658b9fd0275fce1ea44e1a4e3d9c3ada93399f22
[cascardo/linux.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_main.c
1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>  /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if_vlan.h>
43 #include <net/ip.h>
44 #include <net/ipv6.h>
45 #include <net/tcp.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/workqueue.h>
49 #include <linux/crc32.h>
50 #include <linux/crc32c.h>
51 #include <linux/prefetch.h>
52 #include <linux/zlib.h>
53 #include <linux/io.h>
54 #include <linux/semaphore.h>
55 #include <linux/stringify.h>
56 #include <linux/vmalloc.h>
57
58 #include "bnx2x.h"
59 #include "bnx2x_init.h"
60 #include "bnx2x_init_ops.h"
61 #include "bnx2x_cmn.h"
62 #include "bnx2x_vfpf.h"
63 #include "bnx2x_dcb.h"
64 #include "bnx2x_sp.h"
65
66 #include <linux/firmware.h>
67 #include "bnx2x_fw_file_hdr.h"
68 /* FW files */
69 #define FW_FILE_VERSION                                 \
70         __stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
71         __stringify(BCM_5710_FW_MINOR_VERSION) "."      \
72         __stringify(BCM_5710_FW_REVISION_VERSION) "."   \
73         __stringify(BCM_5710_FW_ENGINEERING_VERSION)
74 #define FW_FILE_NAME_E1         "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
75 #define FW_FILE_NAME_E1H        "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
76 #define FW_FILE_NAME_E2         "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
77
78 /* Time in jiffies before concluding the transmitter is hung */
79 #define TX_TIMEOUT              (5*HZ)
80
81 static char version[] =
82         "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
83         DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
84
85 MODULE_AUTHOR("Eliezer Tamir");
86 MODULE_DESCRIPTION("Broadcom NetXtreme II "
87                    "BCM57710/57711/57711E/"
88                    "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
89                    "57840/57840_MF Driver");
90 MODULE_LICENSE("GPL");
91 MODULE_VERSION(DRV_MODULE_VERSION);
92 MODULE_FIRMWARE(FW_FILE_NAME_E1);
93 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
94 MODULE_FIRMWARE(FW_FILE_NAME_E2);
95
96 int num_queues;
97 module_param(num_queues, int, 0);
98 MODULE_PARM_DESC(num_queues,
99                  " Set number of queues (default is as a number of CPUs)");
100
101 static int disable_tpa;
102 module_param(disable_tpa, int, 0);
103 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
104
105 int int_mode;
106 module_param(int_mode, int, 0);
107 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
108                                 "(1 INT#x; 2 MSI)");
109
110 static int dropless_fc;
111 module_param(dropless_fc, int, 0);
112 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
113
114 static int mrrs = -1;
115 module_param(mrrs, int, 0);
116 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
117
118 static int debug;
119 module_param(debug, int, 0);
120 MODULE_PARM_DESC(debug, " Default debug msglevel");
121
122 struct workqueue_struct *bnx2x_wq;
123
124 struct bnx2x_mac_vals {
125         u32 xmac_addr;
126         u32 xmac_val;
127         u32 emac_addr;
128         u32 emac_val;
129         u32 umac_addr;
130         u32 umac_val;
131         u32 bmac_addr;
132         u32 bmac_val[2];
133 };
134
135 enum bnx2x_board_type {
136         BCM57710 = 0,
137         BCM57711,
138         BCM57711E,
139         BCM57712,
140         BCM57712_MF,
141         BCM57712_VF,
142         BCM57800,
143         BCM57800_MF,
144         BCM57800_VF,
145         BCM57810,
146         BCM57810_MF,
147         BCM57810_VF,
148         BCM57840_4_10,
149         BCM57840_2_20,
150         BCM57840_MF,
151         BCM57840_VF,
152         BCM57811,
153         BCM57811_MF,
154         BCM57840_O,
155         BCM57840_MFO,
156         BCM57811_VF
157 };
158
159 /* indexed by board_type, above */
160 static struct {
161         char *name;
162 } board_info[] = {
163         [BCM57710]      = { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
164         [BCM57711]      = { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
165         [BCM57711E]     = { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
166         [BCM57712]      = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
167         [BCM57712_MF]   = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
168         [BCM57712_VF]   = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
169         [BCM57800]      = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
170         [BCM57800_MF]   = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
171         [BCM57800_VF]   = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
172         [BCM57810]      = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
173         [BCM57810_MF]   = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
174         [BCM57810_VF]   = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
175         [BCM57840_4_10] = { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
176         [BCM57840_2_20] = { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
177         [BCM57840_MF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
178         [BCM57840_VF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
179         [BCM57811]      = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
180         [BCM57811_MF]   = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
181         [BCM57840_O]    = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
182         [BCM57840_MFO]  = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
183         [BCM57811_VF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
184 };
185
186 #ifndef PCI_DEVICE_ID_NX2_57710
187 #define PCI_DEVICE_ID_NX2_57710         CHIP_NUM_57710
188 #endif
189 #ifndef PCI_DEVICE_ID_NX2_57711
190 #define PCI_DEVICE_ID_NX2_57711         CHIP_NUM_57711
191 #endif
192 #ifndef PCI_DEVICE_ID_NX2_57711E
193 #define PCI_DEVICE_ID_NX2_57711E        CHIP_NUM_57711E
194 #endif
195 #ifndef PCI_DEVICE_ID_NX2_57712
196 #define PCI_DEVICE_ID_NX2_57712         CHIP_NUM_57712
197 #endif
198 #ifndef PCI_DEVICE_ID_NX2_57712_MF
199 #define PCI_DEVICE_ID_NX2_57712_MF      CHIP_NUM_57712_MF
200 #endif
201 #ifndef PCI_DEVICE_ID_NX2_57712_VF
202 #define PCI_DEVICE_ID_NX2_57712_VF      CHIP_NUM_57712_VF
203 #endif
204 #ifndef PCI_DEVICE_ID_NX2_57800
205 #define PCI_DEVICE_ID_NX2_57800         CHIP_NUM_57800
206 #endif
207 #ifndef PCI_DEVICE_ID_NX2_57800_MF
208 #define PCI_DEVICE_ID_NX2_57800_MF      CHIP_NUM_57800_MF
209 #endif
210 #ifndef PCI_DEVICE_ID_NX2_57800_VF
211 #define PCI_DEVICE_ID_NX2_57800_VF      CHIP_NUM_57800_VF
212 #endif
213 #ifndef PCI_DEVICE_ID_NX2_57810
214 #define PCI_DEVICE_ID_NX2_57810         CHIP_NUM_57810
215 #endif
216 #ifndef PCI_DEVICE_ID_NX2_57810_MF
217 #define PCI_DEVICE_ID_NX2_57810_MF      CHIP_NUM_57810_MF
218 #endif
219 #ifndef PCI_DEVICE_ID_NX2_57840_O
220 #define PCI_DEVICE_ID_NX2_57840_O       CHIP_NUM_57840_OBSOLETE
221 #endif
222 #ifndef PCI_DEVICE_ID_NX2_57810_VF
223 #define PCI_DEVICE_ID_NX2_57810_VF      CHIP_NUM_57810_VF
224 #endif
225 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
226 #define PCI_DEVICE_ID_NX2_57840_4_10    CHIP_NUM_57840_4_10
227 #endif
228 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
229 #define PCI_DEVICE_ID_NX2_57840_2_20    CHIP_NUM_57840_2_20
230 #endif
231 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
232 #define PCI_DEVICE_ID_NX2_57840_MFO     CHIP_NUM_57840_MF_OBSOLETE
233 #endif
234 #ifndef PCI_DEVICE_ID_NX2_57840_MF
235 #define PCI_DEVICE_ID_NX2_57840_MF      CHIP_NUM_57840_MF
236 #endif
237 #ifndef PCI_DEVICE_ID_NX2_57840_VF
238 #define PCI_DEVICE_ID_NX2_57840_VF      CHIP_NUM_57840_VF
239 #endif
240 #ifndef PCI_DEVICE_ID_NX2_57811
241 #define PCI_DEVICE_ID_NX2_57811         CHIP_NUM_57811
242 #endif
243 #ifndef PCI_DEVICE_ID_NX2_57811_MF
244 #define PCI_DEVICE_ID_NX2_57811_MF      CHIP_NUM_57811_MF
245 #endif
246 #ifndef PCI_DEVICE_ID_NX2_57811_VF
247 #define PCI_DEVICE_ID_NX2_57811_VF      CHIP_NUM_57811_VF
248 #endif
249
250 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
251         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
252         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
253         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
254         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
255         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
256         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
257         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
258         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
259         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
260         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
261         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
262         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
263         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
264         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
265         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
266         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
267         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
268         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
269         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
270         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
271         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
272         { 0 }
273 };
274
275 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
276
277 /* Global resources for unloading a previously loaded device */
278 #define BNX2X_PREV_WAIT_NEEDED 1
279 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
280 static LIST_HEAD(bnx2x_prev_list);
281 /****************************************************************************
282 * General service functions
283 ****************************************************************************/
284
285 static void __storm_memset_dma_mapping(struct bnx2x *bp,
286                                        u32 addr, dma_addr_t mapping)
287 {
288         REG_WR(bp,  addr, U64_LO(mapping));
289         REG_WR(bp,  addr + 4, U64_HI(mapping));
290 }
291
292 static void storm_memset_spq_addr(struct bnx2x *bp,
293                                   dma_addr_t mapping, u16 abs_fid)
294 {
295         u32 addr = XSEM_REG_FAST_MEMORY +
296                         XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
297
298         __storm_memset_dma_mapping(bp, addr, mapping);
299 }
300
301 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
302                                   u16 pf_id)
303 {
304         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
305                 pf_id);
306         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
307                 pf_id);
308         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
309                 pf_id);
310         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
311                 pf_id);
312 }
313
314 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
315                                  u8 enable)
316 {
317         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
318                 enable);
319         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
320                 enable);
321         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
322                 enable);
323         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
324                 enable);
325 }
326
327 static void storm_memset_eq_data(struct bnx2x *bp,
328                                  struct event_ring_data *eq_data,
329                                 u16 pfid)
330 {
331         size_t size = sizeof(struct event_ring_data);
332
333         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
334
335         __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
336 }
337
338 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
339                                  u16 pfid)
340 {
341         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
342         REG_WR16(bp, addr, eq_prod);
343 }
344
345 /* used only at init
346  * locking is done by mcp
347  */
348 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
349 {
350         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
351         pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
352         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
353                                PCICFG_VENDOR_ID_OFFSET);
354 }
355
356 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
357 {
358         u32 val;
359
360         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
361         pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
362         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
363                                PCICFG_VENDOR_ID_OFFSET);
364
365         return val;
366 }
367
368 #define DMAE_DP_SRC_GRC         "grc src_addr [%08x]"
369 #define DMAE_DP_SRC_PCI         "pci src_addr [%x:%08x]"
370 #define DMAE_DP_DST_GRC         "grc dst_addr [%08x]"
371 #define DMAE_DP_DST_PCI         "pci dst_addr [%x:%08x]"
372 #define DMAE_DP_DST_NONE        "dst_addr [none]"
373
374 static void bnx2x_dp_dmae(struct bnx2x *bp,
375                           struct dmae_command *dmae, int msglvl)
376 {
377         u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
378         int i;
379
380         switch (dmae->opcode & DMAE_COMMAND_DST) {
381         case DMAE_CMD_DST_PCI:
382                 if (src_type == DMAE_CMD_SRC_PCI)
383                         DP(msglvl, "DMAE: opcode 0x%08x\n"
384                            "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
385                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
386                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
387                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
388                            dmae->comp_addr_hi, dmae->comp_addr_lo,
389                            dmae->comp_val);
390                 else
391                         DP(msglvl, "DMAE: opcode 0x%08x\n"
392                            "src [%08x], len [%d*4], dst [%x:%08x]\n"
393                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
394                            dmae->opcode, dmae->src_addr_lo >> 2,
395                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
396                            dmae->comp_addr_hi, dmae->comp_addr_lo,
397                            dmae->comp_val);
398                 break;
399         case DMAE_CMD_DST_GRC:
400                 if (src_type == DMAE_CMD_SRC_PCI)
401                         DP(msglvl, "DMAE: opcode 0x%08x\n"
402                            "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
403                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
404                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
405                            dmae->len, dmae->dst_addr_lo >> 2,
406                            dmae->comp_addr_hi, dmae->comp_addr_lo,
407                            dmae->comp_val);
408                 else
409                         DP(msglvl, "DMAE: opcode 0x%08x\n"
410                            "src [%08x], len [%d*4], dst [%08x]\n"
411                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
412                            dmae->opcode, dmae->src_addr_lo >> 2,
413                            dmae->len, dmae->dst_addr_lo >> 2,
414                            dmae->comp_addr_hi, dmae->comp_addr_lo,
415                            dmae->comp_val);
416                 break;
417         default:
418                 if (src_type == DMAE_CMD_SRC_PCI)
419                         DP(msglvl, "DMAE: opcode 0x%08x\n"
420                            "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
421                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
422                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
423                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
424                            dmae->comp_val);
425                 else
426                         DP(msglvl, "DMAE: opcode 0x%08x\n"
427                            "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
428                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
429                            dmae->opcode, dmae->src_addr_lo >> 2,
430                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
431                            dmae->comp_val);
432                 break;
433         }
434
435         for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
436                 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
437                    i, *(((u32 *)dmae) + i));
438 }
439
440 /* copy command into DMAE command memory and set DMAE command go */
441 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
442 {
443         u32 cmd_offset;
444         int i;
445
446         cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
447         for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
448                 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
449         }
450         REG_WR(bp, dmae_reg_go_c[idx], 1);
451 }
452
453 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
454 {
455         return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
456                            DMAE_CMD_C_ENABLE);
457 }
458
459 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
460 {
461         return opcode & ~DMAE_CMD_SRC_RESET;
462 }
463
464 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
465                              bool with_comp, u8 comp_type)
466 {
467         u32 opcode = 0;
468
469         opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
470                    (dst_type << DMAE_COMMAND_DST_SHIFT));
471
472         opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
473
474         opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
475         opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
476                    (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
477         opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
478
479 #ifdef __BIG_ENDIAN
480         opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
481 #else
482         opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
483 #endif
484         if (with_comp)
485                 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
486         return opcode;
487 }
488
489 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
490                                       struct dmae_command *dmae,
491                                       u8 src_type, u8 dst_type)
492 {
493         memset(dmae, 0, sizeof(struct dmae_command));
494
495         /* set the opcode */
496         dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
497                                          true, DMAE_COMP_PCI);
498
499         /* fill in the completion parameters */
500         dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
501         dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
502         dmae->comp_val = DMAE_COMP_VAL;
503 }
504
505 /* issue a dmae command over the init-channel and wait for completion */
506 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae)
507 {
508         u32 *wb_comp = bnx2x_sp(bp, wb_comp);
509         int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
510         int rc = 0;
511
512         bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
513
514         /* Lock the dmae channel. Disable BHs to prevent a dead-lock
515          * as long as this code is called both from syscall context and
516          * from ndo_set_rx_mode() flow that may be called from BH.
517          */
518         spin_lock_bh(&bp->dmae_lock);
519
520         /* reset completion */
521         *wb_comp = 0;
522
523         /* post the command on the channel used for initializations */
524         bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
525
526         /* wait for completion */
527         udelay(5);
528         while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
529
530                 if (!cnt ||
531                     (bp->recovery_state != BNX2X_RECOVERY_DONE &&
532                      bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
533                         BNX2X_ERR("DMAE timeout!\n");
534                         rc = DMAE_TIMEOUT;
535                         goto unlock;
536                 }
537                 cnt--;
538                 udelay(50);
539         }
540         if (*wb_comp & DMAE_PCI_ERR_FLAG) {
541                 BNX2X_ERR("DMAE PCI error!\n");
542                 rc = DMAE_PCI_ERROR;
543         }
544
545 unlock:
546         spin_unlock_bh(&bp->dmae_lock);
547         return rc;
548 }
549
550 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
551                       u32 len32)
552 {
553         int rc;
554         struct dmae_command dmae;
555
556         if (!bp->dmae_ready) {
557                 u32 *data = bnx2x_sp(bp, wb_data[0]);
558
559                 if (CHIP_IS_E1(bp))
560                         bnx2x_init_ind_wr(bp, dst_addr, data, len32);
561                 else
562                         bnx2x_init_str_wr(bp, dst_addr, data, len32);
563                 return;
564         }
565
566         /* set opcode and fixed command fields */
567         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
568
569         /* fill in addresses and len */
570         dmae.src_addr_lo = U64_LO(dma_addr);
571         dmae.src_addr_hi = U64_HI(dma_addr);
572         dmae.dst_addr_lo = dst_addr >> 2;
573         dmae.dst_addr_hi = 0;
574         dmae.len = len32;
575
576         /* issue the command and wait for completion */
577         rc = bnx2x_issue_dmae_with_comp(bp, &dmae);
578         if (rc) {
579                 BNX2X_ERR("DMAE returned failure %d\n", rc);
580                 bnx2x_panic();
581         }
582 }
583
584 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
585 {
586         int rc;
587         struct dmae_command dmae;
588
589         if (!bp->dmae_ready) {
590                 u32 *data = bnx2x_sp(bp, wb_data[0]);
591                 int i;
592
593                 if (CHIP_IS_E1(bp))
594                         for (i = 0; i < len32; i++)
595                                 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
596                 else
597                         for (i = 0; i < len32; i++)
598                                 data[i] = REG_RD(bp, src_addr + i*4);
599
600                 return;
601         }
602
603         /* set opcode and fixed command fields */
604         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
605
606         /* fill in addresses and len */
607         dmae.src_addr_lo = src_addr >> 2;
608         dmae.src_addr_hi = 0;
609         dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
610         dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
611         dmae.len = len32;
612
613         /* issue the command and wait for completion */
614         rc = bnx2x_issue_dmae_with_comp(bp, &dmae);
615         if (rc) {
616                 BNX2X_ERR("DMAE returned failure %d\n", rc);
617                 bnx2x_panic();
618         };
619 }
620
621 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
622                                       u32 addr, u32 len)
623 {
624         int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
625         int offset = 0;
626
627         while (len > dmae_wr_max) {
628                 bnx2x_write_dmae(bp, phys_addr + offset,
629                                  addr + offset, dmae_wr_max);
630                 offset += dmae_wr_max * 4;
631                 len -= dmae_wr_max;
632         }
633
634         bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
635 }
636
637 static int bnx2x_mc_assert(struct bnx2x *bp)
638 {
639         char last_idx;
640         int i, rc = 0;
641         u32 row0, row1, row2, row3;
642
643         /* XSTORM */
644         last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
645                            XSTORM_ASSERT_LIST_INDEX_OFFSET);
646         if (last_idx)
647                 BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
648
649         /* print the asserts */
650         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
651
652                 row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
653                               XSTORM_ASSERT_LIST_OFFSET(i));
654                 row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
655                               XSTORM_ASSERT_LIST_OFFSET(i) + 4);
656                 row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
657                               XSTORM_ASSERT_LIST_OFFSET(i) + 8);
658                 row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
659                               XSTORM_ASSERT_LIST_OFFSET(i) + 12);
660
661                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
662                         BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
663                                   i, row3, row2, row1, row0);
664                         rc++;
665                 } else {
666                         break;
667                 }
668         }
669
670         /* TSTORM */
671         last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
672                            TSTORM_ASSERT_LIST_INDEX_OFFSET);
673         if (last_idx)
674                 BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
675
676         /* print the asserts */
677         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
678
679                 row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
680                               TSTORM_ASSERT_LIST_OFFSET(i));
681                 row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
682                               TSTORM_ASSERT_LIST_OFFSET(i) + 4);
683                 row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
684                               TSTORM_ASSERT_LIST_OFFSET(i) + 8);
685                 row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
686                               TSTORM_ASSERT_LIST_OFFSET(i) + 12);
687
688                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
689                         BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
690                                   i, row3, row2, row1, row0);
691                         rc++;
692                 } else {
693                         break;
694                 }
695         }
696
697         /* CSTORM */
698         last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
699                            CSTORM_ASSERT_LIST_INDEX_OFFSET);
700         if (last_idx)
701                 BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
702
703         /* print the asserts */
704         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
705
706                 row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
707                               CSTORM_ASSERT_LIST_OFFSET(i));
708                 row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
709                               CSTORM_ASSERT_LIST_OFFSET(i) + 4);
710                 row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
711                               CSTORM_ASSERT_LIST_OFFSET(i) + 8);
712                 row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
713                               CSTORM_ASSERT_LIST_OFFSET(i) + 12);
714
715                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
716                         BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
717                                   i, row3, row2, row1, row0);
718                         rc++;
719                 } else {
720                         break;
721                 }
722         }
723
724         /* USTORM */
725         last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
726                            USTORM_ASSERT_LIST_INDEX_OFFSET);
727         if (last_idx)
728                 BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
729
730         /* print the asserts */
731         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
732
733                 row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
734                               USTORM_ASSERT_LIST_OFFSET(i));
735                 row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
736                               USTORM_ASSERT_LIST_OFFSET(i) + 4);
737                 row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
738                               USTORM_ASSERT_LIST_OFFSET(i) + 8);
739                 row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
740                               USTORM_ASSERT_LIST_OFFSET(i) + 12);
741
742                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
743                         BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
744                                   i, row3, row2, row1, row0);
745                         rc++;
746                 } else {
747                         break;
748                 }
749         }
750
751         return rc;
752 }
753
754 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
755 {
756         u32 addr, val;
757         u32 mark, offset;
758         __be32 data[9];
759         int word;
760         u32 trace_shmem_base;
761         if (BP_NOMCP(bp)) {
762                 BNX2X_ERR("NO MCP - can not dump\n");
763                 return;
764         }
765         netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
766                 (bp->common.bc_ver & 0xff0000) >> 16,
767                 (bp->common.bc_ver & 0xff00) >> 8,
768                 (bp->common.bc_ver & 0xff));
769
770         val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
771         if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
772                 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
773
774         if (BP_PATH(bp) == 0)
775                 trace_shmem_base = bp->common.shmem_base;
776         else
777                 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
778         addr = trace_shmem_base - 0x800;
779
780         /* validate TRCB signature */
781         mark = REG_RD(bp, addr);
782         if (mark != MFW_TRACE_SIGNATURE) {
783                 BNX2X_ERR("Trace buffer signature is missing.");
784                 return ;
785         }
786
787         /* read cyclic buffer pointer */
788         addr += 4;
789         mark = REG_RD(bp, addr);
790         mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
791                         + ((mark + 0x3) & ~0x3) - 0x08000000;
792         printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
793
794         printk("%s", lvl);
795
796         /* dump buffer after the mark */
797         for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
798                 for (word = 0; word < 8; word++)
799                         data[word] = htonl(REG_RD(bp, offset + 4*word));
800                 data[8] = 0x0;
801                 pr_cont("%s", (char *)data);
802         }
803
804         /* dump buffer before the mark */
805         for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
806                 for (word = 0; word < 8; word++)
807                         data[word] = htonl(REG_RD(bp, offset + 4*word));
808                 data[8] = 0x0;
809                 pr_cont("%s", (char *)data);
810         }
811         printk("%s" "end of fw dump\n", lvl);
812 }
813
814 static void bnx2x_fw_dump(struct bnx2x *bp)
815 {
816         bnx2x_fw_dump_lvl(bp, KERN_ERR);
817 }
818
819 static void bnx2x_hc_int_disable(struct bnx2x *bp)
820 {
821         int port = BP_PORT(bp);
822         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
823         u32 val = REG_RD(bp, addr);
824
825         /* in E1 we must use only PCI configuration space to disable
826          * MSI/MSIX capability
827          * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
828          */
829         if (CHIP_IS_E1(bp)) {
830                 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
831                  * Use mask register to prevent from HC sending interrupts
832                  * after we exit the function
833                  */
834                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
835
836                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
837                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
838                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
839         } else
840                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
841                          HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
842                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
843                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
844
845         DP(NETIF_MSG_IFDOWN,
846            "write %x to HC %d (addr 0x%x)\n",
847            val, port, addr);
848
849         /* flush all outstanding writes */
850         mmiowb();
851
852         REG_WR(bp, addr, val);
853         if (REG_RD(bp, addr) != val)
854                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
855 }
856
857 static void bnx2x_igu_int_disable(struct bnx2x *bp)
858 {
859         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
860
861         val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
862                  IGU_PF_CONF_INT_LINE_EN |
863                  IGU_PF_CONF_ATTN_BIT_EN);
864
865         DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
866
867         /* flush all outstanding writes */
868         mmiowb();
869
870         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
871         if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
872                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
873 }
874
875 static void bnx2x_int_disable(struct bnx2x *bp)
876 {
877         if (bp->common.int_block == INT_BLOCK_HC)
878                 bnx2x_hc_int_disable(bp);
879         else
880                 bnx2x_igu_int_disable(bp);
881 }
882
883 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
884 {
885         int i;
886         u16 j;
887         struct hc_sp_status_block_data sp_sb_data;
888         int func = BP_FUNC(bp);
889 #ifdef BNX2X_STOP_ON_ERROR
890         u16 start = 0, end = 0;
891         u8 cos;
892 #endif
893         if (disable_int)
894                 bnx2x_int_disable(bp);
895
896         bp->stats_state = STATS_STATE_DISABLED;
897         bp->eth_stats.unrecoverable_error++;
898         DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
899
900         BNX2X_ERR("begin crash dump -----------------\n");
901
902         /* Indices */
903         /* Common */
904         BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
905                   bp->def_idx, bp->def_att_idx, bp->attn_state,
906                   bp->spq_prod_idx, bp->stats_counter);
907         BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
908                   bp->def_status_blk->atten_status_block.attn_bits,
909                   bp->def_status_blk->atten_status_block.attn_bits_ack,
910                   bp->def_status_blk->atten_status_block.status_block_id,
911                   bp->def_status_blk->atten_status_block.attn_bits_index);
912         BNX2X_ERR("     def (");
913         for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
914                 pr_cont("0x%x%s",
915                         bp->def_status_blk->sp_sb.index_values[i],
916                         (i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
917
918         for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
919                 *((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
920                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
921                         i*sizeof(u32));
922
923         pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
924                sp_sb_data.igu_sb_id,
925                sp_sb_data.igu_seg_id,
926                sp_sb_data.p_func.pf_id,
927                sp_sb_data.p_func.vnic_id,
928                sp_sb_data.p_func.vf_id,
929                sp_sb_data.p_func.vf_valid,
930                sp_sb_data.state);
931
932         for_each_eth_queue(bp, i) {
933                 struct bnx2x_fastpath *fp = &bp->fp[i];
934                 int loop;
935                 struct hc_status_block_data_e2 sb_data_e2;
936                 struct hc_status_block_data_e1x sb_data_e1x;
937                 struct hc_status_block_sm  *hc_sm_p =
938                         CHIP_IS_E1x(bp) ?
939                         sb_data_e1x.common.state_machine :
940                         sb_data_e2.common.state_machine;
941                 struct hc_index_data *hc_index_p =
942                         CHIP_IS_E1x(bp) ?
943                         sb_data_e1x.index_data :
944                         sb_data_e2.index_data;
945                 u8 data_size, cos;
946                 u32 *sb_data_p;
947                 struct bnx2x_fp_txdata txdata;
948
949                 /* Rx */
950                 BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
951                           i, fp->rx_bd_prod, fp->rx_bd_cons,
952                           fp->rx_comp_prod,
953                           fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
954                 BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
955                           fp->rx_sge_prod, fp->last_max_sge,
956                           le16_to_cpu(fp->fp_hc_idx));
957
958                 /* Tx */
959                 for_each_cos_in_tx_queue(fp, cos)
960                 {
961                         txdata = *fp->txdata_ptr[cos];
962                         BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
963                                   i, txdata.tx_pkt_prod,
964                                   txdata.tx_pkt_cons, txdata.tx_bd_prod,
965                                   txdata.tx_bd_cons,
966                                   le16_to_cpu(*txdata.tx_cons_sb));
967                 }
968
969                 loop = CHIP_IS_E1x(bp) ?
970                         HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
971
972                 /* host sb data */
973
974                 if (IS_FCOE_FP(fp))
975                         continue;
976
977                 BNX2X_ERR("     run indexes (");
978                 for (j = 0; j < HC_SB_MAX_SM; j++)
979                         pr_cont("0x%x%s",
980                                fp->sb_running_index[j],
981                                (j == HC_SB_MAX_SM - 1) ? ")" : " ");
982
983                 BNX2X_ERR("     indexes (");
984                 for (j = 0; j < loop; j++)
985                         pr_cont("0x%x%s",
986                                fp->sb_index_values[j],
987                                (j == loop - 1) ? ")" : " ");
988                 /* fw sb data */
989                 data_size = CHIP_IS_E1x(bp) ?
990                         sizeof(struct hc_status_block_data_e1x) :
991                         sizeof(struct hc_status_block_data_e2);
992                 data_size /= sizeof(u32);
993                 sb_data_p = CHIP_IS_E1x(bp) ?
994                         (u32 *)&sb_data_e1x :
995                         (u32 *)&sb_data_e2;
996                 /* copy sb data in here */
997                 for (j = 0; j < data_size; j++)
998                         *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
999                                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1000                                 j * sizeof(u32));
1001
1002                 if (!CHIP_IS_E1x(bp)) {
1003                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1004                                 sb_data_e2.common.p_func.pf_id,
1005                                 sb_data_e2.common.p_func.vf_id,
1006                                 sb_data_e2.common.p_func.vf_valid,
1007                                 sb_data_e2.common.p_func.vnic_id,
1008                                 sb_data_e2.common.same_igu_sb_1b,
1009                                 sb_data_e2.common.state);
1010                 } else {
1011                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1012                                 sb_data_e1x.common.p_func.pf_id,
1013                                 sb_data_e1x.common.p_func.vf_id,
1014                                 sb_data_e1x.common.p_func.vf_valid,
1015                                 sb_data_e1x.common.p_func.vnic_id,
1016                                 sb_data_e1x.common.same_igu_sb_1b,
1017                                 sb_data_e1x.common.state);
1018                 }
1019
1020                 /* SB_SMs data */
1021                 for (j = 0; j < HC_SB_MAX_SM; j++) {
1022                         pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1023                                 j, hc_sm_p[j].__flags,
1024                                 hc_sm_p[j].igu_sb_id,
1025                                 hc_sm_p[j].igu_seg_id,
1026                                 hc_sm_p[j].time_to_expire,
1027                                 hc_sm_p[j].timer_value);
1028                 }
1029
1030                 /* Indices data */
1031                 for (j = 0; j < loop; j++) {
1032                         pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1033                                hc_index_p[j].flags,
1034                                hc_index_p[j].timeout);
1035                 }
1036         }
1037
1038 #ifdef BNX2X_STOP_ON_ERROR
1039
1040         /* event queue */
1041         BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1042         for (i = 0; i < NUM_EQ_DESC; i++) {
1043                 u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1044
1045                 BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1046                           i, bp->eq_ring[i].message.opcode,
1047                           bp->eq_ring[i].message.error);
1048                 BNX2X_ERR("data: %x %x %x\n", data[0], data[1], data[2]);
1049         }
1050
1051         /* Rings */
1052         /* Rx */
1053         for_each_valid_rx_queue(bp, i) {
1054                 struct bnx2x_fastpath *fp = &bp->fp[i];
1055
1056                 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1057                 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1058                 for (j = start; j != end; j = RX_BD(j + 1)) {
1059                         u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1060                         struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1061
1062                         BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1063                                   i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1064                 }
1065
1066                 start = RX_SGE(fp->rx_sge_prod);
1067                 end = RX_SGE(fp->last_max_sge);
1068                 for (j = start; j != end; j = RX_SGE(j + 1)) {
1069                         u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1070                         struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1071
1072                         BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1073                                   i, j, rx_sge[1], rx_sge[0], sw_page->page);
1074                 }
1075
1076                 start = RCQ_BD(fp->rx_comp_cons - 10);
1077                 end = RCQ_BD(fp->rx_comp_cons + 503);
1078                 for (j = start; j != end; j = RCQ_BD(j + 1)) {
1079                         u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1080
1081                         BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1082                                   i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1083                 }
1084         }
1085
1086         /* Tx */
1087         for_each_valid_tx_queue(bp, i) {
1088                 struct bnx2x_fastpath *fp = &bp->fp[i];
1089                 for_each_cos_in_tx_queue(fp, cos) {
1090                         struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1091
1092                         start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1093                         end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1094                         for (j = start; j != end; j = TX_BD(j + 1)) {
1095                                 struct sw_tx_bd *sw_bd =
1096                                         &txdata->tx_buf_ring[j];
1097
1098                                 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1099                                           i, cos, j, sw_bd->skb,
1100                                           sw_bd->first_bd);
1101                         }
1102
1103                         start = TX_BD(txdata->tx_bd_cons - 10);
1104                         end = TX_BD(txdata->tx_bd_cons + 254);
1105                         for (j = start; j != end; j = TX_BD(j + 1)) {
1106                                 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1107
1108                                 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1109                                           i, cos, j, tx_bd[0], tx_bd[1],
1110                                           tx_bd[2], tx_bd[3]);
1111                         }
1112                 }
1113         }
1114 #endif
1115         bnx2x_fw_dump(bp);
1116         bnx2x_mc_assert(bp);
1117         BNX2X_ERR("end crash dump -----------------\n");
1118 }
1119
1120 /*
1121  * FLR Support for E2
1122  *
1123  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1124  * initialization.
1125  */
1126 #define FLR_WAIT_USEC           10000   /* 10 milliseconds */
1127 #define FLR_WAIT_INTERVAL       50      /* usec */
1128 #define FLR_POLL_CNT            (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1129
1130 struct pbf_pN_buf_regs {
1131         int pN;
1132         u32 init_crd;
1133         u32 crd;
1134         u32 crd_freed;
1135 };
1136
1137 struct pbf_pN_cmd_regs {
1138         int pN;
1139         u32 lines_occup;
1140         u32 lines_freed;
1141 };
1142
1143 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1144                                      struct pbf_pN_buf_regs *regs,
1145                                      u32 poll_count)
1146 {
1147         u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1148         u32 cur_cnt = poll_count;
1149
1150         crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1151         crd = crd_start = REG_RD(bp, regs->crd);
1152         init_crd = REG_RD(bp, regs->init_crd);
1153
1154         DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1155         DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1156         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1157
1158         while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1159                (init_crd - crd_start))) {
1160                 if (cur_cnt--) {
1161                         udelay(FLR_WAIT_INTERVAL);
1162                         crd = REG_RD(bp, regs->crd);
1163                         crd_freed = REG_RD(bp, regs->crd_freed);
1164                 } else {
1165                         DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1166                            regs->pN);
1167                         DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1168                            regs->pN, crd);
1169                         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1170                            regs->pN, crd_freed);
1171                         break;
1172                 }
1173         }
1174         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1175            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1176 }
1177
1178 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1179                                      struct pbf_pN_cmd_regs *regs,
1180                                      u32 poll_count)
1181 {
1182         u32 occup, to_free, freed, freed_start;
1183         u32 cur_cnt = poll_count;
1184
1185         occup = to_free = REG_RD(bp, regs->lines_occup);
1186         freed = freed_start = REG_RD(bp, regs->lines_freed);
1187
1188         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1189         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1190
1191         while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1192                 if (cur_cnt--) {
1193                         udelay(FLR_WAIT_INTERVAL);
1194                         occup = REG_RD(bp, regs->lines_occup);
1195                         freed = REG_RD(bp, regs->lines_freed);
1196                 } else {
1197                         DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1198                            regs->pN);
1199                         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1200                            regs->pN, occup);
1201                         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1202                            regs->pN, freed);
1203                         break;
1204                 }
1205         }
1206         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1207            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1208 }
1209
1210 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1211                                     u32 expected, u32 poll_count)
1212 {
1213         u32 cur_cnt = poll_count;
1214         u32 val;
1215
1216         while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1217                 udelay(FLR_WAIT_INTERVAL);
1218
1219         return val;
1220 }
1221
1222 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1223                                     char *msg, u32 poll_cnt)
1224 {
1225         u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1226         if (val != 0) {
1227                 BNX2X_ERR("%s usage count=%d\n", msg, val);
1228                 return 1;
1229         }
1230         return 0;
1231 }
1232
1233 /* Common routines with VF FLR cleanup */
1234 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1235 {
1236         /* adjust polling timeout */
1237         if (CHIP_REV_IS_EMUL(bp))
1238                 return FLR_POLL_CNT * 2000;
1239
1240         if (CHIP_REV_IS_FPGA(bp))
1241                 return FLR_POLL_CNT * 120;
1242
1243         return FLR_POLL_CNT;
1244 }
1245
1246 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1247 {
1248         struct pbf_pN_cmd_regs cmd_regs[] = {
1249                 {0, (CHIP_IS_E3B0(bp)) ?
1250                         PBF_REG_TQ_OCCUPANCY_Q0 :
1251                         PBF_REG_P0_TQ_OCCUPANCY,
1252                     (CHIP_IS_E3B0(bp)) ?
1253                         PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1254                         PBF_REG_P0_TQ_LINES_FREED_CNT},
1255                 {1, (CHIP_IS_E3B0(bp)) ?
1256                         PBF_REG_TQ_OCCUPANCY_Q1 :
1257                         PBF_REG_P1_TQ_OCCUPANCY,
1258                     (CHIP_IS_E3B0(bp)) ?
1259                         PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1260                         PBF_REG_P1_TQ_LINES_FREED_CNT},
1261                 {4, (CHIP_IS_E3B0(bp)) ?
1262                         PBF_REG_TQ_OCCUPANCY_LB_Q :
1263                         PBF_REG_P4_TQ_OCCUPANCY,
1264                     (CHIP_IS_E3B0(bp)) ?
1265                         PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1266                         PBF_REG_P4_TQ_LINES_FREED_CNT}
1267         };
1268
1269         struct pbf_pN_buf_regs buf_regs[] = {
1270                 {0, (CHIP_IS_E3B0(bp)) ?
1271                         PBF_REG_INIT_CRD_Q0 :
1272                         PBF_REG_P0_INIT_CRD ,
1273                     (CHIP_IS_E3B0(bp)) ?
1274                         PBF_REG_CREDIT_Q0 :
1275                         PBF_REG_P0_CREDIT,
1276                     (CHIP_IS_E3B0(bp)) ?
1277                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1278                         PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1279                 {1, (CHIP_IS_E3B0(bp)) ?
1280                         PBF_REG_INIT_CRD_Q1 :
1281                         PBF_REG_P1_INIT_CRD,
1282                     (CHIP_IS_E3B0(bp)) ?
1283                         PBF_REG_CREDIT_Q1 :
1284                         PBF_REG_P1_CREDIT,
1285                     (CHIP_IS_E3B0(bp)) ?
1286                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1287                         PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1288                 {4, (CHIP_IS_E3B0(bp)) ?
1289                         PBF_REG_INIT_CRD_LB_Q :
1290                         PBF_REG_P4_INIT_CRD,
1291                     (CHIP_IS_E3B0(bp)) ?
1292                         PBF_REG_CREDIT_LB_Q :
1293                         PBF_REG_P4_CREDIT,
1294                     (CHIP_IS_E3B0(bp)) ?
1295                         PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1296                         PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1297         };
1298
1299         int i;
1300
1301         /* Verify the command queues are flushed P0, P1, P4 */
1302         for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1303                 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1304
1305         /* Verify the transmission buffers are flushed P0, P1, P4 */
1306         for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1307                 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1308 }
1309
1310 #define OP_GEN_PARAM(param) \
1311         (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1312
1313 #define OP_GEN_TYPE(type) \
1314         (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1315
1316 #define OP_GEN_AGG_VECT(index) \
1317         (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1318
1319 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1320 {
1321         u32 op_gen_command = 0;
1322         u32 comp_addr = BAR_CSTRORM_INTMEM +
1323                         CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1324         int ret = 0;
1325
1326         if (REG_RD(bp, comp_addr)) {
1327                 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1328                 return 1;
1329         }
1330
1331         op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1332         op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1333         op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1334         op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1335
1336         DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1337         REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1338
1339         if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1340                 BNX2X_ERR("FW final cleanup did not succeed\n");
1341                 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1342                    (REG_RD(bp, comp_addr)));
1343                 bnx2x_panic();
1344                 return 1;
1345         }
1346         /* Zero completion for next FLR */
1347         REG_WR(bp, comp_addr, 0);
1348
1349         return ret;
1350 }
1351
1352 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1353 {
1354         u16 status;
1355
1356         pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1357         return status & PCI_EXP_DEVSTA_TRPND;
1358 }
1359
1360 /* PF FLR specific routines
1361 */
1362 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1363 {
1364         /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1365         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1366                         CFC_REG_NUM_LCIDS_INSIDE_PF,
1367                         "CFC PF usage counter timed out",
1368                         poll_cnt))
1369                 return 1;
1370
1371         /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1372         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1373                         DORQ_REG_PF_USAGE_CNT,
1374                         "DQ PF usage counter timed out",
1375                         poll_cnt))
1376                 return 1;
1377
1378         /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1379         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1380                         QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1381                         "QM PF usage counter timed out",
1382                         poll_cnt))
1383                 return 1;
1384
1385         /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1386         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1387                         TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1388                         "Timers VNIC usage counter timed out",
1389                         poll_cnt))
1390                 return 1;
1391         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1392                         TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1393                         "Timers NUM_SCANS usage counter timed out",
1394                         poll_cnt))
1395                 return 1;
1396
1397         /* Wait DMAE PF usage counter to zero */
1398         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1399                         dmae_reg_go_c[INIT_DMAE_C(bp)],
1400                         "DMAE command register timed out",
1401                         poll_cnt))
1402                 return 1;
1403
1404         return 0;
1405 }
1406
1407 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1408 {
1409         u32 val;
1410
1411         val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1412         DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1413
1414         val = REG_RD(bp, PBF_REG_DISABLE_PF);
1415         DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1416
1417         val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1418         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1419
1420         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1421         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1422
1423         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1424         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1425
1426         val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1427         DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1428
1429         val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1430         DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1431
1432         val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1433         DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1434            val);
1435 }
1436
1437 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1438 {
1439         u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1440
1441         DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1442
1443         /* Re-enable PF target read access */
1444         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1445
1446         /* Poll HW usage counters */
1447         DP(BNX2X_MSG_SP, "Polling usage counters\n");
1448         if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1449                 return -EBUSY;
1450
1451         /* Zero the igu 'trailing edge' and 'leading edge' */
1452
1453         /* Send the FW cleanup command */
1454         if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1455                 return -EBUSY;
1456
1457         /* ATC cleanup */
1458
1459         /* Verify TX hw is flushed */
1460         bnx2x_tx_hw_flushed(bp, poll_cnt);
1461
1462         /* Wait 100ms (not adjusted according to platform) */
1463         msleep(100);
1464
1465         /* Verify no pending pci transactions */
1466         if (bnx2x_is_pcie_pending(bp->pdev))
1467                 BNX2X_ERR("PCIE Transactions still pending\n");
1468
1469         /* Debug */
1470         bnx2x_hw_enable_status(bp);
1471
1472         /*
1473          * Master enable - Due to WB DMAE writes performed before this
1474          * register is re-initialized as part of the regular function init
1475          */
1476         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1477
1478         return 0;
1479 }
1480
1481 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1482 {
1483         int port = BP_PORT(bp);
1484         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1485         u32 val = REG_RD(bp, addr);
1486         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1487         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1488         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1489
1490         if (msix) {
1491                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1492                          HC_CONFIG_0_REG_INT_LINE_EN_0);
1493                 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1494                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1495                 if (single_msix)
1496                         val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1497         } else if (msi) {
1498                 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1499                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1500                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1501                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1502         } else {
1503                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1504                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1505                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
1506                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1507
1508                 if (!CHIP_IS_E1(bp)) {
1509                         DP(NETIF_MSG_IFUP,
1510                            "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1511
1512                         REG_WR(bp, addr, val);
1513
1514                         val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1515                 }
1516         }
1517
1518         if (CHIP_IS_E1(bp))
1519                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1520
1521         DP(NETIF_MSG_IFUP,
1522            "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1523            (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1524
1525         REG_WR(bp, addr, val);
1526         /*
1527          * Ensure that HC_CONFIG is written before leading/trailing edge config
1528          */
1529         mmiowb();
1530         barrier();
1531
1532         if (!CHIP_IS_E1(bp)) {
1533                 /* init leading/trailing edge */
1534                 if (IS_MF(bp)) {
1535                         val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1536                         if (bp->port.pmf)
1537                                 /* enable nig and gpio3 attention */
1538                                 val |= 0x1100;
1539                 } else
1540                         val = 0xffff;
1541
1542                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1543                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1544         }
1545
1546         /* Make sure that interrupts are indeed enabled from here on */
1547         mmiowb();
1548 }
1549
1550 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1551 {
1552         u32 val;
1553         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1554         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1555         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1556
1557         val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1558
1559         if (msix) {
1560                 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1561                          IGU_PF_CONF_SINGLE_ISR_EN);
1562                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1563                         IGU_PF_CONF_ATTN_BIT_EN);
1564
1565                 if (single_msix)
1566                         val |= IGU_PF_CONF_SINGLE_ISR_EN;
1567         } else if (msi) {
1568                 val &= ~IGU_PF_CONF_INT_LINE_EN;
1569                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1570                         IGU_PF_CONF_ATTN_BIT_EN |
1571                         IGU_PF_CONF_SINGLE_ISR_EN);
1572         } else {
1573                 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1574                 val |= (IGU_PF_CONF_INT_LINE_EN |
1575                         IGU_PF_CONF_ATTN_BIT_EN |
1576                         IGU_PF_CONF_SINGLE_ISR_EN);
1577         }
1578
1579         /* Clean previous status - need to configure igu prior to ack*/
1580         if ((!msix) || single_msix) {
1581                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1582                 bnx2x_ack_int(bp);
1583         }
1584
1585         val |= IGU_PF_CONF_FUNC_EN;
1586
1587         DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1588            val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1589
1590         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1591
1592         if (val & IGU_PF_CONF_INT_LINE_EN)
1593                 pci_intx(bp->pdev, true);
1594
1595         barrier();
1596
1597         /* init leading/trailing edge */
1598         if (IS_MF(bp)) {
1599                 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1600                 if (bp->port.pmf)
1601                         /* enable nig and gpio3 attention */
1602                         val |= 0x1100;
1603         } else
1604                 val = 0xffff;
1605
1606         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1607         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1608
1609         /* Make sure that interrupts are indeed enabled from here on */
1610         mmiowb();
1611 }
1612
1613 void bnx2x_int_enable(struct bnx2x *bp)
1614 {
1615         if (bp->common.int_block == INT_BLOCK_HC)
1616                 bnx2x_hc_int_enable(bp);
1617         else
1618                 bnx2x_igu_int_enable(bp);
1619 }
1620
1621 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1622 {
1623         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1624         int i, offset;
1625
1626         if (disable_hw)
1627                 /* prevent the HW from sending interrupts */
1628                 bnx2x_int_disable(bp);
1629
1630         /* make sure all ISRs are done */
1631         if (msix) {
1632                 synchronize_irq(bp->msix_table[0].vector);
1633                 offset = 1;
1634                 if (CNIC_SUPPORT(bp))
1635                         offset++;
1636                 for_each_eth_queue(bp, i)
1637                         synchronize_irq(bp->msix_table[offset++].vector);
1638         } else
1639                 synchronize_irq(bp->pdev->irq);
1640
1641         /* make sure sp_task is not running */
1642         cancel_delayed_work(&bp->sp_task);
1643         cancel_delayed_work(&bp->period_task);
1644         flush_workqueue(bnx2x_wq);
1645 }
1646
1647 /* fast path */
1648
1649 /*
1650  * General service functions
1651  */
1652
1653 /* Return true if succeeded to acquire the lock */
1654 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1655 {
1656         u32 lock_status;
1657         u32 resource_bit = (1 << resource);
1658         int func = BP_FUNC(bp);
1659         u32 hw_lock_control_reg;
1660
1661         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1662            "Trying to take a lock on resource %d\n", resource);
1663
1664         /* Validating that the resource is within range */
1665         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1666                 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1667                    "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1668                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1669                 return false;
1670         }
1671
1672         if (func <= 5)
1673                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1674         else
1675                 hw_lock_control_reg =
1676                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1677
1678         /* Try to acquire the lock */
1679         REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1680         lock_status = REG_RD(bp, hw_lock_control_reg);
1681         if (lock_status & resource_bit)
1682                 return true;
1683
1684         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1685            "Failed to get a lock on resource %d\n", resource);
1686         return false;
1687 }
1688
1689 /**
1690  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1691  *
1692  * @bp: driver handle
1693  *
1694  * Returns the recovery leader resource id according to the engine this function
1695  * belongs to. Currently only only 2 engines is supported.
1696  */
1697 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1698 {
1699         if (BP_PATH(bp))
1700                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1701         else
1702                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1703 }
1704
1705 /**
1706  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1707  *
1708  * @bp: driver handle
1709  *
1710  * Tries to acquire a leader lock for current engine.
1711  */
1712 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1713 {
1714         return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1715 }
1716
1717 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1718
1719 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1720 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1721 {
1722         /* Set the interrupt occurred bit for the sp-task to recognize it
1723          * must ack the interrupt and transition according to the IGU
1724          * state machine.
1725          */
1726         atomic_set(&bp->interrupt_occurred, 1);
1727
1728         /* The sp_task must execute only after this bit
1729          * is set, otherwise we will get out of sync and miss all
1730          * further interrupts. Hence, the barrier.
1731          */
1732         smp_wmb();
1733
1734         /* schedule sp_task to workqueue */
1735         return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1736 }
1737
1738 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1739 {
1740         struct bnx2x *bp = fp->bp;
1741         int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1742         int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1743         enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1744         struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1745
1746         DP(BNX2X_MSG_SP,
1747            "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1748            fp->index, cid, command, bp->state,
1749            rr_cqe->ramrod_cqe.ramrod_type);
1750
1751         /* If cid is within VF range, replace the slowpath object with the
1752          * one corresponding to this VF
1753          */
1754         if (cid >= BNX2X_FIRST_VF_CID  &&
1755             cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1756                 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1757
1758         switch (command) {
1759         case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1760                 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1761                 drv_cmd = BNX2X_Q_CMD_UPDATE;
1762                 break;
1763
1764         case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1765                 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1766                 drv_cmd = BNX2X_Q_CMD_SETUP;
1767                 break;
1768
1769         case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1770                 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1771                 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1772                 break;
1773
1774         case (RAMROD_CMD_ID_ETH_HALT):
1775                 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1776                 drv_cmd = BNX2X_Q_CMD_HALT;
1777                 break;
1778
1779         case (RAMROD_CMD_ID_ETH_TERMINATE):
1780                 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1781                 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1782                 break;
1783
1784         case (RAMROD_CMD_ID_ETH_EMPTY):
1785                 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1786                 drv_cmd = BNX2X_Q_CMD_EMPTY;
1787                 break;
1788
1789         default:
1790                 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1791                           command, fp->index);
1792                 return;
1793         }
1794
1795         if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1796             q_obj->complete_cmd(bp, q_obj, drv_cmd))
1797                 /* q_obj->complete_cmd() failure means that this was
1798                  * an unexpected completion.
1799                  *
1800                  * In this case we don't want to increase the bp->spq_left
1801                  * because apparently we haven't sent this command the first
1802                  * place.
1803                  */
1804 #ifdef BNX2X_STOP_ON_ERROR
1805                 bnx2x_panic();
1806 #else
1807                 return;
1808 #endif
1809         /* SRIOV: reschedule any 'in_progress' operations */
1810         bnx2x_iov_sp_event(bp, cid, true);
1811
1812         smp_mb__before_atomic_inc();
1813         atomic_inc(&bp->cq_spq_left);
1814         /* push the change in bp->spq_left and towards the memory */
1815         smp_mb__after_atomic_inc();
1816
1817         DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1818
1819         if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1820             (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1821                 /* if Q update ramrod is completed for last Q in AFEX vif set
1822                  * flow, then ACK MCP at the end
1823                  *
1824                  * mark pending ACK to MCP bit.
1825                  * prevent case that both bits are cleared.
1826                  * At the end of load/unload driver checks that
1827                  * sp_state is cleared, and this order prevents
1828                  * races
1829                  */
1830                 smp_mb__before_clear_bit();
1831                 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1832                 wmb();
1833                 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1834                 smp_mb__after_clear_bit();
1835
1836                 /* schedule the sp task as mcp ack is required */
1837                 bnx2x_schedule_sp_task(bp);
1838         }
1839
1840         return;
1841 }
1842
1843 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1844 {
1845         struct bnx2x *bp = netdev_priv(dev_instance);
1846         u16 status = bnx2x_ack_int(bp);
1847         u16 mask;
1848         int i;
1849         u8 cos;
1850
1851         /* Return here if interrupt is shared and it's not for us */
1852         if (unlikely(status == 0)) {
1853                 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1854                 return IRQ_NONE;
1855         }
1856         DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1857
1858 #ifdef BNX2X_STOP_ON_ERROR
1859         if (unlikely(bp->panic))
1860                 return IRQ_HANDLED;
1861 #endif
1862
1863         for_each_eth_queue(bp, i) {
1864                 struct bnx2x_fastpath *fp = &bp->fp[i];
1865
1866                 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1867                 if (status & mask) {
1868                         /* Handle Rx or Tx according to SB id */
1869                         prefetch(fp->rx_cons_sb);
1870                         for_each_cos_in_tx_queue(fp, cos)
1871                                 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1872                         prefetch(&fp->sb_running_index[SM_RX_ID]);
1873                         napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1874                         status &= ~mask;
1875                 }
1876         }
1877
1878         if (CNIC_SUPPORT(bp)) {
1879                 mask = 0x2;
1880                 if (status & (mask | 0x1)) {
1881                         struct cnic_ops *c_ops = NULL;
1882
1883                         rcu_read_lock();
1884                         c_ops = rcu_dereference(bp->cnic_ops);
1885                         if (c_ops && (bp->cnic_eth_dev.drv_state &
1886                                       CNIC_DRV_STATE_HANDLES_IRQ))
1887                                 c_ops->cnic_handler(bp->cnic_data, NULL);
1888                         rcu_read_unlock();
1889
1890                         status &= ~mask;
1891                 }
1892         }
1893
1894         if (unlikely(status & 0x1)) {
1895
1896                 /* schedule sp task to perform default status block work, ack
1897                  * attentions and enable interrupts.
1898                  */
1899                 bnx2x_schedule_sp_task(bp);
1900
1901                 status &= ~0x1;
1902                 if (!status)
1903                         return IRQ_HANDLED;
1904         }
1905
1906         if (unlikely(status))
1907                 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1908                    status);
1909
1910         return IRQ_HANDLED;
1911 }
1912
1913 /* Link */
1914
1915 /*
1916  * General service functions
1917  */
1918
1919 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1920 {
1921         u32 lock_status;
1922         u32 resource_bit = (1 << resource);
1923         int func = BP_FUNC(bp);
1924         u32 hw_lock_control_reg;
1925         int cnt;
1926
1927         /* Validating that the resource is within range */
1928         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1929                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1930                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1931                 return -EINVAL;
1932         }
1933
1934         if (func <= 5) {
1935                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1936         } else {
1937                 hw_lock_control_reg =
1938                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1939         }
1940
1941         /* Validating that the resource is not already taken */
1942         lock_status = REG_RD(bp, hw_lock_control_reg);
1943         if (lock_status & resource_bit) {
1944                 BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
1945                    lock_status, resource_bit);
1946                 return -EEXIST;
1947         }
1948
1949         /* Try for 5 second every 5ms */
1950         for (cnt = 0; cnt < 1000; cnt++) {
1951                 /* Try to acquire the lock */
1952                 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1953                 lock_status = REG_RD(bp, hw_lock_control_reg);
1954                 if (lock_status & resource_bit)
1955                         return 0;
1956
1957                 usleep_range(5000, 10000);
1958         }
1959         BNX2X_ERR("Timeout\n");
1960         return -EAGAIN;
1961 }
1962
1963 int bnx2x_release_leader_lock(struct bnx2x *bp)
1964 {
1965         return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1966 }
1967
1968 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1969 {
1970         u32 lock_status;
1971         u32 resource_bit = (1 << resource);
1972         int func = BP_FUNC(bp);
1973         u32 hw_lock_control_reg;
1974
1975         /* Validating that the resource is within range */
1976         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1977                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1978                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1979                 return -EINVAL;
1980         }
1981
1982         if (func <= 5) {
1983                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1984         } else {
1985                 hw_lock_control_reg =
1986                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1987         }
1988
1989         /* Validating that the resource is currently taken */
1990         lock_status = REG_RD(bp, hw_lock_control_reg);
1991         if (!(lock_status & resource_bit)) {
1992                 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
1993                           lock_status, resource_bit);
1994                 return -EFAULT;
1995         }
1996
1997         REG_WR(bp, hw_lock_control_reg, resource_bit);
1998         return 0;
1999 }
2000
2001 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2002 {
2003         /* The GPIO should be swapped if swap register is set and active */
2004         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2005                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2006         int gpio_shift = gpio_num +
2007                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2008         u32 gpio_mask = (1 << gpio_shift);
2009         u32 gpio_reg;
2010         int value;
2011
2012         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2013                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2014                 return -EINVAL;
2015         }
2016
2017         /* read GPIO value */
2018         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2019
2020         /* get the requested pin value */
2021         if ((gpio_reg & gpio_mask) == gpio_mask)
2022                 value = 1;
2023         else
2024                 value = 0;
2025
2026         DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
2027
2028         return value;
2029 }
2030
2031 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2032 {
2033         /* The GPIO should be swapped if swap register is set and active */
2034         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2035                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2036         int gpio_shift = gpio_num +
2037                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2038         u32 gpio_mask = (1 << gpio_shift);
2039         u32 gpio_reg;
2040
2041         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2042                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2043                 return -EINVAL;
2044         }
2045
2046         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2047         /* read GPIO and mask except the float bits */
2048         gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2049
2050         switch (mode) {
2051         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2052                 DP(NETIF_MSG_LINK,
2053                    "Set GPIO %d (shift %d) -> output low\n",
2054                    gpio_num, gpio_shift);
2055                 /* clear FLOAT and set CLR */
2056                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2057                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2058                 break;
2059
2060         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2061                 DP(NETIF_MSG_LINK,
2062                    "Set GPIO %d (shift %d) -> output high\n",
2063                    gpio_num, gpio_shift);
2064                 /* clear FLOAT and set SET */
2065                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2066                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2067                 break;
2068
2069         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2070                 DP(NETIF_MSG_LINK,
2071                    "Set GPIO %d (shift %d) -> input\n",
2072                    gpio_num, gpio_shift);
2073                 /* set FLOAT */
2074                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2075                 break;
2076
2077         default:
2078                 break;
2079         }
2080
2081         REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2082         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2083
2084         return 0;
2085 }
2086
2087 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2088 {
2089         u32 gpio_reg = 0;
2090         int rc = 0;
2091
2092         /* Any port swapping should be handled by caller. */
2093
2094         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2095         /* read GPIO and mask except the float bits */
2096         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2097         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2098         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2099         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2100
2101         switch (mode) {
2102         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2103                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2104                 /* set CLR */
2105                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2106                 break;
2107
2108         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2109                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2110                 /* set SET */
2111                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2112                 break;
2113
2114         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2115                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2116                 /* set FLOAT */
2117                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2118                 break;
2119
2120         default:
2121                 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2122                 rc = -EINVAL;
2123                 break;
2124         }
2125
2126         if (rc == 0)
2127                 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2128
2129         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2130
2131         return rc;
2132 }
2133
2134 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2135 {
2136         /* The GPIO should be swapped if swap register is set and active */
2137         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2138                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2139         int gpio_shift = gpio_num +
2140                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2141         u32 gpio_mask = (1 << gpio_shift);
2142         u32 gpio_reg;
2143
2144         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2145                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2146                 return -EINVAL;
2147         }
2148
2149         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2150         /* read GPIO int */
2151         gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2152
2153         switch (mode) {
2154         case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2155                 DP(NETIF_MSG_LINK,
2156                    "Clear GPIO INT %d (shift %d) -> output low\n",
2157                    gpio_num, gpio_shift);
2158                 /* clear SET and set CLR */
2159                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2160                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2161                 break;
2162
2163         case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2164                 DP(NETIF_MSG_LINK,
2165                    "Set GPIO INT %d (shift %d) -> output high\n",
2166                    gpio_num, gpio_shift);
2167                 /* clear CLR and set SET */
2168                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2169                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2170                 break;
2171
2172         default:
2173                 break;
2174         }
2175
2176         REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2177         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2178
2179         return 0;
2180 }
2181
2182 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2183 {
2184         u32 spio_reg;
2185
2186         /* Only 2 SPIOs are configurable */
2187         if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2188                 BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2189                 return -EINVAL;
2190         }
2191
2192         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2193         /* read SPIO and mask except the float bits */
2194         spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2195
2196         switch (mode) {
2197         case MISC_SPIO_OUTPUT_LOW:
2198                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2199                 /* clear FLOAT and set CLR */
2200                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2201                 spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2202                 break;
2203
2204         case MISC_SPIO_OUTPUT_HIGH:
2205                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2206                 /* clear FLOAT and set SET */
2207                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2208                 spio_reg |=  (spio << MISC_SPIO_SET_POS);
2209                 break;
2210
2211         case MISC_SPIO_INPUT_HI_Z:
2212                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2213                 /* set FLOAT */
2214                 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2215                 break;
2216
2217         default:
2218                 break;
2219         }
2220
2221         REG_WR(bp, MISC_REG_SPIO, spio_reg);
2222         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2223
2224         return 0;
2225 }
2226
2227 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2228 {
2229         u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2230         switch (bp->link_vars.ieee_fc &
2231                 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2232         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2233                 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2234                                                    ADVERTISED_Pause);
2235                 break;
2236
2237         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2238                 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2239                                                   ADVERTISED_Pause);
2240                 break;
2241
2242         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2243                 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2244                 break;
2245
2246         default:
2247                 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2248                                                    ADVERTISED_Pause);
2249                 break;
2250         }
2251 }
2252
2253 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2254 {
2255         /* Initialize link parameters structure variables
2256          * It is recommended to turn off RX FC for jumbo frames
2257          *  for better performance
2258          */
2259         if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2260                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2261         else
2262                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2263 }
2264
2265 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2266 {
2267         int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2268         u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2269
2270         if (!BP_NOMCP(bp)) {
2271                 bnx2x_set_requested_fc(bp);
2272                 bnx2x_acquire_phy_lock(bp);
2273
2274                 if (load_mode == LOAD_DIAG) {
2275                         struct link_params *lp = &bp->link_params;
2276                         lp->loopback_mode = LOOPBACK_XGXS;
2277                         /* do PHY loopback at 10G speed, if possible */
2278                         if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2279                                 if (lp->speed_cap_mask[cfx_idx] &
2280                                     PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2281                                         lp->req_line_speed[cfx_idx] =
2282                                         SPEED_10000;
2283                                 else
2284                                         lp->req_line_speed[cfx_idx] =
2285                                         SPEED_1000;
2286                         }
2287                 }
2288
2289                 if (load_mode == LOAD_LOOPBACK_EXT) {
2290                         struct link_params *lp = &bp->link_params;
2291                         lp->loopback_mode = LOOPBACK_EXT;
2292                 }
2293
2294                 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2295
2296                 bnx2x_release_phy_lock(bp);
2297
2298                 bnx2x_calc_fc_adv(bp);
2299
2300                 if (bp->link_vars.link_up) {
2301                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2302                         bnx2x_link_report(bp);
2303                 }
2304                 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2305                 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2306                 return rc;
2307         }
2308         BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2309         return -EINVAL;
2310 }
2311
2312 void bnx2x_link_set(struct bnx2x *bp)
2313 {
2314         if (!BP_NOMCP(bp)) {
2315                 bnx2x_acquire_phy_lock(bp);
2316                 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2317                 bnx2x_release_phy_lock(bp);
2318
2319                 bnx2x_calc_fc_adv(bp);
2320         } else
2321                 BNX2X_ERR("Bootcode is missing - can not set link\n");
2322 }
2323
2324 static void bnx2x__link_reset(struct bnx2x *bp)
2325 {
2326         if (!BP_NOMCP(bp)) {
2327                 bnx2x_acquire_phy_lock(bp);
2328                 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2329                 bnx2x_release_phy_lock(bp);
2330         } else
2331                 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2332 }
2333
2334 void bnx2x_force_link_reset(struct bnx2x *bp)
2335 {
2336         bnx2x_acquire_phy_lock(bp);
2337         bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2338         bnx2x_release_phy_lock(bp);
2339 }
2340
2341 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2342 {
2343         u8 rc = 0;
2344
2345         if (!BP_NOMCP(bp)) {
2346                 bnx2x_acquire_phy_lock(bp);
2347                 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2348                                      is_serdes);
2349                 bnx2x_release_phy_lock(bp);
2350         } else
2351                 BNX2X_ERR("Bootcode is missing - can not test link\n");
2352
2353         return rc;
2354 }
2355
2356 /* Calculates the sum of vn_min_rates.
2357    It's needed for further normalizing of the min_rates.
2358    Returns:
2359      sum of vn_min_rates.
2360        or
2361      0 - if all the min_rates are 0.
2362      In the later case fairness algorithm should be deactivated.
2363      If not all min_rates are zero then those that are zeroes will be set to 1.
2364  */
2365 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2366                                       struct cmng_init_input *input)
2367 {
2368         int all_zero = 1;
2369         int vn;
2370
2371         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2372                 u32 vn_cfg = bp->mf_config[vn];
2373                 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2374                                    FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2375
2376                 /* Skip hidden vns */
2377                 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2378                         vn_min_rate = 0;
2379                 /* If min rate is zero - set it to 1 */
2380                 else if (!vn_min_rate)
2381                         vn_min_rate = DEF_MIN_RATE;
2382                 else
2383                         all_zero = 0;
2384
2385                 input->vnic_min_rate[vn] = vn_min_rate;
2386         }
2387
2388         /* if ETS or all min rates are zeros - disable fairness */
2389         if (BNX2X_IS_ETS_ENABLED(bp)) {
2390                 input->flags.cmng_enables &=
2391                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2392                 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2393         } else if (all_zero) {
2394                 input->flags.cmng_enables &=
2395                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2396                 DP(NETIF_MSG_IFUP,
2397                    "All MIN values are zeroes fairness will be disabled\n");
2398         } else
2399                 input->flags.cmng_enables |=
2400                                         CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2401 }
2402
2403 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2404                                     struct cmng_init_input *input)
2405 {
2406         u16 vn_max_rate;
2407         u32 vn_cfg = bp->mf_config[vn];
2408
2409         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2410                 vn_max_rate = 0;
2411         else {
2412                 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2413
2414                 if (IS_MF_SI(bp)) {
2415                         /* maxCfg in percents of linkspeed */
2416                         vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2417                 } else /* SD modes */
2418                         /* maxCfg is absolute in 100Mb units */
2419                         vn_max_rate = maxCfg * 100;
2420         }
2421
2422         DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2423
2424         input->vnic_max_rate[vn] = vn_max_rate;
2425 }
2426
2427 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2428 {
2429         if (CHIP_REV_IS_SLOW(bp))
2430                 return CMNG_FNS_NONE;
2431         if (IS_MF(bp))
2432                 return CMNG_FNS_MINMAX;
2433
2434         return CMNG_FNS_NONE;
2435 }
2436
2437 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2438 {
2439         int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2440
2441         if (BP_NOMCP(bp))
2442                 return; /* what should be the default value in this case */
2443
2444         /* For 2 port configuration the absolute function number formula
2445          * is:
2446          *      abs_func = 2 * vn + BP_PORT + BP_PATH
2447          *
2448          *      and there are 4 functions per port
2449          *
2450          * For 4 port configuration it is
2451          *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2452          *
2453          *      and there are 2 functions per port
2454          */
2455         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2456                 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2457
2458                 if (func >= E1H_FUNC_MAX)
2459                         break;
2460
2461                 bp->mf_config[vn] =
2462                         MF_CFG_RD(bp, func_mf_config[func].config);
2463         }
2464         if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2465                 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2466                 bp->flags |= MF_FUNC_DIS;
2467         } else {
2468                 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2469                 bp->flags &= ~MF_FUNC_DIS;
2470         }
2471 }
2472
2473 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2474 {
2475         struct cmng_init_input input;
2476         memset(&input, 0, sizeof(struct cmng_init_input));
2477
2478         input.port_rate = bp->link_vars.line_speed;
2479
2480         if (cmng_type == CMNG_FNS_MINMAX) {
2481                 int vn;
2482
2483                 /* read mf conf from shmem */
2484                 if (read_cfg)
2485                         bnx2x_read_mf_cfg(bp);
2486
2487                 /* vn_weight_sum and enable fairness if not 0 */
2488                 bnx2x_calc_vn_min(bp, &input);
2489
2490                 /* calculate and set min-max rate for each vn */
2491                 if (bp->port.pmf)
2492                         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2493                                 bnx2x_calc_vn_max(bp, vn, &input);
2494
2495                 /* always enable rate shaping and fairness */
2496                 input.flags.cmng_enables |=
2497                                         CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2498
2499                 bnx2x_init_cmng(&input, &bp->cmng);
2500                 return;
2501         }
2502
2503         /* rate shaping and fairness are disabled */
2504         DP(NETIF_MSG_IFUP,
2505            "rate shaping and fairness are disabled\n");
2506 }
2507
2508 static void storm_memset_cmng(struct bnx2x *bp,
2509                               struct cmng_init *cmng,
2510                               u8 port)
2511 {
2512         int vn;
2513         size_t size = sizeof(struct cmng_struct_per_port);
2514
2515         u32 addr = BAR_XSTRORM_INTMEM +
2516                         XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2517
2518         __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2519
2520         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2521                 int func = func_by_vn(bp, vn);
2522
2523                 addr = BAR_XSTRORM_INTMEM +
2524                        XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2525                 size = sizeof(struct rate_shaping_vars_per_vn);
2526                 __storm_memset_struct(bp, addr, size,
2527                                       (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2528
2529                 addr = BAR_XSTRORM_INTMEM +
2530                        XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2531                 size = sizeof(struct fairness_vars_per_vn);
2532                 __storm_memset_struct(bp, addr, size,
2533                                       (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2534         }
2535 }
2536
2537 /* This function is called upon link interrupt */
2538 static void bnx2x_link_attn(struct bnx2x *bp)
2539 {
2540         /* Make sure that we are synced with the current statistics */
2541         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2542
2543         bnx2x_link_update(&bp->link_params, &bp->link_vars);
2544
2545         if (bp->link_vars.link_up) {
2546
2547                 /* dropless flow control */
2548                 if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2549                         int port = BP_PORT(bp);
2550                         u32 pause_enabled = 0;
2551
2552                         if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2553                                 pause_enabled = 1;
2554
2555                         REG_WR(bp, BAR_USTRORM_INTMEM +
2556                                USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2557                                pause_enabled);
2558                 }
2559
2560                 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2561                         struct host_port_stats *pstats;
2562
2563                         pstats = bnx2x_sp(bp, port_stats);
2564                         /* reset old mac stats */
2565                         memset(&(pstats->mac_stx[0]), 0,
2566                                sizeof(struct mac_stx));
2567                 }
2568                 if (bp->state == BNX2X_STATE_OPEN)
2569                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2570         }
2571
2572         if (bp->link_vars.link_up && bp->link_vars.line_speed) {
2573                 int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2574
2575                 if (cmng_fns != CMNG_FNS_NONE) {
2576                         bnx2x_cmng_fns_init(bp, false, cmng_fns);
2577                         storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2578                 } else
2579                         /* rate shaping and fairness are disabled */
2580                         DP(NETIF_MSG_IFUP,
2581                            "single function mode without fairness\n");
2582         }
2583
2584         __bnx2x_link_report(bp);
2585
2586         if (IS_MF(bp))
2587                 bnx2x_link_sync_notify(bp);
2588 }
2589
2590 void bnx2x__link_status_update(struct bnx2x *bp)
2591 {
2592         if (bp->state != BNX2X_STATE_OPEN)
2593                 return;
2594
2595         /* read updated dcb configuration */
2596         if (IS_PF(bp)) {
2597                 bnx2x_dcbx_pmf_update(bp);
2598                 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2599                 if (bp->link_vars.link_up)
2600                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2601                 else
2602                         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2603                         /* indicate link status */
2604                 bnx2x_link_report(bp);
2605
2606         } else { /* VF */
2607                 bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2608                                           SUPPORTED_10baseT_Full |
2609                                           SUPPORTED_100baseT_Half |
2610                                           SUPPORTED_100baseT_Full |
2611                                           SUPPORTED_1000baseT_Full |
2612                                           SUPPORTED_2500baseX_Full |
2613                                           SUPPORTED_10000baseT_Full |
2614                                           SUPPORTED_TP |
2615                                           SUPPORTED_FIBRE |
2616                                           SUPPORTED_Autoneg |
2617                                           SUPPORTED_Pause |
2618                                           SUPPORTED_Asym_Pause);
2619                 bp->port.advertising[0] = bp->port.supported[0];
2620
2621                 bp->link_params.bp = bp;
2622                 bp->link_params.port = BP_PORT(bp);
2623                 bp->link_params.req_duplex[0] = DUPLEX_FULL;
2624                 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2625                 bp->link_params.req_line_speed[0] = SPEED_10000;
2626                 bp->link_params.speed_cap_mask[0] = 0x7f0000;
2627                 bp->link_params.switch_cfg = SWITCH_CFG_10G;
2628                 bp->link_vars.mac_type = MAC_TYPE_BMAC;
2629                 bp->link_vars.line_speed = SPEED_10000;
2630                 bp->link_vars.link_status =
2631                         (LINK_STATUS_LINK_UP |
2632                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2633                 bp->link_vars.link_up = 1;
2634                 bp->link_vars.duplex = DUPLEX_FULL;
2635                 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2636                 __bnx2x_link_report(bp);
2637                 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2638         }
2639 }
2640
2641 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2642                                   u16 vlan_val, u8 allowed_prio)
2643 {
2644         struct bnx2x_func_state_params func_params = {NULL};
2645         struct bnx2x_func_afex_update_params *f_update_params =
2646                 &func_params.params.afex_update;
2647
2648         func_params.f_obj = &bp->func_obj;
2649         func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2650
2651         /* no need to wait for RAMROD completion, so don't
2652          * set RAMROD_COMP_WAIT flag
2653          */
2654
2655         f_update_params->vif_id = vifid;
2656         f_update_params->afex_default_vlan = vlan_val;
2657         f_update_params->allowed_priorities = allowed_prio;
2658
2659         /* if ramrod can not be sent, response to MCP immediately */
2660         if (bnx2x_func_state_change(bp, &func_params) < 0)
2661                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2662
2663         return 0;
2664 }
2665
2666 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2667                                           u16 vif_index, u8 func_bit_map)
2668 {
2669         struct bnx2x_func_state_params func_params = {NULL};
2670         struct bnx2x_func_afex_viflists_params *update_params =
2671                 &func_params.params.afex_viflists;
2672         int rc;
2673         u32 drv_msg_code;
2674
2675         /* validate only LIST_SET and LIST_GET are received from switch */
2676         if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2677                 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2678                           cmd_type);
2679
2680         func_params.f_obj = &bp->func_obj;
2681         func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2682
2683         /* set parameters according to cmd_type */
2684         update_params->afex_vif_list_command = cmd_type;
2685         update_params->vif_list_index = vif_index;
2686         update_params->func_bit_map =
2687                 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2688         update_params->func_to_clear = 0;
2689         drv_msg_code =
2690                 (cmd_type == VIF_LIST_RULE_GET) ?
2691                 DRV_MSG_CODE_AFEX_LISTGET_ACK :
2692                 DRV_MSG_CODE_AFEX_LISTSET_ACK;
2693
2694         /* if ramrod can not be sent, respond to MCP immediately for
2695          * SET and GET requests (other are not triggered from MCP)
2696          */
2697         rc = bnx2x_func_state_change(bp, &func_params);
2698         if (rc < 0)
2699                 bnx2x_fw_command(bp, drv_msg_code, 0);
2700
2701         return 0;
2702 }
2703
2704 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2705 {
2706         struct afex_stats afex_stats;
2707         u32 func = BP_ABS_FUNC(bp);
2708         u32 mf_config;
2709         u16 vlan_val;
2710         u32 vlan_prio;
2711         u16 vif_id;
2712         u8 allowed_prio;
2713         u8 vlan_mode;
2714         u32 addr_to_write, vifid, addrs, stats_type, i;
2715
2716         if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2717                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2718                 DP(BNX2X_MSG_MCP,
2719                    "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2720                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2721         }
2722
2723         if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2724                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2725                 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2726                 DP(BNX2X_MSG_MCP,
2727                    "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2728                    vifid, addrs);
2729                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2730                                                addrs);
2731         }
2732
2733         if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2734                 addr_to_write = SHMEM2_RD(bp,
2735                         afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2736                 stats_type = SHMEM2_RD(bp,
2737                         afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2738
2739                 DP(BNX2X_MSG_MCP,
2740                    "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2741                    addr_to_write);
2742
2743                 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2744
2745                 /* write response to scratchpad, for MCP */
2746                 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2747                         REG_WR(bp, addr_to_write + i*sizeof(u32),
2748                                *(((u32 *)(&afex_stats))+i));
2749
2750                 /* send ack message to MCP */
2751                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2752         }
2753
2754         if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2755                 mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2756                 bp->mf_config[BP_VN(bp)] = mf_config;
2757                 DP(BNX2X_MSG_MCP,
2758                    "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2759                    mf_config);
2760
2761                 /* if VIF_SET is "enabled" */
2762                 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2763                         /* set rate limit directly to internal RAM */
2764                         struct cmng_init_input cmng_input;
2765                         struct rate_shaping_vars_per_vn m_rs_vn;
2766                         size_t size = sizeof(struct rate_shaping_vars_per_vn);
2767                         u32 addr = BAR_XSTRORM_INTMEM +
2768                             XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2769
2770                         bp->mf_config[BP_VN(bp)] = mf_config;
2771
2772                         bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2773                         m_rs_vn.vn_counter.rate =
2774                                 cmng_input.vnic_max_rate[BP_VN(bp)];
2775                         m_rs_vn.vn_counter.quota =
2776                                 (m_rs_vn.vn_counter.rate *
2777                                  RS_PERIODIC_TIMEOUT_USEC) / 8;
2778
2779                         __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2780
2781                         /* read relevant values from mf_cfg struct in shmem */
2782                         vif_id =
2783                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2784                                  FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2785                                 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2786                         vlan_val =
2787                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2788                                  FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2789                                 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2790                         vlan_prio = (mf_config &
2791                                      FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2792                                     FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2793                         vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2794                         vlan_mode =
2795                                 (MF_CFG_RD(bp,
2796                                            func_mf_config[func].afex_config) &
2797                                  FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2798                                 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2799                         allowed_prio =
2800                                 (MF_CFG_RD(bp,
2801                                            func_mf_config[func].afex_config) &
2802                                  FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2803                                 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2804
2805                         /* send ramrod to FW, return in case of failure */
2806                         if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2807                                                    allowed_prio))
2808                                 return;
2809
2810                         bp->afex_def_vlan_tag = vlan_val;
2811                         bp->afex_vlan_mode = vlan_mode;
2812                 } else {
2813                         /* notify link down because BP->flags is disabled */
2814                         bnx2x_link_report(bp);
2815
2816                         /* send INVALID VIF ramrod to FW */
2817                         bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2818
2819                         /* Reset the default afex VLAN */
2820                         bp->afex_def_vlan_tag = -1;
2821                 }
2822         }
2823 }
2824
2825 static void bnx2x_pmf_update(struct bnx2x *bp)
2826 {
2827         int port = BP_PORT(bp);
2828         u32 val;
2829
2830         bp->port.pmf = 1;
2831         DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2832
2833         /*
2834          * We need the mb() to ensure the ordering between the writing to
2835          * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2836          */
2837         smp_mb();
2838
2839         /* queue a periodic task */
2840         queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2841
2842         bnx2x_dcbx_pmf_update(bp);
2843
2844         /* enable nig attention */
2845         val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2846         if (bp->common.int_block == INT_BLOCK_HC) {
2847                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2848                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2849         } else if (!CHIP_IS_E1x(bp)) {
2850                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2851                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2852         }
2853
2854         bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2855 }
2856
2857 /* end of Link */
2858
2859 /* slow path */
2860
2861 /*
2862  * General service functions
2863  */
2864
2865 /* send the MCP a request, block until there is a reply */
2866 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2867 {
2868         int mb_idx = BP_FW_MB_IDX(bp);
2869         u32 seq;
2870         u32 rc = 0;
2871         u32 cnt = 1;
2872         u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2873
2874         mutex_lock(&bp->fw_mb_mutex);
2875         seq = ++bp->fw_seq;
2876         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2877         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2878
2879         DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2880                         (command | seq), param);
2881
2882         do {
2883                 /* let the FW do it's magic ... */
2884                 msleep(delay);
2885
2886                 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2887
2888                 /* Give the FW up to 5 second (500*10ms) */
2889         } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2890
2891         DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2892            cnt*delay, rc, seq);
2893
2894         /* is this a reply to our command? */
2895         if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2896                 rc &= FW_MSG_CODE_MASK;
2897         else {
2898                 /* FW BUG! */
2899                 BNX2X_ERR("FW failed to respond!\n");
2900                 bnx2x_fw_dump(bp);
2901                 rc = 0;
2902         }
2903         mutex_unlock(&bp->fw_mb_mutex);
2904
2905         return rc;
2906 }
2907
2908 static void storm_memset_func_cfg(struct bnx2x *bp,
2909                                  struct tstorm_eth_function_common_config *tcfg,
2910                                  u16 abs_fid)
2911 {
2912         size_t size = sizeof(struct tstorm_eth_function_common_config);
2913
2914         u32 addr = BAR_TSTRORM_INTMEM +
2915                         TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
2916
2917         __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
2918 }
2919
2920 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2921 {
2922         if (CHIP_IS_E1x(bp)) {
2923                 struct tstorm_eth_function_common_config tcfg = {0};
2924
2925                 storm_memset_func_cfg(bp, &tcfg, p->func_id);
2926         }
2927
2928         /* Enable the function in the FW */
2929         storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2930         storm_memset_func_en(bp, p->func_id, 1);
2931
2932         /* spq */
2933         if (p->func_flgs & FUNC_FLG_SPQ) {
2934                 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2935                 REG_WR(bp, XSEM_REG_FAST_MEMORY +
2936                        XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2937         }
2938 }
2939
2940 /**
2941  * bnx2x_get_common_flags - Return common flags
2942  *
2943  * @bp          device handle
2944  * @fp          queue handle
2945  * @zero_stats  TRUE if statistics zeroing is needed
2946  *
2947  * Return the flags that are common for the Tx-only and not normal connections.
2948  */
2949 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2950                                             struct bnx2x_fastpath *fp,
2951                                             bool zero_stats)
2952 {
2953         unsigned long flags = 0;
2954
2955         /* PF driver will always initialize the Queue to an ACTIVE state */
2956         __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2957
2958         /* tx only connections collect statistics (on the same index as the
2959          * parent connection). The statistics are zeroed when the parent
2960          * connection is initialized.
2961          */
2962
2963         __set_bit(BNX2X_Q_FLG_STATS, &flags);
2964         if (zero_stats)
2965                 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2966
2967         __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
2968         __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
2969
2970 #ifdef BNX2X_STOP_ON_ERROR
2971         __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
2972 #endif
2973
2974         return flags;
2975 }
2976
2977 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2978                                        struct bnx2x_fastpath *fp,
2979                                        bool leading)
2980 {
2981         unsigned long flags = 0;
2982
2983         /* calculate other queue flags */
2984         if (IS_MF_SD(bp))
2985                 __set_bit(BNX2X_Q_FLG_OV, &flags);
2986
2987         if (IS_FCOE_FP(fp)) {
2988                 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
2989                 /* For FCoE - force usage of default priority (for afex) */
2990                 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
2991         }
2992
2993         if (!fp->disable_tpa) {
2994                 __set_bit(BNX2X_Q_FLG_TPA, &flags);
2995                 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
2996                 if (fp->mode == TPA_MODE_GRO)
2997                         __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
2998         }
2999
3000         if (leading) {
3001                 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3002                 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3003         }
3004
3005         /* Always set HW VLAN stripping */
3006         __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3007
3008         /* configure silent vlan removal */
3009         if (IS_MF_AFEX(bp))
3010                 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3011
3012         return flags | bnx2x_get_common_flags(bp, fp, true);
3013 }
3014
3015 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3016         struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3017         u8 cos)
3018 {
3019         gen_init->stat_id = bnx2x_stats_id(fp);
3020         gen_init->spcl_id = fp->cl_id;
3021
3022         /* Always use mini-jumbo MTU for FCoE L2 ring */
3023         if (IS_FCOE_FP(fp))
3024                 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3025         else
3026                 gen_init->mtu = bp->dev->mtu;
3027
3028         gen_init->cos = cos;
3029 }
3030
3031 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3032         struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3033         struct bnx2x_rxq_setup_params *rxq_init)
3034 {
3035         u8 max_sge = 0;
3036         u16 sge_sz = 0;
3037         u16 tpa_agg_size = 0;
3038
3039         if (!fp->disable_tpa) {
3040                 pause->sge_th_lo = SGE_TH_LO(bp);
3041                 pause->sge_th_hi = SGE_TH_HI(bp);
3042
3043                 /* validate SGE ring has enough to cross high threshold */
3044                 WARN_ON(bp->dropless_fc &&
3045                                 pause->sge_th_hi + FW_PREFETCH_CNT >
3046                                 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3047
3048                 tpa_agg_size = TPA_AGG_SIZE;
3049                 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3050                         SGE_PAGE_SHIFT;
3051                 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3052                           (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3053                 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3054         }
3055
3056         /* pause - not for e1 */
3057         if (!CHIP_IS_E1(bp)) {
3058                 pause->bd_th_lo = BD_TH_LO(bp);
3059                 pause->bd_th_hi = BD_TH_HI(bp);
3060
3061                 pause->rcq_th_lo = RCQ_TH_LO(bp);
3062                 pause->rcq_th_hi = RCQ_TH_HI(bp);
3063                 /*
3064                  * validate that rings have enough entries to cross
3065                  * high thresholds
3066                  */
3067                 WARN_ON(bp->dropless_fc &&
3068                                 pause->bd_th_hi + FW_PREFETCH_CNT >
3069                                 bp->rx_ring_size);
3070                 WARN_ON(bp->dropless_fc &&
3071                                 pause->rcq_th_hi + FW_PREFETCH_CNT >
3072                                 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3073
3074                 pause->pri_map = 1;
3075         }
3076
3077         /* rxq setup */
3078         rxq_init->dscr_map = fp->rx_desc_mapping;
3079         rxq_init->sge_map = fp->rx_sge_mapping;
3080         rxq_init->rcq_map = fp->rx_comp_mapping;
3081         rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3082
3083         /* This should be a maximum number of data bytes that may be
3084          * placed on the BD (not including paddings).
3085          */
3086         rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3087                            BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3088
3089         rxq_init->cl_qzone_id = fp->cl_qzone_id;
3090         rxq_init->tpa_agg_sz = tpa_agg_size;
3091         rxq_init->sge_buf_sz = sge_sz;
3092         rxq_init->max_sges_pkt = max_sge;
3093         rxq_init->rss_engine_id = BP_FUNC(bp);
3094         rxq_init->mcast_engine_id = BP_FUNC(bp);
3095
3096         /* Maximum number or simultaneous TPA aggregation for this Queue.
3097          *
3098          * For PF Clients it should be the maximum available number.
3099          * VF driver(s) may want to define it to a smaller value.
3100          */
3101         rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3102
3103         rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3104         rxq_init->fw_sb_id = fp->fw_sb_id;
3105
3106         if (IS_FCOE_FP(fp))
3107                 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3108         else
3109                 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3110         /* configure silent vlan removal
3111          * if multi function mode is afex, then mask default vlan
3112          */
3113         if (IS_MF_AFEX(bp)) {
3114                 rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3115                 rxq_init->silent_removal_mask = VLAN_VID_MASK;
3116         }
3117 }
3118
3119 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3120         struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3121         u8 cos)
3122 {
3123         txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3124         txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3125         txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3126         txq_init->fw_sb_id = fp->fw_sb_id;
3127
3128         /*
3129          * set the tss leading client id for TX classification ==
3130          * leading RSS client id
3131          */
3132         txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3133
3134         if (IS_FCOE_FP(fp)) {
3135                 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3136                 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3137         }
3138 }
3139
3140 static void bnx2x_pf_init(struct bnx2x *bp)
3141 {
3142         struct bnx2x_func_init_params func_init = {0};
3143         struct event_ring_data eq_data = { {0} };
3144         u16 flags;
3145
3146         if (!CHIP_IS_E1x(bp)) {
3147                 /* reset IGU PF statistics: MSIX + ATTN */
3148                 /* PF */
3149                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3150                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3151                            (CHIP_MODE_IS_4_PORT(bp) ?
3152                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3153                 /* ATTN */
3154                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3155                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3156                            BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3157                            (CHIP_MODE_IS_4_PORT(bp) ?
3158                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3159         }
3160
3161         /* function setup flags */
3162         flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
3163
3164         /* This flag is relevant for E1x only.
3165          * E2 doesn't have a TPA configuration in a function level.
3166          */
3167         flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
3168
3169         func_init.func_flgs = flags;
3170         func_init.pf_id = BP_FUNC(bp);
3171         func_init.func_id = BP_FUNC(bp);
3172         func_init.spq_map = bp->spq_mapping;
3173         func_init.spq_prod = bp->spq_prod_idx;
3174
3175         bnx2x_func_init(bp, &func_init);
3176
3177         memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3178
3179         /*
3180          * Congestion management values depend on the link rate
3181          * There is no active link so initial link rate is set to 10 Gbps.
3182          * When the link comes up The congestion management values are
3183          * re-calculated according to the actual link rate.
3184          */
3185         bp->link_vars.line_speed = SPEED_10000;
3186         bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3187
3188         /* Only the PMF sets the HW */
3189         if (bp->port.pmf)
3190                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3191
3192         /* init Event Queue - PCI bus guarantees correct endianity*/
3193         eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3194         eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3195         eq_data.producer = bp->eq_prod;
3196         eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3197         eq_data.sb_id = DEF_SB_ID;
3198         storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3199 }
3200
3201 static void bnx2x_e1h_disable(struct bnx2x *bp)
3202 {
3203         int port = BP_PORT(bp);
3204
3205         bnx2x_tx_disable(bp);
3206
3207         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3208 }
3209
3210 static void bnx2x_e1h_enable(struct bnx2x *bp)
3211 {
3212         int port = BP_PORT(bp);
3213
3214         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
3215
3216         /* Tx queue should be only re-enabled */
3217         netif_tx_wake_all_queues(bp->dev);
3218
3219         /*
3220          * Should not call netif_carrier_on since it will be called if the link
3221          * is up when checking for link state
3222          */
3223 }
3224
3225 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3226
3227 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3228 {
3229         struct eth_stats_info *ether_stat =
3230                 &bp->slowpath->drv_info_to_mcp.ether_stat;
3231         struct bnx2x_vlan_mac_obj *mac_obj =
3232                 &bp->sp_objs->mac_obj;
3233         int i;
3234
3235         strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3236                 ETH_STAT_INFO_VERSION_LEN);
3237
3238         /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3239          * mac_local field in ether_stat struct. The base address is offset by 2
3240          * bytes to account for the field being 8 bytes but a mac address is
3241          * only 6 bytes. Likewise, the stride for the get_n_elements function is
3242          * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3243          * allocated by the ether_stat struct, so the macs will land in their
3244          * proper positions.
3245          */
3246         for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3247                 memset(ether_stat->mac_local + i, 0,
3248                        sizeof(ether_stat->mac_local[0]));
3249         mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3250                                 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3251                                 ether_stat->mac_local + MAC_PAD, MAC_PAD,
3252                                 ETH_ALEN);
3253         ether_stat->mtu_size = bp->dev->mtu;
3254         if (bp->dev->features & NETIF_F_RXCSUM)
3255                 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3256         if (bp->dev->features & NETIF_F_TSO)
3257                 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3258         ether_stat->feature_flags |= bp->common.boot_mode;
3259
3260         ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3261
3262         ether_stat->txq_size = bp->tx_ring_size;
3263         ether_stat->rxq_size = bp->rx_ring_size;
3264 }
3265
3266 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3267 {
3268         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3269         struct fcoe_stats_info *fcoe_stat =
3270                 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3271
3272         if (!CNIC_LOADED(bp))
3273                 return;
3274
3275         memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3276
3277         fcoe_stat->qos_priority =
3278                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3279
3280         /* insert FCoE stats from ramrod response */
3281         if (!NO_FCOE(bp)) {
3282                 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3283                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3284                         tstorm_queue_statistics;
3285
3286                 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3287                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3288                         xstorm_queue_statistics;
3289
3290                 struct fcoe_statistics_params *fw_fcoe_stat =
3291                         &bp->fw_stats_data->fcoe;
3292
3293                 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3294                           fcoe_stat->rx_bytes_lo,
3295                           fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3296
3297                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3298                           fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3299                           fcoe_stat->rx_bytes_lo,
3300                           fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3301
3302                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3303                           fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3304                           fcoe_stat->rx_bytes_lo,
3305                           fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3306
3307                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3308                           fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3309                           fcoe_stat->rx_bytes_lo,
3310                           fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3311
3312                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3313                           fcoe_stat->rx_frames_lo,
3314                           fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3315
3316                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3317                           fcoe_stat->rx_frames_lo,
3318                           fcoe_q_tstorm_stats->rcv_ucast_pkts);
3319
3320                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3321                           fcoe_stat->rx_frames_lo,
3322                           fcoe_q_tstorm_stats->rcv_bcast_pkts);
3323
3324                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3325                           fcoe_stat->rx_frames_lo,
3326                           fcoe_q_tstorm_stats->rcv_mcast_pkts);
3327
3328                 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3329                           fcoe_stat->tx_bytes_lo,
3330                           fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3331
3332                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3333                           fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3334                           fcoe_stat->tx_bytes_lo,
3335                           fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3336
3337                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3338                           fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3339                           fcoe_stat->tx_bytes_lo,
3340                           fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3341
3342                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3343                           fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3344                           fcoe_stat->tx_bytes_lo,
3345                           fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3346
3347                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3348                           fcoe_stat->tx_frames_lo,
3349                           fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3350
3351                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3352                           fcoe_stat->tx_frames_lo,
3353                           fcoe_q_xstorm_stats->ucast_pkts_sent);
3354
3355                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3356                           fcoe_stat->tx_frames_lo,
3357                           fcoe_q_xstorm_stats->bcast_pkts_sent);
3358
3359                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3360                           fcoe_stat->tx_frames_lo,
3361                           fcoe_q_xstorm_stats->mcast_pkts_sent);
3362         }
3363
3364         /* ask L5 driver to add data to the struct */
3365         bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3366 }
3367
3368 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3369 {
3370         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3371         struct iscsi_stats_info *iscsi_stat =
3372                 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3373
3374         if (!CNIC_LOADED(bp))
3375                 return;
3376
3377         memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3378                ETH_ALEN);
3379
3380         iscsi_stat->qos_priority =
3381                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3382
3383         /* ask L5 driver to add data to the struct */
3384         bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3385 }
3386
3387 /* called due to MCP event (on pmf):
3388  *      reread new bandwidth configuration
3389  *      configure FW
3390  *      notify others function about the change
3391  */
3392 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3393 {
3394         if (bp->link_vars.link_up) {
3395                 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3396                 bnx2x_link_sync_notify(bp);
3397         }
3398         storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3399 }
3400
3401 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3402 {
3403         bnx2x_config_mf_bw(bp);
3404         bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3405 }
3406
3407 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3408 {
3409         DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3410         bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3411 }
3412
3413 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3414 {
3415         enum drv_info_opcode op_code;
3416         u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3417
3418         /* if drv_info version supported by MFW doesn't match - send NACK */
3419         if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3420                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3421                 return;
3422         }
3423
3424         op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3425                   DRV_INFO_CONTROL_OP_CODE_SHIFT;
3426
3427         memset(&bp->slowpath->drv_info_to_mcp, 0,
3428                sizeof(union drv_info_to_mcp));
3429
3430         switch (op_code) {
3431         case ETH_STATS_OPCODE:
3432                 bnx2x_drv_info_ether_stat(bp);
3433                 break;
3434         case FCOE_STATS_OPCODE:
3435                 bnx2x_drv_info_fcoe_stat(bp);
3436                 break;
3437         case ISCSI_STATS_OPCODE:
3438                 bnx2x_drv_info_iscsi_stat(bp);
3439                 break;
3440         default:
3441                 /* if op code isn't supported - send NACK */
3442                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3443                 return;
3444         }
3445
3446         /* if we got drv_info attn from MFW then these fields are defined in
3447          * shmem2 for sure
3448          */
3449         SHMEM2_WR(bp, drv_info_host_addr_lo,
3450                 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3451         SHMEM2_WR(bp, drv_info_host_addr_hi,
3452                 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3453
3454         bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3455 }
3456
3457 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3458 {
3459         DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3460
3461         if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3462
3463                 /*
3464                  * This is the only place besides the function initialization
3465                  * where the bp->flags can change so it is done without any
3466                  * locks
3467                  */
3468                 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3469                         DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3470                         bp->flags |= MF_FUNC_DIS;
3471
3472                         bnx2x_e1h_disable(bp);
3473                 } else {
3474                         DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3475                         bp->flags &= ~MF_FUNC_DIS;
3476
3477                         bnx2x_e1h_enable(bp);
3478                 }
3479                 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3480         }
3481         if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3482                 bnx2x_config_mf_bw(bp);
3483                 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3484         }
3485
3486         /* Report results to MCP */
3487         if (dcc_event)
3488                 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3489         else
3490                 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3491 }
3492
3493 /* must be called under the spq lock */
3494 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3495 {
3496         struct eth_spe *next_spe = bp->spq_prod_bd;
3497
3498         if (bp->spq_prod_bd == bp->spq_last_bd) {
3499                 bp->spq_prod_bd = bp->spq;
3500                 bp->spq_prod_idx = 0;
3501                 DP(BNX2X_MSG_SP, "end of spq\n");
3502         } else {
3503                 bp->spq_prod_bd++;
3504                 bp->spq_prod_idx++;
3505         }
3506         return next_spe;
3507 }
3508
3509 /* must be called under the spq lock */
3510 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3511 {
3512         int func = BP_FUNC(bp);
3513
3514         /*
3515          * Make sure that BD data is updated before writing the producer:
3516          * BD data is written to the memory, the producer is read from the
3517          * memory, thus we need a full memory barrier to ensure the ordering.
3518          */
3519         mb();
3520
3521         REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3522                  bp->spq_prod_idx);
3523         mmiowb();
3524 }
3525
3526 /**
3527  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3528  *
3529  * @cmd:        command to check
3530  * @cmd_type:   command type
3531  */
3532 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3533 {
3534         if ((cmd_type == NONE_CONNECTION_TYPE) ||
3535             (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3536             (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3537             (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3538             (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3539             (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3540             (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3541                 return true;
3542         else
3543                 return false;
3544 }
3545
3546 /**
3547  * bnx2x_sp_post - place a single command on an SP ring
3548  *
3549  * @bp:         driver handle
3550  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
3551  * @cid:        SW CID the command is related to
3552  * @data_hi:    command private data address (high 32 bits)
3553  * @data_lo:    command private data address (low 32 bits)
3554  * @cmd_type:   command type (e.g. NONE, ETH)
3555  *
3556  * SP data is handled as if it's always an address pair, thus data fields are
3557  * not swapped to little endian in upper functions. Instead this function swaps
3558  * data as if it's two u32 fields.
3559  */
3560 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3561                   u32 data_hi, u32 data_lo, int cmd_type)
3562 {
3563         struct eth_spe *spe;
3564         u16 type;
3565         bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3566
3567 #ifdef BNX2X_STOP_ON_ERROR
3568         if (unlikely(bp->panic)) {
3569                 BNX2X_ERR("Can't post SP when there is panic\n");
3570                 return -EIO;
3571         }
3572 #endif
3573
3574         spin_lock_bh(&bp->spq_lock);
3575
3576         if (common) {
3577                 if (!atomic_read(&bp->eq_spq_left)) {
3578                         BNX2X_ERR("BUG! EQ ring full!\n");
3579                         spin_unlock_bh(&bp->spq_lock);
3580                         bnx2x_panic();
3581                         return -EBUSY;
3582                 }
3583         } else if (!atomic_read(&bp->cq_spq_left)) {
3584                         BNX2X_ERR("BUG! SPQ ring full!\n");
3585                         spin_unlock_bh(&bp->spq_lock);
3586                         bnx2x_panic();
3587                         return -EBUSY;
3588         }
3589
3590         spe = bnx2x_sp_get_next(bp);
3591
3592         /* CID needs port number to be encoded int it */
3593         spe->hdr.conn_and_cmd_data =
3594                         cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3595                                     HW_CID(bp, cid));
3596
3597         type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3598
3599         type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3600                  SPE_HDR_FUNCTION_ID);
3601
3602         spe->hdr.type = cpu_to_le16(type);
3603
3604         spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3605         spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3606
3607         /*
3608          * It's ok if the actual decrement is issued towards the memory
3609          * somewhere between the spin_lock and spin_unlock. Thus no
3610          * more explicit memory barrier is needed.
3611          */
3612         if (common)
3613                 atomic_dec(&bp->eq_spq_left);
3614         else
3615                 atomic_dec(&bp->cq_spq_left);
3616
3617         DP(BNX2X_MSG_SP,
3618            "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3619            bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3620            (u32)(U64_LO(bp->spq_mapping) +
3621            (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3622            HW_CID(bp, cid), data_hi, data_lo, type,
3623            atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3624
3625         bnx2x_sp_prod_update(bp);
3626         spin_unlock_bh(&bp->spq_lock);
3627         return 0;
3628 }
3629
3630 /* acquire split MCP access lock register */
3631 static int bnx2x_acquire_alr(struct bnx2x *bp)
3632 {
3633         u32 j, val;
3634         int rc = 0;
3635
3636         might_sleep();
3637         for (j = 0; j < 1000; j++) {
3638                 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3639                 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3640                 if (val & MCPR_ACCESS_LOCK_LOCK)
3641                         break;
3642
3643                 usleep_range(5000, 10000);
3644         }
3645         if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3646                 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3647                 rc = -EBUSY;
3648         }
3649
3650         return rc;
3651 }
3652
3653 /* release split MCP access lock register */
3654 static void bnx2x_release_alr(struct bnx2x *bp)
3655 {
3656         REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3657 }
3658
3659 #define BNX2X_DEF_SB_ATT_IDX    0x0001
3660 #define BNX2X_DEF_SB_IDX        0x0002
3661
3662 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3663 {
3664         struct host_sp_status_block *def_sb = bp->def_status_blk;
3665         u16 rc = 0;
3666
3667         barrier(); /* status block is written to by the chip */
3668         if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3669                 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3670                 rc |= BNX2X_DEF_SB_ATT_IDX;
3671         }
3672
3673         if (bp->def_idx != def_sb->sp_sb.running_index) {
3674                 bp->def_idx = def_sb->sp_sb.running_index;
3675                 rc |= BNX2X_DEF_SB_IDX;
3676         }
3677
3678         /* Do not reorder: indices reading should complete before handling */
3679         barrier();
3680         return rc;
3681 }
3682
3683 /*
3684  * slow path service functions
3685  */
3686
3687 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3688 {
3689         int port = BP_PORT(bp);
3690         u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3691                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
3692         u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3693                                        NIG_REG_MASK_INTERRUPT_PORT0;
3694         u32 aeu_mask;
3695         u32 nig_mask = 0;
3696         u32 reg_addr;
3697
3698         if (bp->attn_state & asserted)
3699                 BNX2X_ERR("IGU ERROR\n");
3700
3701         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3702         aeu_mask = REG_RD(bp, aeu_addr);
3703
3704         DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3705            aeu_mask, asserted);
3706         aeu_mask &= ~(asserted & 0x3ff);
3707         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3708
3709         REG_WR(bp, aeu_addr, aeu_mask);
3710         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3711
3712         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3713         bp->attn_state |= asserted;
3714         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3715
3716         if (asserted & ATTN_HARD_WIRED_MASK) {
3717                 if (asserted & ATTN_NIG_FOR_FUNC) {
3718
3719                         bnx2x_acquire_phy_lock(bp);
3720
3721                         /* save nig interrupt mask */
3722                         nig_mask = REG_RD(bp, nig_int_mask_addr);
3723
3724                         /* If nig_mask is not set, no need to call the update
3725                          * function.
3726                          */
3727                         if (nig_mask) {
3728                                 REG_WR(bp, nig_int_mask_addr, 0);
3729
3730                                 bnx2x_link_attn(bp);
3731                         }
3732
3733                         /* handle unicore attn? */
3734                 }
3735                 if (asserted & ATTN_SW_TIMER_4_FUNC)
3736                         DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3737
3738                 if (asserted & GPIO_2_FUNC)
3739                         DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3740
3741                 if (asserted & GPIO_3_FUNC)
3742                         DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3743
3744                 if (asserted & GPIO_4_FUNC)
3745                         DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3746
3747                 if (port == 0) {
3748                         if (asserted & ATTN_GENERAL_ATTN_1) {
3749                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3750                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3751                         }
3752                         if (asserted & ATTN_GENERAL_ATTN_2) {
3753                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3754                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3755                         }
3756                         if (asserted & ATTN_GENERAL_ATTN_3) {
3757                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3758                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3759                         }
3760                 } else {
3761                         if (asserted & ATTN_GENERAL_ATTN_4) {
3762                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3763                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3764                         }
3765                         if (asserted & ATTN_GENERAL_ATTN_5) {
3766                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3767                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3768                         }
3769                         if (asserted & ATTN_GENERAL_ATTN_6) {
3770                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3771                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3772                         }
3773                 }
3774
3775         } /* if hardwired */
3776
3777         if (bp->common.int_block == INT_BLOCK_HC)
3778                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
3779                             COMMAND_REG_ATTN_BITS_SET);
3780         else
3781                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3782
3783         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3784            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3785         REG_WR(bp, reg_addr, asserted);
3786
3787         /* now set back the mask */
3788         if (asserted & ATTN_NIG_FOR_FUNC) {
3789                 /* Verify that IGU ack through BAR was written before restoring
3790                  * NIG mask. This loop should exit after 2-3 iterations max.
3791                  */
3792                 if (bp->common.int_block != INT_BLOCK_HC) {
3793                         u32 cnt = 0, igu_acked;
3794                         do {
3795                                 igu_acked = REG_RD(bp,
3796                                                    IGU_REG_ATTENTION_ACK_BITS);
3797                         } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
3798                                  (++cnt < MAX_IGU_ATTN_ACK_TO));
3799                         if (!igu_acked)
3800                                 DP(NETIF_MSG_HW,
3801                                    "Failed to verify IGU ack on time\n");
3802                         barrier();
3803                 }
3804                 REG_WR(bp, nig_int_mask_addr, nig_mask);
3805                 bnx2x_release_phy_lock(bp);
3806         }
3807 }
3808
3809 static void bnx2x_fan_failure(struct bnx2x *bp)
3810 {
3811         int port = BP_PORT(bp);
3812         u32 ext_phy_config;
3813         /* mark the failure */
3814         ext_phy_config =
3815                 SHMEM_RD(bp,
3816                          dev_info.port_hw_config[port].external_phy_config);
3817
3818         ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3819         ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3820         SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3821                  ext_phy_config);
3822
3823         /* log the failure */
3824         netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
3825                             "Please contact OEM Support for assistance\n");
3826
3827         /* Schedule device reset (unload)
3828          * This is due to some boards consuming sufficient power when driver is
3829          * up to overheat if fan fails.
3830          */
3831         smp_mb__before_clear_bit();
3832         set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3833         smp_mb__after_clear_bit();
3834         schedule_delayed_work(&bp->sp_rtnl_task, 0);
3835 }
3836
3837 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3838 {
3839         int port = BP_PORT(bp);
3840         int reg_offset;
3841         u32 val;
3842
3843         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3844                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3845
3846         if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3847
3848                 val = REG_RD(bp, reg_offset);
3849                 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3850                 REG_WR(bp, reg_offset, val);
3851
3852                 BNX2X_ERR("SPIO5 hw attention\n");
3853
3854                 /* Fan failure attention */
3855                 bnx2x_hw_reset_phy(&bp->link_params);
3856                 bnx2x_fan_failure(bp);
3857         }
3858
3859         if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3860                 bnx2x_acquire_phy_lock(bp);
3861                 bnx2x_handle_module_detect_int(&bp->link_params);
3862                 bnx2x_release_phy_lock(bp);
3863         }
3864
3865         if (attn & HW_INTERRUT_ASSERT_SET_0) {
3866
3867                 val = REG_RD(bp, reg_offset);
3868                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3869                 REG_WR(bp, reg_offset, val);
3870
3871                 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3872                           (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3873                 bnx2x_panic();
3874         }
3875 }
3876
3877 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3878 {
3879         u32 val;
3880
3881         if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3882
3883                 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3884                 BNX2X_ERR("DB hw attention 0x%x\n", val);
3885                 /* DORQ discard attention */
3886                 if (val & 0x2)
3887                         BNX2X_ERR("FATAL error from DORQ\n");
3888         }
3889
3890         if (attn & HW_INTERRUT_ASSERT_SET_1) {
3891
3892                 int port = BP_PORT(bp);
3893                 int reg_offset;
3894
3895                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3896                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3897
3898                 val = REG_RD(bp, reg_offset);
3899                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3900                 REG_WR(bp, reg_offset, val);
3901
3902                 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3903                           (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3904                 bnx2x_panic();
3905         }
3906 }
3907
3908 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3909 {
3910         u32 val;
3911
3912         if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3913
3914                 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3915                 BNX2X_ERR("CFC hw attention 0x%x\n", val);
3916                 /* CFC error attention */
3917                 if (val & 0x2)
3918                         BNX2X_ERR("FATAL error from CFC\n");
3919         }
3920
3921         if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3922                 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3923                 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3924                 /* RQ_USDMDP_FIFO_OVERFLOW */
3925                 if (val & 0x18000)
3926                         BNX2X_ERR("FATAL error from PXP\n");
3927
3928                 if (!CHIP_IS_E1x(bp)) {
3929                         val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3930                         BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3931                 }
3932         }
3933
3934         if (attn & HW_INTERRUT_ASSERT_SET_2) {
3935
3936                 int port = BP_PORT(bp);
3937                 int reg_offset;
3938
3939                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3940                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3941
3942                 val = REG_RD(bp, reg_offset);
3943                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3944                 REG_WR(bp, reg_offset, val);
3945
3946                 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3947                           (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3948                 bnx2x_panic();
3949         }
3950 }
3951
3952 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3953 {
3954         u32 val;
3955
3956         if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3957
3958                 if (attn & BNX2X_PMF_LINK_ASSERT) {
3959                         int func = BP_FUNC(bp);
3960
3961                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3962                         bnx2x_read_mf_cfg(bp);
3963                         bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3964                                         func_mf_config[BP_ABS_FUNC(bp)].config);
3965                         val = SHMEM_RD(bp,
3966                                        func_mb[BP_FW_MB_IDX(bp)].drv_status);
3967                         if (val & DRV_STATUS_DCC_EVENT_MASK)
3968                                 bnx2x_dcc_event(bp,
3969                                             (val & DRV_STATUS_DCC_EVENT_MASK));
3970
3971                         if (val & DRV_STATUS_SET_MF_BW)
3972                                 bnx2x_set_mf_bw(bp);
3973
3974                         if (val & DRV_STATUS_DRV_INFO_REQ)
3975                                 bnx2x_handle_drv_info_req(bp);
3976
3977                         if (val & DRV_STATUS_VF_DISABLED)
3978                                 bnx2x_vf_handle_flr_event(bp);
3979
3980                         if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3981                                 bnx2x_pmf_update(bp);
3982
3983                         if (bp->port.pmf &&
3984                             (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3985                                 bp->dcbx_enabled > 0)
3986                                 /* start dcbx state machine */
3987                                 bnx2x_dcbx_set_params(bp,
3988                                         BNX2X_DCBX_STATE_NEG_RECEIVED);
3989                         if (val & DRV_STATUS_AFEX_EVENT_MASK)
3990                                 bnx2x_handle_afex_cmd(bp,
3991                                         val & DRV_STATUS_AFEX_EVENT_MASK);
3992                         if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
3993                                 bnx2x_handle_eee_event(bp);
3994                         if (bp->link_vars.periodic_flags &
3995                             PERIODIC_FLAGS_LINK_EVENT) {
3996                                 /*  sync with link */
3997                                 bnx2x_acquire_phy_lock(bp);
3998                                 bp->link_vars.periodic_flags &=
3999                                         ~PERIODIC_FLAGS_LINK_EVENT;
4000                                 bnx2x_release_phy_lock(bp);
4001                                 if (IS_MF(bp))
4002                                         bnx2x_link_sync_notify(bp);
4003                                 bnx2x_link_report(bp);
4004                         }
4005                         /* Always call it here: bnx2x_link_report() will
4006                          * prevent the link indication duplication.
4007                          */
4008                         bnx2x__link_status_update(bp);
4009                 } else if (attn & BNX2X_MC_ASSERT_BITS) {
4010
4011                         BNX2X_ERR("MC assert!\n");
4012                         bnx2x_mc_assert(bp);
4013                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4014                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4015                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4016                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4017                         bnx2x_panic();
4018
4019                 } else if (attn & BNX2X_MCP_ASSERT) {
4020
4021                         BNX2X_ERR("MCP assert!\n");
4022                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4023                         bnx2x_fw_dump(bp);
4024
4025                 } else
4026                         BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4027         }
4028
4029         if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4030                 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4031                 if (attn & BNX2X_GRC_TIMEOUT) {
4032                         val = CHIP_IS_E1(bp) ? 0 :
4033                                         REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4034                         BNX2X_ERR("GRC time-out 0x%08x\n", val);
4035                 }
4036                 if (attn & BNX2X_GRC_RSV) {
4037                         val = CHIP_IS_E1(bp) ? 0 :
4038                                         REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4039                         BNX2X_ERR("GRC reserved 0x%08x\n", val);
4040                 }
4041                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4042         }
4043 }
4044
4045 /*
4046  * Bits map:
4047  * 0-7   - Engine0 load counter.
4048  * 8-15  - Engine1 load counter.
4049  * 16    - Engine0 RESET_IN_PROGRESS bit.
4050  * 17    - Engine1 RESET_IN_PROGRESS bit.
4051  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4052  *         on the engine
4053  * 19    - Engine1 ONE_IS_LOADED.
4054  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4055  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4056  *         just the one belonging to its engine).
4057  *
4058  */
4059 #define BNX2X_RECOVERY_GLOB_REG         MISC_REG_GENERIC_POR_1
4060
4061 #define BNX2X_PATH0_LOAD_CNT_MASK       0x000000ff
4062 #define BNX2X_PATH0_LOAD_CNT_SHIFT      0
4063 #define BNX2X_PATH1_LOAD_CNT_MASK       0x0000ff00
4064 #define BNX2X_PATH1_LOAD_CNT_SHIFT      8
4065 #define BNX2X_PATH0_RST_IN_PROG_BIT     0x00010000
4066 #define BNX2X_PATH1_RST_IN_PROG_BIT     0x00020000
4067 #define BNX2X_GLOBAL_RESET_BIT          0x00040000
4068
4069 /*
4070  * Set the GLOBAL_RESET bit.
4071  *
4072  * Should be run under rtnl lock
4073  */
4074 void bnx2x_set_reset_global(struct bnx2x *bp)
4075 {
4076         u32 val;
4077         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4078         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4079         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4080         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4081 }
4082
4083 /*
4084  * Clear the GLOBAL_RESET bit.
4085  *
4086  * Should be run under rtnl lock
4087  */
4088 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4089 {
4090         u32 val;
4091         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4092         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4093         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4094         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4095 }
4096
4097 /*
4098  * Checks the GLOBAL_RESET bit.
4099  *
4100  * should be run under rtnl lock
4101  */
4102 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4103 {
4104         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4105
4106         DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4107         return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4108 }
4109
4110 /*
4111  * Clear RESET_IN_PROGRESS bit for the current engine.
4112  *
4113  * Should be run under rtnl lock
4114  */
4115 static void bnx2x_set_reset_done(struct bnx2x *bp)
4116 {
4117         u32 val;
4118         u32 bit = BP_PATH(bp) ?
4119                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4120         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4121         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4122
4123         /* Clear the bit */
4124         val &= ~bit;
4125         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4126
4127         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4128 }
4129
4130 /*
4131  * Set RESET_IN_PROGRESS for the current engine.
4132  *
4133  * should be run under rtnl lock
4134  */
4135 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4136 {
4137         u32 val;
4138         u32 bit = BP_PATH(bp) ?
4139                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4140         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4141         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4142
4143         /* Set the bit */
4144         val |= bit;
4145         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4146         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4147 }
4148
4149 /*
4150  * Checks the RESET_IN_PROGRESS bit for the given engine.
4151  * should be run under rtnl lock
4152  */
4153 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4154 {
4155         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4156         u32 bit = engine ?
4157                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4158
4159         /* return false if bit is set */
4160         return (val & bit) ? false : true;
4161 }
4162
4163 /*
4164  * set pf load for the current pf.
4165  *
4166  * should be run under rtnl lock
4167  */
4168 void bnx2x_set_pf_load(struct bnx2x *bp)
4169 {
4170         u32 val1, val;
4171         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4172                              BNX2X_PATH0_LOAD_CNT_MASK;
4173         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4174                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4175
4176         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4177         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4178
4179         DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4180
4181         /* get the current counter value */
4182         val1 = (val & mask) >> shift;
4183
4184         /* set bit of that PF */
4185         val1 |= (1 << bp->pf_num);
4186
4187         /* clear the old value */
4188         val &= ~mask;
4189
4190         /* set the new one */
4191         val |= ((val1 << shift) & mask);
4192
4193         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4194         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4195 }
4196
4197 /**
4198  * bnx2x_clear_pf_load - clear pf load mark
4199  *
4200  * @bp:         driver handle
4201  *
4202  * Should be run under rtnl lock.
4203  * Decrements the load counter for the current engine. Returns
4204  * whether other functions are still loaded
4205  */
4206 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4207 {
4208         u32 val1, val;
4209         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4210                              BNX2X_PATH0_LOAD_CNT_MASK;
4211         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4212                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4213
4214         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4215         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4216         DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4217
4218         /* get the current counter value */
4219         val1 = (val & mask) >> shift;
4220
4221         /* clear bit of that PF */
4222         val1 &= ~(1 << bp->pf_num);
4223
4224         /* clear the old value */
4225         val &= ~mask;
4226
4227         /* set the new one */
4228         val |= ((val1 << shift) & mask);
4229
4230         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4231         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4232         return val1 != 0;
4233 }
4234
4235 /*
4236  * Read the load status for the current engine.
4237  *
4238  * should be run under rtnl lock
4239  */
4240 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4241 {
4242         u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4243                              BNX2X_PATH0_LOAD_CNT_MASK);
4244         u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4245                              BNX2X_PATH0_LOAD_CNT_SHIFT);
4246         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4247
4248         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4249
4250         val = (val & mask) >> shift;
4251
4252         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4253            engine, val);
4254
4255         return val != 0;
4256 }
4257
4258 static void _print_parity(struct bnx2x *bp, u32 reg)
4259 {
4260         pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4261 }
4262
4263 static void _print_next_block(int idx, const char *blk)
4264 {
4265         pr_cont("%s%s", idx ? ", " : "", blk);
4266 }
4267
4268 static int bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4269                                             int par_num, bool print)
4270 {
4271         int i = 0;
4272         u32 cur_bit = 0;
4273         for (i = 0; sig; i++) {
4274                 cur_bit = ((u32)0x1 << i);
4275                 if (sig & cur_bit) {
4276                         switch (cur_bit) {
4277                         case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4278                                 if (print) {
4279                                         _print_next_block(par_num++, "BRB");
4280                                         _print_parity(bp,
4281                                                       BRB1_REG_BRB1_PRTY_STS);
4282                                 }
4283                                 break;
4284                         case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4285                                 if (print) {
4286                                         _print_next_block(par_num++, "PARSER");
4287                                         _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4288                                 }
4289                                 break;
4290                         case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4291                                 if (print) {
4292                                         _print_next_block(par_num++, "TSDM");
4293                                         _print_parity(bp,
4294                                                       TSDM_REG_TSDM_PRTY_STS);
4295                                 }
4296                                 break;
4297                         case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4298                                 if (print) {
4299                                         _print_next_block(par_num++,
4300                                                           "SEARCHER");
4301                                         _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4302                                 }
4303                                 break;
4304                         case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4305                                 if (print) {
4306                                         _print_next_block(par_num++, "TCM");
4307                                         _print_parity(bp,
4308                                                       TCM_REG_TCM_PRTY_STS);
4309                                 }
4310                                 break;
4311                         case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4312                                 if (print) {
4313                                         _print_next_block(par_num++, "TSEMI");
4314                                         _print_parity(bp,
4315                                                       TSEM_REG_TSEM_PRTY_STS_0);
4316                                         _print_parity(bp,
4317                                                       TSEM_REG_TSEM_PRTY_STS_1);
4318                                 }
4319                                 break;
4320                         case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4321                                 if (print) {
4322                                         _print_next_block(par_num++, "XPB");
4323                                         _print_parity(bp, GRCBASE_XPB +
4324                                                           PB_REG_PB_PRTY_STS);
4325                                 }
4326                                 break;
4327                         }
4328
4329                         /* Clear the bit */
4330                         sig &= ~cur_bit;
4331                 }
4332         }
4333
4334         return par_num;
4335 }
4336
4337 static int bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4338                                             int par_num, bool *global,
4339                                             bool print)
4340 {
4341         int i = 0;
4342         u32 cur_bit = 0;
4343         for (i = 0; sig; i++) {
4344                 cur_bit = ((u32)0x1 << i);
4345                 if (sig & cur_bit) {
4346                         switch (cur_bit) {
4347                         case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4348                                 if (print) {
4349                                         _print_next_block(par_num++, "PBF");
4350                                         _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4351                                 }
4352                                 break;
4353                         case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4354                                 if (print) {
4355                                         _print_next_block(par_num++, "QM");
4356                                         _print_parity(bp, QM_REG_QM_PRTY_STS);
4357                                 }
4358                                 break;
4359                         case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4360                                 if (print) {
4361                                         _print_next_block(par_num++, "TM");
4362                                         _print_parity(bp, TM_REG_TM_PRTY_STS);
4363                                 }
4364                                 break;
4365                         case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4366                                 if (print) {
4367                                         _print_next_block(par_num++, "XSDM");
4368                                         _print_parity(bp,
4369                                                       XSDM_REG_XSDM_PRTY_STS);
4370                                 }
4371                                 break;
4372                         case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4373                                 if (print) {
4374                                         _print_next_block(par_num++, "XCM");
4375                                         _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4376                                 }
4377                                 break;
4378                         case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4379                                 if (print) {
4380                                         _print_next_block(par_num++, "XSEMI");
4381                                         _print_parity(bp,
4382                                                       XSEM_REG_XSEM_PRTY_STS_0);
4383                                         _print_parity(bp,
4384                                                       XSEM_REG_XSEM_PRTY_STS_1);
4385                                 }
4386                                 break;
4387                         case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4388                                 if (print) {
4389                                         _print_next_block(par_num++,
4390                                                           "DOORBELLQ");
4391                                         _print_parity(bp,
4392                                                       DORQ_REG_DORQ_PRTY_STS);
4393                                 }
4394                                 break;
4395                         case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4396                                 if (print) {
4397                                         _print_next_block(par_num++, "NIG");
4398                                         if (CHIP_IS_E1x(bp)) {
4399                                                 _print_parity(bp,
4400                                                         NIG_REG_NIG_PRTY_STS);
4401                                         } else {
4402                                                 _print_parity(bp,
4403                                                         NIG_REG_NIG_PRTY_STS_0);
4404                                                 _print_parity(bp,
4405                                                         NIG_REG_NIG_PRTY_STS_1);
4406                                         }
4407                                 }
4408                                 break;
4409                         case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4410                                 if (print)
4411                                         _print_next_block(par_num++,
4412                                                           "VAUX PCI CORE");
4413                                 *global = true;
4414                                 break;
4415                         case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4416                                 if (print) {
4417                                         _print_next_block(par_num++, "DEBUG");
4418                                         _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4419                                 }
4420                                 break;
4421                         case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4422                                 if (print) {
4423                                         _print_next_block(par_num++, "USDM");
4424                                         _print_parity(bp,
4425                                                       USDM_REG_USDM_PRTY_STS);
4426                                 }
4427                                 break;
4428                         case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4429                                 if (print) {
4430                                         _print_next_block(par_num++, "UCM");
4431                                         _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4432                                 }
4433                                 break;
4434                         case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4435                                 if (print) {
4436                                         _print_next_block(par_num++, "USEMI");
4437                                         _print_parity(bp,
4438                                                       USEM_REG_USEM_PRTY_STS_0);
4439                                         _print_parity(bp,
4440                                                       USEM_REG_USEM_PRTY_STS_1);
4441                                 }
4442                                 break;
4443                         case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4444                                 if (print) {
4445                                         _print_next_block(par_num++, "UPB");
4446                                         _print_parity(bp, GRCBASE_UPB +
4447                                                           PB_REG_PB_PRTY_STS);
4448                                 }
4449                                 break;
4450                         case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4451                                 if (print) {
4452                                         _print_next_block(par_num++, "CSDM");
4453                                         _print_parity(bp,
4454                                                       CSDM_REG_CSDM_PRTY_STS);
4455                                 }
4456                                 break;
4457                         case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4458                                 if (print) {
4459                                         _print_next_block(par_num++, "CCM");
4460                                         _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4461                                 }
4462                                 break;
4463                         }
4464
4465                         /* Clear the bit */
4466                         sig &= ~cur_bit;
4467                 }
4468         }
4469
4470         return par_num;
4471 }
4472
4473 static int bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4474                                             int par_num, bool print)
4475 {
4476         int i = 0;
4477         u32 cur_bit = 0;
4478         for (i = 0; sig; i++) {
4479                 cur_bit = ((u32)0x1 << i);
4480                 if (sig & cur_bit) {
4481                         switch (cur_bit) {
4482                         case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4483                                 if (print) {
4484                                         _print_next_block(par_num++, "CSEMI");
4485                                         _print_parity(bp,
4486                                                       CSEM_REG_CSEM_PRTY_STS_0);
4487                                         _print_parity(bp,
4488                                                       CSEM_REG_CSEM_PRTY_STS_1);
4489                                 }
4490                                 break;
4491                         case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4492                                 if (print) {
4493                                         _print_next_block(par_num++, "PXP");
4494                                         _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4495                                         _print_parity(bp,
4496                                                       PXP2_REG_PXP2_PRTY_STS_0);
4497                                         _print_parity(bp,
4498                                                       PXP2_REG_PXP2_PRTY_STS_1);
4499                                 }
4500                                 break;
4501                         case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4502                                 if (print)
4503                                         _print_next_block(par_num++,
4504                                         "PXPPCICLOCKCLIENT");
4505                                 break;
4506                         case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4507                                 if (print) {
4508                                         _print_next_block(par_num++, "CFC");
4509                                         _print_parity(bp,
4510                                                       CFC_REG_CFC_PRTY_STS);
4511                                 }
4512                                 break;
4513                         case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4514                                 if (print) {
4515                                         _print_next_block(par_num++, "CDU");
4516                                         _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4517                                 }
4518                                 break;
4519                         case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4520                                 if (print) {
4521                                         _print_next_block(par_num++, "DMAE");
4522                                         _print_parity(bp,
4523                                                       DMAE_REG_DMAE_PRTY_STS);
4524                                 }
4525                                 break;
4526                         case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4527                                 if (print) {
4528                                         _print_next_block(par_num++, "IGU");
4529                                         if (CHIP_IS_E1x(bp))
4530                                                 _print_parity(bp,
4531                                                         HC_REG_HC_PRTY_STS);
4532                                         else
4533                                                 _print_parity(bp,
4534                                                         IGU_REG_IGU_PRTY_STS);
4535                                 }
4536                                 break;
4537                         case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4538                                 if (print) {
4539                                         _print_next_block(par_num++, "MISC");
4540                                         _print_parity(bp,
4541                                                       MISC_REG_MISC_PRTY_STS);
4542                                 }
4543                                 break;
4544                         }
4545
4546                         /* Clear the bit */
4547                         sig &= ~cur_bit;
4548                 }
4549         }
4550
4551         return par_num;
4552 }
4553
4554 static int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
4555                                            bool *global, bool print)
4556 {
4557         int i = 0;
4558         u32 cur_bit = 0;
4559         for (i = 0; sig; i++) {
4560                 cur_bit = ((u32)0x1 << i);
4561                 if (sig & cur_bit) {
4562                         switch (cur_bit) {
4563                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4564                                 if (print)
4565                                         _print_next_block(par_num++, "MCP ROM");
4566                                 *global = true;
4567                                 break;
4568                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4569                                 if (print)
4570                                         _print_next_block(par_num++,
4571                                                           "MCP UMP RX");
4572                                 *global = true;
4573                                 break;
4574                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4575                                 if (print)
4576                                         _print_next_block(par_num++,
4577                                                           "MCP UMP TX");
4578                                 *global = true;
4579                                 break;
4580                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4581                                 if (print)
4582                                         _print_next_block(par_num++,
4583                                                           "MCP SCPAD");
4584                                 *global = true;
4585                                 break;
4586                         }
4587
4588                         /* Clear the bit */
4589                         sig &= ~cur_bit;
4590                 }
4591         }
4592
4593         return par_num;
4594 }
4595
4596 static int bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4597                                             int par_num, bool print)
4598 {
4599         int i = 0;
4600         u32 cur_bit = 0;
4601         for (i = 0; sig; i++) {
4602                 cur_bit = ((u32)0x1 << i);
4603                 if (sig & cur_bit) {
4604                         switch (cur_bit) {
4605                         case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4606                                 if (print) {
4607                                         _print_next_block(par_num++, "PGLUE_B");
4608                                         _print_parity(bp,
4609                                                 PGLUE_B_REG_PGLUE_B_PRTY_STS);
4610                                 }
4611                                 break;
4612                         case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4613                                 if (print) {
4614                                         _print_next_block(par_num++, "ATC");
4615                                         _print_parity(bp,
4616                                                       ATC_REG_ATC_PRTY_STS);
4617                                 }
4618                                 break;
4619                         }
4620
4621                         /* Clear the bit */
4622                         sig &= ~cur_bit;
4623                 }
4624         }
4625
4626         return par_num;
4627 }
4628
4629 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4630                               u32 *sig)
4631 {
4632         if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4633             (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4634             (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4635             (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4636             (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4637                 int par_num = 0;
4638                 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4639                                  "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4640                           sig[0] & HW_PRTY_ASSERT_SET_0,
4641                           sig[1] & HW_PRTY_ASSERT_SET_1,
4642                           sig[2] & HW_PRTY_ASSERT_SET_2,
4643                           sig[3] & HW_PRTY_ASSERT_SET_3,
4644                           sig[4] & HW_PRTY_ASSERT_SET_4);
4645                 if (print)
4646                         netdev_err(bp->dev,
4647                                    "Parity errors detected in blocks: ");
4648                 par_num = bnx2x_check_blocks_with_parity0(bp,
4649                         sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4650                 par_num = bnx2x_check_blocks_with_parity1(bp,
4651                         sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4652                 par_num = bnx2x_check_blocks_with_parity2(bp,
4653                         sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4654                 par_num = bnx2x_check_blocks_with_parity3(
4655                         sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4656                 par_num = bnx2x_check_blocks_with_parity4(bp,
4657                         sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4658
4659                 if (print)
4660                         pr_cont("\n");
4661
4662                 return true;
4663         } else
4664                 return false;
4665 }
4666
4667 /**
4668  * bnx2x_chk_parity_attn - checks for parity attentions.
4669  *
4670  * @bp:         driver handle
4671  * @global:     true if there was a global attention
4672  * @print:      show parity attention in syslog
4673  */
4674 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4675 {
4676         struct attn_route attn = { {0} };
4677         int port = BP_PORT(bp);
4678
4679         attn.sig[0] = REG_RD(bp,
4680                 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4681                              port*4);
4682         attn.sig[1] = REG_RD(bp,
4683                 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4684                              port*4);
4685         attn.sig[2] = REG_RD(bp,
4686                 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4687                              port*4);
4688         attn.sig[3] = REG_RD(bp,
4689                 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4690                              port*4);
4691
4692         if (!CHIP_IS_E1x(bp))
4693                 attn.sig[4] = REG_RD(bp,
4694                         MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4695                                      port*4);
4696
4697         return bnx2x_parity_attn(bp, global, print, attn.sig);
4698 }
4699
4700 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4701 {
4702         u32 val;
4703         if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4704
4705                 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4706                 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4707                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4708                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4709                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4710                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4711                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4712                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4713                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4714                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4715                 if (val &
4716                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4717                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4718                 if (val &
4719                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4720                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4721                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4722                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4723                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4724                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4725                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4726                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4727         }
4728         if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4729                 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4730                 BNX2X_ERR("ATC hw attention 0x%x\n", val);
4731                 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4732                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4733                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4734                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4735                 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4736                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4737                 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4738                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4739                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4740                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4741                 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4742                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4743         }
4744
4745         if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4746                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4747                 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4748                 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4749                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4750         }
4751 }
4752
4753 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4754 {
4755         struct attn_route attn, *group_mask;
4756         int port = BP_PORT(bp);
4757         int index;
4758         u32 reg_addr;
4759         u32 val;
4760         u32 aeu_mask;
4761         bool global = false;
4762
4763         /* need to take HW lock because MCP or other port might also
4764            try to handle this event */
4765         bnx2x_acquire_alr(bp);
4766
4767         if (bnx2x_chk_parity_attn(bp, &global, true)) {
4768 #ifndef BNX2X_STOP_ON_ERROR
4769                 bp->recovery_state = BNX2X_RECOVERY_INIT;
4770                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
4771                 /* Disable HW interrupts */
4772                 bnx2x_int_disable(bp);
4773                 /* In case of parity errors don't handle attentions so that
4774                  * other function would "see" parity errors.
4775                  */
4776 #else
4777                 bnx2x_panic();
4778 #endif
4779                 bnx2x_release_alr(bp);
4780                 return;
4781         }
4782
4783         attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4784         attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4785         attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4786         attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4787         if (!CHIP_IS_E1x(bp))
4788                 attn.sig[4] =
4789                       REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4790         else
4791                 attn.sig[4] = 0;
4792
4793         DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4794            attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4795
4796         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4797                 if (deasserted & (1 << index)) {
4798                         group_mask = &bp->attn_group[index];
4799
4800                         DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
4801                            index,
4802                            group_mask->sig[0], group_mask->sig[1],
4803                            group_mask->sig[2], group_mask->sig[3],
4804                            group_mask->sig[4]);
4805
4806                         bnx2x_attn_int_deasserted4(bp,
4807                                         attn.sig[4] & group_mask->sig[4]);
4808                         bnx2x_attn_int_deasserted3(bp,
4809                                         attn.sig[3] & group_mask->sig[3]);
4810                         bnx2x_attn_int_deasserted1(bp,
4811                                         attn.sig[1] & group_mask->sig[1]);
4812                         bnx2x_attn_int_deasserted2(bp,
4813                                         attn.sig[2] & group_mask->sig[2]);
4814                         bnx2x_attn_int_deasserted0(bp,
4815                                         attn.sig[0] & group_mask->sig[0]);
4816                 }
4817         }
4818
4819         bnx2x_release_alr(bp);
4820
4821         if (bp->common.int_block == INT_BLOCK_HC)
4822                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4823                             COMMAND_REG_ATTN_BITS_CLR);
4824         else
4825                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4826
4827         val = ~deasserted;
4828         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4829            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4830         REG_WR(bp, reg_addr, val);
4831
4832         if (~bp->attn_state & deasserted)
4833                 BNX2X_ERR("IGU ERROR\n");
4834
4835         reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4836                           MISC_REG_AEU_MASK_ATTN_FUNC_0;
4837
4838         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4839         aeu_mask = REG_RD(bp, reg_addr);
4840
4841         DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4842            aeu_mask, deasserted);
4843         aeu_mask |= (deasserted & 0x3ff);
4844         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4845
4846         REG_WR(bp, reg_addr, aeu_mask);
4847         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4848
4849         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4850         bp->attn_state &= ~deasserted;
4851         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4852 }
4853
4854 static void bnx2x_attn_int(struct bnx2x *bp)
4855 {
4856         /* read local copy of bits */
4857         u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4858                                                                 attn_bits);
4859         u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4860                                                                 attn_bits_ack);
4861         u32 attn_state = bp->attn_state;
4862
4863         /* look for changed bits */
4864         u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4865         u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4866
4867         DP(NETIF_MSG_HW,
4868            "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4869            attn_bits, attn_ack, asserted, deasserted);
4870
4871         if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4872                 BNX2X_ERR("BAD attention state\n");
4873
4874         /* handle bits that were raised */
4875         if (asserted)
4876                 bnx2x_attn_int_asserted(bp, asserted);
4877
4878         if (deasserted)
4879                 bnx2x_attn_int_deasserted(bp, deasserted);
4880 }
4881
4882 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4883                       u16 index, u8 op, u8 update)
4884 {
4885         u32 igu_addr = bp->igu_base_addr;
4886         igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4887         bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4888                              igu_addr);
4889 }
4890
4891 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4892 {
4893         /* No memory barriers */
4894         storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4895         mmiowb(); /* keep prod updates ordered */
4896 }
4897
4898 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4899                                       union event_ring_elem *elem)
4900 {
4901         u8 err = elem->message.error;
4902
4903         if (!bp->cnic_eth_dev.starting_cid  ||
4904             (cid < bp->cnic_eth_dev.starting_cid &&
4905             cid != bp->cnic_eth_dev.iscsi_l2_cid))
4906                 return 1;
4907
4908         DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4909
4910         if (unlikely(err)) {
4911
4912                 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4913                           cid);
4914                 bnx2x_panic_dump(bp, false);
4915         }
4916         bnx2x_cnic_cfc_comp(bp, cid, err);
4917         return 0;
4918 }
4919
4920 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4921 {
4922         struct bnx2x_mcast_ramrod_params rparam;
4923         int rc;
4924
4925         memset(&rparam, 0, sizeof(rparam));
4926
4927         rparam.mcast_obj = &bp->mcast_obj;
4928
4929         netif_addr_lock_bh(bp->dev);
4930
4931         /* Clear pending state for the last command */
4932         bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4933
4934         /* If there are pending mcast commands - send them */
4935         if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4936                 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4937                 if (rc < 0)
4938                         BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4939                                   rc);
4940         }
4941
4942         netif_addr_unlock_bh(bp->dev);
4943 }
4944
4945 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4946                                             union event_ring_elem *elem)
4947 {
4948         unsigned long ramrod_flags = 0;
4949         int rc = 0;
4950         u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4951         struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4952
4953         /* Always push next commands out, don't wait here */
4954         __set_bit(RAMROD_CONT, &ramrod_flags);
4955
4956         switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
4957                             >> BNX2X_SWCID_SHIFT) {
4958         case BNX2X_FILTER_MAC_PENDING:
4959                 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
4960                 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
4961                         vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4962                 else
4963                         vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
4964
4965                 break;
4966         case BNX2X_FILTER_MCAST_PENDING:
4967                 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
4968                 /* This is only relevant for 57710 where multicast MACs are
4969                  * configured as unicast MACs using the same ramrod.
4970                  */
4971                 bnx2x_handle_mcast_eqe(bp);
4972                 return;
4973         default:
4974                 BNX2X_ERR("Unsupported classification command: %d\n",
4975                           elem->message.data.eth_event.echo);
4976                 return;
4977         }
4978
4979         rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4980
4981         if (rc < 0)
4982                 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4983         else if (rc > 0)
4984                 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
4985 }
4986
4987 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
4988
4989 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
4990 {
4991         netif_addr_lock_bh(bp->dev);
4992
4993         clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
4994
4995         /* Send rx_mode command again if was requested */
4996         if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
4997                 bnx2x_set_storm_rx_mode(bp);
4998         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
4999                                     &bp->sp_state))
5000                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
5001         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5002                                     &bp->sp_state))
5003                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
5004
5005         netif_addr_unlock_bh(bp->dev);
5006 }
5007
5008 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5009                                               union event_ring_elem *elem)
5010 {
5011         if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5012                 DP(BNX2X_MSG_SP,
5013                    "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5014                    elem->message.data.vif_list_event.func_bit_map);
5015                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5016                         elem->message.data.vif_list_event.func_bit_map);
5017         } else if (elem->message.data.vif_list_event.echo ==
5018                    VIF_LIST_RULE_SET) {
5019                 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5020                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5021         }
5022 }
5023
5024 /* called with rtnl_lock */
5025 static void bnx2x_after_function_update(struct bnx2x *bp)
5026 {
5027         int q, rc;
5028         struct bnx2x_fastpath *fp;
5029         struct bnx2x_queue_state_params queue_params = {NULL};
5030         struct bnx2x_queue_update_params *q_update_params =
5031                 &queue_params.params.update;
5032
5033         /* Send Q update command with afex vlan removal values for all Qs */
5034         queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5035
5036         /* set silent vlan removal values according to vlan mode */
5037         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5038                   &q_update_params->update_flags);
5039         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5040                   &q_update_params->update_flags);
5041         __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5042
5043         /* in access mode mark mask and value are 0 to strip all vlans */
5044         if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5045                 q_update_params->silent_removal_value = 0;
5046                 q_update_params->silent_removal_mask = 0;
5047         } else {
5048                 q_update_params->silent_removal_value =
5049                         (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5050                 q_update_params->silent_removal_mask = VLAN_VID_MASK;
5051         }
5052
5053         for_each_eth_queue(bp, q) {
5054                 /* Set the appropriate Queue object */
5055                 fp = &bp->fp[q];
5056                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5057
5058                 /* send the ramrod */
5059                 rc = bnx2x_queue_state_change(bp, &queue_params);
5060                 if (rc < 0)
5061                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5062                                   q);
5063         }
5064
5065         if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5066                 fp = &bp->fp[FCOE_IDX(bp)];
5067                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5068
5069                 /* clear pending completion bit */
5070                 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5071
5072                 /* mark latest Q bit */
5073                 smp_mb__before_clear_bit();
5074                 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5075                 smp_mb__after_clear_bit();
5076
5077                 /* send Q update ramrod for FCoE Q */
5078                 rc = bnx2x_queue_state_change(bp, &queue_params);
5079                 if (rc < 0)
5080                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5081                                   q);
5082         } else {
5083                 /* If no FCoE ring - ACK MCP now */
5084                 bnx2x_link_report(bp);
5085                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5086         }
5087 }
5088
5089 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5090         struct bnx2x *bp, u32 cid)
5091 {
5092         DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5093
5094         if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5095                 return &bnx2x_fcoe_sp_obj(bp, q_obj);
5096         else
5097                 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5098 }
5099
5100 static void bnx2x_eq_int(struct bnx2x *bp)
5101 {
5102         u16 hw_cons, sw_cons, sw_prod;
5103         union event_ring_elem *elem;
5104         u8 echo;
5105         u32 cid;
5106         u8 opcode;
5107         int rc, spqe_cnt = 0;
5108         struct bnx2x_queue_sp_obj *q_obj;
5109         struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5110         struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5111
5112         hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5113
5114         /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5115          * when we get the next-page we need to adjust so the loop
5116          * condition below will be met. The next element is the size of a
5117          * regular element and hence incrementing by 1
5118          */
5119         if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5120                 hw_cons++;
5121
5122         /* This function may never run in parallel with itself for a
5123          * specific bp, thus there is no need in "paired" read memory
5124          * barrier here.
5125          */
5126         sw_cons = bp->eq_cons;
5127         sw_prod = bp->eq_prod;
5128
5129         DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5130                         hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5131
5132         for (; sw_cons != hw_cons;
5133               sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5134
5135                 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5136
5137                 rc = bnx2x_iov_eq_sp_event(bp, elem);
5138                 if (!rc) {
5139                         DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5140                            rc);
5141                         goto next_spqe;
5142                 }
5143
5144                 /* elem CID originates from FW; actually LE */
5145                 cid = SW_CID((__force __le32)
5146                              elem->message.data.cfc_del_event.cid);
5147                 opcode = elem->message.opcode;
5148
5149                 /* handle eq element */
5150                 switch (opcode) {
5151                 case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5152                         DP(BNX2X_MSG_IOV, "vf pf channel element on eq\n");
5153                         bnx2x_vf_mbx(bp, &elem->message.data.vf_pf_event);
5154                         continue;
5155
5156                 case EVENT_RING_OPCODE_STAT_QUERY:
5157                         DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
5158                            "got statistics comp event %d\n",
5159                            bp->stats_comp++);
5160                         /* nothing to do with stats comp */
5161                         goto next_spqe;
5162
5163                 case EVENT_RING_OPCODE_CFC_DEL:
5164                         /* handle according to cid range */
5165                         /*
5166                          * we may want to verify here that the bp state is
5167                          * HALTING
5168                          */
5169                         DP(BNX2X_MSG_SP,
5170                            "got delete ramrod for MULTI[%d]\n", cid);
5171
5172                         if (CNIC_LOADED(bp) &&
5173                             !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5174                                 goto next_spqe;
5175
5176                         q_obj = bnx2x_cid_to_q_obj(bp, cid);
5177
5178                         if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5179                                 break;
5180
5181                         goto next_spqe;
5182
5183                 case EVENT_RING_OPCODE_STOP_TRAFFIC:
5184                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5185                         if (f_obj->complete_cmd(bp, f_obj,
5186                                                 BNX2X_F_CMD_TX_STOP))
5187                                 break;
5188                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5189                         goto next_spqe;
5190
5191                 case EVENT_RING_OPCODE_START_TRAFFIC:
5192                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5193                         if (f_obj->complete_cmd(bp, f_obj,
5194                                                 BNX2X_F_CMD_TX_START))
5195                                 break;
5196                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5197                         goto next_spqe;
5198
5199                 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5200                         echo = elem->message.data.function_update_event.echo;
5201                         if (echo == SWITCH_UPDATE) {
5202                                 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5203                                    "got FUNC_SWITCH_UPDATE ramrod\n");
5204                                 if (f_obj->complete_cmd(
5205                                         bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5206                                         break;
5207
5208                         } else {
5209                                 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5210                                    "AFEX: ramrod completed FUNCTION_UPDATE\n");
5211                                 f_obj->complete_cmd(bp, f_obj,
5212                                                     BNX2X_F_CMD_AFEX_UPDATE);
5213
5214                                 /* We will perform the Queues update from
5215                                  * sp_rtnl task as all Queue SP operations
5216                                  * should run under rtnl_lock.
5217                                  */
5218                                 smp_mb__before_clear_bit();
5219                                 set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE,
5220                                         &bp->sp_rtnl_state);
5221                                 smp_mb__after_clear_bit();
5222
5223                                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5224                         }
5225
5226                         goto next_spqe;
5227
5228                 case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5229                         f_obj->complete_cmd(bp, f_obj,
5230                                             BNX2X_F_CMD_AFEX_VIFLISTS);
5231                         bnx2x_after_afex_vif_lists(bp, elem);
5232                         goto next_spqe;
5233                 case EVENT_RING_OPCODE_FUNCTION_START:
5234                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5235                            "got FUNC_START ramrod\n");
5236                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5237                                 break;
5238
5239                         goto next_spqe;
5240
5241                 case EVENT_RING_OPCODE_FUNCTION_STOP:
5242                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5243                            "got FUNC_STOP ramrod\n");
5244                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5245                                 break;
5246
5247                         goto next_spqe;
5248                 }
5249
5250                 switch (opcode | bp->state) {
5251                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5252                       BNX2X_STATE_OPEN):
5253                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5254                       BNX2X_STATE_OPENING_WAIT4_PORT):
5255                         cid = elem->message.data.eth_event.echo &
5256                                 BNX2X_SWCID_MASK;
5257                         DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5258                            cid);
5259                         rss_raw->clear_pending(rss_raw);
5260                         break;
5261
5262                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5263                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5264                 case (EVENT_RING_OPCODE_SET_MAC |
5265                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5266                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5267                       BNX2X_STATE_OPEN):
5268                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5269                       BNX2X_STATE_DIAG):
5270                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5271                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5272                         DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
5273                         bnx2x_handle_classification_eqe(bp, elem);
5274                         break;
5275
5276                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5277                       BNX2X_STATE_OPEN):
5278                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5279                       BNX2X_STATE_DIAG):
5280                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5281                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5282                         DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5283                         bnx2x_handle_mcast_eqe(bp);
5284                         break;
5285
5286                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5287                       BNX2X_STATE_OPEN):
5288                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5289                       BNX2X_STATE_DIAG):
5290                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5291                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5292                         DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5293                         bnx2x_handle_rx_mode_eqe(bp);
5294                         break;
5295                 default:
5296                         /* unknown event log error and continue */
5297                         BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5298                                   elem->message.opcode, bp->state);
5299                 }
5300 next_spqe:
5301                 spqe_cnt++;
5302         } /* for */
5303
5304         smp_mb__before_atomic_inc();
5305         atomic_add(spqe_cnt, &bp->eq_spq_left);
5306
5307         bp->eq_cons = sw_cons;
5308         bp->eq_prod = sw_prod;
5309         /* Make sure that above mem writes were issued towards the memory */
5310         smp_wmb();
5311
5312         /* update producer */
5313         bnx2x_update_eq_prod(bp, bp->eq_prod);
5314 }
5315
5316 static void bnx2x_sp_task(struct work_struct *work)
5317 {
5318         struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5319
5320         DP(BNX2X_MSG_SP, "sp task invoked\n");
5321
5322         /* make sure the atomic interrupt_occurred has been written */
5323         smp_rmb();
5324         if (atomic_read(&bp->interrupt_occurred)) {
5325
5326                 /* what work needs to be performed? */
5327                 u16 status = bnx2x_update_dsb_idx(bp);
5328
5329                 DP(BNX2X_MSG_SP, "status %x\n", status);
5330                 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5331                 atomic_set(&bp->interrupt_occurred, 0);
5332
5333                 /* HW attentions */
5334                 if (status & BNX2X_DEF_SB_ATT_IDX) {
5335                         bnx2x_attn_int(bp);
5336                         status &= ~BNX2X_DEF_SB_ATT_IDX;
5337                 }
5338
5339                 /* SP events: STAT_QUERY and others */
5340                 if (status & BNX2X_DEF_SB_IDX) {
5341                         struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5342
5343                 if (FCOE_INIT(bp) &&
5344                             (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5345                                 /* Prevent local bottom-halves from running as
5346                                  * we are going to change the local NAPI list.
5347                                  */
5348                                 local_bh_disable();
5349                                 napi_schedule(&bnx2x_fcoe(bp, napi));
5350                                 local_bh_enable();
5351                         }
5352
5353                         /* Handle EQ completions */
5354                         bnx2x_eq_int(bp);
5355                         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5356                                      le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5357
5358                         status &= ~BNX2X_DEF_SB_IDX;
5359                 }
5360
5361                 /* if status is non zero then perhaps something went wrong */
5362                 if (unlikely(status))
5363                         DP(BNX2X_MSG_SP,
5364                            "got an unknown interrupt! (status 0x%x)\n", status);
5365
5366                 /* ack status block only if something was actually handled */
5367                 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5368                              le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5369         }
5370
5371         /* must be called after the EQ processing (since eq leads to sriov
5372          * ramrod completion flows).
5373          * This flow may have been scheduled by the arrival of a ramrod
5374          * completion, or by the sriov code rescheduling itself.
5375          */
5376         bnx2x_iov_sp_task(bp);
5377
5378         /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5379         if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5380                                &bp->sp_state)) {
5381                 bnx2x_link_report(bp);
5382                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5383         }
5384 }
5385
5386 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5387 {
5388         struct net_device *dev = dev_instance;
5389         struct bnx2x *bp = netdev_priv(dev);
5390
5391         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5392                      IGU_INT_DISABLE, 0);
5393
5394 #ifdef BNX2X_STOP_ON_ERROR
5395         if (unlikely(bp->panic))
5396                 return IRQ_HANDLED;
5397 #endif
5398
5399         if (CNIC_LOADED(bp)) {
5400                 struct cnic_ops *c_ops;
5401
5402                 rcu_read_lock();
5403                 c_ops = rcu_dereference(bp->cnic_ops);
5404                 if (c_ops)
5405                         c_ops->cnic_handler(bp->cnic_data, NULL);
5406                 rcu_read_unlock();
5407         }
5408
5409         /* schedule sp task to perform default status block work, ack
5410          * attentions and enable interrupts.
5411          */
5412         bnx2x_schedule_sp_task(bp);
5413
5414         return IRQ_HANDLED;
5415 }
5416
5417 /* end of slow path */
5418
5419 void bnx2x_drv_pulse(struct bnx2x *bp)
5420 {
5421         SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5422                  bp->fw_drv_pulse_wr_seq);
5423 }
5424
5425 static void bnx2x_timer(unsigned long data)
5426 {
5427         struct bnx2x *bp = (struct bnx2x *) data;
5428
5429         if (!netif_running(bp->dev))
5430                 return;
5431
5432         if (IS_PF(bp) &&
5433             !BP_NOMCP(bp)) {
5434                 int mb_idx = BP_FW_MB_IDX(bp);
5435                 u32 drv_pulse;
5436                 u32 mcp_pulse;
5437
5438                 ++bp->fw_drv_pulse_wr_seq;
5439                 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5440                 /* TBD - add SYSTEM_TIME */
5441                 drv_pulse = bp->fw_drv_pulse_wr_seq;
5442                 bnx2x_drv_pulse(bp);
5443
5444                 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5445                              MCP_PULSE_SEQ_MASK);
5446                 /* The delta between driver pulse and mcp response
5447                  * should be 1 (before mcp response) or 0 (after mcp response)
5448                  */
5449                 if ((drv_pulse != mcp_pulse) &&
5450                     (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
5451                         /* someone lost a heartbeat... */
5452                         BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5453                                   drv_pulse, mcp_pulse);
5454                 }
5455         }
5456
5457         if (bp->state == BNX2X_STATE_OPEN)
5458                 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5459
5460         /* sample pf vf bulletin board for new posts from pf */
5461         if (IS_VF(bp))
5462                 bnx2x_sample_bulletin(bp);
5463
5464         mod_timer(&bp->timer, jiffies + bp->current_interval);
5465 }
5466
5467 /* end of Statistics */
5468
5469 /* nic init */
5470
5471 /*
5472  * nic init service functions
5473  */
5474
5475 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5476 {
5477         u32 i;
5478         if (!(len%4) && !(addr%4))
5479                 for (i = 0; i < len; i += 4)
5480                         REG_WR(bp, addr + i, fill);
5481         else
5482                 for (i = 0; i < len; i++)
5483                         REG_WR8(bp, addr + i, fill);
5484 }
5485
5486 /* helper: writes FP SP data to FW - data_size in dwords */
5487 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5488                                 int fw_sb_id,
5489                                 u32 *sb_data_p,
5490                                 u32 data_size)
5491 {
5492         int index;
5493         for (index = 0; index < data_size; index++)
5494                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5495                         CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5496                         sizeof(u32)*index,
5497                         *(sb_data_p + index));
5498 }
5499
5500 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5501 {
5502         u32 *sb_data_p;
5503         u32 data_size = 0;
5504         struct hc_status_block_data_e2 sb_data_e2;
5505         struct hc_status_block_data_e1x sb_data_e1x;
5506
5507         /* disable the function first */
5508         if (!CHIP_IS_E1x(bp)) {
5509                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5510                 sb_data_e2.common.state = SB_DISABLED;
5511                 sb_data_e2.common.p_func.vf_valid = false;
5512                 sb_data_p = (u32 *)&sb_data_e2;
5513                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5514         } else {
5515                 memset(&sb_data_e1x, 0,
5516                        sizeof(struct hc_status_block_data_e1x));
5517                 sb_data_e1x.common.state = SB_DISABLED;
5518                 sb_data_e1x.common.p_func.vf_valid = false;
5519                 sb_data_p = (u32 *)&sb_data_e1x;
5520                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5521         }
5522         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5523
5524         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5525                         CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5526                         CSTORM_STATUS_BLOCK_SIZE);
5527         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5528                         CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5529                         CSTORM_SYNC_BLOCK_SIZE);
5530 }
5531
5532 /* helper:  writes SP SB data to FW */
5533 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5534                 struct hc_sp_status_block_data *sp_sb_data)
5535 {
5536         int func = BP_FUNC(bp);
5537         int i;
5538         for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5539                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5540                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5541                         i*sizeof(u32),
5542                         *((u32 *)sp_sb_data + i));
5543 }
5544
5545 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5546 {
5547         int func = BP_FUNC(bp);
5548         struct hc_sp_status_block_data sp_sb_data;
5549         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5550
5551         sp_sb_data.state = SB_DISABLED;
5552         sp_sb_data.p_func.vf_valid = false;
5553
5554         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5555
5556         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5557                         CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5558                         CSTORM_SP_STATUS_BLOCK_SIZE);
5559         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5560                         CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5561                         CSTORM_SP_SYNC_BLOCK_SIZE);
5562 }
5563
5564 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5565                                            int igu_sb_id, int igu_seg_id)
5566 {
5567         hc_sm->igu_sb_id = igu_sb_id;
5568         hc_sm->igu_seg_id = igu_seg_id;
5569         hc_sm->timer_value = 0xFF;
5570         hc_sm->time_to_expire = 0xFFFFFFFF;
5571 }
5572
5573 /* allocates state machine ids. */
5574 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5575 {
5576         /* zero out state machine indices */
5577         /* rx indices */
5578         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5579
5580         /* tx indices */
5581         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5582         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5583         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5584         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5585
5586         /* map indices */
5587         /* rx indices */
5588         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5589                 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5590
5591         /* tx indices */
5592         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5593                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5594         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5595                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5596         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5597                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5598         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5599                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5600 }
5601
5602 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5603                           u8 vf_valid, int fw_sb_id, int igu_sb_id)
5604 {
5605         int igu_seg_id;
5606
5607         struct hc_status_block_data_e2 sb_data_e2;
5608         struct hc_status_block_data_e1x sb_data_e1x;
5609         struct hc_status_block_sm  *hc_sm_p;
5610         int data_size;
5611         u32 *sb_data_p;
5612
5613         if (CHIP_INT_MODE_IS_BC(bp))
5614                 igu_seg_id = HC_SEG_ACCESS_NORM;
5615         else
5616                 igu_seg_id = IGU_SEG_ACCESS_NORM;
5617
5618         bnx2x_zero_fp_sb(bp, fw_sb_id);
5619
5620         if (!CHIP_IS_E1x(bp)) {
5621                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5622                 sb_data_e2.common.state = SB_ENABLED;
5623                 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5624                 sb_data_e2.common.p_func.vf_id = vfid;
5625                 sb_data_e2.common.p_func.vf_valid = vf_valid;
5626                 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5627                 sb_data_e2.common.same_igu_sb_1b = true;
5628                 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5629                 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5630                 hc_sm_p = sb_data_e2.common.state_machine;
5631                 sb_data_p = (u32 *)&sb_data_e2;
5632                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5633                 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5634         } else {
5635                 memset(&sb_data_e1x, 0,
5636                        sizeof(struct hc_status_block_data_e1x));
5637                 sb_data_e1x.common.state = SB_ENABLED;
5638                 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5639                 sb_data_e1x.common.p_func.vf_id = 0xff;
5640                 sb_data_e1x.common.p_func.vf_valid = false;
5641                 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5642                 sb_data_e1x.common.same_igu_sb_1b = true;
5643                 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5644                 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5645                 hc_sm_p = sb_data_e1x.common.state_machine;
5646                 sb_data_p = (u32 *)&sb_data_e1x;
5647                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5648                 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5649         }
5650
5651         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5652                                        igu_sb_id, igu_seg_id);
5653         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5654                                        igu_sb_id, igu_seg_id);
5655
5656         DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5657
5658         /* write indices to HW - PCI guarantees endianity of regpairs */
5659         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5660 }
5661
5662 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5663                                      u16 tx_usec, u16 rx_usec)
5664 {
5665         bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5666                                     false, rx_usec);
5667         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5668                                        HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5669                                        tx_usec);
5670         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5671                                        HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5672                                        tx_usec);
5673         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5674                                        HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5675                                        tx_usec);
5676 }
5677
5678 static void bnx2x_init_def_sb(struct bnx2x *bp)
5679 {
5680         struct host_sp_status_block *def_sb = bp->def_status_blk;
5681         dma_addr_t mapping = bp->def_status_blk_mapping;
5682         int igu_sp_sb_index;
5683         int igu_seg_id;
5684         int port = BP_PORT(bp);
5685         int func = BP_FUNC(bp);
5686         int reg_offset, reg_offset_en5;
5687         u64 section;
5688         int index;
5689         struct hc_sp_status_block_data sp_sb_data;
5690         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5691
5692         if (CHIP_INT_MODE_IS_BC(bp)) {
5693                 igu_sp_sb_index = DEF_SB_IGU_ID;
5694                 igu_seg_id = HC_SEG_ACCESS_DEF;
5695         } else {
5696                 igu_sp_sb_index = bp->igu_dsb_id;
5697                 igu_seg_id = IGU_SEG_ACCESS_DEF;
5698         }
5699
5700         /* ATTN */
5701         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5702                                             atten_status_block);
5703         def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5704
5705         bp->attn_state = 0;
5706
5707         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5708                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5709         reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5710                                  MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5711         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5712                 int sindex;
5713                 /* take care of sig[0]..sig[4] */
5714                 for (sindex = 0; sindex < 4; sindex++)
5715                         bp->attn_group[index].sig[sindex] =
5716                            REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5717
5718                 if (!CHIP_IS_E1x(bp))
5719                         /*
5720                          * enable5 is separate from the rest of the registers,
5721                          * and therefore the address skip is 4
5722                          * and not 16 between the different groups
5723                          */
5724                         bp->attn_group[index].sig[4] = REG_RD(bp,
5725                                         reg_offset_en5 + 0x4*index);
5726                 else
5727                         bp->attn_group[index].sig[4] = 0;
5728         }
5729
5730         if (bp->common.int_block == INT_BLOCK_HC) {
5731                 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5732                                      HC_REG_ATTN_MSG0_ADDR_L);
5733
5734                 REG_WR(bp, reg_offset, U64_LO(section));
5735                 REG_WR(bp, reg_offset + 4, U64_HI(section));
5736         } else if (!CHIP_IS_E1x(bp)) {
5737                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5738                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5739         }
5740
5741         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5742                                             sp_sb);
5743
5744         bnx2x_zero_sp_sb(bp);
5745
5746         /* PCI guarantees endianity of regpairs */
5747         sp_sb_data.state                = SB_ENABLED;
5748         sp_sb_data.host_sb_addr.lo      = U64_LO(section);
5749         sp_sb_data.host_sb_addr.hi      = U64_HI(section);
5750         sp_sb_data.igu_sb_id            = igu_sp_sb_index;
5751         sp_sb_data.igu_seg_id           = igu_seg_id;
5752         sp_sb_data.p_func.pf_id         = func;
5753         sp_sb_data.p_func.vnic_id       = BP_VN(bp);
5754         sp_sb_data.p_func.vf_id         = 0xff;
5755
5756         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5757
5758         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5759 }
5760
5761 void bnx2x_update_coalesce(struct bnx2x *bp)
5762 {
5763         int i;
5764
5765         for_each_eth_queue(bp, i)
5766                 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5767                                          bp->tx_ticks, bp->rx_ticks);
5768 }
5769
5770 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5771 {
5772         spin_lock_init(&bp->spq_lock);
5773         atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5774
5775         bp->spq_prod_idx = 0;
5776         bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5777         bp->spq_prod_bd = bp->spq;
5778         bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5779 }
5780
5781 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5782 {
5783         int i;
5784         for (i = 1; i <= NUM_EQ_PAGES; i++) {
5785                 union event_ring_elem *elem =
5786                         &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5787
5788                 elem->next_page.addr.hi =
5789                         cpu_to_le32(U64_HI(bp->eq_mapping +
5790                                    BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5791                 elem->next_page.addr.lo =
5792                         cpu_to_le32(U64_LO(bp->eq_mapping +
5793                                    BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5794         }
5795         bp->eq_cons = 0;
5796         bp->eq_prod = NUM_EQ_DESC;
5797         bp->eq_cons_sb = BNX2X_EQ_INDEX;
5798         /* we want a warning message before it gets wrought... */
5799         atomic_set(&bp->eq_spq_left,
5800                 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5801 }
5802
5803 /* called with netif_addr_lock_bh() */
5804 int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5805                         unsigned long rx_mode_flags,
5806                         unsigned long rx_accept_flags,
5807                         unsigned long tx_accept_flags,
5808                         unsigned long ramrod_flags)
5809 {
5810         struct bnx2x_rx_mode_ramrod_params ramrod_param;
5811         int rc;
5812
5813         memset(&ramrod_param, 0, sizeof(ramrod_param));
5814
5815         /* Prepare ramrod parameters */
5816         ramrod_param.cid = 0;
5817         ramrod_param.cl_id = cl_id;
5818         ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5819         ramrod_param.func_id = BP_FUNC(bp);
5820
5821         ramrod_param.pstate = &bp->sp_state;
5822         ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5823
5824         ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5825         ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5826
5827         set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5828
5829         ramrod_param.ramrod_flags = ramrod_flags;
5830         ramrod_param.rx_mode_flags = rx_mode_flags;
5831
5832         ramrod_param.rx_accept_flags = rx_accept_flags;
5833         ramrod_param.tx_accept_flags = tx_accept_flags;
5834
5835         rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5836         if (rc < 0) {
5837                 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5838                 return rc;
5839         }
5840
5841         return 0;
5842 }
5843
5844 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
5845                                    unsigned long *rx_accept_flags,
5846                                    unsigned long *tx_accept_flags)
5847 {
5848         /* Clear the flags first */
5849         *rx_accept_flags = 0;
5850         *tx_accept_flags = 0;
5851
5852         switch (rx_mode) {
5853         case BNX2X_RX_MODE_NONE:
5854                 /*
5855                  * 'drop all' supersedes any accept flags that may have been
5856                  * passed to the function.
5857                  */
5858                 break;
5859         case BNX2X_RX_MODE_NORMAL:
5860                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5861                 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
5862                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5863
5864                 /* internal switching mode */
5865                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5866                 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
5867                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5868
5869                 break;
5870         case BNX2X_RX_MODE_ALLMULTI:
5871                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5872                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5873                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5874
5875                 /* internal switching mode */
5876                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5877                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5878                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5879
5880                 break;
5881         case BNX2X_RX_MODE_PROMISC:
5882                 /* According to definition of SI mode, iface in promisc mode
5883                  * should receive matched and unmatched (in resolution of port)
5884                  * unicast packets.
5885                  */
5886                 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
5887                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5888                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5889                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5890
5891                 /* internal switching mode */
5892                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5893                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5894
5895                 if (IS_MF_SI(bp))
5896                         __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
5897                 else
5898                         __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5899
5900                 break;
5901         default:
5902                 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
5903                 return -EINVAL;
5904         }
5905
5906         /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
5907         if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5908                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
5909                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
5910         }
5911
5912         return 0;
5913 }
5914
5915 /* called with netif_addr_lock_bh() */
5916 int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5917 {
5918         unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5919         unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5920         int rc;
5921
5922         if (!NO_FCOE(bp))
5923                 /* Configure rx_mode of FCoE Queue */
5924                 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5925
5926         rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
5927                                      &tx_accept_flags);
5928         if (rc)
5929                 return rc;
5930
5931         __set_bit(RAMROD_RX, &ramrod_flags);
5932         __set_bit(RAMROD_TX, &ramrod_flags);
5933
5934         return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
5935                                    rx_accept_flags, tx_accept_flags,
5936                                    ramrod_flags);
5937 }
5938
5939 static void bnx2x_init_internal_common(struct bnx2x *bp)
5940 {
5941         int i;
5942
5943         if (IS_MF_SI(bp))
5944                 /*
5945                  * In switch independent mode, the TSTORM needs to accept
5946                  * packets that failed classification, since approximate match
5947                  * mac addresses aren't written to NIG LLH
5948                  */
5949                 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5950                             TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5951         else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5952                 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5953                             TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5954
5955         /* Zero this manually as its initialization is
5956            currently missing in the initTool */
5957         for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5958                 REG_WR(bp, BAR_USTRORM_INTMEM +
5959                        USTORM_AGG_DATA_OFFSET + i * 4, 0);
5960         if (!CHIP_IS_E1x(bp)) {
5961                 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5962                         CHIP_INT_MODE_IS_BC(bp) ?
5963                         HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5964         }
5965 }
5966
5967 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5968 {
5969         switch (load_code) {
5970         case FW_MSG_CODE_DRV_LOAD_COMMON:
5971         case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5972                 bnx2x_init_internal_common(bp);
5973                 /* no break */
5974
5975         case FW_MSG_CODE_DRV_LOAD_PORT:
5976                 /* nothing to do */
5977                 /* no break */
5978
5979         case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5980                 /* internal memory per function is
5981                    initialized inside bnx2x_pf_init */
5982                 break;
5983
5984         default:
5985                 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5986                 break;
5987         }
5988 }
5989
5990 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
5991 {
5992         return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
5993 }
5994
5995 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
5996 {
5997         return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
5998 }
5999
6000 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6001 {
6002         if (CHIP_IS_E1x(fp->bp))
6003                 return BP_L_ID(fp->bp) + fp->index;
6004         else    /* We want Client ID to be the same as IGU SB ID for 57712 */
6005                 return bnx2x_fp_igu_sb_id(fp);
6006 }
6007
6008 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6009 {
6010         struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6011         u8 cos;
6012         unsigned long q_type = 0;
6013         u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6014         fp->rx_queue = fp_idx;
6015         fp->cid = fp_idx;
6016         fp->cl_id = bnx2x_fp_cl_id(fp);
6017         fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6018         fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6019         /* qZone id equals to FW (per path) client id */
6020         fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6021
6022         /* init shortcut */
6023         fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6024
6025         /* Setup SB indices */
6026         fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6027
6028         /* Configure Queue State object */
6029         __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6030         __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6031
6032         BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6033
6034         /* init tx data */
6035         for_each_cos_in_tx_queue(fp, cos) {
6036                 bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6037                                   CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6038                                   FP_COS_TO_TXQ(fp, cos, bp),
6039                                   BNX2X_TX_SB_INDEX_BASE + cos, fp);
6040                 cids[cos] = fp->txdata_ptr[cos]->cid;
6041         }
6042
6043         /* nothing more for vf to do here */
6044         if (IS_VF(bp))
6045                 return;
6046
6047         bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6048                       fp->fw_sb_id, fp->igu_sb_id);
6049         bnx2x_update_fpsb_idx(fp);
6050         bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6051                              fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6052                              bnx2x_sp_mapping(bp, q_rdata), q_type);
6053
6054         /**
6055          * Configure classification DBs: Always enable Tx switching
6056          */
6057         bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6058
6059         DP(NETIF_MSG_IFUP,
6060            "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6061            fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6062            fp->igu_sb_id);
6063 }
6064
6065 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6066 {
6067         int i;
6068
6069         for (i = 1; i <= NUM_TX_RINGS; i++) {
6070                 struct eth_tx_next_bd *tx_next_bd =
6071                         &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6072
6073                 tx_next_bd->addr_hi =
6074                         cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6075                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6076                 tx_next_bd->addr_lo =
6077                         cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6078                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6079         }
6080
6081         *txdata->tx_cons_sb = cpu_to_le16(0);
6082
6083         SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6084         txdata->tx_db.data.zero_fill1 = 0;
6085         txdata->tx_db.data.prod = 0;
6086
6087         txdata->tx_pkt_prod = 0;
6088         txdata->tx_pkt_cons = 0;
6089         txdata->tx_bd_prod = 0;
6090         txdata->tx_bd_cons = 0;
6091         txdata->tx_pkt = 0;
6092 }
6093
6094 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6095 {
6096         int i;
6097
6098         for_each_tx_queue_cnic(bp, i)
6099                 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6100 }
6101
6102 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6103 {
6104         int i;
6105         u8 cos;
6106
6107         for_each_eth_queue(bp, i)
6108                 for_each_cos_in_tx_queue(&bp->fp[i], cos)
6109                         bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6110 }
6111
6112 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6113 {
6114         if (!NO_FCOE(bp))
6115                 bnx2x_init_fcoe_fp(bp);
6116
6117         bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6118                       BNX2X_VF_ID_INVALID, false,
6119                       bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6120
6121         /* ensure status block indices were read */
6122         rmb();
6123         bnx2x_init_rx_rings_cnic(bp);
6124         bnx2x_init_tx_rings_cnic(bp);
6125
6126         /* flush all */
6127         mb();
6128         mmiowb();
6129 }
6130
6131 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6132 {
6133         int i;
6134
6135         /* Setup NIC internals and enable interrupts */
6136         for_each_eth_queue(bp, i)
6137                 bnx2x_init_eth_fp(bp, i);
6138
6139         /* ensure status block indices were read */
6140         rmb();
6141         bnx2x_init_rx_rings(bp);
6142         bnx2x_init_tx_rings(bp);
6143
6144         if (IS_PF(bp)) {
6145                 /* Initialize MOD_ABS interrupts */
6146                 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6147                                        bp->common.shmem_base,
6148                                        bp->common.shmem2_base, BP_PORT(bp));
6149
6150                 /* initialize the default status block and sp ring */
6151                 bnx2x_init_def_sb(bp);
6152                 bnx2x_update_dsb_idx(bp);
6153                 bnx2x_init_sp_ring(bp);
6154         } else {
6155                 bnx2x_memset_stats(bp);
6156         }
6157 }
6158
6159 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6160 {
6161         bnx2x_init_eq_ring(bp);
6162         bnx2x_init_internal(bp, load_code);
6163         bnx2x_pf_init(bp);
6164         bnx2x_stats_init(bp);
6165
6166         /* flush all before enabling interrupts */
6167         mb();
6168         mmiowb();
6169
6170         bnx2x_int_enable(bp);
6171
6172         /* Check for SPIO5 */
6173         bnx2x_attn_int_deasserted0(bp,
6174                 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6175                                    AEU_INPUTS_ATTN_BITS_SPIO5);
6176 }
6177
6178 /* gzip service functions */
6179 static int bnx2x_gunzip_init(struct bnx2x *bp)
6180 {
6181         bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6182                                             &bp->gunzip_mapping, GFP_KERNEL);
6183         if (bp->gunzip_buf  == NULL)
6184                 goto gunzip_nomem1;
6185
6186         bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6187         if (bp->strm  == NULL)
6188                 goto gunzip_nomem2;
6189
6190         bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6191         if (bp->strm->workspace == NULL)
6192                 goto gunzip_nomem3;
6193
6194         return 0;
6195
6196 gunzip_nomem3:
6197         kfree(bp->strm);
6198         bp->strm = NULL;
6199
6200 gunzip_nomem2:
6201         dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6202                           bp->gunzip_mapping);
6203         bp->gunzip_buf = NULL;
6204
6205 gunzip_nomem1:
6206         BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6207         return -ENOMEM;
6208 }
6209
6210 static void bnx2x_gunzip_end(struct bnx2x *bp)
6211 {
6212         if (bp->strm) {
6213                 vfree(bp->strm->workspace);
6214                 kfree(bp->strm);
6215                 bp->strm = NULL;
6216         }
6217
6218         if (bp->gunzip_buf) {
6219                 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6220                                   bp->gunzip_mapping);
6221                 bp->gunzip_buf = NULL;
6222         }
6223 }
6224
6225 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6226 {
6227         int n, rc;
6228
6229         /* check gzip header */
6230         if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6231                 BNX2X_ERR("Bad gzip header\n");
6232                 return -EINVAL;
6233         }
6234
6235         n = 10;
6236
6237 #define FNAME                           0x8
6238
6239         if (zbuf[3] & FNAME)
6240                 while ((zbuf[n++] != 0) && (n < len));
6241
6242         bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6243         bp->strm->avail_in = len - n;
6244         bp->strm->next_out = bp->gunzip_buf;
6245         bp->strm->avail_out = FW_BUF_SIZE;
6246
6247         rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6248         if (rc != Z_OK)
6249                 return rc;
6250
6251         rc = zlib_inflate(bp->strm, Z_FINISH);
6252         if ((rc != Z_OK) && (rc != Z_STREAM_END))
6253                 netdev_err(bp->dev, "Firmware decompression error: %s\n",
6254                            bp->strm->msg);
6255
6256         bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6257         if (bp->gunzip_outlen & 0x3)
6258                 netdev_err(bp->dev,
6259                            "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6260                                 bp->gunzip_outlen);
6261         bp->gunzip_outlen >>= 2;
6262
6263         zlib_inflateEnd(bp->strm);
6264
6265         if (rc == Z_STREAM_END)
6266                 return 0;
6267
6268         return rc;
6269 }
6270
6271 /* nic load/unload */
6272
6273 /*
6274  * General service functions
6275  */
6276
6277 /* send a NIG loopback debug packet */
6278 static void bnx2x_lb_pckt(struct bnx2x *bp)
6279 {
6280         u32 wb_write[3];
6281
6282         /* Ethernet source and destination addresses */
6283         wb_write[0] = 0x55555555;
6284         wb_write[1] = 0x55555555;
6285         wb_write[2] = 0x20;             /* SOP */
6286         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6287
6288         /* NON-IP protocol */
6289         wb_write[0] = 0x09000000;
6290         wb_write[1] = 0x55555555;
6291         wb_write[2] = 0x10;             /* EOP, eop_bvalid = 0 */
6292         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6293 }
6294
6295 /* some of the internal memories
6296  * are not directly readable from the driver
6297  * to test them we send debug packets
6298  */
6299 static int bnx2x_int_mem_test(struct bnx2x *bp)
6300 {
6301         int factor;
6302         int count, i;
6303         u32 val = 0;
6304
6305         if (CHIP_REV_IS_FPGA(bp))
6306                 factor = 120;
6307         else if (CHIP_REV_IS_EMUL(bp))
6308                 factor = 200;
6309         else
6310                 factor = 1;
6311
6312         /* Disable inputs of parser neighbor blocks */
6313         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6314         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6315         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6316         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6317
6318         /*  Write 0 to parser credits for CFC search request */
6319         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6320
6321         /* send Ethernet packet */
6322         bnx2x_lb_pckt(bp);
6323
6324         /* TODO do i reset NIG statistic? */
6325         /* Wait until NIG register shows 1 packet of size 0x10 */
6326         count = 1000 * factor;
6327         while (count) {
6328
6329                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6330                 val = *bnx2x_sp(bp, wb_data[0]);
6331                 if (val == 0x10)
6332                         break;
6333
6334                 usleep_range(10000, 20000);
6335                 count--;
6336         }
6337         if (val != 0x10) {
6338                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6339                 return -1;
6340         }
6341
6342         /* Wait until PRS register shows 1 packet */
6343         count = 1000 * factor;
6344         while (count) {
6345                 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6346                 if (val == 1)
6347                         break;
6348
6349                 usleep_range(10000, 20000);
6350                 count--;
6351         }
6352         if (val != 0x1) {
6353                 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6354                 return -2;
6355         }
6356
6357         /* Reset and init BRB, PRS */
6358         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6359         msleep(50);
6360         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6361         msleep(50);
6362         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6363         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6364
6365         DP(NETIF_MSG_HW, "part2\n");
6366
6367         /* Disable inputs of parser neighbor blocks */
6368         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6369         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6370         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6371         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6372
6373         /* Write 0 to parser credits for CFC search request */
6374         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6375
6376         /* send 10 Ethernet packets */
6377         for (i = 0; i < 10; i++)
6378                 bnx2x_lb_pckt(bp);
6379
6380         /* Wait until NIG register shows 10 + 1
6381            packets of size 11*0x10 = 0xb0 */
6382         count = 1000 * factor;
6383         while (count) {
6384
6385                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6386                 val = *bnx2x_sp(bp, wb_data[0]);
6387                 if (val == 0xb0)
6388                         break;
6389
6390                 usleep_range(10000, 20000);
6391                 count--;
6392         }
6393         if (val != 0xb0) {
6394                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6395                 return -3;
6396         }
6397
6398         /* Wait until PRS register shows 2 packets */
6399         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6400         if (val != 2)
6401                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6402
6403         /* Write 1 to parser credits for CFC search request */
6404         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6405
6406         /* Wait until PRS register shows 3 packets */
6407         msleep(10 * factor);
6408         /* Wait until NIG register shows 1 packet of size 0x10 */
6409         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6410         if (val != 3)
6411                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6412
6413         /* clear NIG EOP FIFO */
6414         for (i = 0; i < 11; i++)
6415                 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6416         val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6417         if (val != 1) {
6418                 BNX2X_ERR("clear of NIG failed\n");
6419                 return -4;
6420         }
6421
6422         /* Reset and init BRB, PRS, NIG */
6423         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6424         msleep(50);
6425         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6426         msleep(50);
6427         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6428         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6429         if (!CNIC_SUPPORT(bp))
6430                 /* set NIC mode */
6431                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6432
6433         /* Enable inputs of parser neighbor blocks */
6434         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6435         REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6436         REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6437         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6438
6439         DP(NETIF_MSG_HW, "done\n");
6440
6441         return 0; /* OK */
6442 }
6443
6444 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6445 {
6446         u32 val;
6447
6448         REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6449         if (!CHIP_IS_E1x(bp))
6450                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6451         else
6452                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6453         REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6454         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6455         /*
6456          * mask read length error interrupts in brb for parser
6457          * (parsing unit and 'checksum and crc' unit)
6458          * these errors are legal (PU reads fixed length and CAC can cause
6459          * read length error on truncated packets)
6460          */
6461         REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6462         REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6463         REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6464         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6465         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6466         REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6467 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6468 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6469         REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6470         REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6471         REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6472 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6473 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6474         REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6475         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6476         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6477         REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6478 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6479 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6480
6481         val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6482                 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6483                 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6484         if (!CHIP_IS_E1x(bp))
6485                 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6486                         PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6487         REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6488
6489         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6490         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6491         REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6492 /*      REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6493
6494         if (!CHIP_IS_E1x(bp))
6495                 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6496                 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6497
6498         REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6499         REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6500 /*      REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6501         REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);         /* bit 3,4 masked */
6502 }
6503
6504 static void bnx2x_reset_common(struct bnx2x *bp)
6505 {
6506         u32 val = 0x1400;
6507
6508         /* reset_common */
6509         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6510                0xd3ffff7f);
6511
6512         if (CHIP_IS_E3(bp)) {
6513                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6514                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6515         }
6516
6517         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6518 }
6519
6520 static void bnx2x_setup_dmae(struct bnx2x *bp)
6521 {
6522         bp->dmae_ready = 0;
6523         spin_lock_init(&bp->dmae_lock);
6524 }
6525
6526 static void bnx2x_init_pxp(struct bnx2x *bp)
6527 {
6528         u16 devctl;
6529         int r_order, w_order;
6530
6531         pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6532         DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6533         w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6534         if (bp->mrrs == -1)
6535                 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6536         else {
6537                 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6538                 r_order = bp->mrrs;
6539         }
6540
6541         bnx2x_init_pxp_arb(bp, r_order, w_order);
6542 }
6543
6544 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6545 {
6546         int is_required;
6547         u32 val;
6548         int port;
6549
6550         if (BP_NOMCP(bp))
6551                 return;
6552
6553         is_required = 0;
6554         val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6555               SHARED_HW_CFG_FAN_FAILURE_MASK;
6556
6557         if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6558                 is_required = 1;
6559
6560         /*
6561          * The fan failure mechanism is usually related to the PHY type since
6562          * the power consumption of the board is affected by the PHY. Currently,
6563          * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6564          */
6565         else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6566                 for (port = PORT_0; port < PORT_MAX; port++) {
6567                         is_required |=
6568                                 bnx2x_fan_failure_det_req(
6569                                         bp,
6570                                         bp->common.shmem_base,
6571                                         bp->common.shmem2_base,
6572                                         port);
6573                 }
6574
6575         DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6576
6577         if (is_required == 0)
6578                 return;
6579
6580         /* Fan failure is indicated by SPIO 5 */
6581         bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6582
6583         /* set to active low mode */
6584         val = REG_RD(bp, MISC_REG_SPIO_INT);
6585         val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6586         REG_WR(bp, MISC_REG_SPIO_INT, val);
6587
6588         /* enable interrupt to signal the IGU */
6589         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6590         val |= MISC_SPIO_SPIO5;
6591         REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6592 }
6593
6594 void bnx2x_pf_disable(struct bnx2x *bp)
6595 {
6596         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6597         val &= ~IGU_PF_CONF_FUNC_EN;
6598
6599         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6600         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6601         REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6602 }
6603
6604 static void bnx2x__common_init_phy(struct bnx2x *bp)
6605 {
6606         u32 shmem_base[2], shmem2_base[2];
6607         /* Avoid common init in case MFW supports LFA */
6608         if (SHMEM2_RD(bp, size) >
6609             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6610                 return;
6611         shmem_base[0] =  bp->common.shmem_base;
6612         shmem2_base[0] = bp->common.shmem2_base;
6613         if (!CHIP_IS_E1x(bp)) {
6614                 shmem_base[1] =
6615                         SHMEM2_RD(bp, other_shmem_base_addr);
6616                 shmem2_base[1] =
6617                         SHMEM2_RD(bp, other_shmem2_base_addr);
6618         }
6619         bnx2x_acquire_phy_lock(bp);
6620         bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6621                               bp->common.chip_id);
6622         bnx2x_release_phy_lock(bp);
6623 }
6624
6625 /**
6626  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6627  *
6628  * @bp:         driver handle
6629  */
6630 static int bnx2x_init_hw_common(struct bnx2x *bp)
6631 {
6632         u32 val;
6633
6634         DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6635
6636         /*
6637          * take the RESET lock to protect undi_unload flow from accessing
6638          * registers while we're resetting the chip
6639          */
6640         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6641
6642         bnx2x_reset_common(bp);
6643         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6644
6645         val = 0xfffc;
6646         if (CHIP_IS_E3(bp)) {
6647                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6648                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6649         }
6650         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6651
6652         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6653
6654         bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6655
6656         if (!CHIP_IS_E1x(bp)) {
6657                 u8 abs_func_id;
6658
6659                 /**
6660                  * 4-port mode or 2-port mode we need to turn of master-enable
6661                  * for everyone, after that, turn it back on for self.
6662                  * so, we disregard multi-function or not, and always disable
6663                  * for all functions on the given path, this means 0,2,4,6 for
6664                  * path 0 and 1,3,5,7 for path 1
6665                  */
6666                 for (abs_func_id = BP_PATH(bp);
6667                      abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6668                         if (abs_func_id == BP_ABS_FUNC(bp)) {
6669                                 REG_WR(bp,
6670                                     PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6671                                     1);
6672                                 continue;
6673                         }
6674
6675                         bnx2x_pretend_func(bp, abs_func_id);
6676                         /* clear pf enable */
6677                         bnx2x_pf_disable(bp);
6678                         bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6679                 }
6680         }
6681
6682         bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6683         if (CHIP_IS_E1(bp)) {
6684                 /* enable HW interrupt from PXP on USDM overflow
6685                    bit 16 on INT_MASK_0 */
6686                 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6687         }
6688
6689         bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6690         bnx2x_init_pxp(bp);
6691
6692 #ifdef __BIG_ENDIAN
6693         REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6694         REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6695         REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6696         REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6697         REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6698         /* make sure this value is 0 */
6699         REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6700
6701 /*      REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6702         REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6703         REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6704         REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6705         REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6706 #endif
6707
6708         bnx2x_ilt_init_page_size(bp, INITOP_SET);
6709
6710         if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6711                 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6712
6713         /* let the HW do it's magic ... */
6714         msleep(100);
6715         /* finish PXP init */
6716         val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6717         if (val != 1) {
6718                 BNX2X_ERR("PXP2 CFG failed\n");
6719                 return -EBUSY;
6720         }
6721         val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6722         if (val != 1) {
6723                 BNX2X_ERR("PXP2 RD_INIT failed\n");
6724                 return -EBUSY;
6725         }
6726
6727         /* Timers bug workaround E2 only. We need to set the entire ILT to
6728          * have entries with value "0" and valid bit on.
6729          * This needs to be done by the first PF that is loaded in a path
6730          * (i.e. common phase)
6731          */
6732         if (!CHIP_IS_E1x(bp)) {
6733 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6734  * (i.e. vnic3) to start even if it is marked as "scan-off".
6735  * This occurs when a different function (func2,3) is being marked
6736  * as "scan-off". Real-life scenario for example: if a driver is being
6737  * load-unloaded while func6,7 are down. This will cause the timer to access
6738  * the ilt, translate to a logical address and send a request to read/write.
6739  * Since the ilt for the function that is down is not valid, this will cause
6740  * a translation error which is unrecoverable.
6741  * The Workaround is intended to make sure that when this happens nothing fatal
6742  * will occur. The workaround:
6743  *      1.  First PF driver which loads on a path will:
6744  *              a.  After taking the chip out of reset, by using pretend,
6745  *                  it will write "0" to the following registers of
6746  *                  the other vnics.
6747  *                  REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6748  *                  REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6749  *                  REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6750  *                  And for itself it will write '1' to
6751  *                  PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6752  *                  dmae-operations (writing to pram for example.)
6753  *                  note: can be done for only function 6,7 but cleaner this
6754  *                        way.
6755  *              b.  Write zero+valid to the entire ILT.
6756  *              c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6757  *                  VNIC3 (of that port). The range allocated will be the
6758  *                  entire ILT. This is needed to prevent  ILT range error.
6759  *      2.  Any PF driver load flow:
6760  *              a.  ILT update with the physical addresses of the allocated
6761  *                  logical pages.
6762  *              b.  Wait 20msec. - note that this timeout is needed to make
6763  *                  sure there are no requests in one of the PXP internal
6764  *                  queues with "old" ILT addresses.
6765  *              c.  PF enable in the PGLC.
6766  *              d.  Clear the was_error of the PF in the PGLC. (could have
6767  *                  occurred while driver was down)
6768  *              e.  PF enable in the CFC (WEAK + STRONG)
6769  *              f.  Timers scan enable
6770  *      3.  PF driver unload flow:
6771  *              a.  Clear the Timers scan_en.
6772  *              b.  Polling for scan_on=0 for that PF.
6773  *              c.  Clear the PF enable bit in the PXP.
6774  *              d.  Clear the PF enable in the CFC (WEAK + STRONG)
6775  *              e.  Write zero+valid to all ILT entries (The valid bit must
6776  *                  stay set)
6777  *              f.  If this is VNIC 3 of a port then also init
6778  *                  first_timers_ilt_entry to zero and last_timers_ilt_entry
6779  *                  to the last entry in the ILT.
6780  *
6781  *      Notes:
6782  *      Currently the PF error in the PGLC is non recoverable.
6783  *      In the future the there will be a recovery routine for this error.
6784  *      Currently attention is masked.
6785  *      Having an MCP lock on the load/unload process does not guarantee that
6786  *      there is no Timer disable during Func6/7 enable. This is because the
6787  *      Timers scan is currently being cleared by the MCP on FLR.
6788  *      Step 2.d can be done only for PF6/7 and the driver can also check if
6789  *      there is error before clearing it. But the flow above is simpler and
6790  *      more general.
6791  *      All ILT entries are written by zero+valid and not just PF6/7
6792  *      ILT entries since in the future the ILT entries allocation for
6793  *      PF-s might be dynamic.
6794  */
6795                 struct ilt_client_info ilt_cli;
6796                 struct bnx2x_ilt ilt;
6797                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6798                 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6799
6800                 /* initialize dummy TM client */
6801                 ilt_cli.start = 0;
6802                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6803                 ilt_cli.client_num = ILT_CLIENT_TM;
6804
6805                 /* Step 1: set zeroes to all ilt page entries with valid bit on
6806                  * Step 2: set the timers first/last ilt entry to point
6807                  * to the entire range to prevent ILT range error for 3rd/4th
6808                  * vnic (this code assumes existence of the vnic)
6809                  *
6810                  * both steps performed by call to bnx2x_ilt_client_init_op()
6811                  * with dummy TM client
6812                  *
6813                  * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6814                  * and his brother are split registers
6815                  */
6816                 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6817                 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6818                 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6819
6820                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6821                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6822                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6823         }
6824
6825         REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6826         REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6827
6828         if (!CHIP_IS_E1x(bp)) {
6829                 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6830                                 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6831                 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6832
6833                 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6834
6835                 /* let the HW do it's magic ... */
6836                 do {
6837                         msleep(200);
6838                         val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6839                 } while (factor-- && (val != 1));
6840
6841                 if (val != 1) {
6842                         BNX2X_ERR("ATC_INIT failed\n");
6843                         return -EBUSY;
6844                 }
6845         }
6846
6847         bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6848
6849         bnx2x_iov_init_dmae(bp);
6850
6851         /* clean the DMAE memory */
6852         bp->dmae_ready = 1;
6853         bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6854
6855         bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6856
6857         bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6858
6859         bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6860
6861         bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6862
6863         bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6864         bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6865         bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6866         bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6867
6868         bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6869
6870         /* QM queues pointers table */
6871         bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6872
6873         /* soft reset pulse */
6874         REG_WR(bp, QM_REG_SOFT_RESET, 1);
6875         REG_WR(bp, QM_REG_SOFT_RESET, 0);
6876
6877         if (CNIC_SUPPORT(bp))
6878                 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6879
6880         bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6881         REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6882         if (!CHIP_REV_IS_SLOW(bp))
6883                 /* enable hw interrupt from doorbell Q */
6884                 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6885
6886         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6887
6888         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6889         REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6890
6891         if (!CHIP_IS_E1(bp))
6892                 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6893
6894         if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
6895                 if (IS_MF_AFEX(bp)) {
6896                         /* configure that VNTag and VLAN headers must be
6897                          * received in afex mode
6898                          */
6899                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
6900                         REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
6901                         REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
6902                         REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
6903                         REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
6904                 } else {
6905                         /* Bit-map indicating which L2 hdrs may appear
6906                          * after the basic Ethernet header
6907                          */
6908                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6909                                bp->path_has_ovlan ? 7 : 6);
6910                 }
6911         }
6912
6913         bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6914         bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6915         bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6916         bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6917
6918         if (!CHIP_IS_E1x(bp)) {
6919                 /* reset VFC memories */
6920                 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6921                            VFC_MEMORIES_RST_REG_CAM_RST |
6922                            VFC_MEMORIES_RST_REG_RAM_RST);
6923                 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6924                            VFC_MEMORIES_RST_REG_CAM_RST |
6925                            VFC_MEMORIES_RST_REG_RAM_RST);
6926
6927                 msleep(20);
6928         }
6929
6930         bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6931         bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6932         bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6933         bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6934
6935         /* sync semi rtc */
6936         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6937                0x80000000);
6938         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6939                0x80000000);
6940
6941         bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6942         bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6943         bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6944
6945         if (!CHIP_IS_E1x(bp)) {
6946                 if (IS_MF_AFEX(bp)) {
6947                         /* configure that VNTag and VLAN headers must be
6948                          * sent in afex mode
6949                          */
6950                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
6951                         REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
6952                         REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
6953                         REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
6954                         REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
6955                 } else {
6956                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6957                                bp->path_has_ovlan ? 7 : 6);
6958                 }
6959         }
6960
6961         REG_WR(bp, SRC_REG_SOFT_RST, 1);
6962
6963         bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6964
6965         if (CNIC_SUPPORT(bp)) {
6966                 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6967                 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6968                 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6969                 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6970                 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6971                 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6972                 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6973                 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6974                 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6975                 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6976         }
6977         REG_WR(bp, SRC_REG_SOFT_RST, 0);
6978
6979         if (sizeof(union cdu_context) != 1024)
6980                 /* we currently assume that a context is 1024 bytes */
6981                 dev_alert(&bp->pdev->dev,
6982                           "please adjust the size of cdu_context(%ld)\n",
6983                           (long)sizeof(union cdu_context));
6984
6985         bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6986         val = (4 << 24) + (0 << 12) + 1024;
6987         REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
6988
6989         bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
6990         REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
6991         /* enable context validation interrupt from CFC */
6992         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6993
6994         /* set the thresholds to prevent CFC/CDU race */
6995         REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
6996
6997         bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
6998
6999         if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7000                 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7001
7002         bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7003         bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7004
7005         /* Reset PCIE errors for debug */
7006         REG_WR(bp, 0x2814, 0xffffffff);
7007         REG_WR(bp, 0x3820, 0xffffffff);
7008
7009         if (!CHIP_IS_E1x(bp)) {
7010                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7011                            (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7012                                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7013                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7014                            (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7015                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7016                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7017                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7018                            (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7019                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7020                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7021         }
7022
7023         bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7024         if (!CHIP_IS_E1(bp)) {
7025                 /* in E3 this done in per-port section */
7026                 if (!CHIP_IS_E3(bp))
7027                         REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7028         }
7029         if (CHIP_IS_E1H(bp))
7030                 /* not applicable for E2 (and above ...) */
7031                 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7032
7033         if (CHIP_REV_IS_SLOW(bp))
7034                 msleep(200);
7035
7036         /* finish CFC init */
7037         val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7038         if (val != 1) {
7039                 BNX2X_ERR("CFC LL_INIT failed\n");
7040                 return -EBUSY;
7041         }
7042         val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7043         if (val != 1) {
7044                 BNX2X_ERR("CFC AC_INIT failed\n");
7045                 return -EBUSY;
7046         }
7047         val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7048         if (val != 1) {
7049                 BNX2X_ERR("CFC CAM_INIT failed\n");
7050                 return -EBUSY;
7051         }
7052         REG_WR(bp, CFC_REG_DEBUG0, 0);
7053
7054         if (CHIP_IS_E1(bp)) {
7055                 /* read NIG statistic
7056                    to see if this is our first up since powerup */
7057                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7058                 val = *bnx2x_sp(bp, wb_data[0]);
7059
7060                 /* do internal memory self test */
7061                 if ((val == 0) && bnx2x_int_mem_test(bp)) {
7062                         BNX2X_ERR("internal mem self test failed\n");
7063                         return -EBUSY;
7064                 }
7065         }
7066
7067         bnx2x_setup_fan_failure_detection(bp);
7068
7069         /* clear PXP2 attentions */
7070         REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7071
7072         bnx2x_enable_blocks_attention(bp);
7073         bnx2x_enable_blocks_parity(bp);
7074
7075         if (!BP_NOMCP(bp)) {
7076                 if (CHIP_IS_E1x(bp))
7077                         bnx2x__common_init_phy(bp);
7078         } else
7079                 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7080
7081         return 0;
7082 }
7083
7084 /**
7085  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7086  *
7087  * @bp:         driver handle
7088  */
7089 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7090 {
7091         int rc = bnx2x_init_hw_common(bp);
7092
7093         if (rc)
7094                 return rc;
7095
7096         /* In E2 2-PORT mode, same ext phy is used for the two paths */
7097         if (!BP_NOMCP(bp))
7098                 bnx2x__common_init_phy(bp);
7099
7100         return 0;
7101 }
7102
7103 static int bnx2x_init_hw_port(struct bnx2x *bp)
7104 {
7105         int port = BP_PORT(bp);
7106         int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7107         u32 low, high;
7108         u32 val;
7109
7110         DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7111
7112         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7113
7114         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7115         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7116         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7117
7118         /* Timers bug workaround: disables the pf_master bit in pglue at
7119          * common phase, we need to enable it here before any dmae access are
7120          * attempted. Therefore we manually added the enable-master to the
7121          * port phase (it also happens in the function phase)
7122          */
7123         if (!CHIP_IS_E1x(bp))
7124                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7125
7126         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7127         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7128         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7129         bnx2x_init_block(bp, BLOCK_QM, init_phase);
7130
7131         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7132         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7133         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7134         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7135
7136         /* QM cid (connection) count */
7137         bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7138
7139         if (CNIC_SUPPORT(bp)) {
7140                 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7141                 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7142                 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7143         }
7144
7145         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7146
7147         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7148
7149         if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7150
7151                 if (IS_MF(bp))
7152                         low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7153                 else if (bp->dev->mtu > 4096) {
7154                         if (bp->flags & ONE_PORT_FLAG)
7155                                 low = 160;
7156                         else {
7157                                 val = bp->dev->mtu;
7158                                 /* (24*1024 + val*4)/256 */
7159                                 low = 96 + (val/64) +
7160                                                 ((val % 64) ? 1 : 0);
7161                         }
7162                 } else
7163                         low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7164                 high = low + 56;        /* 14*1024/256 */
7165                 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7166                 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7167         }
7168
7169         if (CHIP_MODE_IS_4_PORT(bp))
7170                 REG_WR(bp, (BP_PORT(bp) ?
7171                             BRB1_REG_MAC_GUARANTIED_1 :
7172                             BRB1_REG_MAC_GUARANTIED_0), 40);
7173
7174         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7175         if (CHIP_IS_E3B0(bp)) {
7176                 if (IS_MF_AFEX(bp)) {
7177                         /* configure headers for AFEX mode */
7178                         REG_WR(bp, BP_PORT(bp) ?
7179                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7180                                PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7181                         REG_WR(bp, BP_PORT(bp) ?
7182                                PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7183                                PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7184                         REG_WR(bp, BP_PORT(bp) ?
7185                                PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7186                                PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7187                 } else {
7188                         /* Ovlan exists only if we are in multi-function +
7189                          * switch-dependent mode, in switch-independent there
7190                          * is no ovlan headers
7191                          */
7192                         REG_WR(bp, BP_PORT(bp) ?
7193                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7194                                PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7195                                (bp->path_has_ovlan ? 7 : 6));
7196                 }
7197         }
7198
7199         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7200         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7201         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7202         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7203
7204         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7205         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7206         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7207         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7208
7209         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7210         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7211
7212         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7213
7214         if (CHIP_IS_E1x(bp)) {
7215                 /* configure PBF to work without PAUSE mtu 9000 */
7216                 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7217
7218                 /* update threshold */
7219                 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7220                 /* update init credit */
7221                 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7222
7223                 /* probe changes */
7224                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7225                 udelay(50);
7226                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7227         }
7228
7229         if (CNIC_SUPPORT(bp))
7230                 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7231
7232         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7233         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7234
7235         if (CHIP_IS_E1(bp)) {
7236                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7237                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7238         }
7239         bnx2x_init_block(bp, BLOCK_HC, init_phase);
7240
7241         bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7242
7243         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7244         /* init aeu_mask_attn_func_0/1:
7245          *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7246          *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7247          *             bits 4-7 are used for "per vn group attention" */
7248         val = IS_MF(bp) ? 0xF7 : 0x7;
7249         /* Enable DCBX attention for all but E1 */
7250         val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7251         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7252
7253         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7254
7255         if (!CHIP_IS_E1x(bp)) {
7256                 /* Bit-map indicating which L2 hdrs may appear after the
7257                  * basic Ethernet header
7258                  */
7259                 if (IS_MF_AFEX(bp))
7260                         REG_WR(bp, BP_PORT(bp) ?
7261                                NIG_REG_P1_HDRS_AFTER_BASIC :
7262                                NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7263                 else
7264                         REG_WR(bp, BP_PORT(bp) ?
7265                                NIG_REG_P1_HDRS_AFTER_BASIC :
7266                                NIG_REG_P0_HDRS_AFTER_BASIC,
7267                                IS_MF_SD(bp) ? 7 : 6);
7268
7269                 if (CHIP_IS_E3(bp))
7270                         REG_WR(bp, BP_PORT(bp) ?
7271                                    NIG_REG_LLH1_MF_MODE :
7272                                    NIG_REG_LLH_MF_MODE, IS_MF(bp));
7273         }
7274         if (!CHIP_IS_E3(bp))
7275                 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7276
7277         if (!CHIP_IS_E1(bp)) {
7278                 /* 0x2 disable mf_ov, 0x1 enable */
7279                 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7280                        (IS_MF_SD(bp) ? 0x1 : 0x2));
7281
7282                 if (!CHIP_IS_E1x(bp)) {
7283                         val = 0;
7284                         switch (bp->mf_mode) {
7285                         case MULTI_FUNCTION_SD:
7286                                 val = 1;
7287                                 break;
7288                         case MULTI_FUNCTION_SI:
7289                         case MULTI_FUNCTION_AFEX:
7290                                 val = 2;
7291                                 break;
7292                         }
7293
7294                         REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7295                                                   NIG_REG_LLH0_CLS_TYPE), val);
7296                 }
7297                 {
7298                         REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7299                         REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7300                         REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7301                 }
7302         }
7303
7304         /* If SPIO5 is set to generate interrupts, enable it for this port */
7305         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7306         if (val & MISC_SPIO_SPIO5) {
7307                 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7308                                        MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7309                 val = REG_RD(bp, reg_addr);
7310                 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7311                 REG_WR(bp, reg_addr, val);
7312         }
7313
7314         return 0;
7315 }
7316
7317 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7318 {
7319         int reg;
7320         u32 wb_write[2];
7321
7322         if (CHIP_IS_E1(bp))
7323                 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7324         else
7325                 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7326
7327         wb_write[0] = ONCHIP_ADDR1(addr);
7328         wb_write[1] = ONCHIP_ADDR2(addr);
7329         REG_WR_DMAE(bp, reg, wb_write, 2);
7330 }
7331
7332 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7333 {
7334         u32 data, ctl, cnt = 100;
7335         u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7336         u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7337         u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7338         u32 sb_bit =  1 << (idu_sb_id%32);
7339         u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7340         u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7341
7342         /* Not supported in BC mode */
7343         if (CHIP_INT_MODE_IS_BC(bp))
7344                 return;
7345
7346         data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7347                         << IGU_REGULAR_CLEANUP_TYPE_SHIFT)      |
7348                 IGU_REGULAR_CLEANUP_SET                         |
7349                 IGU_REGULAR_BCLEANUP;
7350
7351         ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT         |
7352               func_encode << IGU_CTRL_REG_FID_SHIFT             |
7353               IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7354
7355         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7356                          data, igu_addr_data);
7357         REG_WR(bp, igu_addr_data, data);
7358         mmiowb();
7359         barrier();
7360         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7361                           ctl, igu_addr_ctl);
7362         REG_WR(bp, igu_addr_ctl, ctl);
7363         mmiowb();
7364         barrier();
7365
7366         /* wait for clean up to finish */
7367         while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7368                 msleep(20);
7369
7370         if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7371                 DP(NETIF_MSG_HW,
7372                    "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7373                           idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7374         }
7375 }
7376
7377 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7378 {
7379         bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7380 }
7381
7382 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7383 {
7384         u32 i, base = FUNC_ILT_BASE(func);
7385         for (i = base; i < base + ILT_PER_FUNC; i++)
7386                 bnx2x_ilt_wr(bp, i, 0);
7387 }
7388
7389 static void bnx2x_init_searcher(struct bnx2x *bp)
7390 {
7391         int port = BP_PORT(bp);
7392         bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7393         /* T1 hash bits value determines the T1 number of entries */
7394         REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7395 }
7396
7397 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7398 {
7399         int rc;
7400         struct bnx2x_func_state_params func_params = {NULL};
7401         struct bnx2x_func_switch_update_params *switch_update_params =
7402                 &func_params.params.switch_update;
7403
7404         /* Prepare parameters for function state transitions */
7405         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7406         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7407
7408         func_params.f_obj = &bp->func_obj;
7409         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7410
7411         /* Function parameters */
7412         switch_update_params->suspend = suspend;
7413
7414         rc = bnx2x_func_state_change(bp, &func_params);
7415
7416         return rc;
7417 }
7418
7419 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7420 {
7421         int rc, i, port = BP_PORT(bp);
7422         int vlan_en = 0, mac_en[NUM_MACS];
7423
7424         /* Close input from network */
7425         if (bp->mf_mode == SINGLE_FUNCTION) {
7426                 bnx2x_set_rx_filter(&bp->link_params, 0);
7427         } else {
7428                 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7429                                    NIG_REG_LLH0_FUNC_EN);
7430                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7431                           NIG_REG_LLH0_FUNC_EN, 0);
7432                 for (i = 0; i < NUM_MACS; i++) {
7433                         mac_en[i] = REG_RD(bp, port ?
7434                                              (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7435                                               4 * i) :
7436                                              (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7437                                               4 * i));
7438                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7439                                               4 * i) :
7440                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7441                 }
7442         }
7443
7444         /* Close BMC to host */
7445         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7446                NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7447
7448         /* Suspend Tx switching to the PF. Completion of this ramrod
7449          * further guarantees that all the packets of that PF / child
7450          * VFs in BRB were processed by the Parser, so it is safe to
7451          * change the NIC_MODE register.
7452          */
7453         rc = bnx2x_func_switch_update(bp, 1);
7454         if (rc) {
7455                 BNX2X_ERR("Can't suspend tx-switching!\n");
7456                 return rc;
7457         }
7458
7459         /* Change NIC_MODE register */
7460         REG_WR(bp, PRS_REG_NIC_MODE, 0);
7461
7462         /* Open input from network */
7463         if (bp->mf_mode == SINGLE_FUNCTION) {
7464                 bnx2x_set_rx_filter(&bp->link_params, 1);
7465         } else {
7466                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7467                           NIG_REG_LLH0_FUNC_EN, vlan_en);
7468                 for (i = 0; i < NUM_MACS; i++) {
7469                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7470                                               4 * i) :
7471                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7472                                   mac_en[i]);
7473                 }
7474         }
7475
7476         /* Enable BMC to host */
7477         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7478                NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7479
7480         /* Resume Tx switching to the PF */
7481         rc = bnx2x_func_switch_update(bp, 0);
7482         if (rc) {
7483                 BNX2X_ERR("Can't resume tx-switching!\n");
7484                 return rc;
7485         }
7486
7487         DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7488         return 0;
7489 }
7490
7491 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7492 {
7493         int rc;
7494
7495         bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7496
7497         if (CONFIGURE_NIC_MODE(bp)) {
7498                 /* Configure searcher as part of function hw init */
7499                 bnx2x_init_searcher(bp);
7500
7501                 /* Reset NIC mode */
7502                 rc = bnx2x_reset_nic_mode(bp);
7503                 if (rc)
7504                         BNX2X_ERR("Can't change NIC mode!\n");
7505                 return rc;
7506         }
7507
7508         return 0;
7509 }
7510
7511 static int bnx2x_init_hw_func(struct bnx2x *bp)
7512 {
7513         int port = BP_PORT(bp);
7514         int func = BP_FUNC(bp);
7515         int init_phase = PHASE_PF0 + func;
7516         struct bnx2x_ilt *ilt = BP_ILT(bp);
7517         u16 cdu_ilt_start;
7518         u32 addr, val;
7519         u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7520         int i, main_mem_width, rc;
7521
7522         DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7523
7524         /* FLR cleanup - hmmm */
7525         if (!CHIP_IS_E1x(bp)) {
7526                 rc = bnx2x_pf_flr_clnup(bp);
7527                 if (rc) {
7528                         bnx2x_fw_dump(bp);
7529                         return rc;
7530                 }
7531         }
7532
7533         /* set MSI reconfigure capability */
7534         if (bp->common.int_block == INT_BLOCK_HC) {
7535                 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7536                 val = REG_RD(bp, addr);
7537                 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7538                 REG_WR(bp, addr, val);
7539         }
7540
7541         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7542         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7543
7544         ilt = BP_ILT(bp);
7545         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7546
7547         if (IS_SRIOV(bp))
7548                 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7549         cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7550
7551         /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7552          * those of the VFs, so start line should be reset
7553          */
7554         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7555         for (i = 0; i < L2_ILT_LINES(bp); i++) {
7556                 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7557                 ilt->lines[cdu_ilt_start + i].page_mapping =
7558                         bp->context[i].cxt_mapping;
7559                 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7560         }
7561
7562         bnx2x_ilt_init_op(bp, INITOP_SET);
7563
7564         if (!CONFIGURE_NIC_MODE(bp)) {
7565                 bnx2x_init_searcher(bp);
7566                 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7567                 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7568         } else {
7569                 /* Set NIC mode */
7570                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
7571                 DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7572         }
7573
7574         if (!CHIP_IS_E1x(bp)) {
7575                 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7576
7577                 /* Turn on a single ISR mode in IGU if driver is going to use
7578                  * INT#x or MSI
7579                  */
7580                 if (!(bp->flags & USING_MSIX_FLAG))
7581                         pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7582                 /*
7583                  * Timers workaround bug: function init part.
7584                  * Need to wait 20msec after initializing ILT,
7585                  * needed to make sure there are no requests in
7586                  * one of the PXP internal queues with "old" ILT addresses
7587                  */
7588                 msleep(20);
7589                 /*
7590                  * Master enable - Due to WB DMAE writes performed before this
7591                  * register is re-initialized as part of the regular function
7592                  * init
7593                  */
7594                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7595                 /* Enable the function in IGU */
7596                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7597         }
7598
7599         bp->dmae_ready = 1;
7600
7601         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7602
7603         if (!CHIP_IS_E1x(bp))
7604                 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7605
7606         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7607         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7608         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7609         bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7610         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7611         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7612         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7613         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7614         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7615         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7616         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7617         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7618         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7619
7620         if (!CHIP_IS_E1x(bp))
7621                 REG_WR(bp, QM_REG_PF_EN, 1);
7622
7623         if (!CHIP_IS_E1x(bp)) {
7624                 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7625                 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7626                 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7627                 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7628         }
7629         bnx2x_init_block(bp, BLOCK_QM, init_phase);
7630
7631         bnx2x_init_block(bp, BLOCK_TM, init_phase);
7632         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7633
7634         bnx2x_iov_init_dq(bp);
7635
7636         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7637         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7638         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7639         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7640         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7641         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7642         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7643         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7644         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7645         if (!CHIP_IS_E1x(bp))
7646                 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
7647
7648         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7649
7650         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7651
7652         if (!CHIP_IS_E1x(bp))
7653                 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
7654
7655         if (IS_MF(bp)) {
7656                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7657                 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
7658         }
7659
7660         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7661
7662         /* HC init per function */
7663         if (bp->common.int_block == INT_BLOCK_HC) {
7664                 if (CHIP_IS_E1H(bp)) {
7665                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7666
7667                         REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7668                         REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7669                 }
7670                 bnx2x_init_block(bp, BLOCK_HC, init_phase);
7671
7672         } else {
7673                 int num_segs, sb_idx, prod_offset;
7674
7675                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7676
7677                 if (!CHIP_IS_E1x(bp)) {
7678                         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7679                         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7680                 }
7681
7682                 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7683
7684                 if (!CHIP_IS_E1x(bp)) {
7685                         int dsb_idx = 0;
7686                         /**
7687                          * Producer memory:
7688                          * E2 mode: address 0-135 match to the mapping memory;
7689                          * 136 - PF0 default prod; 137 - PF1 default prod;
7690                          * 138 - PF2 default prod; 139 - PF3 default prod;
7691                          * 140 - PF0 attn prod;    141 - PF1 attn prod;
7692                          * 142 - PF2 attn prod;    143 - PF3 attn prod;
7693                          * 144-147 reserved.
7694                          *
7695                          * E1.5 mode - In backward compatible mode;
7696                          * for non default SB; each even line in the memory
7697                          * holds the U producer and each odd line hold
7698                          * the C producer. The first 128 producers are for
7699                          * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
7700                          * producers are for the DSB for each PF.
7701                          * Each PF has five segments: (the order inside each
7702                          * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
7703                          * 132-135 C prods; 136-139 X prods; 140-143 T prods;
7704                          * 144-147 attn prods;
7705                          */
7706                         /* non-default-status-blocks */
7707                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7708                                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
7709                         for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
7710                                 prod_offset = (bp->igu_base_sb + sb_idx) *
7711                                         num_segs;
7712
7713                                 for (i = 0; i < num_segs; i++) {
7714                                         addr = IGU_REG_PROD_CONS_MEMORY +
7715                                                         (prod_offset + i) * 4;
7716                                         REG_WR(bp, addr, 0);
7717                                 }
7718                                 /* send consumer update with value 0 */
7719                                 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
7720                                              USTORM_ID, 0, IGU_INT_NOP, 1);
7721                                 bnx2x_igu_clear_sb(bp,
7722                                                    bp->igu_base_sb + sb_idx);
7723                         }
7724
7725                         /* default-status-blocks */
7726                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7727                                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
7728
7729                         if (CHIP_MODE_IS_4_PORT(bp))
7730                                 dsb_idx = BP_FUNC(bp);
7731                         else
7732                                 dsb_idx = BP_VN(bp);
7733
7734                         prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
7735                                        IGU_BC_BASE_DSB_PROD + dsb_idx :
7736                                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
7737
7738                         /*
7739                          * igu prods come in chunks of E1HVN_MAX (4) -
7740                          * does not matters what is the current chip mode
7741                          */
7742                         for (i = 0; i < (num_segs * E1HVN_MAX);
7743                              i += E1HVN_MAX) {
7744                                 addr = IGU_REG_PROD_CONS_MEMORY +
7745                                                         (prod_offset + i)*4;
7746                                 REG_WR(bp, addr, 0);
7747                         }
7748                         /* send consumer update with 0 */
7749                         if (CHIP_INT_MODE_IS_BC(bp)) {
7750                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7751                                              USTORM_ID, 0, IGU_INT_NOP, 1);
7752                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7753                                              CSTORM_ID, 0, IGU_INT_NOP, 1);
7754                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7755                                              XSTORM_ID, 0, IGU_INT_NOP, 1);
7756                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7757                                              TSTORM_ID, 0, IGU_INT_NOP, 1);
7758                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7759                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
7760                         } else {
7761                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7762                                              USTORM_ID, 0, IGU_INT_NOP, 1);
7763                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7764                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
7765                         }
7766                         bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
7767
7768                         /* !!! These should become driver const once
7769                            rf-tool supports split-68 const */
7770                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
7771                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
7772                         REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
7773                         REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
7774                         REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
7775                         REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
7776                 }
7777         }
7778
7779         /* Reset PCIE errors for debug */
7780         REG_WR(bp, 0x2114, 0xffffffff);
7781         REG_WR(bp, 0x2120, 0xffffffff);
7782
7783         if (CHIP_IS_E1x(bp)) {
7784                 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
7785                 main_mem_base = HC_REG_MAIN_MEMORY +
7786                                 BP_PORT(bp) * (main_mem_size * 4);
7787                 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
7788                 main_mem_width = 8;
7789
7790                 val = REG_RD(bp, main_mem_prty_clr);
7791                 if (val)
7792                         DP(NETIF_MSG_HW,
7793                            "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
7794                            val);
7795
7796                 /* Clear "false" parity errors in MSI-X table */
7797                 for (i = main_mem_base;
7798                      i < main_mem_base + main_mem_size * 4;
7799                      i += main_mem_width) {
7800                         bnx2x_read_dmae(bp, i, main_mem_width / 4);
7801                         bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
7802                                          i, main_mem_width / 4);
7803                 }
7804                 /* Clear HC parity attention */
7805                 REG_RD(bp, main_mem_prty_clr);
7806         }
7807
7808 #ifdef BNX2X_STOP_ON_ERROR
7809         /* Enable STORMs SP logging */
7810         REG_WR8(bp, BAR_USTRORM_INTMEM +
7811                USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7812         REG_WR8(bp, BAR_TSTRORM_INTMEM +
7813                TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7814         REG_WR8(bp, BAR_CSTRORM_INTMEM +
7815                CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7816         REG_WR8(bp, BAR_XSTRORM_INTMEM +
7817                XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7818 #endif
7819
7820         bnx2x_phy_probe(&bp->link_params);
7821
7822         return 0;
7823 }
7824
7825 void bnx2x_free_mem_cnic(struct bnx2x *bp)
7826 {
7827         bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
7828
7829         if (!CHIP_IS_E1x(bp))
7830                 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
7831                                sizeof(struct host_hc_status_block_e2));
7832         else
7833                 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
7834                                sizeof(struct host_hc_status_block_e1x));
7835
7836         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7837 }
7838
7839 void bnx2x_free_mem(struct bnx2x *bp)
7840 {
7841         int i;
7842
7843         BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
7844                        sizeof(struct host_sp_status_block));
7845
7846         BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7847                        bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7848
7849         BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
7850                        sizeof(struct bnx2x_slowpath));
7851
7852         for (i = 0; i < L2_ILT_LINES(bp); i++)
7853                 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
7854                                bp->context[i].size);
7855         bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
7856
7857         BNX2X_FREE(bp->ilt->lines);
7858
7859         BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7860
7861         BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7862                        BCM_PAGE_SIZE * NUM_EQ_PAGES);
7863
7864         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7865
7866         bnx2x_iov_free_mem(bp);
7867 }
7868
7869 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
7870 {
7871         if (!CHIP_IS_E1x(bp))
7872                 /* size = the status block + ramrod buffers */
7873                 BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7874                                 sizeof(struct host_hc_status_block_e2));
7875         else
7876                 BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb,
7877                                 &bp->cnic_sb_mapping,
7878                                 sizeof(struct
7879                                        host_hc_status_block_e1x));
7880
7881         if (CONFIGURE_NIC_MODE(bp) && !bp->t2)
7882                 /* allocate searcher T2 table, as it wasn't allocated before */
7883                 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7884
7885         /* write address to which L5 should insert its values */
7886         bp->cnic_eth_dev.addr_drv_info_to_mcp =
7887                 &bp->slowpath->drv_info_to_mcp;
7888
7889         if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
7890                 goto alloc_mem_err;
7891
7892         return 0;
7893
7894 alloc_mem_err:
7895         bnx2x_free_mem_cnic(bp);
7896         BNX2X_ERR("Can't allocate memory\n");
7897         return -ENOMEM;
7898 }
7899
7900 int bnx2x_alloc_mem(struct bnx2x *bp)
7901 {
7902         int i, allocated, context_size;
7903
7904         if (!CONFIGURE_NIC_MODE(bp) && !bp->t2)
7905                 /* allocate searcher T2 table */
7906                 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7907
7908         BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7909                         sizeof(struct host_sp_status_block));
7910
7911         BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7912                         sizeof(struct bnx2x_slowpath));
7913
7914         /* Allocate memory for CDU context:
7915          * This memory is allocated separately and not in the generic ILT
7916          * functions because CDU differs in few aspects:
7917          * 1. There are multiple entities allocating memory for context -
7918          * 'regular' driver, CNIC and SRIOV driver. Each separately controls
7919          * its own ILT lines.
7920          * 2. Since CDU page-size is not a single 4KB page (which is the case
7921          * for the other ILT clients), to be efficient we want to support
7922          * allocation of sub-page-size in the last entry.
7923          * 3. Context pointers are used by the driver to pass to FW / update
7924          * the context (for the other ILT clients the pointers are used just to
7925          * free the memory during unload).
7926          */
7927         context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7928
7929         for (i = 0, allocated = 0; allocated < context_size; i++) {
7930                 bp->context[i].size = min(CDU_ILT_PAGE_SZ,
7931                                           (context_size - allocated));
7932                 BNX2X_PCI_ALLOC(bp->context[i].vcxt,
7933                                 &bp->context[i].cxt_mapping,
7934                                 bp->context[i].size);
7935                 allocated += bp->context[i].size;
7936         }
7937         BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
7938
7939         if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
7940                 goto alloc_mem_err;
7941
7942         if (bnx2x_iov_alloc_mem(bp))
7943                 goto alloc_mem_err;
7944
7945         /* Slow path ring */
7946         BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
7947
7948         /* EQ */
7949         BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
7950                         BCM_PAGE_SIZE * NUM_EQ_PAGES);
7951
7952         return 0;
7953
7954 alloc_mem_err:
7955         bnx2x_free_mem(bp);
7956         BNX2X_ERR("Can't allocate memory\n");
7957         return -ENOMEM;
7958 }
7959
7960 /*
7961  * Init service functions
7962  */
7963
7964 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
7965                       struct bnx2x_vlan_mac_obj *obj, bool set,
7966                       int mac_type, unsigned long *ramrod_flags)
7967 {
7968         int rc;
7969         struct bnx2x_vlan_mac_ramrod_params ramrod_param;
7970
7971         memset(&ramrod_param, 0, sizeof(ramrod_param));
7972
7973         /* Fill general parameters */
7974         ramrod_param.vlan_mac_obj = obj;
7975         ramrod_param.ramrod_flags = *ramrod_flags;
7976
7977         /* Fill a user request section if needed */
7978         if (!test_bit(RAMROD_CONT, ramrod_flags)) {
7979                 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
7980
7981                 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
7982
7983                 /* Set the command: ADD or DEL */
7984                 if (set)
7985                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
7986                 else
7987                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
7988         }
7989
7990         rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
7991
7992         if (rc == -EEXIST) {
7993                 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
7994                 /* do not treat adding same MAC as error */
7995                 rc = 0;
7996         } else if (rc < 0)
7997                 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
7998
7999         return rc;
8000 }
8001
8002 int bnx2x_del_all_macs(struct bnx2x *bp,
8003                        struct bnx2x_vlan_mac_obj *mac_obj,
8004                        int mac_type, bool wait_for_comp)
8005 {
8006         int rc;
8007         unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8008
8009         /* Wait for completion of requested */
8010         if (wait_for_comp)
8011                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8012
8013         /* Set the mac type of addresses we want to clear */
8014         __set_bit(mac_type, &vlan_mac_flags);
8015
8016         rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8017         if (rc < 0)
8018                 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8019
8020         return rc;
8021 }
8022
8023 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8024 {
8025         if (is_zero_ether_addr(bp->dev->dev_addr) &&
8026             (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
8027                 DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
8028                    "Ignoring Zero MAC for STORAGE SD mode\n");
8029                 return 0;
8030         }
8031
8032         if (IS_PF(bp)) {
8033                 unsigned long ramrod_flags = 0;
8034
8035                 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8036                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8037                 return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8038                                          &bp->sp_objs->mac_obj, set,
8039                                          BNX2X_ETH_MAC, &ramrod_flags);
8040         } else { /* vf */
8041                 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8042                                              bp->fp->index, true);
8043         }
8044 }
8045
8046 int bnx2x_setup_leading(struct bnx2x *bp)
8047 {
8048         return bnx2x_setup_queue(bp, &bp->fp[0], 1);
8049 }
8050
8051 /**
8052  * bnx2x_set_int_mode - configure interrupt mode
8053  *
8054  * @bp:         driver handle
8055  *
8056  * In case of MSI-X it will also try to enable MSI-X.
8057  */
8058 int bnx2x_set_int_mode(struct bnx2x *bp)
8059 {
8060         int rc = 0;
8061
8062         if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX)
8063                 return -EINVAL;
8064
8065         switch (int_mode) {
8066         case BNX2X_INT_MODE_MSIX:
8067                 /* attempt to enable msix */
8068                 rc = bnx2x_enable_msix(bp);
8069
8070                 /* msix attained */
8071                 if (!rc)
8072                         return 0;
8073
8074                 /* vfs use only msix */
8075                 if (rc && IS_VF(bp))
8076                         return rc;
8077
8078                 /* failed to enable multiple MSI-X */
8079                 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8080                                bp->num_queues,
8081                                1 + bp->num_cnic_queues);
8082
8083                 /* falling through... */
8084         case BNX2X_INT_MODE_MSI:
8085                 bnx2x_enable_msi(bp);
8086
8087                 /* falling through... */
8088         case BNX2X_INT_MODE_INTX:
8089                 bp->num_ethernet_queues = 1;
8090                 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8091                 BNX2X_DEV_INFO("set number of queues to 1\n");
8092                 break;
8093         default:
8094                 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8095                 return -EINVAL;
8096         }
8097         return 0;
8098 }
8099
8100 /* must be called prior to any HW initializations */
8101 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8102 {
8103         if (IS_SRIOV(bp))
8104                 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8105         return L2_ILT_LINES(bp);
8106 }
8107
8108 void bnx2x_ilt_set_info(struct bnx2x *bp)
8109 {
8110         struct ilt_client_info *ilt_client;
8111         struct bnx2x_ilt *ilt = BP_ILT(bp);
8112         u16 line = 0;
8113
8114         ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8115         DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8116
8117         /* CDU */
8118         ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8119         ilt_client->client_num = ILT_CLIENT_CDU;
8120         ilt_client->page_size = CDU_ILT_PAGE_SZ;
8121         ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8122         ilt_client->start = line;
8123         line += bnx2x_cid_ilt_lines(bp);
8124
8125         if (CNIC_SUPPORT(bp))
8126                 line += CNIC_ILT_LINES;
8127         ilt_client->end = line - 1;
8128
8129         DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8130            ilt_client->start,
8131            ilt_client->end,
8132            ilt_client->page_size,
8133            ilt_client->flags,
8134            ilog2(ilt_client->page_size >> 12));
8135
8136         /* QM */
8137         if (QM_INIT(bp->qm_cid_count)) {
8138                 ilt_client = &ilt->clients[ILT_CLIENT_QM];
8139                 ilt_client->client_num = ILT_CLIENT_QM;
8140                 ilt_client->page_size = QM_ILT_PAGE_SZ;
8141                 ilt_client->flags = 0;
8142                 ilt_client->start = line;
8143
8144                 /* 4 bytes for each cid */
8145                 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8146                                                          QM_ILT_PAGE_SZ);
8147
8148                 ilt_client->end = line - 1;
8149
8150                 DP(NETIF_MSG_IFUP,
8151                    "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8152                    ilt_client->start,
8153                    ilt_client->end,
8154                    ilt_client->page_size,
8155                    ilt_client->flags,
8156                    ilog2(ilt_client->page_size >> 12));
8157         }
8158
8159         if (CNIC_SUPPORT(bp)) {
8160                 /* SRC */
8161                 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8162                 ilt_client->client_num = ILT_CLIENT_SRC;
8163                 ilt_client->page_size = SRC_ILT_PAGE_SZ;
8164                 ilt_client->flags = 0;
8165                 ilt_client->start = line;
8166                 line += SRC_ILT_LINES;
8167                 ilt_client->end = line - 1;
8168
8169                 DP(NETIF_MSG_IFUP,
8170                    "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8171                    ilt_client->start,
8172                    ilt_client->end,
8173                    ilt_client->page_size,
8174                    ilt_client->flags,
8175                    ilog2(ilt_client->page_size >> 12));
8176
8177                 /* TM */
8178                 ilt_client = &ilt->clients[ILT_CLIENT_TM];
8179                 ilt_client->client_num = ILT_CLIENT_TM;
8180                 ilt_client->page_size = TM_ILT_PAGE_SZ;
8181                 ilt_client->flags = 0;
8182                 ilt_client->start = line;
8183                 line += TM_ILT_LINES;
8184                 ilt_client->end = line - 1;
8185
8186                 DP(NETIF_MSG_IFUP,
8187                    "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8188                    ilt_client->start,
8189                    ilt_client->end,
8190                    ilt_client->page_size,
8191                    ilt_client->flags,
8192                    ilog2(ilt_client->page_size >> 12));
8193         }
8194
8195         BUG_ON(line > ILT_MAX_LINES);
8196 }
8197
8198 /**
8199  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8200  *
8201  * @bp:                 driver handle
8202  * @fp:                 pointer to fastpath
8203  * @init_params:        pointer to parameters structure
8204  *
8205  * parameters configured:
8206  *      - HC configuration
8207  *      - Queue's CDU context
8208  */
8209 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8210         struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8211 {
8212         u8 cos;
8213         int cxt_index, cxt_offset;
8214
8215         /* FCoE Queue uses Default SB, thus has no HC capabilities */
8216         if (!IS_FCOE_FP(fp)) {
8217                 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8218                 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8219
8220                 /* If HC is supported, enable host coalescing in the transition
8221                  * to INIT state.
8222                  */
8223                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8224                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8225
8226                 /* HC rate */
8227                 init_params->rx.hc_rate = bp->rx_ticks ?
8228                         (1000000 / bp->rx_ticks) : 0;
8229                 init_params->tx.hc_rate = bp->tx_ticks ?
8230                         (1000000 / bp->tx_ticks) : 0;
8231
8232                 /* FW SB ID */
8233                 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8234                         fp->fw_sb_id;
8235
8236                 /*
8237                  * CQ index among the SB indices: FCoE clients uses the default
8238                  * SB, therefore it's different.
8239                  */
8240                 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8241                 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8242         }
8243
8244         /* set maximum number of COSs supported by this queue */
8245         init_params->max_cos = fp->max_cos;
8246
8247         DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8248             fp->index, init_params->max_cos);
8249
8250         /* set the context pointers queue object */
8251         for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8252                 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8253                 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8254                                 ILT_PAGE_CIDS);
8255                 init_params->cxts[cos] =
8256                         &bp->context[cxt_index].vcxt[cxt_offset].eth;
8257         }
8258 }
8259
8260 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8261                         struct bnx2x_queue_state_params *q_params,
8262                         struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8263                         int tx_index, bool leading)
8264 {
8265         memset(tx_only_params, 0, sizeof(*tx_only_params));
8266
8267         /* Set the command */
8268         q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8269
8270         /* Set tx-only QUEUE flags: don't zero statistics */
8271         tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8272
8273         /* choose the index of the cid to send the slow path on */
8274         tx_only_params->cid_index = tx_index;
8275
8276         /* Set general TX_ONLY_SETUP parameters */
8277         bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8278
8279         /* Set Tx TX_ONLY_SETUP parameters */
8280         bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8281
8282         DP(NETIF_MSG_IFUP,
8283            "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8284            tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8285            q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8286            tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8287
8288         /* send the ramrod */
8289         return bnx2x_queue_state_change(bp, q_params);
8290 }
8291
8292 /**
8293  * bnx2x_setup_queue - setup queue
8294  *
8295  * @bp:         driver handle
8296  * @fp:         pointer to fastpath
8297  * @leading:    is leading
8298  *
8299  * This function performs 2 steps in a Queue state machine
8300  *      actually: 1) RESET->INIT 2) INIT->SETUP
8301  */
8302
8303 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8304                        bool leading)
8305 {
8306         struct bnx2x_queue_state_params q_params = {NULL};
8307         struct bnx2x_queue_setup_params *setup_params =
8308                                                 &q_params.params.setup;
8309         struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8310                                                 &q_params.params.tx_only;
8311         int rc;
8312         u8 tx_index;
8313
8314         DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8315
8316         /* reset IGU state skip FCoE L2 queue */
8317         if (!IS_FCOE_FP(fp))
8318                 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8319                              IGU_INT_ENABLE, 0);
8320
8321         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8322         /* We want to wait for completion in this context */
8323         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8324
8325         /* Prepare the INIT parameters */
8326         bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8327
8328         /* Set the command */
8329         q_params.cmd = BNX2X_Q_CMD_INIT;
8330
8331         /* Change the state to INIT */
8332         rc = bnx2x_queue_state_change(bp, &q_params);
8333         if (rc) {
8334                 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8335                 return rc;
8336         }
8337
8338         DP(NETIF_MSG_IFUP, "init complete\n");
8339
8340         /* Now move the Queue to the SETUP state... */
8341         memset(setup_params, 0, sizeof(*setup_params));
8342
8343         /* Set QUEUE flags */
8344         setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8345
8346         /* Set general SETUP parameters */
8347         bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8348                                 FIRST_TX_COS_INDEX);
8349
8350         bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8351                             &setup_params->rxq_params);
8352
8353         bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8354                            FIRST_TX_COS_INDEX);
8355
8356         /* Set the command */
8357         q_params.cmd = BNX2X_Q_CMD_SETUP;
8358
8359         if (IS_FCOE_FP(fp))
8360                 bp->fcoe_init = true;
8361
8362         /* Change the state to SETUP */
8363         rc = bnx2x_queue_state_change(bp, &q_params);
8364         if (rc) {
8365                 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8366                 return rc;
8367         }
8368
8369         /* loop through the relevant tx-only indices */
8370         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8371               tx_index < fp->max_cos;
8372               tx_index++) {
8373
8374                 /* prepare and send tx-only ramrod*/
8375                 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8376                                           tx_only_params, tx_index, leading);
8377                 if (rc) {
8378                         BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8379                                   fp->index, tx_index);
8380                         return rc;
8381                 }
8382         }
8383
8384         return rc;
8385 }
8386
8387 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8388 {
8389         struct bnx2x_fastpath *fp = &bp->fp[index];
8390         struct bnx2x_fp_txdata *txdata;
8391         struct bnx2x_queue_state_params q_params = {NULL};
8392         int rc, tx_index;
8393
8394         DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8395
8396         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8397         /* We want to wait for completion in this context */
8398         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8399
8400         /* close tx-only connections */
8401         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8402              tx_index < fp->max_cos;
8403              tx_index++){
8404
8405                 /* ascertain this is a normal queue*/
8406                 txdata = fp->txdata_ptr[tx_index];
8407
8408                 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8409                                                         txdata->txq_index);
8410
8411                 /* send halt terminate on tx-only connection */
8412                 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8413                 memset(&q_params.params.terminate, 0,
8414                        sizeof(q_params.params.terminate));
8415                 q_params.params.terminate.cid_index = tx_index;
8416
8417                 rc = bnx2x_queue_state_change(bp, &q_params);
8418                 if (rc)
8419                         return rc;
8420
8421                 /* send halt terminate on tx-only connection */
8422                 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8423                 memset(&q_params.params.cfc_del, 0,
8424                        sizeof(q_params.params.cfc_del));
8425                 q_params.params.cfc_del.cid_index = tx_index;
8426                 rc = bnx2x_queue_state_change(bp, &q_params);
8427                 if (rc)
8428                         return rc;
8429         }
8430         /* Stop the primary connection: */
8431         /* ...halt the connection */
8432         q_params.cmd = BNX2X_Q_CMD_HALT;
8433         rc = bnx2x_queue_state_change(bp, &q_params);
8434         if (rc)
8435                 return rc;
8436
8437         /* ...terminate the connection */
8438         q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8439         memset(&q_params.params.terminate, 0,
8440                sizeof(q_params.params.terminate));
8441         q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8442         rc = bnx2x_queue_state_change(bp, &q_params);
8443         if (rc)
8444                 return rc;
8445         /* ...delete cfc entry */
8446         q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8447         memset(&q_params.params.cfc_del, 0,
8448                sizeof(q_params.params.cfc_del));
8449         q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8450         return bnx2x_queue_state_change(bp, &q_params);
8451 }
8452
8453 static void bnx2x_reset_func(struct bnx2x *bp)
8454 {
8455         int port = BP_PORT(bp);
8456         int func = BP_FUNC(bp);
8457         int i;
8458
8459         /* Disable the function in the FW */
8460         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8461         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8462         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8463         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8464
8465         /* FP SBs */
8466         for_each_eth_queue(bp, i) {
8467                 struct bnx2x_fastpath *fp = &bp->fp[i];
8468                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8469                            CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8470                            SB_DISABLED);
8471         }
8472
8473         if (CNIC_LOADED(bp))
8474                 /* CNIC SB */
8475                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8476                         CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8477                         (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8478
8479         /* SP SB */
8480         REG_WR8(bp, BAR_CSTRORM_INTMEM +
8481                 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8482                 SB_DISABLED);
8483
8484         for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8485                 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8486                        0);
8487
8488         /* Configure IGU */
8489         if (bp->common.int_block == INT_BLOCK_HC) {
8490                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8491                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8492         } else {
8493                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8494                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8495         }
8496
8497         if (CNIC_LOADED(bp)) {
8498                 /* Disable Timer scan */
8499                 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8500                 /*
8501                  * Wait for at least 10ms and up to 2 second for the timers
8502                  * scan to complete
8503                  */
8504                 for (i = 0; i < 200; i++) {
8505                         usleep_range(10000, 20000);
8506                         if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8507                                 break;
8508                 }
8509         }
8510         /* Clear ILT */
8511         bnx2x_clear_func_ilt(bp, func);
8512
8513         /* Timers workaround bug for E2: if this is vnic-3,
8514          * we need to set the entire ilt range for this timers.
8515          */
8516         if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8517                 struct ilt_client_info ilt_cli;
8518                 /* use dummy TM client */
8519                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8520                 ilt_cli.start = 0;
8521                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8522                 ilt_cli.client_num = ILT_CLIENT_TM;
8523
8524                 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8525         }
8526
8527         /* this assumes that reset_port() called before reset_func()*/
8528         if (!CHIP_IS_E1x(bp))
8529                 bnx2x_pf_disable(bp);
8530
8531         bp->dmae_ready = 0;
8532 }
8533
8534 static void bnx2x_reset_port(struct bnx2x *bp)
8535 {
8536         int port = BP_PORT(bp);
8537         u32 val;
8538
8539         /* Reset physical Link */
8540         bnx2x__link_reset(bp);
8541
8542         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8543
8544         /* Do not rcv packets to BRB */
8545         REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8546         /* Do not direct rcv packets that are not for MCP to the BRB */
8547         REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8548                            NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8549
8550         /* Configure AEU */
8551         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8552
8553         msleep(100);
8554         /* Check for BRB port occupancy */
8555         val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8556         if (val)
8557                 DP(NETIF_MSG_IFDOWN,
8558                    "BRB1 is not empty  %d blocks are occupied\n", val);
8559
8560         /* TODO: Close Doorbell port? */
8561 }
8562
8563 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8564 {
8565         struct bnx2x_func_state_params func_params = {NULL};
8566
8567         /* Prepare parameters for function state transitions */
8568         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8569
8570         func_params.f_obj = &bp->func_obj;
8571         func_params.cmd = BNX2X_F_CMD_HW_RESET;
8572
8573         func_params.params.hw_init.load_phase = load_code;
8574
8575         return bnx2x_func_state_change(bp, &func_params);
8576 }
8577
8578 static int bnx2x_func_stop(struct bnx2x *bp)
8579 {
8580         struct bnx2x_func_state_params func_params = {NULL};
8581         int rc;
8582
8583         /* Prepare parameters for function state transitions */
8584         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8585         func_params.f_obj = &bp->func_obj;
8586         func_params.cmd = BNX2X_F_CMD_STOP;
8587
8588         /*
8589          * Try to stop the function the 'good way'. If fails (in case
8590          * of a parity error during bnx2x_chip_cleanup()) and we are
8591          * not in a debug mode, perform a state transaction in order to
8592          * enable further HW_RESET transaction.
8593          */
8594         rc = bnx2x_func_state_change(bp, &func_params);
8595         if (rc) {
8596 #ifdef BNX2X_STOP_ON_ERROR
8597                 return rc;
8598 #else
8599                 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8600                 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8601                 return bnx2x_func_state_change(bp, &func_params);
8602 #endif
8603         }
8604
8605         return 0;
8606 }
8607
8608 /**
8609  * bnx2x_send_unload_req - request unload mode from the MCP.
8610  *
8611  * @bp:                 driver handle
8612  * @unload_mode:        requested function's unload mode
8613  *
8614  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8615  */
8616 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8617 {
8618         u32 reset_code = 0;
8619         int port = BP_PORT(bp);
8620
8621         /* Select the UNLOAD request mode */
8622         if (unload_mode == UNLOAD_NORMAL)
8623                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8624
8625         else if (bp->flags & NO_WOL_FLAG)
8626                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
8627
8628         else if (bp->wol) {
8629                 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
8630                 u8 *mac_addr = bp->dev->dev_addr;
8631                 u32 val;
8632                 u16 pmc;
8633
8634                 /* The mac address is written to entries 1-4 to
8635                  * preserve entry 0 which is used by the PMF
8636                  */
8637                 u8 entry = (BP_VN(bp) + 1)*8;
8638
8639                 val = (mac_addr[0] << 8) | mac_addr[1];
8640                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
8641
8642                 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
8643                       (mac_addr[4] << 8) | mac_addr[5];
8644                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
8645
8646                 /* Enable the PME and clear the status */
8647                 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
8648                 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
8649                 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
8650
8651                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
8652
8653         } else
8654                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8655
8656         /* Send the request to the MCP */
8657         if (!BP_NOMCP(bp))
8658                 reset_code = bnx2x_fw_command(bp, reset_code, 0);
8659         else {
8660                 int path = BP_PATH(bp);
8661
8662                 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
8663                    path, load_count[path][0], load_count[path][1],
8664                    load_count[path][2]);
8665                 load_count[path][0]--;
8666                 load_count[path][1 + port]--;
8667                 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
8668                    path, load_count[path][0], load_count[path][1],
8669                    load_count[path][2]);
8670                 if (load_count[path][0] == 0)
8671                         reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
8672                 else if (load_count[path][1 + port] == 0)
8673                         reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
8674                 else
8675                         reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
8676         }
8677
8678         return reset_code;
8679 }
8680
8681 /**
8682  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
8683  *
8684  * @bp:         driver handle
8685  * @keep_link:          true iff link should be kept up
8686  */
8687 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
8688 {
8689         u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
8690
8691         /* Report UNLOAD_DONE to MCP */
8692         if (!BP_NOMCP(bp))
8693                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
8694 }
8695
8696 static int bnx2x_func_wait_started(struct bnx2x *bp)
8697 {
8698         int tout = 50;
8699         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
8700
8701         if (!bp->port.pmf)
8702                 return 0;
8703
8704         /*
8705          * (assumption: No Attention from MCP at this stage)
8706          * PMF probably in the middle of TX disable/enable transaction
8707          * 1. Sync IRS for default SB
8708          * 2. Sync SP queue - this guarantees us that attention handling started
8709          * 3. Wait, that TX disable/enable transaction completes
8710          *
8711          * 1+2 guarantee that if DCBx attention was scheduled it already changed
8712          * pending bit of transaction from STARTED-->TX_STOPPED, if we already
8713          * received completion for the transaction the state is TX_STOPPED.
8714          * State will return to STARTED after completion of TX_STOPPED-->STARTED
8715          * transaction.
8716          */
8717
8718         /* make sure default SB ISR is done */
8719         if (msix)
8720                 synchronize_irq(bp->msix_table[0].vector);
8721         else
8722                 synchronize_irq(bp->pdev->irq);
8723
8724         flush_workqueue(bnx2x_wq);
8725
8726         while (bnx2x_func_get_state(bp, &bp->func_obj) !=
8727                                 BNX2X_F_STATE_STARTED && tout--)
8728                 msleep(20);
8729
8730         if (bnx2x_func_get_state(bp, &bp->func_obj) !=
8731                                                 BNX2X_F_STATE_STARTED) {
8732 #ifdef BNX2X_STOP_ON_ERROR
8733                 BNX2X_ERR("Wrong function state\n");
8734                 return -EBUSY;
8735 #else
8736                 /*
8737                  * Failed to complete the transaction in a "good way"
8738                  * Force both transactions with CLR bit
8739                  */
8740                 struct bnx2x_func_state_params func_params = {NULL};
8741
8742                 DP(NETIF_MSG_IFDOWN,
8743                    "Hmmm... Unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
8744
8745                 func_params.f_obj = &bp->func_obj;
8746                 __set_bit(RAMROD_DRV_CLR_ONLY,
8747                                         &func_params.ramrod_flags);
8748
8749                 /* STARTED-->TX_ST0PPED */
8750                 func_params.cmd = BNX2X_F_CMD_TX_STOP;
8751                 bnx2x_func_state_change(bp, &func_params);
8752
8753                 /* TX_ST0PPED-->STARTED */
8754                 func_params.cmd = BNX2X_F_CMD_TX_START;
8755                 return bnx2x_func_state_change(bp, &func_params);
8756 #endif
8757         }
8758
8759         return 0;
8760 }
8761
8762 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
8763 {
8764         int port = BP_PORT(bp);
8765         int i, rc = 0;
8766         u8 cos;
8767         struct bnx2x_mcast_ramrod_params rparam = {NULL};
8768         u32 reset_code;
8769
8770         /* Wait until tx fastpath tasks complete */
8771         for_each_tx_queue(bp, i) {
8772                 struct bnx2x_fastpath *fp = &bp->fp[i];
8773
8774                 for_each_cos_in_tx_queue(fp, cos)
8775                         rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
8776 #ifdef BNX2X_STOP_ON_ERROR
8777                 if (rc)
8778                         return;
8779 #endif
8780         }
8781
8782         /* Give HW time to discard old tx messages */
8783         usleep_range(1000, 2000);
8784
8785         /* Clean all ETH MACs */
8786         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
8787                                 false);
8788         if (rc < 0)
8789                 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
8790
8791         /* Clean up UC list  */
8792         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
8793                                 true);
8794         if (rc < 0)
8795                 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
8796                           rc);
8797
8798         /* Disable LLH */
8799         if (!CHIP_IS_E1(bp))
8800                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
8801
8802         /* Set "drop all" (stop Rx).
8803          * We need to take a netif_addr_lock() here in order to prevent
8804          * a race between the completion code and this code.
8805          */
8806         netif_addr_lock_bh(bp->dev);
8807         /* Schedule the rx_mode command */
8808         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
8809                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
8810         else
8811                 bnx2x_set_storm_rx_mode(bp);
8812
8813         /* Cleanup multicast configuration */
8814         rparam.mcast_obj = &bp->mcast_obj;
8815         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
8816         if (rc < 0)
8817                 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
8818
8819         netif_addr_unlock_bh(bp->dev);
8820
8821         bnx2x_iov_chip_cleanup(bp);
8822
8823         /*
8824          * Send the UNLOAD_REQUEST to the MCP. This will return if
8825          * this function should perform FUNC, PORT or COMMON HW
8826          * reset.
8827          */
8828         reset_code = bnx2x_send_unload_req(bp, unload_mode);
8829
8830         /*
8831          * (assumption: No Attention from MCP at this stage)
8832          * PMF probably in the middle of TX disable/enable transaction
8833          */
8834         rc = bnx2x_func_wait_started(bp);
8835         if (rc) {
8836                 BNX2X_ERR("bnx2x_func_wait_started failed\n");
8837 #ifdef BNX2X_STOP_ON_ERROR
8838                 return;
8839 #endif
8840         }
8841
8842         /* Close multi and leading connections
8843          * Completions for ramrods are collected in a synchronous way
8844          */
8845         for_each_eth_queue(bp, i)
8846                 if (bnx2x_stop_queue(bp, i))
8847 #ifdef BNX2X_STOP_ON_ERROR
8848                         return;
8849 #else
8850                         goto unload_error;
8851 #endif
8852
8853         if (CNIC_LOADED(bp)) {
8854                 for_each_cnic_queue(bp, i)
8855                         if (bnx2x_stop_queue(bp, i))
8856 #ifdef BNX2X_STOP_ON_ERROR
8857                                 return;
8858 #else
8859                                 goto unload_error;
8860 #endif
8861         }
8862
8863         /* If SP settings didn't get completed so far - something
8864          * very wrong has happen.
8865          */
8866         if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8867                 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8868
8869 #ifndef BNX2X_STOP_ON_ERROR
8870 unload_error:
8871 #endif
8872         rc = bnx2x_func_stop(bp);
8873         if (rc) {
8874                 BNX2X_ERR("Function stop failed!\n");
8875 #ifdef BNX2X_STOP_ON_ERROR
8876                 return;
8877 #endif
8878         }
8879
8880         /* Disable HW interrupts, NAPI */
8881         bnx2x_netif_stop(bp, 1);
8882         /* Delete all NAPI objects */
8883         bnx2x_del_all_napi(bp);
8884         if (CNIC_LOADED(bp))
8885                 bnx2x_del_all_napi_cnic(bp);
8886
8887         /* Release IRQs */
8888         bnx2x_free_irq(bp);
8889
8890         /* Reset the chip */
8891         rc = bnx2x_reset_hw(bp, reset_code);
8892         if (rc)
8893                 BNX2X_ERR("HW_RESET failed\n");
8894
8895         /* Report UNLOAD_DONE to MCP */
8896         bnx2x_send_unload_done(bp, keep_link);
8897 }
8898
8899 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8900 {
8901         u32 val;
8902
8903         DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
8904
8905         if (CHIP_IS_E1(bp)) {
8906                 int port = BP_PORT(bp);
8907                 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8908                         MISC_REG_AEU_MASK_ATTN_FUNC_0;
8909
8910                 val = REG_RD(bp, addr);
8911                 val &= ~(0x300);
8912                 REG_WR(bp, addr, val);
8913         } else {
8914                 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8915                 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8916                          MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8917                 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8918         }
8919 }
8920
8921 /* Close gates #2, #3 and #4: */
8922 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8923 {
8924         u32 val;
8925
8926         /* Gates #2 and #4a are closed/opened for "not E1" only */
8927         if (!CHIP_IS_E1(bp)) {
8928                 /* #4 */
8929                 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
8930                 /* #2 */
8931                 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
8932         }
8933
8934         /* #3 */
8935         if (CHIP_IS_E1x(bp)) {
8936                 /* Prevent interrupts from HC on both ports */
8937                 val = REG_RD(bp, HC_REG_CONFIG_1);
8938                 REG_WR(bp, HC_REG_CONFIG_1,
8939                        (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
8940                        (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
8941
8942                 val = REG_RD(bp, HC_REG_CONFIG_0);
8943                 REG_WR(bp, HC_REG_CONFIG_0,
8944                        (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
8945                        (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
8946         } else {
8947                 /* Prevent incoming interrupts in IGU */
8948                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
8949
8950                 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
8951                        (!close) ?
8952                        (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
8953                        (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
8954         }
8955
8956         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
8957                 close ? "closing" : "opening");
8958         mmiowb();
8959 }
8960
8961 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
8962
8963 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
8964 {
8965         /* Do some magic... */
8966         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8967         *magic_val = val & SHARED_MF_CLP_MAGIC;
8968         MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
8969 }
8970
8971 /**
8972  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
8973  *
8974  * @bp:         driver handle
8975  * @magic_val:  old value of the `magic' bit.
8976  */
8977 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
8978 {
8979         /* Restore the `magic' bit value... */
8980         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8981         MF_CFG_WR(bp, shared_mf_config.clp_mb,
8982                 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
8983 }
8984
8985 /**
8986  * bnx2x_reset_mcp_prep - prepare for MCP reset.
8987  *
8988  * @bp:         driver handle
8989  * @magic_val:  old value of 'magic' bit.
8990  *
8991  * Takes care of CLP configurations.
8992  */
8993 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
8994 {
8995         u32 shmem;
8996         u32 validity_offset;
8997
8998         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
8999
9000         /* Set `magic' bit in order to save MF config */
9001         if (!CHIP_IS_E1(bp))
9002                 bnx2x_clp_reset_prep(bp, magic_val);
9003
9004         /* Get shmem offset */
9005         shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9006         validity_offset =
9007                 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9008
9009         /* Clear validity map flags */
9010         if (shmem > 0)
9011                 REG_WR(bp, shmem + validity_offset, 0);
9012 }
9013
9014 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9015 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9016
9017 /**
9018  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9019  *
9020  * @bp: driver handle
9021  */
9022 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9023 {
9024         /* special handling for emulation and FPGA,
9025            wait 10 times longer */
9026         if (CHIP_REV_IS_SLOW(bp))
9027                 msleep(MCP_ONE_TIMEOUT*10);
9028         else
9029                 msleep(MCP_ONE_TIMEOUT);
9030 }
9031
9032 /*
9033  * initializes bp->common.shmem_base and waits for validity signature to appear
9034  */
9035 static int bnx2x_init_shmem(struct bnx2x *bp)
9036 {
9037         int cnt = 0;
9038         u32 val = 0;
9039
9040         do {
9041                 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9042                 if (bp->common.shmem_base) {
9043                         val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9044                         if (val & SHR_MEM_VALIDITY_MB)
9045                                 return 0;
9046                 }
9047
9048                 bnx2x_mcp_wait_one(bp);
9049
9050         } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9051
9052         BNX2X_ERR("BAD MCP validity signature\n");
9053
9054         return -ENODEV;
9055 }
9056
9057 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9058 {
9059         int rc = bnx2x_init_shmem(bp);
9060
9061         /* Restore the `magic' bit value */
9062         if (!CHIP_IS_E1(bp))
9063                 bnx2x_clp_reset_done(bp, magic_val);
9064
9065         return rc;
9066 }
9067
9068 static void bnx2x_pxp_prep(struct bnx2x *bp)
9069 {
9070         if (!CHIP_IS_E1(bp)) {
9071                 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9072                 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9073                 mmiowb();
9074         }
9075 }
9076
9077 /*
9078  * Reset the whole chip except for:
9079  *      - PCIE core
9080  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9081  *              one reset bit)
9082  *      - IGU
9083  *      - MISC (including AEU)
9084  *      - GRC
9085  *      - RBCN, RBCP
9086  */
9087 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9088 {
9089         u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9090         u32 global_bits2, stay_reset2;
9091
9092         /*
9093          * Bits that have to be set in reset_mask2 if we want to reset 'global'
9094          * (per chip) blocks.
9095          */
9096         global_bits2 =
9097                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9098                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9099
9100         /* Don't reset the following blocks.
9101          * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9102          *            reset, as in 4 port device they might still be owned
9103          *            by the MCP (there is only one leader per path).
9104          */
9105         not_reset_mask1 =
9106                 MISC_REGISTERS_RESET_REG_1_RST_HC |
9107                 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9108                 MISC_REGISTERS_RESET_REG_1_RST_PXP;
9109
9110         not_reset_mask2 =
9111                 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9112                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9113                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9114                 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9115                 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9116                 MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9117                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9118                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9119                 MISC_REGISTERS_RESET_REG_2_RST_ATC |
9120                 MISC_REGISTERS_RESET_REG_2_PGLC |
9121                 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9122                 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9123                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9124                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9125                 MISC_REGISTERS_RESET_REG_2_UMAC0 |
9126                 MISC_REGISTERS_RESET_REG_2_UMAC1;
9127
9128         /*
9129          * Keep the following blocks in reset:
9130          *  - all xxMACs are handled by the bnx2x_link code.
9131          */
9132         stay_reset2 =
9133                 MISC_REGISTERS_RESET_REG_2_XMAC |
9134                 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9135
9136         /* Full reset masks according to the chip */
9137         reset_mask1 = 0xffffffff;
9138
9139         if (CHIP_IS_E1(bp))
9140                 reset_mask2 = 0xffff;
9141         else if (CHIP_IS_E1H(bp))
9142                 reset_mask2 = 0x1ffff;
9143         else if (CHIP_IS_E2(bp))
9144                 reset_mask2 = 0xfffff;
9145         else /* CHIP_IS_E3 */
9146                 reset_mask2 = 0x3ffffff;
9147
9148         /* Don't reset global blocks unless we need to */
9149         if (!global)
9150                 reset_mask2 &= ~global_bits2;
9151
9152         /*
9153          * In case of attention in the QM, we need to reset PXP
9154          * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9155          * because otherwise QM reset would release 'close the gates' shortly
9156          * before resetting the PXP, then the PSWRQ would send a write
9157          * request to PGLUE. Then when PXP is reset, PGLUE would try to
9158          * read the payload data from PSWWR, but PSWWR would not
9159          * respond. The write queue in PGLUE would stuck, dmae commands
9160          * would not return. Therefore it's important to reset the second
9161          * reset register (containing the
9162          * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9163          * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9164          * bit).
9165          */
9166         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9167                reset_mask2 & (~not_reset_mask2));
9168
9169         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9170                reset_mask1 & (~not_reset_mask1));
9171
9172         barrier();
9173         mmiowb();
9174
9175         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9176                reset_mask2 & (~stay_reset2));
9177
9178         barrier();
9179         mmiowb();
9180
9181         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9182         mmiowb();
9183 }
9184
9185 /**
9186  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9187  * It should get cleared in no more than 1s.
9188  *
9189  * @bp: driver handle
9190  *
9191  * It should get cleared in no more than 1s. Returns 0 if
9192  * pending writes bit gets cleared.
9193  */
9194 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9195 {
9196         u32 cnt = 1000;
9197         u32 pend_bits = 0;
9198
9199         do {
9200                 pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9201
9202                 if (pend_bits == 0)
9203                         break;
9204
9205                 usleep_range(1000, 2000);
9206         } while (cnt-- > 0);
9207
9208         if (cnt <= 0) {
9209                 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9210                           pend_bits);
9211                 return -EBUSY;
9212         }
9213
9214         return 0;
9215 }
9216
9217 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9218 {
9219         int cnt = 1000;
9220         u32 val = 0;
9221         u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9222         u32 tags_63_32 = 0;
9223
9224         /* Empty the Tetris buffer, wait for 1s */
9225         do {
9226                 sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9227                 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9228                 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9229                 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9230                 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9231                 if (CHIP_IS_E3(bp))
9232                         tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9233
9234                 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9235                     ((port_is_idle_0 & 0x1) == 0x1) &&
9236                     ((port_is_idle_1 & 0x1) == 0x1) &&
9237                     (pgl_exp_rom2 == 0xffffffff) &&
9238                     (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9239                         break;
9240                 usleep_range(1000, 2000);
9241         } while (cnt-- > 0);
9242
9243         if (cnt <= 0) {
9244                 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9245                 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9246                           sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9247                           pgl_exp_rom2);
9248                 return -EAGAIN;
9249         }
9250
9251         barrier();
9252
9253         /* Close gates #2, #3 and #4 */
9254         bnx2x_set_234_gates(bp, true);
9255
9256         /* Poll for IGU VQs for 57712 and newer chips */
9257         if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9258                 return -EAGAIN;
9259
9260         /* TBD: Indicate that "process kill" is in progress to MCP */
9261
9262         /* Clear "unprepared" bit */
9263         REG_WR(bp, MISC_REG_UNPREPARED, 0);
9264         barrier();
9265
9266         /* Make sure all is written to the chip before the reset */
9267         mmiowb();
9268
9269         /* Wait for 1ms to empty GLUE and PCI-E core queues,
9270          * PSWHST, GRC and PSWRD Tetris buffer.
9271          */
9272         usleep_range(1000, 2000);
9273
9274         /* Prepare to chip reset: */
9275         /* MCP */
9276         if (global)
9277                 bnx2x_reset_mcp_prep(bp, &val);
9278
9279         /* PXP */
9280         bnx2x_pxp_prep(bp);
9281         barrier();
9282
9283         /* reset the chip */
9284         bnx2x_process_kill_chip_reset(bp, global);
9285         barrier();
9286
9287         /* Recover after reset: */
9288         /* MCP */
9289         if (global && bnx2x_reset_mcp_comp(bp, val))
9290                 return -EAGAIN;
9291
9292         /* TBD: Add resetting the NO_MCP mode DB here */
9293
9294         /* Open the gates #2, #3 and #4 */
9295         bnx2x_set_234_gates(bp, false);
9296
9297         /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9298          * reset state, re-enable attentions. */
9299
9300         return 0;
9301 }
9302
9303 static int bnx2x_leader_reset(struct bnx2x *bp)
9304 {
9305         int rc = 0;
9306         bool global = bnx2x_reset_is_global(bp);
9307         u32 load_code;
9308
9309         /* if not going to reset MCP - load "fake" driver to reset HW while
9310          * driver is owner of the HW
9311          */
9312         if (!global && !BP_NOMCP(bp)) {
9313                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9314                                              DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9315                 if (!load_code) {
9316                         BNX2X_ERR("MCP response failure, aborting\n");
9317                         rc = -EAGAIN;
9318                         goto exit_leader_reset;
9319                 }
9320                 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9321                     (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9322                         BNX2X_ERR("MCP unexpected resp, aborting\n");
9323                         rc = -EAGAIN;
9324                         goto exit_leader_reset2;
9325                 }
9326                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9327                 if (!load_code) {
9328                         BNX2X_ERR("MCP response failure, aborting\n");
9329                         rc = -EAGAIN;
9330                         goto exit_leader_reset2;
9331                 }
9332         }
9333
9334         /* Try to recover after the failure */
9335         if (bnx2x_process_kill(bp, global)) {
9336                 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9337                           BP_PATH(bp));
9338                 rc = -EAGAIN;
9339                 goto exit_leader_reset2;
9340         }
9341
9342         /*
9343          * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9344          * state.
9345          */
9346         bnx2x_set_reset_done(bp);
9347         if (global)
9348                 bnx2x_clear_reset_global(bp);
9349
9350 exit_leader_reset2:
9351         /* unload "fake driver" if it was loaded */
9352         if (!global && !BP_NOMCP(bp)) {
9353                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9354                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9355         }
9356 exit_leader_reset:
9357         bp->is_leader = 0;
9358         bnx2x_release_leader_lock(bp);
9359         smp_mb();
9360         return rc;
9361 }
9362
9363 static void bnx2x_recovery_failed(struct bnx2x *bp)
9364 {
9365         netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9366
9367         /* Disconnect this device */
9368         netif_device_detach(bp->dev);
9369
9370         /*
9371          * Block ifup for all function on this engine until "process kill"
9372          * or power cycle.
9373          */
9374         bnx2x_set_reset_in_progress(bp);
9375
9376         /* Shut down the power */
9377         bnx2x_set_power_state(bp, PCI_D3hot);
9378
9379         bp->recovery_state = BNX2X_RECOVERY_FAILED;
9380
9381         smp_mb();
9382 }
9383
9384 /*
9385  * Assumption: runs under rtnl lock. This together with the fact
9386  * that it's called only from bnx2x_sp_rtnl() ensure that it
9387  * will never be called when netif_running(bp->dev) is false.
9388  */
9389 static void bnx2x_parity_recover(struct bnx2x *bp)
9390 {
9391         bool global = false;
9392         u32 error_recovered, error_unrecovered;
9393         bool is_parity;
9394
9395         DP(NETIF_MSG_HW, "Handling parity\n");
9396         while (1) {
9397                 switch (bp->recovery_state) {
9398                 case BNX2X_RECOVERY_INIT:
9399                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9400                         is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9401                         WARN_ON(!is_parity);
9402
9403                         /* Try to get a LEADER_LOCK HW lock */
9404                         if (bnx2x_trylock_leader_lock(bp)) {
9405                                 bnx2x_set_reset_in_progress(bp);
9406                                 /*
9407                                  * Check if there is a global attention and if
9408                                  * there was a global attention, set the global
9409                                  * reset bit.
9410                                  */
9411
9412                                 if (global)
9413                                         bnx2x_set_reset_global(bp);
9414
9415                                 bp->is_leader = 1;
9416                         }
9417
9418                         /* Stop the driver */
9419                         /* If interface has been removed - break */
9420                         if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9421                                 return;
9422
9423                         bp->recovery_state = BNX2X_RECOVERY_WAIT;
9424
9425                         /* Ensure "is_leader", MCP command sequence and
9426                          * "recovery_state" update values are seen on other
9427                          * CPUs.
9428                          */
9429                         smp_mb();
9430                         break;
9431
9432                 case BNX2X_RECOVERY_WAIT:
9433                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9434                         if (bp->is_leader) {
9435                                 int other_engine = BP_PATH(bp) ? 0 : 1;
9436                                 bool other_load_status =
9437                                         bnx2x_get_load_status(bp, other_engine);
9438                                 bool load_status =
9439                                         bnx2x_get_load_status(bp, BP_PATH(bp));
9440                                 global = bnx2x_reset_is_global(bp);
9441
9442                                 /*
9443                                  * In case of a parity in a global block, let
9444                                  * the first leader that performs a
9445                                  * leader_reset() reset the global blocks in
9446                                  * order to clear global attentions. Otherwise
9447                                  * the gates will remain closed for that
9448                                  * engine.
9449                                  */
9450                                 if (load_status ||
9451                                     (global && other_load_status)) {
9452                                         /* Wait until all other functions get
9453                                          * down.
9454                                          */
9455                                         schedule_delayed_work(&bp->sp_rtnl_task,
9456                                                                 HZ/10);
9457                                         return;
9458                                 } else {
9459                                         /* If all other functions got down -
9460                                          * try to bring the chip back to
9461                                          * normal. In any case it's an exit
9462                                          * point for a leader.
9463                                          */
9464                                         if (bnx2x_leader_reset(bp)) {
9465                                                 bnx2x_recovery_failed(bp);
9466                                                 return;
9467                                         }
9468
9469                                         /* If we are here, means that the
9470                                          * leader has succeeded and doesn't
9471                                          * want to be a leader any more. Try
9472                                          * to continue as a none-leader.
9473                                          */
9474                                         break;
9475                                 }
9476                         } else { /* non-leader */
9477                                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9478                                         /* Try to get a LEADER_LOCK HW lock as
9479                                          * long as a former leader may have
9480                                          * been unloaded by the user or
9481                                          * released a leadership by another
9482                                          * reason.
9483                                          */
9484                                         if (bnx2x_trylock_leader_lock(bp)) {
9485                                                 /* I'm a leader now! Restart a
9486                                                  * switch case.
9487                                                  */
9488                                                 bp->is_leader = 1;
9489                                                 break;
9490                                         }
9491
9492                                         schedule_delayed_work(&bp->sp_rtnl_task,
9493                                                                 HZ/10);
9494                                         return;
9495
9496                                 } else {
9497                                         /*
9498                                          * If there was a global attention, wait
9499                                          * for it to be cleared.
9500                                          */
9501                                         if (bnx2x_reset_is_global(bp)) {
9502                                                 schedule_delayed_work(
9503                                                         &bp->sp_rtnl_task,
9504                                                         HZ/10);
9505                                                 return;
9506                                         }
9507
9508                                         error_recovered =
9509                                           bp->eth_stats.recoverable_error;
9510                                         error_unrecovered =
9511                                           bp->eth_stats.unrecoverable_error;
9512                                         bp->recovery_state =
9513                                                 BNX2X_RECOVERY_NIC_LOADING;
9514                                         if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9515                                                 error_unrecovered++;
9516                                                 netdev_err(bp->dev,
9517                                                            "Recovery failed. Power cycle needed\n");
9518                                                 /* Disconnect this device */
9519                                                 netif_device_detach(bp->dev);
9520                                                 /* Shut down the power */
9521                                                 bnx2x_set_power_state(
9522                                                         bp, PCI_D3hot);
9523                                                 smp_mb();
9524                                         } else {
9525                                                 bp->recovery_state =
9526                                                         BNX2X_RECOVERY_DONE;
9527                                                 error_recovered++;
9528                                                 smp_mb();
9529                                         }
9530                                         bp->eth_stats.recoverable_error =
9531                                                 error_recovered;
9532                                         bp->eth_stats.unrecoverable_error =
9533                                                 error_unrecovered;
9534
9535                                         return;
9536                                 }
9537                         }
9538                 default:
9539                         return;
9540                 }
9541         }
9542 }
9543
9544 static int bnx2x_close(struct net_device *dev);
9545
9546 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9547  * scheduled on a general queue in order to prevent a dead lock.
9548  */
9549 static void bnx2x_sp_rtnl_task(struct work_struct *work)
9550 {
9551         struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9552
9553         rtnl_lock();
9554
9555         if (!netif_running(bp->dev)) {
9556                 rtnl_unlock();
9557                 return;
9558         }
9559
9560         if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9561 #ifdef BNX2X_STOP_ON_ERROR
9562                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9563                           "you will need to reboot when done\n");
9564                 goto sp_rtnl_not_reset;
9565 #endif
9566                 /*
9567                  * Clear all pending SP commands as we are going to reset the
9568                  * function anyway.
9569                  */
9570                 bp->sp_rtnl_state = 0;
9571                 smp_mb();
9572
9573                 bnx2x_parity_recover(bp);
9574
9575                 rtnl_unlock();
9576                 return;
9577         }
9578
9579         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
9580 #ifdef BNX2X_STOP_ON_ERROR
9581                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9582                           "you will need to reboot when done\n");
9583                 goto sp_rtnl_not_reset;
9584 #endif
9585
9586                 /*
9587                  * Clear all pending SP commands as we are going to reset the
9588                  * function anyway.
9589                  */
9590                 bp->sp_rtnl_state = 0;
9591                 smp_mb();
9592
9593                 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
9594                 bnx2x_nic_load(bp, LOAD_NORMAL);
9595
9596                 rtnl_unlock();
9597                 return;
9598         }
9599 #ifdef BNX2X_STOP_ON_ERROR
9600 sp_rtnl_not_reset:
9601 #endif
9602         if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
9603                 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
9604         if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
9605                 bnx2x_after_function_update(bp);
9606         /*
9607          * in case of fan failure we need to reset id if the "stop on error"
9608          * debug flag is set, since we trying to prevent permanent overheating
9609          * damage
9610          */
9611         if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
9612                 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
9613                 netif_device_detach(bp->dev);
9614                 bnx2x_close(bp->dev);
9615                 rtnl_unlock();
9616                 return;
9617         }
9618
9619         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
9620                 DP(BNX2X_MSG_SP,
9621                    "sending set mcast vf pf channel message from rtnl sp-task\n");
9622                 bnx2x_vfpf_set_mcast(bp->dev);
9623         }
9624
9625         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_STORM_RX_MODE,
9626                                &bp->sp_rtnl_state)) {
9627                 DP(BNX2X_MSG_SP,
9628                    "sending set storm rx mode vf pf channel message from rtnl sp-task\n");
9629                 bnx2x_vfpf_storm_rx_mode(bp);
9630         }
9631
9632         if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
9633                                &bp->sp_rtnl_state))
9634                 bnx2x_pf_set_vfs_vlan(bp);
9635
9636         /* work which needs rtnl lock not-taken (as it takes the lock itself and
9637          * can be called from other contexts as well)
9638          */
9639         rtnl_unlock();
9640
9641         /* enable SR-IOV if applicable */
9642         if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
9643                                                &bp->sp_rtnl_state)) {
9644                 bnx2x_disable_sriov(bp);
9645                 bnx2x_enable_sriov(bp);
9646         }
9647 }
9648
9649 static void bnx2x_period_task(struct work_struct *work)
9650 {
9651         struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
9652
9653         if (!netif_running(bp->dev))
9654                 goto period_task_exit;
9655
9656         if (CHIP_REV_IS_SLOW(bp)) {
9657                 BNX2X_ERR("period task called on emulation, ignoring\n");
9658                 goto period_task_exit;
9659         }
9660
9661         bnx2x_acquire_phy_lock(bp);
9662         /*
9663          * The barrier is needed to ensure the ordering between the writing to
9664          * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
9665          * the reading here.
9666          */
9667         smp_mb();
9668         if (bp->port.pmf) {
9669                 bnx2x_period_func(&bp->link_params, &bp->link_vars);
9670
9671                 /* Re-queue task in 1 sec */
9672                 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
9673         }
9674
9675         bnx2x_release_phy_lock(bp);
9676 period_task_exit:
9677         return;
9678 }
9679
9680 /*
9681  * Init service functions
9682  */
9683
9684 u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
9685 {
9686         u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9687         u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
9688         return base + (BP_ABS_FUNC(bp)) * stride;
9689 }
9690
9691 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
9692                                         struct bnx2x_mac_vals *vals)
9693 {
9694         u32 val, base_addr, offset, mask, reset_reg;
9695         bool mac_stopped = false;
9696         u8 port = BP_PORT(bp);
9697
9698         /* reset addresses as they also mark which values were changed */
9699         vals->bmac_addr = 0;
9700         vals->umac_addr = 0;
9701         vals->xmac_addr = 0;
9702         vals->emac_addr = 0;
9703
9704         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
9705
9706         if (!CHIP_IS_E3(bp)) {
9707                 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9708                 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9709                 if ((mask & reset_reg) && val) {
9710                         u32 wb_data[2];
9711                         BNX2X_DEV_INFO("Disable bmac Rx\n");
9712                         base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
9713                                                 : NIG_REG_INGRESS_BMAC0_MEM;
9714                         offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
9715                                                 : BIGMAC_REGISTER_BMAC_CONTROL;
9716
9717                         /*
9718                          * use rd/wr since we cannot use dmae. This is safe
9719                          * since MCP won't access the bus due to the request
9720                          * to unload, and no function on the path can be
9721                          * loaded at this time.
9722                          */
9723                         wb_data[0] = REG_RD(bp, base_addr + offset);
9724                         wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
9725                         vals->bmac_addr = base_addr + offset;
9726                         vals->bmac_val[0] = wb_data[0];
9727                         vals->bmac_val[1] = wb_data[1];
9728                         wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
9729                         REG_WR(bp, vals->bmac_addr, wb_data[0]);
9730                         REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
9731                 }
9732                 BNX2X_DEV_INFO("Disable emac Rx\n");
9733                 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
9734                 vals->emac_val = REG_RD(bp, vals->emac_addr);
9735                 REG_WR(bp, vals->emac_addr, 0);
9736                 mac_stopped = true;
9737         } else {
9738                 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9739                         BNX2X_DEV_INFO("Disable xmac Rx\n");
9740                         base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9741                         val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
9742                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9743                                val & ~(1 << 1));
9744                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9745                                val | (1 << 1));
9746                         vals->xmac_addr = base_addr + XMAC_REG_CTRL;
9747                         vals->xmac_val = REG_RD(bp, vals->xmac_addr);
9748                         REG_WR(bp, vals->xmac_addr, 0);
9749                         mac_stopped = true;
9750                 }
9751                 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9752                 if (mask & reset_reg) {
9753                         BNX2X_DEV_INFO("Disable umac Rx\n");
9754                         base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9755                         vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
9756                         vals->umac_val = REG_RD(bp, vals->umac_addr);
9757                         REG_WR(bp, vals->umac_addr, 0);
9758                         mac_stopped = true;
9759                 }
9760         }
9761
9762         if (mac_stopped)
9763                 msleep(20);
9764 }
9765
9766 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9767 #define BNX2X_PREV_UNDI_RCQ(val)        ((val) & 0xffff)
9768 #define BNX2X_PREV_UNDI_BD(val)         ((val) >> 16 & 0xffff)
9769 #define BNX2X_PREV_UNDI_PROD(rcq, bd)   ((bd) << 16 | (rcq))
9770
9771 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc)
9772 {
9773         u16 rcq, bd;
9774         u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
9775
9776         rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9777         bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9778
9779         tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9780         REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9781
9782         BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
9783                        port, bd, rcq);
9784 }
9785
9786 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
9787 {
9788         u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
9789                                   DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9790         if (!rc) {
9791                 BNX2X_ERR("MCP response failure, aborting\n");
9792                 return -EBUSY;
9793         }
9794
9795         return 0;
9796 }
9797
9798 static struct bnx2x_prev_path_list *
9799                 bnx2x_prev_path_get_entry(struct bnx2x *bp)
9800 {
9801         struct bnx2x_prev_path_list *tmp_list;
9802
9803         list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
9804                 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
9805                     bp->pdev->bus->number == tmp_list->bus &&
9806                     BP_PATH(bp) == tmp_list->path)
9807                         return tmp_list;
9808
9809         return NULL;
9810 }
9811
9812 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
9813 {
9814         struct bnx2x_prev_path_list *tmp_list;
9815         int rc;
9816
9817         rc = down_interruptible(&bnx2x_prev_sem);
9818         if (rc) {
9819                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
9820                 return rc;
9821         }
9822
9823         tmp_list = bnx2x_prev_path_get_entry(bp);
9824         if (tmp_list) {
9825                 tmp_list->aer = 1;
9826                 rc = 0;
9827         } else {
9828                 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
9829                           BP_PATH(bp));
9830         }
9831
9832         up(&bnx2x_prev_sem);
9833
9834         return rc;
9835 }
9836
9837 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
9838 {
9839         struct bnx2x_prev_path_list *tmp_list;
9840         int rc = false;
9841
9842         if (down_trylock(&bnx2x_prev_sem))
9843                 return false;
9844
9845         tmp_list = bnx2x_prev_path_get_entry(bp);
9846         if (tmp_list) {
9847                 if (tmp_list->aer) {
9848                         DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
9849                            BP_PATH(bp));
9850                 } else {
9851                         rc = true;
9852                         BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
9853                                        BP_PATH(bp));
9854                 }
9855         }
9856
9857         up(&bnx2x_prev_sem);
9858
9859         return rc;
9860 }
9861
9862 bool bnx2x_port_after_undi(struct bnx2x *bp)
9863 {
9864         struct bnx2x_prev_path_list *entry;
9865         bool val;
9866
9867         down(&bnx2x_prev_sem);
9868
9869         entry = bnx2x_prev_path_get_entry(bp);
9870         val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
9871
9872         up(&bnx2x_prev_sem);
9873
9874         return val;
9875 }
9876
9877 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
9878 {
9879         struct bnx2x_prev_path_list *tmp_list;
9880         int rc;
9881
9882         rc = down_interruptible(&bnx2x_prev_sem);
9883         if (rc) {
9884                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
9885                 return rc;
9886         }
9887
9888         /* Check whether the entry for this path already exists */
9889         tmp_list = bnx2x_prev_path_get_entry(bp);
9890         if (tmp_list) {
9891                 if (!tmp_list->aer) {
9892                         BNX2X_ERR("Re-Marking the path.\n");
9893                 } else {
9894                         DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
9895                            BP_PATH(bp));
9896                         tmp_list->aer = 0;
9897                 }
9898                 up(&bnx2x_prev_sem);
9899                 return 0;
9900         }
9901         up(&bnx2x_prev_sem);
9902
9903         /* Create an entry for this path and add it */
9904         tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
9905         if (!tmp_list) {
9906                 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
9907                 return -ENOMEM;
9908         }
9909
9910         tmp_list->bus = bp->pdev->bus->number;
9911         tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
9912         tmp_list->path = BP_PATH(bp);
9913         tmp_list->aer = 0;
9914         tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
9915
9916         rc = down_interruptible(&bnx2x_prev_sem);
9917         if (rc) {
9918                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
9919                 kfree(tmp_list);
9920         } else {
9921                 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
9922                    BP_PATH(bp));
9923                 list_add(&tmp_list->list, &bnx2x_prev_list);
9924                 up(&bnx2x_prev_sem);
9925         }
9926
9927         return rc;
9928 }
9929
9930 static int bnx2x_do_flr(struct bnx2x *bp)
9931 {
9932         int i;
9933         u16 status;
9934         struct pci_dev *dev = bp->pdev;
9935
9936         if (CHIP_IS_E1x(bp)) {
9937                 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
9938                 return -EINVAL;
9939         }
9940
9941         /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
9942         if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9943                 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
9944                           bp->common.bc_ver);
9945                 return -EINVAL;
9946         }
9947
9948         /* Wait for Transaction Pending bit clean */
9949         for (i = 0; i < 4; i++) {
9950                 if (i)
9951                         msleep((1 << (i - 1)) * 100);
9952
9953                 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
9954                 if (!(status & PCI_EXP_DEVSTA_TRPND))
9955                         goto clear;
9956         }
9957
9958         dev_err(&dev->dev,
9959                 "transaction is not cleared; proceeding with reset anyway\n");
9960
9961 clear:
9962
9963         BNX2X_DEV_INFO("Initiating FLR\n");
9964         bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
9965
9966         return 0;
9967 }
9968
9969 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
9970 {
9971         int rc;
9972
9973         BNX2X_DEV_INFO("Uncommon unload Flow\n");
9974
9975         /* Test if previous unload process was already finished for this path */
9976         if (bnx2x_prev_is_path_marked(bp))
9977                 return bnx2x_prev_mcp_done(bp);
9978
9979         BNX2X_DEV_INFO("Path is unmarked\n");
9980
9981         /* If function has FLR capabilities, and existing FW version matches
9982          * the one required, then FLR will be sufficient to clean any residue
9983          * left by previous driver
9984          */
9985         rc = bnx2x_nic_load_analyze_req(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION);
9986
9987         if (!rc) {
9988                 /* fw version is good */
9989                 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
9990                 rc = bnx2x_do_flr(bp);
9991         }
9992
9993         if (!rc) {
9994                 /* FLR was performed */
9995                 BNX2X_DEV_INFO("FLR successful\n");
9996                 return 0;
9997         }
9998
9999         BNX2X_DEV_INFO("Could not FLR\n");
10000
10001         /* Close the MCP request, return failure*/
10002         rc = bnx2x_prev_mcp_done(bp);
10003         if (!rc)
10004                 rc = BNX2X_PREV_WAIT_NEEDED;
10005
10006         return rc;
10007 }
10008
10009 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10010 {
10011         u32 reset_reg, tmp_reg = 0, rc;
10012         bool prev_undi = false;
10013         struct bnx2x_mac_vals mac_vals;
10014
10015         /* It is possible a previous function received 'common' answer,
10016          * but hasn't loaded yet, therefore creating a scenario of
10017          * multiple functions receiving 'common' on the same path.
10018          */
10019         BNX2X_DEV_INFO("Common unload Flow\n");
10020
10021         memset(&mac_vals, 0, sizeof(mac_vals));
10022
10023         if (bnx2x_prev_is_path_marked(bp))
10024                 return bnx2x_prev_mcp_done(bp);
10025
10026         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10027
10028         /* Reset should be performed after BRB is emptied */
10029         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10030                 u32 timer_count = 1000;
10031
10032                 /* Close the MAC Rx to prevent BRB from filling up */
10033                 bnx2x_prev_unload_close_mac(bp, &mac_vals);
10034
10035                 /* close LLH filters towards the BRB */
10036                 bnx2x_set_rx_filter(&bp->link_params, 0);
10037
10038                 /* Check if the UNDI driver was previously loaded
10039                  * UNDI driver initializes CID offset for normal bell to 0x7
10040                  */
10041                 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
10042                         tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
10043                         if (tmp_reg == 0x7) {
10044                                 BNX2X_DEV_INFO("UNDI previously loaded\n");
10045                                 prev_undi = true;
10046                                 /* clear the UNDI indication */
10047                                 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10048                                 /* clear possible idle check errors */
10049                                 REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10050                         }
10051                 }
10052                 if (!CHIP_IS_E1x(bp))
10053                         /* block FW from writing to host */
10054                         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10055
10056                 /* wait until BRB is empty */
10057                 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10058                 while (timer_count) {
10059                         u32 prev_brb = tmp_reg;
10060
10061                         tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10062                         if (!tmp_reg)
10063                                 break;
10064
10065                         BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10066
10067                         /* reset timer as long as BRB actually gets emptied */
10068                         if (prev_brb > tmp_reg)
10069                                 timer_count = 1000;
10070                         else
10071                                 timer_count--;
10072
10073                         /* If UNDI resides in memory, manually increment it */
10074                         if (prev_undi)
10075                                 bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
10076
10077                         udelay(10);
10078                 }
10079
10080                 if (!timer_count)
10081                         BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10082         }
10083
10084         /* No packets are in the pipeline, path is ready for reset */
10085         bnx2x_reset_common(bp);
10086
10087         if (mac_vals.xmac_addr)
10088                 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10089         if (mac_vals.umac_addr)
10090                 REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val);
10091         if (mac_vals.emac_addr)
10092                 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10093         if (mac_vals.bmac_addr) {
10094                 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10095                 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10096         }
10097
10098         rc = bnx2x_prev_mark_path(bp, prev_undi);
10099         if (rc) {
10100                 bnx2x_prev_mcp_done(bp);
10101                 return rc;
10102         }
10103
10104         return bnx2x_prev_mcp_done(bp);
10105 }
10106
10107 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
10108  * and boot began, or when kdump kernel was loaded. Either case would invalidate
10109  * the addresses of the transaction, resulting in was-error bit set in the pci
10110  * causing all hw-to-host pcie transactions to timeout. If this happened we want
10111  * to clear the interrupt which detected this from the pglueb and the was done
10112  * bit
10113  */
10114 static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
10115 {
10116         if (!CHIP_IS_E1x(bp)) {
10117                 u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
10118                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
10119                         DP(BNX2X_MSG_SP,
10120                            "'was error' bit was found to be set in pglueb upon startup. Clearing\n");
10121                         REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
10122                                1 << BP_FUNC(bp));
10123                 }
10124         }
10125 }
10126
10127 static int bnx2x_prev_unload(struct bnx2x *bp)
10128 {
10129         int time_counter = 10;
10130         u32 rc, fw, hw_lock_reg, hw_lock_val;
10131         BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10132
10133         /* clear hw from errors which may have resulted from an interrupted
10134          * dmae transaction.
10135          */
10136         bnx2x_prev_interrupted_dmae(bp);
10137
10138         /* Release previously held locks */
10139         hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10140                       (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10141                       (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10142
10143         hw_lock_val = REG_RD(bp, hw_lock_reg);
10144         if (hw_lock_val) {
10145                 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10146                         BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10147                         REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10148                                (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10149                 }
10150
10151                 BNX2X_DEV_INFO("Release Previously held hw lock\n");
10152                 REG_WR(bp, hw_lock_reg, 0xffffffff);
10153         } else
10154                 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10155
10156         if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10157                 BNX2X_DEV_INFO("Release previously held alr\n");
10158                 bnx2x_release_alr(bp);
10159         }
10160
10161         do {
10162                 int aer = 0;
10163                 /* Lock MCP using an unload request */
10164                 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10165                 if (!fw) {
10166                         BNX2X_ERR("MCP response failure, aborting\n");
10167                         rc = -EBUSY;
10168                         break;
10169                 }
10170
10171                 rc = down_interruptible(&bnx2x_prev_sem);
10172                 if (rc) {
10173                         BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10174                                   rc);
10175                 } else {
10176                         /* If Path is marked by EEH, ignore unload status */
10177                         aer = !!(bnx2x_prev_path_get_entry(bp) &&
10178                                  bnx2x_prev_path_get_entry(bp)->aer);
10179                         up(&bnx2x_prev_sem);
10180                 }
10181
10182                 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10183                         rc = bnx2x_prev_unload_common(bp);
10184                         break;
10185                 }
10186
10187                 /* non-common reply from MCP might require looping */
10188                 rc = bnx2x_prev_unload_uncommon(bp);
10189                 if (rc != BNX2X_PREV_WAIT_NEEDED)
10190                         break;
10191
10192                 msleep(20);
10193         } while (--time_counter);
10194
10195         if (!time_counter || rc) {
10196                 BNX2X_ERR("Failed unloading previous driver, aborting\n");
10197                 rc = -EBUSY;
10198         }
10199
10200         /* Mark function if its port was used to boot from SAN */
10201         if (bnx2x_port_after_undi(bp))
10202                 bp->link_params.feature_config_flags |=
10203                         FEATURE_CONFIG_BOOT_FROM_SAN;
10204
10205         BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10206
10207         return rc;
10208 }
10209
10210 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10211 {
10212         u32 val, val2, val3, val4, id, boot_mode;
10213         u16 pmc;
10214
10215         /* Get the chip revision id and number. */
10216         /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10217         val = REG_RD(bp, MISC_REG_CHIP_NUM);
10218         id = ((val & 0xffff) << 16);
10219         val = REG_RD(bp, MISC_REG_CHIP_REV);
10220         id |= ((val & 0xf) << 12);
10221
10222         /* Metal is read from PCI regs, but we can't access >=0x400 from
10223          * the configuration space (so we need to reg_rd)
10224          */
10225         val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10226         id |= (((val >> 24) & 0xf) << 4);
10227         val = REG_RD(bp, MISC_REG_BOND_ID);
10228         id |= (val & 0xf);
10229         bp->common.chip_id = id;
10230
10231         /* force 57811 according to MISC register */
10232         if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10233                 if (CHIP_IS_57810(bp))
10234                         bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10235                                 (bp->common.chip_id & 0x0000FFFF);
10236                 else if (CHIP_IS_57810_MF(bp))
10237                         bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10238                                 (bp->common.chip_id & 0x0000FFFF);
10239                 bp->common.chip_id |= 0x1;
10240         }
10241
10242         /* Set doorbell size */
10243         bp->db_size = (1 << BNX2X_DB_SHIFT);
10244
10245         if (!CHIP_IS_E1x(bp)) {
10246                 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10247                 if ((val & 1) == 0)
10248                         val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10249                 else
10250                         val = (val >> 1) & 1;
10251                 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10252                                                        "2_PORT_MODE");
10253                 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10254                                                  CHIP_2_PORT_MODE;
10255
10256                 if (CHIP_MODE_IS_4_PORT(bp))
10257                         bp->pfid = (bp->pf_num >> 1);   /* 0..3 */
10258                 else
10259                         bp->pfid = (bp->pf_num & 0x6);  /* 0, 2, 4, 6 */
10260         } else {
10261                 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10262                 bp->pfid = bp->pf_num;                  /* 0..7 */
10263         }
10264
10265         BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10266
10267         bp->link_params.chip_id = bp->common.chip_id;
10268         BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10269
10270         val = (REG_RD(bp, 0x2874) & 0x55);
10271         if ((bp->common.chip_id & 0x1) ||
10272             (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10273                 bp->flags |= ONE_PORT_FLAG;
10274                 BNX2X_DEV_INFO("single port device\n");
10275         }
10276
10277         val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10278         bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10279                                  (val & MCPR_NVM_CFG4_FLASH_SIZE));
10280         BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10281                        bp->common.flash_size, bp->common.flash_size);
10282
10283         bnx2x_init_shmem(bp);
10284
10285         bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10286                                         MISC_REG_GENERIC_CR_1 :
10287                                         MISC_REG_GENERIC_CR_0));
10288
10289         bp->link_params.shmem_base = bp->common.shmem_base;
10290         bp->link_params.shmem2_base = bp->common.shmem2_base;
10291         if (SHMEM2_RD(bp, size) >
10292             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10293                 bp->link_params.lfa_base =
10294                 REG_RD(bp, bp->common.shmem2_base +
10295                        (u32)offsetof(struct shmem2_region,
10296                                      lfa_host_addr[BP_PORT(bp)]));
10297         else
10298                 bp->link_params.lfa_base = 0;
10299         BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
10300                        bp->common.shmem_base, bp->common.shmem2_base);
10301
10302         if (!bp->common.shmem_base) {
10303                 BNX2X_DEV_INFO("MCP not active\n");
10304                 bp->flags |= NO_MCP_FLAG;
10305                 return;
10306         }
10307
10308         bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10309         BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10310
10311         bp->link_params.hw_led_mode = ((bp->common.hw_config &
10312                                         SHARED_HW_CFG_LED_MODE_MASK) >>
10313                                        SHARED_HW_CFG_LED_MODE_SHIFT);
10314
10315         bp->link_params.feature_config_flags = 0;
10316         val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10317         if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10318                 bp->link_params.feature_config_flags |=
10319                                 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10320         else
10321                 bp->link_params.feature_config_flags &=
10322                                 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10323
10324         val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10325         bp->common.bc_ver = val;
10326         BNX2X_DEV_INFO("bc_ver %X\n", val);
10327         if (val < BNX2X_BC_VER) {
10328                 /* for now only warn
10329                  * later we might need to enforce this */
10330                 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10331                           BNX2X_BC_VER, val);
10332         }
10333         bp->link_params.feature_config_flags |=
10334                                 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
10335                                 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10336
10337         bp->link_params.feature_config_flags |=
10338                 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10339                 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10340         bp->link_params.feature_config_flags |=
10341                 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10342                 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10343         bp->link_params.feature_config_flags |=
10344                 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10345                 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10346
10347         bp->link_params.feature_config_flags |=
10348                 (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10349                 FEATURE_CONFIG_MT_SUPPORT : 0;
10350
10351         bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10352                         BC_SUPPORTS_PFC_STATS : 0;
10353
10354         bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10355                         BC_SUPPORTS_FCOE_FEATURES : 0;
10356
10357         bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10358                         BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10359         boot_mode = SHMEM_RD(bp,
10360                         dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10361                         PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10362         switch (boot_mode) {
10363         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10364                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10365                 break;
10366         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10367                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10368                 break;
10369         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10370                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10371                 break;
10372         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10373                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10374                 break;
10375         }
10376
10377         pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
10378         bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10379
10380         BNX2X_DEV_INFO("%sWoL capable\n",
10381                        (bp->flags & NO_WOL_FLAG) ? "not " : "");
10382
10383         val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10384         val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10385         val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10386         val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10387
10388         dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10389                  val, val2, val3, val4);
10390 }
10391
10392 #define IGU_FID(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10393 #define IGU_VEC(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10394
10395 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10396 {
10397         int pfid = BP_FUNC(bp);
10398         int igu_sb_id;
10399         u32 val;
10400         u8 fid, igu_sb_cnt = 0;
10401
10402         bp->igu_base_sb = 0xff;
10403         if (CHIP_INT_MODE_IS_BC(bp)) {
10404                 int vn = BP_VN(bp);
10405                 igu_sb_cnt = bp->igu_sb_cnt;
10406                 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10407                         FP_SB_MAX_E1x;
10408
10409                 bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
10410                         (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10411
10412                 return 0;
10413         }
10414
10415         /* IGU in normal mode - read CAM */
10416         for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10417              igu_sb_id++) {
10418                 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10419                 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10420                         continue;
10421                 fid = IGU_FID(val);
10422                 if ((fid & IGU_FID_ENCODE_IS_PF)) {
10423                         if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10424                                 continue;
10425                         if (IGU_VEC(val) == 0)
10426                                 /* default status block */
10427                                 bp->igu_dsb_id = igu_sb_id;
10428                         else {
10429                                 if (bp->igu_base_sb == 0xff)
10430                                         bp->igu_base_sb = igu_sb_id;
10431                                 igu_sb_cnt++;
10432                         }
10433                 }
10434         }
10435
10436 #ifdef CONFIG_PCI_MSI
10437         /* Due to new PF resource allocation by MFW T7.4 and above, it's
10438          * optional that number of CAM entries will not be equal to the value
10439          * advertised in PCI.
10440          * Driver should use the minimal value of both as the actual status
10441          * block count
10442          */
10443         bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10444 #endif
10445
10446         if (igu_sb_cnt == 0) {
10447                 BNX2X_ERR("CAM configuration error\n");
10448                 return -EINVAL;
10449         }
10450
10451         return 0;
10452 }
10453
10454 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10455 {
10456         int cfg_size = 0, idx, port = BP_PORT(bp);
10457
10458         /* Aggregation of supported attributes of all external phys */
10459         bp->port.supported[0] = 0;
10460         bp->port.supported[1] = 0;
10461         switch (bp->link_params.num_phys) {
10462         case 1:
10463                 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10464                 cfg_size = 1;
10465                 break;
10466         case 2:
10467                 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10468                 cfg_size = 1;
10469                 break;
10470         case 3:
10471                 if (bp->link_params.multi_phy_config &
10472                     PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10473                         bp->port.supported[1] =
10474                                 bp->link_params.phy[EXT_PHY1].supported;
10475                         bp->port.supported[0] =
10476                                 bp->link_params.phy[EXT_PHY2].supported;
10477                 } else {
10478                         bp->port.supported[0] =
10479                                 bp->link_params.phy[EXT_PHY1].supported;
10480                         bp->port.supported[1] =
10481                                 bp->link_params.phy[EXT_PHY2].supported;
10482                 }
10483                 cfg_size = 2;
10484                 break;
10485         }
10486
10487         if (!(bp->port.supported[0] || bp->port.supported[1])) {
10488                 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10489                            SHMEM_RD(bp,
10490                            dev_info.port_hw_config[port].external_phy_config),
10491                            SHMEM_RD(bp,
10492                            dev_info.port_hw_config[port].external_phy_config2));
10493                         return;
10494         }
10495
10496         if (CHIP_IS_E3(bp))
10497                 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10498         else {
10499                 switch (switch_cfg) {
10500                 case SWITCH_CFG_1G:
10501                         bp->port.phy_addr = REG_RD(
10502                                 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10503                         break;
10504                 case SWITCH_CFG_10G:
10505                         bp->port.phy_addr = REG_RD(
10506                                 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10507                         break;
10508                 default:
10509                         BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10510                                   bp->port.link_config[0]);
10511                         return;
10512                 }
10513         }
10514         BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10515         /* mask what we support according to speed_cap_mask per configuration */
10516         for (idx = 0; idx < cfg_size; idx++) {
10517                 if (!(bp->link_params.speed_cap_mask[idx] &
10518                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
10519                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
10520
10521                 if (!(bp->link_params.speed_cap_mask[idx] &
10522                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
10523                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
10524
10525                 if (!(bp->link_params.speed_cap_mask[idx] &
10526                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
10527                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
10528
10529                 if (!(bp->link_params.speed_cap_mask[idx] &
10530                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
10531                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
10532
10533                 if (!(bp->link_params.speed_cap_mask[idx] &
10534                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
10535                         bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
10536                                                      SUPPORTED_1000baseT_Full);
10537
10538                 if (!(bp->link_params.speed_cap_mask[idx] &
10539                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
10540                         bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
10541
10542                 if (!(bp->link_params.speed_cap_mask[idx] &
10543                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
10544                         bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
10545         }
10546
10547         BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
10548                        bp->port.supported[1]);
10549 }
10550
10551 static void bnx2x_link_settings_requested(struct bnx2x *bp)
10552 {
10553         u32 link_config, idx, cfg_size = 0;
10554         bp->port.advertising[0] = 0;
10555         bp->port.advertising[1] = 0;
10556         switch (bp->link_params.num_phys) {
10557         case 1:
10558         case 2:
10559                 cfg_size = 1;
10560                 break;
10561         case 3:
10562                 cfg_size = 2;
10563                 break;
10564         }
10565         for (idx = 0; idx < cfg_size; idx++) {
10566                 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
10567                 link_config = bp->port.link_config[idx];
10568                 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
10569                 case PORT_FEATURE_LINK_SPEED_AUTO:
10570                         if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
10571                                 bp->link_params.req_line_speed[idx] =
10572                                         SPEED_AUTO_NEG;
10573                                 bp->port.advertising[idx] |=
10574                                         bp->port.supported[idx];
10575                                 if (bp->link_params.phy[EXT_PHY1].type ==
10576                                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
10577                                         bp->port.advertising[idx] |=
10578                                         (SUPPORTED_100baseT_Half |
10579                                          SUPPORTED_100baseT_Full);
10580                         } else {
10581                                 /* force 10G, no AN */
10582                                 bp->link_params.req_line_speed[idx] =
10583                                         SPEED_10000;
10584                                 bp->port.advertising[idx] |=
10585                                         (ADVERTISED_10000baseT_Full |
10586                                          ADVERTISED_FIBRE);
10587                                 continue;
10588                         }
10589                         break;
10590
10591                 case PORT_FEATURE_LINK_SPEED_10M_FULL:
10592                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
10593                                 bp->link_params.req_line_speed[idx] =
10594                                         SPEED_10;
10595                                 bp->port.advertising[idx] |=
10596                                         (ADVERTISED_10baseT_Full |
10597                                          ADVERTISED_TP);
10598                         } else {
10599                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10600                                             link_config,
10601                                     bp->link_params.speed_cap_mask[idx]);
10602                                 return;
10603                         }
10604                         break;
10605
10606                 case PORT_FEATURE_LINK_SPEED_10M_HALF:
10607                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
10608                                 bp->link_params.req_line_speed[idx] =
10609                                         SPEED_10;
10610                                 bp->link_params.req_duplex[idx] =
10611                                         DUPLEX_HALF;
10612                                 bp->port.advertising[idx] |=
10613                                         (ADVERTISED_10baseT_Half |
10614                                          ADVERTISED_TP);
10615                         } else {
10616                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10617                                             link_config,
10618                                           bp->link_params.speed_cap_mask[idx]);
10619                                 return;
10620                         }
10621                         break;
10622
10623                 case PORT_FEATURE_LINK_SPEED_100M_FULL:
10624                         if (bp->port.supported[idx] &
10625                             SUPPORTED_100baseT_Full) {
10626                                 bp->link_params.req_line_speed[idx] =
10627                                         SPEED_100;
10628                                 bp->port.advertising[idx] |=
10629                                         (ADVERTISED_100baseT_Full |
10630                                          ADVERTISED_TP);
10631                         } else {
10632                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10633                                             link_config,
10634                                           bp->link_params.speed_cap_mask[idx]);
10635                                 return;
10636                         }
10637                         break;
10638
10639                 case PORT_FEATURE_LINK_SPEED_100M_HALF:
10640                         if (bp->port.supported[idx] &
10641                             SUPPORTED_100baseT_Half) {
10642                                 bp->link_params.req_line_speed[idx] =
10643                                                                 SPEED_100;
10644                                 bp->link_params.req_duplex[idx] =
10645                                                                 DUPLEX_HALF;
10646                                 bp->port.advertising[idx] |=
10647                                         (ADVERTISED_100baseT_Half |
10648                                          ADVERTISED_TP);
10649                         } else {
10650                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10651                                     link_config,
10652                                     bp->link_params.speed_cap_mask[idx]);
10653                                 return;
10654                         }
10655                         break;
10656
10657                 case PORT_FEATURE_LINK_SPEED_1G:
10658                         if (bp->port.supported[idx] &
10659                             SUPPORTED_1000baseT_Full) {
10660                                 bp->link_params.req_line_speed[idx] =
10661                                         SPEED_1000;
10662                                 bp->port.advertising[idx] |=
10663                                         (ADVERTISED_1000baseT_Full |
10664                                          ADVERTISED_TP);
10665                         } else {
10666                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10667                                     link_config,
10668                                     bp->link_params.speed_cap_mask[idx]);
10669                                 return;
10670                         }
10671                         break;
10672
10673                 case PORT_FEATURE_LINK_SPEED_2_5G:
10674                         if (bp->port.supported[idx] &
10675                             SUPPORTED_2500baseX_Full) {
10676                                 bp->link_params.req_line_speed[idx] =
10677                                         SPEED_2500;
10678                                 bp->port.advertising[idx] |=
10679                                         (ADVERTISED_2500baseX_Full |
10680                                                 ADVERTISED_TP);
10681                         } else {
10682                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10683                                     link_config,
10684                                     bp->link_params.speed_cap_mask[idx]);
10685                                 return;
10686                         }
10687                         break;
10688
10689                 case PORT_FEATURE_LINK_SPEED_10G_CX4:
10690                         if (bp->port.supported[idx] &
10691                             SUPPORTED_10000baseT_Full) {
10692                                 bp->link_params.req_line_speed[idx] =
10693                                         SPEED_10000;
10694                                 bp->port.advertising[idx] |=
10695                                         (ADVERTISED_10000baseT_Full |
10696                                                 ADVERTISED_FIBRE);
10697                         } else {
10698                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10699                                     link_config,
10700                                     bp->link_params.speed_cap_mask[idx]);
10701                                 return;
10702                         }
10703                         break;
10704                 case PORT_FEATURE_LINK_SPEED_20G:
10705                         bp->link_params.req_line_speed[idx] = SPEED_20000;
10706
10707                         break;
10708                 default:
10709                         BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
10710                                   link_config);
10711                                 bp->link_params.req_line_speed[idx] =
10712                                                         SPEED_AUTO_NEG;
10713                                 bp->port.advertising[idx] =
10714                                                 bp->port.supported[idx];
10715                         break;
10716                 }
10717
10718                 bp->link_params.req_flow_ctrl[idx] = (link_config &
10719                                          PORT_FEATURE_FLOW_CONTROL_MASK);
10720                 if (bp->link_params.req_flow_ctrl[idx] ==
10721                     BNX2X_FLOW_CTRL_AUTO) {
10722                         if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
10723                                 bp->link_params.req_flow_ctrl[idx] =
10724                                                         BNX2X_FLOW_CTRL_NONE;
10725                         else
10726                                 bnx2x_set_requested_fc(bp);
10727                 }
10728
10729                 BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
10730                                bp->link_params.req_line_speed[idx],
10731                                bp->link_params.req_duplex[idx],
10732                                bp->link_params.req_flow_ctrl[idx],
10733                                bp->port.advertising[idx]);
10734         }
10735 }
10736
10737 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
10738 {
10739         __be16 mac_hi_be = cpu_to_be16(mac_hi);
10740         __be32 mac_lo_be = cpu_to_be32(mac_lo);
10741         memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
10742         memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
10743 }
10744
10745 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
10746 {
10747         int port = BP_PORT(bp);
10748         u32 config;
10749         u32 ext_phy_type, ext_phy_config, eee_mode;
10750
10751         bp->link_params.bp = bp;
10752         bp->link_params.port = port;
10753
10754         bp->link_params.lane_config =
10755                 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
10756
10757         bp->link_params.speed_cap_mask[0] =
10758                 SHMEM_RD(bp,
10759                          dev_info.port_hw_config[port].speed_capability_mask) &
10760                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10761         bp->link_params.speed_cap_mask[1] =
10762                 SHMEM_RD(bp,
10763                          dev_info.port_hw_config[port].speed_capability_mask2) &
10764                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10765         bp->port.link_config[0] =
10766                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
10767
10768         bp->port.link_config[1] =
10769                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
10770
10771         bp->link_params.multi_phy_config =
10772                 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
10773         /* If the device is capable of WoL, set the default state according
10774          * to the HW
10775          */
10776         config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
10777         bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
10778                    (config & PORT_FEATURE_WOL_ENABLED));
10779
10780         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10781             PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
10782                 bp->flags |= NO_ISCSI_FLAG;
10783         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10784             PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
10785                 bp->flags |= NO_FCOE_FLAG;
10786
10787         BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
10788                        bp->link_params.lane_config,
10789                        bp->link_params.speed_cap_mask[0],
10790                        bp->port.link_config[0]);
10791
10792         bp->link_params.switch_cfg = (bp->port.link_config[0] &
10793                                       PORT_FEATURE_CONNECTED_SWITCH_MASK);
10794         bnx2x_phy_probe(&bp->link_params);
10795         bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
10796
10797         bnx2x_link_settings_requested(bp);
10798
10799         /*
10800          * If connected directly, work with the internal PHY, otherwise, work
10801          * with the external PHY
10802          */
10803         ext_phy_config =
10804                 SHMEM_RD(bp,
10805                          dev_info.port_hw_config[port].external_phy_config);
10806         ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
10807         if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
10808                 bp->mdio.prtad = bp->port.phy_addr;
10809
10810         else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
10811                  (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
10812                 bp->mdio.prtad =
10813                         XGXS_EXT_PHY_ADDR(ext_phy_config);
10814
10815         /* Configure link feature according to nvram value */
10816         eee_mode = (((SHMEM_RD(bp, dev_info.
10817                       port_feature_config[port].eee_power_mode)) &
10818                      PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
10819                     PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
10820         if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
10821                 bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
10822                                            EEE_MODE_ENABLE_LPI |
10823                                            EEE_MODE_OUTPUT_TIME;
10824         } else {
10825                 bp->link_params.eee_mode = 0;
10826         }
10827 }
10828
10829 void bnx2x_get_iscsi_info(struct bnx2x *bp)
10830 {
10831         u32 no_flags = NO_ISCSI_FLAG;
10832         int port = BP_PORT(bp);
10833         u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10834                                 drv_lic_key[port].max_iscsi_conn);
10835
10836         if (!CNIC_SUPPORT(bp)) {
10837                 bp->flags |= no_flags;
10838                 return;
10839         }
10840
10841         /* Get the number of maximum allowed iSCSI connections */
10842         bp->cnic_eth_dev.max_iscsi_conn =
10843                 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
10844                 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
10845
10846         BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
10847                        bp->cnic_eth_dev.max_iscsi_conn);
10848
10849         /*
10850          * If maximum allowed number of connections is zero -
10851          * disable the feature.
10852          */
10853         if (!bp->cnic_eth_dev.max_iscsi_conn)
10854                 bp->flags |= no_flags;
10855 }
10856
10857 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
10858 {
10859         /* Port info */
10860         bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10861                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
10862         bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10863                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
10864
10865         /* Node info */
10866         bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10867                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
10868         bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10869                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
10870 }
10871
10872 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
10873 {
10874         u8 count = 0;
10875
10876         if (IS_MF(bp)) {
10877                 u8 fid;
10878
10879                 /* iterate over absolute function ids for this path: */
10880                 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
10881                         if (IS_MF_SD(bp)) {
10882                                 u32 cfg = MF_CFG_RD(bp,
10883                                                     func_mf_config[fid].config);
10884
10885                                 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
10886                                     ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
10887                                             FUNC_MF_CFG_PROTOCOL_FCOE))
10888                                         count++;
10889                         } else {
10890                                 u32 cfg = MF_CFG_RD(bp,
10891                                                     func_ext_config[fid].
10892                                                                       func_cfg);
10893
10894                                 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
10895                                     (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
10896                                         count++;
10897                         }
10898                 }
10899         } else { /* SF */
10900                 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
10901
10902                 for (port = 0; port < port_cnt; port++) {
10903                         u32 lic = SHMEM_RD(bp,
10904                                            drv_lic_key[port].max_fcoe_conn) ^
10905                                   FW_ENCODE_32BIT_PATTERN;
10906                         if (lic)
10907                                 count++;
10908                 }
10909         }
10910
10911         return count;
10912 }
10913
10914 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
10915 {
10916         int port = BP_PORT(bp);
10917         int func = BP_ABS_FUNC(bp);
10918         u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10919                                 drv_lic_key[port].max_fcoe_conn);
10920         u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
10921
10922         if (!CNIC_SUPPORT(bp)) {
10923                 bp->flags |= NO_FCOE_FLAG;
10924                 return;
10925         }
10926
10927         /* Get the number of maximum allowed FCoE connections */
10928         bp->cnic_eth_dev.max_fcoe_conn =
10929                 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
10930                 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
10931
10932         /* Calculate the number of maximum allowed FCoE tasks */
10933         bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
10934
10935         /* check if FCoE resources must be shared between different functions */
10936         if (num_fcoe_func)
10937                 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
10938
10939         /* Read the WWN: */
10940         if (!IS_MF(bp)) {
10941                 /* Port info */
10942                 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10943                         SHMEM_RD(bp,
10944                                  dev_info.port_hw_config[port].
10945                                  fcoe_wwn_port_name_upper);
10946                 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10947                         SHMEM_RD(bp,
10948                                  dev_info.port_hw_config[port].
10949                                  fcoe_wwn_port_name_lower);
10950
10951                 /* Node info */
10952                 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10953                         SHMEM_RD(bp,
10954                                  dev_info.port_hw_config[port].
10955                                  fcoe_wwn_node_name_upper);
10956                 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10957                         SHMEM_RD(bp,
10958                                  dev_info.port_hw_config[port].
10959                                  fcoe_wwn_node_name_lower);
10960         } else if (!IS_MF_SD(bp)) {
10961                 /*
10962                  * Read the WWN info only if the FCoE feature is enabled for
10963                  * this function.
10964                  */
10965                 if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
10966                         bnx2x_get_ext_wwn_info(bp, func);
10967
10968         } else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) {
10969                 bnx2x_get_ext_wwn_info(bp, func);
10970         }
10971
10972         BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
10973
10974         /*
10975          * If maximum allowed number of connections is zero -
10976          * disable the feature.
10977          */
10978         if (!bp->cnic_eth_dev.max_fcoe_conn)
10979                 bp->flags |= NO_FCOE_FLAG;
10980 }
10981
10982 static void bnx2x_get_cnic_info(struct bnx2x *bp)
10983 {
10984         /*
10985          * iSCSI may be dynamically disabled but reading
10986          * info here we will decrease memory usage by driver
10987          * if the feature is disabled for good
10988          */
10989         bnx2x_get_iscsi_info(bp);
10990         bnx2x_get_fcoe_info(bp);
10991 }
10992
10993 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
10994 {
10995         u32 val, val2;
10996         int func = BP_ABS_FUNC(bp);
10997         int port = BP_PORT(bp);
10998         u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
10999         u8 *fip_mac = bp->fip_mac;
11000
11001         if (IS_MF(bp)) {
11002                 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11003                  * FCoE MAC then the appropriate feature should be disabled.
11004                  * In non SD mode features configuration comes from struct
11005                  * func_ext_config.
11006                  */
11007                 if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) {
11008                         u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11009                         if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11010                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11011                                                  iscsi_mac_addr_upper);
11012                                 val = MF_CFG_RD(bp, func_ext_config[func].
11013                                                 iscsi_mac_addr_lower);
11014                                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11015                                 BNX2X_DEV_INFO
11016                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11017                         } else {
11018                                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11019                         }
11020
11021                         if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11022                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11023                                                  fcoe_mac_addr_upper);
11024                                 val = MF_CFG_RD(bp, func_ext_config[func].
11025                                                 fcoe_mac_addr_lower);
11026                                 bnx2x_set_mac_buf(fip_mac, val, val2);
11027                                 BNX2X_DEV_INFO
11028                                         ("Read FCoE L2 MAC: %pM\n", fip_mac);
11029                         } else {
11030                                 bp->flags |= NO_FCOE_FLAG;
11031                         }
11032
11033                         bp->mf_ext_config = cfg;
11034
11035                 } else { /* SD MODE */
11036                         if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11037                                 /* use primary mac as iscsi mac */
11038                                 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11039
11040                                 BNX2X_DEV_INFO("SD ISCSI MODE\n");
11041                                 BNX2X_DEV_INFO
11042                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11043                         } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11044                                 /* use primary mac as fip mac */
11045                                 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11046                                 BNX2X_DEV_INFO("SD FCoE MODE\n");
11047                                 BNX2X_DEV_INFO
11048                                         ("Read FIP MAC: %pM\n", fip_mac);
11049                         }
11050                 }
11051
11052                 /* If this is a storage-only interface, use SAN mac as
11053                  * primary MAC. Notice that for SD this is already the case,
11054                  * as the SAN mac was copied from the primary MAC.
11055                  */
11056                 if (IS_MF_FCOE_AFEX(bp))
11057                         memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11058         } else {
11059                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11060                                 iscsi_mac_upper);
11061                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11062                                iscsi_mac_lower);
11063                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11064
11065                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11066                                 fcoe_fip_mac_upper);
11067                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11068                                fcoe_fip_mac_lower);
11069                 bnx2x_set_mac_buf(fip_mac, val, val2);
11070         }
11071
11072         /* Disable iSCSI OOO if MAC configuration is invalid. */
11073         if (!is_valid_ether_addr(iscsi_mac)) {
11074                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11075                 memset(iscsi_mac, 0, ETH_ALEN);
11076         }
11077
11078         /* Disable FCoE if MAC configuration is invalid. */
11079         if (!is_valid_ether_addr(fip_mac)) {
11080                 bp->flags |= NO_FCOE_FLAG;
11081                 memset(bp->fip_mac, 0, ETH_ALEN);
11082         }
11083 }
11084
11085 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11086 {
11087         u32 val, val2;
11088         int func = BP_ABS_FUNC(bp);
11089         int port = BP_PORT(bp);
11090
11091         /* Zero primary MAC configuration */
11092         memset(bp->dev->dev_addr, 0, ETH_ALEN);
11093
11094         if (BP_NOMCP(bp)) {
11095                 BNX2X_ERROR("warning: random MAC workaround active\n");
11096                 eth_hw_addr_random(bp->dev);
11097         } else if (IS_MF(bp)) {
11098                 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11099                 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11100                 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11101                     (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11102                         bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11103
11104                 if (CNIC_SUPPORT(bp))
11105                         bnx2x_get_cnic_mac_hwinfo(bp);
11106         } else {
11107                 /* in SF read MACs from port configuration */
11108                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11109                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11110                 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11111
11112                 if (CNIC_SUPPORT(bp))
11113                         bnx2x_get_cnic_mac_hwinfo(bp);
11114         }
11115
11116         memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11117
11118         if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
11119                 dev_err(&bp->pdev->dev,
11120                         "bad Ethernet MAC address configuration: %pM\n"
11121                         "change it manually before bringing up the appropriate network interface\n",
11122                         bp->dev->dev_addr);
11123 }
11124
11125 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11126 {
11127         int tmp;
11128         u32 cfg;
11129
11130         if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11131                 /* Take function: tmp = func */
11132                 tmp = BP_ABS_FUNC(bp);
11133                 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11134                 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11135         } else {
11136                 /* Take port: tmp = port */
11137                 tmp = BP_PORT(bp);
11138                 cfg = SHMEM_RD(bp,
11139                                dev_info.port_hw_config[tmp].generic_features);
11140                 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11141         }
11142         return cfg;
11143 }
11144
11145 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11146 {
11147         int /*abs*/func = BP_ABS_FUNC(bp);
11148         int vn;
11149         u32 val = 0;
11150         int rc = 0;
11151
11152         bnx2x_get_common_hwinfo(bp);
11153
11154         /*
11155          * initialize IGU parameters
11156          */
11157         if (CHIP_IS_E1x(bp)) {
11158                 bp->common.int_block = INT_BLOCK_HC;
11159
11160                 bp->igu_dsb_id = DEF_SB_IGU_ID;
11161                 bp->igu_base_sb = 0;
11162         } else {
11163                 bp->common.int_block = INT_BLOCK_IGU;
11164
11165                 /* do not allow device reset during IGU info processing */
11166                 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11167
11168                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11169
11170                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11171                         int tout = 5000;
11172
11173                         BNX2X_DEV_INFO("FORCING Normal Mode\n");
11174
11175                         val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11176                         REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11177                         REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11178
11179                         while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11180                                 tout--;
11181                                 usleep_range(1000, 2000);
11182                         }
11183
11184                         if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11185                                 dev_err(&bp->pdev->dev,
11186                                         "FORCING Normal Mode failed!!!\n");
11187                                 bnx2x_release_hw_lock(bp,
11188                                                       HW_LOCK_RESOURCE_RESET);
11189                                 return -EPERM;
11190                         }
11191                 }
11192
11193                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11194                         BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11195                         bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11196                 } else
11197                         BNX2X_DEV_INFO("IGU Normal Mode\n");
11198
11199                 rc = bnx2x_get_igu_cam_info(bp);
11200                 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11201                 if (rc)
11202                         return rc;
11203         }
11204
11205         /*
11206          * set base FW non-default (fast path) status block id, this value is
11207          * used to initialize the fw_sb_id saved on the fp/queue structure to
11208          * determine the id used by the FW.
11209          */
11210         if (CHIP_IS_E1x(bp))
11211                 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11212         else /*
11213               * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11214               * the same queue are indicated on the same IGU SB). So we prefer
11215               * FW and IGU SBs to be the same value.
11216               */
11217                 bp->base_fw_ndsb = bp->igu_base_sb;
11218
11219         BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11220                        "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11221                        bp->igu_sb_cnt, bp->base_fw_ndsb);
11222
11223         /*
11224          * Initialize MF configuration
11225          */
11226
11227         bp->mf_ov = 0;
11228         bp->mf_mode = 0;
11229         vn = BP_VN(bp);
11230
11231         if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11232                 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11233                                bp->common.shmem2_base, SHMEM2_RD(bp, size),
11234                               (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11235
11236                 if (SHMEM2_HAS(bp, mf_cfg_addr))
11237                         bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11238                 else
11239                         bp->common.mf_cfg_base = bp->common.shmem_base +
11240                                 offsetof(struct shmem_region, func_mb) +
11241                                 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11242                 /*
11243                  * get mf configuration:
11244                  * 1. Existence of MF configuration
11245                  * 2. MAC address must be legal (check only upper bytes)
11246                  *    for  Switch-Independent mode;
11247                  *    OVLAN must be legal for Switch-Dependent mode
11248                  * 3. SF_MODE configures specific MF mode
11249                  */
11250                 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11251                         /* get mf configuration */
11252                         val = SHMEM_RD(bp,
11253                                        dev_info.shared_feature_config.config);
11254                         val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11255
11256                         switch (val) {
11257                         case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11258                                 val = MF_CFG_RD(bp, func_mf_config[func].
11259                                                 mac_upper);
11260                                 /* check for legal mac (upper bytes)*/
11261                                 if (val != 0xffff) {
11262                                         bp->mf_mode = MULTI_FUNCTION_SI;
11263                                         bp->mf_config[vn] = MF_CFG_RD(bp,
11264                                                    func_mf_config[func].config);
11265                                 } else
11266                                         BNX2X_DEV_INFO("illegal MAC address for SI\n");
11267                                 break;
11268                         case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11269                                 if ((!CHIP_IS_E1x(bp)) &&
11270                                     (MF_CFG_RD(bp, func_mf_config[func].
11271                                                mac_upper) != 0xffff) &&
11272                                     (SHMEM2_HAS(bp,
11273                                                 afex_driver_support))) {
11274                                         bp->mf_mode = MULTI_FUNCTION_AFEX;
11275                                         bp->mf_config[vn] = MF_CFG_RD(bp,
11276                                                 func_mf_config[func].config);
11277                                 } else {
11278                                         BNX2X_DEV_INFO("can not configure afex mode\n");
11279                                 }
11280                                 break;
11281                         case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11282                                 /* get OV configuration */
11283                                 val = MF_CFG_RD(bp,
11284                                         func_mf_config[FUNC_0].e1hov_tag);
11285                                 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
11286
11287                                 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11288                                         bp->mf_mode = MULTI_FUNCTION_SD;
11289                                         bp->mf_config[vn] = MF_CFG_RD(bp,
11290                                                 func_mf_config[func].config);
11291                                 } else
11292                                         BNX2X_DEV_INFO("illegal OV for SD\n");
11293                                 break;
11294                         case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
11295                                 bp->mf_config[vn] = 0;
11296                                 break;
11297                         default:
11298                                 /* Unknown configuration: reset mf_config */
11299                                 bp->mf_config[vn] = 0;
11300                                 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
11301                         }
11302                 }
11303
11304                 BNX2X_DEV_INFO("%s function mode\n",
11305                                IS_MF(bp) ? "multi" : "single");
11306
11307                 switch (bp->mf_mode) {
11308                 case MULTI_FUNCTION_SD:
11309                         val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
11310                               FUNC_MF_CFG_E1HOV_TAG_MASK;
11311                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11312                                 bp->mf_ov = val;
11313                                 bp->path_has_ovlan = true;
11314
11315                                 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
11316                                                func, bp->mf_ov, bp->mf_ov);
11317                         } else {
11318                                 dev_err(&bp->pdev->dev,
11319                                         "No valid MF OV for func %d, aborting\n",
11320                                         func);
11321                                 return -EPERM;
11322                         }
11323                         break;
11324                 case MULTI_FUNCTION_AFEX:
11325                         BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
11326                         break;
11327                 case MULTI_FUNCTION_SI:
11328                         BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
11329                                        func);
11330                         break;
11331                 default:
11332                         if (vn) {
11333                                 dev_err(&bp->pdev->dev,
11334                                         "VN %d is in a single function mode, aborting\n",
11335                                         vn);
11336                                 return -EPERM;
11337                         }
11338                         break;
11339                 }
11340
11341                 /* check if other port on the path needs ovlan:
11342                  * Since MF configuration is shared between ports
11343                  * Possible mixed modes are only
11344                  * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
11345                  */
11346                 if (CHIP_MODE_IS_4_PORT(bp) &&
11347                     !bp->path_has_ovlan &&
11348                     !IS_MF(bp) &&
11349                     bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11350                         u8 other_port = !BP_PORT(bp);
11351                         u8 other_func = BP_PATH(bp) + 2*other_port;
11352                         val = MF_CFG_RD(bp,
11353                                         func_mf_config[other_func].e1hov_tag);
11354                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
11355                                 bp->path_has_ovlan = true;
11356                 }
11357         }
11358
11359         /* adjust igu_sb_cnt to MF for E1x */
11360         if (CHIP_IS_E1x(bp) && IS_MF(bp))
11361                 bp->igu_sb_cnt /= E1HVN_MAX;
11362
11363         /* port info */
11364         bnx2x_get_port_hwinfo(bp);
11365
11366         /* Get MAC addresses */
11367         bnx2x_get_mac_hwinfo(bp);
11368
11369         bnx2x_get_cnic_info(bp);
11370
11371         return rc;
11372 }
11373
11374 static void bnx2x_read_fwinfo(struct bnx2x *bp)
11375 {
11376         int cnt, i, block_end, rodi;
11377         char vpd_start[BNX2X_VPD_LEN+1];
11378         char str_id_reg[VENDOR_ID_LEN+1];
11379         char str_id_cap[VENDOR_ID_LEN+1];
11380         char *vpd_data;
11381         char *vpd_extended_data = NULL;
11382         u8 len;
11383
11384         cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
11385         memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
11386
11387         if (cnt < BNX2X_VPD_LEN)
11388                 goto out_not_found;
11389
11390         /* VPD RO tag should be first tag after identifier string, hence
11391          * we should be able to find it in first BNX2X_VPD_LEN chars
11392          */
11393         i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11394                              PCI_VPD_LRDT_RO_DATA);
11395         if (i < 0)
11396                 goto out_not_found;
11397
11398         block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11399                     pci_vpd_lrdt_size(&vpd_start[i]);
11400
11401         i += PCI_VPD_LRDT_TAG_SIZE;
11402
11403         if (block_end > BNX2X_VPD_LEN) {
11404                 vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11405                 if (vpd_extended_data  == NULL)
11406                         goto out_not_found;
11407
11408                 /* read rest of vpd image into vpd_extended_data */
11409                 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11410                 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11411                                    block_end - BNX2X_VPD_LEN,
11412                                    vpd_extended_data + BNX2X_VPD_LEN);
11413                 if (cnt < (block_end - BNX2X_VPD_LEN))
11414                         goto out_not_found;
11415                 vpd_data = vpd_extended_data;
11416         } else
11417                 vpd_data = vpd_start;
11418
11419         /* now vpd_data holds full vpd content in both cases */
11420
11421         rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11422                                    PCI_VPD_RO_KEYWORD_MFR_ID);
11423         if (rodi < 0)
11424                 goto out_not_found;
11425
11426         len = pci_vpd_info_field_size(&vpd_data[rodi]);
11427
11428         if (len != VENDOR_ID_LEN)
11429                 goto out_not_found;
11430
11431         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11432
11433         /* vendor specific info */
11434         snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11435         snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11436         if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11437             !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11438
11439                 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11440                                                 PCI_VPD_RO_KEYWORD_VENDOR0);
11441                 if (rodi >= 0) {
11442                         len = pci_vpd_info_field_size(&vpd_data[rodi]);
11443
11444                         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11445
11446                         if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11447                                 memcpy(bp->fw_ver, &vpd_data[rodi], len);
11448                                 bp->fw_ver[len] = ' ';
11449                         }
11450                 }
11451                 kfree(vpd_extended_data);
11452                 return;
11453         }
11454 out_not_found:
11455         kfree(vpd_extended_data);
11456         return;
11457 }
11458
11459 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
11460 {
11461         u32 flags = 0;
11462
11463         if (CHIP_REV_IS_FPGA(bp))
11464                 SET_FLAGS(flags, MODE_FPGA);
11465         else if (CHIP_REV_IS_EMUL(bp))
11466                 SET_FLAGS(flags, MODE_EMUL);
11467         else
11468                 SET_FLAGS(flags, MODE_ASIC);
11469
11470         if (CHIP_MODE_IS_4_PORT(bp))
11471                 SET_FLAGS(flags, MODE_PORT4);
11472         else
11473                 SET_FLAGS(flags, MODE_PORT2);
11474
11475         if (CHIP_IS_E2(bp))
11476                 SET_FLAGS(flags, MODE_E2);
11477         else if (CHIP_IS_E3(bp)) {
11478                 SET_FLAGS(flags, MODE_E3);
11479                 if (CHIP_REV(bp) == CHIP_REV_Ax)
11480                         SET_FLAGS(flags, MODE_E3_A0);
11481                 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
11482                         SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
11483         }
11484
11485         if (IS_MF(bp)) {
11486                 SET_FLAGS(flags, MODE_MF);
11487                 switch (bp->mf_mode) {
11488                 case MULTI_FUNCTION_SD:
11489                         SET_FLAGS(flags, MODE_MF_SD);
11490                         break;
11491                 case MULTI_FUNCTION_SI:
11492                         SET_FLAGS(flags, MODE_MF_SI);
11493                         break;
11494                 case MULTI_FUNCTION_AFEX:
11495                         SET_FLAGS(flags, MODE_MF_AFEX);
11496                         break;
11497                 }
11498         } else
11499                 SET_FLAGS(flags, MODE_SF);
11500
11501 #if defined(__LITTLE_ENDIAN)
11502         SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
11503 #else /*(__BIG_ENDIAN)*/
11504         SET_FLAGS(flags, MODE_BIG_ENDIAN);
11505 #endif
11506         INIT_MODE_FLAGS(bp) = flags;
11507 }
11508
11509 static int bnx2x_init_bp(struct bnx2x *bp)
11510 {
11511         int func;
11512         int rc;
11513
11514         mutex_init(&bp->port.phy_mutex);
11515         mutex_init(&bp->fw_mb_mutex);
11516         spin_lock_init(&bp->stats_lock);
11517
11518         INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
11519         INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
11520         INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
11521         if (IS_PF(bp)) {
11522                 rc = bnx2x_get_hwinfo(bp);
11523                 if (rc)
11524                         return rc;
11525         } else {
11526                 eth_zero_addr(bp->dev->dev_addr);
11527         }
11528
11529         bnx2x_set_modes_bitmap(bp);
11530
11531         rc = bnx2x_alloc_mem_bp(bp);
11532         if (rc)
11533                 return rc;
11534
11535         bnx2x_read_fwinfo(bp);
11536
11537         func = BP_FUNC(bp);
11538
11539         /* need to reset chip if undi was active */
11540         if (IS_PF(bp) && !BP_NOMCP(bp)) {
11541                 /* init fw_seq */
11542                 bp->fw_seq =
11543                         SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11544                                                         DRV_MSG_SEQ_NUMBER_MASK;
11545                 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11546
11547                 bnx2x_prev_unload(bp);
11548         }
11549
11550         if (CHIP_REV_IS_FPGA(bp))
11551                 dev_err(&bp->pdev->dev, "FPGA detected\n");
11552
11553         if (BP_NOMCP(bp) && (func == 0))
11554                 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
11555
11556         bp->disable_tpa = disable_tpa;
11557         bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
11558
11559         /* Set TPA flags */
11560         if (bp->disable_tpa) {
11561                 bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11562                 bp->dev->features &= ~NETIF_F_LRO;
11563         } else {
11564                 bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11565                 bp->dev->features |= NETIF_F_LRO;
11566         }
11567
11568         if (CHIP_IS_E1(bp))
11569                 bp->dropless_fc = 0;
11570         else
11571                 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
11572
11573         bp->mrrs = mrrs;
11574
11575         bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
11576         if (IS_VF(bp))
11577                 bp->rx_ring_size = MAX_RX_AVAIL;
11578
11579         /* make sure that the numbers are in the right granularity */
11580         bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
11581         bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
11582
11583         bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
11584
11585         init_timer(&bp->timer);
11586         bp->timer.expires = jiffies + bp->current_interval;
11587         bp->timer.data = (unsigned long) bp;
11588         bp->timer.function = bnx2x_timer;
11589
11590         if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
11591             SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
11592             SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
11593             SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
11594                 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
11595                 bnx2x_dcbx_init_params(bp);
11596         } else {
11597                 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
11598         }
11599
11600         if (CHIP_IS_E1x(bp))
11601                 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
11602         else
11603                 bp->cnic_base_cl_id = FP_SB_MAX_E2;
11604
11605         /* multiple tx priority */
11606         if (IS_VF(bp))
11607                 bp->max_cos = 1;
11608         else if (CHIP_IS_E1x(bp))
11609                 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
11610         else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
11611                 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
11612         else if (CHIP_IS_E3B0(bp))
11613                 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
11614         else
11615                 BNX2X_ERR("unknown chip %x revision %x\n",
11616                           CHIP_NUM(bp), CHIP_REV(bp));
11617         BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
11618
11619         /* We need at least one default status block for slow-path events,
11620          * second status block for the L2 queue, and a third status block for
11621          * CNIC if supported.
11622          */
11623         if (CNIC_SUPPORT(bp))
11624                 bp->min_msix_vec_cnt = 3;
11625         else
11626                 bp->min_msix_vec_cnt = 2;
11627         BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
11628
11629         return rc;
11630 }
11631
11632 /****************************************************************************
11633 * General service functions
11634 ****************************************************************************/
11635
11636 /*
11637  * net_device service functions
11638  */
11639
11640 /* called with rtnl_lock */
11641 static int bnx2x_open(struct net_device *dev)
11642 {
11643         struct bnx2x *bp = netdev_priv(dev);
11644         bool global = false;
11645         int other_engine = BP_PATH(bp) ? 0 : 1;
11646         bool other_load_status, load_status;
11647         int rc;
11648
11649         bp->stats_init = true;
11650
11651         netif_carrier_off(dev);
11652
11653         bnx2x_set_power_state(bp, PCI_D0);
11654
11655         /* If parity had happen during the unload, then attentions
11656          * and/or RECOVERY_IN_PROGRES may still be set. In this case we
11657          * want the first function loaded on the current engine to
11658          * complete the recovery.
11659          * Parity recovery is only relevant for PF driver.
11660          */
11661         if (IS_PF(bp)) {
11662                 other_load_status = bnx2x_get_load_status(bp, other_engine);
11663                 load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
11664                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
11665                     bnx2x_chk_parity_attn(bp, &global, true)) {
11666                         do {
11667                                 /* If there are attentions and they are in a
11668                                  * global blocks, set the GLOBAL_RESET bit
11669                                  * regardless whether it will be this function
11670                                  * that will complete the recovery or not.
11671                                  */
11672                                 if (global)
11673                                         bnx2x_set_reset_global(bp);
11674
11675                                 /* Only the first function on the current
11676                                  * engine should try to recover in open. In case
11677                                  * of attentions in global blocks only the first
11678                                  * in the chip should try to recover.
11679                                  */
11680                                 if ((!load_status &&
11681                                      (!global || !other_load_status)) &&
11682                                       bnx2x_trylock_leader_lock(bp) &&
11683                                       !bnx2x_leader_reset(bp)) {
11684                                         netdev_info(bp->dev,
11685                                                     "Recovered in open\n");
11686                                         break;
11687                                 }
11688
11689                                 /* recovery has failed... */
11690                                 bnx2x_set_power_state(bp, PCI_D3hot);
11691                                 bp->recovery_state = BNX2X_RECOVERY_FAILED;
11692
11693                                 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
11694                                           "If you still see this message after a few retries then power cycle is required.\n");
11695
11696                                 return -EAGAIN;
11697                         } while (0);
11698                 }
11699         }
11700
11701         bp->recovery_state = BNX2X_RECOVERY_DONE;
11702         rc = bnx2x_nic_load(bp, LOAD_OPEN);
11703         if (rc)
11704                 return rc;
11705         return bnx2x_open_epilog(bp);
11706 }
11707
11708 /* called with rtnl_lock */
11709 static int bnx2x_close(struct net_device *dev)
11710 {
11711         struct bnx2x *bp = netdev_priv(dev);
11712
11713         /* Unload the driver, release IRQs */
11714         bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
11715
11716         return 0;
11717 }
11718
11719 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
11720                                       struct bnx2x_mcast_ramrod_params *p)
11721 {
11722         int mc_count = netdev_mc_count(bp->dev);
11723         struct bnx2x_mcast_list_elem *mc_mac =
11724                 kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
11725         struct netdev_hw_addr *ha;
11726
11727         if (!mc_mac)
11728                 return -ENOMEM;
11729
11730         INIT_LIST_HEAD(&p->mcast_list);
11731
11732         netdev_for_each_mc_addr(ha, bp->dev) {
11733                 mc_mac->mac = bnx2x_mc_addr(ha);
11734                 list_add_tail(&mc_mac->link, &p->mcast_list);
11735                 mc_mac++;
11736         }
11737
11738         p->mcast_list_len = mc_count;
11739
11740         return 0;
11741 }
11742
11743 static void bnx2x_free_mcast_macs_list(
11744         struct bnx2x_mcast_ramrod_params *p)
11745 {
11746         struct bnx2x_mcast_list_elem *mc_mac =
11747                 list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
11748                                  link);
11749
11750         WARN_ON(!mc_mac);
11751         kfree(mc_mac);
11752 }
11753
11754 /**
11755  * bnx2x_set_uc_list - configure a new unicast MACs list.
11756  *
11757  * @bp: driver handle
11758  *
11759  * We will use zero (0) as a MAC type for these MACs.
11760  */
11761 static int bnx2x_set_uc_list(struct bnx2x *bp)
11762 {
11763         int rc;
11764         struct net_device *dev = bp->dev;
11765         struct netdev_hw_addr *ha;
11766         struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
11767         unsigned long ramrod_flags = 0;
11768
11769         /* First schedule a cleanup up of old configuration */
11770         rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
11771         if (rc < 0) {
11772                 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
11773                 return rc;
11774         }
11775
11776         netdev_for_each_uc_addr(ha, dev) {
11777                 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
11778                                        BNX2X_UC_LIST_MAC, &ramrod_flags);
11779                 if (rc == -EEXIST) {
11780                         DP(BNX2X_MSG_SP,
11781                            "Failed to schedule ADD operations: %d\n", rc);
11782                         /* do not treat adding same MAC as error */
11783                         rc = 0;
11784
11785                 } else if (rc < 0) {
11786
11787                         BNX2X_ERR("Failed to schedule ADD operations: %d\n",
11788                                   rc);
11789                         return rc;
11790                 }
11791         }
11792
11793         /* Execute the pending commands */
11794         __set_bit(RAMROD_CONT, &ramrod_flags);
11795         return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
11796                                  BNX2X_UC_LIST_MAC, &ramrod_flags);
11797 }
11798
11799 static int bnx2x_set_mc_list(struct bnx2x *bp)
11800 {
11801         struct net_device *dev = bp->dev;
11802         struct bnx2x_mcast_ramrod_params rparam = {NULL};
11803         int rc = 0;
11804
11805         rparam.mcast_obj = &bp->mcast_obj;
11806
11807         /* first, clear all configured multicast MACs */
11808         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
11809         if (rc < 0) {
11810                 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
11811                 return rc;
11812         }
11813
11814         /* then, configure a new MACs list */
11815         if (netdev_mc_count(dev)) {
11816                 rc = bnx2x_init_mcast_macs_list(bp, &rparam);
11817                 if (rc) {
11818                         BNX2X_ERR("Failed to create multicast MACs list: %d\n",
11819                                   rc);
11820                         return rc;
11821                 }
11822
11823                 /* Now add the new MACs */
11824                 rc = bnx2x_config_mcast(bp, &rparam,
11825                                         BNX2X_MCAST_CMD_ADD);
11826                 if (rc < 0)
11827                         BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
11828                                   rc);
11829
11830                 bnx2x_free_mcast_macs_list(&rparam);
11831         }
11832
11833         return rc;
11834 }
11835
11836 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
11837 void bnx2x_set_rx_mode(struct net_device *dev)
11838 {
11839         struct bnx2x *bp = netdev_priv(dev);
11840         u32 rx_mode = BNX2X_RX_MODE_NORMAL;
11841
11842         if (bp->state != BNX2X_STATE_OPEN) {
11843                 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
11844                 return;
11845         }
11846
11847         DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
11848
11849         if (dev->flags & IFF_PROMISC)
11850                 rx_mode = BNX2X_RX_MODE_PROMISC;
11851         else if ((dev->flags & IFF_ALLMULTI) ||
11852                  ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
11853                   CHIP_IS_E1(bp)))
11854                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
11855         else {
11856                 if (IS_PF(bp)) {
11857                         /* some multicasts */
11858                         if (bnx2x_set_mc_list(bp) < 0)
11859                                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
11860
11861                         if (bnx2x_set_uc_list(bp) < 0)
11862                                 rx_mode = BNX2X_RX_MODE_PROMISC;
11863                 } else {
11864                         /* configuring mcast to a vf involves sleeping (when we
11865                          * wait for the pf's response). Since this function is
11866                          * called from non sleepable context we must schedule
11867                          * a work item for this purpose
11868                          */
11869                         smp_mb__before_clear_bit();
11870                         set_bit(BNX2X_SP_RTNL_VFPF_MCAST,
11871                                 &bp->sp_rtnl_state);
11872                         smp_mb__after_clear_bit();
11873                         schedule_delayed_work(&bp->sp_rtnl_task, 0);
11874                 }
11875         }
11876
11877         bp->rx_mode = rx_mode;
11878         /* handle ISCSI SD mode */
11879         if (IS_MF_ISCSI_SD(bp))
11880                 bp->rx_mode = BNX2X_RX_MODE_NONE;
11881
11882         /* Schedule the rx_mode command */
11883         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
11884                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
11885                 return;
11886         }
11887
11888         if (IS_PF(bp)) {
11889                 bnx2x_set_storm_rx_mode(bp);
11890         } else {
11891                 /* configuring rx mode to storms in a vf involves sleeping (when
11892                  * we wait for the pf's response). Since this function is
11893                  * called from non sleepable context we must schedule
11894                  * a work item for this purpose
11895                  */
11896                 smp_mb__before_clear_bit();
11897                 set_bit(BNX2X_SP_RTNL_VFPF_STORM_RX_MODE,
11898                         &bp->sp_rtnl_state);
11899                 smp_mb__after_clear_bit();
11900                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
11901         }
11902 }
11903
11904 /* called with rtnl_lock */
11905 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
11906                            int devad, u16 addr)
11907 {
11908         struct bnx2x *bp = netdev_priv(netdev);
11909         u16 value;
11910         int rc;
11911
11912         DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
11913            prtad, devad, addr);
11914
11915         /* The HW expects different devad if CL22 is used */
11916         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11917
11918         bnx2x_acquire_phy_lock(bp);
11919         rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
11920         bnx2x_release_phy_lock(bp);
11921         DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
11922
11923         if (!rc)
11924                 rc = value;
11925         return rc;
11926 }
11927
11928 /* called with rtnl_lock */
11929 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
11930                             u16 addr, u16 value)
11931 {
11932         struct bnx2x *bp = netdev_priv(netdev);
11933         int rc;
11934
11935         DP(NETIF_MSG_LINK,
11936            "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
11937            prtad, devad, addr, value);
11938
11939         /* The HW expects different devad if CL22 is used */
11940         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11941
11942         bnx2x_acquire_phy_lock(bp);
11943         rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
11944         bnx2x_release_phy_lock(bp);
11945         return rc;
11946 }
11947
11948 /* called with rtnl_lock */
11949 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
11950 {
11951         struct bnx2x *bp = netdev_priv(dev);
11952         struct mii_ioctl_data *mdio = if_mii(ifr);
11953
11954         DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
11955            mdio->phy_id, mdio->reg_num, mdio->val_in);
11956
11957         if (!netif_running(dev))
11958                 return -EAGAIN;
11959
11960         return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
11961 }
11962
11963 #ifdef CONFIG_NET_POLL_CONTROLLER
11964 static void poll_bnx2x(struct net_device *dev)
11965 {
11966         struct bnx2x *bp = netdev_priv(dev);
11967         int i;
11968
11969         for_each_eth_queue(bp, i) {
11970                 struct bnx2x_fastpath *fp = &bp->fp[i];
11971                 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
11972         }
11973 }
11974 #endif
11975
11976 static int bnx2x_validate_addr(struct net_device *dev)
11977 {
11978         struct bnx2x *bp = netdev_priv(dev);
11979
11980         /* query the bulletin board for mac address configured by the PF */
11981         if (IS_VF(bp))
11982                 bnx2x_sample_bulletin(bp);
11983
11984         if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
11985                 BNX2X_ERR("Non-valid Ethernet address\n");
11986                 return -EADDRNOTAVAIL;
11987         }
11988         return 0;
11989 }
11990
11991 static const struct net_device_ops bnx2x_netdev_ops = {
11992         .ndo_open               = bnx2x_open,
11993         .ndo_stop               = bnx2x_close,
11994         .ndo_start_xmit         = bnx2x_start_xmit,
11995         .ndo_select_queue       = bnx2x_select_queue,
11996         .ndo_set_rx_mode        = bnx2x_set_rx_mode,
11997         .ndo_set_mac_address    = bnx2x_change_mac_addr,
11998         .ndo_validate_addr      = bnx2x_validate_addr,
11999         .ndo_do_ioctl           = bnx2x_ioctl,
12000         .ndo_change_mtu         = bnx2x_change_mtu,
12001         .ndo_fix_features       = bnx2x_fix_features,
12002         .ndo_set_features       = bnx2x_set_features,
12003         .ndo_tx_timeout         = bnx2x_tx_timeout,
12004 #ifdef CONFIG_NET_POLL_CONTROLLER
12005         .ndo_poll_controller    = poll_bnx2x,
12006 #endif
12007         .ndo_setup_tc           = bnx2x_setup_tc,
12008 #ifdef CONFIG_BNX2X_SRIOV
12009         .ndo_set_vf_mac         = bnx2x_set_vf_mac,
12010         .ndo_set_vf_vlan        = bnx2x_set_vf_vlan,
12011         .ndo_get_vf_config      = bnx2x_get_vf_config,
12012 #endif
12013 #ifdef NETDEV_FCOE_WWNN
12014         .ndo_fcoe_get_wwn       = bnx2x_fcoe_get_wwn,
12015 #endif
12016 };
12017
12018 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
12019 {
12020         struct device *dev = &bp->pdev->dev;
12021
12022         if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
12023                 bp->flags |= USING_DAC_FLAG;
12024                 if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
12025                         dev_err(dev, "dma_set_coherent_mask failed, aborting\n");
12026                         return -EIO;
12027                 }
12028         } else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
12029                 dev_err(dev, "System does not support DMA, aborting\n");
12030                 return -EIO;
12031         }
12032
12033         return 0;
12034 }
12035
12036 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
12037                           struct net_device *dev, unsigned long board_type)
12038 {
12039         int rc;
12040         u32 pci_cfg_dword;
12041         bool chip_is_e1x = (board_type == BCM57710 ||
12042                             board_type == BCM57711 ||
12043                             board_type == BCM57711E);
12044
12045         SET_NETDEV_DEV(dev, &pdev->dev);
12046
12047         bp->dev = dev;
12048         bp->pdev = pdev;
12049
12050         rc = pci_enable_device(pdev);
12051         if (rc) {
12052                 dev_err(&bp->pdev->dev,
12053                         "Cannot enable PCI device, aborting\n");
12054                 goto err_out;
12055         }
12056
12057         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12058                 dev_err(&bp->pdev->dev,
12059                         "Cannot find PCI device base address, aborting\n");
12060                 rc = -ENODEV;
12061                 goto err_out_disable;
12062         }
12063
12064         if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
12065                 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
12066                 rc = -ENODEV;
12067                 goto err_out_disable;
12068         }
12069
12070         pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
12071         if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
12072             PCICFG_REVESION_ID_ERROR_VAL) {
12073                 pr_err("PCI device error, probably due to fan failure, aborting\n");
12074                 rc = -ENODEV;
12075                 goto err_out_disable;
12076         }
12077
12078         if (atomic_read(&pdev->enable_cnt) == 1) {
12079                 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12080                 if (rc) {
12081                         dev_err(&bp->pdev->dev,
12082                                 "Cannot obtain PCI resources, aborting\n");
12083                         goto err_out_disable;
12084                 }
12085
12086                 pci_set_master(pdev);
12087                 pci_save_state(pdev);
12088         }
12089
12090         if (IS_PF(bp)) {
12091                 bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
12092                 if (bp->pm_cap == 0) {
12093                         dev_err(&bp->pdev->dev,
12094                                 "Cannot find power management capability, aborting\n");
12095                         rc = -EIO;
12096                         goto err_out_release;
12097                 }
12098         }
12099
12100         if (!pci_is_pcie(pdev)) {
12101                 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
12102                 rc = -EIO;
12103                 goto err_out_release;
12104         }
12105
12106         rc = bnx2x_set_coherency_mask(bp);
12107         if (rc)
12108                 goto err_out_release;
12109
12110         dev->mem_start = pci_resource_start(pdev, 0);
12111         dev->base_addr = dev->mem_start;
12112         dev->mem_end = pci_resource_end(pdev, 0);
12113
12114         dev->irq = pdev->irq;
12115
12116         bp->regview = pci_ioremap_bar(pdev, 0);
12117         if (!bp->regview) {
12118                 dev_err(&bp->pdev->dev,
12119                         "Cannot map register space, aborting\n");
12120                 rc = -ENOMEM;
12121                 goto err_out_release;
12122         }
12123
12124         /* In E1/E1H use pci device function given by kernel.
12125          * In E2/E3 read physical function from ME register since these chips
12126          * support Physical Device Assignment where kernel BDF maybe arbitrary
12127          * (depending on hypervisor).
12128          */
12129         if (chip_is_e1x) {
12130                 bp->pf_num = PCI_FUNC(pdev->devfn);
12131         } else {
12132                 /* chip is E2/3*/
12133                 pci_read_config_dword(bp->pdev,
12134                                       PCICFG_ME_REGISTER, &pci_cfg_dword);
12135                 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
12136                                   ME_REG_ABS_PF_NUM_SHIFT);
12137         }
12138         BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
12139
12140         bnx2x_set_power_state(bp, PCI_D0);
12141
12142         /* clean indirect addresses */
12143         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
12144                                PCICFG_VENDOR_ID_OFFSET);
12145         /*
12146          * Clean the following indirect addresses for all functions since it
12147          * is not used by the driver.
12148          */
12149         if (IS_PF(bp)) {
12150                 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
12151                 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
12152                 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
12153                 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
12154
12155                 if (chip_is_e1x) {
12156                         REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
12157                         REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
12158                         REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
12159                         REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
12160                 }
12161
12162                 /* Enable internal target-read (in case we are probed after PF
12163                  * FLR). Must be done prior to any BAR read access. Only for
12164                  * 57712 and up
12165                  */
12166                 if (!chip_is_e1x)
12167                         REG_WR(bp,
12168                                PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
12169         }
12170
12171         dev->watchdog_timeo = TX_TIMEOUT;
12172
12173         dev->netdev_ops = &bnx2x_netdev_ops;
12174         bnx2x_set_ethtool_ops(bp, dev);
12175
12176         dev->priv_flags |= IFF_UNICAST_FLT;
12177
12178         dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12179                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12180                 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
12181                 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
12182         if (!CHIP_IS_E1x(bp)) {
12183                 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12184                 dev->hw_enc_features =
12185                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12186                         NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12187                         NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12188         }
12189
12190         dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12191                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
12192
12193         dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
12194         if (bp->flags & USING_DAC_FLAG)
12195                 dev->features |= NETIF_F_HIGHDMA;
12196
12197         /* Add Loopback capability to the device */
12198         dev->hw_features |= NETIF_F_LOOPBACK;
12199
12200 #ifdef BCM_DCBNL
12201         dev->dcbnl_ops = &bnx2x_dcbnl_ops;
12202 #endif
12203
12204         /* get_port_hwinfo() will set prtad and mmds properly */
12205         bp->mdio.prtad = MDIO_PRTAD_NONE;
12206         bp->mdio.mmds = 0;
12207         bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
12208         bp->mdio.dev = dev;
12209         bp->mdio.mdio_read = bnx2x_mdio_read;
12210         bp->mdio.mdio_write = bnx2x_mdio_write;
12211
12212         return 0;
12213
12214 err_out_release:
12215         if (atomic_read(&pdev->enable_cnt) == 1)
12216                 pci_release_regions(pdev);
12217
12218 err_out_disable:
12219         pci_disable_device(pdev);
12220         pci_set_drvdata(pdev, NULL);
12221
12222 err_out:
12223         return rc;
12224 }
12225
12226 static void bnx2x_get_pcie_width_speed(struct bnx2x *bp, int *width,
12227                                        enum bnx2x_pci_bus_speed *speed)
12228 {
12229         u32 link_speed, val = 0;
12230
12231         pci_read_config_dword(bp->pdev, PCICFG_LINK_CONTROL, &val);
12232         *width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
12233
12234         link_speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
12235
12236         switch (link_speed) {
12237         case 3:
12238                 *speed = BNX2X_PCI_LINK_SPEED_8000;
12239                 break;
12240         case 2:
12241                 *speed = BNX2X_PCI_LINK_SPEED_5000;
12242                 break;
12243         default:
12244                 *speed = BNX2X_PCI_LINK_SPEED_2500;
12245         }
12246 }
12247
12248 static int bnx2x_check_firmware(struct bnx2x *bp)
12249 {
12250         const struct firmware *firmware = bp->firmware;
12251         struct bnx2x_fw_file_hdr *fw_hdr;
12252         struct bnx2x_fw_file_section *sections;
12253         u32 offset, len, num_ops;
12254         __be16 *ops_offsets;
12255         int i;
12256         const u8 *fw_ver;
12257
12258         if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
12259                 BNX2X_ERR("Wrong FW size\n");
12260                 return -EINVAL;
12261         }
12262
12263         fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
12264         sections = (struct bnx2x_fw_file_section *)fw_hdr;
12265
12266         /* Make sure none of the offsets and sizes make us read beyond
12267          * the end of the firmware data */
12268         for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
12269                 offset = be32_to_cpu(sections[i].offset);
12270                 len = be32_to_cpu(sections[i].len);
12271                 if (offset + len > firmware->size) {
12272                         BNX2X_ERR("Section %d length is out of bounds\n", i);
12273                         return -EINVAL;
12274                 }
12275         }
12276
12277         /* Likewise for the init_ops offsets */
12278         offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
12279         ops_offsets = (__force __be16 *)(firmware->data + offset);
12280         num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
12281
12282         for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
12283                 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
12284                         BNX2X_ERR("Section offset %d is out of bounds\n", i);
12285                         return -EINVAL;
12286                 }
12287         }
12288
12289         /* Check FW version */
12290         offset = be32_to_cpu(fw_hdr->fw_version.offset);
12291         fw_ver = firmware->data + offset;
12292         if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
12293             (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
12294             (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
12295             (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
12296                 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
12297                        fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
12298                        BCM_5710_FW_MAJOR_VERSION,
12299                        BCM_5710_FW_MINOR_VERSION,
12300                        BCM_5710_FW_REVISION_VERSION,
12301                        BCM_5710_FW_ENGINEERING_VERSION);
12302                 return -EINVAL;
12303         }
12304
12305         return 0;
12306 }
12307
12308 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12309 {
12310         const __be32 *source = (const __be32 *)_source;
12311         u32 *target = (u32 *)_target;
12312         u32 i;
12313
12314         for (i = 0; i < n/4; i++)
12315                 target[i] = be32_to_cpu(source[i]);
12316 }
12317
12318 /*
12319    Ops array is stored in the following format:
12320    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
12321  */
12322 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
12323 {
12324         const __be32 *source = (const __be32 *)_source;
12325         struct raw_op *target = (struct raw_op *)_target;
12326         u32 i, j, tmp;
12327
12328         for (i = 0, j = 0; i < n/8; i++, j += 2) {
12329                 tmp = be32_to_cpu(source[j]);
12330                 target[i].op = (tmp >> 24) & 0xff;
12331                 target[i].offset = tmp & 0xffffff;
12332                 target[i].raw_data = be32_to_cpu(source[j + 1]);
12333         }
12334 }
12335
12336 /* IRO array is stored in the following format:
12337  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
12338  */
12339 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
12340 {
12341         const __be32 *source = (const __be32 *)_source;
12342         struct iro *target = (struct iro *)_target;
12343         u32 i, j, tmp;
12344
12345         for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
12346                 target[i].base = be32_to_cpu(source[j]);
12347                 j++;
12348                 tmp = be32_to_cpu(source[j]);
12349                 target[i].m1 = (tmp >> 16) & 0xffff;
12350                 target[i].m2 = tmp & 0xffff;
12351                 j++;
12352                 tmp = be32_to_cpu(source[j]);
12353                 target[i].m3 = (tmp >> 16) & 0xffff;
12354                 target[i].size = tmp & 0xffff;
12355                 j++;
12356         }
12357 }
12358
12359 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12360 {
12361         const __be16 *source = (const __be16 *)_source;
12362         u16 *target = (u16 *)_target;
12363         u32 i;
12364
12365         for (i = 0; i < n/2; i++)
12366                 target[i] = be16_to_cpu(source[i]);
12367 }
12368
12369 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)                             \
12370 do {                                                                    \
12371         u32 len = be32_to_cpu(fw_hdr->arr.len);                         \
12372         bp->arr = kmalloc(len, GFP_KERNEL);                             \
12373         if (!bp->arr)                                                   \
12374                 goto lbl;                                               \
12375         func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),      \
12376              (u8 *)bp->arr, len);                                       \
12377 } while (0)
12378
12379 static int bnx2x_init_firmware(struct bnx2x *bp)
12380 {
12381         const char *fw_file_name;
12382         struct bnx2x_fw_file_hdr *fw_hdr;
12383         int rc;
12384
12385         if (bp->firmware)
12386                 return 0;
12387
12388         if (CHIP_IS_E1(bp))
12389                 fw_file_name = FW_FILE_NAME_E1;
12390         else if (CHIP_IS_E1H(bp))
12391                 fw_file_name = FW_FILE_NAME_E1H;
12392         else if (!CHIP_IS_E1x(bp))
12393                 fw_file_name = FW_FILE_NAME_E2;
12394         else {
12395                 BNX2X_ERR("Unsupported chip revision\n");
12396                 return -EINVAL;
12397         }
12398         BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
12399
12400         rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
12401         if (rc) {
12402                 BNX2X_ERR("Can't load firmware file %s\n",
12403                           fw_file_name);
12404                 goto request_firmware_exit;
12405         }
12406
12407         rc = bnx2x_check_firmware(bp);
12408         if (rc) {
12409                 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
12410                 goto request_firmware_exit;
12411         }
12412
12413         fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
12414
12415         /* Initialize the pointers to the init arrays */
12416         /* Blob */
12417         BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
12418
12419         /* Opcodes */
12420         BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
12421
12422         /* Offsets */
12423         BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
12424                             be16_to_cpu_n);
12425
12426         /* STORMs firmware */
12427         INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12428                         be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
12429         INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
12430                         be32_to_cpu(fw_hdr->tsem_pram_data.offset);
12431         INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12432                         be32_to_cpu(fw_hdr->usem_int_table_data.offset);
12433         INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
12434                         be32_to_cpu(fw_hdr->usem_pram_data.offset);
12435         INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12436                         be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
12437         INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
12438                         be32_to_cpu(fw_hdr->xsem_pram_data.offset);
12439         INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12440                         be32_to_cpu(fw_hdr->csem_int_table_data.offset);
12441         INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
12442                         be32_to_cpu(fw_hdr->csem_pram_data.offset);
12443         /* IRO */
12444         BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
12445
12446         return 0;
12447
12448 iro_alloc_err:
12449         kfree(bp->init_ops_offsets);
12450 init_offsets_alloc_err:
12451         kfree(bp->init_ops);
12452 init_ops_alloc_err:
12453         kfree(bp->init_data);
12454 request_firmware_exit:
12455         release_firmware(bp->firmware);
12456         bp->firmware = NULL;
12457
12458         return rc;
12459 }
12460
12461 static void bnx2x_release_firmware(struct bnx2x *bp)
12462 {
12463         kfree(bp->init_ops_offsets);
12464         kfree(bp->init_ops);
12465         kfree(bp->init_data);
12466         release_firmware(bp->firmware);
12467         bp->firmware = NULL;
12468 }
12469
12470 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
12471         .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
12472         .init_hw_cmn      = bnx2x_init_hw_common,
12473         .init_hw_port     = bnx2x_init_hw_port,
12474         .init_hw_func     = bnx2x_init_hw_func,
12475
12476         .reset_hw_cmn     = bnx2x_reset_common,
12477         .reset_hw_port    = bnx2x_reset_port,
12478         .reset_hw_func    = bnx2x_reset_func,
12479
12480         .gunzip_init      = bnx2x_gunzip_init,
12481         .gunzip_end       = bnx2x_gunzip_end,
12482
12483         .init_fw          = bnx2x_init_firmware,
12484         .release_fw       = bnx2x_release_firmware,
12485 };
12486
12487 void bnx2x__init_func_obj(struct bnx2x *bp)
12488 {
12489         /* Prepare DMAE related driver resources */
12490         bnx2x_setup_dmae(bp);
12491
12492         bnx2x_init_func_obj(bp, &bp->func_obj,
12493                             bnx2x_sp(bp, func_rdata),
12494                             bnx2x_sp_mapping(bp, func_rdata),
12495                             bnx2x_sp(bp, func_afex_rdata),
12496                             bnx2x_sp_mapping(bp, func_afex_rdata),
12497                             &bnx2x_func_sp_drv);
12498 }
12499
12500 /* must be called after sriov-enable */
12501 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
12502 {
12503         int cid_count = BNX2X_L2_MAX_CID(bp);
12504
12505         if (IS_SRIOV(bp))
12506                 cid_count += BNX2X_VF_CIDS;
12507
12508         if (CNIC_SUPPORT(bp))
12509                 cid_count += CNIC_CID_MAX;
12510
12511         return roundup(cid_count, QM_CID_ROUND);
12512 }
12513
12514 /**
12515  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
12516  *
12517  * @dev:        pci device
12518  *
12519  */
12520 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev,
12521                                      int cnic_cnt, bool is_vf)
12522 {
12523         int pos, index;
12524         u16 control = 0;
12525
12526         pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
12527
12528         /*
12529          * If MSI-X is not supported - return number of SBs needed to support
12530          * one fast path queue: one FP queue + SB for CNIC
12531          */
12532         if (!pos) {
12533                 dev_info(&pdev->dev, "no msix capability found\n");
12534                 return 1 + cnic_cnt;
12535         }
12536         dev_info(&pdev->dev, "msix capability found\n");
12537
12538         /*
12539          * The value in the PCI configuration space is the index of the last
12540          * entry, namely one less than the actual size of the table, which is
12541          * exactly what we want to return from this function: number of all SBs
12542          * without the default SB.
12543          * For VFs there is no default SB, then we return (index+1).
12544          */
12545         pci_read_config_word(pdev, pos  + PCI_MSI_FLAGS, &control);
12546
12547         index = control & PCI_MSIX_FLAGS_QSIZE;
12548
12549         return is_vf ? index + 1 : index;
12550 }
12551
12552 static int set_max_cos_est(int chip_id)
12553 {
12554         switch (chip_id) {
12555         case BCM57710:
12556         case BCM57711:
12557         case BCM57711E:
12558                 return BNX2X_MULTI_TX_COS_E1X;
12559         case BCM57712:
12560         case BCM57712_MF:
12561         case BCM57712_VF:
12562                 return BNX2X_MULTI_TX_COS_E2_E3A0;
12563         case BCM57800:
12564         case BCM57800_MF:
12565         case BCM57800_VF:
12566         case BCM57810:
12567         case BCM57810_MF:
12568         case BCM57840_4_10:
12569         case BCM57840_2_20:
12570         case BCM57840_O:
12571         case BCM57840_MFO:
12572         case BCM57810_VF:
12573         case BCM57840_MF:
12574         case BCM57840_VF:
12575         case BCM57811:
12576         case BCM57811_MF:
12577         case BCM57811_VF:
12578                 return BNX2X_MULTI_TX_COS_E3B0;
12579                 return 1;
12580         default:
12581                 pr_err("Unknown board_type (%d), aborting\n", chip_id);
12582                 return -ENODEV;
12583         }
12584 }
12585
12586 static int set_is_vf(int chip_id)
12587 {
12588         switch (chip_id) {
12589         case BCM57712_VF:
12590         case BCM57800_VF:
12591         case BCM57810_VF:
12592         case BCM57840_VF:
12593         case BCM57811_VF:
12594                 return true;
12595         default:
12596                 return false;
12597         }
12598 }
12599
12600 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
12601
12602 static int bnx2x_init_one(struct pci_dev *pdev,
12603                                     const struct pci_device_id *ent)
12604 {
12605         struct net_device *dev = NULL;
12606         struct bnx2x *bp;
12607         int pcie_width;
12608         enum bnx2x_pci_bus_speed pcie_speed;
12609         int rc, max_non_def_sbs;
12610         int rx_count, tx_count, rss_count, doorbell_size;
12611         int max_cos_est;
12612         bool is_vf;
12613         int cnic_cnt;
12614
12615         /* An estimated maximum supported CoS number according to the chip
12616          * version.
12617          * We will try to roughly estimate the maximum number of CoSes this chip
12618          * may support in order to minimize the memory allocated for Tx
12619          * netdev_queue's. This number will be accurately calculated during the
12620          * initialization of bp->max_cos based on the chip versions AND chip
12621          * revision in the bnx2x_init_bp().
12622          */
12623         max_cos_est = set_max_cos_est(ent->driver_data);
12624         if (max_cos_est < 0)
12625                 return max_cos_est;
12626         is_vf = set_is_vf(ent->driver_data);
12627         cnic_cnt = is_vf ? 0 : 1;
12628
12629         max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt, is_vf);
12630
12631         /* Maximum number of RSS queues: one IGU SB goes to CNIC */
12632         rss_count = is_vf ? 1 : max_non_def_sbs - cnic_cnt;
12633
12634         if (rss_count < 1)
12635                 return -EINVAL;
12636
12637         /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
12638         rx_count = rss_count + cnic_cnt;
12639
12640         /* Maximum number of netdev Tx queues:
12641          * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
12642          */
12643         tx_count = rss_count * max_cos_est + cnic_cnt;
12644
12645         /* dev zeroed in init_etherdev */
12646         dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
12647         if (!dev)
12648                 return -ENOMEM;
12649
12650         bp = netdev_priv(dev);
12651
12652         bp->flags = 0;
12653         if (is_vf)
12654                 bp->flags |= IS_VF_FLAG;
12655
12656         bp->igu_sb_cnt = max_non_def_sbs;
12657         bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
12658         bp->msg_enable = debug;
12659         bp->cnic_support = cnic_cnt;
12660         bp->cnic_probe = bnx2x_cnic_probe;
12661
12662         pci_set_drvdata(pdev, dev);
12663
12664         rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
12665         if (rc < 0) {
12666                 free_netdev(dev);
12667                 return rc;
12668         }
12669
12670         BNX2X_DEV_INFO("This is a %s function\n",
12671                        IS_PF(bp) ? "physical" : "virtual");
12672         BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
12673         BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
12674         BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
12675                        tx_count, rx_count);
12676
12677         rc = bnx2x_init_bp(bp);
12678         if (rc)
12679                 goto init_one_exit;
12680
12681         /* Map doorbells here as we need the real value of bp->max_cos which
12682          * is initialized in bnx2x_init_bp() to determine the number of
12683          * l2 connections.
12684          */
12685         if (IS_VF(bp)) {
12686                 bp->doorbells = bnx2x_vf_doorbells(bp);
12687                 rc = bnx2x_vf_pci_alloc(bp);
12688                 if (rc)
12689                         goto init_one_exit;
12690         } else {
12691                 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
12692                 if (doorbell_size > pci_resource_len(pdev, 2)) {
12693                         dev_err(&bp->pdev->dev,
12694                                 "Cannot map doorbells, bar size too small, aborting\n");
12695                         rc = -ENOMEM;
12696                         goto init_one_exit;
12697                 }
12698                 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
12699                                                 doorbell_size);
12700         }
12701         if (!bp->doorbells) {
12702                 dev_err(&bp->pdev->dev,
12703                         "Cannot map doorbell space, aborting\n");
12704                 rc = -ENOMEM;
12705                 goto init_one_exit;
12706         }
12707
12708         if (IS_VF(bp)) {
12709                 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
12710                 if (rc)
12711                         goto init_one_exit;
12712         }
12713
12714         /* Enable SRIOV if capability found in configuration space */
12715         rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
12716         if (rc)
12717                 goto init_one_exit;
12718
12719         /* calc qm_cid_count */
12720         bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
12721         BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
12722
12723         /* disable FCOE L2 queue for E1x*/
12724         if (CHIP_IS_E1x(bp))
12725                 bp->flags |= NO_FCOE_FLAG;
12726
12727         /* Set bp->num_queues for MSI-X mode*/
12728         bnx2x_set_num_queues(bp);
12729
12730         /* Configure interrupt mode: try to enable MSI-X/MSI if
12731          * needed.
12732          */
12733         rc = bnx2x_set_int_mode(bp);
12734         if (rc) {
12735                 dev_err(&pdev->dev, "Cannot set interrupts\n");
12736                 goto init_one_exit;
12737         }
12738         BNX2X_DEV_INFO("set interrupts successfully\n");
12739
12740         /* register the net device */
12741         rc = register_netdev(dev);
12742         if (rc) {
12743                 dev_err(&pdev->dev, "Cannot register net device\n");
12744                 goto init_one_exit;
12745         }
12746         BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
12747
12748         if (!NO_FCOE(bp)) {
12749                 /* Add storage MAC address */
12750                 rtnl_lock();
12751                 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12752                 rtnl_unlock();
12753         }
12754
12755         bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
12756         BNX2X_DEV_INFO("got pcie width %d and speed %d\n",
12757                        pcie_width, pcie_speed);
12758
12759         BNX2X_DEV_INFO("%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
12760                        board_info[ent->driver_data].name,
12761                        (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
12762                        pcie_width,
12763                        pcie_speed == BNX2X_PCI_LINK_SPEED_2500 ? "2.5GHz" :
12764                        pcie_speed == BNX2X_PCI_LINK_SPEED_5000 ? "5.0GHz" :
12765                        pcie_speed == BNX2X_PCI_LINK_SPEED_8000 ? "8.0GHz" :
12766                        "Unknown",
12767                        dev->base_addr, bp->pdev->irq, dev->dev_addr);
12768
12769         return 0;
12770
12771 init_one_exit:
12772         if (bp->regview)
12773                 iounmap(bp->regview);
12774
12775         if (IS_PF(bp) && bp->doorbells)
12776                 iounmap(bp->doorbells);
12777
12778         free_netdev(dev);
12779
12780         if (atomic_read(&pdev->enable_cnt) == 1)
12781                 pci_release_regions(pdev);
12782
12783         pci_disable_device(pdev);
12784         pci_set_drvdata(pdev, NULL);
12785
12786         return rc;
12787 }
12788
12789 static void __bnx2x_remove(struct pci_dev *pdev,
12790                            struct net_device *dev,
12791                            struct bnx2x *bp,
12792                            bool remove_netdev)
12793 {
12794         /* Delete storage MAC address */
12795         if (!NO_FCOE(bp)) {
12796                 rtnl_lock();
12797                 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12798                 rtnl_unlock();
12799         }
12800
12801 #ifdef BCM_DCBNL
12802         /* Delete app tlvs from dcbnl */
12803         bnx2x_dcbnl_update_applist(bp, true);
12804 #endif
12805
12806         /* Close the interface - either directly or implicitly */
12807         if (remove_netdev) {
12808                 unregister_netdev(dev);
12809         } else {
12810                 rtnl_lock();
12811                 if (netif_running(dev))
12812                         bnx2x_close(dev);
12813                 rtnl_unlock();
12814         }
12815
12816         /* Power on: we can't let PCI layer write to us while we are in D3 */
12817         if (IS_PF(bp))
12818                 bnx2x_set_power_state(bp, PCI_D0);
12819
12820         /* Disable MSI/MSI-X */
12821         bnx2x_disable_msi(bp);
12822
12823         /* Power off */
12824         if (IS_PF(bp))
12825                 bnx2x_set_power_state(bp, PCI_D3hot);
12826
12827         /* Make sure RESET task is not scheduled before continuing */
12828         cancel_delayed_work_sync(&bp->sp_rtnl_task);
12829
12830         bnx2x_iov_remove_one(bp);
12831
12832         /* send message via vfpf channel to release the resources of this vf */
12833         if (IS_VF(bp))
12834                 bnx2x_vfpf_release(bp);
12835
12836         /* Assumes no further PCIe PM changes will occur */
12837         if (system_state == SYSTEM_POWER_OFF) {
12838                 pci_wake_from_d3(pdev, bp->wol);
12839                 pci_set_power_state(pdev, PCI_D3hot);
12840         }
12841
12842         if (bp->regview)
12843                 iounmap(bp->regview);
12844
12845         /* for vf doorbells are part of the regview and were unmapped along with
12846          * it. FW is only loaded by PF.
12847          */
12848         if (IS_PF(bp)) {
12849                 if (bp->doorbells)
12850                         iounmap(bp->doorbells);
12851
12852                 bnx2x_release_firmware(bp);
12853         }
12854         bnx2x_free_mem_bp(bp);
12855
12856         if (remove_netdev)
12857                 free_netdev(dev);
12858
12859         if (atomic_read(&pdev->enable_cnt) == 1)
12860                 pci_release_regions(pdev);
12861
12862         pci_disable_device(pdev);
12863         pci_set_drvdata(pdev, NULL);
12864 }
12865
12866 static void bnx2x_remove_one(struct pci_dev *pdev)
12867 {
12868         struct net_device *dev = pci_get_drvdata(pdev);
12869         struct bnx2x *bp;
12870
12871         if (!dev) {
12872                 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
12873                 return;
12874         }
12875         bp = netdev_priv(dev);
12876
12877         __bnx2x_remove(pdev, dev, bp, true);
12878 }
12879
12880 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
12881 {
12882         bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
12883
12884         bp->rx_mode = BNX2X_RX_MODE_NONE;
12885
12886         if (CNIC_LOADED(bp))
12887                 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
12888
12889         /* Stop Tx */
12890         bnx2x_tx_disable(bp);
12891         /* Delete all NAPI objects */
12892         bnx2x_del_all_napi(bp);
12893         if (CNIC_LOADED(bp))
12894                 bnx2x_del_all_napi_cnic(bp);
12895         netdev_reset_tc(bp->dev);
12896
12897         del_timer_sync(&bp->timer);
12898         cancel_delayed_work(&bp->sp_task);
12899         cancel_delayed_work(&bp->period_task);
12900
12901         spin_lock_bh(&bp->stats_lock);
12902         bp->stats_state = STATS_STATE_DISABLED;
12903         spin_unlock_bh(&bp->stats_lock);
12904
12905         bnx2x_save_statistics(bp);
12906
12907         netif_carrier_off(bp->dev);
12908
12909         return 0;
12910 }
12911
12912 /**
12913  * bnx2x_io_error_detected - called when PCI error is detected
12914  * @pdev: Pointer to PCI device
12915  * @state: The current pci connection state
12916  *
12917  * This function is called after a PCI bus error affecting
12918  * this device has been detected.
12919  */
12920 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
12921                                                 pci_channel_state_t state)
12922 {
12923         struct net_device *dev = pci_get_drvdata(pdev);
12924         struct bnx2x *bp = netdev_priv(dev);
12925
12926         rtnl_lock();
12927
12928         BNX2X_ERR("IO error detected\n");
12929
12930         netif_device_detach(dev);
12931
12932         if (state == pci_channel_io_perm_failure) {
12933                 rtnl_unlock();
12934                 return PCI_ERS_RESULT_DISCONNECT;
12935         }
12936
12937         if (netif_running(dev))
12938                 bnx2x_eeh_nic_unload(bp);
12939
12940         bnx2x_prev_path_mark_eeh(bp);
12941
12942         pci_disable_device(pdev);
12943
12944         rtnl_unlock();
12945
12946         /* Request a slot reset */
12947         return PCI_ERS_RESULT_NEED_RESET;
12948 }
12949
12950 /**
12951  * bnx2x_io_slot_reset - called after the PCI bus has been reset
12952  * @pdev: Pointer to PCI device
12953  *
12954  * Restart the card from scratch, as if from a cold-boot.
12955  */
12956 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
12957 {
12958         struct net_device *dev = pci_get_drvdata(pdev);
12959         struct bnx2x *bp = netdev_priv(dev);
12960         int i;
12961
12962         rtnl_lock();
12963         BNX2X_ERR("IO slot reset initializing...\n");
12964         if (pci_enable_device(pdev)) {
12965                 dev_err(&pdev->dev,
12966                         "Cannot re-enable PCI device after reset\n");
12967                 rtnl_unlock();
12968                 return PCI_ERS_RESULT_DISCONNECT;
12969         }
12970
12971         pci_set_master(pdev);
12972         pci_restore_state(pdev);
12973         pci_save_state(pdev);
12974
12975         if (netif_running(dev))
12976                 bnx2x_set_power_state(bp, PCI_D0);
12977
12978         if (netif_running(dev)) {
12979                 BNX2X_ERR("IO slot reset --> driver unload\n");
12980
12981                 /* MCP should have been reset; Need to wait for validity */
12982                 bnx2x_init_shmem(bp);
12983
12984                 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
12985                         u32 v;
12986
12987                         v = SHMEM2_RD(bp,
12988                                       drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
12989                         SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
12990                                   v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
12991                 }
12992                 bnx2x_drain_tx_queues(bp);
12993                 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
12994                 bnx2x_netif_stop(bp, 1);
12995                 bnx2x_free_irq(bp);
12996
12997                 /* Report UNLOAD_DONE to MCP */
12998                 bnx2x_send_unload_done(bp, true);
12999
13000                 bp->sp_state = 0;
13001                 bp->port.pmf = 0;
13002
13003                 bnx2x_prev_unload(bp);
13004
13005                 /* We should have reseted the engine, so It's fair to
13006                  * assume the FW will no longer write to the bnx2x driver.
13007                  */
13008                 bnx2x_squeeze_objects(bp);
13009                 bnx2x_free_skbs(bp);
13010                 for_each_rx_queue(bp, i)
13011                         bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
13012                 bnx2x_free_fp_mem(bp);
13013                 bnx2x_free_mem(bp);
13014
13015                 bp->state = BNX2X_STATE_CLOSED;
13016         }
13017
13018         rtnl_unlock();
13019
13020         return PCI_ERS_RESULT_RECOVERED;
13021 }
13022
13023 /**
13024  * bnx2x_io_resume - called when traffic can start flowing again
13025  * @pdev: Pointer to PCI device
13026  *
13027  * This callback is called when the error recovery driver tells us that
13028  * its OK to resume normal operation.
13029  */
13030 static void bnx2x_io_resume(struct pci_dev *pdev)
13031 {
13032         struct net_device *dev = pci_get_drvdata(pdev);
13033         struct bnx2x *bp = netdev_priv(dev);
13034
13035         if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
13036                 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
13037                 return;
13038         }
13039
13040         rtnl_lock();
13041
13042         bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
13043                                                         DRV_MSG_SEQ_NUMBER_MASK;
13044
13045         if (netif_running(dev))
13046                 bnx2x_nic_load(bp, LOAD_NORMAL);
13047
13048         netif_device_attach(dev);
13049
13050         rtnl_unlock();
13051 }
13052
13053 static const struct pci_error_handlers bnx2x_err_handler = {
13054         .error_detected = bnx2x_io_error_detected,
13055         .slot_reset     = bnx2x_io_slot_reset,
13056         .resume         = bnx2x_io_resume,
13057 };
13058
13059 static void bnx2x_shutdown(struct pci_dev *pdev)
13060 {
13061         struct net_device *dev = pci_get_drvdata(pdev);
13062         struct bnx2x *bp;
13063
13064         if (!dev)
13065                 return;
13066
13067         bp = netdev_priv(dev);
13068         if (!bp)
13069                 return;
13070
13071         rtnl_lock();
13072         netif_device_detach(dev);
13073         rtnl_unlock();
13074
13075         /* Don't remove the netdevice, as there are scenarios which will cause
13076          * the kernel to hang, e.g., when trying to remove bnx2i while the
13077          * rootfs is mounted from SAN.
13078          */
13079         __bnx2x_remove(pdev, dev, bp, false);
13080 }
13081
13082 static struct pci_driver bnx2x_pci_driver = {
13083         .name        = DRV_MODULE_NAME,
13084         .id_table    = bnx2x_pci_tbl,
13085         .probe       = bnx2x_init_one,
13086         .remove      = bnx2x_remove_one,
13087         .suspend     = bnx2x_suspend,
13088         .resume      = bnx2x_resume,
13089         .err_handler = &bnx2x_err_handler,
13090 #ifdef CONFIG_BNX2X_SRIOV
13091         .sriov_configure = bnx2x_sriov_configure,
13092 #endif
13093         .shutdown    = bnx2x_shutdown,
13094 };
13095
13096 static int __init bnx2x_init(void)
13097 {
13098         int ret;
13099
13100         pr_info("%s", version);
13101
13102         bnx2x_wq = create_singlethread_workqueue("bnx2x");
13103         if (bnx2x_wq == NULL) {
13104                 pr_err("Cannot create workqueue\n");
13105                 return -ENOMEM;
13106         }
13107
13108         ret = pci_register_driver(&bnx2x_pci_driver);
13109         if (ret) {
13110                 pr_err("Cannot register driver\n");
13111                 destroy_workqueue(bnx2x_wq);
13112         }
13113         return ret;
13114 }
13115
13116 static void __exit bnx2x_cleanup(void)
13117 {
13118         struct list_head *pos, *q;
13119
13120         pci_unregister_driver(&bnx2x_pci_driver);
13121
13122         destroy_workqueue(bnx2x_wq);
13123
13124         /* Free globally allocated resources */
13125         list_for_each_safe(pos, q, &bnx2x_prev_list) {
13126                 struct bnx2x_prev_path_list *tmp =
13127                         list_entry(pos, struct bnx2x_prev_path_list, list);
13128                 list_del(pos);
13129                 kfree(tmp);
13130         }
13131 }
13132
13133 void bnx2x_notify_link_changed(struct bnx2x *bp)
13134 {
13135         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
13136 }
13137
13138 module_init(bnx2x_init);
13139 module_exit(bnx2x_cleanup);
13140
13141 /**
13142  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
13143  *
13144  * @bp:         driver handle
13145  * @set:        set or clear the CAM entry
13146  *
13147  * This function will wait until the ramrod completion returns.
13148  * Return 0 if success, -ENODEV if ramrod doesn't return.
13149  */
13150 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
13151 {
13152         unsigned long ramrod_flags = 0;
13153
13154         __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
13155         return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
13156                                  &bp->iscsi_l2_mac_obj, true,
13157                                  BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
13158 }
13159
13160 /* count denotes the number of new completions we have seen */
13161 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
13162 {
13163         struct eth_spe *spe;
13164         int cxt_index, cxt_offset;
13165
13166 #ifdef BNX2X_STOP_ON_ERROR
13167         if (unlikely(bp->panic))
13168                 return;
13169 #endif
13170
13171         spin_lock_bh(&bp->spq_lock);
13172         BUG_ON(bp->cnic_spq_pending < count);
13173         bp->cnic_spq_pending -= count;
13174
13175         for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
13176                 u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
13177                                 & SPE_HDR_CONN_TYPE) >>
13178                                 SPE_HDR_CONN_TYPE_SHIFT;
13179                 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
13180                                 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
13181
13182                 /* Set validation for iSCSI L2 client before sending SETUP
13183                  *  ramrod
13184                  */
13185                 if (type == ETH_CONNECTION_TYPE) {
13186                         if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
13187                                 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
13188                                         ILT_PAGE_CIDS;
13189                                 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
13190                                         (cxt_index * ILT_PAGE_CIDS);
13191                                 bnx2x_set_ctx_validation(bp,
13192                                         &bp->context[cxt_index].
13193                                                          vcxt[cxt_offset].eth,
13194                                         BNX2X_ISCSI_ETH_CID(bp));
13195                         }
13196                 }
13197
13198                 /*
13199                  * There may be not more than 8 L2, not more than 8 L5 SPEs
13200                  * and in the air. We also check that number of outstanding
13201                  * COMMON ramrods is not more than the EQ and SPQ can
13202                  * accommodate.
13203                  */
13204                 if (type == ETH_CONNECTION_TYPE) {
13205                         if (!atomic_read(&bp->cq_spq_left))
13206                                 break;
13207                         else
13208                                 atomic_dec(&bp->cq_spq_left);
13209                 } else if (type == NONE_CONNECTION_TYPE) {
13210                         if (!atomic_read(&bp->eq_spq_left))
13211                                 break;
13212                         else
13213                                 atomic_dec(&bp->eq_spq_left);
13214                 } else if ((type == ISCSI_CONNECTION_TYPE) ||
13215                            (type == FCOE_CONNECTION_TYPE)) {
13216                         if (bp->cnic_spq_pending >=
13217                             bp->cnic_eth_dev.max_kwqe_pending)
13218                                 break;
13219                         else
13220                                 bp->cnic_spq_pending++;
13221                 } else {
13222                         BNX2X_ERR("Unknown SPE type: %d\n", type);
13223                         bnx2x_panic();
13224                         break;
13225                 }
13226
13227                 spe = bnx2x_sp_get_next(bp);
13228                 *spe = *bp->cnic_kwq_cons;
13229
13230                 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
13231                    bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
13232
13233                 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
13234                         bp->cnic_kwq_cons = bp->cnic_kwq;
13235                 else
13236                         bp->cnic_kwq_cons++;
13237         }
13238         bnx2x_sp_prod_update(bp);
13239         spin_unlock_bh(&bp->spq_lock);
13240 }
13241
13242 static int bnx2x_cnic_sp_queue(struct net_device *dev,
13243                                struct kwqe_16 *kwqes[], u32 count)
13244 {
13245         struct bnx2x *bp = netdev_priv(dev);
13246         int i;
13247
13248 #ifdef BNX2X_STOP_ON_ERROR
13249         if (unlikely(bp->panic)) {
13250                 BNX2X_ERR("Can't post to SP queue while panic\n");
13251                 return -EIO;
13252         }
13253 #endif
13254
13255         if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
13256             (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
13257                 BNX2X_ERR("Handling parity error recovery. Try again later\n");
13258                 return -EAGAIN;
13259         }
13260
13261         spin_lock_bh(&bp->spq_lock);
13262
13263         for (i = 0; i < count; i++) {
13264                 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
13265
13266                 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
13267                         break;
13268
13269                 *bp->cnic_kwq_prod = *spe;
13270
13271                 bp->cnic_kwq_pending++;
13272
13273                 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
13274                    spe->hdr.conn_and_cmd_data, spe->hdr.type,
13275                    spe->data.update_data_addr.hi,
13276                    spe->data.update_data_addr.lo,
13277                    bp->cnic_kwq_pending);
13278
13279                 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
13280                         bp->cnic_kwq_prod = bp->cnic_kwq;
13281                 else
13282                         bp->cnic_kwq_prod++;
13283         }
13284
13285         spin_unlock_bh(&bp->spq_lock);
13286
13287         if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
13288                 bnx2x_cnic_sp_post(bp, 0);
13289
13290         return i;
13291 }
13292
13293 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13294 {
13295         struct cnic_ops *c_ops;
13296         int rc = 0;
13297
13298         mutex_lock(&bp->cnic_mutex);
13299         c_ops = rcu_dereference_protected(bp->cnic_ops,
13300                                           lockdep_is_held(&bp->cnic_mutex));
13301         if (c_ops)
13302                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13303         mutex_unlock(&bp->cnic_mutex);
13304
13305         return rc;
13306 }
13307
13308 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13309 {
13310         struct cnic_ops *c_ops;
13311         int rc = 0;
13312
13313         rcu_read_lock();
13314         c_ops = rcu_dereference(bp->cnic_ops);
13315         if (c_ops)
13316                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13317         rcu_read_unlock();
13318
13319         return rc;
13320 }
13321
13322 /*
13323  * for commands that have no data
13324  */
13325 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
13326 {
13327         struct cnic_ctl_info ctl = {0};
13328
13329         ctl.cmd = cmd;
13330
13331         return bnx2x_cnic_ctl_send(bp, &ctl);
13332 }
13333
13334 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
13335 {
13336         struct cnic_ctl_info ctl = {0};
13337
13338         /* first we tell CNIC and only then we count this as a completion */
13339         ctl.cmd = CNIC_CTL_COMPLETION_CMD;
13340         ctl.data.comp.cid = cid;
13341         ctl.data.comp.error = err;
13342
13343         bnx2x_cnic_ctl_send_bh(bp, &ctl);
13344         bnx2x_cnic_sp_post(bp, 0);
13345 }
13346
13347 /* Called with netif_addr_lock_bh() taken.
13348  * Sets an rx_mode config for an iSCSI ETH client.
13349  * Doesn't block.
13350  * Completion should be checked outside.
13351  */
13352 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
13353 {
13354         unsigned long accept_flags = 0, ramrod_flags = 0;
13355         u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13356         int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
13357
13358         if (start) {
13359                 /* Start accepting on iSCSI L2 ring. Accept all multicasts
13360                  * because it's the only way for UIO Queue to accept
13361                  * multicasts (in non-promiscuous mode only one Queue per
13362                  * function will receive multicast packets (leading in our
13363                  * case).
13364                  */
13365                 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
13366                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
13367                 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
13368                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
13369
13370                 /* Clear STOP_PENDING bit if START is requested */
13371                 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
13372
13373                 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
13374         } else
13375                 /* Clear START_PENDING bit if STOP is requested */
13376                 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
13377
13378         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
13379                 set_bit(sched_state, &bp->sp_state);
13380         else {
13381                 __set_bit(RAMROD_RX, &ramrod_flags);
13382                 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
13383                                     ramrod_flags);
13384         }
13385 }
13386
13387 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
13388 {
13389         struct bnx2x *bp = netdev_priv(dev);
13390         int rc = 0;
13391
13392         switch (ctl->cmd) {
13393         case DRV_CTL_CTXTBL_WR_CMD: {
13394                 u32 index = ctl->data.io.offset;
13395                 dma_addr_t addr = ctl->data.io.dma_addr;
13396
13397                 bnx2x_ilt_wr(bp, index, addr);
13398                 break;
13399         }
13400
13401         case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
13402                 int count = ctl->data.credit.credit_count;
13403
13404                 bnx2x_cnic_sp_post(bp, count);
13405                 break;
13406         }
13407
13408         /* rtnl_lock is held.  */
13409         case DRV_CTL_START_L2_CMD: {
13410                 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13411                 unsigned long sp_bits = 0;
13412
13413                 /* Configure the iSCSI classification object */
13414                 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
13415                                    cp->iscsi_l2_client_id,
13416                                    cp->iscsi_l2_cid, BP_FUNC(bp),
13417                                    bnx2x_sp(bp, mac_rdata),
13418                                    bnx2x_sp_mapping(bp, mac_rdata),
13419                                    BNX2X_FILTER_MAC_PENDING,
13420                                    &bp->sp_state, BNX2X_OBJ_TYPE_RX,
13421                                    &bp->macs_pool);
13422
13423                 /* Set iSCSI MAC address */
13424                 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
13425                 if (rc)
13426                         break;
13427
13428                 mmiowb();
13429                 barrier();
13430
13431                 /* Start accepting on iSCSI L2 ring */
13432
13433                 netif_addr_lock_bh(dev);
13434                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
13435                 netif_addr_unlock_bh(dev);
13436
13437                 /* bits to wait on */
13438                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13439                 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
13440
13441                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
13442                         BNX2X_ERR("rx_mode completion timed out!\n");
13443
13444                 break;
13445         }
13446
13447         /* rtnl_lock is held.  */
13448         case DRV_CTL_STOP_L2_CMD: {
13449                 unsigned long sp_bits = 0;
13450
13451                 /* Stop accepting on iSCSI L2 ring */
13452                 netif_addr_lock_bh(dev);
13453                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
13454                 netif_addr_unlock_bh(dev);
13455
13456                 /* bits to wait on */
13457                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13458                 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
13459
13460                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
13461                         BNX2X_ERR("rx_mode completion timed out!\n");
13462
13463                 mmiowb();
13464                 barrier();
13465
13466                 /* Unset iSCSI L2 MAC */
13467                 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
13468                                         BNX2X_ISCSI_ETH_MAC, true);
13469                 break;
13470         }
13471         case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
13472                 int count = ctl->data.credit.credit_count;
13473
13474                 smp_mb__before_atomic_inc();
13475                 atomic_add(count, &bp->cq_spq_left);
13476                 smp_mb__after_atomic_inc();
13477                 break;
13478         }
13479         case DRV_CTL_ULP_REGISTER_CMD: {
13480                 int ulp_type = ctl->data.register_data.ulp_type;
13481
13482                 if (CHIP_IS_E3(bp)) {
13483                         int idx = BP_FW_MB_IDX(bp);
13484                         u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13485                         int path = BP_PATH(bp);
13486                         int port = BP_PORT(bp);
13487                         int i;
13488                         u32 scratch_offset;
13489                         u32 *host_addr;
13490
13491                         /* first write capability to shmem2 */
13492                         if (ulp_type == CNIC_ULP_ISCSI)
13493                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13494                         else if (ulp_type == CNIC_ULP_FCOE)
13495                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13496                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13497
13498                         if ((ulp_type != CNIC_ULP_FCOE) ||
13499                             (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
13500                             (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
13501                                 break;
13502
13503                         /* if reached here - should write fcoe capabilities */
13504                         scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
13505                         if (!scratch_offset)
13506                                 break;
13507                         scratch_offset += offsetof(struct glob_ncsi_oem_data,
13508                                                    fcoe_features[path][port]);
13509                         host_addr = (u32 *) &(ctl->data.register_data.
13510                                               fcoe_features);
13511                         for (i = 0; i < sizeof(struct fcoe_capabilities);
13512                              i += 4)
13513                                 REG_WR(bp, scratch_offset + i,
13514                                        *(host_addr + i/4));
13515                 }
13516                 break;
13517         }
13518
13519         case DRV_CTL_ULP_UNREGISTER_CMD: {
13520                 int ulp_type = ctl->data.ulp_type;
13521
13522                 if (CHIP_IS_E3(bp)) {
13523                         int idx = BP_FW_MB_IDX(bp);
13524                         u32 cap;
13525
13526                         cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13527                         if (ulp_type == CNIC_ULP_ISCSI)
13528                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13529                         else if (ulp_type == CNIC_ULP_FCOE)
13530                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13531                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13532                 }
13533                 break;
13534         }
13535
13536         default:
13537                 BNX2X_ERR("unknown command %x\n", ctl->cmd);
13538                 rc = -EINVAL;
13539         }
13540
13541         return rc;
13542 }
13543
13544 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
13545 {
13546         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13547
13548         if (bp->flags & USING_MSIX_FLAG) {
13549                 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
13550                 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
13551                 cp->irq_arr[0].vector = bp->msix_table[1].vector;
13552         } else {
13553                 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
13554                 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
13555         }
13556         if (!CHIP_IS_E1x(bp))
13557                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
13558         else
13559                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
13560
13561         cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
13562         cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
13563         cp->irq_arr[1].status_blk = bp->def_status_blk;
13564         cp->irq_arr[1].status_blk_num = DEF_SB_ID;
13565         cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
13566
13567         cp->num_irq = 2;
13568 }
13569
13570 void bnx2x_setup_cnic_info(struct bnx2x *bp)
13571 {
13572         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13573
13574         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13575                              bnx2x_cid_ilt_lines(bp);
13576         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13577         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13578         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13579
13580         if (NO_ISCSI_OOO(bp))
13581                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13582 }
13583
13584 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
13585                                void *data)
13586 {
13587         struct bnx2x *bp = netdev_priv(dev);
13588         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13589         int rc;
13590
13591         DP(NETIF_MSG_IFUP, "Register_cnic called\n");
13592
13593         if (ops == NULL) {
13594                 BNX2X_ERR("NULL ops received\n");
13595                 return -EINVAL;
13596         }
13597
13598         if (!CNIC_SUPPORT(bp)) {
13599                 BNX2X_ERR("Can't register CNIC when not supported\n");
13600                 return -EOPNOTSUPP;
13601         }
13602
13603         if (!CNIC_LOADED(bp)) {
13604                 rc = bnx2x_load_cnic(bp);
13605                 if (rc) {
13606                         BNX2X_ERR("CNIC-related load failed\n");
13607                         return rc;
13608                 }
13609         }
13610
13611         bp->cnic_enabled = true;
13612
13613         bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
13614         if (!bp->cnic_kwq)
13615                 return -ENOMEM;
13616
13617         bp->cnic_kwq_cons = bp->cnic_kwq;
13618         bp->cnic_kwq_prod = bp->cnic_kwq;
13619         bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
13620
13621         bp->cnic_spq_pending = 0;
13622         bp->cnic_kwq_pending = 0;
13623
13624         bp->cnic_data = data;
13625
13626         cp->num_irq = 0;
13627         cp->drv_state |= CNIC_DRV_STATE_REGD;
13628         cp->iro_arr = bp->iro_arr;
13629
13630         bnx2x_setup_cnic_irq_info(bp);
13631
13632         rcu_assign_pointer(bp->cnic_ops, ops);
13633
13634         return 0;
13635 }
13636
13637 static int bnx2x_unregister_cnic(struct net_device *dev)
13638 {
13639         struct bnx2x *bp = netdev_priv(dev);
13640         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13641
13642         mutex_lock(&bp->cnic_mutex);
13643         cp->drv_state = 0;
13644         RCU_INIT_POINTER(bp->cnic_ops, NULL);
13645         mutex_unlock(&bp->cnic_mutex);
13646         synchronize_rcu();
13647         bp->cnic_enabled = false;
13648         kfree(bp->cnic_kwq);
13649         bp->cnic_kwq = NULL;
13650
13651         return 0;
13652 }
13653
13654 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
13655 {
13656         struct bnx2x *bp = netdev_priv(dev);
13657         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13658
13659         /* If both iSCSI and FCoE are disabled - return NULL in
13660          * order to indicate CNIC that it should not try to work
13661          * with this device.
13662          */
13663         if (NO_ISCSI(bp) && NO_FCOE(bp))
13664                 return NULL;
13665
13666         cp->drv_owner = THIS_MODULE;
13667         cp->chip_id = CHIP_ID(bp);
13668         cp->pdev = bp->pdev;
13669         cp->io_base = bp->regview;
13670         cp->io_base2 = bp->doorbells;
13671         cp->max_kwqe_pending = 8;
13672         cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
13673         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13674                              bnx2x_cid_ilt_lines(bp);
13675         cp->ctx_tbl_len = CNIC_ILT_LINES;
13676         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13677         cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
13678         cp->drv_ctl = bnx2x_drv_ctl;
13679         cp->drv_register_cnic = bnx2x_register_cnic;
13680         cp->drv_unregister_cnic = bnx2x_unregister_cnic;
13681         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13682         cp->iscsi_l2_client_id =
13683                 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13684         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13685
13686         if (NO_ISCSI_OOO(bp))
13687                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13688
13689         if (NO_ISCSI(bp))
13690                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
13691
13692         if (NO_FCOE(bp))
13693                 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
13694
13695         BNX2X_DEV_INFO(
13696                 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
13697            cp->ctx_blk_size,
13698            cp->ctx_tbl_offset,
13699            cp->ctx_tbl_len,
13700            cp->starting_cid);
13701         return cp;
13702 }
13703
13704 u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
13705 {
13706         struct bnx2x *bp = fp->bp;
13707         u32 offset = BAR_USTRORM_INTMEM;
13708
13709         if (IS_VF(bp))
13710                 return bnx2x_vf_ustorm_prods_offset(bp, fp);
13711         else if (!CHIP_IS_E1x(bp))
13712                 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
13713         else
13714                 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
13715
13716         return offset;
13717 }
13718
13719 /* called only on E1H or E2.
13720  * When pretending to be PF, the pretend value is the function number 0...7
13721  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
13722  * combination
13723  */
13724 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
13725 {
13726         u32 pretend_reg;
13727
13728         if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
13729                 return -1;
13730
13731         /* get my own pretend register */
13732         pretend_reg = bnx2x_get_pretend_reg(bp);
13733         REG_WR(bp, pretend_reg, pretend_func_val);
13734         REG_RD(bp, pretend_reg);
13735         return 0;
13736 }