONFIG_NET_DSA_HWMON
3062
3063 static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp)
3064 {
3065         struct mv88e6xxx_chip *chip = ds->priv;
3066         u16 val;
3067         int ret;
3068
3069         *temp = 0;
3070
3071         mutex_lock(&chip->reg_lock);
3072
3073         ret = mv88e6xxx_phy_write(chip, 0x0, 0x16, 0x6);
3074         if (ret < 0)
3075                 goto error;
3076
3077         /* Enable temperature sensor */
3078         ret = mv88e6xxx_phy_read(chip, 0x0, 0x1a, &val);
3079         if (ret < 0)
3080                 goto error;
3081
3082         ret = mv88e6xxx_phy_write(chip, 0x0, 0x1a, val | (1 << 5));
3083         if (ret < 0)
3084                 goto error;
3085
3086         /* Wait for temperature to stabilize */
3087         usleep_range(10000, 12000);
3088
3089         ret = mv88e6xxx_phy_read(chip, 0x0, 0x1a, &val);
3090         if (ret < 0)
3091                 goto error;
3092
3093         /* Disable temperature sensor */
3094         ret = mv88e6xxx_phy_write(chip, 0x0, 0x1a, val & ~(1 << 5));
3095         if (ret < 0)
3096                 goto error;
3097
3098         *temp = ((val & 0x1f) - 5) * 5;
3099
3100 error:
3101         mv88e6xxx_phy_write(chip, 0x0, 0x16, 0x0);
3102         mutex_unlock(&chip->reg_lock);
3103         return ret;
3104 }
3105
3106 static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp)
3107 {
3108         struct mv88e6xxx_chip *chip = ds->priv;
3109         int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3110         u16 val;
3111         int ret;
3112
3113         *temp = 0;
3114
3115         mutex_lock(&chip->reg_lock);
3116         ret = mv88e6xxx_phy_page_read(chip, phy, 6, 27, &val);
3117         mutex_unlock(&chip->reg_lock);
3118         if (ret < 0)
3119                 return ret;
3120
3121         *temp = (val & 0xff) - 25;
3122
3123         return 0;
3124 }
3125
3126 static int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
3127 {
3128         struct mv88e6xxx_chip *chip = ds->priv;
3129
3130         if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP))
3131                 return -EOPNOTSUPP;
3132
3133         if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
3134                 return mv88e63xx_get_temp(ds, temp);
3135
3136         return mv88e61xx_get_temp(ds, temp);
3137 }
3138
3139 static int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp)
3140 {
3141         struct mv88e6xxx_chip *chip = ds->priv;
3142         int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3143         u16 val;
3144         int ret;
3145
3146         if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3147                 return -EOPNOTSUPP;
3148
3149         *temp = 0;
3150
3151         mutex_lock(&chip->reg_lock);
3152         ret = mv88e6xxx_phy_page_read(chip, phy, 6, 26, &val);
3153         mutex_unlock(&chip->reg_lock);
3154         if (ret < 0)
3155                 return ret;
3156
3157         *temp = (((val >> 8) & 0x1f) * 5) - 25;
3158
3159         return 0;
3160 }
3161
3162 static int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp)
3163 {
3164         struct mv88e6xxx_chip *chip = ds->priv;
3165         int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3166         u16 val;
3167         int err;
3168
3169         if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3170                 return -EOPNOTSUPP;
3171
3172         mutex_lock(&chip->reg_lock);
3173         err = mv88e6xxx_phy_page_read(chip, phy, 6, 26, &val);
3174         if (err)
3175                 goto unlock;
3176         temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f);
3177         err = mv88e6xxx_phy_page_write(chip, phy, 6, 26,
3178                                        (val & 0xe0ff) | (temp << 8));
3179 unlock:
3180         mutex_unlock(&chip->reg_lock);
3181
3182         return err;
3183 }
3184
3185 static int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm)
3186 {
3187         struct mv88e6xxx_chip *chip = ds->priv;
3188         int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3189         u16 val;
3190         int ret;
3191
3192         if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3193                 return -EOPNOTSUPP;
3194
3195         *alarm = false;
3196
3197         mutex_lock(&chip->reg_lock);
3198         ret = mv88e6xxx_phy_page_read(chip, phy, 6, 26, &val);
3199         mutex_unlock(&chip->reg_lock);
3200         if (ret < 0)
3201                 return ret;
3202
3203         *alarm = !!(val & 0x40);
3204
3205         return 0;
3206 }
3207 #endif /* CONFIG_NET_DSA_HWMON */
3208
3209 static int mv88e6xxx_get_eeprom_len(struct dsa_switch *ds)
3210 {
3211         struct mv88e6xxx_chip *chip = ds->priv;
3212
3213         return chip->eeprom_len;
3214 }
3215
3216 static int mv88e6xxx_get_eeprom(struct dsa_switch *ds,
3217                                 struct ethtool_eeprom *eeprom, u8 *data)
3218 {
3219         struct mv88e6xxx_chip *chip = ds->priv;
3220         int err;
3221
3222         mutex_lock(&chip->reg_lock);
3223
3224         if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16))
3225                 err = mv88e6xxx_g2_get_eeprom16(chip, eeprom, data);
3226         else
3227                 err = -EOPNOTSUPP;
3228
3229         mutex_unlock(&chip->reg_lock);
3230
3231         if (err)
3232                 return err;
3233
3234         eeprom->magic = 0xc3ec4951;
3235
3236         return 0;
3237 }
3238
3239 static int mv88e6xxx_set_eeprom(struct dsa_switch *ds,
3240                                 struct ethtool_eeprom *eeprom, u8 *data)
3241 {
3242         struct mv88e6xxx_chip *chip = ds->priv;
3243         int err;
3244
3245         if (eeprom->magic != 0xc3ec4951)
3246                 return -EINVAL;
3247
3248         mutex_lock(&chip->reg_lock);
3249
3250         if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16))
3251                 err = mv88e6xxx_g2_set_eeprom16(chip, eeprom, data);
3252         else
3253                 err = -EOPNOTSUPP;
3254
3255         mutex_unlock(&chip->reg_lock);
3256
3257         return err;
3258 }
3259
3260 static const struct mv88e6xxx_info mv88e6xxx_table[] = {
3261         [MV88E6085] = {
3262                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6085,
3263                 .family = MV88E6XXX_FAMILY_6097,
3264                 .name = "Marvell 88E6085",
3265                 .num_databases = 4096,
3266                 .num_ports = 10,
3267                 .port_base_addr = 0x10,
3268                 .age_time_coeff = 15000,
3269                 .flags = MV88E6XXX_FLAGS_FAMILY_6097,
3270         },
3271
3272         [MV88E6095] = {
3273                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6095,
3274                 .family = MV88E6XXX_FAMILY_6095,
3275                 .name = "Marvell 88E6095/88E6095F",
3276                 .num_databases = 256,
3277                 .num_ports = 11,
3278                 .port_base_addr = 0x10,
3279                 .age_time_coeff = 15000,
3280                 .flags = MV88E6XXX_FLAGS_FAMILY_6095,
3281         },
3282
3283         [MV88E6123] = {
3284                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6123,
3285                 .family = MV88E6XXX_FAMILY_6165,
3286                 .name = "Marvell 88E6123",
3287                 .num_databases = 4096,
3288                 .num_ports = 3,
3289                 .port_base_addr = 0x10,
3290                 .age_time_coeff = 15000,
3291                 .flags = MV88E6XXX_FLAGS_FAMILY_6165,
3292         },
3293
3294         [MV88E6131] = {
3295                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6131,
3296                 .family = MV88E6XXX_FAMILY_6185,
3297                 .name = "Marvell 88E6131",
3298                 .num_databases = 256,
3299                 .num_ports = 8,
3300                 .port_base_addr = 0x10,
3301                 .age_time_coeff = 15000,
3302                 .flags = MV88E6XXX_FLAGS_FAMILY_6185,
3303         },
3304
3305         [MV88E6161] = {
3306                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6161,
3307                 .family = MV88E6XXX_FAMILY_6165,
3308                 .name = "Marvell 88E6161",
3309                 .num_databases = 4096,
3310                 .num_ports = 6,
3311                 .port_base_addr = 0x10,
3312                 .age_time_coeff = 15000,
3313                 .flags = MV88E6XXX_FLAGS_FAMILY_6165,
3314         },
3315
3316         [MV88E6165] = {
3317                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6165,
3318                 .family = MV88E6XXX_FAMILY_6165,
3319                 .name = "Marvell 88E6165",
3320                 .num_databases = 4096,
3321                 .num_ports = 6,
3322                 .port_base_addr = 0x10,
3323                 .age_time_coeff = 15000,
3324                 .flags = MV88E6XXX_FLAGS_FAMILY_6165,
3325         },
3326
3327         [MV88E6171] = {
3328                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6171,
3329                 .family = MV88E6XXX_FAMILY_6351,
3330                 .name = "Marvell 88E6171",
3331                 .num_databases = 4096,
3332                 .num_ports = 7,
3333                 .port_base_addr = 0x10,
3334                 .age_time_coeff = 15000,
3335                 .flags = MV88E6XXX_FLAGS_FAMILY_6351,
3336         },
3337
3338         [MV88E6172] = {
3339                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6172,
3340                 .family = MV88E6XXX_FAMILY_6352,
3341                 .name = "Marvell 88E6172",
3342                 .num_databases = 4096,
3343                 .num_ports = 7,
3344                 .port_base_addr = 0x10,
3345                 .age_time_coeff = 15000,
3346                 .flags = MV88E6XXX_FLAGS_FAMILY_6352,
3347         },
3348
3349         [MV88E6175] = {
3350                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6175,
3351                 .family = MV88E6XXX_FAMILY_6351,
3352                 .name = "Marvell 88E6175",
3353                 .num_databases = 4096,
3354                 .num_ports = 7,
3355                 .port_base_addr = 0x10,
3356                 .age_time_coeff = 15000,
3357                 .flags = MV88E6XXX_FLAGS_FAMILY_6351,
3358         },
3359
3360         [MV88E6176] = {
3361                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6176,
3362                 .family = MV88E6XXX_FAMILY_6352,
3363                 .name = "Marvell 88E6176",
3364                 .num_databases = 4096,
3365                 .num_ports = 7,
3366                 .port_base_addr = 0x10,
3367                 .age_time_coeff = 15000,
3368                 .flags = MV88E6XXX_FLAGS_FAMILY_6352,
3369         },
3370
3371         [MV88E6185] = {
3372                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6185,
3373                 .family = MV88E6XXX_FAMILY_6185,
3374                 .name = "Marvell 88E6185",
3375                 .num_databases = 256,
3376                 .num_ports = 10,
3377                 .port_base_addr = 0x10,
3378                 .age_time_coeff = 15000,
3379                 .flags = MV88E6XXX_FLAGS_FAMILY_6185,
3380         },
3381
3382         [MV88E6240] = {
3383                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6240,
3384                 .family = MV88E6XXX_FAMILY_6352,
3385                 .name = "Marvell 88E6240",
3386                 .num_databases = 4096,
3387                 .num_ports = 7,
3388                 .port_base_addr = 0x10,
3389                 .age_time_coeff = 15000,
3390                 .flags = MV88E6XXX_FLAGS_FAMILY_6352,
3391         },
3392
3393         [MV88E6320] = {
3394                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6320,
3395                 .family = MV88E6XXX_FAMILY_6320,
3396                 .name = "Marvell 88E6320",
3397                 .num_databases = 4096,
3398                 .num_ports = 7,
3399                 .port_base_addr = 0x10,
3400                 .age_time_coeff = 15000,
3401                 .flags = MV88E6XXX_FLAGS_FAMILY_6320,
3402         },
3403
3404         [MV88E6321] = {
3405                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6321,
3406                 .family = MV88E6XXX_FAMILY_6320,
3407                 .name = "Marvell 88E6321",
3408                 .num_databases = 4096,
3409                 .num_ports = 7,
3410                 .port_base_addr = 0x10,
3411                 .age_time_coeff = 15000,
3412                 .flags = MV88E6XXX_FLAGS_FAMILY_6320,
3413         },
3414
3415         [MV88E6350] = {
3416                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6350,
3417                 .family = MV88E6XXX_FAMILY_6351,
3418                 .name = "Marvell 88E6350",
3419                 .num_databases = 4096,
3420                 .num_ports = 7,
3421                 .port_base_addr = 0x10,
3422                 .age_time_coeff = 15000,
3423                 .flags = MV88E6XXX_FLAGS_FAMILY_6351,
3424         },
3425
3426         [MV88E6351] = {
3427                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6351,
3428                 .family = MV88E6XXX_FAMILY_6351,
3429                 .name = "Marvell 88E6351",
3430                 .num_databases = 4096,
3431                 .num_ports = 7,
3432                 .port_base_addr = 0x10,
3433                 .age_time_coeff = 15000,
3434                 .flags = MV88E6XXX_FLAGS_FAMILY_6351,
3435         },
3436
3437         [MV88E6352] = {
3438                 .prod_num = PORT_SWITCH_ID_PROD_NUM_6352,
3439                 .family = MV88E6XXX_FAMILY_6352,
3440                 .name = "Marvell 88E6352",
3441                 .num_databases = 4096,
3442                 .num_ports = 7,
3443                 .port_base_addr = 0x10,
3444                 .age_time_coeff = 15000,
3445                 .flags = MV88E6XXX_FLAGS_FAMILY_6352,
3446         },
3447 };
3448
3449 static const struct mv88e6xxx_info *mv88e6xxx_lookup_info(unsigned int prod_num)
3450 {
3451         int i;
3452
3453         for (i = 0; i < ARRAY_SIZE(mv88e6xxx_table); ++i)
3454                 if (mv88e6xxx_table[i].prod_num == prod_num)
3455                         return &mv88e6xxx_table[i];
3456
3457         return NULL;
3458 }
3459
3460 static int mv88e6xxx_detect(struct mv88e6xxx_chip *chip)
3461 {
3462         const struct mv88e6xxx_info *info;
3463         unsigned int prod_num, rev;
3464         u16 id;
3465         int err;
3466
3467         mutex_lock(&chip->reg_lock);
3468         err = mv88e6xxx_port_read(chip, 0, PORT_SWITCH_ID, &id);
3469         mutex_unlock(&chip->reg_lock);
3470         if (err)
3471                 return err;
3472
3473         prod_num = (id & 0xfff0) >> 4;
3474         rev = id & 0x000f;
3475
3476         info = mv88e6xxx_lookup_info(prod_num);
3477         if (!info)
3478                 return -ENODEV;
3479
3480         /* Update the compatible info with the probed one */
3481         chip->info = info;
3482
3483         err = mv88e6xxx_g2_require(chip);
3484         if (err)
3485                 return err;
3486
3487         dev_info(chip->dev, "switch 0x%x detected: %s, revision %u\n",
3488                  chip->info->prod_num, chip->info->name, rev);
3489
3490         return 0;
3491 }
3492
3493 static struct mv88e6xxx_chip *mv88e6xxx_alloc_chip(struct device *dev)
3494 {
3495         struct mv88e6xxx_chip *chip;
3496
3497         chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL);
3498         if (!chip)
3499                 return NULL;
3500
3501         chip->dev = dev;
3502
3503         mutex_init(&chip->reg_lock);
3504
3505         return chip;
3506 }
3507
3508 static const struct mv88e6xxx_ops mv88e6xxx_g2_smi_phy_ops = {
3509         .read = mv88e6xxx_g2_smi_phy_read,
3510         .write = mv88e6xxx_g2_smi_phy_write,
3511 };
3512
3513 static const struct mv88e6xxx_ops mv88e6xxx_phy_ops = {
3514         .read = mv88e6xxx_read,
3515         .write = mv88e6xxx_write,
3516 };
3517
3518 static void mv88e6xxx_phy_init(struct mv88e6xxx_chip *chip)
3519 {
3520         if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_SMI_PHY)) {
3521                 chip->phy_ops = &mv88e6xxx_g2_smi_phy_ops;
3522         } else if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU)) {
3523                 chip->phy_ops = &mv88e6xxx_phy_ppu_ops;
3524                 mv88e6xxx_ppu_state_init(chip);
3525         } else {
3526                 chip->phy_ops = &mv88e6xxx_phy_ops;
3527         }
3528 }
3529
3530 static void mv88e6xxx_phy_destroy(struct mv88e6xxx_chip *chip)
3531 {
3532         if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU)) {
3533                 mv88e6xxx_ppu_state_destroy(chip);
3534         }
3535 }
3536
3537 static int mv88e6xxx_smi_init(struct mv88e6xxx_chip *chip,
3538                               struct mii_bus *bus, int sw_addr)
3539 {
3540         /* ADDR[0] pin is unavailable externally and considered zero */
3541         if (sw_addr & 0x1)
3542                 return -EINVAL;
3543
3544         if (sw_addr == 0)
3545                 chip->smi_ops = &mv88e6xxx_smi_single_chip_ops;
3546         else if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_MULTI_CHIP))
3547                 chip->smi_ops = &mv88e6xxx_smi_multi_chip_ops;
3548         else
3549                 return -EINVAL;
3550
3551         chip->bus = bus;
3552         chip->sw_addr = sw_addr;
3553
3554         return 0;
3555 }
3556
3557 static enum dsa_tag_protocol mv88e6xxx_get_tag_protocol(struct dsa_switch *ds)
3558 {
3559         struct mv88e6xxx_chip *chip = ds->priv;
3560
3561         if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_EDSA))
3562                 return DSA_TAG_PROTO_EDSA;
3563
3564         return DSA_TAG_PROTO_DSA;
3565 }
3566
3567 static const char *mv88e6xxx_drv_probe(struct device *dsa_dev,
3568                                        struct device *host_dev, int sw_addr,
3569                                        void **priv)
3570 {
3571         struct mv88e6xxx_chip *chip;
3572         struct mii_bus *bus;
3573         int err;
3574
3575         bus = dsa_host_dev_to_mii_bus(host_dev);
3576         if (!bus)
3577                 return NULL;
3578
3579         chip = mv88e6xxx_alloc_chip(dsa_dev);
3580         if (!chip)
3581                 return NULL;
3582
3583         /* Legacy SMI probing will only support chips similar to 88E6085 */
3584         chip->info = &mv88e6xxx_table[MV88E6085];
3585
3586         err = mv88e6xxx_smi_init(chip, bus, sw_addr);
3587         if (err)
3588                 goto free;
3589
3590         err = mv88e6xxx_detect(chip);
3591         if (err)
3592                 goto free;
3593
3594         mv88e6xxx_phy_init(chip);
3595
3596         err = mv88e6xxx_mdio_register(chip, NULL);
3597         if (err)
3598                 goto free;
3599
3600         *priv = chip;
3601
3602         return chip->info->name;
3603 free:
3604         devm_kfree(dsa_dev, chip);
3605
3606         return NULL;
3607 }
3608
3609 static int mv88e6xxx_port_mdb_prepare(struct dsa_switch *ds, int port,
3610                                       const struct switchdev_obj_port_mdb *mdb,
3611                                       struct switchdev_trans *trans)
3612 {
3613         /* We don't need any dynamic resource from the kernel (yet),
3614          * so skip the prepare phase.
3615          */
3616
3617         return 0;
3618 }
3619
3620 static void mv88e6xxx_port_mdb_add(struct dsa_switch *ds, int port,
3621                                    const struct switchdev_obj_port_mdb *mdb,
3622                                    struct switchdev_trans *trans)
3623 {
3624         struct mv88e6xxx_chip *chip = ds->priv;
3625
3626         mutex_lock(&chip->reg_lock);
3627         if (mv88e6xxx_port_db_load_purge(chip, port, mdb->addr, mdb->vid,
3628                                          GLOBAL_ATU_DATA_STATE_MC_STATIC))
3629                 netdev_err(ds->ports[port].netdev, "failed to load multicast MAC address\n");
3630         mutex_unlock(&chip->reg_lock);
3631 }
3632
3633 static int mv88e6xxx_port_mdb_del(struct dsa_switch *ds, int port,
3634                                   const struct switchdev_obj_port_mdb *mdb)
3635 {
3636         struct mv88e6xxx_chip *chip = ds->priv;
3637         int err;
3638
3639         mutex_lock(&chip->reg_lock);
3640         err = mv88e6xxx_port_db_load_purge(chip, port, mdb->addr, mdb->vid,
3641                                            GLOBAL_ATU_DATA_STATE_UNUSED);
3642         mutex_unlock(&chip->reg_lock);
3643
3644         return err;
3645 }
3646
3647 static int mv88e6xxx_port_mdb_dump(struct dsa_switch *ds, int port,
3648                                    struct switchdev_obj_port_mdb *mdb,
3649                                    int (*cb)(struct switchdev_obj *obj))
3650 {
3651         struct mv88e6xxx_chip *chip = ds->priv;
3652         int err;
3653
3654         mutex_lock(&chip->reg_lock);
3655         err = mv88e6xxx_port_db_dump(chip, port, &mdb->obj, cb);
3656         mutex_unlock(&chip->reg_lock);
3657
3658         return err;
3659 }
3660
3661 static struct dsa_switch_ops mv88e6xxx_switch_ops = {
3662         .probe                  = mv88e6xxx_drv_probe,
3663         .get_tag_protocol       = mv88e6xxx_get_tag_protocol,
3664         .setup                  = mv88e6xxx_setup,
3665         .set_addr               = mv88e6xxx_set_addr,
3666         .adjust_link            = mv88e6xxx_adjust_link,
3667         .get_strings            = mv88e6xxx_get_strings,
3668         .get_ethtool_stats      = mv88e6xxx_get_ethtool_stats,
3669         .get_sset_count         = mv88e6xxx_get_sset_count,
3670         .set_eee                = mv88e6xxx_set_eee,
3671         .get_eee                = mv88e6xxx_get_eee,
3672 #ifdef CONFIG_NET_DSA_HWMON
3673         .get_temp               = mv88e6xxx_get_temp,
3674         .get_temp_limit         = mv88e6xxx_get_temp_limit,
3675         .set_temp_limit         = mv88e6xxx_set_temp_limit,
3676         .get_temp_alarm         = mv88e6xxx_get_temp_alarm,
3677 #endif
3678         .get_eeprom_len         = mv88e6xxx_get_eeprom_len,
3679         .get_eeprom             = mv88e6xxx_get_eeprom,
3680         .set_eeprom             = mv88e6xxx_set_eeprom,
3681         .get_regs_len           = mv88e6xxx_get_regs_len,
3682         .get_regs               = mv88e6xxx_get_regs,
3683         .set_ageing_time        = mv88e6xxx_set_ageing_time,
3684         .port_bridge_join       = mv88e6xxx_port_bridge_join,
3685         .port_bridge_leave      = mv88e6xxx_port_bridge_leave,
3686         .port_stp_state_set     = mv88e6xxx_port_stp_state_set,
3687         .port_vlan_filtering    = mv88e6xxx_port_vlan_filtering,
3688         .port_vlan_prepare      = mv88e6xxx_port_vlan_prepare,
3689         .port_vlan_add          = mv88e6xxx_port_vlan_add,
3690         .port_vlan_del          = mv88e6xxx_port_vlan_del,
3691         .port_vlan_dump         = mv88e6xxx_port_vlan_dump,
3692         .port_fdb_prepare       = mv88e6xxx_port_fdb_prepare,
3693         .port_fdb_add           = mv88e6xxx_port_fdb_add,
3694         .port_fdb_del           = mv88e6xxx_port_fdb_del,
3695         .port_fdb_dump          = mv88e6xxx_port_fdb_dump,
3696         .port_mdb_prepare       = mv88e6xxx_port_mdb_prepare,
3697         .port_mdb_add           = mv88e6xxx_port_mdb_add,
3698         .port_mdb_del           = mv88e6xxx_port_mdb_del,
3699         .port_mdb_dump          = mv88e6xxx_port_mdb_dump,
3700 };
3701
3702 static int mv88e6xxx_register_switch(struct mv88e6xxx_chip *chip,
3703                                      struct device_node *np)
3704 {
3705         struct device *dev = chip->dev;
3706         struct dsa_switch *ds;
3707
3708         ds = devm_kzalloc(dev, sizeof(*ds), GFP_KERNEL);
3709         if (!ds)
3710                 return -ENOMEM;
3711
3712         ds->dev = dev;
3713         ds->priv = chip;
3714         ds->ops = &mv88e6xxx_switch_ops;
3715
3716         dev_set_drvdata(dev, ds);
3717
3718         return dsa_register_switch(ds, np);
3719 }
3720
3721 static void mv88e6xxx_unregister_switch(struct mv88e6xxx_chip *chip)
3722 {
3723         dsa_unregister_switch(chip->ds);
3724 }
3725
3726 static int mv88e6xxx_probe(struct mdio_device *mdiodev)
3727 {
3728         struct device *dev = &mdiodev->dev;
3729         struct device_node *np = dev->of_node;
3730         const struct mv88e6xxx_info *compat_info;
3731         struct mv88e6xxx_chip *chip;
3732         u32 eeprom_len;
3733         int err;
3734
3735         compat_info = of_device_get_match_data(dev);
3736         if (!compat_info)
3737                 return -EINVAL;
3738
3739         chip = mv88e6xxx_alloc_chip(dev);
3740         if (!chip)
3741                 return -ENOMEM;
3742
3743         chip->info = compat_info;
3744
3745         err = mv88e6xxx_smi_init(chip, mdiodev->bus, mdiodev->addr);
3746         if (err)
3747                 return err;
3748
3749         err = mv88e6xxx_detect(chip);
3750         if (err)
3751                 return err;
3752
3753         mv88e6xxx_phy_init(chip);
3754
3755         chip->reset = devm_gpiod_get_optional(dev, "reset", GPIOD_ASIS);
3756         if (IS_ERR(chip->reset))
3757                 return PTR_ERR(chip->reset);
3758
3759         if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16) &&
3760             !of_property_read_u32(np, "eeprom-length", &eeprom_len))
3761                 chip->eeprom_len = eeprom_len;
3762
3763         err = mv88e6xxx_mdio_register(chip, np);
3764         if (err)
3765                 return err;
3766
3767         err = mv88e6xxx_register_switch(chip, np);
3768         if (err) {
3769                 mv88e6xxx_mdio_unregister(chip);
3770                 return err;
3771         }
3772
3773         return 0;
3774 }
3775
3776 static void mv88e6xxx_remove(struct mdio_device *mdiodev)
3777 {
3778         struct dsa_switch *ds = dev_get_drvdata(&mdiodev->dev);
3779         struct mv88e6xxx_chip *chip = ds->priv;
3780
3781         mv88e6xxx_phy_destroy(chip);
3782         mv88e6xxx_unregister_switch(chip);
3783         mv88e6xxx_mdio_unregister(chip);
3784 }
3785
3786 static const struct of_device_id mv88e6xxx_of_match[] = {
3787         {
3788                 .compatible = "marvell,mv88e6085",
3789                 .data = &mv88e6xxx_table[MV88E6085],
3790         },
3791         { /* sentinel */ },
3792 };
3793
3794 MODULE_DEVICE_TABLE(of, mv88e6xxx_of_match);
3795
3796 static struct mdio_driver mv88e6xxx_driver = {
3797         .probe  = mv88e6xxx_probe,
3798         .remove = mv88e6xxx_remove,
3799         .mdiodrv.driver = {
3800                 .name = "mv88e6085",
3801                 .of_match_table = mv88e6xxx_of_match,
3802         },
3803 };
3804
3805 static int __init mv88e6xxx_init(void)
3806 {
3807         register_switch_driver(&mv88e6xxx_switch_ops);
3808         return mdio_driver_register(&mv88e6xxx_driver);
3809 }
3810 module_init(mv88e6xxx_init);
3811
3812 static void __exit mv88e6xxx_cleanup(void)
3813 {
3814         mdio_driver_unregister(&mv88e6xxx_driver);
3815         unregister_switch_driver(&mv88e6xxx_switch_ops);
3816 }
3817 module_exit(mv88e6xxx_cleanup);
3818
3819 MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
3820 MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
3821 MODULE_LICENSE("GPL");