bnx2x: Utilize FW 7.10.51
[cascardo/linux.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_main.c
1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>  /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/aer.h>
31 #include <linux/init.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/bitops.h>
37 #include <linux/irq.h>
38 #include <linux/delay.h>
39 #include <asm/byteorder.h>
40 #include <linux/time.h>
41 #include <linux/ethtool.h>
42 #include <linux/mii.h>
43 #include <linux/if_vlan.h>
44 #include <net/ip.h>
45 #include <net/ipv6.h>
46 #include <net/tcp.h>
47 #include <net/checksum.h>
48 #include <net/ip6_checksum.h>
49 #include <linux/workqueue.h>
50 #include <linux/crc32.h>
51 #include <linux/crc32c.h>
52 #include <linux/prefetch.h>
53 #include <linux/zlib.h>
54 #include <linux/io.h>
55 #include <linux/semaphore.h>
56 #include <linux/stringify.h>
57 #include <linux/vmalloc.h>
58
59 #include "bnx2x.h"
60 #include "bnx2x_init.h"
61 #include "bnx2x_init_ops.h"
62 #include "bnx2x_cmn.h"
63 #include "bnx2x_vfpf.h"
64 #include "bnx2x_dcb.h"
65 #include "bnx2x_sp.h"
66
67 #include <linux/firmware.h>
68 #include "bnx2x_fw_file_hdr.h"
69 /* FW files */
70 #define FW_FILE_VERSION                                 \
71         __stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
72         __stringify(BCM_5710_FW_MINOR_VERSION) "."      \
73         __stringify(BCM_5710_FW_REVISION_VERSION) "."   \
74         __stringify(BCM_5710_FW_ENGINEERING_VERSION)
75 #define FW_FILE_NAME_E1         "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
76 #define FW_FILE_NAME_E1H        "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
77 #define FW_FILE_NAME_E2         "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
78
79 /* Time in jiffies before concluding the transmitter is hung */
80 #define TX_TIMEOUT              (5*HZ)
81
82 static char version[] =
83         "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
84         DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
85
86 MODULE_AUTHOR("Eliezer Tamir");
87 MODULE_DESCRIPTION("Broadcom NetXtreme II "
88                    "BCM57710/57711/57711E/"
89                    "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
90                    "57840/57840_MF Driver");
91 MODULE_LICENSE("GPL");
92 MODULE_VERSION(DRV_MODULE_VERSION);
93 MODULE_FIRMWARE(FW_FILE_NAME_E1);
94 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
95 MODULE_FIRMWARE(FW_FILE_NAME_E2);
96
97 int bnx2x_num_queues;
98 module_param_named(num_queues, bnx2x_num_queues, int, S_IRUGO);
99 MODULE_PARM_DESC(num_queues,
100                  " Set number of queues (default is as a number of CPUs)");
101
102 static int disable_tpa;
103 module_param(disable_tpa, int, S_IRUGO);
104 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
105
106 static int int_mode;
107 module_param(int_mode, int, S_IRUGO);
108 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
109                                 "(1 INT#x; 2 MSI)");
110
111 static int dropless_fc;
112 module_param(dropless_fc, int, S_IRUGO);
113 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
114
115 static int mrrs = -1;
116 module_param(mrrs, int, S_IRUGO);
117 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
118
119 static int debug;
120 module_param(debug, int, S_IRUGO);
121 MODULE_PARM_DESC(debug, " Default debug msglevel");
122
123 static struct workqueue_struct *bnx2x_wq;
124 struct workqueue_struct *bnx2x_iov_wq;
125
126 struct bnx2x_mac_vals {
127         u32 xmac_addr;
128         u32 xmac_val;
129         u32 emac_addr;
130         u32 emac_val;
131         u32 umac_addr;
132         u32 umac_val;
133         u32 bmac_addr;
134         u32 bmac_val[2];
135 };
136
137 enum bnx2x_board_type {
138         BCM57710 = 0,
139         BCM57711,
140         BCM57711E,
141         BCM57712,
142         BCM57712_MF,
143         BCM57712_VF,
144         BCM57800,
145         BCM57800_MF,
146         BCM57800_VF,
147         BCM57810,
148         BCM57810_MF,
149         BCM57810_VF,
150         BCM57840_4_10,
151         BCM57840_2_20,
152         BCM57840_MF,
153         BCM57840_VF,
154         BCM57811,
155         BCM57811_MF,
156         BCM57840_O,
157         BCM57840_MFO,
158         BCM57811_VF
159 };
160
161 /* indexed by board_type, above */
162 static struct {
163         char *name;
164 } board_info[] = {
165         [BCM57710]      = { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
166         [BCM57711]      = { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
167         [BCM57711E]     = { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
168         [BCM57712]      = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
169         [BCM57712_MF]   = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
170         [BCM57712_VF]   = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
171         [BCM57800]      = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
172         [BCM57800_MF]   = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
173         [BCM57800_VF]   = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
174         [BCM57810]      = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
175         [BCM57810_MF]   = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
176         [BCM57810_VF]   = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
177         [BCM57840_4_10] = { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
178         [BCM57840_2_20] = { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
179         [BCM57840_MF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
180         [BCM57840_VF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
181         [BCM57811]      = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
182         [BCM57811_MF]   = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
183         [BCM57840_O]    = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
184         [BCM57840_MFO]  = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
185         [BCM57811_VF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
186 };
187
188 #ifndef PCI_DEVICE_ID_NX2_57710
189 #define PCI_DEVICE_ID_NX2_57710         CHIP_NUM_57710
190 #endif
191 #ifndef PCI_DEVICE_ID_NX2_57711
192 #define PCI_DEVICE_ID_NX2_57711         CHIP_NUM_57711
193 #endif
194 #ifndef PCI_DEVICE_ID_NX2_57711E
195 #define PCI_DEVICE_ID_NX2_57711E        CHIP_NUM_57711E
196 #endif
197 #ifndef PCI_DEVICE_ID_NX2_57712
198 #define PCI_DEVICE_ID_NX2_57712         CHIP_NUM_57712
199 #endif
200 #ifndef PCI_DEVICE_ID_NX2_57712_MF
201 #define PCI_DEVICE_ID_NX2_57712_MF      CHIP_NUM_57712_MF
202 #endif
203 #ifndef PCI_DEVICE_ID_NX2_57712_VF
204 #define PCI_DEVICE_ID_NX2_57712_VF      CHIP_NUM_57712_VF
205 #endif
206 #ifndef PCI_DEVICE_ID_NX2_57800
207 #define PCI_DEVICE_ID_NX2_57800         CHIP_NUM_57800
208 #endif
209 #ifndef PCI_DEVICE_ID_NX2_57800_MF
210 #define PCI_DEVICE_ID_NX2_57800_MF      CHIP_NUM_57800_MF
211 #endif
212 #ifndef PCI_DEVICE_ID_NX2_57800_VF
213 #define PCI_DEVICE_ID_NX2_57800_VF      CHIP_NUM_57800_VF
214 #endif
215 #ifndef PCI_DEVICE_ID_NX2_57810
216 #define PCI_DEVICE_ID_NX2_57810         CHIP_NUM_57810
217 #endif
218 #ifndef PCI_DEVICE_ID_NX2_57810_MF
219 #define PCI_DEVICE_ID_NX2_57810_MF      CHIP_NUM_57810_MF
220 #endif
221 #ifndef PCI_DEVICE_ID_NX2_57840_O
222 #define PCI_DEVICE_ID_NX2_57840_O       CHIP_NUM_57840_OBSOLETE
223 #endif
224 #ifndef PCI_DEVICE_ID_NX2_57810_VF
225 #define PCI_DEVICE_ID_NX2_57810_VF      CHIP_NUM_57810_VF
226 #endif
227 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
228 #define PCI_DEVICE_ID_NX2_57840_4_10    CHIP_NUM_57840_4_10
229 #endif
230 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
231 #define PCI_DEVICE_ID_NX2_57840_2_20    CHIP_NUM_57840_2_20
232 #endif
233 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
234 #define PCI_DEVICE_ID_NX2_57840_MFO     CHIP_NUM_57840_MF_OBSOLETE
235 #endif
236 #ifndef PCI_DEVICE_ID_NX2_57840_MF
237 #define PCI_DEVICE_ID_NX2_57840_MF      CHIP_NUM_57840_MF
238 #endif
239 #ifndef PCI_DEVICE_ID_NX2_57840_VF
240 #define PCI_DEVICE_ID_NX2_57840_VF      CHIP_NUM_57840_VF
241 #endif
242 #ifndef PCI_DEVICE_ID_NX2_57811
243 #define PCI_DEVICE_ID_NX2_57811         CHIP_NUM_57811
244 #endif
245 #ifndef PCI_DEVICE_ID_NX2_57811_MF
246 #define PCI_DEVICE_ID_NX2_57811_MF      CHIP_NUM_57811_MF
247 #endif
248 #ifndef PCI_DEVICE_ID_NX2_57811_VF
249 #define PCI_DEVICE_ID_NX2_57811_VF      CHIP_NUM_57811_VF
250 #endif
251
252 static const struct pci_device_id bnx2x_pci_tbl[] = {
253         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
254         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
255         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
256         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
257         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
258         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
259         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
260         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
261         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
262         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
263         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
264         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
265         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
266         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
267         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
268         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
269         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
270         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
271         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
272         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
273         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
274         { 0 }
275 };
276
277 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
278
279 /* Global resources for unloading a previously loaded device */
280 #define BNX2X_PREV_WAIT_NEEDED 1
281 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
282 static LIST_HEAD(bnx2x_prev_list);
283
284 /* Forward declaration */
285 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
286 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
287 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
288
289 /****************************************************************************
290 * General service functions
291 ****************************************************************************/
292
293 static void __storm_memset_dma_mapping(struct bnx2x *bp,
294                                        u32 addr, dma_addr_t mapping)
295 {
296         REG_WR(bp,  addr, U64_LO(mapping));
297         REG_WR(bp,  addr + 4, U64_HI(mapping));
298 }
299
300 static void storm_memset_spq_addr(struct bnx2x *bp,
301                                   dma_addr_t mapping, u16 abs_fid)
302 {
303         u32 addr = XSEM_REG_FAST_MEMORY +
304                         XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
305
306         __storm_memset_dma_mapping(bp, addr, mapping);
307 }
308
309 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
310                                   u16 pf_id)
311 {
312         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
313                 pf_id);
314         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
315                 pf_id);
316         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
317                 pf_id);
318         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
319                 pf_id);
320 }
321
322 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
323                                  u8 enable)
324 {
325         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
326                 enable);
327         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
328                 enable);
329         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
330                 enable);
331         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
332                 enable);
333 }
334
335 static void storm_memset_eq_data(struct bnx2x *bp,
336                                  struct event_ring_data *eq_data,
337                                 u16 pfid)
338 {
339         size_t size = sizeof(struct event_ring_data);
340
341         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
342
343         __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
344 }
345
346 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
347                                  u16 pfid)
348 {
349         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
350         REG_WR16(bp, addr, eq_prod);
351 }
352
353 /* used only at init
354  * locking is done by mcp
355  */
356 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
357 {
358         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
359         pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
360         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
361                                PCICFG_VENDOR_ID_OFFSET);
362 }
363
364 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
365 {
366         u32 val;
367
368         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
369         pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
370         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
371                                PCICFG_VENDOR_ID_OFFSET);
372
373         return val;
374 }
375
376 #define DMAE_DP_SRC_GRC         "grc src_addr [%08x]"
377 #define DMAE_DP_SRC_PCI         "pci src_addr [%x:%08x]"
378 #define DMAE_DP_DST_GRC         "grc dst_addr [%08x]"
379 #define DMAE_DP_DST_PCI         "pci dst_addr [%x:%08x]"
380 #define DMAE_DP_DST_NONE        "dst_addr [none]"
381
382 static void bnx2x_dp_dmae(struct bnx2x *bp,
383                           struct dmae_command *dmae, int msglvl)
384 {
385         u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
386         int i;
387
388         switch (dmae->opcode & DMAE_COMMAND_DST) {
389         case DMAE_CMD_DST_PCI:
390                 if (src_type == DMAE_CMD_SRC_PCI)
391                         DP(msglvl, "DMAE: opcode 0x%08x\n"
392                            "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
393                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
394                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
395                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
396                            dmae->comp_addr_hi, dmae->comp_addr_lo,
397                            dmae->comp_val);
398                 else
399                         DP(msglvl, "DMAE: opcode 0x%08x\n"
400                            "src [%08x], len [%d*4], dst [%x:%08x]\n"
401                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
402                            dmae->opcode, dmae->src_addr_lo >> 2,
403                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
404                            dmae->comp_addr_hi, dmae->comp_addr_lo,
405                            dmae->comp_val);
406                 break;
407         case DMAE_CMD_DST_GRC:
408                 if (src_type == DMAE_CMD_SRC_PCI)
409                         DP(msglvl, "DMAE: opcode 0x%08x\n"
410                            "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
411                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
412                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
413                            dmae->len, dmae->dst_addr_lo >> 2,
414                            dmae->comp_addr_hi, dmae->comp_addr_lo,
415                            dmae->comp_val);
416                 else
417                         DP(msglvl, "DMAE: opcode 0x%08x\n"
418                            "src [%08x], len [%d*4], dst [%08x]\n"
419                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
420                            dmae->opcode, dmae->src_addr_lo >> 2,
421                            dmae->len, dmae->dst_addr_lo >> 2,
422                            dmae->comp_addr_hi, dmae->comp_addr_lo,
423                            dmae->comp_val);
424                 break;
425         default:
426                 if (src_type == DMAE_CMD_SRC_PCI)
427                         DP(msglvl, "DMAE: opcode 0x%08x\n"
428                            "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
429                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
430                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
431                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
432                            dmae->comp_val);
433                 else
434                         DP(msglvl, "DMAE: opcode 0x%08x\n"
435                            "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
436                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
437                            dmae->opcode, dmae->src_addr_lo >> 2,
438                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
439                            dmae->comp_val);
440                 break;
441         }
442
443         for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
444                 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
445                    i, *(((u32 *)dmae) + i));
446 }
447
448 /* copy command into DMAE command memory and set DMAE command go */
449 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
450 {
451         u32 cmd_offset;
452         int i;
453
454         cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
455         for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
456                 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
457         }
458         REG_WR(bp, dmae_reg_go_c[idx], 1);
459 }
460
461 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
462 {
463         return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
464                            DMAE_CMD_C_ENABLE);
465 }
466
467 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
468 {
469         return opcode & ~DMAE_CMD_SRC_RESET;
470 }
471
472 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
473                              bool with_comp, u8 comp_type)
474 {
475         u32 opcode = 0;
476
477         opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
478                    (dst_type << DMAE_COMMAND_DST_SHIFT));
479
480         opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
481
482         opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
483         opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
484                    (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
485         opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
486
487 #ifdef __BIG_ENDIAN
488         opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
489 #else
490         opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
491 #endif
492         if (with_comp)
493                 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
494         return opcode;
495 }
496
497 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
498                                       struct dmae_command *dmae,
499                                       u8 src_type, u8 dst_type)
500 {
501         memset(dmae, 0, sizeof(struct dmae_command));
502
503         /* set the opcode */
504         dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
505                                          true, DMAE_COMP_PCI);
506
507         /* fill in the completion parameters */
508         dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
509         dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
510         dmae->comp_val = DMAE_COMP_VAL;
511 }
512
513 /* issue a dmae command over the init-channel and wait for completion */
514 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
515                                u32 *comp)
516 {
517         int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
518         int rc = 0;
519
520         bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
521
522         /* Lock the dmae channel. Disable BHs to prevent a dead-lock
523          * as long as this code is called both from syscall context and
524          * from ndo_set_rx_mode() flow that may be called from BH.
525          */
526         spin_lock_bh(&bp->dmae_lock);
527
528         /* reset completion */
529         *comp = 0;
530
531         /* post the command on the channel used for initializations */
532         bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
533
534         /* wait for completion */
535         udelay(5);
536         while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
537
538                 if (!cnt ||
539                     (bp->recovery_state != BNX2X_RECOVERY_DONE &&
540                      bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
541                         BNX2X_ERR("DMAE timeout!\n");
542                         rc = DMAE_TIMEOUT;
543                         goto unlock;
544                 }
545                 cnt--;
546                 udelay(50);
547         }
548         if (*comp & DMAE_PCI_ERR_FLAG) {
549                 BNX2X_ERR("DMAE PCI error!\n");
550                 rc = DMAE_PCI_ERROR;
551         }
552
553 unlock:
554         spin_unlock_bh(&bp->dmae_lock);
555         return rc;
556 }
557
558 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
559                       u32 len32)
560 {
561         int rc;
562         struct dmae_command dmae;
563
564         if (!bp->dmae_ready) {
565                 u32 *data = bnx2x_sp(bp, wb_data[0]);
566
567                 if (CHIP_IS_E1(bp))
568                         bnx2x_init_ind_wr(bp, dst_addr, data, len32);
569                 else
570                         bnx2x_init_str_wr(bp, dst_addr, data, len32);
571                 return;
572         }
573
574         /* set opcode and fixed command fields */
575         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
576
577         /* fill in addresses and len */
578         dmae.src_addr_lo = U64_LO(dma_addr);
579         dmae.src_addr_hi = U64_HI(dma_addr);
580         dmae.dst_addr_lo = dst_addr >> 2;
581         dmae.dst_addr_hi = 0;
582         dmae.len = len32;
583
584         /* issue the command and wait for completion */
585         rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
586         if (rc) {
587                 BNX2X_ERR("DMAE returned failure %d\n", rc);
588 #ifdef BNX2X_STOP_ON_ERROR
589                 bnx2x_panic();
590 #endif
591         }
592 }
593
594 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
595 {
596         int rc;
597         struct dmae_command dmae;
598
599         if (!bp->dmae_ready) {
600                 u32 *data = bnx2x_sp(bp, wb_data[0]);
601                 int i;
602
603                 if (CHIP_IS_E1(bp))
604                         for (i = 0; i < len32; i++)
605                                 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
606                 else
607                         for (i = 0; i < len32; i++)
608                                 data[i] = REG_RD(bp, src_addr + i*4);
609
610                 return;
611         }
612
613         /* set opcode and fixed command fields */
614         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
615
616         /* fill in addresses and len */
617         dmae.src_addr_lo = src_addr >> 2;
618         dmae.src_addr_hi = 0;
619         dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
620         dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
621         dmae.len = len32;
622
623         /* issue the command and wait for completion */
624         rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
625         if (rc) {
626                 BNX2X_ERR("DMAE returned failure %d\n", rc);
627 #ifdef BNX2X_STOP_ON_ERROR
628                 bnx2x_panic();
629 #endif
630         }
631 }
632
633 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
634                                       u32 addr, u32 len)
635 {
636         int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
637         int offset = 0;
638
639         while (len > dmae_wr_max) {
640                 bnx2x_write_dmae(bp, phys_addr + offset,
641                                  addr + offset, dmae_wr_max);
642                 offset += dmae_wr_max * 4;
643                 len -= dmae_wr_max;
644         }
645
646         bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
647 }
648
649 static int bnx2x_mc_assert(struct bnx2x *bp)
650 {
651         char last_idx;
652         int i, rc = 0;
653         u32 row0, row1, row2, row3;
654
655         /* XSTORM */
656         last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
657                            XSTORM_ASSERT_LIST_INDEX_OFFSET);
658         if (last_idx)
659                 BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
660
661         /* print the asserts */
662         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
663
664                 row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
665                               XSTORM_ASSERT_LIST_OFFSET(i));
666                 row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
667                               XSTORM_ASSERT_LIST_OFFSET(i) + 4);
668                 row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
669                               XSTORM_ASSERT_LIST_OFFSET(i) + 8);
670                 row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
671                               XSTORM_ASSERT_LIST_OFFSET(i) + 12);
672
673                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
674                         BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
675                                   i, row3, row2, row1, row0);
676                         rc++;
677                 } else {
678                         break;
679                 }
680         }
681
682         /* TSTORM */
683         last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
684                            TSTORM_ASSERT_LIST_INDEX_OFFSET);
685         if (last_idx)
686                 BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
687
688         /* print the asserts */
689         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
690
691                 row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
692                               TSTORM_ASSERT_LIST_OFFSET(i));
693                 row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
694                               TSTORM_ASSERT_LIST_OFFSET(i) + 4);
695                 row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
696                               TSTORM_ASSERT_LIST_OFFSET(i) + 8);
697                 row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
698                               TSTORM_ASSERT_LIST_OFFSET(i) + 12);
699
700                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
701                         BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
702                                   i, row3, row2, row1, row0);
703                         rc++;
704                 } else {
705                         break;
706                 }
707         }
708
709         /* CSTORM */
710         last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
711                            CSTORM_ASSERT_LIST_INDEX_OFFSET);
712         if (last_idx)
713                 BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
714
715         /* print the asserts */
716         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
717
718                 row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
719                               CSTORM_ASSERT_LIST_OFFSET(i));
720                 row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
721                               CSTORM_ASSERT_LIST_OFFSET(i) + 4);
722                 row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
723                               CSTORM_ASSERT_LIST_OFFSET(i) + 8);
724                 row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
725                               CSTORM_ASSERT_LIST_OFFSET(i) + 12);
726
727                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
728                         BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
729                                   i, row3, row2, row1, row0);
730                         rc++;
731                 } else {
732                         break;
733                 }
734         }
735
736         /* USTORM */
737         last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
738                            USTORM_ASSERT_LIST_INDEX_OFFSET);
739         if (last_idx)
740                 BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
741
742         /* print the asserts */
743         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
744
745                 row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
746                               USTORM_ASSERT_LIST_OFFSET(i));
747                 row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
748                               USTORM_ASSERT_LIST_OFFSET(i) + 4);
749                 row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
750                               USTORM_ASSERT_LIST_OFFSET(i) + 8);
751                 row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
752                               USTORM_ASSERT_LIST_OFFSET(i) + 12);
753
754                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
755                         BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
756                                   i, row3, row2, row1, row0);
757                         rc++;
758                 } else {
759                         break;
760                 }
761         }
762
763         return rc;
764 }
765
766 #define MCPR_TRACE_BUFFER_SIZE  (0x800)
767 #define SCRATCH_BUFFER_SIZE(bp) \
768         (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
769
770 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
771 {
772         u32 addr, val;
773         u32 mark, offset;
774         __be32 data[9];
775         int word;
776         u32 trace_shmem_base;
777         if (BP_NOMCP(bp)) {
778                 BNX2X_ERR("NO MCP - can not dump\n");
779                 return;
780         }
781         netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
782                 (bp->common.bc_ver & 0xff0000) >> 16,
783                 (bp->common.bc_ver & 0xff00) >> 8,
784                 (bp->common.bc_ver & 0xff));
785
786         val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
787         if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
788                 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
789
790         if (BP_PATH(bp) == 0)
791                 trace_shmem_base = bp->common.shmem_base;
792         else
793                 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
794
795         /* sanity */
796         if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
797             trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
798                                 SCRATCH_BUFFER_SIZE(bp)) {
799                 BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
800                           trace_shmem_base);
801                 return;
802         }
803
804         addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
805
806         /* validate TRCB signature */
807         mark = REG_RD(bp, addr);
808         if (mark != MFW_TRACE_SIGNATURE) {
809                 BNX2X_ERR("Trace buffer signature is missing.");
810                 return ;
811         }
812
813         /* read cyclic buffer pointer */
814         addr += 4;
815         mark = REG_RD(bp, addr);
816         mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
817         if (mark >= trace_shmem_base || mark < addr + 4) {
818                 BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
819                 return;
820         }
821         printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
822
823         printk("%s", lvl);
824
825         /* dump buffer after the mark */
826         for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
827                 for (word = 0; word < 8; word++)
828                         data[word] = htonl(REG_RD(bp, offset + 4*word));
829                 data[8] = 0x0;
830                 pr_cont("%s", (char *)data);
831         }
832
833         /* dump buffer before the mark */
834         for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
835                 for (word = 0; word < 8; word++)
836                         data[word] = htonl(REG_RD(bp, offset + 4*word));
837                 data[8] = 0x0;
838                 pr_cont("%s", (char *)data);
839         }
840         printk("%s" "end of fw dump\n", lvl);
841 }
842
843 static void bnx2x_fw_dump(struct bnx2x *bp)
844 {
845         bnx2x_fw_dump_lvl(bp, KERN_ERR);
846 }
847
848 static void bnx2x_hc_int_disable(struct bnx2x *bp)
849 {
850         int port = BP_PORT(bp);
851         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
852         u32 val = REG_RD(bp, addr);
853
854         /* in E1 we must use only PCI configuration space to disable
855          * MSI/MSIX capability
856          * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
857          */
858         if (CHIP_IS_E1(bp)) {
859                 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
860                  * Use mask register to prevent from HC sending interrupts
861                  * after we exit the function
862                  */
863                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
864
865                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
866                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
867                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
868         } else
869                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
870                          HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
871                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
872                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
873
874         DP(NETIF_MSG_IFDOWN,
875            "write %x to HC %d (addr 0x%x)\n",
876            val, port, addr);
877
878         /* flush all outstanding writes */
879         mmiowb();
880
881         REG_WR(bp, addr, val);
882         if (REG_RD(bp, addr) != val)
883                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
884 }
885
886 static void bnx2x_igu_int_disable(struct bnx2x *bp)
887 {
888         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
889
890         val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
891                  IGU_PF_CONF_INT_LINE_EN |
892                  IGU_PF_CONF_ATTN_BIT_EN);
893
894         DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
895
896         /* flush all outstanding writes */
897         mmiowb();
898
899         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
900         if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
901                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
902 }
903
904 static void bnx2x_int_disable(struct bnx2x *bp)
905 {
906         if (bp->common.int_block == INT_BLOCK_HC)
907                 bnx2x_hc_int_disable(bp);
908         else
909                 bnx2x_igu_int_disable(bp);
910 }
911
912 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
913 {
914         int i;
915         u16 j;
916         struct hc_sp_status_block_data sp_sb_data;
917         int func = BP_FUNC(bp);
918 #ifdef BNX2X_STOP_ON_ERROR
919         u16 start = 0, end = 0;
920         u8 cos;
921 #endif
922         if (IS_PF(bp) && disable_int)
923                 bnx2x_int_disable(bp);
924
925         bp->stats_state = STATS_STATE_DISABLED;
926         bp->eth_stats.unrecoverable_error++;
927         DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
928
929         BNX2X_ERR("begin crash dump -----------------\n");
930
931         /* Indices */
932         /* Common */
933         if (IS_PF(bp)) {
934                 struct host_sp_status_block *def_sb = bp->def_status_blk;
935                 int data_size, cstorm_offset;
936
937                 BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
938                           bp->def_idx, bp->def_att_idx, bp->attn_state,
939                           bp->spq_prod_idx, bp->stats_counter);
940                 BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
941                           def_sb->atten_status_block.attn_bits,
942                           def_sb->atten_status_block.attn_bits_ack,
943                           def_sb->atten_status_block.status_block_id,
944                           def_sb->atten_status_block.attn_bits_index);
945                 BNX2X_ERR("     def (");
946                 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
947                         pr_cont("0x%x%s",
948                                 def_sb->sp_sb.index_values[i],
949                                 (i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
950
951                 data_size = sizeof(struct hc_sp_status_block_data) /
952                             sizeof(u32);
953                 cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
954                 for (i = 0; i < data_size; i++)
955                         *((u32 *)&sp_sb_data + i) =
956                                 REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
957                                            i * sizeof(u32));
958
959                 pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
960                         sp_sb_data.igu_sb_id,
961                         sp_sb_data.igu_seg_id,
962                         sp_sb_data.p_func.pf_id,
963                         sp_sb_data.p_func.vnic_id,
964                         sp_sb_data.p_func.vf_id,
965                         sp_sb_data.p_func.vf_valid,
966                         sp_sb_data.state);
967         }
968
969         for_each_eth_queue(bp, i) {
970                 struct bnx2x_fastpath *fp = &bp->fp[i];
971                 int loop;
972                 struct hc_status_block_data_e2 sb_data_e2;
973                 struct hc_status_block_data_e1x sb_data_e1x;
974                 struct hc_status_block_sm  *hc_sm_p =
975                         CHIP_IS_E1x(bp) ?
976                         sb_data_e1x.common.state_machine :
977                         sb_data_e2.common.state_machine;
978                 struct hc_index_data *hc_index_p =
979                         CHIP_IS_E1x(bp) ?
980                         sb_data_e1x.index_data :
981                         sb_data_e2.index_data;
982                 u8 data_size, cos;
983                 u32 *sb_data_p;
984                 struct bnx2x_fp_txdata txdata;
985
986                 /* Rx */
987                 BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
988                           i, fp->rx_bd_prod, fp->rx_bd_cons,
989                           fp->rx_comp_prod,
990                           fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
991                 BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
992                           fp->rx_sge_prod, fp->last_max_sge,
993                           le16_to_cpu(fp->fp_hc_idx));
994
995                 /* Tx */
996                 for_each_cos_in_tx_queue(fp, cos)
997                 {
998                         txdata = *fp->txdata_ptr[cos];
999                         BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
1000                                   i, txdata.tx_pkt_prod,
1001                                   txdata.tx_pkt_cons, txdata.tx_bd_prod,
1002                                   txdata.tx_bd_cons,
1003                                   le16_to_cpu(*txdata.tx_cons_sb));
1004                 }
1005
1006                 loop = CHIP_IS_E1x(bp) ?
1007                         HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1008
1009                 /* host sb data */
1010
1011                 if (IS_FCOE_FP(fp))
1012                         continue;
1013
1014                 BNX2X_ERR("     run indexes (");
1015                 for (j = 0; j < HC_SB_MAX_SM; j++)
1016                         pr_cont("0x%x%s",
1017                                fp->sb_running_index[j],
1018                                (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1019
1020                 BNX2X_ERR("     indexes (");
1021                 for (j = 0; j < loop; j++)
1022                         pr_cont("0x%x%s",
1023                                fp->sb_index_values[j],
1024                                (j == loop - 1) ? ")" : " ");
1025
1026                 /* VF cannot access FW refelection for status block */
1027                 if (IS_VF(bp))
1028                         continue;
1029
1030                 /* fw sb data */
1031                 data_size = CHIP_IS_E1x(bp) ?
1032                         sizeof(struct hc_status_block_data_e1x) :
1033                         sizeof(struct hc_status_block_data_e2);
1034                 data_size /= sizeof(u32);
1035                 sb_data_p = CHIP_IS_E1x(bp) ?
1036                         (u32 *)&sb_data_e1x :
1037                         (u32 *)&sb_data_e2;
1038                 /* copy sb data in here */
1039                 for (j = 0; j < data_size; j++)
1040                         *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1041                                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1042                                 j * sizeof(u32));
1043
1044                 if (!CHIP_IS_E1x(bp)) {
1045                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1046                                 sb_data_e2.common.p_func.pf_id,
1047                                 sb_data_e2.common.p_func.vf_id,
1048                                 sb_data_e2.common.p_func.vf_valid,
1049                                 sb_data_e2.common.p_func.vnic_id,
1050                                 sb_data_e2.common.same_igu_sb_1b,
1051                                 sb_data_e2.common.state);
1052                 } else {
1053                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1054                                 sb_data_e1x.common.p_func.pf_id,
1055                                 sb_data_e1x.common.p_func.vf_id,
1056                                 sb_data_e1x.common.p_func.vf_valid,
1057                                 sb_data_e1x.common.p_func.vnic_id,
1058                                 sb_data_e1x.common.same_igu_sb_1b,
1059                                 sb_data_e1x.common.state);
1060                 }
1061
1062                 /* SB_SMs data */
1063                 for (j = 0; j < HC_SB_MAX_SM; j++) {
1064                         pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1065                                 j, hc_sm_p[j].__flags,
1066                                 hc_sm_p[j].igu_sb_id,
1067                                 hc_sm_p[j].igu_seg_id,
1068                                 hc_sm_p[j].time_to_expire,
1069                                 hc_sm_p[j].timer_value);
1070                 }
1071
1072                 /* Indices data */
1073                 for (j = 0; j < loop; j++) {
1074                         pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1075                                hc_index_p[j].flags,
1076                                hc_index_p[j].timeout);
1077                 }
1078         }
1079
1080 #ifdef BNX2X_STOP_ON_ERROR
1081         if (IS_PF(bp)) {
1082                 /* event queue */
1083                 BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1084                 for (i = 0; i < NUM_EQ_DESC; i++) {
1085                         u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1086
1087                         BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1088                                   i, bp->eq_ring[i].message.opcode,
1089                                   bp->eq_ring[i].message.error);
1090                         BNX2X_ERR("data: %x %x %x\n",
1091                                   data[0], data[1], data[2]);
1092                 }
1093         }
1094
1095         /* Rings */
1096         /* Rx */
1097         for_each_valid_rx_queue(bp, i) {
1098                 struct bnx2x_fastpath *fp = &bp->fp[i];
1099
1100                 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1101                 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1102                 for (j = start; j != end; j = RX_BD(j + 1)) {
1103                         u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1104                         struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1105
1106                         BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1107                                   i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1108                 }
1109
1110                 start = RX_SGE(fp->rx_sge_prod);
1111                 end = RX_SGE(fp->last_max_sge);
1112                 for (j = start; j != end; j = RX_SGE(j + 1)) {
1113                         u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1114                         struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1115
1116                         BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1117                                   i, j, rx_sge[1], rx_sge[0], sw_page->page);
1118                 }
1119
1120                 start = RCQ_BD(fp->rx_comp_cons - 10);
1121                 end = RCQ_BD(fp->rx_comp_cons + 503);
1122                 for (j = start; j != end; j = RCQ_BD(j + 1)) {
1123                         u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1124
1125                         BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1126                                   i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1127                 }
1128         }
1129
1130         /* Tx */
1131         for_each_valid_tx_queue(bp, i) {
1132                 struct bnx2x_fastpath *fp = &bp->fp[i];
1133                 for_each_cos_in_tx_queue(fp, cos) {
1134                         struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1135
1136                         start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1137                         end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1138                         for (j = start; j != end; j = TX_BD(j + 1)) {
1139                                 struct sw_tx_bd *sw_bd =
1140                                         &txdata->tx_buf_ring[j];
1141
1142                                 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1143                                           i, cos, j, sw_bd->skb,
1144                                           sw_bd->first_bd);
1145                         }
1146
1147                         start = TX_BD(txdata->tx_bd_cons - 10);
1148                         end = TX_BD(txdata->tx_bd_cons + 254);
1149                         for (j = start; j != end; j = TX_BD(j + 1)) {
1150                                 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1151
1152                                 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1153                                           i, cos, j, tx_bd[0], tx_bd[1],
1154                                           tx_bd[2], tx_bd[3]);
1155                         }
1156                 }
1157         }
1158 #endif
1159         if (IS_PF(bp)) {
1160                 bnx2x_fw_dump(bp);
1161                 bnx2x_mc_assert(bp);
1162         }
1163         BNX2X_ERR("end crash dump -----------------\n");
1164 }
1165
1166 /*
1167  * FLR Support for E2
1168  *
1169  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1170  * initialization.
1171  */
1172 #define FLR_WAIT_USEC           10000   /* 10 milliseconds */
1173 #define FLR_WAIT_INTERVAL       50      /* usec */
1174 #define FLR_POLL_CNT            (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1175
1176 struct pbf_pN_buf_regs {
1177         int pN;
1178         u32 init_crd;
1179         u32 crd;
1180         u32 crd_freed;
1181 };
1182
1183 struct pbf_pN_cmd_regs {
1184         int pN;
1185         u32 lines_occup;
1186         u32 lines_freed;
1187 };
1188
1189 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1190                                      struct pbf_pN_buf_regs *regs,
1191                                      u32 poll_count)
1192 {
1193         u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1194         u32 cur_cnt = poll_count;
1195
1196         crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1197         crd = crd_start = REG_RD(bp, regs->crd);
1198         init_crd = REG_RD(bp, regs->init_crd);
1199
1200         DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1201         DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1202         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1203
1204         while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1205                (init_crd - crd_start))) {
1206                 if (cur_cnt--) {
1207                         udelay(FLR_WAIT_INTERVAL);
1208                         crd = REG_RD(bp, regs->crd);
1209                         crd_freed = REG_RD(bp, regs->crd_freed);
1210                 } else {
1211                         DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1212                            regs->pN);
1213                         DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1214                            regs->pN, crd);
1215                         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1216                            regs->pN, crd_freed);
1217                         break;
1218                 }
1219         }
1220         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1221            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1222 }
1223
1224 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1225                                      struct pbf_pN_cmd_regs *regs,
1226                                      u32 poll_count)
1227 {
1228         u32 occup, to_free, freed, freed_start;
1229         u32 cur_cnt = poll_count;
1230
1231         occup = to_free = REG_RD(bp, regs->lines_occup);
1232         freed = freed_start = REG_RD(bp, regs->lines_freed);
1233
1234         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1235         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1236
1237         while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1238                 if (cur_cnt--) {
1239                         udelay(FLR_WAIT_INTERVAL);
1240                         occup = REG_RD(bp, regs->lines_occup);
1241                         freed = REG_RD(bp, regs->lines_freed);
1242                 } else {
1243                         DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1244                            regs->pN);
1245                         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1246                            regs->pN, occup);
1247                         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1248                            regs->pN, freed);
1249                         break;
1250                 }
1251         }
1252         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1253            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1254 }
1255
1256 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1257                                     u32 expected, u32 poll_count)
1258 {
1259         u32 cur_cnt = poll_count;
1260         u32 val;
1261
1262         while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1263                 udelay(FLR_WAIT_INTERVAL);
1264
1265         return val;
1266 }
1267
1268 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1269                                     char *msg, u32 poll_cnt)
1270 {
1271         u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1272         if (val != 0) {
1273                 BNX2X_ERR("%s usage count=%d\n", msg, val);
1274                 return 1;
1275         }
1276         return 0;
1277 }
1278
1279 /* Common routines with VF FLR cleanup */
1280 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1281 {
1282         /* adjust polling timeout */
1283         if (CHIP_REV_IS_EMUL(bp))
1284                 return FLR_POLL_CNT * 2000;
1285
1286         if (CHIP_REV_IS_FPGA(bp))
1287                 return FLR_POLL_CNT * 120;
1288
1289         return FLR_POLL_CNT;
1290 }
1291
1292 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1293 {
1294         struct pbf_pN_cmd_regs cmd_regs[] = {
1295                 {0, (CHIP_IS_E3B0(bp)) ?
1296                         PBF_REG_TQ_OCCUPANCY_Q0 :
1297                         PBF_REG_P0_TQ_OCCUPANCY,
1298                     (CHIP_IS_E3B0(bp)) ?
1299                         PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1300                         PBF_REG_P0_TQ_LINES_FREED_CNT},
1301                 {1, (CHIP_IS_E3B0(bp)) ?
1302                         PBF_REG_TQ_OCCUPANCY_Q1 :
1303                         PBF_REG_P1_TQ_OCCUPANCY,
1304                     (CHIP_IS_E3B0(bp)) ?
1305                         PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1306                         PBF_REG_P1_TQ_LINES_FREED_CNT},
1307                 {4, (CHIP_IS_E3B0(bp)) ?
1308                         PBF_REG_TQ_OCCUPANCY_LB_Q :
1309                         PBF_REG_P4_TQ_OCCUPANCY,
1310                     (CHIP_IS_E3B0(bp)) ?
1311                         PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1312                         PBF_REG_P4_TQ_LINES_FREED_CNT}
1313         };
1314
1315         struct pbf_pN_buf_regs buf_regs[] = {
1316                 {0, (CHIP_IS_E3B0(bp)) ?
1317                         PBF_REG_INIT_CRD_Q0 :
1318                         PBF_REG_P0_INIT_CRD ,
1319                     (CHIP_IS_E3B0(bp)) ?
1320                         PBF_REG_CREDIT_Q0 :
1321                         PBF_REG_P0_CREDIT,
1322                     (CHIP_IS_E3B0(bp)) ?
1323                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1324                         PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1325                 {1, (CHIP_IS_E3B0(bp)) ?
1326                         PBF_REG_INIT_CRD_Q1 :
1327                         PBF_REG_P1_INIT_CRD,
1328                     (CHIP_IS_E3B0(bp)) ?
1329                         PBF_REG_CREDIT_Q1 :
1330                         PBF_REG_P1_CREDIT,
1331                     (CHIP_IS_E3B0(bp)) ?
1332                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1333                         PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1334                 {4, (CHIP_IS_E3B0(bp)) ?
1335                         PBF_REG_INIT_CRD_LB_Q :
1336                         PBF_REG_P4_INIT_CRD,
1337                     (CHIP_IS_E3B0(bp)) ?
1338                         PBF_REG_CREDIT_LB_Q :
1339                         PBF_REG_P4_CREDIT,
1340                     (CHIP_IS_E3B0(bp)) ?
1341                         PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1342                         PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1343         };
1344
1345         int i;
1346
1347         /* Verify the command queues are flushed P0, P1, P4 */
1348         for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1349                 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1350
1351         /* Verify the transmission buffers are flushed P0, P1, P4 */
1352         for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1353                 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1354 }
1355
1356 #define OP_GEN_PARAM(param) \
1357         (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1358
1359 #define OP_GEN_TYPE(type) \
1360         (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1361
1362 #define OP_GEN_AGG_VECT(index) \
1363         (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1364
1365 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1366 {
1367         u32 op_gen_command = 0;
1368         u32 comp_addr = BAR_CSTRORM_INTMEM +
1369                         CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1370         int ret = 0;
1371
1372         if (REG_RD(bp, comp_addr)) {
1373                 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1374                 return 1;
1375         }
1376
1377         op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1378         op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1379         op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1380         op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1381
1382         DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1383         REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1384
1385         if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1386                 BNX2X_ERR("FW final cleanup did not succeed\n");
1387                 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1388                    (REG_RD(bp, comp_addr)));
1389                 bnx2x_panic();
1390                 return 1;
1391         }
1392         /* Zero completion for next FLR */
1393         REG_WR(bp, comp_addr, 0);
1394
1395         return ret;
1396 }
1397
1398 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1399 {
1400         u16 status;
1401
1402         pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1403         return status & PCI_EXP_DEVSTA_TRPND;
1404 }
1405
1406 /* PF FLR specific routines
1407 */
1408 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1409 {
1410         /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1411         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1412                         CFC_REG_NUM_LCIDS_INSIDE_PF,
1413                         "CFC PF usage counter timed out",
1414                         poll_cnt))
1415                 return 1;
1416
1417         /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1418         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1419                         DORQ_REG_PF_USAGE_CNT,
1420                         "DQ PF usage counter timed out",
1421                         poll_cnt))
1422                 return 1;
1423
1424         /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1425         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1426                         QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1427                         "QM PF usage counter timed out",
1428                         poll_cnt))
1429                 return 1;
1430
1431         /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1432         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1433                         TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1434                         "Timers VNIC usage counter timed out",
1435                         poll_cnt))
1436                 return 1;
1437         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1438                         TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1439                         "Timers NUM_SCANS usage counter timed out",
1440                         poll_cnt))
1441                 return 1;
1442
1443         /* Wait DMAE PF usage counter to zero */
1444         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1445                         dmae_reg_go_c[INIT_DMAE_C(bp)],
1446                         "DMAE command register timed out",
1447                         poll_cnt))
1448                 return 1;
1449
1450         return 0;
1451 }
1452
1453 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1454 {
1455         u32 val;
1456
1457         val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1458         DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1459
1460         val = REG_RD(bp, PBF_REG_DISABLE_PF);
1461         DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1462
1463         val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1464         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1465
1466         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1467         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1468
1469         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1470         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1471
1472         val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1473         DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1474
1475         val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1476         DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1477
1478         val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1479         DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1480            val);
1481 }
1482
1483 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1484 {
1485         u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1486
1487         DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1488
1489         /* Re-enable PF target read access */
1490         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1491
1492         /* Poll HW usage counters */
1493         DP(BNX2X_MSG_SP, "Polling usage counters\n");
1494         if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1495                 return -EBUSY;
1496
1497         /* Zero the igu 'trailing edge' and 'leading edge' */
1498
1499         /* Send the FW cleanup command */
1500         if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1501                 return -EBUSY;
1502
1503         /* ATC cleanup */
1504
1505         /* Verify TX hw is flushed */
1506         bnx2x_tx_hw_flushed(bp, poll_cnt);
1507
1508         /* Wait 100ms (not adjusted according to platform) */
1509         msleep(100);
1510
1511         /* Verify no pending pci transactions */
1512         if (bnx2x_is_pcie_pending(bp->pdev))
1513                 BNX2X_ERR("PCIE Transactions still pending\n");
1514
1515         /* Debug */
1516         bnx2x_hw_enable_status(bp);
1517
1518         /*
1519          * Master enable - Due to WB DMAE writes performed before this
1520          * register is re-initialized as part of the regular function init
1521          */
1522         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1523
1524         return 0;
1525 }
1526
1527 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1528 {
1529         int port = BP_PORT(bp);
1530         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1531         u32 val = REG_RD(bp, addr);
1532         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1533         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1534         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1535
1536         if (msix) {
1537                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1538                          HC_CONFIG_0_REG_INT_LINE_EN_0);
1539                 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1540                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1541                 if (single_msix)
1542                         val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1543         } else if (msi) {
1544                 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1545                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1546                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1547                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1548         } else {
1549                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1550                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1551                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
1552                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1553
1554                 if (!CHIP_IS_E1(bp)) {
1555                         DP(NETIF_MSG_IFUP,
1556                            "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1557
1558                         REG_WR(bp, addr, val);
1559
1560                         val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1561                 }
1562         }
1563
1564         if (CHIP_IS_E1(bp))
1565                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1566
1567         DP(NETIF_MSG_IFUP,
1568            "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1569            (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1570
1571         REG_WR(bp, addr, val);
1572         /*
1573          * Ensure that HC_CONFIG is written before leading/trailing edge config
1574          */
1575         mmiowb();
1576         barrier();
1577
1578         if (!CHIP_IS_E1(bp)) {
1579                 /* init leading/trailing edge */
1580                 if (IS_MF(bp)) {
1581                         val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1582                         if (bp->port.pmf)
1583                                 /* enable nig and gpio3 attention */
1584                                 val |= 0x1100;
1585                 } else
1586                         val = 0xffff;
1587
1588                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1589                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1590         }
1591
1592         /* Make sure that interrupts are indeed enabled from here on */
1593         mmiowb();
1594 }
1595
1596 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1597 {
1598         u32 val;
1599         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1600         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1601         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1602
1603         val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1604
1605         if (msix) {
1606                 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1607                          IGU_PF_CONF_SINGLE_ISR_EN);
1608                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1609                         IGU_PF_CONF_ATTN_BIT_EN);
1610
1611                 if (single_msix)
1612                         val |= IGU_PF_CONF_SINGLE_ISR_EN;
1613         } else if (msi) {
1614                 val &= ~IGU_PF_CONF_INT_LINE_EN;
1615                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1616                         IGU_PF_CONF_ATTN_BIT_EN |
1617                         IGU_PF_CONF_SINGLE_ISR_EN);
1618         } else {
1619                 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1620                 val |= (IGU_PF_CONF_INT_LINE_EN |
1621                         IGU_PF_CONF_ATTN_BIT_EN |
1622                         IGU_PF_CONF_SINGLE_ISR_EN);
1623         }
1624
1625         /* Clean previous status - need to configure igu prior to ack*/
1626         if ((!msix) || single_msix) {
1627                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1628                 bnx2x_ack_int(bp);
1629         }
1630
1631         val |= IGU_PF_CONF_FUNC_EN;
1632
1633         DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1634            val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1635
1636         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1637
1638         if (val & IGU_PF_CONF_INT_LINE_EN)
1639                 pci_intx(bp->pdev, true);
1640
1641         barrier();
1642
1643         /* init leading/trailing edge */
1644         if (IS_MF(bp)) {
1645                 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1646                 if (bp->port.pmf)
1647                         /* enable nig and gpio3 attention */
1648                         val |= 0x1100;
1649         } else
1650                 val = 0xffff;
1651
1652         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1653         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1654
1655         /* Make sure that interrupts are indeed enabled from here on */
1656         mmiowb();
1657 }
1658
1659 void bnx2x_int_enable(struct bnx2x *bp)
1660 {
1661         if (bp->common.int_block == INT_BLOCK_HC)
1662                 bnx2x_hc_int_enable(bp);
1663         else
1664                 bnx2x_igu_int_enable(bp);
1665 }
1666
1667 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1668 {
1669         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1670         int i, offset;
1671
1672         if (disable_hw)
1673                 /* prevent the HW from sending interrupts */
1674                 bnx2x_int_disable(bp);
1675
1676         /* make sure all ISRs are done */
1677         if (msix) {
1678                 synchronize_irq(bp->msix_table[0].vector);
1679                 offset = 1;
1680                 if (CNIC_SUPPORT(bp))
1681                         offset++;
1682                 for_each_eth_queue(bp, i)
1683                         synchronize_irq(bp->msix_table[offset++].vector);
1684         } else
1685                 synchronize_irq(bp->pdev->irq);
1686
1687         /* make sure sp_task is not running */
1688         cancel_delayed_work(&bp->sp_task);
1689         cancel_delayed_work(&bp->period_task);
1690         flush_workqueue(bnx2x_wq);
1691 }
1692
1693 /* fast path */
1694
1695 /*
1696  * General service functions
1697  */
1698
1699 /* Return true if succeeded to acquire the lock */
1700 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1701 {
1702         u32 lock_status;
1703         u32 resource_bit = (1 << resource);
1704         int func = BP_FUNC(bp);
1705         u32 hw_lock_control_reg;
1706
1707         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1708            "Trying to take a lock on resource %d\n", resource);
1709
1710         /* Validating that the resource is within range */
1711         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1712                 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1713                    "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1714                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1715                 return false;
1716         }
1717
1718         if (func <= 5)
1719                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1720         else
1721                 hw_lock_control_reg =
1722                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1723
1724         /* Try to acquire the lock */
1725         REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1726         lock_status = REG_RD(bp, hw_lock_control_reg);
1727         if (lock_status & resource_bit)
1728                 return true;
1729
1730         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1731            "Failed to get a lock on resource %d\n", resource);
1732         return false;
1733 }
1734
1735 /**
1736  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1737  *
1738  * @bp: driver handle
1739  *
1740  * Returns the recovery leader resource id according to the engine this function
1741  * belongs to. Currently only only 2 engines is supported.
1742  */
1743 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1744 {
1745         if (BP_PATH(bp))
1746                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1747         else
1748                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1749 }
1750
1751 /**
1752  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1753  *
1754  * @bp: driver handle
1755  *
1756  * Tries to acquire a leader lock for current engine.
1757  */
1758 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1759 {
1760         return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1761 }
1762
1763 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1764
1765 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1766 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1767 {
1768         /* Set the interrupt occurred bit for the sp-task to recognize it
1769          * must ack the interrupt and transition according to the IGU
1770          * state machine.
1771          */
1772         atomic_set(&bp->interrupt_occurred, 1);
1773
1774         /* The sp_task must execute only after this bit
1775          * is set, otherwise we will get out of sync and miss all
1776          * further interrupts. Hence, the barrier.
1777          */
1778         smp_wmb();
1779
1780         /* schedule sp_task to workqueue */
1781         return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1782 }
1783
1784 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1785 {
1786         struct bnx2x *bp = fp->bp;
1787         int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1788         int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1789         enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1790         struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1791
1792         DP(BNX2X_MSG_SP,
1793            "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1794            fp->index, cid, command, bp->state,
1795            rr_cqe->ramrod_cqe.ramrod_type);
1796
1797         /* If cid is within VF range, replace the slowpath object with the
1798          * one corresponding to this VF
1799          */
1800         if (cid >= BNX2X_FIRST_VF_CID  &&
1801             cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1802                 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1803
1804         switch (command) {
1805         case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1806                 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1807                 drv_cmd = BNX2X_Q_CMD_UPDATE;
1808                 break;
1809
1810         case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1811                 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1812                 drv_cmd = BNX2X_Q_CMD_SETUP;
1813                 break;
1814
1815         case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1816                 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1817                 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1818                 break;
1819
1820         case (RAMROD_CMD_ID_ETH_HALT):
1821                 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1822                 drv_cmd = BNX2X_Q_CMD_HALT;
1823                 break;
1824
1825         case (RAMROD_CMD_ID_ETH_TERMINATE):
1826                 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1827                 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1828                 break;
1829
1830         case (RAMROD_CMD_ID_ETH_EMPTY):
1831                 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1832                 drv_cmd = BNX2X_Q_CMD_EMPTY;
1833                 break;
1834
1835         case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1836                 DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1837                 drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1838                 break;
1839
1840         default:
1841                 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1842                           command, fp->index);
1843                 return;
1844         }
1845
1846         if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1847             q_obj->complete_cmd(bp, q_obj, drv_cmd))
1848                 /* q_obj->complete_cmd() failure means that this was
1849                  * an unexpected completion.
1850                  *
1851                  * In this case we don't want to increase the bp->spq_left
1852                  * because apparently we haven't sent this command the first
1853                  * place.
1854                  */
1855 #ifdef BNX2X_STOP_ON_ERROR
1856                 bnx2x_panic();
1857 #else
1858                 return;
1859 #endif
1860
1861         smp_mb__before_atomic();
1862         atomic_inc(&bp->cq_spq_left);
1863         /* push the change in bp->spq_left and towards the memory */
1864         smp_mb__after_atomic();
1865
1866         DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1867
1868         if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1869             (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1870                 /* if Q update ramrod is completed for last Q in AFEX vif set
1871                  * flow, then ACK MCP at the end
1872                  *
1873                  * mark pending ACK to MCP bit.
1874                  * prevent case that both bits are cleared.
1875                  * At the end of load/unload driver checks that
1876                  * sp_state is cleared, and this order prevents
1877                  * races
1878                  */
1879                 smp_mb__before_atomic();
1880                 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1881                 wmb();
1882                 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1883                 smp_mb__after_atomic();
1884
1885                 /* schedule the sp task as mcp ack is required */
1886                 bnx2x_schedule_sp_task(bp);
1887         }
1888
1889         return;
1890 }
1891
1892 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1893 {
1894         struct bnx2x *bp = netdev_priv(dev_instance);
1895         u16 status = bnx2x_ack_int(bp);
1896         u16 mask;
1897         int i;
1898         u8 cos;
1899
1900         /* Return here if interrupt is shared and it's not for us */
1901         if (unlikely(status == 0)) {
1902                 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1903                 return IRQ_NONE;
1904         }
1905         DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1906
1907 #ifdef BNX2X_STOP_ON_ERROR
1908         if (unlikely(bp->panic))
1909                 return IRQ_HANDLED;
1910 #endif
1911
1912         for_each_eth_queue(bp, i) {
1913                 struct bnx2x_fastpath *fp = &bp->fp[i];
1914
1915                 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1916                 if (status & mask) {
1917                         /* Handle Rx or Tx according to SB id */
1918                         for_each_cos_in_tx_queue(fp, cos)
1919                                 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1920                         prefetch(&fp->sb_running_index[SM_RX_ID]);
1921                         napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1922                         status &= ~mask;
1923                 }
1924         }
1925
1926         if (CNIC_SUPPORT(bp)) {
1927                 mask = 0x2;
1928                 if (status & (mask | 0x1)) {
1929                         struct cnic_ops *c_ops = NULL;
1930
1931                         rcu_read_lock();
1932                         c_ops = rcu_dereference(bp->cnic_ops);
1933                         if (c_ops && (bp->cnic_eth_dev.drv_state &
1934                                       CNIC_DRV_STATE_HANDLES_IRQ))
1935                                 c_ops->cnic_handler(bp->cnic_data, NULL);
1936                         rcu_read_unlock();
1937
1938                         status &= ~mask;
1939                 }
1940         }
1941
1942         if (unlikely(status & 0x1)) {
1943
1944                 /* schedule sp task to perform default status block work, ack
1945                  * attentions and enable interrupts.
1946                  */
1947                 bnx2x_schedule_sp_task(bp);
1948
1949                 status &= ~0x1;
1950                 if (!status)
1951                         return IRQ_HANDLED;
1952         }
1953
1954         if (unlikely(status))
1955                 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1956                    status);
1957
1958         return IRQ_HANDLED;
1959 }
1960
1961 /* Link */
1962
1963 /*
1964  * General service functions
1965  */
1966
1967 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1968 {
1969         u32 lock_status;
1970         u32 resource_bit = (1 << resource);
1971         int func = BP_FUNC(bp);
1972         u32 hw_lock_control_reg;
1973         int cnt;
1974
1975         /* Validating that the resource is within range */
1976         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1977                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1978                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1979                 return -EINVAL;
1980         }
1981
1982         if (func <= 5) {
1983                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1984         } else {
1985                 hw_lock_control_reg =
1986                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1987         }
1988
1989         /* Validating that the resource is not already taken */
1990         lock_status = REG_RD(bp, hw_lock_control_reg);
1991         if (lock_status & resource_bit) {
1992                 BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
1993                    lock_status, resource_bit);
1994                 return -EEXIST;
1995         }
1996
1997         /* Try for 5 second every 5ms */
1998         for (cnt = 0; cnt < 1000; cnt++) {
1999                 /* Try to acquire the lock */
2000                 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2001                 lock_status = REG_RD(bp, hw_lock_control_reg);
2002                 if (lock_status & resource_bit)
2003                         return 0;
2004
2005                 usleep_range(5000, 10000);
2006         }
2007         BNX2X_ERR("Timeout\n");
2008         return -EAGAIN;
2009 }
2010
2011 int bnx2x_release_leader_lock(struct bnx2x *bp)
2012 {
2013         return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2014 }
2015
2016 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2017 {
2018         u32 lock_status;
2019         u32 resource_bit = (1 << resource);
2020         int func = BP_FUNC(bp);
2021         u32 hw_lock_control_reg;
2022
2023         /* Validating that the resource is within range */
2024         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2025                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2026                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
2027                 return -EINVAL;
2028         }
2029
2030         if (func <= 5) {
2031                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2032         } else {
2033                 hw_lock_control_reg =
2034                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2035         }
2036
2037         /* Validating that the resource is currently taken */
2038         lock_status = REG_RD(bp, hw_lock_control_reg);
2039         if (!(lock_status & resource_bit)) {
2040                 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2041                           lock_status, resource_bit);
2042                 return -EFAULT;
2043         }
2044
2045         REG_WR(bp, hw_lock_control_reg, resource_bit);
2046         return 0;
2047 }
2048
2049 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2050 {
2051         /* The GPIO should be swapped if swap register is set and active */
2052         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2053                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2054         int gpio_shift = gpio_num +
2055                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2056         u32 gpio_mask = (1 << gpio_shift);
2057         u32 gpio_reg;
2058         int value;
2059
2060         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2061                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2062                 return -EINVAL;
2063         }
2064
2065         /* read GPIO value */
2066         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2067
2068         /* get the requested pin value */
2069         if ((gpio_reg & gpio_mask) == gpio_mask)
2070                 value = 1;
2071         else
2072                 value = 0;
2073
2074         DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
2075
2076         return value;
2077 }
2078
2079 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2080 {
2081         /* The GPIO should be swapped if swap register is set and active */
2082         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2083                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2084         int gpio_shift = gpio_num +
2085                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2086         u32 gpio_mask = (1 << gpio_shift);
2087         u32 gpio_reg;
2088
2089         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2090                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2091                 return -EINVAL;
2092         }
2093
2094         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2095         /* read GPIO and mask except the float bits */
2096         gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2097
2098         switch (mode) {
2099         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2100                 DP(NETIF_MSG_LINK,
2101                    "Set GPIO %d (shift %d) -> output low\n",
2102                    gpio_num, gpio_shift);
2103                 /* clear FLOAT and set CLR */
2104                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2105                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2106                 break;
2107
2108         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2109                 DP(NETIF_MSG_LINK,
2110                    "Set GPIO %d (shift %d) -> output high\n",
2111                    gpio_num, gpio_shift);
2112                 /* clear FLOAT and set SET */
2113                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2114                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2115                 break;
2116
2117         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2118                 DP(NETIF_MSG_LINK,
2119                    "Set GPIO %d (shift %d) -> input\n",
2120                    gpio_num, gpio_shift);
2121                 /* set FLOAT */
2122                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2123                 break;
2124
2125         default:
2126                 break;
2127         }
2128
2129         REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2130         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2131
2132         return 0;
2133 }
2134
2135 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2136 {
2137         u32 gpio_reg = 0;
2138         int rc = 0;
2139
2140         /* Any port swapping should be handled by caller. */
2141
2142         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2143         /* read GPIO and mask except the float bits */
2144         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2145         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2146         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2147         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2148
2149         switch (mode) {
2150         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2151                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2152                 /* set CLR */
2153                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2154                 break;
2155
2156         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2157                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2158                 /* set SET */
2159                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2160                 break;
2161
2162         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2163                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2164                 /* set FLOAT */
2165                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2166                 break;
2167
2168         default:
2169                 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2170                 rc = -EINVAL;
2171                 break;
2172         }
2173
2174         if (rc == 0)
2175                 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2176
2177         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2178
2179         return rc;
2180 }
2181
2182 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2183 {
2184         /* The GPIO should be swapped if swap register is set and active */
2185         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2186                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2187         int gpio_shift = gpio_num +
2188                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2189         u32 gpio_mask = (1 << gpio_shift);
2190         u32 gpio_reg;
2191
2192         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2193                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2194                 return -EINVAL;
2195         }
2196
2197         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2198         /* read GPIO int */
2199         gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2200
2201         switch (mode) {
2202         case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2203                 DP(NETIF_MSG_LINK,
2204                    "Clear GPIO INT %d (shift %d) -> output low\n",
2205                    gpio_num, gpio_shift);
2206                 /* clear SET and set CLR */
2207                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2208                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2209                 break;
2210
2211         case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2212                 DP(NETIF_MSG_LINK,
2213                    "Set GPIO INT %d (shift %d) -> output high\n",
2214                    gpio_num, gpio_shift);
2215                 /* clear CLR and set SET */
2216                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2217                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2218                 break;
2219
2220         default:
2221                 break;
2222         }
2223
2224         REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2225         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2226
2227         return 0;
2228 }
2229
2230 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2231 {
2232         u32 spio_reg;
2233
2234         /* Only 2 SPIOs are configurable */
2235         if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2236                 BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2237                 return -EINVAL;
2238         }
2239
2240         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2241         /* read SPIO and mask except the float bits */
2242         spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2243
2244         switch (mode) {
2245         case MISC_SPIO_OUTPUT_LOW:
2246                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2247                 /* clear FLOAT and set CLR */
2248                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2249                 spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2250                 break;
2251
2252         case MISC_SPIO_OUTPUT_HIGH:
2253                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2254                 /* clear FLOAT and set SET */
2255                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2256                 spio_reg |=  (spio << MISC_SPIO_SET_POS);
2257                 break;
2258
2259         case MISC_SPIO_INPUT_HI_Z:
2260                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2261                 /* set FLOAT */
2262                 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2263                 break;
2264
2265         default:
2266                 break;
2267         }
2268
2269         REG_WR(bp, MISC_REG_SPIO, spio_reg);
2270         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2271
2272         return 0;
2273 }
2274
2275 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2276 {
2277         u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2278         switch (bp->link_vars.ieee_fc &
2279                 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2280         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2281                 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2282                                                    ADVERTISED_Pause);
2283                 break;
2284
2285         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2286                 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2287                                                   ADVERTISED_Pause);
2288                 break;
2289
2290         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2291                 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2292                 break;
2293
2294         default:
2295                 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2296                                                    ADVERTISED_Pause);
2297                 break;
2298         }
2299 }
2300
2301 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2302 {
2303         /* Initialize link parameters structure variables
2304          * It is recommended to turn off RX FC for jumbo frames
2305          *  for better performance
2306          */
2307         if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2308                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2309         else
2310                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2311 }
2312
2313 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2314 {
2315         u32 pause_enabled = 0;
2316
2317         if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2318                 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2319                         pause_enabled = 1;
2320
2321                 REG_WR(bp, BAR_USTRORM_INTMEM +
2322                            USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2323                        pause_enabled);
2324         }
2325
2326         DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2327            pause_enabled ? "enabled" : "disabled");
2328 }
2329
2330 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2331 {
2332         int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2333         u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2334
2335         if (!BP_NOMCP(bp)) {
2336                 bnx2x_set_requested_fc(bp);
2337                 bnx2x_acquire_phy_lock(bp);
2338
2339                 if (load_mode == LOAD_DIAG) {
2340                         struct link_params *lp = &bp->link_params;
2341                         lp->loopback_mode = LOOPBACK_XGXS;
2342                         /* do PHY loopback at 10G speed, if possible */
2343                         if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2344                                 if (lp->speed_cap_mask[cfx_idx] &
2345                                     PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2346                                         lp->req_line_speed[cfx_idx] =
2347                                         SPEED_10000;
2348                                 else
2349                                         lp->req_line_speed[cfx_idx] =
2350                                         SPEED_1000;
2351                         }
2352                 }
2353
2354                 if (load_mode == LOAD_LOOPBACK_EXT) {
2355                         struct link_params *lp = &bp->link_params;
2356                         lp->loopback_mode = LOOPBACK_EXT;
2357                 }
2358
2359                 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2360
2361                 bnx2x_release_phy_lock(bp);
2362
2363                 bnx2x_init_dropless_fc(bp);
2364
2365                 bnx2x_calc_fc_adv(bp);
2366
2367                 if (bp->link_vars.link_up) {
2368                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2369                         bnx2x_link_report(bp);
2370                 }
2371                 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2372                 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2373                 return rc;
2374         }
2375         BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2376         return -EINVAL;
2377 }
2378
2379 void bnx2x_link_set(struct bnx2x *bp)
2380 {
2381         if (!BP_NOMCP(bp)) {
2382                 bnx2x_acquire_phy_lock(bp);
2383                 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2384                 bnx2x_release_phy_lock(bp);
2385
2386                 bnx2x_init_dropless_fc(bp);
2387
2388                 bnx2x_calc_fc_adv(bp);
2389         } else
2390                 BNX2X_ERR("Bootcode is missing - can not set link\n");
2391 }
2392
2393 static void bnx2x__link_reset(struct bnx2x *bp)
2394 {
2395         if (!BP_NOMCP(bp)) {
2396                 bnx2x_acquire_phy_lock(bp);
2397                 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2398                 bnx2x_release_phy_lock(bp);
2399         } else
2400                 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2401 }
2402
2403 void bnx2x_force_link_reset(struct bnx2x *bp)
2404 {
2405         bnx2x_acquire_phy_lock(bp);
2406         bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2407         bnx2x_release_phy_lock(bp);
2408 }
2409
2410 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2411 {
2412         u8 rc = 0;
2413
2414         if (!BP_NOMCP(bp)) {
2415                 bnx2x_acquire_phy_lock(bp);
2416                 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2417                                      is_serdes);
2418                 bnx2x_release_phy_lock(bp);
2419         } else
2420                 BNX2X_ERR("Bootcode is missing - can not test link\n");
2421
2422         return rc;
2423 }
2424
2425 /* Calculates the sum of vn_min_rates.
2426    It's needed for further normalizing of the min_rates.
2427    Returns:
2428      sum of vn_min_rates.
2429        or
2430      0 - if all the min_rates are 0.
2431      In the later case fairness algorithm should be deactivated.
2432      If not all min_rates are zero then those that are zeroes will be set to 1.
2433  */
2434 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2435                                       struct cmng_init_input *input)
2436 {
2437         int all_zero = 1;
2438         int vn;
2439
2440         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2441                 u32 vn_cfg = bp->mf_config[vn];
2442                 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2443                                    FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2444
2445                 /* Skip hidden vns */
2446                 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2447                         vn_min_rate = 0;
2448                 /* If min rate is zero - set it to 1 */
2449                 else if (!vn_min_rate)
2450                         vn_min_rate = DEF_MIN_RATE;
2451                 else
2452                         all_zero = 0;
2453
2454                 input->vnic_min_rate[vn] = vn_min_rate;
2455         }
2456
2457         /* if ETS or all min rates are zeros - disable fairness */
2458         if (BNX2X_IS_ETS_ENABLED(bp)) {
2459                 input->flags.cmng_enables &=
2460                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2461                 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2462         } else if (all_zero) {
2463                 input->flags.cmng_enables &=
2464                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2465                 DP(NETIF_MSG_IFUP,
2466                    "All MIN values are zeroes fairness will be disabled\n");
2467         } else
2468                 input->flags.cmng_enables |=
2469                                         CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2470 }
2471
2472 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2473                                     struct cmng_init_input *input)
2474 {
2475         u16 vn_max_rate;
2476         u32 vn_cfg = bp->mf_config[vn];
2477
2478         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2479                 vn_max_rate = 0;
2480         else {
2481                 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2482
2483                 if (IS_MF_SI(bp)) {
2484                         /* maxCfg in percents of linkspeed */
2485                         vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2486                 } else /* SD modes */
2487                         /* maxCfg is absolute in 100Mb units */
2488                         vn_max_rate = maxCfg * 100;
2489         }
2490
2491         DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2492
2493         input->vnic_max_rate[vn] = vn_max_rate;
2494 }
2495
2496 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2497 {
2498         if (CHIP_REV_IS_SLOW(bp))
2499                 return CMNG_FNS_NONE;
2500         if (IS_MF(bp))
2501                 return CMNG_FNS_MINMAX;
2502
2503         return CMNG_FNS_NONE;
2504 }
2505
2506 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2507 {
2508         int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2509
2510         if (BP_NOMCP(bp))
2511                 return; /* what should be the default value in this case */
2512
2513         /* For 2 port configuration the absolute function number formula
2514          * is:
2515          *      abs_func = 2 * vn + BP_PORT + BP_PATH
2516          *
2517          *      and there are 4 functions per port
2518          *
2519          * For 4 port configuration it is
2520          *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2521          *
2522          *      and there are 2 functions per port
2523          */
2524         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2525                 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2526
2527                 if (func >= E1H_FUNC_MAX)
2528                         break;
2529
2530                 bp->mf_config[vn] =
2531                         MF_CFG_RD(bp, func_mf_config[func].config);
2532         }
2533         if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2534                 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2535                 bp->flags |= MF_FUNC_DIS;
2536         } else {
2537                 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2538                 bp->flags &= ~MF_FUNC_DIS;
2539         }
2540 }
2541
2542 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2543 {
2544         struct cmng_init_input input;
2545         memset(&input, 0, sizeof(struct cmng_init_input));
2546
2547         input.port_rate = bp->link_vars.line_speed;
2548
2549         if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2550                 int vn;
2551
2552                 /* read mf conf from shmem */
2553                 if (read_cfg)
2554                         bnx2x_read_mf_cfg(bp);
2555
2556                 /* vn_weight_sum and enable fairness if not 0 */
2557                 bnx2x_calc_vn_min(bp, &input);
2558
2559                 /* calculate and set min-max rate for each vn */
2560                 if (bp->port.pmf)
2561                         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2562                                 bnx2x_calc_vn_max(bp, vn, &input);
2563
2564                 /* always enable rate shaping and fairness */
2565                 input.flags.cmng_enables |=
2566                                         CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2567
2568                 bnx2x_init_cmng(&input, &bp->cmng);
2569                 return;
2570         }
2571
2572         /* rate shaping and fairness are disabled */
2573         DP(NETIF_MSG_IFUP,
2574            "rate shaping and fairness are disabled\n");
2575 }
2576
2577 static void storm_memset_cmng(struct bnx2x *bp,
2578                               struct cmng_init *cmng,
2579                               u8 port)
2580 {
2581         int vn;
2582         size_t size = sizeof(struct cmng_struct_per_port);
2583
2584         u32 addr = BAR_XSTRORM_INTMEM +
2585                         XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2586
2587         __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2588
2589         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2590                 int func = func_by_vn(bp, vn);
2591
2592                 addr = BAR_XSTRORM_INTMEM +
2593                        XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2594                 size = sizeof(struct rate_shaping_vars_per_vn);
2595                 __storm_memset_struct(bp, addr, size,
2596                                       (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2597
2598                 addr = BAR_XSTRORM_INTMEM +
2599                        XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2600                 size = sizeof(struct fairness_vars_per_vn);
2601                 __storm_memset_struct(bp, addr, size,
2602                                       (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2603         }
2604 }
2605
2606 /* init cmng mode in HW according to local configuration */
2607 void bnx2x_set_local_cmng(struct bnx2x *bp)
2608 {
2609         int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2610
2611         if (cmng_fns != CMNG_FNS_NONE) {
2612                 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2613                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2614         } else {
2615                 /* rate shaping and fairness are disabled */
2616                 DP(NETIF_MSG_IFUP,
2617                    "single function mode without fairness\n");
2618         }
2619 }
2620
2621 /* This function is called upon link interrupt */
2622 static void bnx2x_link_attn(struct bnx2x *bp)
2623 {
2624         /* Make sure that we are synced with the current statistics */
2625         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2626
2627         bnx2x_link_update(&bp->link_params, &bp->link_vars);
2628
2629         bnx2x_init_dropless_fc(bp);
2630
2631         if (bp->link_vars.link_up) {
2632
2633                 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2634                         struct host_port_stats *pstats;
2635
2636                         pstats = bnx2x_sp(bp, port_stats);
2637                         /* reset old mac stats */
2638                         memset(&(pstats->mac_stx[0]), 0,
2639                                sizeof(struct mac_stx));
2640                 }
2641                 if (bp->state == BNX2X_STATE_OPEN)
2642                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2643         }
2644
2645         if (bp->link_vars.link_up && bp->link_vars.line_speed)
2646                 bnx2x_set_local_cmng(bp);
2647
2648         __bnx2x_link_report(bp);
2649
2650         if (IS_MF(bp))
2651                 bnx2x_link_sync_notify(bp);
2652 }
2653
2654 void bnx2x__link_status_update(struct bnx2x *bp)
2655 {
2656         if (bp->state != BNX2X_STATE_OPEN)
2657                 return;
2658
2659         /* read updated dcb configuration */
2660         if (IS_PF(bp)) {
2661                 bnx2x_dcbx_pmf_update(bp);
2662                 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2663                 if (bp->link_vars.link_up)
2664                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2665                 else
2666                         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2667                         /* indicate link status */
2668                 bnx2x_link_report(bp);
2669
2670         } else { /* VF */
2671                 bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2672                                           SUPPORTED_10baseT_Full |
2673                                           SUPPORTED_100baseT_Half |
2674                                           SUPPORTED_100baseT_Full |
2675                                           SUPPORTED_1000baseT_Full |
2676                                           SUPPORTED_2500baseX_Full |
2677                                           SUPPORTED_10000baseT_Full |
2678                                           SUPPORTED_TP |
2679                                           SUPPORTED_FIBRE |
2680                                           SUPPORTED_Autoneg |
2681                                           SUPPORTED_Pause |
2682                                           SUPPORTED_Asym_Pause);
2683                 bp->port.advertising[0] = bp->port.supported[0];
2684
2685                 bp->link_params.bp = bp;
2686                 bp->link_params.port = BP_PORT(bp);
2687                 bp->link_params.req_duplex[0] = DUPLEX_FULL;
2688                 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2689                 bp->link_params.req_line_speed[0] = SPEED_10000;
2690                 bp->link_params.speed_cap_mask[0] = 0x7f0000;
2691                 bp->link_params.switch_cfg = SWITCH_CFG_10G;
2692                 bp->link_vars.mac_type = MAC_TYPE_BMAC;
2693                 bp->link_vars.line_speed = SPEED_10000;
2694                 bp->link_vars.link_status =
2695                         (LINK_STATUS_LINK_UP |
2696                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2697                 bp->link_vars.link_up = 1;
2698                 bp->link_vars.duplex = DUPLEX_FULL;
2699                 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2700                 __bnx2x_link_report(bp);
2701
2702                 bnx2x_sample_bulletin(bp);
2703
2704                 /* if bulletin board did not have an update for link status
2705                  * __bnx2x_link_report will report current status
2706                  * but it will NOT duplicate report in case of already reported
2707                  * during sampling bulletin board.
2708                  */
2709                 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2710         }
2711 }
2712
2713 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2714                                   u16 vlan_val, u8 allowed_prio)
2715 {
2716         struct bnx2x_func_state_params func_params = {NULL};
2717         struct bnx2x_func_afex_update_params *f_update_params =
2718                 &func_params.params.afex_update;
2719
2720         func_params.f_obj = &bp->func_obj;
2721         func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2722
2723         /* no need to wait for RAMROD completion, so don't
2724          * set RAMROD_COMP_WAIT flag
2725          */
2726
2727         f_update_params->vif_id = vifid;
2728         f_update_params->afex_default_vlan = vlan_val;
2729         f_update_params->allowed_priorities = allowed_prio;
2730
2731         /* if ramrod can not be sent, response to MCP immediately */
2732         if (bnx2x_func_state_change(bp, &func_params) < 0)
2733                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2734
2735         return 0;
2736 }
2737
2738 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2739                                           u16 vif_index, u8 func_bit_map)
2740 {
2741         struct bnx2x_func_state_params func_params = {NULL};
2742         struct bnx2x_func_afex_viflists_params *update_params =
2743                 &func_params.params.afex_viflists;
2744         int rc;
2745         u32 drv_msg_code;
2746
2747         /* validate only LIST_SET and LIST_GET are received from switch */
2748         if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2749                 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2750                           cmd_type);
2751
2752         func_params.f_obj = &bp->func_obj;
2753         func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2754
2755         /* set parameters according to cmd_type */
2756         update_params->afex_vif_list_command = cmd_type;
2757         update_params->vif_list_index = vif_index;
2758         update_params->func_bit_map =
2759                 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2760         update_params->func_to_clear = 0;
2761         drv_msg_code =
2762                 (cmd_type == VIF_LIST_RULE_GET) ?
2763                 DRV_MSG_CODE_AFEX_LISTGET_ACK :
2764                 DRV_MSG_CODE_AFEX_LISTSET_ACK;
2765
2766         /* if ramrod can not be sent, respond to MCP immediately for
2767          * SET and GET requests (other are not triggered from MCP)
2768          */
2769         rc = bnx2x_func_state_change(bp, &func_params);
2770         if (rc < 0)
2771                 bnx2x_fw_command(bp, drv_msg_code, 0);
2772
2773         return 0;
2774 }
2775
2776 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2777 {
2778         struct afex_stats afex_stats;
2779         u32 func = BP_ABS_FUNC(bp);
2780         u32 mf_config;
2781         u16 vlan_val;
2782         u32 vlan_prio;
2783         u16 vif_id;
2784         u8 allowed_prio;
2785         u8 vlan_mode;
2786         u32 addr_to_write, vifid, addrs, stats_type, i;
2787
2788         if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2789                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2790                 DP(BNX2X_MSG_MCP,
2791                    "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2792                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2793         }
2794
2795         if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2796                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2797                 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2798                 DP(BNX2X_MSG_MCP,
2799                    "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2800                    vifid, addrs);
2801                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2802                                                addrs);
2803         }
2804
2805         if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2806                 addr_to_write = SHMEM2_RD(bp,
2807                         afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2808                 stats_type = SHMEM2_RD(bp,
2809                         afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2810
2811                 DP(BNX2X_MSG_MCP,
2812                    "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2813                    addr_to_write);
2814
2815                 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2816
2817                 /* write response to scratchpad, for MCP */
2818                 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2819                         REG_WR(bp, addr_to_write + i*sizeof(u32),
2820                                *(((u32 *)(&afex_stats))+i));
2821
2822                 /* send ack message to MCP */
2823                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2824         }
2825
2826         if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2827                 mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2828                 bp->mf_config[BP_VN(bp)] = mf_config;
2829                 DP(BNX2X_MSG_MCP,
2830                    "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2831                    mf_config);
2832
2833                 /* if VIF_SET is "enabled" */
2834                 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2835                         /* set rate limit directly to internal RAM */
2836                         struct cmng_init_input cmng_input;
2837                         struct rate_shaping_vars_per_vn m_rs_vn;
2838                         size_t size = sizeof(struct rate_shaping_vars_per_vn);
2839                         u32 addr = BAR_XSTRORM_INTMEM +
2840                             XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2841
2842                         bp->mf_config[BP_VN(bp)] = mf_config;
2843
2844                         bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2845                         m_rs_vn.vn_counter.rate =
2846                                 cmng_input.vnic_max_rate[BP_VN(bp)];
2847                         m_rs_vn.vn_counter.quota =
2848                                 (m_rs_vn.vn_counter.rate *
2849                                  RS_PERIODIC_TIMEOUT_USEC) / 8;
2850
2851                         __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2852
2853                         /* read relevant values from mf_cfg struct in shmem */
2854                         vif_id =
2855                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2856                                  FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2857                                 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2858                         vlan_val =
2859                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2860                                  FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2861                                 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2862                         vlan_prio = (mf_config &
2863                                      FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2864                                     FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2865                         vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2866                         vlan_mode =
2867                                 (MF_CFG_RD(bp,
2868                                            func_mf_config[func].afex_config) &
2869                                  FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2870                                 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2871                         allowed_prio =
2872                                 (MF_CFG_RD(bp,
2873                                            func_mf_config[func].afex_config) &
2874                                  FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2875                                 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2876
2877                         /* send ramrod to FW, return in case of failure */
2878                         if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2879                                                    allowed_prio))
2880                                 return;
2881
2882                         bp->afex_def_vlan_tag = vlan_val;
2883                         bp->afex_vlan_mode = vlan_mode;
2884                 } else {
2885                         /* notify link down because BP->flags is disabled */
2886                         bnx2x_link_report(bp);
2887
2888                         /* send INVALID VIF ramrod to FW */
2889                         bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2890
2891                         /* Reset the default afex VLAN */
2892                         bp->afex_def_vlan_tag = -1;
2893                 }
2894         }
2895 }
2896
2897 static void bnx2x_pmf_update(struct bnx2x *bp)
2898 {
2899         int port = BP_PORT(bp);
2900         u32 val;
2901
2902         bp->port.pmf = 1;
2903         DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2904
2905         /*
2906          * We need the mb() to ensure the ordering between the writing to
2907          * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2908          */
2909         smp_mb();
2910
2911         /* queue a periodic task */
2912         queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2913
2914         bnx2x_dcbx_pmf_update(bp);
2915
2916         /* enable nig attention */
2917         val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2918         if (bp->common.int_block == INT_BLOCK_HC) {
2919                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2920                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2921         } else if (!CHIP_IS_E1x(bp)) {
2922                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2923                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2924         }
2925
2926         bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2927 }
2928
2929 /* end of Link */
2930
2931 /* slow path */
2932
2933 /*
2934  * General service functions
2935  */
2936
2937 /* send the MCP a request, block until there is a reply */
2938 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2939 {
2940         int mb_idx = BP_FW_MB_IDX(bp);
2941         u32 seq;
2942         u32 rc = 0;
2943         u32 cnt = 1;
2944         u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2945
2946         mutex_lock(&bp->fw_mb_mutex);
2947         seq = ++bp->fw_seq;
2948         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2949         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2950
2951         DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2952                         (command | seq), param);
2953
2954         do {
2955                 /* let the FW do it's magic ... */
2956                 msleep(delay);
2957
2958                 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2959
2960                 /* Give the FW up to 5 second (500*10ms) */
2961         } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2962
2963         DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2964            cnt*delay, rc, seq);
2965
2966         /* is this a reply to our command? */
2967         if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2968                 rc &= FW_MSG_CODE_MASK;
2969         else {
2970                 /* FW BUG! */
2971                 BNX2X_ERR("FW failed to respond!\n");
2972                 bnx2x_fw_dump(bp);
2973                 rc = 0;
2974         }
2975         mutex_unlock(&bp->fw_mb_mutex);
2976
2977         return rc;
2978 }
2979
2980 static void storm_memset_func_cfg(struct bnx2x *bp,
2981                                  struct tstorm_eth_function_common_config *tcfg,
2982                                  u16 abs_fid)
2983 {
2984         size_t size = sizeof(struct tstorm_eth_function_common_config);
2985
2986         u32 addr = BAR_TSTRORM_INTMEM +
2987                         TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
2988
2989         __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
2990 }
2991
2992 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2993 {
2994         if (CHIP_IS_E1x(bp)) {
2995                 struct tstorm_eth_function_common_config tcfg = {0};
2996
2997                 storm_memset_func_cfg(bp, &tcfg, p->func_id);
2998         }
2999
3000         /* Enable the function in the FW */
3001         storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3002         storm_memset_func_en(bp, p->func_id, 1);
3003
3004         /* spq */
3005         if (p->func_flgs & FUNC_FLG_SPQ) {
3006                 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3007                 REG_WR(bp, XSEM_REG_FAST_MEMORY +
3008                        XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3009         }
3010 }
3011
3012 /**
3013  * bnx2x_get_common_flags - Return common flags
3014  *
3015  * @bp          device handle
3016  * @fp          queue handle
3017  * @zero_stats  TRUE if statistics zeroing is needed
3018  *
3019  * Return the flags that are common for the Tx-only and not normal connections.
3020  */
3021 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3022                                             struct bnx2x_fastpath *fp,
3023                                             bool zero_stats)
3024 {
3025         unsigned long flags = 0;
3026
3027         /* PF driver will always initialize the Queue to an ACTIVE state */
3028         __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3029
3030         /* tx only connections collect statistics (on the same index as the
3031          * parent connection). The statistics are zeroed when the parent
3032          * connection is initialized.
3033          */
3034
3035         __set_bit(BNX2X_Q_FLG_STATS, &flags);
3036         if (zero_stats)
3037                 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3038
3039         if (bp->flags & TX_SWITCHING)
3040                 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3041
3042         __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3043         __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3044
3045 #ifdef BNX2X_STOP_ON_ERROR
3046         __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3047 #endif
3048
3049         return flags;
3050 }
3051
3052 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3053                                        struct bnx2x_fastpath *fp,
3054                                        bool leading)
3055 {
3056         unsigned long flags = 0;
3057
3058         /* calculate other queue flags */
3059         if (IS_MF_SD(bp))
3060                 __set_bit(BNX2X_Q_FLG_OV, &flags);
3061
3062         if (IS_FCOE_FP(fp)) {
3063                 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
3064                 /* For FCoE - force usage of default priority (for afex) */
3065                 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3066         }
3067
3068         if (!fp->disable_tpa) {
3069                 __set_bit(BNX2X_Q_FLG_TPA, &flags);
3070                 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3071                 if (fp->mode == TPA_MODE_GRO)
3072                         __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3073         }
3074
3075         if (leading) {
3076                 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3077                 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3078         }
3079
3080         /* Always set HW VLAN stripping */
3081         __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3082
3083         /* configure silent vlan removal */
3084         if (IS_MF_AFEX(bp))
3085                 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3086
3087         return flags | bnx2x_get_common_flags(bp, fp, true);
3088 }
3089
3090 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3091         struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3092         u8 cos)
3093 {
3094         gen_init->stat_id = bnx2x_stats_id(fp);
3095         gen_init->spcl_id = fp->cl_id;
3096
3097         /* Always use mini-jumbo MTU for FCoE L2 ring */
3098         if (IS_FCOE_FP(fp))
3099                 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3100         else
3101                 gen_init->mtu = bp->dev->mtu;
3102
3103         gen_init->cos = cos;
3104 }
3105
3106 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3107         struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3108         struct bnx2x_rxq_setup_params *rxq_init)
3109 {
3110         u8 max_sge = 0;
3111         u16 sge_sz = 0;
3112         u16 tpa_agg_size = 0;
3113
3114         if (!fp->disable_tpa) {
3115                 pause->sge_th_lo = SGE_TH_LO(bp);
3116                 pause->sge_th_hi = SGE_TH_HI(bp);
3117
3118                 /* validate SGE ring has enough to cross high threshold */
3119                 WARN_ON(bp->dropless_fc &&
3120                                 pause->sge_th_hi + FW_PREFETCH_CNT >
3121                                 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3122
3123                 tpa_agg_size = TPA_AGG_SIZE;
3124                 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3125                         SGE_PAGE_SHIFT;
3126                 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3127                           (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3128                 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3129         }
3130
3131         /* pause - not for e1 */
3132         if (!CHIP_IS_E1(bp)) {
3133                 pause->bd_th_lo = BD_TH_LO(bp);
3134                 pause->bd_th_hi = BD_TH_HI(bp);
3135
3136                 pause->rcq_th_lo = RCQ_TH_LO(bp);
3137                 pause->rcq_th_hi = RCQ_TH_HI(bp);
3138                 /*
3139                  * validate that rings have enough entries to cross
3140                  * high thresholds
3141                  */
3142                 WARN_ON(bp->dropless_fc &&
3143                                 pause->bd_th_hi + FW_PREFETCH_CNT >
3144                                 bp->rx_ring_size);
3145                 WARN_ON(bp->dropless_fc &&
3146                                 pause->rcq_th_hi + FW_PREFETCH_CNT >
3147                                 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3148
3149                 pause->pri_map = 1;
3150         }
3151
3152         /* rxq setup */
3153         rxq_init->dscr_map = fp->rx_desc_mapping;
3154         rxq_init->sge_map = fp->rx_sge_mapping;
3155         rxq_init->rcq_map = fp->rx_comp_mapping;
3156         rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3157
3158         /* This should be a maximum number of data bytes that may be
3159          * placed on the BD (not including paddings).
3160          */
3161         rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3162                            BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3163
3164         rxq_init->cl_qzone_id = fp->cl_qzone_id;
3165         rxq_init->tpa_agg_sz = tpa_agg_size;
3166         rxq_init->sge_buf_sz = sge_sz;
3167         rxq_init->max_sges_pkt = max_sge;
3168         rxq_init->rss_engine_id = BP_FUNC(bp);
3169         rxq_init->mcast_engine_id = BP_FUNC(bp);
3170
3171         /* Maximum number or simultaneous TPA aggregation for this Queue.
3172          *
3173          * For PF Clients it should be the maximum available number.
3174          * VF driver(s) may want to define it to a smaller value.
3175          */
3176         rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3177
3178         rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3179         rxq_init->fw_sb_id = fp->fw_sb_id;
3180
3181         if (IS_FCOE_FP(fp))
3182                 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3183         else
3184                 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3185         /* configure silent vlan removal
3186          * if multi function mode is afex, then mask default vlan
3187          */
3188         if (IS_MF_AFEX(bp)) {
3189                 rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3190                 rxq_init->silent_removal_mask = VLAN_VID_MASK;
3191         }
3192 }
3193
3194 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3195         struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3196         u8 cos)
3197 {
3198         txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3199         txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3200         txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3201         txq_init->fw_sb_id = fp->fw_sb_id;
3202
3203         /*
3204          * set the tss leading client id for TX classification ==
3205          * leading RSS client id
3206          */
3207         txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3208
3209         if (IS_FCOE_FP(fp)) {
3210                 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3211                 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3212         }
3213 }
3214
3215 static void bnx2x_pf_init(struct bnx2x *bp)
3216 {
3217         struct bnx2x_func_init_params func_init = {0};
3218         struct event_ring_data eq_data = { {0} };
3219         u16 flags;
3220
3221         if (!CHIP_IS_E1x(bp)) {
3222                 /* reset IGU PF statistics: MSIX + ATTN */
3223                 /* PF */
3224                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3225                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3226                            (CHIP_MODE_IS_4_PORT(bp) ?
3227                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3228                 /* ATTN */
3229                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3230                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3231                            BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3232                            (CHIP_MODE_IS_4_PORT(bp) ?
3233                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3234         }
3235
3236         /* function setup flags */
3237         flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
3238
3239         /* This flag is relevant for E1x only.
3240          * E2 doesn't have a TPA configuration in a function level.
3241          */
3242         flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
3243
3244         func_init.func_flgs = flags;
3245         func_init.pf_id = BP_FUNC(bp);
3246         func_init.func_id = BP_FUNC(bp);
3247         func_init.spq_map = bp->spq_mapping;
3248         func_init.spq_prod = bp->spq_prod_idx;
3249
3250         bnx2x_func_init(bp, &func_init);
3251
3252         memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3253
3254         /*
3255          * Congestion management values depend on the link rate
3256          * There is no active link so initial link rate is set to 10 Gbps.
3257          * When the link comes up The congestion management values are
3258          * re-calculated according to the actual link rate.
3259          */
3260         bp->link_vars.line_speed = SPEED_10000;
3261         bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3262
3263         /* Only the PMF sets the HW */
3264         if (bp->port.pmf)
3265                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3266
3267         /* init Event Queue - PCI bus guarantees correct endianity*/
3268         eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3269         eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3270         eq_data.producer = bp->eq_prod;
3271         eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3272         eq_data.sb_id = DEF_SB_ID;
3273         storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3274 }
3275
3276 static void bnx2x_e1h_disable(struct bnx2x *bp)
3277 {
3278         int port = BP_PORT(bp);
3279
3280         bnx2x_tx_disable(bp);
3281
3282         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3283 }
3284
3285 static void bnx2x_e1h_enable(struct bnx2x *bp)
3286 {
3287         int port = BP_PORT(bp);
3288
3289         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
3290
3291         /* Tx queue should be only re-enabled */
3292         netif_tx_wake_all_queues(bp->dev);
3293
3294         /*
3295          * Should not call netif_carrier_on since it will be called if the link
3296          * is up when checking for link state
3297          */
3298 }
3299
3300 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3301
3302 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3303 {
3304         struct eth_stats_info *ether_stat =
3305                 &bp->slowpath->drv_info_to_mcp.ether_stat;
3306         struct bnx2x_vlan_mac_obj *mac_obj =
3307                 &bp->sp_objs->mac_obj;
3308         int i;
3309
3310         strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3311                 ETH_STAT_INFO_VERSION_LEN);
3312
3313         /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3314          * mac_local field in ether_stat struct. The base address is offset by 2
3315          * bytes to account for the field being 8 bytes but a mac address is
3316          * only 6 bytes. Likewise, the stride for the get_n_elements function is
3317          * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3318          * allocated by the ether_stat struct, so the macs will land in their
3319          * proper positions.
3320          */
3321         for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3322                 memset(ether_stat->mac_local + i, 0,
3323                        sizeof(ether_stat->mac_local[0]));
3324         mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3325                                 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3326                                 ether_stat->mac_local + MAC_PAD, MAC_PAD,
3327                                 ETH_ALEN);
3328         ether_stat->mtu_size = bp->dev->mtu;
3329         if (bp->dev->features & NETIF_F_RXCSUM)
3330                 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3331         if (bp->dev->features & NETIF_F_TSO)
3332                 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3333         ether_stat->feature_flags |= bp->common.boot_mode;
3334
3335         ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3336
3337         ether_stat->txq_size = bp->tx_ring_size;
3338         ether_stat->rxq_size = bp->rx_ring_size;
3339
3340 #ifdef CONFIG_BNX2X_SRIOV
3341         ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3342 #endif
3343 }
3344
3345 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3346 {
3347         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3348         struct fcoe_stats_info *fcoe_stat =
3349                 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3350
3351         if (!CNIC_LOADED(bp))
3352                 return;
3353
3354         memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3355
3356         fcoe_stat->qos_priority =
3357                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3358
3359         /* insert FCoE stats from ramrod response */
3360         if (!NO_FCOE(bp)) {
3361                 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3362                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3363                         tstorm_queue_statistics;
3364
3365                 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3366                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3367                         xstorm_queue_statistics;
3368
3369                 struct fcoe_statistics_params *fw_fcoe_stat =
3370                         &bp->fw_stats_data->fcoe;
3371
3372                 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3373                           fcoe_stat->rx_bytes_lo,
3374                           fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3375
3376                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3377                           fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3378                           fcoe_stat->rx_bytes_lo,
3379                           fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3380
3381                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3382                           fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3383                           fcoe_stat->rx_bytes_lo,
3384                           fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3385
3386                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3387                           fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3388                           fcoe_stat->rx_bytes_lo,
3389                           fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3390
3391                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3392                           fcoe_stat->rx_frames_lo,
3393                           fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3394
3395                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3396                           fcoe_stat->rx_frames_lo,
3397                           fcoe_q_tstorm_stats->rcv_ucast_pkts);
3398
3399                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3400                           fcoe_stat->rx_frames_lo,
3401                           fcoe_q_tstorm_stats->rcv_bcast_pkts);
3402
3403                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3404                           fcoe_stat->rx_frames_lo,
3405                           fcoe_q_tstorm_stats->rcv_mcast_pkts);
3406
3407                 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3408                           fcoe_stat->tx_bytes_lo,
3409                           fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3410
3411                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3412                           fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3413                           fcoe_stat->tx_bytes_lo,
3414                           fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3415
3416                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3417                           fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3418                           fcoe_stat->tx_bytes_lo,
3419                           fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3420
3421                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3422                           fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3423                           fcoe_stat->tx_bytes_lo,
3424                           fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3425
3426                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3427                           fcoe_stat->tx_frames_lo,
3428                           fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3429
3430                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3431                           fcoe_stat->tx_frames_lo,
3432                           fcoe_q_xstorm_stats->ucast_pkts_sent);
3433
3434                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3435                           fcoe_stat->tx_frames_lo,
3436                           fcoe_q_xstorm_stats->bcast_pkts_sent);
3437
3438                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3439                           fcoe_stat->tx_frames_lo,
3440                           fcoe_q_xstorm_stats->mcast_pkts_sent);
3441         }
3442
3443         /* ask L5 driver to add data to the struct */
3444         bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3445 }
3446
3447 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3448 {
3449         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3450         struct iscsi_stats_info *iscsi_stat =
3451                 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3452
3453         if (!CNIC_LOADED(bp))
3454                 return;
3455
3456         memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3457                ETH_ALEN);
3458
3459         iscsi_stat->qos_priority =
3460                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3461
3462         /* ask L5 driver to add data to the struct */
3463         bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3464 }
3465
3466 /* called due to MCP event (on pmf):
3467  *      reread new bandwidth configuration
3468  *      configure FW
3469  *      notify others function about the change
3470  */
3471 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3472 {
3473         if (bp->link_vars.link_up) {
3474                 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3475                 bnx2x_link_sync_notify(bp);
3476         }
3477         storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3478 }
3479
3480 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3481 {
3482         bnx2x_config_mf_bw(bp);
3483         bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3484 }
3485
3486 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3487 {
3488         DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3489         bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3490 }
3491
3492 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH        (20)
3493 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT         (25)
3494
3495 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3496 {
3497         enum drv_info_opcode op_code;
3498         u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3499         bool release = false;
3500         int wait;
3501
3502         /* if drv_info version supported by MFW doesn't match - send NACK */
3503         if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3504                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3505                 return;
3506         }
3507
3508         op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3509                   DRV_INFO_CONTROL_OP_CODE_SHIFT;
3510
3511         /* Must prevent other flows from accessing drv_info_to_mcp */
3512         mutex_lock(&bp->drv_info_mutex);
3513
3514         memset(&bp->slowpath->drv_info_to_mcp, 0,
3515                sizeof(union drv_info_to_mcp));
3516
3517         switch (op_code) {
3518         case ETH_STATS_OPCODE:
3519                 bnx2x_drv_info_ether_stat(bp);
3520                 break;
3521         case FCOE_STATS_OPCODE:
3522                 bnx2x_drv_info_fcoe_stat(bp);
3523                 break;
3524         case ISCSI_STATS_OPCODE:
3525                 bnx2x_drv_info_iscsi_stat(bp);
3526                 break;
3527         default:
3528                 /* if op code isn't supported - send NACK */
3529                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3530                 goto out;
3531         }
3532
3533         /* if we got drv_info attn from MFW then these fields are defined in
3534          * shmem2 for sure
3535          */
3536         SHMEM2_WR(bp, drv_info_host_addr_lo,
3537                 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3538         SHMEM2_WR(bp, drv_info_host_addr_hi,
3539                 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3540
3541         bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3542
3543         /* Since possible management wants both this and get_driver_version
3544          * need to wait until management notifies us it finished utilizing
3545          * the buffer.
3546          */
3547         if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3548                 DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3549         } else if (!bp->drv_info_mng_owner) {
3550                 u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3551
3552                 for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3553                         u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3554
3555                         /* Management is done; need to clear indication */
3556                         if (indication & bit) {
3557                                 SHMEM2_WR(bp, mfw_drv_indication,
3558                                           indication & ~bit);
3559                                 release = true;
3560                                 break;
3561                         }
3562
3563                         msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3564                 }
3565         }
3566         if (!release) {
3567                 DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3568                 bp->drv_info_mng_owner = true;
3569         }
3570
3571 out:
3572         mutex_unlock(&bp->drv_info_mutex);
3573 }
3574
3575 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3576 {
3577         u8 vals[4];
3578         int i = 0;
3579
3580         if (bnx2x_format) {
3581                 i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3582                            &vals[0], &vals[1], &vals[2], &vals[3]);
3583                 if (i > 0)
3584                         vals[0] -= '0';
3585         } else {
3586                 i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3587                            &vals[0], &vals[1], &vals[2], &vals[3]);
3588         }
3589
3590         while (i < 4)
3591                 vals[i++] = 0;
3592
3593         return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3594 }
3595
3596 void bnx2x_update_mng_version(struct bnx2x *bp)
3597 {
3598         u32 iscsiver = DRV_VER_NOT_LOADED;
3599         u32 fcoever = DRV_VER_NOT_LOADED;
3600         u32 ethver = DRV_VER_NOT_LOADED;
3601         int idx = BP_FW_MB_IDX(bp);
3602         u8 *version;
3603
3604         if (!SHMEM2_HAS(bp, func_os_drv_ver))
3605                 return;
3606
3607         mutex_lock(&bp->drv_info_mutex);
3608         /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3609         if (bp->drv_info_mng_owner)
3610                 goto out;
3611
3612         if (bp->state != BNX2X_STATE_OPEN)
3613                 goto out;
3614
3615         /* Parse ethernet driver version */
3616         ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3617         if (!CNIC_LOADED(bp))
3618                 goto out;
3619
3620         /* Try getting storage driver version via cnic */
3621         memset(&bp->slowpath->drv_info_to_mcp, 0,
3622                sizeof(union drv_info_to_mcp));
3623         bnx2x_drv_info_iscsi_stat(bp);
3624         version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3625         iscsiver = bnx2x_update_mng_version_utility(version, false);
3626
3627         memset(&bp->slowpath->drv_info_to_mcp, 0,
3628                sizeof(union drv_info_to_mcp));
3629         bnx2x_drv_info_fcoe_stat(bp);
3630         version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3631         fcoever = bnx2x_update_mng_version_utility(version, false);
3632
3633 out:
3634         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3635         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3636         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3637
3638         mutex_unlock(&bp->drv_info_mutex);
3639
3640         DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3641            ethver, iscsiver, fcoever);
3642 }
3643
3644 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3645 {
3646         DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3647
3648         if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3649
3650                 /*
3651                  * This is the only place besides the function initialization
3652                  * where the bp->flags can change so it is done without any
3653                  * locks
3654                  */
3655                 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3656                         DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3657                         bp->flags |= MF_FUNC_DIS;
3658
3659                         bnx2x_e1h_disable(bp);
3660                 } else {
3661                         DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3662                         bp->flags &= ~MF_FUNC_DIS;
3663
3664                         bnx2x_e1h_enable(bp);
3665                 }
3666                 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3667         }
3668         if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3669                 bnx2x_config_mf_bw(bp);
3670                 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3671         }
3672
3673         /* Report results to MCP */
3674         if (dcc_event)
3675                 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3676         else
3677                 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3678 }
3679
3680 /* must be called under the spq lock */
3681 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3682 {
3683         struct eth_spe *next_spe = bp->spq_prod_bd;
3684
3685         if (bp->spq_prod_bd == bp->spq_last_bd) {
3686                 bp->spq_prod_bd = bp->spq;
3687                 bp->spq_prod_idx = 0;
3688                 DP(BNX2X_MSG_SP, "end of spq\n");
3689         } else {
3690                 bp->spq_prod_bd++;
3691                 bp->spq_prod_idx++;
3692         }
3693         return next_spe;
3694 }
3695
3696 /* must be called under the spq lock */
3697 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3698 {
3699         int func = BP_FUNC(bp);
3700
3701         /*
3702          * Make sure that BD data is updated before writing the producer:
3703          * BD data is written to the memory, the producer is read from the
3704          * memory, thus we need a full memory barrier to ensure the ordering.
3705          */
3706         mb();
3707
3708         REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3709                  bp->spq_prod_idx);
3710         mmiowb();
3711 }
3712
3713 /**
3714  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3715  *
3716  * @cmd:        command to check
3717  * @cmd_type:   command type
3718  */
3719 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3720 {
3721         if ((cmd_type == NONE_CONNECTION_TYPE) ||
3722             (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3723             (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3724             (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3725             (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3726             (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3727             (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3728                 return true;
3729         else
3730                 return false;
3731 }
3732
3733 /**
3734  * bnx2x_sp_post - place a single command on an SP ring
3735  *
3736  * @bp:         driver handle
3737  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
3738  * @cid:        SW CID the command is related to
3739  * @data_hi:    command private data address (high 32 bits)
3740  * @data_lo:    command private data address (low 32 bits)
3741  * @cmd_type:   command type (e.g. NONE, ETH)
3742  *
3743  * SP data is handled as if it's always an address pair, thus data fields are
3744  * not swapped to little endian in upper functions. Instead this function swaps
3745  * data as if it's two u32 fields.
3746  */
3747 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3748                   u32 data_hi, u32 data_lo, int cmd_type)
3749 {
3750         struct eth_spe *spe;
3751         u16 type;
3752         bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3753
3754 #ifdef BNX2X_STOP_ON_ERROR
3755         if (unlikely(bp->panic)) {
3756                 BNX2X_ERR("Can't post SP when there is panic\n");
3757                 return -EIO;
3758         }
3759 #endif
3760
3761         spin_lock_bh(&bp->spq_lock);
3762
3763         if (common) {
3764                 if (!atomic_read(&bp->eq_spq_left)) {
3765                         BNX2X_ERR("BUG! EQ ring full!\n");
3766                         spin_unlock_bh(&bp->spq_lock);
3767                         bnx2x_panic();
3768                         return -EBUSY;
3769                 }
3770         } else if (!atomic_read(&bp->cq_spq_left)) {
3771                         BNX2X_ERR("BUG! SPQ ring full!\n");
3772                         spin_unlock_bh(&bp->spq_lock);
3773                         bnx2x_panic();
3774                         return -EBUSY;
3775         }
3776
3777         spe = bnx2x_sp_get_next(bp);
3778
3779         /* CID needs port number to be encoded int it */
3780         spe->hdr.conn_and_cmd_data =
3781                         cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3782                                     HW_CID(bp, cid));
3783
3784         /* In some cases, type may already contain the func-id
3785          * mainly in SRIOV related use cases, so we add it here only
3786          * if it's not already set.
3787          */
3788         if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3789                 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3790                         SPE_HDR_CONN_TYPE;
3791                 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3792                          SPE_HDR_FUNCTION_ID);
3793         } else {
3794                 type = cmd_type;
3795         }
3796
3797         spe->hdr.type = cpu_to_le16(type);
3798
3799         spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3800         spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3801
3802         /*
3803          * It's ok if the actual decrement is issued towards the memory
3804          * somewhere between the spin_lock and spin_unlock. Thus no
3805          * more explicit memory barrier is needed.
3806          */
3807         if (common)
3808                 atomic_dec(&bp->eq_spq_left);
3809         else
3810                 atomic_dec(&bp->cq_spq_left);
3811
3812         DP(BNX2X_MSG_SP,
3813            "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3814            bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3815            (u32)(U64_LO(bp->spq_mapping) +
3816            (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3817            HW_CID(bp, cid), data_hi, data_lo, type,
3818            atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3819
3820         bnx2x_sp_prod_update(bp);
3821         spin_unlock_bh(&bp->spq_lock);
3822         return 0;
3823 }
3824
3825 /* acquire split MCP access lock register */
3826 static int bnx2x_acquire_alr(struct bnx2x *bp)
3827 {
3828         u32 j, val;
3829         int rc = 0;
3830
3831         might_sleep();
3832         for (j = 0; j < 1000; j++) {
3833                 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3834                 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3835                 if (val & MCPR_ACCESS_LOCK_LOCK)
3836                         break;
3837
3838                 usleep_range(5000, 10000);
3839         }
3840         if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3841                 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3842                 rc = -EBUSY;
3843         }
3844
3845         return rc;
3846 }
3847
3848 /* release split MCP access lock register */
3849 static void bnx2x_release_alr(struct bnx2x *bp)
3850 {
3851         REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3852 }
3853
3854 #define BNX2X_DEF_SB_ATT_IDX    0x0001
3855 #define BNX2X_DEF_SB_IDX        0x0002
3856
3857 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3858 {
3859         struct host_sp_status_block *def_sb = bp->def_status_blk;
3860         u16 rc = 0;
3861
3862         barrier(); /* status block is written to by the chip */
3863         if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3864                 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3865                 rc |= BNX2X_DEF_SB_ATT_IDX;
3866         }
3867
3868         if (bp->def_idx != def_sb->sp_sb.running_index) {
3869                 bp->def_idx = def_sb->sp_sb.running_index;
3870                 rc |= BNX2X_DEF_SB_IDX;
3871         }
3872
3873         /* Do not reorder: indices reading should complete before handling */
3874         barrier();
3875         return rc;
3876 }
3877
3878 /*
3879  * slow path service functions
3880  */
3881
3882 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3883 {
3884         int port = BP_PORT(bp);
3885         u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3886                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
3887         u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3888                                        NIG_REG_MASK_INTERRUPT_PORT0;
3889         u32 aeu_mask;
3890         u32 nig_mask = 0;
3891         u32 reg_addr;
3892
3893         if (bp->attn_state & asserted)
3894                 BNX2X_ERR("IGU ERROR\n");
3895
3896         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3897         aeu_mask = REG_RD(bp, aeu_addr);
3898
3899         DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3900            aeu_mask, asserted);
3901         aeu_mask &= ~(asserted & 0x3ff);
3902         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3903
3904         REG_WR(bp, aeu_addr, aeu_mask);
3905         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3906
3907         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3908         bp->attn_state |= asserted;
3909         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3910
3911         if (asserted & ATTN_HARD_WIRED_MASK) {
3912                 if (asserted & ATTN_NIG_FOR_FUNC) {
3913
3914                         bnx2x_acquire_phy_lock(bp);
3915
3916                         /* save nig interrupt mask */
3917                         nig_mask = REG_RD(bp, nig_int_mask_addr);
3918
3919                         /* If nig_mask is not set, no need to call the update
3920                          * function.
3921                          */
3922                         if (nig_mask) {
3923                                 REG_WR(bp, nig_int_mask_addr, 0);
3924
3925                                 bnx2x_link_attn(bp);
3926                         }
3927
3928                         /* handle unicore attn? */
3929                 }
3930                 if (asserted & ATTN_SW_TIMER_4_FUNC)
3931                         DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3932
3933                 if (asserted & GPIO_2_FUNC)
3934                         DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3935
3936                 if (asserted & GPIO_3_FUNC)
3937                         DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3938
3939                 if (asserted & GPIO_4_FUNC)
3940                         DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3941
3942                 if (port == 0) {
3943                         if (asserted & ATTN_GENERAL_ATTN_1) {
3944                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3945                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3946                         }
3947                         if (asserted & ATTN_GENERAL_ATTN_2) {
3948                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3949                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3950                         }
3951                         if (asserted & ATTN_GENERAL_ATTN_3) {
3952                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3953                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3954                         }
3955                 } else {
3956                         if (asserted & ATTN_GENERAL_ATTN_4) {
3957                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3958                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3959                         }
3960                         if (asserted & ATTN_GENERAL_ATTN_5) {
3961                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3962                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3963                         }
3964                         if (asserted & ATTN_GENERAL_ATTN_6) {
3965                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3966                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3967                         }
3968                 }
3969
3970         } /* if hardwired */
3971
3972         if (bp->common.int_block == INT_BLOCK_HC)
3973                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
3974                             COMMAND_REG_ATTN_BITS_SET);
3975         else
3976                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3977
3978         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3979            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3980         REG_WR(bp, reg_addr, asserted);
3981
3982         /* now set back the mask */
3983         if (asserted & ATTN_NIG_FOR_FUNC) {
3984                 /* Verify that IGU ack through BAR was written before restoring
3985                  * NIG mask. This loop should exit after 2-3 iterations max.
3986                  */
3987                 if (bp->common.int_block != INT_BLOCK_HC) {
3988                         u32 cnt = 0, igu_acked;
3989                         do {
3990                                 igu_acked = REG_RD(bp,
3991                                                    IGU_REG_ATTENTION_ACK_BITS);
3992                         } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
3993                                  (++cnt < MAX_IGU_ATTN_ACK_TO));
3994                         if (!igu_acked)
3995                                 DP(NETIF_MSG_HW,
3996                                    "Failed to verify IGU ack on time\n");
3997                         barrier();
3998                 }
3999                 REG_WR(bp, nig_int_mask_addr, nig_mask);
4000                 bnx2x_release_phy_lock(bp);
4001         }
4002 }
4003
4004 static void bnx2x_fan_failure(struct bnx2x *bp)
4005 {
4006         int port = BP_PORT(bp);
4007         u32 ext_phy_config;
4008         /* mark the failure */
4009         ext_phy_config =
4010                 SHMEM_RD(bp,
4011                          dev_info.port_hw_config[port].external_phy_config);
4012
4013         ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4014         ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4015         SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4016                  ext_phy_config);
4017
4018         /* log the failure */
4019         netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4020                             "Please contact OEM Support for assistance\n");
4021
4022         /* Schedule device reset (unload)
4023          * This is due to some boards consuming sufficient power when driver is
4024          * up to overheat if fan fails.
4025          */
4026         bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4027 }
4028
4029 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4030 {
4031         int port = BP_PORT(bp);
4032         int reg_offset;
4033         u32 val;
4034
4035         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4036                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4037
4038         if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4039
4040                 val = REG_RD(bp, reg_offset);
4041                 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4042                 REG_WR(bp, reg_offset, val);
4043
4044                 BNX2X_ERR("SPIO5 hw attention\n");
4045
4046                 /* Fan failure attention */
4047                 bnx2x_hw_reset_phy(&bp->link_params);
4048                 bnx2x_fan_failure(bp);
4049         }
4050
4051         if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4052                 bnx2x_acquire_phy_lock(bp);
4053                 bnx2x_handle_module_detect_int(&bp->link_params);
4054                 bnx2x_release_phy_lock(bp);
4055         }
4056
4057         if (attn & HW_INTERRUT_ASSERT_SET_0) {
4058
4059                 val = REG_RD(bp, reg_offset);
4060                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
4061                 REG_WR(bp, reg_offset, val);
4062
4063                 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4064                           (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
4065                 bnx2x_panic();
4066         }
4067 }
4068
4069 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4070 {
4071         u32 val;
4072
4073         if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4074
4075                 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4076                 BNX2X_ERR("DB hw attention 0x%x\n", val);
4077                 /* DORQ discard attention */
4078                 if (val & 0x2)
4079                         BNX2X_ERR("FATAL error from DORQ\n");
4080         }
4081
4082         if (attn & HW_INTERRUT_ASSERT_SET_1) {
4083
4084                 int port = BP_PORT(bp);
4085                 int reg_offset;
4086
4087                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4088                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4089
4090                 val = REG_RD(bp, reg_offset);
4091                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
4092                 REG_WR(bp, reg_offset, val);
4093
4094                 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4095                           (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
4096                 bnx2x_panic();
4097         }
4098 }
4099
4100 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4101 {
4102         u32 val;
4103
4104         if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4105
4106                 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4107                 BNX2X_ERR("CFC hw attention 0x%x\n", val);
4108                 /* CFC error attention */
4109                 if (val & 0x2)
4110                         BNX2X_ERR("FATAL error from CFC\n");
4111         }
4112
4113         if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4114                 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4115                 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4116                 /* RQ_USDMDP_FIFO_OVERFLOW */
4117                 if (val & 0x18000)
4118                         BNX2X_ERR("FATAL error from PXP\n");
4119
4120                 if (!CHIP_IS_E1x(bp)) {
4121                         val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4122                         BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4123                 }
4124         }
4125
4126         if (attn & HW_INTERRUT_ASSERT_SET_2) {
4127
4128                 int port = BP_PORT(bp);
4129                 int reg_offset;
4130
4131                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4132                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4133
4134                 val = REG_RD(bp, reg_offset);
4135                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
4136                 REG_WR(bp, reg_offset, val);
4137
4138                 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4139                           (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
4140                 bnx2x_panic();
4141         }
4142 }
4143
4144 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4145 {
4146         u32 val;
4147
4148         if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4149
4150                 if (attn & BNX2X_PMF_LINK_ASSERT) {
4151                         int func = BP_FUNC(bp);
4152
4153                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4154                         bnx2x_read_mf_cfg(bp);
4155                         bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4156                                         func_mf_config[BP_ABS_FUNC(bp)].config);
4157                         val = SHMEM_RD(bp,
4158                                        func_mb[BP_FW_MB_IDX(bp)].drv_status);
4159                         if (val & DRV_STATUS_DCC_EVENT_MASK)
4160                                 bnx2x_dcc_event(bp,
4161                                             (val & DRV_STATUS_DCC_EVENT_MASK));
4162
4163                         if (val & DRV_STATUS_SET_MF_BW)
4164                                 bnx2x_set_mf_bw(bp);
4165
4166                         if (val & DRV_STATUS_DRV_INFO_REQ)
4167                                 bnx2x_handle_drv_info_req(bp);
4168
4169                         if (val & DRV_STATUS_VF_DISABLED)
4170                                 bnx2x_schedule_iov_task(bp,
4171                                                         BNX2X_IOV_HANDLE_FLR);
4172
4173                         if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4174                                 bnx2x_pmf_update(bp);
4175
4176                         if (bp->port.pmf &&
4177                             (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4178                                 bp->dcbx_enabled > 0)
4179                                 /* start dcbx state machine */
4180                                 bnx2x_dcbx_set_params(bp,
4181                                         BNX2X_DCBX_STATE_NEG_RECEIVED);
4182                         if (val & DRV_STATUS_AFEX_EVENT_MASK)
4183                                 bnx2x_handle_afex_cmd(bp,
4184                                         val & DRV_STATUS_AFEX_EVENT_MASK);
4185                         if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4186                                 bnx2x_handle_eee_event(bp);
4187                         if (bp->link_vars.periodic_flags &
4188                             PERIODIC_FLAGS_LINK_EVENT) {
4189                                 /*  sync with link */
4190                                 bnx2x_acquire_phy_lock(bp);
4191                                 bp->link_vars.periodic_flags &=
4192                                         ~PERIODIC_FLAGS_LINK_EVENT;
4193                                 bnx2x_release_phy_lock(bp);
4194                                 if (IS_MF(bp))
4195                                         bnx2x_link_sync_notify(bp);
4196                                 bnx2x_link_report(bp);
4197                         }
4198                         /* Always call it here: bnx2x_link_report() will
4199                          * prevent the link indication duplication.
4200                          */
4201                         bnx2x__link_status_update(bp);
4202                 } else if (attn & BNX2X_MC_ASSERT_BITS) {
4203
4204                         BNX2X_ERR("MC assert!\n");
4205                         bnx2x_mc_assert(bp);
4206                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4207                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4208                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4209                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4210                         bnx2x_panic();
4211
4212                 } else if (attn & BNX2X_MCP_ASSERT) {
4213
4214                         BNX2X_ERR("MCP assert!\n");
4215                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4216                         bnx2x_fw_dump(bp);
4217
4218                 } else
4219                         BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4220         }
4221
4222         if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4223                 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4224                 if (attn & BNX2X_GRC_TIMEOUT) {
4225                         val = CHIP_IS_E1(bp) ? 0 :
4226                                         REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4227                         BNX2X_ERR("GRC time-out 0x%08x\n", val);
4228                 }
4229                 if (attn & BNX2X_GRC_RSV) {
4230                         val = CHIP_IS_E1(bp) ? 0 :
4231                                         REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4232                         BNX2X_ERR("GRC reserved 0x%08x\n", val);
4233                 }
4234                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4235         }
4236 }
4237
4238 /*
4239  * Bits map:
4240  * 0-7   - Engine0 load counter.
4241  * 8-15  - Engine1 load counter.
4242  * 16    - Engine0 RESET_IN_PROGRESS bit.
4243  * 17    - Engine1 RESET_IN_PROGRESS bit.
4244  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4245  *         on the engine
4246  * 19    - Engine1 ONE_IS_LOADED.
4247  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4248  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4249  *         just the one belonging to its engine).
4250  *
4251  */
4252 #define BNX2X_RECOVERY_GLOB_REG         MISC_REG_GENERIC_POR_1
4253
4254 #define BNX2X_PATH0_LOAD_CNT_MASK       0x000000ff
4255 #define BNX2X_PATH0_LOAD_CNT_SHIFT      0
4256 #define BNX2X_PATH1_LOAD_CNT_MASK       0x0000ff00
4257 #define BNX2X_PATH1_LOAD_CNT_SHIFT      8
4258 #define BNX2X_PATH0_RST_IN_PROG_BIT     0x00010000
4259 #define BNX2X_PATH1_RST_IN_PROG_BIT     0x00020000
4260 #define BNX2X_GLOBAL_RESET_BIT          0x00040000
4261
4262 /*
4263  * Set the GLOBAL_RESET bit.
4264  *
4265  * Should be run under rtnl lock
4266  */
4267 void bnx2x_set_reset_global(struct bnx2x *bp)
4268 {
4269         u32 val;
4270         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4271         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4272         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4273         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4274 }
4275
4276 /*
4277  * Clear the GLOBAL_RESET bit.
4278  *
4279  * Should be run under rtnl lock
4280  */
4281 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4282 {
4283         u32 val;
4284         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4285         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4286         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4287         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4288 }
4289
4290 /*
4291  * Checks the GLOBAL_RESET bit.
4292  *
4293  * should be run under rtnl lock
4294  */
4295 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4296 {
4297         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4298
4299         DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4300         return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4301 }
4302
4303 /*
4304  * Clear RESET_IN_PROGRESS bit for the current engine.
4305  *
4306  * Should be run under rtnl lock
4307  */
4308 static void bnx2x_set_reset_done(struct bnx2x *bp)
4309 {
4310         u32 val;
4311         u32 bit = BP_PATH(bp) ?
4312                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4313         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4314         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4315
4316         /* Clear the bit */
4317         val &= ~bit;
4318         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4319
4320         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4321 }
4322
4323 /*
4324  * Set RESET_IN_PROGRESS for the current engine.
4325  *
4326  * should be run under rtnl lock
4327  */
4328 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4329 {
4330         u32 val;
4331         u32 bit = BP_PATH(bp) ?
4332                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4333         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4334         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4335
4336         /* Set the bit */
4337         val |= bit;
4338         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4339         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4340 }
4341
4342 /*
4343  * Checks the RESET_IN_PROGRESS bit for the given engine.
4344  * should be run under rtnl lock
4345  */
4346 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4347 {
4348         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4349         u32 bit = engine ?
4350                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4351
4352         /* return false if bit is set */
4353         return (val & bit) ? false : true;
4354 }
4355
4356 /*
4357  * set pf load for the current pf.
4358  *
4359  * should be run under rtnl lock
4360  */
4361 void bnx2x_set_pf_load(struct bnx2x *bp)
4362 {
4363         u32 val1, val;
4364         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4365                              BNX2X_PATH0_LOAD_CNT_MASK;
4366         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4367                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4368
4369         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4370         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4371
4372         DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4373
4374         /* get the current counter value */
4375         val1 = (val & mask) >> shift;
4376
4377         /* set bit of that PF */
4378         val1 |= (1 << bp->pf_num);
4379
4380         /* clear the old value */
4381         val &= ~mask;
4382
4383         /* set the new one */
4384         val |= ((val1 << shift) & mask);
4385
4386         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4387         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4388 }
4389
4390 /**
4391  * bnx2x_clear_pf_load - clear pf load mark
4392  *
4393  * @bp:         driver handle
4394  *
4395  * Should be run under rtnl lock.
4396  * Decrements the load counter for the current engine. Returns
4397  * whether other functions are still loaded
4398  */
4399 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4400 {
4401         u32 val1, val;
4402         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4403                              BNX2X_PATH0_LOAD_CNT_MASK;
4404         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4405                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4406
4407         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4408         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4409         DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4410
4411         /* get the current counter value */
4412         val1 = (val & mask) >> shift;
4413
4414         /* clear bit of that PF */
4415         val1 &= ~(1 << bp->pf_num);
4416
4417         /* clear the old value */
4418         val &= ~mask;
4419
4420         /* set the new one */
4421         val |= ((val1 << shift) & mask);
4422
4423         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4424         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4425         return val1 != 0;
4426 }
4427
4428 /*
4429  * Read the load status for the current engine.
4430  *
4431  * should be run under rtnl lock
4432  */
4433 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4434 {
4435         u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4436                              BNX2X_PATH0_LOAD_CNT_MASK);
4437         u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4438                              BNX2X_PATH0_LOAD_CNT_SHIFT);
4439         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4440
4441         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4442
4443         val = (val & mask) >> shift;
4444
4445         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4446            engine, val);
4447
4448         return val != 0;
4449 }
4450
4451 static void _print_parity(struct bnx2x *bp, u32 reg)
4452 {
4453         pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4454 }
4455
4456 static void _print_next_block(int idx, const char *blk)
4457 {
4458         pr_cont("%s%s", idx ? ", " : "", blk);
4459 }
4460
4461 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4462                                             int *par_num, bool print)
4463 {
4464         u32 cur_bit;
4465         bool res;
4466         int i;
4467
4468         res = false;
4469
4470         for (i = 0; sig; i++) {
4471                 cur_bit = (0x1UL << i);
4472                 if (sig & cur_bit) {
4473                         res |= true; /* Each bit is real error! */
4474
4475                         if (print) {
4476                                 switch (cur_bit) {
4477                                 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4478                                         _print_next_block((*par_num)++, "BRB");
4479                                         _print_parity(bp,
4480                                                       BRB1_REG_BRB1_PRTY_STS);
4481                                         break;
4482                                 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4483                                         _print_next_block((*par_num)++,
4484                                                           "PARSER");
4485                                         _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4486                                         break;
4487                                 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4488                                         _print_next_block((*par_num)++, "TSDM");
4489                                         _print_parity(bp,
4490                                                       TSDM_REG_TSDM_PRTY_STS);
4491                                         break;
4492                                 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4493                                         _print_next_block((*par_num)++,
4494                                                           "SEARCHER");
4495                                         _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4496                                         break;
4497                                 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4498                                         _print_next_block((*par_num)++, "TCM");
4499                                         _print_parity(bp, TCM_REG_TCM_PRTY_STS);
4500                                         break;
4501                                 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4502                                         _print_next_block((*par_num)++,
4503                                                           "TSEMI");
4504                                         _print_parity(bp,
4505                                                       TSEM_REG_TSEM_PRTY_STS_0);
4506                                         _print_parity(bp,
4507                                                       TSEM_REG_TSEM_PRTY_STS_1);
4508                                         break;
4509                                 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4510                                         _print_next_block((*par_num)++, "XPB");
4511                                         _print_parity(bp, GRCBASE_XPB +
4512                                                           PB_REG_PB_PRTY_STS);
4513                                         break;
4514                                 }
4515                         }
4516
4517                         /* Clear the bit */
4518                         sig &= ~cur_bit;
4519                 }
4520         }
4521
4522         return res;
4523 }
4524
4525 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4526                                             int *par_num, bool *global,
4527                                             bool print)
4528 {
4529         u32 cur_bit;
4530         bool res;
4531         int i;
4532
4533         res = false;
4534
4535         for (i = 0; sig; i++) {
4536                 cur_bit = (0x1UL << i);
4537                 if (sig & cur_bit) {
4538                         res |= true; /* Each bit is real error! */
4539                         switch (cur_bit) {
4540                         case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4541                                 if (print) {
4542                                         _print_next_block((*par_num)++, "PBF");
4543                                         _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4544                                 }
4545                                 break;
4546                         case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4547                                 if (print) {
4548                                         _print_next_block((*par_num)++, "QM");
4549                                         _print_parity(bp, QM_REG_QM_PRTY_STS);
4550                                 }
4551                                 break;
4552                         case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4553                                 if (print) {
4554                                         _print_next_block((*par_num)++, "TM");
4555                                         _print_parity(bp, TM_REG_TM_PRTY_STS);
4556                                 }
4557                                 break;
4558                         case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4559                                 if (print) {
4560                                         _print_next_block((*par_num)++, "XSDM");
4561                                         _print_parity(bp,
4562                                                       XSDM_REG_XSDM_PRTY_STS);
4563                                 }
4564                                 break;
4565                         case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4566                                 if (print) {
4567                                         _print_next_block((*par_num)++, "XCM");
4568                                         _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4569                                 }
4570                                 break;
4571                         case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4572                                 if (print) {
4573                                         _print_next_block((*par_num)++,
4574                                                           "XSEMI");
4575                                         _print_parity(bp,
4576                                                       XSEM_REG_XSEM_PRTY_STS_0);
4577                                         _print_parity(bp,
4578                                                       XSEM_REG_XSEM_PRTY_STS_1);
4579                                 }
4580                                 break;
4581                         case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4582                                 if (print) {
4583                                         _print_next_block((*par_num)++,
4584                                                           "DOORBELLQ");
4585                                         _print_parity(bp,
4586                                                       DORQ_REG_DORQ_PRTY_STS);
4587                                 }
4588                                 break;
4589                         case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4590                                 if (print) {
4591                                         _print_next_block((*par_num)++, "NIG");
4592                                         if (CHIP_IS_E1x(bp)) {
4593                                                 _print_parity(bp,
4594                                                         NIG_REG_NIG_PRTY_STS);
4595                                         } else {
4596                                                 _print_parity(bp,
4597                                                         NIG_REG_NIG_PRTY_STS_0);
4598                                                 _print_parity(bp,
4599                                                         NIG_REG_NIG_PRTY_STS_1);
4600                                         }
4601                                 }
4602                                 break;
4603                         case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4604                                 if (print)
4605                                         _print_next_block((*par_num)++,
4606                                                           "VAUX PCI CORE");
4607                                 *global = true;
4608                                 break;
4609                         case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4610                                 if (print) {
4611                                         _print_next_block((*par_num)++,
4612                                                           "DEBUG");
4613                                         _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4614                                 }
4615                                 break;
4616                         case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4617                                 if (print) {
4618                                         _print_next_block((*par_num)++, "USDM");
4619                                         _print_parity(bp,
4620                                                       USDM_REG_USDM_PRTY_STS);
4621                                 }
4622                                 break;
4623                         case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4624                                 if (print) {
4625                                         _print_next_block((*par_num)++, "UCM");
4626                                         _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4627                                 }
4628                                 break;
4629                         case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4630                                 if (print) {
4631                                         _print_next_block((*par_num)++,
4632                                                           "USEMI");
4633                                         _print_parity(bp,
4634                                                       USEM_REG_USEM_PRTY_STS_0);
4635                                         _print_parity(bp,
4636                                                       USEM_REG_USEM_PRTY_STS_1);
4637                                 }
4638                                 break;
4639                         case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4640                                 if (print) {
4641                                         _print_next_block((*par_num)++, "UPB");
4642                                         _print_parity(bp, GRCBASE_UPB +
4643                                                           PB_REG_PB_PRTY_STS);
4644                                 }
4645                                 break;
4646                         case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4647                                 if (print) {
4648                                         _print_next_block((*par_num)++, "CSDM");
4649                                         _print_parity(bp,
4650                                                       CSDM_REG_CSDM_PRTY_STS);
4651                                 }
4652                                 break;
4653                         case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4654                                 if (print) {
4655                                         _print_next_block((*par_num)++, "CCM");
4656                                         _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4657                                 }
4658                                 break;
4659                         }
4660
4661                         /* Clear the bit */
4662                         sig &= ~cur_bit;
4663                 }
4664         }
4665
4666         return res;
4667 }
4668
4669 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4670                                             int *par_num, bool print)
4671 {
4672         u32 cur_bit;
4673         bool res;
4674         int i;
4675
4676         res = false;
4677
4678         for (i = 0; sig; i++) {
4679                 cur_bit = (0x1UL << i);
4680                 if (sig & cur_bit) {
4681                         res |= true; /* Each bit is real error! */
4682                         if (print) {
4683                                 switch (cur_bit) {
4684                                 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4685                                         _print_next_block((*par_num)++,
4686                                                           "CSEMI");
4687                                         _print_parity(bp,
4688                                                       CSEM_REG_CSEM_PRTY_STS_0);
4689                                         _print_parity(bp,
4690                                                       CSEM_REG_CSEM_PRTY_STS_1);
4691                                         break;
4692                                 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4693                                         _print_next_block((*par_num)++, "PXP");
4694                                         _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4695                                         _print_parity(bp,
4696                                                       PXP2_REG_PXP2_PRTY_STS_0);
4697                                         _print_parity(bp,
4698                                                       PXP2_REG_PXP2_PRTY_STS_1);
4699                                         break;
4700                                 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4701                                         _print_next_block((*par_num)++,
4702                                                           "PXPPCICLOCKCLIENT");
4703                                         break;
4704                                 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4705                                         _print_next_block((*par_num)++, "CFC");
4706                                         _print_parity(bp,
4707                                                       CFC_REG_CFC_PRTY_STS);
4708                                         break;
4709                                 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4710                                         _print_next_block((*par_num)++, "CDU");
4711                                         _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4712                                         break;
4713                                 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4714                                         _print_next_block((*par_num)++, "DMAE");
4715                                         _print_parity(bp,
4716                                                       DMAE_REG_DMAE_PRTY_STS);
4717                                         break;
4718                                 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4719                                         _print_next_block((*par_num)++, "IGU");
4720                                         if (CHIP_IS_E1x(bp))
4721                                                 _print_parity(bp,
4722                                                         HC_REG_HC_PRTY_STS);
4723                                         else
4724                                                 _print_parity(bp,
4725                                                         IGU_REG_IGU_PRTY_STS);
4726                                         break;
4727                                 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4728                                         _print_next_block((*par_num)++, "MISC");
4729                                         _print_parity(bp,
4730                                                       MISC_REG_MISC_PRTY_STS);
4731                                         break;
4732                                 }
4733                         }
4734
4735                         /* Clear the bit */
4736                         sig &= ~cur_bit;
4737                 }
4738         }
4739
4740         return res;
4741 }
4742
4743 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4744                                             int *par_num, bool *global,
4745                                             bool print)
4746 {
4747         bool res = false;
4748         u32 cur_bit;
4749         int i;
4750
4751         for (i = 0; sig; i++) {
4752                 cur_bit = (0x1UL << i);
4753                 if (sig & cur_bit) {
4754                         switch (cur_bit) {
4755                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4756                                 if (print)
4757                                         _print_next_block((*par_num)++,
4758                                                           "MCP ROM");
4759                                 *global = true;
4760                                 res |= true;
4761                                 break;
4762                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4763                                 if (print)
4764                                         _print_next_block((*par_num)++,
4765                                                           "MCP UMP RX");
4766                                 *global = true;
4767                                 res |= true;
4768                                 break;
4769                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4770                                 if (print)
4771                                         _print_next_block((*par_num)++,
4772                                                           "MCP UMP TX");
4773                                 *global = true;
4774                                 res |= true;
4775                                 break;
4776                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4777                                 if (print)
4778                                         _print_next_block((*par_num)++,
4779                                                           "MCP SCPAD");
4780                                 /* clear latched SCPAD PATIRY from MCP */
4781                                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4782                                        1UL << 10);
4783                                 break;
4784                         }
4785
4786                         /* Clear the bit */
4787                         sig &= ~cur_bit;
4788                 }
4789         }
4790
4791         return res;
4792 }
4793
4794 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4795                                             int *par_num, bool print)
4796 {
4797         u32 cur_bit;
4798         bool res;
4799         int i;
4800
4801         res = false;
4802
4803         for (i = 0; sig; i++) {
4804                 cur_bit = (0x1UL << i);
4805                 if (sig & cur_bit) {
4806                         res |= true; /* Each bit is real error! */
4807                         if (print) {
4808                                 switch (cur_bit) {
4809                                 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4810                                         _print_next_block((*par_num)++,
4811                                                           "PGLUE_B");
4812                                         _print_parity(bp,
4813                                                       PGLUE_B_REG_PGLUE_B_PRTY_STS);
4814                                         break;
4815                                 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4816                                         _print_next_block((*par_num)++, "ATC");
4817                                         _print_parity(bp,
4818                                                       ATC_REG_ATC_PRTY_STS);
4819                                         break;
4820                                 }
4821                         }
4822                         /* Clear the bit */
4823                         sig &= ~cur_bit;
4824                 }
4825         }
4826
4827         return res;
4828 }
4829
4830 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4831                               u32 *sig)
4832 {
4833         bool res = false;
4834
4835         if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4836             (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4837             (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4838             (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4839             (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4840                 int par_num = 0;
4841                 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4842                                  "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4843                           sig[0] & HW_PRTY_ASSERT_SET_0,
4844                           sig[1] & HW_PRTY_ASSERT_SET_1,
4845                           sig[2] & HW_PRTY_ASSERT_SET_2,
4846                           sig[3] & HW_PRTY_ASSERT_SET_3,
4847                           sig[4] & HW_PRTY_ASSERT_SET_4);
4848                 if (print)
4849                         netdev_err(bp->dev,
4850                                    "Parity errors detected in blocks: ");
4851                 res |= bnx2x_check_blocks_with_parity0(bp,
4852                         sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4853                 res |= bnx2x_check_blocks_with_parity1(bp,
4854                         sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4855                 res |= bnx2x_check_blocks_with_parity2(bp,
4856                         sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4857                 res |= bnx2x_check_blocks_with_parity3(bp,
4858                         sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4859                 res |= bnx2x_check_blocks_with_parity4(bp,
4860                         sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4861
4862                 if (print)
4863                         pr_cont("\n");
4864         }
4865
4866         return res;
4867 }
4868
4869 /**
4870  * bnx2x_chk_parity_attn - checks for parity attentions.
4871  *
4872  * @bp:         driver handle
4873  * @global:     true if there was a global attention
4874  * @print:      show parity attention in syslog
4875  */
4876 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4877 {
4878         struct attn_route attn = { {0} };
4879         int port = BP_PORT(bp);
4880
4881         attn.sig[0] = REG_RD(bp,
4882                 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4883                              port*4);
4884         attn.sig[1] = REG_RD(bp,
4885                 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4886                              port*4);
4887         attn.sig[2] = REG_RD(bp,
4888                 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4889                              port*4);
4890         attn.sig[3] = REG_RD(bp,
4891                 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4892                              port*4);
4893         /* Since MCP attentions can't be disabled inside the block, we need to
4894          * read AEU registers to see whether they're currently disabled
4895          */
4896         attn.sig[3] &= ((REG_RD(bp,
4897                                 !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
4898                                       : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
4899                          MISC_AEU_ENABLE_MCP_PRTY_BITS) |
4900                         ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
4901
4902         if (!CHIP_IS_E1x(bp))
4903                 attn.sig[4] = REG_RD(bp,
4904                         MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4905                                      port*4);
4906
4907         return bnx2x_parity_attn(bp, global, print, attn.sig);
4908 }
4909
4910 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4911 {
4912         u32 val;
4913         if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4914
4915                 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4916                 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4917                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4918                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4919                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4920                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4921                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4922                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4923                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4924                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4925                 if (val &
4926                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4927                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4928                 if (val &
4929                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4930                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4931                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4932                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4933                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4934                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4935                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4936                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4937         }
4938         if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4939                 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4940                 BNX2X_ERR("ATC hw attention 0x%x\n", val);
4941                 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4942                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4943                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4944                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4945                 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4946                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4947                 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4948                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4949                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4950                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4951                 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4952                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4953         }
4954
4955         if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4956                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4957                 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4958                 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4959                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4960         }
4961 }
4962
4963 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4964 {
4965         struct attn_route attn, *group_mask;
4966         int port = BP_PORT(bp);
4967         int index;
4968         u32 reg_addr;
4969         u32 val;
4970         u32 aeu_mask;
4971         bool global = false;
4972
4973         /* need to take HW lock because MCP or other port might also
4974            try to handle this event */
4975         bnx2x_acquire_alr(bp);
4976
4977         if (bnx2x_chk_parity_attn(bp, &global, true)) {
4978 #ifndef BNX2X_STOP_ON_ERROR
4979                 bp->recovery_state = BNX2X_RECOVERY_INIT;
4980                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
4981                 /* Disable HW interrupts */
4982                 bnx2x_int_disable(bp);
4983                 /* In case of parity errors don't handle attentions so that
4984                  * other function would "see" parity errors.
4985                  */
4986 #else
4987                 bnx2x_panic();
4988 #endif
4989                 bnx2x_release_alr(bp);
4990                 return;
4991         }
4992
4993         attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4994         attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4995         attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4996         attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4997         if (!CHIP_IS_E1x(bp))
4998                 attn.sig[4] =
4999                       REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5000         else
5001                 attn.sig[4] = 0;
5002
5003         DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5004            attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5005
5006         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5007                 if (deasserted & (1 << index)) {
5008                         group_mask = &bp->attn_group[index];
5009
5010                         DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5011                            index,
5012                            group_mask->sig[0], group_mask->sig[1],
5013                            group_mask->sig[2], group_mask->sig[3],
5014                            group_mask->sig[4]);
5015
5016                         bnx2x_attn_int_deasserted4(bp,
5017                                         attn.sig[4] & group_mask->sig[4]);
5018                         bnx2x_attn_int_deasserted3(bp,
5019                                         attn.sig[3] & group_mask->sig[3]);
5020                         bnx2x_attn_int_deasserted1(bp,
5021                                         attn.sig[1] & group_mask->sig[1]);
5022                         bnx2x_attn_int_deasserted2(bp,
5023                                         attn.sig[2] & group_mask->sig[2]);
5024                         bnx2x_attn_int_deasserted0(bp,
5025                                         attn.sig[0] & group_mask->sig[0]);
5026                 }
5027         }
5028
5029         bnx2x_release_alr(bp);
5030
5031         if (bp->common.int_block == INT_BLOCK_HC)
5032                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
5033                             COMMAND_REG_ATTN_BITS_CLR);
5034         else
5035                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5036
5037         val = ~deasserted;
5038         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5039            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5040         REG_WR(bp, reg_addr, val);
5041
5042         if (~bp->attn_state & deasserted)
5043                 BNX2X_ERR("IGU ERROR\n");
5044
5045         reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5046                           MISC_REG_AEU_MASK_ATTN_FUNC_0;
5047
5048         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5049         aeu_mask = REG_RD(bp, reg_addr);
5050
5051         DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5052            aeu_mask, deasserted);
5053         aeu_mask |= (deasserted & 0x3ff);
5054         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5055
5056         REG_WR(bp, reg_addr, aeu_mask);
5057         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5058
5059         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5060         bp->attn_state &= ~deasserted;
5061         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5062 }
5063
5064 static void bnx2x_attn_int(struct bnx2x *bp)
5065 {
5066         /* read local copy of bits */
5067         u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5068                                                                 attn_bits);
5069         u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5070                                                                 attn_bits_ack);
5071         u32 attn_state = bp->attn_state;
5072
5073         /* look for changed bits */
5074         u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5075         u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5076
5077         DP(NETIF_MSG_HW,
5078            "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5079            attn_bits, attn_ack, asserted, deasserted);
5080
5081         if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5082                 BNX2X_ERR("BAD attention state\n");
5083
5084         /* handle bits that were raised */
5085         if (asserted)
5086                 bnx2x_attn_int_asserted(bp, asserted);
5087
5088         if (deasserted)
5089                 bnx2x_attn_int_deasserted(bp, deasserted);
5090 }
5091
5092 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5093                       u16 index, u8 op, u8 update)
5094 {
5095         u32 igu_addr = bp->igu_base_addr;
5096         igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5097         bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5098                              igu_addr);
5099 }
5100
5101 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5102 {
5103         /* No memory barriers */
5104         storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5105         mmiowb(); /* keep prod updates ordered */
5106 }
5107
5108 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5109                                       union event_ring_elem *elem)
5110 {
5111         u8 err = elem->message.error;
5112
5113         if (!bp->cnic_eth_dev.starting_cid  ||
5114             (cid < bp->cnic_eth_dev.starting_cid &&
5115             cid != bp->cnic_eth_dev.iscsi_l2_cid))
5116                 return 1;
5117
5118         DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5119
5120         if (unlikely(err)) {
5121
5122                 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5123                           cid);
5124                 bnx2x_panic_dump(bp, false);
5125         }
5126         bnx2x_cnic_cfc_comp(bp, cid, err);
5127         return 0;
5128 }
5129
5130 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5131 {
5132         struct bnx2x_mcast_ramrod_params rparam;
5133         int rc;
5134
5135         memset(&rparam, 0, sizeof(rparam));
5136
5137         rparam.mcast_obj = &bp->mcast_obj;
5138
5139         netif_addr_lock_bh(bp->dev);
5140
5141         /* Clear pending state for the last command */
5142         bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5143
5144         /* If there are pending mcast commands - send them */
5145         if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5146                 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5147                 if (rc < 0)
5148                         BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5149                                   rc);
5150         }
5151
5152         netif_addr_unlock_bh(bp->dev);
5153 }
5154
5155 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5156                                             union event_ring_elem *elem)
5157 {
5158         unsigned long ramrod_flags = 0;
5159         int rc = 0;
5160         u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
5161         struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5162
5163         /* Always push next commands out, don't wait here */
5164         __set_bit(RAMROD_CONT, &ramrod_flags);
5165
5166         switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
5167                             >> BNX2X_SWCID_SHIFT) {
5168         case BNX2X_FILTER_MAC_PENDING:
5169                 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5170                 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5171                         vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5172                 else
5173                         vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5174
5175                 break;
5176         case BNX2X_FILTER_MCAST_PENDING:
5177                 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5178                 /* This is only relevant for 57710 where multicast MACs are
5179                  * configured as unicast MACs using the same ramrod.
5180                  */
5181                 bnx2x_handle_mcast_eqe(bp);
5182                 return;
5183         default:
5184                 BNX2X_ERR("Unsupported classification command: %d\n",
5185                           elem->message.data.eth_event.echo);
5186                 return;
5187         }
5188
5189         rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5190
5191         if (rc < 0)
5192                 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5193         else if (rc > 0)
5194                 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5195 }
5196
5197 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5198
5199 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5200 {
5201         netif_addr_lock_bh(bp->dev);
5202
5203         clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5204
5205         /* Send rx_mode command again if was requested */
5206         if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5207                 bnx2x_set_storm_rx_mode(bp);
5208         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5209                                     &bp->sp_state))
5210                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
5211         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5212                                     &bp->sp_state))
5213                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
5214
5215         netif_addr_unlock_bh(bp->dev);
5216 }
5217
5218 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5219                                               union event_ring_elem *elem)
5220 {
5221         if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5222                 DP(BNX2X_MSG_SP,
5223                    "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5224                    elem->message.data.vif_list_event.func_bit_map);
5225                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5226                         elem->message.data.vif_list_event.func_bit_map);
5227         } else if (elem->message.data.vif_list_event.echo ==
5228                    VIF_LIST_RULE_SET) {
5229                 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5230                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5231         }
5232 }
5233
5234 /* called with rtnl_lock */
5235 static void bnx2x_after_function_update(struct bnx2x *bp)
5236 {
5237         int q, rc;
5238         struct bnx2x_fastpath *fp;
5239         struct bnx2x_queue_state_params queue_params = {NULL};
5240         struct bnx2x_queue_update_params *q_update_params =
5241                 &queue_params.params.update;
5242
5243         /* Send Q update command with afex vlan removal values for all Qs */
5244         queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5245
5246         /* set silent vlan removal values according to vlan mode */
5247         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5248                   &q_update_params->update_flags);
5249         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5250                   &q_update_params->update_flags);
5251         __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5252
5253         /* in access mode mark mask and value are 0 to strip all vlans */
5254         if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5255                 q_update_params->silent_removal_value = 0;
5256                 q_update_params->silent_removal_mask = 0;
5257         } else {
5258                 q_update_params->silent_removal_value =
5259                         (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5260                 q_update_params->silent_removal_mask = VLAN_VID_MASK;
5261         }
5262
5263         for_each_eth_queue(bp, q) {
5264                 /* Set the appropriate Queue object */
5265                 fp = &bp->fp[q];
5266                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5267
5268                 /* send the ramrod */
5269                 rc = bnx2x_queue_state_change(bp, &queue_params);
5270                 if (rc < 0)
5271                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5272                                   q);
5273         }
5274
5275         if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5276                 fp = &bp->fp[FCOE_IDX(bp)];
5277                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5278
5279                 /* clear pending completion bit */
5280                 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5281
5282                 /* mark latest Q bit */
5283                 smp_mb__before_atomic();
5284                 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5285                 smp_mb__after_atomic();
5286
5287                 /* send Q update ramrod for FCoE Q */
5288                 rc = bnx2x_queue_state_change(bp, &queue_params);
5289                 if (rc < 0)
5290                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5291                                   q);
5292         } else {
5293                 /* If no FCoE ring - ACK MCP now */
5294                 bnx2x_link_report(bp);
5295                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5296         }
5297 }
5298
5299 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5300         struct bnx2x *bp, u32 cid)
5301 {
5302         DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5303
5304         if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5305                 return &bnx2x_fcoe_sp_obj(bp, q_obj);
5306         else
5307                 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5308 }
5309
5310 static void bnx2x_eq_int(struct bnx2x *bp)
5311 {
5312         u16 hw_cons, sw_cons, sw_prod;
5313         union event_ring_elem *elem;
5314         u8 echo;
5315         u32 cid;
5316         u8 opcode;
5317         int rc, spqe_cnt = 0;
5318         struct bnx2x_queue_sp_obj *q_obj;
5319         struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5320         struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5321
5322         hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5323
5324         /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5325          * when we get the next-page we need to adjust so the loop
5326          * condition below will be met. The next element is the size of a
5327          * regular element and hence incrementing by 1
5328          */
5329         if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5330                 hw_cons++;
5331
5332         /* This function may never run in parallel with itself for a
5333          * specific bp, thus there is no need in "paired" read memory
5334          * barrier here.
5335          */
5336         sw_cons = bp->eq_cons;
5337         sw_prod = bp->eq_prod;
5338
5339         DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5340                         hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5341
5342         for (; sw_cons != hw_cons;
5343               sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5344
5345                 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5346
5347                 rc = bnx2x_iov_eq_sp_event(bp, elem);
5348                 if (!rc) {
5349                         DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5350                            rc);
5351                         goto next_spqe;
5352                 }
5353
5354                 /* elem CID originates from FW; actually LE */
5355                 cid = SW_CID((__force __le32)
5356                              elem->message.data.cfc_del_event.cid);
5357                 opcode = elem->message.opcode;
5358
5359                 /* handle eq element */
5360                 switch (opcode) {
5361                 case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5362                         bnx2x_vf_mbx_schedule(bp,
5363                                               &elem->message.data.vf_pf_event);
5364                         continue;
5365
5366                 case EVENT_RING_OPCODE_STAT_QUERY:
5367                         DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5368                                "got statistics comp event %d\n",
5369                                bp->stats_comp++);
5370                         /* nothing to do with stats comp */
5371                         goto next_spqe;
5372
5373                 case EVENT_RING_OPCODE_CFC_DEL:
5374                         /* handle according to cid range */
5375                         /*
5376                          * we may want to verify here that the bp state is
5377                          * HALTING
5378                          */
5379                         DP(BNX2X_MSG_SP,
5380                            "got delete ramrod for MULTI[%d]\n", cid);
5381
5382                         if (CNIC_LOADED(bp) &&
5383                             !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5384                                 goto next_spqe;
5385
5386                         q_obj = bnx2x_cid_to_q_obj(bp, cid);
5387
5388                         if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5389                                 break;
5390
5391                         goto next_spqe;
5392
5393                 case EVENT_RING_OPCODE_STOP_TRAFFIC:
5394                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5395                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5396                         if (f_obj->complete_cmd(bp, f_obj,
5397                                                 BNX2X_F_CMD_TX_STOP))
5398                                 break;
5399                         goto next_spqe;
5400
5401                 case EVENT_RING_OPCODE_START_TRAFFIC:
5402                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5403                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5404                         if (f_obj->complete_cmd(bp, f_obj,
5405                                                 BNX2X_F_CMD_TX_START))
5406                                 break;
5407                         goto next_spqe;
5408
5409                 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5410                         echo = elem->message.data.function_update_event.echo;
5411                         if (echo == SWITCH_UPDATE) {
5412                                 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5413                                    "got FUNC_SWITCH_UPDATE ramrod\n");
5414                                 if (f_obj->complete_cmd(
5415                                         bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5416                                         break;
5417
5418                         } else {
5419                                 int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5420
5421                                 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5422                                    "AFEX: ramrod completed FUNCTION_UPDATE\n");
5423                                 f_obj->complete_cmd(bp, f_obj,
5424                                                     BNX2X_F_CMD_AFEX_UPDATE);
5425
5426                                 /* We will perform the Queues update from
5427                                  * sp_rtnl task as all Queue SP operations
5428                                  * should run under rtnl_lock.
5429                                  */
5430                                 bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5431                         }
5432
5433                         goto next_spqe;
5434
5435                 case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5436                         f_obj->complete_cmd(bp, f_obj,
5437                                             BNX2X_F_CMD_AFEX_VIFLISTS);
5438                         bnx2x_after_afex_vif_lists(bp, elem);
5439                         goto next_spqe;
5440                 case EVENT_RING_OPCODE_FUNCTION_START:
5441                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5442                            "got FUNC_START ramrod\n");
5443                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5444                                 break;
5445
5446                         goto next_spqe;
5447
5448                 case EVENT_RING_OPCODE_FUNCTION_STOP:
5449                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5450                            "got FUNC_STOP ramrod\n");
5451                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5452                                 break;
5453
5454                         goto next_spqe;
5455                 }
5456
5457                 switch (opcode | bp->state) {
5458                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5459                       BNX2X_STATE_OPEN):
5460                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5461                       BNX2X_STATE_OPENING_WAIT4_PORT):
5462                         cid = elem->message.data.eth_event.echo &
5463                                 BNX2X_SWCID_MASK;
5464                         DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5465                            cid);
5466                         rss_raw->clear_pending(rss_raw);
5467                         break;
5468
5469                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5470                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5471                 case (EVENT_RING_OPCODE_SET_MAC |
5472                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5473                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5474                       BNX2X_STATE_OPEN):
5475                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5476                       BNX2X_STATE_DIAG):
5477                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5478                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5479                         DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
5480                         bnx2x_handle_classification_eqe(bp, elem);
5481                         break;
5482
5483                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5484                       BNX2X_STATE_OPEN):
5485                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5486                       BNX2X_STATE_DIAG):
5487                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5488                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5489                         DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5490                         bnx2x_handle_mcast_eqe(bp);
5491                         break;
5492
5493                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5494                       BNX2X_STATE_OPEN):
5495                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5496                       BNX2X_STATE_DIAG):
5497                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5498                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5499                         DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5500                         bnx2x_handle_rx_mode_eqe(bp);
5501                         break;
5502                 default:
5503                         /* unknown event log error and continue */
5504                         BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5505                                   elem->message.opcode, bp->state);
5506                 }
5507 next_spqe:
5508                 spqe_cnt++;
5509         } /* for */
5510
5511         smp_mb__before_atomic();
5512         atomic_add(spqe_cnt, &bp->eq_spq_left);
5513
5514         bp->eq_cons = sw_cons;
5515         bp->eq_prod = sw_prod;
5516         /* Make sure that above mem writes were issued towards the memory */
5517         smp_wmb();
5518
5519         /* update producer */
5520         bnx2x_update_eq_prod(bp, bp->eq_prod);
5521 }
5522
5523 static void bnx2x_sp_task(struct work_struct *work)
5524 {
5525         struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5526
5527         DP(BNX2X_MSG_SP, "sp task invoked\n");
5528
5529         /* make sure the atomic interrupt_occurred has been written */
5530         smp_rmb();
5531         if (atomic_read(&bp->interrupt_occurred)) {
5532
5533                 /* what work needs to be performed? */
5534                 u16 status = bnx2x_update_dsb_idx(bp);
5535
5536                 DP(BNX2X_MSG_SP, "status %x\n", status);
5537                 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5538                 atomic_set(&bp->interrupt_occurred, 0);
5539
5540                 /* HW attentions */
5541                 if (status & BNX2X_DEF_SB_ATT_IDX) {
5542                         bnx2x_attn_int(bp);
5543                         status &= ~BNX2X_DEF_SB_ATT_IDX;
5544                 }
5545
5546                 /* SP events: STAT_QUERY and others */
5547                 if (status & BNX2X_DEF_SB_IDX) {
5548                         struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5549
5550                 if (FCOE_INIT(bp) &&
5551                             (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5552                                 /* Prevent local bottom-halves from running as
5553                                  * we are going to change the local NAPI list.
5554                                  */
5555                                 local_bh_disable();
5556                                 napi_schedule(&bnx2x_fcoe(bp, napi));
5557                                 local_bh_enable();
5558                         }
5559
5560                         /* Handle EQ completions */
5561                         bnx2x_eq_int(bp);
5562                         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5563                                      le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5564
5565                         status &= ~BNX2X_DEF_SB_IDX;
5566                 }
5567
5568                 /* if status is non zero then perhaps something went wrong */
5569                 if (unlikely(status))
5570                         DP(BNX2X_MSG_SP,
5571                            "got an unknown interrupt! (status 0x%x)\n", status);
5572
5573                 /* ack status block only if something was actually handled */
5574                 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5575                              le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5576         }
5577
5578         /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5579         if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5580                                &bp->sp_state)) {
5581                 bnx2x_link_report(bp);
5582                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5583         }
5584 }
5585
5586 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5587 {
5588         struct net_device *dev = dev_instance;
5589         struct bnx2x *bp = netdev_priv(dev);
5590
5591         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5592                      IGU_INT_DISABLE, 0);
5593
5594 #ifdef BNX2X_STOP_ON_ERROR
5595         if (unlikely(bp->panic))
5596                 return IRQ_HANDLED;
5597 #endif
5598
5599         if (CNIC_LOADED(bp)) {
5600                 struct cnic_ops *c_ops;
5601
5602                 rcu_read_lock();
5603                 c_ops = rcu_dereference(bp->cnic_ops);
5604                 if (c_ops)
5605                         c_ops->cnic_handler(bp->cnic_data, NULL);
5606                 rcu_read_unlock();
5607         }
5608
5609         /* schedule sp task to perform default status block work, ack
5610          * attentions and enable interrupts.
5611          */
5612         bnx2x_schedule_sp_task(bp);
5613
5614         return IRQ_HANDLED;
5615 }
5616
5617 /* end of slow path */
5618
5619 void bnx2x_drv_pulse(struct bnx2x *bp)
5620 {
5621         SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5622                  bp->fw_drv_pulse_wr_seq);
5623 }
5624
5625 static void bnx2x_timer(unsigned long data)
5626 {
5627         struct bnx2x *bp = (struct bnx2x *) data;
5628
5629         if (!netif_running(bp->dev))
5630                 return;
5631
5632         if (IS_PF(bp) &&
5633             !BP_NOMCP(bp)) {
5634                 int mb_idx = BP_FW_MB_IDX(bp);
5635                 u16 drv_pulse;
5636                 u16 mcp_pulse;
5637
5638                 ++bp->fw_drv_pulse_wr_seq;
5639                 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5640                 drv_pulse = bp->fw_drv_pulse_wr_seq;
5641                 bnx2x_drv_pulse(bp);
5642
5643                 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5644                              MCP_PULSE_SEQ_MASK);
5645                 /* The delta between driver pulse and mcp response
5646                  * should not get too big. If the MFW is more than 5 pulses
5647                  * behind, we should worry about it enough to generate an error
5648                  * log.
5649                  */
5650                 if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5651                         BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5652                                   drv_pulse, mcp_pulse);
5653         }
5654
5655         if (bp->state == BNX2X_STATE_OPEN)
5656                 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5657
5658         /* sample pf vf bulletin board for new posts from pf */
5659         if (IS_VF(bp))
5660                 bnx2x_timer_sriov(bp);
5661
5662         mod_timer(&bp->timer, jiffies + bp->current_interval);
5663 }
5664
5665 /* end of Statistics */
5666
5667 /* nic init */
5668
5669 /*
5670  * nic init service functions
5671  */
5672
5673 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5674 {
5675         u32 i;
5676         if (!(len%4) && !(addr%4))
5677                 for (i = 0; i < len; i += 4)
5678                         REG_WR(bp, addr + i, fill);
5679         else
5680                 for (i = 0; i < len; i++)
5681                         REG_WR8(bp, addr + i, fill);
5682 }
5683
5684 /* helper: writes FP SP data to FW - data_size in dwords */
5685 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5686                                 int fw_sb_id,
5687                                 u32 *sb_data_p,
5688                                 u32 data_size)
5689 {
5690         int index;
5691         for (index = 0; index < data_size; index++)
5692                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5693                         CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5694                         sizeof(u32)*index,
5695                         *(sb_data_p + index));
5696 }
5697
5698 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5699 {
5700         u32 *sb_data_p;
5701         u32 data_size = 0;
5702         struct hc_status_block_data_e2 sb_data_e2;
5703         struct hc_status_block_data_e1x sb_data_e1x;
5704
5705         /* disable the function first */
5706         if (!CHIP_IS_E1x(bp)) {
5707                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5708                 sb_data_e2.common.state = SB_DISABLED;
5709                 sb_data_e2.common.p_func.vf_valid = false;
5710                 sb_data_p = (u32 *)&sb_data_e2;
5711                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5712         } else {
5713                 memset(&sb_data_e1x, 0,
5714                        sizeof(struct hc_status_block_data_e1x));
5715                 sb_data_e1x.common.state = SB_DISABLED;
5716                 sb_data_e1x.common.p_func.vf_valid = false;
5717                 sb_data_p = (u32 *)&sb_data_e1x;
5718                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5719         }
5720         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5721
5722         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5723                         CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5724                         CSTORM_STATUS_BLOCK_SIZE);
5725         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5726                         CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5727                         CSTORM_SYNC_BLOCK_SIZE);
5728 }
5729
5730 /* helper:  writes SP SB data to FW */
5731 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5732                 struct hc_sp_status_block_data *sp_sb_data)
5733 {
5734         int func = BP_FUNC(bp);
5735         int i;
5736         for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5737                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5738                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5739                         i*sizeof(u32),
5740                         *((u32 *)sp_sb_data + i));
5741 }
5742
5743 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5744 {
5745         int func = BP_FUNC(bp);
5746         struct hc_sp_status_block_data sp_sb_data;
5747         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5748
5749         sp_sb_data.state = SB_DISABLED;
5750         sp_sb_data.p_func.vf_valid = false;
5751
5752         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5753
5754         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5755                         CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5756                         CSTORM_SP_STATUS_BLOCK_SIZE);
5757         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5758                         CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5759                         CSTORM_SP_SYNC_BLOCK_SIZE);
5760 }
5761
5762 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5763                                            int igu_sb_id, int igu_seg_id)
5764 {
5765         hc_sm->igu_sb_id = igu_sb_id;
5766         hc_sm->igu_seg_id = igu_seg_id;
5767         hc_sm->timer_value = 0xFF;
5768         hc_sm->time_to_expire = 0xFFFFFFFF;
5769 }
5770
5771 /* allocates state machine ids. */
5772 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5773 {
5774         /* zero out state machine indices */
5775         /* rx indices */
5776         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5777
5778         /* tx indices */
5779         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5780         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5781         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5782         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5783
5784         /* map indices */
5785         /* rx indices */
5786         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5787                 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5788
5789         /* tx indices */
5790         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5791                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5792         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5793                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5794         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5795                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5796         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5797                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5798 }
5799
5800 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5801                           u8 vf_valid, int fw_sb_id, int igu_sb_id)
5802 {
5803         int igu_seg_id;
5804
5805         struct hc_status_block_data_e2 sb_data_e2;
5806         struct hc_status_block_data_e1x sb_data_e1x;
5807         struct hc_status_block_sm  *hc_sm_p;
5808         int data_size;
5809         u32 *sb_data_p;
5810
5811         if (CHIP_INT_MODE_IS_BC(bp))
5812                 igu_seg_id = HC_SEG_ACCESS_NORM;
5813         else
5814                 igu_seg_id = IGU_SEG_ACCESS_NORM;
5815
5816         bnx2x_zero_fp_sb(bp, fw_sb_id);
5817
5818         if (!CHIP_IS_E1x(bp)) {
5819                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5820                 sb_data_e2.common.state = SB_ENABLED;
5821                 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5822                 sb_data_e2.common.p_func.vf_id = vfid;
5823                 sb_data_e2.common.p_func.vf_valid = vf_valid;
5824                 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5825                 sb_data_e2.common.same_igu_sb_1b = true;
5826                 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5827                 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5828                 hc_sm_p = sb_data_e2.common.state_machine;
5829                 sb_data_p = (u32 *)&sb_data_e2;
5830                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5831                 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5832         } else {
5833                 memset(&sb_data_e1x, 0,
5834                        sizeof(struct hc_status_block_data_e1x));
5835                 sb_data_e1x.common.state = SB_ENABLED;
5836                 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5837                 sb_data_e1x.common.p_func.vf_id = 0xff;
5838                 sb_data_e1x.common.p_func.vf_valid = false;
5839                 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5840                 sb_data_e1x.common.same_igu_sb_1b = true;
5841                 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5842                 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5843                 hc_sm_p = sb_data_e1x.common.state_machine;
5844                 sb_data_p = (u32 *)&sb_data_e1x;
5845                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5846                 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5847         }
5848
5849         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5850                                        igu_sb_id, igu_seg_id);
5851         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5852                                        igu_sb_id, igu_seg_id);
5853
5854         DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5855
5856         /* write indices to HW - PCI guarantees endianity of regpairs */
5857         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5858 }
5859
5860 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5861                                      u16 tx_usec, u16 rx_usec)
5862 {
5863         bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5864                                     false, rx_usec);
5865         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5866                                        HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5867                                        tx_usec);
5868         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5869                                        HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5870                                        tx_usec);
5871         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5872                                        HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5873                                        tx_usec);
5874 }
5875
5876 static void bnx2x_init_def_sb(struct bnx2x *bp)
5877 {
5878         struct host_sp_status_block *def_sb = bp->def_status_blk;
5879         dma_addr_t mapping = bp->def_status_blk_mapping;
5880         int igu_sp_sb_index;
5881         int igu_seg_id;
5882         int port = BP_PORT(bp);
5883         int func = BP_FUNC(bp);
5884         int reg_offset, reg_offset_en5;
5885         u64 section;
5886         int index;
5887         struct hc_sp_status_block_data sp_sb_data;
5888         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5889
5890         if (CHIP_INT_MODE_IS_BC(bp)) {
5891                 igu_sp_sb_index = DEF_SB_IGU_ID;
5892                 igu_seg_id = HC_SEG_ACCESS_DEF;
5893         } else {
5894                 igu_sp_sb_index = bp->igu_dsb_id;
5895                 igu_seg_id = IGU_SEG_ACCESS_DEF;
5896         }
5897
5898         /* ATTN */
5899         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5900                                             atten_status_block);
5901         def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5902
5903         bp->attn_state = 0;
5904
5905         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5906                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5907         reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5908                                  MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5909         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5910                 int sindex;
5911                 /* take care of sig[0]..sig[4] */
5912                 for (sindex = 0; sindex < 4; sindex++)
5913                         bp->attn_group[index].sig[sindex] =
5914                            REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5915
5916                 if (!CHIP_IS_E1x(bp))
5917                         /*
5918                          * enable5 is separate from the rest of the registers,
5919                          * and therefore the address skip is 4
5920                          * and not 16 between the different groups
5921                          */
5922                         bp->attn_group[index].sig[4] = REG_RD(bp,
5923                                         reg_offset_en5 + 0x4*index);
5924                 else
5925                         bp->attn_group[index].sig[4] = 0;
5926         }
5927
5928         if (bp->common.int_block == INT_BLOCK_HC) {
5929                 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5930                                      HC_REG_ATTN_MSG0_ADDR_L);
5931
5932                 REG_WR(bp, reg_offset, U64_LO(section));
5933                 REG_WR(bp, reg_offset + 4, U64_HI(section));
5934         } else if (!CHIP_IS_E1x(bp)) {
5935                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5936                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5937         }
5938
5939         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5940                                             sp_sb);
5941
5942         bnx2x_zero_sp_sb(bp);
5943
5944         /* PCI guarantees endianity of regpairs */
5945         sp_sb_data.state                = SB_ENABLED;
5946         sp_sb_data.host_sb_addr.lo      = U64_LO(section);
5947         sp_sb_data.host_sb_addr.hi      = U64_HI(section);
5948         sp_sb_data.igu_sb_id            = igu_sp_sb_index;
5949         sp_sb_data.igu_seg_id           = igu_seg_id;
5950         sp_sb_data.p_func.pf_id         = func;
5951         sp_sb_data.p_func.vnic_id       = BP_VN(bp);
5952         sp_sb_data.p_func.vf_id         = 0xff;
5953
5954         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5955
5956         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5957 }
5958
5959 void bnx2x_update_coalesce(struct bnx2x *bp)
5960 {
5961         int i;
5962
5963         for_each_eth_queue(bp, i)
5964                 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5965                                          bp->tx_ticks, bp->rx_ticks);
5966 }
5967
5968 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5969 {
5970         spin_lock_init(&bp->spq_lock);
5971         atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5972
5973         bp->spq_prod_idx = 0;
5974         bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5975         bp->spq_prod_bd = bp->spq;
5976         bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5977 }
5978
5979 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5980 {
5981         int i;
5982         for (i = 1; i <= NUM_EQ_PAGES; i++) {
5983                 union event_ring_elem *elem =
5984                         &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5985
5986                 elem->next_page.addr.hi =
5987                         cpu_to_le32(U64_HI(bp->eq_mapping +
5988                                    BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5989                 elem->next_page.addr.lo =
5990                         cpu_to_le32(U64_LO(bp->eq_mapping +
5991                                    BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5992         }
5993         bp->eq_cons = 0;
5994         bp->eq_prod = NUM_EQ_DESC;
5995         bp->eq_cons_sb = BNX2X_EQ_INDEX;
5996         /* we want a warning message before it gets wrought... */
5997         atomic_set(&bp->eq_spq_left,
5998                 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5999 }
6000
6001 /* called with netif_addr_lock_bh() */
6002 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6003                                unsigned long rx_mode_flags,
6004                                unsigned long rx_accept_flags,
6005                                unsigned long tx_accept_flags,
6006                                unsigned long ramrod_flags)
6007 {
6008         struct bnx2x_rx_mode_ramrod_params ramrod_param;
6009         int rc;
6010
6011         memset(&ramrod_param, 0, sizeof(ramrod_param));
6012
6013         /* Prepare ramrod parameters */
6014         ramrod_param.cid = 0;
6015         ramrod_param.cl_id = cl_id;
6016         ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6017         ramrod_param.func_id = BP_FUNC(bp);
6018
6019         ramrod_param.pstate = &bp->sp_state;
6020         ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6021
6022         ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6023         ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6024
6025         set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6026
6027         ramrod_param.ramrod_flags = ramrod_flags;
6028         ramrod_param.rx_mode_flags = rx_mode_flags;
6029
6030         ramrod_param.rx_accept_flags = rx_accept_flags;
6031         ramrod_param.tx_accept_flags = tx_accept_flags;
6032
6033         rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6034         if (rc < 0) {
6035                 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6036                 return rc;
6037         }
6038
6039         return 0;
6040 }
6041
6042 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6043                                    unsigned long *rx_accept_flags,
6044                                    unsigned long *tx_accept_flags)
6045 {
6046         /* Clear the flags first */
6047         *rx_accept_flags = 0;
6048         *tx_accept_flags = 0;
6049
6050         switch (rx_mode) {
6051         case BNX2X_RX_MODE_NONE:
6052                 /*
6053                  * 'drop all' supersedes any accept flags that may have been
6054                  * passed to the function.
6055                  */
6056                 break;
6057         case BNX2X_RX_MODE_NORMAL:
6058                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6059                 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6060                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6061
6062                 /* internal switching mode */
6063                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6064                 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6065                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6066
6067                 break;
6068         case BNX2X_RX_MODE_ALLMULTI:
6069                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6070                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6071                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6072
6073                 /* internal switching mode */
6074                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6075                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6076                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6077
6078                 break;
6079         case BNX2X_RX_MODE_PROMISC:
6080                 /* According to definition of SI mode, iface in promisc mode
6081                  * should receive matched and unmatched (in resolution of port)
6082                  * unicast packets.
6083                  */
6084                 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6085                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6086                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6087                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6088
6089                 /* internal switching mode */
6090                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6091                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6092
6093                 if (IS_MF_SI(bp))
6094                         __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6095                 else
6096                         __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6097
6098                 break;
6099         default:
6100                 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6101                 return -EINVAL;
6102         }
6103
6104         /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
6105         if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
6106                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6107                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6108         }
6109
6110         return 0;
6111 }
6112
6113 /* called with netif_addr_lock_bh() */
6114 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6115 {
6116         unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6117         unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6118         int rc;
6119
6120         if (!NO_FCOE(bp))
6121                 /* Configure rx_mode of FCoE Queue */
6122                 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6123
6124         rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6125                                      &tx_accept_flags);
6126         if (rc)
6127                 return rc;
6128
6129         __set_bit(RAMROD_RX, &ramrod_flags);
6130         __set_bit(RAMROD_TX, &ramrod_flags);
6131
6132         return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6133                                    rx_accept_flags, tx_accept_flags,
6134                                    ramrod_flags);
6135 }
6136
6137 static void bnx2x_init_internal_common(struct bnx2x *bp)
6138 {
6139         int i;
6140
6141         /* Zero this manually as its initialization is
6142            currently missing in the initTool */
6143         for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6144                 REG_WR(bp, BAR_USTRORM_INTMEM +
6145                        USTORM_AGG_DATA_OFFSET + i * 4, 0);
6146         if (!CHIP_IS_E1x(bp)) {
6147                 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6148                         CHIP_INT_MODE_IS_BC(bp) ?
6149                         HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6150         }
6151 }
6152
6153 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6154 {
6155         switch (load_code) {
6156         case FW_MSG_CODE_DRV_LOAD_COMMON:
6157         case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6158                 bnx2x_init_internal_common(bp);
6159                 /* no break */
6160
6161         case FW_MSG_CODE_DRV_LOAD_PORT:
6162                 /* nothing to do */
6163                 /* no break */
6164
6165         case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6166                 /* internal memory per function is
6167                    initialized inside bnx2x_pf_init */
6168                 break;
6169
6170         default:
6171                 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6172                 break;
6173         }
6174 }
6175
6176 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6177 {
6178         return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6179 }
6180
6181 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6182 {
6183         return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6184 }
6185
6186 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6187 {
6188         if (CHIP_IS_E1x(fp->bp))
6189                 return BP_L_ID(fp->bp) + fp->index;
6190         else    /* We want Client ID to be the same as IGU SB ID for 57712 */
6191                 return bnx2x_fp_igu_sb_id(fp);
6192 }
6193
6194 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6195 {
6196         struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6197         u8 cos;
6198         unsigned long q_type = 0;
6199         u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6200         fp->rx_queue = fp_idx;
6201         fp->cid = fp_idx;
6202         fp->cl_id = bnx2x_fp_cl_id(fp);
6203         fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6204         fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6205         /* qZone id equals to FW (per path) client id */
6206         fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6207
6208         /* init shortcut */
6209         fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6210
6211         /* Setup SB indices */
6212         fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6213
6214         /* Configure Queue State object */
6215         __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6216         __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6217
6218         BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6219
6220         /* init tx data */
6221         for_each_cos_in_tx_queue(fp, cos) {
6222                 bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6223                                   CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6224                                   FP_COS_TO_TXQ(fp, cos, bp),
6225                                   BNX2X_TX_SB_INDEX_BASE + cos, fp);
6226                 cids[cos] = fp->txdata_ptr[cos]->cid;
6227         }
6228
6229         /* nothing more for vf to do here */
6230         if (IS_VF(bp))
6231                 return;
6232
6233         bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6234                       fp->fw_sb_id, fp->igu_sb_id);
6235         bnx2x_update_fpsb_idx(fp);
6236         bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6237                              fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6238                              bnx2x_sp_mapping(bp, q_rdata), q_type);
6239
6240         /**
6241          * Configure classification DBs: Always enable Tx switching
6242          */
6243         bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6244
6245         DP(NETIF_MSG_IFUP,
6246            "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6247            fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6248            fp->igu_sb_id);
6249 }
6250
6251 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6252 {
6253         int i;
6254
6255         for (i = 1; i <= NUM_TX_RINGS; i++) {
6256                 struct eth_tx_next_bd *tx_next_bd =
6257                         &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6258
6259                 tx_next_bd->addr_hi =
6260                         cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6261                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6262                 tx_next_bd->addr_lo =
6263                         cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6264                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6265         }
6266
6267         *txdata->tx_cons_sb = cpu_to_le16(0);
6268
6269         SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6270         txdata->tx_db.data.zero_fill1 = 0;
6271         txdata->tx_db.data.prod = 0;
6272
6273         txdata->tx_pkt_prod = 0;
6274         txdata->tx_pkt_cons = 0;
6275         txdata->tx_bd_prod = 0;
6276         txdata->tx_bd_cons = 0;
6277         txdata->tx_pkt = 0;
6278 }
6279
6280 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6281 {
6282         int i;
6283
6284         for_each_tx_queue_cnic(bp, i)
6285                 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6286 }
6287
6288 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6289 {
6290         int i;
6291         u8 cos;
6292
6293         for_each_eth_queue(bp, i)
6294                 for_each_cos_in_tx_queue(&bp->fp[i], cos)
6295                         bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6296 }
6297
6298 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6299 {
6300         struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6301         unsigned long q_type = 0;
6302
6303         bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6304         bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6305                                                      BNX2X_FCOE_ETH_CL_ID_IDX);
6306         bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6307         bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6308         bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6309         bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6310         bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6311                           fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6312                           fp);
6313
6314         DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6315
6316         /* qZone id equals to FW (per path) client id */
6317         bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6318         /* init shortcut */
6319         bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6320                 bnx2x_rx_ustorm_prods_offset(fp);
6321
6322         /* Configure Queue State object */
6323         __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6324         __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6325
6326         /* No multi-CoS for FCoE L2 client */
6327         BUG_ON(fp->max_cos != 1);
6328
6329         bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6330                              &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6331                              bnx2x_sp_mapping(bp, q_rdata), q_type);
6332
6333         DP(NETIF_MSG_IFUP,
6334            "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6335            fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6336            fp->igu_sb_id);
6337 }
6338
6339 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6340 {
6341         if (!NO_FCOE(bp))
6342                 bnx2x_init_fcoe_fp(bp);
6343
6344         bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6345                       BNX2X_VF_ID_INVALID, false,
6346                       bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6347
6348         /* ensure status block indices were read */
6349         rmb();
6350         bnx2x_init_rx_rings_cnic(bp);
6351         bnx2x_init_tx_rings_cnic(bp);
6352
6353         /* flush all */
6354         mb();
6355         mmiowb();
6356 }
6357
6358 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6359 {
6360         int i;
6361
6362         /* Setup NIC internals and enable interrupts */
6363         for_each_eth_queue(bp, i)
6364                 bnx2x_init_eth_fp(bp, i);
6365
6366         /* ensure status block indices were read */
6367         rmb();
6368         bnx2x_init_rx_rings(bp);
6369         bnx2x_init_tx_rings(bp);
6370
6371         if (IS_PF(bp)) {
6372                 /* Initialize MOD_ABS interrupts */
6373                 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6374                                        bp->common.shmem_base,
6375                                        bp->common.shmem2_base, BP_PORT(bp));
6376
6377                 /* initialize the default status block and sp ring */
6378                 bnx2x_init_def_sb(bp);
6379                 bnx2x_update_dsb_idx(bp);
6380                 bnx2x_init_sp_ring(bp);
6381         } else {
6382                 bnx2x_memset_stats(bp);
6383         }
6384 }
6385
6386 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6387 {
6388         bnx2x_init_eq_ring(bp);
6389         bnx2x_init_internal(bp, load_code);
6390         bnx2x_pf_init(bp);
6391         bnx2x_stats_init(bp);
6392
6393         /* flush all before enabling interrupts */
6394         mb();
6395         mmiowb();
6396
6397         bnx2x_int_enable(bp);
6398
6399         /* Check for SPIO5 */
6400         bnx2x_attn_int_deasserted0(bp,
6401                 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6402                                    AEU_INPUTS_ATTN_BITS_SPIO5);
6403 }
6404
6405 /* gzip service functions */
6406 static int bnx2x_gunzip_init(struct bnx2x *bp)
6407 {
6408         bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6409                                             &bp->gunzip_mapping, GFP_KERNEL);
6410         if (bp->gunzip_buf  == NULL)
6411                 goto gunzip_nomem1;
6412
6413         bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6414         if (bp->strm  == NULL)
6415                 goto gunzip_nomem2;
6416
6417         bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6418         if (bp->strm->workspace == NULL)
6419                 goto gunzip_nomem3;
6420
6421         return 0;
6422
6423 gunzip_nomem3:
6424         kfree(bp->strm);
6425         bp->strm = NULL;
6426
6427 gunzip_nomem2:
6428         dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6429                           bp->gunzip_mapping);
6430         bp->gunzip_buf = NULL;
6431
6432 gunzip_nomem1:
6433         BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6434         return -ENOMEM;
6435 }
6436
6437 static void bnx2x_gunzip_end(struct bnx2x *bp)
6438 {
6439         if (bp->strm) {
6440                 vfree(bp->strm->workspace);
6441                 kfree(bp->strm);
6442                 bp->strm = NULL;
6443         }
6444
6445         if (bp->gunzip_buf) {
6446                 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6447                                   bp->gunzip_mapping);
6448                 bp->gunzip_buf = NULL;
6449         }
6450 }
6451
6452 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6453 {
6454         int n, rc;
6455
6456         /* check gzip header */
6457         if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6458                 BNX2X_ERR("Bad gzip header\n");
6459                 return -EINVAL;
6460         }
6461
6462         n = 10;
6463
6464 #define FNAME                           0x8
6465
6466         if (zbuf[3] & FNAME)
6467                 while ((zbuf[n++] != 0) && (n < len));
6468
6469         bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6470         bp->strm->avail_in = len - n;
6471         bp->strm->next_out = bp->gunzip_buf;
6472         bp->strm->avail_out = FW_BUF_SIZE;
6473
6474         rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6475         if (rc != Z_OK)
6476                 return rc;
6477
6478         rc = zlib_inflate(bp->strm, Z_FINISH);
6479         if ((rc != Z_OK) && (rc != Z_STREAM_END))
6480                 netdev_err(bp->dev, "Firmware decompression error: %s\n",
6481                            bp->strm->msg);
6482
6483         bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6484         if (bp->gunzip_outlen & 0x3)
6485                 netdev_err(bp->dev,
6486                            "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6487                                 bp->gunzip_outlen);
6488         bp->gunzip_outlen >>= 2;
6489
6490         zlib_inflateEnd(bp->strm);
6491
6492         if (rc == Z_STREAM_END)
6493                 return 0;
6494
6495         return rc;
6496 }
6497
6498 /* nic load/unload */
6499
6500 /*
6501  * General service functions
6502  */
6503
6504 /* send a NIG loopback debug packet */
6505 static void bnx2x_lb_pckt(struct bnx2x *bp)
6506 {
6507         u32 wb_write[3];
6508
6509         /* Ethernet source and destination addresses */
6510         wb_write[0] = 0x55555555;
6511         wb_write[1] = 0x55555555;
6512         wb_write[2] = 0x20;             /* SOP */
6513         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6514
6515         /* NON-IP protocol */
6516         wb_write[0] = 0x09000000;
6517         wb_write[1] = 0x55555555;
6518         wb_write[2] = 0x10;             /* EOP, eop_bvalid = 0 */
6519         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6520 }
6521
6522 /* some of the internal memories
6523  * are not directly readable from the driver
6524  * to test them we send debug packets
6525  */
6526 static int bnx2x_int_mem_test(struct bnx2x *bp)
6527 {
6528         int factor;
6529         int count, i;
6530         u32 val = 0;
6531
6532         if (CHIP_REV_IS_FPGA(bp))
6533                 factor = 120;
6534         else if (CHIP_REV_IS_EMUL(bp))
6535                 factor = 200;
6536         else
6537                 factor = 1;
6538
6539         /* Disable inputs of parser neighbor blocks */
6540         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6541         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6542         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6543         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6544
6545         /*  Write 0 to parser credits for CFC search request */
6546         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6547
6548         /* send Ethernet packet */
6549         bnx2x_lb_pckt(bp);
6550
6551         /* TODO do i reset NIG statistic? */
6552         /* Wait until NIG register shows 1 packet of size 0x10 */
6553         count = 1000 * factor;
6554         while (count) {
6555
6556                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6557                 val = *bnx2x_sp(bp, wb_data[0]);
6558                 if (val == 0x10)
6559                         break;
6560
6561                 usleep_range(10000, 20000);
6562                 count--;
6563         }
6564         if (val != 0x10) {
6565                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6566                 return -1;
6567         }
6568
6569         /* Wait until PRS register shows 1 packet */
6570         count = 1000 * factor;
6571         while (count) {
6572                 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6573                 if (val == 1)
6574                         break;
6575
6576                 usleep_range(10000, 20000);
6577                 count--;
6578         }
6579         if (val != 0x1) {
6580                 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6581                 return -2;
6582         }
6583
6584         /* Reset and init BRB, PRS */
6585         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6586         msleep(50);
6587         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6588         msleep(50);
6589         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6590         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6591
6592         DP(NETIF_MSG_HW, "part2\n");
6593
6594         /* Disable inputs of parser neighbor blocks */
6595         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6596         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6597         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6598         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6599
6600         /* Write 0 to parser credits for CFC search request */
6601         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6602
6603         /* send 10 Ethernet packets */
6604         for (i = 0; i < 10; i++)
6605                 bnx2x_lb_pckt(bp);
6606
6607         /* Wait until NIG register shows 10 + 1
6608            packets of size 11*0x10 = 0xb0 */
6609         count = 1000 * factor;
6610         while (count) {
6611
6612                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6613                 val = *bnx2x_sp(bp, wb_data[0]);
6614                 if (val == 0xb0)
6615                         break;
6616
6617                 usleep_range(10000, 20000);
6618                 count--;
6619         }
6620         if (val != 0xb0) {
6621                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6622                 return -3;
6623         }
6624
6625         /* Wait until PRS register shows 2 packets */
6626         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6627         if (val != 2)
6628                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6629
6630         /* Write 1 to parser credits for CFC search request */
6631         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6632
6633         /* Wait until PRS register shows 3 packets */
6634         msleep(10 * factor);
6635         /* Wait until NIG register shows 1 packet of size 0x10 */
6636         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6637         if (val != 3)
6638                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6639
6640         /* clear NIG EOP FIFO */
6641         for (i = 0; i < 11; i++)
6642                 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6643         val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6644         if (val != 1) {
6645                 BNX2X_ERR("clear of NIG failed\n");
6646                 return -4;
6647         }
6648
6649         /* Reset and init BRB, PRS, NIG */
6650         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6651         msleep(50);
6652         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6653         msleep(50);
6654         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6655         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6656         if (!CNIC_SUPPORT(bp))
6657                 /* set NIC mode */
6658                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6659
6660         /* Enable inputs of parser neighbor blocks */
6661         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6662         REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6663         REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6664         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6665
6666         DP(NETIF_MSG_HW, "done\n");
6667
6668         return 0; /* OK */
6669 }
6670
6671 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6672 {
6673         u32 val;
6674
6675         REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6676         if (!CHIP_IS_E1x(bp))
6677                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6678         else
6679                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6680         REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6681         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6682         /*
6683          * mask read length error interrupts in brb for parser
6684          * (parsing unit and 'checksum and crc' unit)
6685          * these errors are legal (PU reads fixed length and CAC can cause
6686          * read length error on truncated packets)
6687          */
6688         REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6689         REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6690         REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6691         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6692         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6693         REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6694 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6695 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6696         REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6697         REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6698         REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6699 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6700 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6701         REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6702         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6703         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6704         REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6705 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6706 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6707
6708         val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6709                 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6710                 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6711         if (!CHIP_IS_E1x(bp))
6712                 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6713                         PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6714         REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6715
6716         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6717         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6718         REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6719 /*      REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6720
6721         if (!CHIP_IS_E1x(bp))
6722                 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6723                 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6724
6725         REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6726         REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6727 /*      REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6728         REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);         /* bit 3,4 masked */
6729 }
6730
6731 static void bnx2x_reset_common(struct bnx2x *bp)
6732 {
6733         u32 val = 0x1400;
6734
6735         /* reset_common */
6736         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6737                0xd3ffff7f);
6738
6739         if (CHIP_IS_E3(bp)) {
6740                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6741                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6742         }
6743
6744         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6745 }
6746
6747 static void bnx2x_setup_dmae(struct bnx2x *bp)
6748 {
6749         bp->dmae_ready = 0;
6750         spin_lock_init(&bp->dmae_lock);
6751 }
6752
6753 static void bnx2x_init_pxp(struct bnx2x *bp)
6754 {
6755         u16 devctl;
6756         int r_order, w_order;
6757
6758         pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6759         DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6760         w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6761         if (bp->mrrs == -1)
6762                 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6763         else {
6764                 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6765                 r_order = bp->mrrs;
6766         }
6767
6768         bnx2x_init_pxp_arb(bp, r_order, w_order);
6769 }
6770
6771 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6772 {
6773         int is_required;
6774         u32 val;
6775         int port;
6776
6777         if (BP_NOMCP(bp))
6778                 return;
6779
6780         is_required = 0;
6781         val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6782               SHARED_HW_CFG_FAN_FAILURE_MASK;
6783
6784         if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6785                 is_required = 1;
6786
6787         /*
6788          * The fan failure mechanism is usually related to the PHY type since
6789          * the power consumption of the board is affected by the PHY. Currently,
6790          * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6791          */
6792         else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6793                 for (port = PORT_0; port < PORT_MAX; port++) {
6794                         is_required |=
6795                                 bnx2x_fan_failure_det_req(
6796                                         bp,
6797                                         bp->common.shmem_base,
6798                                         bp->common.shmem2_base,
6799                                         port);
6800                 }
6801
6802         DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6803
6804         if (is_required == 0)
6805                 return;
6806
6807         /* Fan failure is indicated by SPIO 5 */
6808         bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6809
6810         /* set to active low mode */
6811         val = REG_RD(bp, MISC_REG_SPIO_INT);
6812         val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6813         REG_WR(bp, MISC_REG_SPIO_INT, val);
6814
6815         /* enable interrupt to signal the IGU */
6816         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6817         val |= MISC_SPIO_SPIO5;
6818         REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6819 }
6820
6821 void bnx2x_pf_disable(struct bnx2x *bp)
6822 {
6823         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6824         val &= ~IGU_PF_CONF_FUNC_EN;
6825
6826         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6827         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6828         REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6829 }
6830
6831 static void bnx2x__common_init_phy(struct bnx2x *bp)
6832 {
6833         u32 shmem_base[2], shmem2_base[2];
6834         /* Avoid common init in case MFW supports LFA */
6835         if (SHMEM2_RD(bp, size) >
6836             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6837                 return;
6838         shmem_base[0] =  bp->common.shmem_base;
6839         shmem2_base[0] = bp->common.shmem2_base;
6840         if (!CHIP_IS_E1x(bp)) {
6841                 shmem_base[1] =
6842                         SHMEM2_RD(bp, other_shmem_base_addr);
6843                 shmem2_base[1] =
6844                         SHMEM2_RD(bp, other_shmem2_base_addr);
6845         }
6846         bnx2x_acquire_phy_lock(bp);
6847         bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6848                               bp->common.chip_id);
6849         bnx2x_release_phy_lock(bp);
6850 }
6851
6852 /**
6853  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6854  *
6855  * @bp:         driver handle
6856  */
6857 static int bnx2x_init_hw_common(struct bnx2x *bp)
6858 {
6859         u32 val;
6860
6861         DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6862
6863         /*
6864          * take the RESET lock to protect undi_unload flow from accessing
6865          * registers while we're resetting the chip
6866          */
6867         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6868
6869         bnx2x_reset_common(bp);
6870         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6871
6872         val = 0xfffc;
6873         if (CHIP_IS_E3(bp)) {
6874                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6875                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6876         }
6877         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6878
6879         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6880
6881         bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6882
6883         if (!CHIP_IS_E1x(bp)) {
6884                 u8 abs_func_id;
6885
6886                 /**
6887                  * 4-port mode or 2-port mode we need to turn of master-enable
6888                  * for everyone, after that, turn it back on for self.
6889                  * so, we disregard multi-function or not, and always disable
6890                  * for all functions on the given path, this means 0,2,4,6 for
6891                  * path 0 and 1,3,5,7 for path 1
6892                  */
6893                 for (abs_func_id = BP_PATH(bp);
6894                      abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6895                         if (abs_func_id == BP_ABS_FUNC(bp)) {
6896                                 REG_WR(bp,
6897                                     PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6898                                     1);
6899                                 continue;
6900                         }
6901
6902                         bnx2x_pretend_func(bp, abs_func_id);
6903                         /* clear pf enable */
6904                         bnx2x_pf_disable(bp);
6905                         bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6906                 }
6907         }
6908
6909         bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6910         if (CHIP_IS_E1(bp)) {
6911                 /* enable HW interrupt from PXP on USDM overflow
6912                    bit 16 on INT_MASK_0 */
6913                 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6914         }
6915
6916         bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6917         bnx2x_init_pxp(bp);
6918
6919 #ifdef __BIG_ENDIAN
6920         REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6921         REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6922         REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6923         REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6924         REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6925         /* make sure this value is 0 */
6926         REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6927
6928 /*      REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6929         REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6930         REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6931         REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6932         REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6933 #endif
6934
6935         bnx2x_ilt_init_page_size(bp, INITOP_SET);
6936
6937         if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6938                 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6939
6940         /* let the HW do it's magic ... */
6941         msleep(100);
6942         /* finish PXP init */
6943         val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6944         if (val != 1) {
6945                 BNX2X_ERR("PXP2 CFG failed\n");
6946                 return -EBUSY;
6947         }
6948         val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6949         if (val != 1) {
6950                 BNX2X_ERR("PXP2 RD_INIT failed\n");
6951                 return -EBUSY;
6952         }
6953
6954         /* Timers bug workaround E2 only. We need to set the entire ILT to
6955          * have entries with value "0" and valid bit on.
6956          * This needs to be done by the first PF that is loaded in a path
6957          * (i.e. common phase)
6958          */
6959         if (!CHIP_IS_E1x(bp)) {
6960 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6961  * (i.e. vnic3) to start even if it is marked as "scan-off".
6962  * This occurs when a different function (func2,3) is being marked
6963  * as "scan-off". Real-life scenario for example: if a driver is being
6964  * load-unloaded while func6,7 are down. This will cause the timer to access
6965  * the ilt, translate to a logical address and send a request to read/write.
6966  * Since the ilt for the function that is down is not valid, this will cause
6967  * a translation error which is unrecoverable.
6968  * The Workaround is intended to make sure that when this happens nothing fatal
6969  * will occur. The workaround:
6970  *      1.  First PF driver which loads on a path will:
6971  *              a.  After taking the chip out of reset, by using pretend,
6972  *                  it will write "0" to the following registers of
6973  *                  the other vnics.
6974  *                  REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6975  *                  REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6976  *                  REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6977  *                  And for itself it will write '1' to
6978  *                  PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6979  *                  dmae-operations (writing to pram for example.)
6980  *                  note: can be done for only function 6,7 but cleaner this
6981  *                        way.
6982  *              b.  Write zero+valid to the entire ILT.
6983  *              c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6984  *                  VNIC3 (of that port). The range allocated will be the
6985  *                  entire ILT. This is needed to prevent  ILT range error.
6986  *      2.  Any PF driver load flow:
6987  *              a.  ILT update with the physical addresses of the allocated
6988  *                  logical pages.
6989  *              b.  Wait 20msec. - note that this timeout is needed to make
6990  *                  sure there are no requests in one of the PXP internal
6991  *                  queues with "old" ILT addresses.
6992  *              c.  PF enable in the PGLC.
6993  *              d.  Clear the was_error of the PF in the PGLC. (could have
6994  *                  occurred while driver was down)
6995  *              e.  PF enable in the CFC (WEAK + STRONG)
6996  *              f.  Timers scan enable
6997  *      3.  PF driver unload flow:
6998  *              a.  Clear the Timers scan_en.
6999  *              b.  Polling for scan_on=0 for that PF.
7000  *              c.  Clear the PF enable bit in the PXP.
7001  *              d.  Clear the PF enable in the CFC (WEAK + STRONG)
7002  *              e.  Write zero+valid to all ILT entries (The valid bit must
7003  *                  stay set)
7004  *              f.  If this is VNIC 3 of a port then also init
7005  *                  first_timers_ilt_entry to zero and last_timers_ilt_entry
7006  *                  to the last entry in the ILT.
7007  *
7008  *      Notes:
7009  *      Currently the PF error in the PGLC is non recoverable.
7010  *      In the future the there will be a recovery routine for this error.
7011  *      Currently attention is masked.
7012  *      Having an MCP lock on the load/unload process does not guarantee that
7013  *      there is no Timer disable during Func6/7 enable. This is because the
7014  *      Timers scan is currently being cleared by the MCP on FLR.
7015  *      Step 2.d can be done only for PF6/7 and the driver can also check if
7016  *      there is error before clearing it. But the flow above is simpler and
7017  *      more general.
7018  *      All ILT entries are written by zero+valid and not just PF6/7
7019  *      ILT entries since in the future the ILT entries allocation for
7020  *      PF-s might be dynamic.
7021  */
7022                 struct ilt_client_info ilt_cli;
7023                 struct bnx2x_ilt ilt;
7024                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7025                 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7026
7027                 /* initialize dummy TM client */
7028                 ilt_cli.start = 0;
7029                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7030                 ilt_cli.client_num = ILT_CLIENT_TM;
7031
7032                 /* Step 1: set zeroes to all ilt page entries with valid bit on
7033                  * Step 2: set the timers first/last ilt entry to point
7034                  * to the entire range to prevent ILT range error for 3rd/4th
7035                  * vnic (this code assumes existence of the vnic)
7036                  *
7037                  * both steps performed by call to bnx2x_ilt_client_init_op()
7038                  * with dummy TM client
7039                  *
7040                  * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7041                  * and his brother are split registers
7042                  */
7043                 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7044                 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7045                 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7046
7047                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7048                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7049                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7050         }
7051
7052         REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7053         REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7054
7055         if (!CHIP_IS_E1x(bp)) {
7056                 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7057                                 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7058                 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7059
7060                 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7061
7062                 /* let the HW do it's magic ... */
7063                 do {
7064                         msleep(200);
7065                         val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7066                 } while (factor-- && (val != 1));
7067
7068                 if (val != 1) {
7069                         BNX2X_ERR("ATC_INIT failed\n");
7070                         return -EBUSY;
7071                 }
7072         }
7073
7074         bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7075
7076         bnx2x_iov_init_dmae(bp);
7077
7078         /* clean the DMAE memory */
7079         bp->dmae_ready = 1;
7080         bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7081
7082         bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7083
7084         bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7085
7086         bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7087
7088         bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7089
7090         bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7091         bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7092         bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7093         bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7094
7095         bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7096
7097         /* QM queues pointers table */
7098         bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7099
7100         /* soft reset pulse */
7101         REG_WR(bp, QM_REG_SOFT_RESET, 1);
7102         REG_WR(bp, QM_REG_SOFT_RESET, 0);
7103
7104         if (CNIC_SUPPORT(bp))
7105                 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7106
7107         bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7108
7109         if (!CHIP_REV_IS_SLOW(bp))
7110                 /* enable hw interrupt from doorbell Q */
7111                 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7112
7113         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7114
7115         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7116         REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7117
7118         if (!CHIP_IS_E1(bp))
7119                 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7120
7121         if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7122                 if (IS_MF_AFEX(bp)) {
7123                         /* configure that VNTag and VLAN headers must be
7124                          * received in afex mode
7125                          */
7126                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7127                         REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7128                         REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7129                         REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7130                         REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7131                 } else {
7132                         /* Bit-map indicating which L2 hdrs may appear
7133                          * after the basic Ethernet header
7134                          */
7135                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7136                                bp->path_has_ovlan ? 7 : 6);
7137                 }
7138         }
7139
7140         bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7141         bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7142         bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7143         bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7144
7145         if (!CHIP_IS_E1x(bp)) {
7146                 /* reset VFC memories */
7147                 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7148                            VFC_MEMORIES_RST_REG_CAM_RST |
7149                            VFC_MEMORIES_RST_REG_RAM_RST);
7150                 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7151                            VFC_MEMORIES_RST_REG_CAM_RST |
7152                            VFC_MEMORIES_RST_REG_RAM_RST);
7153
7154                 msleep(20);
7155         }
7156
7157         bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7158         bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7159         bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7160         bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7161
7162         /* sync semi rtc */
7163         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7164                0x80000000);
7165         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7166                0x80000000);
7167
7168         bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7169         bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7170         bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7171
7172         if (!CHIP_IS_E1x(bp)) {
7173                 if (IS_MF_AFEX(bp)) {
7174                         /* configure that VNTag and VLAN headers must be
7175                          * sent in afex mode
7176                          */
7177                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7178                         REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7179                         REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7180                         REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7181                         REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7182                 } else {
7183                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7184                                bp->path_has_ovlan ? 7 : 6);
7185                 }
7186         }
7187
7188         REG_WR(bp, SRC_REG_SOFT_RST, 1);
7189
7190         bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7191
7192         if (CNIC_SUPPORT(bp)) {
7193                 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7194                 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7195                 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7196                 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7197                 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7198                 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7199                 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7200                 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7201                 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7202                 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7203         }
7204         REG_WR(bp, SRC_REG_SOFT_RST, 0);
7205
7206         if (sizeof(union cdu_context) != 1024)
7207                 /* we currently assume that a context is 1024 bytes */
7208                 dev_alert(&bp->pdev->dev,
7209                           "please adjust the size of cdu_context(%ld)\n",
7210                           (long)sizeof(union cdu_context));
7211
7212         bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7213         val = (4 << 24) + (0 << 12) + 1024;
7214         REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7215
7216         bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7217         REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7218         /* enable context validation interrupt from CFC */
7219         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7220
7221         /* set the thresholds to prevent CFC/CDU race */
7222         REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7223
7224         bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7225
7226         if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7227                 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7228
7229         bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7230         bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7231
7232         /* Reset PCIE errors for debug */
7233         REG_WR(bp, 0x2814, 0xffffffff);
7234         REG_WR(bp, 0x3820, 0xffffffff);
7235
7236         if (!CHIP_IS_E1x(bp)) {
7237                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7238                            (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7239                                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7240                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7241                            (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7242                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7243                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7244                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7245                            (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7246                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7247                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7248         }
7249
7250         bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7251         if (!CHIP_IS_E1(bp)) {
7252                 /* in E3 this done in per-port section */
7253                 if (!CHIP_IS_E3(bp))
7254                         REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7255         }
7256         if (CHIP_IS_E1H(bp))
7257                 /* not applicable for E2 (and above ...) */
7258                 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7259
7260         if (CHIP_REV_IS_SLOW(bp))
7261                 msleep(200);
7262
7263         /* finish CFC init */
7264         val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7265         if (val != 1) {
7266                 BNX2X_ERR("CFC LL_INIT failed\n");
7267                 return -EBUSY;
7268         }
7269         val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7270         if (val != 1) {
7271                 BNX2X_ERR("CFC AC_INIT failed\n");
7272                 return -EBUSY;
7273         }
7274         val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7275         if (val != 1) {
7276                 BNX2X_ERR("CFC CAM_INIT failed\n");
7277                 return -EBUSY;
7278         }
7279         REG_WR(bp, CFC_REG_DEBUG0, 0);
7280
7281         if (CHIP_IS_E1(bp)) {
7282                 /* read NIG statistic
7283                    to see if this is our first up since powerup */
7284                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7285                 val = *bnx2x_sp(bp, wb_data[0]);
7286
7287                 /* do internal memory self test */
7288                 if ((val == 0) && bnx2x_int_mem_test(bp)) {
7289                         BNX2X_ERR("internal mem self test failed\n");
7290                         return -EBUSY;
7291                 }
7292         }
7293
7294         bnx2x_setup_fan_failure_detection(bp);
7295
7296         /* clear PXP2 attentions */
7297         REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7298
7299         bnx2x_enable_blocks_attention(bp);
7300         bnx2x_enable_blocks_parity(bp);
7301
7302         if (!BP_NOMCP(bp)) {
7303                 if (CHIP_IS_E1x(bp))
7304                         bnx2x__common_init_phy(bp);
7305         } else
7306                 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7307
7308         return 0;
7309 }
7310
7311 /**
7312  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7313  *
7314  * @bp:         driver handle
7315  */
7316 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7317 {
7318         int rc = bnx2x_init_hw_common(bp);
7319
7320         if (rc)
7321                 return rc;
7322
7323         /* In E2 2-PORT mode, same ext phy is used for the two paths */
7324         if (!BP_NOMCP(bp))
7325                 bnx2x__common_init_phy(bp);
7326
7327         return 0;
7328 }
7329
7330 static int bnx2x_init_hw_port(struct bnx2x *bp)
7331 {
7332         int port = BP_PORT(bp);
7333         int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7334         u32 low, high;
7335         u32 val, reg;
7336
7337         DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7338
7339         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7340
7341         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7342         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7343         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7344
7345         /* Timers bug workaround: disables the pf_master bit in pglue at
7346          * common phase, we need to enable it here before any dmae access are
7347          * attempted. Therefore we manually added the enable-master to the
7348          * port phase (it also happens in the function phase)
7349          */
7350         if (!CHIP_IS_E1x(bp))
7351                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7352
7353         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7354         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7355         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7356         bnx2x_init_block(bp, BLOCK_QM, init_phase);
7357
7358         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7359         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7360         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7361         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7362
7363         /* QM cid (connection) count */
7364         bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7365
7366         if (CNIC_SUPPORT(bp)) {
7367                 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7368                 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7369                 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7370         }
7371
7372         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7373
7374         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7375
7376         if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7377
7378                 if (IS_MF(bp))
7379                         low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7380                 else if (bp->dev->mtu > 4096) {
7381                         if (bp->flags & ONE_PORT_FLAG)
7382                                 low = 160;
7383                         else {
7384                                 val = bp->dev->mtu;
7385                                 /* (24*1024 + val*4)/256 */
7386                                 low = 96 + (val/64) +
7387                                                 ((val % 64) ? 1 : 0);
7388                         }
7389                 } else
7390                         low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7391                 high = low + 56;        /* 14*1024/256 */
7392                 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7393                 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7394         }
7395
7396         if (CHIP_MODE_IS_4_PORT(bp))
7397                 REG_WR(bp, (BP_PORT(bp) ?
7398                             BRB1_REG_MAC_GUARANTIED_1 :
7399                             BRB1_REG_MAC_GUARANTIED_0), 40);
7400
7401         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7402         if (CHIP_IS_E3B0(bp)) {
7403                 if (IS_MF_AFEX(bp)) {
7404                         /* configure headers for AFEX mode */
7405                         REG_WR(bp, BP_PORT(bp) ?
7406                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7407                                PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7408                         REG_WR(bp, BP_PORT(bp) ?
7409                                PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7410                                PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7411                         REG_WR(bp, BP_PORT(bp) ?
7412                                PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7413                                PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7414                 } else {
7415                         /* Ovlan exists only if we are in multi-function +
7416                          * switch-dependent mode, in switch-independent there
7417                          * is no ovlan headers
7418                          */
7419                         REG_WR(bp, BP_PORT(bp) ?
7420                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7421                                PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7422                                (bp->path_has_ovlan ? 7 : 6));
7423                 }
7424         }
7425
7426         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7427         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7428         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7429         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7430
7431         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7432         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7433         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7434         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7435
7436         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7437         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7438
7439         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7440
7441         if (CHIP_IS_E1x(bp)) {
7442                 /* configure PBF to work without PAUSE mtu 9000 */
7443                 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7444
7445                 /* update threshold */
7446                 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7447                 /* update init credit */
7448                 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7449
7450                 /* probe changes */
7451                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7452                 udelay(50);
7453                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7454         }
7455
7456         if (CNIC_SUPPORT(bp))
7457                 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7458
7459         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7460         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7461
7462         if (CHIP_IS_E1(bp)) {
7463                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7464                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7465         }
7466         bnx2x_init_block(bp, BLOCK_HC, init_phase);
7467
7468         bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7469
7470         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7471         /* init aeu_mask_attn_func_0/1:
7472          *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7473          *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7474          *             bits 4-7 are used for "per vn group attention" */
7475         val = IS_MF(bp) ? 0xF7 : 0x7;
7476         /* Enable DCBX attention for all but E1 */
7477         val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7478         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7479
7480         /* SCPAD_PARITY should NOT trigger close the gates */
7481         reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7482         REG_WR(bp, reg,
7483                REG_RD(bp, reg) &
7484                ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7485
7486         reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7487         REG_WR(bp, reg,
7488                REG_RD(bp, reg) &
7489                ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7490
7491         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7492
7493         if (!CHIP_IS_E1x(bp)) {
7494                 /* Bit-map indicating which L2 hdrs may appear after the
7495                  * basic Ethernet header
7496                  */
7497                 if (IS_MF_AFEX(bp))
7498                         REG_WR(bp, BP_PORT(bp) ?
7499                                NIG_REG_P1_HDRS_AFTER_BASIC :
7500                                NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7501                 else
7502                         REG_WR(bp, BP_PORT(bp) ?
7503                                NIG_REG_P1_HDRS_AFTER_BASIC :
7504                                NIG_REG_P0_HDRS_AFTER_BASIC,
7505                                IS_MF_SD(bp) ? 7 : 6);
7506
7507                 if (CHIP_IS_E3(bp))
7508                         REG_WR(bp, BP_PORT(bp) ?
7509                                    NIG_REG_LLH1_MF_MODE :
7510                                    NIG_REG_LLH_MF_MODE, IS_MF(bp));
7511         }
7512         if (!CHIP_IS_E3(bp))
7513                 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7514
7515         if (!CHIP_IS_E1(bp)) {
7516                 /* 0x2 disable mf_ov, 0x1 enable */
7517                 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7518                        (IS_MF_SD(bp) ? 0x1 : 0x2));
7519
7520                 if (!CHIP_IS_E1x(bp)) {
7521                         val = 0;
7522                         switch (bp->mf_mode) {
7523                         case MULTI_FUNCTION_SD:
7524                                 val = 1;
7525                                 break;
7526                         case MULTI_FUNCTION_SI:
7527                         case MULTI_FUNCTION_AFEX:
7528                                 val = 2;
7529                                 break;
7530                         }
7531
7532                         REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7533                                                   NIG_REG_LLH0_CLS_TYPE), val);
7534                 }
7535                 {
7536                         REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7537                         REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7538                         REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7539                 }
7540         }
7541
7542         /* If SPIO5 is set to generate interrupts, enable it for this port */
7543         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7544         if (val & MISC_SPIO_SPIO5) {
7545                 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7546                                        MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7547                 val = REG_RD(bp, reg_addr);
7548                 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7549                 REG_WR(bp, reg_addr, val);
7550         }
7551
7552         return 0;
7553 }
7554
7555 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7556 {
7557         int reg;
7558         u32 wb_write[2];
7559
7560         if (CHIP_IS_E1(bp))
7561                 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7562         else
7563                 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7564
7565         wb_write[0] = ONCHIP_ADDR1(addr);
7566         wb_write[1] = ONCHIP_ADDR2(addr);
7567         REG_WR_DMAE(bp, reg, wb_write, 2);
7568 }
7569
7570 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7571 {
7572         u32 data, ctl, cnt = 100;
7573         u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7574         u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7575         u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7576         u32 sb_bit =  1 << (idu_sb_id%32);
7577         u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7578         u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7579
7580         /* Not supported in BC mode */
7581         if (CHIP_INT_MODE_IS_BC(bp))
7582                 return;
7583
7584         data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7585                         << IGU_REGULAR_CLEANUP_TYPE_SHIFT)      |
7586                 IGU_REGULAR_CLEANUP_SET                         |
7587                 IGU_REGULAR_BCLEANUP;
7588
7589         ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT         |
7590               func_encode << IGU_CTRL_REG_FID_SHIFT             |
7591               IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7592
7593         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7594                          data, igu_addr_data);
7595         REG_WR(bp, igu_addr_data, data);
7596         mmiowb();
7597         barrier();
7598         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7599                           ctl, igu_addr_ctl);
7600         REG_WR(bp, igu_addr_ctl, ctl);
7601         mmiowb();
7602         barrier();
7603
7604         /* wait for clean up to finish */
7605         while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7606                 msleep(20);
7607
7608         if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7609                 DP(NETIF_MSG_HW,
7610                    "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7611                           idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7612         }
7613 }
7614
7615 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7616 {
7617         bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7618 }
7619
7620 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7621 {
7622         u32 i, base = FUNC_ILT_BASE(func);
7623         for (i = base; i < base + ILT_PER_FUNC; i++)
7624                 bnx2x_ilt_wr(bp, i, 0);
7625 }
7626
7627 static void bnx2x_init_searcher(struct bnx2x *bp)
7628 {
7629         int port = BP_PORT(bp);
7630         bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7631         /* T1 hash bits value determines the T1 number of entries */
7632         REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7633 }
7634
7635 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7636 {
7637         int rc;
7638         struct bnx2x_func_state_params func_params = {NULL};
7639         struct bnx2x_func_switch_update_params *switch_update_params =
7640                 &func_params.params.switch_update;
7641
7642         /* Prepare parameters for function state transitions */
7643         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7644         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7645
7646         func_params.f_obj = &bp->func_obj;
7647         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7648
7649         /* Function parameters */
7650         __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7651                   &switch_update_params->changes);
7652         if (suspend)
7653                 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7654                           &switch_update_params->changes);
7655
7656         rc = bnx2x_func_state_change(bp, &func_params);
7657
7658         return rc;
7659 }
7660
7661 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7662 {
7663         int rc, i, port = BP_PORT(bp);
7664         int vlan_en = 0, mac_en[NUM_MACS];
7665
7666         /* Close input from network */
7667         if (bp->mf_mode == SINGLE_FUNCTION) {
7668                 bnx2x_set_rx_filter(&bp->link_params, 0);
7669         } else {
7670                 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7671                                    NIG_REG_LLH0_FUNC_EN);
7672                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7673                           NIG_REG_LLH0_FUNC_EN, 0);
7674                 for (i = 0; i < NUM_MACS; i++) {
7675                         mac_en[i] = REG_RD(bp, port ?
7676                                              (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7677                                               4 * i) :
7678                                              (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7679                                               4 * i));
7680                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7681                                               4 * i) :
7682                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7683                 }
7684         }
7685
7686         /* Close BMC to host */
7687         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7688                NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7689
7690         /* Suspend Tx switching to the PF. Completion of this ramrod
7691          * further guarantees that all the packets of that PF / child
7692          * VFs in BRB were processed by the Parser, so it is safe to
7693          * change the NIC_MODE register.
7694          */
7695         rc = bnx2x_func_switch_update(bp, 1);
7696         if (rc) {
7697                 BNX2X_ERR("Can't suspend tx-switching!\n");
7698                 return rc;
7699         }
7700
7701         /* Change NIC_MODE register */
7702         REG_WR(bp, PRS_REG_NIC_MODE, 0);
7703
7704         /* Open input from network */
7705         if (bp->mf_mode == SINGLE_FUNCTION) {
7706                 bnx2x_set_rx_filter(&bp->link_params, 1);
7707         } else {
7708                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7709                           NIG_REG_LLH0_FUNC_EN, vlan_en);
7710                 for (i = 0; i < NUM_MACS; i++) {
7711                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7712                                               4 * i) :
7713                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7714                                   mac_en[i]);
7715                 }
7716         }
7717
7718         /* Enable BMC to host */
7719         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7720                NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7721
7722         /* Resume Tx switching to the PF */
7723         rc = bnx2x_func_switch_update(bp, 0);
7724         if (rc) {
7725                 BNX2X_ERR("Can't resume tx-switching!\n");
7726                 return rc;
7727         }
7728
7729         DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7730         return 0;
7731 }
7732
7733 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7734 {
7735         int rc;
7736
7737         bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7738
7739         if (CONFIGURE_NIC_MODE(bp)) {
7740                 /* Configure searcher as part of function hw init */
7741                 bnx2x_init_searcher(bp);
7742
7743                 /* Reset NIC mode */
7744                 rc = bnx2x_reset_nic_mode(bp);
7745                 if (rc)
7746                         BNX2X_ERR("Can't change NIC mode!\n");
7747                 return rc;
7748         }
7749
7750         return 0;
7751 }
7752
7753 static int bnx2x_init_hw_func(struct bnx2x *bp)
7754 {
7755         int port = BP_PORT(bp);
7756         int func = BP_FUNC(bp);
7757         int init_phase = PHASE_PF0 + func;
7758         struct bnx2x_ilt *ilt = BP_ILT(bp);
7759         u16 cdu_ilt_start;
7760         u32 addr, val;
7761         u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7762         int i, main_mem_width, rc;
7763
7764         DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7765
7766         /* FLR cleanup - hmmm */
7767         if (!CHIP_IS_E1x(bp)) {
7768                 rc = bnx2x_pf_flr_clnup(bp);
7769                 if (rc) {
7770                         bnx2x_fw_dump(bp);
7771                         return rc;
7772                 }
7773         }
7774
7775         /* set MSI reconfigure capability */
7776         if (bp->common.int_block == INT_BLOCK_HC) {
7777                 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7778                 val = REG_RD(bp, addr);
7779                 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7780                 REG_WR(bp, addr, val);
7781         }
7782
7783         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7784         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7785
7786         ilt = BP_ILT(bp);
7787         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7788
7789         if (IS_SRIOV(bp))
7790                 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7791         cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7792
7793         /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7794          * those of the VFs, so start line should be reset
7795          */
7796         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7797         for (i = 0; i < L2_ILT_LINES(bp); i++) {
7798                 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7799                 ilt->lines[cdu_ilt_start + i].page_mapping =
7800                         bp->context[i].cxt_mapping;
7801                 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7802         }
7803
7804         bnx2x_ilt_init_op(bp, INITOP_SET);
7805
7806         if (!CONFIGURE_NIC_MODE(bp)) {
7807                 bnx2x_init_searcher(bp);
7808                 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7809                 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7810         } else {
7811                 /* Set NIC mode */
7812                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
7813                 DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7814         }
7815
7816         if (!CHIP_IS_E1x(bp)) {
7817                 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7818
7819                 /* Turn on a single ISR mode in IGU if driver is going to use
7820                  * INT#x or MSI
7821                  */
7822                 if (!(bp->flags & USING_MSIX_FLAG))
7823                         pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7824                 /*
7825                  * Timers workaround bug: function init part.
7826                  * Need to wait 20msec after initializing ILT,
7827                  * needed to make sure there are no requests in
7828                  * one of the PXP internal queues with "old" ILT addresses
7829                  */
7830                 msleep(20);
7831                 /*
7832                  * Master enable - Due to WB DMAE writes performed before this
7833                  * register is re-initialized as part of the regular function
7834                  * init
7835                  */
7836                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7837                 /* Enable the function in IGU */
7838                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7839         }
7840
7841         bp->dmae_ready = 1;
7842
7843         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7844
7845         if (!CHIP_IS_E1x(bp))
7846                 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7847
7848         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7849         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7850         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7851         bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7852         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7853         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7854         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7855         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7856         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7857         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7858         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7859         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7860         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7861
7862         if (!CHIP_IS_E1x(bp))
7863                 REG_WR(bp, QM_REG_PF_EN, 1);
7864
7865         if (!CHIP_IS_E1x(bp)) {
7866                 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7867                 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7868                 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7869                 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7870         }
7871         bnx2x_init_block(bp, BLOCK_QM, init_phase);
7872
7873         bnx2x_init_block(bp, BLOCK_TM, init_phase);
7874         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7875         REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
7876
7877         bnx2x_iov_init_dq(bp);
7878
7879         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7880         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7881         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7882         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7883         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7884         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7885         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7886         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7887         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7888         if (!CHIP_IS_E1x(bp))
7889                 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
7890
7891         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7892
7893         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7894
7895         if (!CHIP_IS_E1x(bp))
7896                 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
7897
7898         if (IS_MF(bp)) {
7899                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7900                 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
7901         }
7902
7903         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7904
7905         /* HC init per function */
7906         if (bp->common.int_block == INT_BLOCK_HC) {
7907                 if (CHIP_IS_E1H(bp)) {
7908                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7909
7910                         REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7911                         REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7912                 }
7913                 bnx2x_init_block(bp, BLOCK_HC, init_phase);
7914
7915         } else {
7916                 int num_segs, sb_idx, prod_offset;
7917
7918                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7919
7920                 if (!CHIP_IS_E1x(bp)) {
7921                         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7922                         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7923                 }
7924
7925                 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7926
7927                 if (!CHIP_IS_E1x(bp)) {
7928                         int dsb_idx = 0;
7929                         /**
7930                          * Producer memory:
7931                          * E2 mode: address 0-135 match to the mapping memory;
7932                          * 136 - PF0 default prod; 137 - PF1 default prod;
7933                          * 138 - PF2 default prod; 139 - PF3 default prod;
7934                          * 140 - PF0 attn prod;    141 - PF1 attn prod;
7935                          * 142 - PF2 attn prod;    143 - PF3 attn prod;
7936                          * 144-147 reserved.
7937                          *
7938                          * E1.5 mode - In backward compatible mode;
7939                          * for non default SB; each even line in the memory
7940                          * holds the U producer and each odd line hold
7941                          * the C producer. The first 128 producers are for
7942                          * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
7943                          * producers are for the DSB for each PF.
7944                          * Each PF has five segments: (the order inside each
7945                          * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
7946                          * 132-135 C prods; 136-139 X prods; 140-143 T prods;
7947                          * 144-147 attn prods;
7948                          */
7949                         /* non-default-status-blocks */
7950                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7951                                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
7952                         for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
7953                                 prod_offset = (bp->igu_base_sb + sb_idx) *
7954                                         num_segs;
7955
7956                                 for (i = 0; i < num_segs; i++) {
7957                                         addr = IGU_REG_PROD_CONS_MEMORY +
7958                                                         (prod_offset + i) * 4;
7959                                         REG_WR(bp, addr, 0);
7960                                 }
7961                                 /* send consumer update with value 0 */
7962                                 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
7963                                              USTORM_ID, 0, IGU_INT_NOP, 1);
7964                                 bnx2x_igu_clear_sb(bp,
7965                                                    bp->igu_base_sb + sb_idx);
7966                         }
7967
7968                         /* default-status-blocks */
7969                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7970                                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
7971
7972                         if (CHIP_MODE_IS_4_PORT(bp))
7973                                 dsb_idx = BP_FUNC(bp);
7974                         else
7975                                 dsb_idx = BP_VN(bp);
7976
7977                         prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
7978                                        IGU_BC_BASE_DSB_PROD + dsb_idx :
7979                                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
7980
7981                         /*
7982                          * igu prods come in chunks of E1HVN_MAX (4) -
7983                          * does not matters what is the current chip mode
7984                          */
7985                         for (i = 0; i < (num_segs * E1HVN_MAX);
7986                              i += E1HVN_MAX) {
7987                                 addr = IGU_REG_PROD_CONS_MEMORY +
7988                                                         (prod_offset + i)*4;
7989                                 REG_WR(bp, addr, 0);
7990                         }
7991                         /* send consumer update with 0 */
7992                         if (CHIP_INT_MODE_IS_BC(bp)) {
7993                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7994                                              USTORM_ID, 0, IGU_INT_NOP, 1);
7995                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7996                                              CSTORM_ID, 0, IGU_INT_NOP, 1);
7997                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7998                                              XSTORM_ID, 0, IGU_INT_NOP, 1);
7999                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8000                                              TSTORM_ID, 0, IGU_INT_NOP, 1);
8001                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8002                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
8003                         } else {
8004                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8005                                              USTORM_ID, 0, IGU_INT_NOP, 1);
8006                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8007                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
8008                         }
8009                         bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8010
8011                         /* !!! These should become driver const once
8012                            rf-tool supports split-68 const */
8013                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8014                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8015                         REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8016                         REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8017                         REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8018                         REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8019                 }
8020         }
8021
8022         /* Reset PCIE errors for debug */
8023         REG_WR(bp, 0x2114, 0xffffffff);
8024         REG_WR(bp, 0x2120, 0xffffffff);
8025
8026         if (CHIP_IS_E1x(bp)) {
8027                 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8028                 main_mem_base = HC_REG_MAIN_MEMORY +
8029                                 BP_PORT(bp) * (main_mem_size * 4);
8030                 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8031                 main_mem_width = 8;
8032
8033                 val = REG_RD(bp, main_mem_prty_clr);
8034                 if (val)
8035                         DP(NETIF_MSG_HW,
8036                            "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8037                            val);
8038
8039                 /* Clear "false" parity errors in MSI-X table */
8040                 for (i = main_mem_base;
8041                      i < main_mem_base + main_mem_size * 4;
8042                      i += main_mem_width) {
8043                         bnx2x_read_dmae(bp, i, main_mem_width / 4);
8044                         bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8045                                          i, main_mem_width / 4);
8046                 }
8047                 /* Clear HC parity attention */
8048                 REG_RD(bp, main_mem_prty_clr);
8049         }
8050
8051 #ifdef BNX2X_STOP_ON_ERROR
8052         /* Enable STORMs SP logging */
8053         REG_WR8(bp, BAR_USTRORM_INTMEM +
8054                USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8055         REG_WR8(bp, BAR_TSTRORM_INTMEM +
8056                TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8057         REG_WR8(bp, BAR_CSTRORM_INTMEM +
8058                CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8059         REG_WR8(bp, BAR_XSTRORM_INTMEM +
8060                XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8061 #endif
8062
8063         bnx2x_phy_probe(&bp->link_params);
8064
8065         return 0;
8066 }
8067
8068 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8069 {
8070         bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8071
8072         if (!CHIP_IS_E1x(bp))
8073                 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8074                                sizeof(struct host_hc_status_block_e2));
8075         else
8076                 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8077                                sizeof(struct host_hc_status_block_e1x));
8078
8079         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8080 }
8081
8082 void bnx2x_free_mem(struct bnx2x *bp)
8083 {
8084         int i;
8085
8086         BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8087                        bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8088
8089         if (IS_VF(bp))
8090                 return;
8091
8092         BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8093                        sizeof(struct host_sp_status_block));
8094
8095         BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8096                        sizeof(struct bnx2x_slowpath));
8097
8098         for (i = 0; i < L2_ILT_LINES(bp); i++)
8099                 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8100                                bp->context[i].size);
8101         bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8102
8103         BNX2X_FREE(bp->ilt->lines);
8104
8105         BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8106
8107         BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8108                        BCM_PAGE_SIZE * NUM_EQ_PAGES);
8109
8110         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8111
8112         bnx2x_iov_free_mem(bp);
8113 }
8114
8115 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8116 {
8117         if (!CHIP_IS_E1x(bp)) {
8118                 /* size = the status block + ramrod buffers */
8119                 bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8120                                                     sizeof(struct host_hc_status_block_e2));
8121                 if (!bp->cnic_sb.e2_sb)
8122                         goto alloc_mem_err;
8123         } else {
8124                 bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8125                                                      sizeof(struct host_hc_status_block_e1x));
8126                 if (!bp->cnic_sb.e1x_sb)
8127                         goto alloc_mem_err;
8128         }
8129
8130         if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8131                 /* allocate searcher T2 table, as it wasn't allocated before */
8132                 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8133                 if (!bp->t2)
8134                         goto alloc_mem_err;
8135         }
8136
8137         /* write address to which L5 should insert its values */
8138         bp->cnic_eth_dev.addr_drv_info_to_mcp =
8139                 &bp->slowpath->drv_info_to_mcp;
8140
8141         if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8142                 goto alloc_mem_err;
8143
8144         return 0;
8145
8146 alloc_mem_err:
8147         bnx2x_free_mem_cnic(bp);
8148         BNX2X_ERR("Can't allocate memory\n");
8149         return -ENOMEM;
8150 }
8151
8152 int bnx2x_alloc_mem(struct bnx2x *bp)
8153 {
8154         int i, allocated, context_size;
8155
8156         if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8157                 /* allocate searcher T2 table */
8158                 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8159                 if (!bp->t2)
8160                         goto alloc_mem_err;
8161         }
8162
8163         bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8164                                              sizeof(struct host_sp_status_block));
8165         if (!bp->def_status_blk)
8166                 goto alloc_mem_err;
8167
8168         bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8169                                        sizeof(struct bnx2x_slowpath));
8170         if (!bp->slowpath)
8171                 goto alloc_mem_err;
8172
8173         /* Allocate memory for CDU context:
8174          * This memory is allocated separately and not in the generic ILT
8175          * functions because CDU differs in few aspects:
8176          * 1. There are multiple entities allocating memory for context -
8177          * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8178          * its own ILT lines.
8179          * 2. Since CDU page-size is not a single 4KB page (which is the case
8180          * for the other ILT clients), to be efficient we want to support
8181          * allocation of sub-page-size in the last entry.
8182          * 3. Context pointers are used by the driver to pass to FW / update
8183          * the context (for the other ILT clients the pointers are used just to
8184          * free the memory during unload).
8185          */
8186         context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8187
8188         for (i = 0, allocated = 0; allocated < context_size; i++) {
8189                 bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8190                                           (context_size - allocated));
8191                 bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8192                                                       bp->context[i].size);
8193                 if (!bp->context[i].vcxt)
8194                         goto alloc_mem_err;
8195                 allocated += bp->context[i].size;
8196         }
8197         bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8198                                  GFP_KERNEL);
8199         if (!bp->ilt->lines)
8200                 goto alloc_mem_err;
8201
8202         if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8203                 goto alloc_mem_err;
8204
8205         if (bnx2x_iov_alloc_mem(bp))
8206                 goto alloc_mem_err;
8207
8208         /* Slow path ring */
8209         bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8210         if (!bp->spq)
8211                 goto alloc_mem_err;
8212
8213         /* EQ */
8214         bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8215                                       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8216         if (!bp->eq_ring)
8217                 goto alloc_mem_err;
8218
8219         return 0;
8220
8221 alloc_mem_err:
8222         bnx2x_free_mem(bp);
8223         BNX2X_ERR("Can't allocate memory\n");
8224         return -ENOMEM;
8225 }
8226
8227 /*
8228  * Init service functions
8229  */
8230
8231 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8232                       struct bnx2x_vlan_mac_obj *obj, bool set,
8233                       int mac_type, unsigned long *ramrod_flags)
8234 {
8235         int rc;
8236         struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8237
8238         memset(&ramrod_param, 0, sizeof(ramrod_param));
8239
8240         /* Fill general parameters */
8241         ramrod_param.vlan_mac_obj = obj;
8242         ramrod_param.ramrod_flags = *ramrod_flags;
8243
8244         /* Fill a user request section if needed */
8245         if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8246                 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8247
8248                 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8249
8250                 /* Set the command: ADD or DEL */
8251                 if (set)
8252                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8253                 else
8254                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8255         }
8256
8257         rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8258
8259         if (rc == -EEXIST) {
8260                 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8261                 /* do not treat adding same MAC as error */
8262                 rc = 0;
8263         } else if (rc < 0)
8264                 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8265
8266         return rc;
8267 }
8268
8269 int bnx2x_del_all_macs(struct bnx2x *bp,
8270                        struct bnx2x_vlan_mac_obj *mac_obj,
8271                        int mac_type, bool wait_for_comp)
8272 {
8273         int rc;
8274         unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8275
8276         /* Wait for completion of requested */
8277         if (wait_for_comp)
8278                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8279
8280         /* Set the mac type of addresses we want to clear */
8281         __set_bit(mac_type, &vlan_mac_flags);
8282
8283         rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8284         if (rc < 0)
8285                 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8286
8287         return rc;
8288 }
8289
8290 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8291 {
8292         if (is_zero_ether_addr(bp->dev->dev_addr) &&
8293             (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
8294                 DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
8295                    "Ignoring Zero MAC for STORAGE SD mode\n");
8296                 return 0;
8297         }
8298
8299         if (IS_PF(bp)) {
8300                 unsigned long ramrod_flags = 0;
8301
8302                 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8303                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8304                 return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8305                                          &bp->sp_objs->mac_obj, set,
8306                                          BNX2X_ETH_MAC, &ramrod_flags);
8307         } else { /* vf */
8308                 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8309                                              bp->fp->index, true);
8310         }
8311 }
8312
8313 int bnx2x_setup_leading(struct bnx2x *bp)
8314 {
8315         if (IS_PF(bp))
8316                 return bnx2x_setup_queue(bp, &bp->fp[0], true);
8317         else /* VF */
8318                 return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8319 }
8320
8321 /**
8322  * bnx2x_set_int_mode - configure interrupt mode
8323  *
8324  * @bp:         driver handle
8325  *
8326  * In case of MSI-X it will also try to enable MSI-X.
8327  */
8328 int bnx2x_set_int_mode(struct bnx2x *bp)
8329 {
8330         int rc = 0;
8331
8332         if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8333                 BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8334                 return -EINVAL;
8335         }
8336
8337         switch (int_mode) {
8338         case BNX2X_INT_MODE_MSIX:
8339                 /* attempt to enable msix */
8340                 rc = bnx2x_enable_msix(bp);
8341
8342                 /* msix attained */
8343                 if (!rc)
8344                         return 0;
8345
8346                 /* vfs use only msix */
8347                 if (rc && IS_VF(bp))
8348                         return rc;
8349
8350                 /* failed to enable multiple MSI-X */
8351                 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8352                                bp->num_queues,
8353                                1 + bp->num_cnic_queues);
8354
8355                 /* falling through... */
8356         case BNX2X_INT_MODE_MSI:
8357                 bnx2x_enable_msi(bp);
8358
8359                 /* falling through... */
8360         case BNX2X_INT_MODE_INTX:
8361                 bp->num_ethernet_queues = 1;
8362                 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8363                 BNX2X_DEV_INFO("set number of queues to 1\n");
8364                 break;
8365         default:
8366                 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8367                 return -EINVAL;
8368         }
8369         return 0;
8370 }
8371
8372 /* must be called prior to any HW initializations */
8373 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8374 {
8375         if (IS_SRIOV(bp))
8376                 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8377         return L2_ILT_LINES(bp);
8378 }
8379
8380 void bnx2x_ilt_set_info(struct bnx2x *bp)
8381 {
8382         struct ilt_client_info *ilt_client;
8383         struct bnx2x_ilt *ilt = BP_ILT(bp);
8384         u16 line = 0;
8385
8386         ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8387         DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8388
8389         /* CDU */
8390         ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8391         ilt_client->client_num = ILT_CLIENT_CDU;
8392         ilt_client->page_size = CDU_ILT_PAGE_SZ;
8393         ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8394         ilt_client->start = line;
8395         line += bnx2x_cid_ilt_lines(bp);
8396
8397         if (CNIC_SUPPORT(bp))
8398                 line += CNIC_ILT_LINES;
8399         ilt_client->end = line - 1;
8400
8401         DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8402            ilt_client->start,
8403            ilt_client->end,
8404            ilt_client->page_size,
8405            ilt_client->flags,
8406            ilog2(ilt_client->page_size >> 12));
8407
8408         /* QM */
8409         if (QM_INIT(bp->qm_cid_count)) {
8410                 ilt_client = &ilt->clients[ILT_CLIENT_QM];
8411                 ilt_client->client_num = ILT_CLIENT_QM;
8412                 ilt_client->page_size = QM_ILT_PAGE_SZ;
8413                 ilt_client->flags = 0;
8414                 ilt_client->start = line;
8415
8416                 /* 4 bytes for each cid */
8417                 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8418                                                          QM_ILT_PAGE_SZ);
8419
8420                 ilt_client->end = line - 1;
8421
8422                 DP(NETIF_MSG_IFUP,
8423                    "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8424                    ilt_client->start,
8425                    ilt_client->end,
8426                    ilt_client->page_size,
8427                    ilt_client->flags,
8428                    ilog2(ilt_client->page_size >> 12));
8429         }
8430
8431         if (CNIC_SUPPORT(bp)) {
8432                 /* SRC */
8433                 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8434                 ilt_client->client_num = ILT_CLIENT_SRC;
8435                 ilt_client->page_size = SRC_ILT_PAGE_SZ;
8436                 ilt_client->flags = 0;
8437                 ilt_client->start = line;
8438                 line += SRC_ILT_LINES;
8439                 ilt_client->end = line - 1;
8440
8441                 DP(NETIF_MSG_IFUP,
8442                    "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8443                    ilt_client->start,
8444                    ilt_client->end,
8445                    ilt_client->page_size,
8446                    ilt_client->flags,
8447                    ilog2(ilt_client->page_size >> 12));
8448
8449                 /* TM */
8450                 ilt_client = &ilt->clients[ILT_CLIENT_TM];
8451                 ilt_client->client_num = ILT_CLIENT_TM;
8452                 ilt_client->page_size = TM_ILT_PAGE_SZ;
8453                 ilt_client->flags = 0;
8454                 ilt_client->start = line;
8455                 line += TM_ILT_LINES;
8456                 ilt_client->end = line - 1;
8457
8458                 DP(NETIF_MSG_IFUP,
8459                    "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8460                    ilt_client->start,
8461                    ilt_client->end,
8462                    ilt_client->page_size,
8463                    ilt_client->flags,
8464                    ilog2(ilt_client->page_size >> 12));
8465         }
8466
8467         BUG_ON(line > ILT_MAX_LINES);
8468 }
8469
8470 /**
8471  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8472  *
8473  * @bp:                 driver handle
8474  * @fp:                 pointer to fastpath
8475  * @init_params:        pointer to parameters structure
8476  *
8477  * parameters configured:
8478  *      - HC configuration
8479  *      - Queue's CDU context
8480  */
8481 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8482         struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8483 {
8484         u8 cos;
8485         int cxt_index, cxt_offset;
8486
8487         /* FCoE Queue uses Default SB, thus has no HC capabilities */
8488         if (!IS_FCOE_FP(fp)) {
8489                 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8490                 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8491
8492                 /* If HC is supported, enable host coalescing in the transition
8493                  * to INIT state.
8494                  */
8495                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8496                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8497
8498                 /* HC rate */
8499                 init_params->rx.hc_rate = bp->rx_ticks ?
8500                         (1000000 / bp->rx_ticks) : 0;
8501                 init_params->tx.hc_rate = bp->tx_ticks ?
8502                         (1000000 / bp->tx_ticks) : 0;
8503
8504                 /* FW SB ID */
8505                 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8506                         fp->fw_sb_id;
8507
8508                 /*
8509                  * CQ index among the SB indices: FCoE clients uses the default
8510                  * SB, therefore it's different.
8511                  */
8512                 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8513                 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8514         }
8515
8516         /* set maximum number of COSs supported by this queue */
8517         init_params->max_cos = fp->max_cos;
8518
8519         DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8520             fp->index, init_params->max_cos);
8521
8522         /* set the context pointers queue object */
8523         for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8524                 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8525                 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8526                                 ILT_PAGE_CIDS);
8527                 init_params->cxts[cos] =
8528                         &bp->context[cxt_index].vcxt[cxt_offset].eth;
8529         }
8530 }
8531
8532 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8533                         struct bnx2x_queue_state_params *q_params,
8534                         struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8535                         int tx_index, bool leading)
8536 {
8537         memset(tx_only_params, 0, sizeof(*tx_only_params));
8538
8539         /* Set the command */
8540         q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8541
8542         /* Set tx-only QUEUE flags: don't zero statistics */
8543         tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8544
8545         /* choose the index of the cid to send the slow path on */
8546         tx_only_params->cid_index = tx_index;
8547
8548         /* Set general TX_ONLY_SETUP parameters */
8549         bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8550
8551         /* Set Tx TX_ONLY_SETUP parameters */
8552         bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8553
8554         DP(NETIF_MSG_IFUP,
8555            "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8556            tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8557            q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8558            tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8559
8560         /* send the ramrod */
8561         return bnx2x_queue_state_change(bp, q_params);
8562 }
8563
8564 /**
8565  * bnx2x_setup_queue - setup queue
8566  *
8567  * @bp:         driver handle
8568  * @fp:         pointer to fastpath
8569  * @leading:    is leading
8570  *
8571  * This function performs 2 steps in a Queue state machine
8572  *      actually: 1) RESET->INIT 2) INIT->SETUP
8573  */
8574
8575 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8576                        bool leading)
8577 {
8578         struct bnx2x_queue_state_params q_params = {NULL};
8579         struct bnx2x_queue_setup_params *setup_params =
8580                                                 &q_params.params.setup;
8581         struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8582                                                 &q_params.params.tx_only;
8583         int rc;
8584         u8 tx_index;
8585
8586         DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8587
8588         /* reset IGU state skip FCoE L2 queue */
8589         if (!IS_FCOE_FP(fp))
8590                 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8591                              IGU_INT_ENABLE, 0);
8592
8593         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8594         /* We want to wait for completion in this context */
8595         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8596
8597         /* Prepare the INIT parameters */
8598         bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8599
8600         /* Set the command */
8601         q_params.cmd = BNX2X_Q_CMD_INIT;
8602
8603         /* Change the state to INIT */
8604         rc = bnx2x_queue_state_change(bp, &q_params);
8605         if (rc) {
8606                 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8607                 return rc;
8608         }
8609
8610         DP(NETIF_MSG_IFUP, "init complete\n");
8611
8612         /* Now move the Queue to the SETUP state... */
8613         memset(setup_params, 0, sizeof(*setup_params));
8614
8615         /* Set QUEUE flags */
8616         setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8617
8618         /* Set general SETUP parameters */
8619         bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8620                                 FIRST_TX_COS_INDEX);
8621
8622         bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8623                             &setup_params->rxq_params);
8624
8625         bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8626                            FIRST_TX_COS_INDEX);
8627
8628         /* Set the command */
8629         q_params.cmd = BNX2X_Q_CMD_SETUP;
8630
8631         if (IS_FCOE_FP(fp))
8632                 bp->fcoe_init = true;
8633
8634         /* Change the state to SETUP */
8635         rc = bnx2x_queue_state_change(bp, &q_params);
8636         if (rc) {
8637                 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8638                 return rc;
8639         }
8640
8641         /* loop through the relevant tx-only indices */
8642         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8643               tx_index < fp->max_cos;
8644               tx_index++) {
8645
8646                 /* prepare and send tx-only ramrod*/
8647                 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8648                                           tx_only_params, tx_index, leading);
8649                 if (rc) {
8650                         BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8651                                   fp->index, tx_index);
8652                         return rc;
8653                 }
8654         }
8655
8656         return rc;
8657 }
8658
8659 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8660 {
8661         struct bnx2x_fastpath *fp = &bp->fp[index];
8662         struct bnx2x_fp_txdata *txdata;
8663         struct bnx2x_queue_state_params q_params = {NULL};
8664         int rc, tx_index;
8665
8666         DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8667
8668         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8669         /* We want to wait for completion in this context */
8670         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8671
8672         /* close tx-only connections */
8673         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8674              tx_index < fp->max_cos;
8675              tx_index++){
8676
8677                 /* ascertain this is a normal queue*/
8678                 txdata = fp->txdata_ptr[tx_index];
8679
8680                 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8681                                                         txdata->txq_index);
8682
8683                 /* send halt terminate on tx-only connection */
8684                 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8685                 memset(&q_params.params.terminate, 0,
8686                        sizeof(q_params.params.terminate));
8687                 q_params.params.terminate.cid_index = tx_index;
8688
8689                 rc = bnx2x_queue_state_change(bp, &q_params);
8690                 if (rc)
8691                         return rc;
8692
8693                 /* send halt terminate on tx-only connection */
8694                 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8695                 memset(&q_params.params.cfc_del, 0,
8696                        sizeof(q_params.params.cfc_del));
8697                 q_params.params.cfc_del.cid_index = tx_index;
8698                 rc = bnx2x_queue_state_change(bp, &q_params);
8699                 if (rc)
8700                         return rc;
8701         }
8702         /* Stop the primary connection: */
8703         /* ...halt the connection */
8704         q_params.cmd = BNX2X_Q_CMD_HALT;
8705         rc = bnx2x_queue_state_change(bp, &q_params);
8706         if (rc)
8707                 return rc;
8708
8709         /* ...terminate the connection */
8710         q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8711         memset(&q_params.params.terminate, 0,
8712                sizeof(q_params.params.terminate));
8713         q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8714         rc = bnx2x_queue_state_change(bp, &q_params);
8715         if (rc)
8716                 return rc;
8717         /* ...delete cfc entry */
8718         q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8719         memset(&q_params.params.cfc_del, 0,
8720                sizeof(q_params.params.cfc_del));
8721         q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8722         return bnx2x_queue_state_change(bp, &q_params);
8723 }
8724
8725 static void bnx2x_reset_func(struct bnx2x *bp)
8726 {
8727         int port = BP_PORT(bp);
8728         int func = BP_FUNC(bp);
8729         int i;
8730
8731         /* Disable the function in the FW */
8732         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8733         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8734         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8735         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8736
8737         /* FP SBs */
8738         for_each_eth_queue(bp, i) {
8739                 struct bnx2x_fastpath *fp = &bp->fp[i];
8740                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8741                            CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8742                            SB_DISABLED);
8743         }
8744
8745         if (CNIC_LOADED(bp))
8746                 /* CNIC SB */
8747                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8748                         CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8749                         (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8750
8751         /* SP SB */
8752         REG_WR8(bp, BAR_CSTRORM_INTMEM +
8753                 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8754                 SB_DISABLED);
8755
8756         for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8757                 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8758                        0);
8759
8760         /* Configure IGU */
8761         if (bp->common.int_block == INT_BLOCK_HC) {
8762                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8763                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8764         } else {
8765                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8766                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8767         }
8768
8769         if (CNIC_LOADED(bp)) {
8770                 /* Disable Timer scan */
8771                 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8772                 /*
8773                  * Wait for at least 10ms and up to 2 second for the timers
8774                  * scan to complete
8775                  */
8776                 for (i = 0; i < 200; i++) {
8777                         usleep_range(10000, 20000);
8778                         if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8779                                 break;
8780                 }
8781         }
8782         /* Clear ILT */
8783         bnx2x_clear_func_ilt(bp, func);
8784
8785         /* Timers workaround bug for E2: if this is vnic-3,
8786          * we need to set the entire ilt range for this timers.
8787          */
8788         if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8789                 struct ilt_client_info ilt_cli;
8790                 /* use dummy TM client */
8791                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8792                 ilt_cli.start = 0;
8793                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8794                 ilt_cli.client_num = ILT_CLIENT_TM;
8795
8796                 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8797         }
8798
8799         /* this assumes that reset_port() called before reset_func()*/
8800         if (!CHIP_IS_E1x(bp))
8801                 bnx2x_pf_disable(bp);
8802
8803         bp->dmae_ready = 0;
8804 }
8805
8806 static void bnx2x_reset_port(struct bnx2x *bp)
8807 {
8808         int port = BP_PORT(bp);
8809         u32 val;
8810
8811         /* Reset physical Link */
8812         bnx2x__link_reset(bp);
8813
8814         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8815
8816         /* Do not rcv packets to BRB */
8817         REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8818         /* Do not direct rcv packets that are not for MCP to the BRB */
8819         REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8820                            NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8821
8822         /* Configure AEU */
8823         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8824
8825         msleep(100);
8826         /* Check for BRB port occupancy */
8827         val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8828         if (val)
8829                 DP(NETIF_MSG_IFDOWN,
8830                    "BRB1 is not empty  %d blocks are occupied\n", val);
8831
8832         /* TODO: Close Doorbell port? */
8833 }
8834
8835 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8836 {
8837         struct bnx2x_func_state_params func_params = {NULL};
8838
8839         /* Prepare parameters for function state transitions */
8840         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8841
8842         func_params.f_obj = &bp->func_obj;
8843         func_params.cmd = BNX2X_F_CMD_HW_RESET;
8844
8845         func_params.params.hw_init.load_phase = load_code;
8846
8847         return bnx2x_func_state_change(bp, &func_params);
8848 }
8849
8850 static int bnx2x_func_stop(struct bnx2x *bp)
8851 {
8852         struct bnx2x_func_state_params func_params = {NULL};
8853         int rc;
8854
8855         /* Prepare parameters for function state transitions */
8856         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8857         func_params.f_obj = &bp->func_obj;
8858         func_params.cmd = BNX2X_F_CMD_STOP;
8859
8860         /*
8861          * Try to stop the function the 'good way'. If fails (in case
8862          * of a parity error during bnx2x_chip_cleanup()) and we are
8863          * not in a debug mode, perform a state transaction in order to
8864          * enable further HW_RESET transaction.
8865          */
8866         rc = bnx2x_func_state_change(bp, &func_params);
8867         if (rc) {
8868 #ifdef BNX2X_STOP_ON_ERROR
8869                 return rc;
8870 #else
8871                 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8872                 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8873                 return bnx2x_func_state_change(bp, &func_params);
8874 #endif
8875         }
8876
8877         return 0;
8878 }
8879
8880 /**
8881  * bnx2x_send_unload_req - request unload mode from the MCP.
8882  *
8883  * @bp:                 driver handle
8884  * @unload_mode:        requested function's unload mode
8885  *
8886  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8887  */
8888 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8889 {
8890         u32 reset_code = 0;
8891         int port = BP_PORT(bp);
8892
8893         /* Select the UNLOAD request mode */
8894         if (unload_mode == UNLOAD_NORMAL)
8895                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8896
8897         else if (bp->flags & NO_WOL_FLAG)
8898                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
8899
8900         else if (bp->wol) {
8901                 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
8902                 u8 *mac_addr = bp->dev->dev_addr;
8903                 struct pci_dev *pdev = bp->pdev;
8904                 u32 val;
8905                 u16 pmc;
8906
8907                 /* The mac address is written to entries 1-4 to
8908                  * preserve entry 0 which is used by the PMF
8909                  */
8910                 u8 entry = (BP_VN(bp) + 1)*8;
8911
8912                 val = (mac_addr[0] << 8) | mac_addr[1];
8913                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
8914
8915                 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
8916                       (mac_addr[4] << 8) | mac_addr[5];
8917                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
8918
8919                 /* Enable the PME and clear the status */
8920                 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
8921                 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
8922                 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
8923
8924                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
8925
8926         } else
8927                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8928
8929         /* Send the request to the MCP */
8930         if (!BP_NOMCP(bp))
8931                 reset_code = bnx2x_fw_command(bp, reset_code, 0);
8932         else {
8933                 int path = BP_PATH(bp);
8934
8935                 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
8936                    path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
8937                    bnx2x_load_count[path][2]);
8938                 bnx2x_load_count[path][0]--;
8939                 bnx2x_load_count[path][1 + port]--;
8940                 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
8941                    path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
8942                    bnx2x_load_count[path][2]);
8943                 if (bnx2x_load_count[path][0] == 0)
8944                         reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
8945                 else if (bnx2x_load_count[path][1 + port] == 0)
8946                         reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
8947                 else
8948                         reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
8949         }
8950
8951         return reset_code;
8952 }
8953
8954 /**
8955  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
8956  *
8957  * @bp:         driver handle
8958  * @keep_link:          true iff link should be kept up
8959  */
8960 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
8961 {
8962         u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
8963
8964         /* Report UNLOAD_DONE to MCP */
8965         if (!BP_NOMCP(bp))
8966                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
8967 }
8968
8969 static int bnx2x_func_wait_started(struct bnx2x *bp)
8970 {
8971         int tout = 50;
8972         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
8973
8974         if (!bp->port.pmf)
8975                 return 0;
8976
8977         /*
8978          * (assumption: No Attention from MCP at this stage)
8979          * PMF probably in the middle of TX disable/enable transaction
8980          * 1. Sync IRS for default SB
8981          * 2. Sync SP queue - this guarantees us that attention handling started
8982          * 3. Wait, that TX disable/enable transaction completes
8983          *
8984          * 1+2 guarantee that if DCBx attention was scheduled it already changed
8985          * pending bit of transaction from STARTED-->TX_STOPPED, if we already
8986          * received completion for the transaction the state is TX_STOPPED.
8987          * State will return to STARTED after completion of TX_STOPPED-->STARTED
8988          * transaction.
8989          */
8990
8991         /* make sure default SB ISR is done */
8992         if (msix)
8993                 synchronize_irq(bp->msix_table[0].vector);
8994         else
8995                 synchronize_irq(bp->pdev->irq);
8996
8997         flush_workqueue(bnx2x_wq);
8998         flush_workqueue(bnx2x_iov_wq);
8999
9000         while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9001                                 BNX2X_F_STATE_STARTED && tout--)
9002                 msleep(20);
9003
9004         if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9005                                                 BNX2X_F_STATE_STARTED) {
9006 #ifdef BNX2X_STOP_ON_ERROR
9007                 BNX2X_ERR("Wrong function state\n");
9008                 return -EBUSY;
9009 #else
9010                 /*
9011                  * Failed to complete the transaction in a "good way"
9012                  * Force both transactions with CLR bit
9013                  */
9014                 struct bnx2x_func_state_params func_params = {NULL};
9015
9016                 DP(NETIF_MSG_IFDOWN,
9017                    "Hmmm... Unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
9018
9019                 func_params.f_obj = &bp->func_obj;
9020                 __set_bit(RAMROD_DRV_CLR_ONLY,
9021                                         &func_params.ramrod_flags);
9022
9023                 /* STARTED-->TX_ST0PPED */
9024                 func_params.cmd = BNX2X_F_CMD_TX_STOP;
9025                 bnx2x_func_state_change(bp, &func_params);
9026
9027                 /* TX_ST0PPED-->STARTED */
9028                 func_params.cmd = BNX2X_F_CMD_TX_START;
9029                 return bnx2x_func_state_change(bp, &func_params);
9030 #endif
9031         }
9032
9033         return 0;
9034 }
9035
9036 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9037 {
9038         int port = BP_PORT(bp);
9039         int i, rc = 0;
9040         u8 cos;
9041         struct bnx2x_mcast_ramrod_params rparam = {NULL};
9042         u32 reset_code;
9043
9044         /* Wait until tx fastpath tasks complete */
9045         for_each_tx_queue(bp, i) {
9046                 struct bnx2x_fastpath *fp = &bp->fp[i];
9047
9048                 for_each_cos_in_tx_queue(fp, cos)
9049                         rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9050 #ifdef BNX2X_STOP_ON_ERROR
9051                 if (rc)
9052                         return;
9053 #endif
9054         }
9055
9056         /* Give HW time to discard old tx messages */
9057         usleep_range(1000, 2000);
9058
9059         /* Clean all ETH MACs */
9060         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9061                                 false);
9062         if (rc < 0)
9063                 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9064
9065         /* Clean up UC list  */
9066         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9067                                 true);
9068         if (rc < 0)
9069                 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9070                           rc);
9071
9072         /* Disable LLH */
9073         if (!CHIP_IS_E1(bp))
9074                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9075
9076         /* Set "drop all" (stop Rx).
9077          * We need to take a netif_addr_lock() here in order to prevent
9078          * a race between the completion code and this code.
9079          */
9080         netif_addr_lock_bh(bp->dev);
9081         /* Schedule the rx_mode command */
9082         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9083                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9084         else
9085                 bnx2x_set_storm_rx_mode(bp);
9086
9087         /* Cleanup multicast configuration */
9088         rparam.mcast_obj = &bp->mcast_obj;
9089         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9090         if (rc < 0)
9091                 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9092
9093         netif_addr_unlock_bh(bp->dev);
9094
9095         bnx2x_iov_chip_cleanup(bp);
9096
9097         /*
9098          * Send the UNLOAD_REQUEST to the MCP. This will return if
9099          * this function should perform FUNC, PORT or COMMON HW
9100          * reset.
9101          */
9102         reset_code = bnx2x_send_unload_req(bp, unload_mode);
9103
9104         /*
9105          * (assumption: No Attention from MCP at this stage)
9106          * PMF probably in the middle of TX disable/enable transaction
9107          */
9108         rc = bnx2x_func_wait_started(bp);
9109         if (rc) {
9110                 BNX2X_ERR("bnx2x_func_wait_started failed\n");
9111 #ifdef BNX2X_STOP_ON_ERROR
9112                 return;
9113 #endif
9114         }
9115
9116         /* Close multi and leading connections
9117          * Completions for ramrods are collected in a synchronous way
9118          */
9119         for_each_eth_queue(bp, i)
9120                 if (bnx2x_stop_queue(bp, i))
9121 #ifdef BNX2X_STOP_ON_ERROR
9122                         return;
9123 #else
9124                         goto unload_error;
9125 #endif
9126
9127         if (CNIC_LOADED(bp)) {
9128                 for_each_cnic_queue(bp, i)
9129                         if (bnx2x_stop_queue(bp, i))
9130 #ifdef BNX2X_STOP_ON_ERROR
9131                                 return;
9132 #else
9133                                 goto unload_error;
9134 #endif
9135         }
9136
9137         /* If SP settings didn't get completed so far - something
9138          * very wrong has happen.
9139          */
9140         if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9141                 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9142
9143 #ifndef BNX2X_STOP_ON_ERROR
9144 unload_error:
9145 #endif
9146         rc = bnx2x_func_stop(bp);
9147         if (rc) {
9148                 BNX2X_ERR("Function stop failed!\n");
9149 #ifdef BNX2X_STOP_ON_ERROR
9150                 return;
9151 #endif
9152         }
9153
9154         /* Disable HW interrupts, NAPI */
9155         bnx2x_netif_stop(bp, 1);
9156         /* Delete all NAPI objects */
9157         bnx2x_del_all_napi(bp);
9158         if (CNIC_LOADED(bp))
9159                 bnx2x_del_all_napi_cnic(bp);
9160
9161         /* Release IRQs */
9162         bnx2x_free_irq(bp);
9163
9164         /* Reset the chip */
9165         rc = bnx2x_reset_hw(bp, reset_code);
9166         if (rc)
9167                 BNX2X_ERR("HW_RESET failed\n");
9168
9169         /* Report UNLOAD_DONE to MCP */
9170         bnx2x_send_unload_done(bp, keep_link);
9171 }
9172
9173 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9174 {
9175         u32 val;
9176
9177         DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9178
9179         if (CHIP_IS_E1(bp)) {
9180                 int port = BP_PORT(bp);
9181                 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9182                         MISC_REG_AEU_MASK_ATTN_FUNC_0;
9183
9184                 val = REG_RD(bp, addr);
9185                 val &= ~(0x300);
9186                 REG_WR(bp, addr, val);
9187         } else {
9188                 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9189                 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9190                          MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9191                 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9192         }
9193 }
9194
9195 /* Close gates #2, #3 and #4: */
9196 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9197 {
9198         u32 val;
9199
9200         /* Gates #2 and #4a are closed/opened for "not E1" only */
9201         if (!CHIP_IS_E1(bp)) {
9202                 /* #4 */
9203                 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9204                 /* #2 */
9205                 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9206         }
9207
9208         /* #3 */
9209         if (CHIP_IS_E1x(bp)) {
9210                 /* Prevent interrupts from HC on both ports */
9211                 val = REG_RD(bp, HC_REG_CONFIG_1);
9212                 REG_WR(bp, HC_REG_CONFIG_1,
9213                        (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9214                        (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9215
9216                 val = REG_RD(bp, HC_REG_CONFIG_0);
9217                 REG_WR(bp, HC_REG_CONFIG_0,
9218                        (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9219                        (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9220         } else {
9221                 /* Prevent incoming interrupts in IGU */
9222                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9223
9224                 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9225                        (!close) ?
9226                        (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9227                        (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9228         }
9229
9230         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9231                 close ? "closing" : "opening");
9232         mmiowb();
9233 }
9234
9235 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9236
9237 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9238 {
9239         /* Do some magic... */
9240         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9241         *magic_val = val & SHARED_MF_CLP_MAGIC;
9242         MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9243 }
9244
9245 /**
9246  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9247  *
9248  * @bp:         driver handle
9249  * @magic_val:  old value of the `magic' bit.
9250  */
9251 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9252 {
9253         /* Restore the `magic' bit value... */
9254         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9255         MF_CFG_WR(bp, shared_mf_config.clp_mb,
9256                 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9257 }
9258
9259 /**
9260  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9261  *
9262  * @bp:         driver handle
9263  * @magic_val:  old value of 'magic' bit.
9264  *
9265  * Takes care of CLP configurations.
9266  */
9267 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9268 {
9269         u32 shmem;
9270         u32 validity_offset;
9271
9272         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9273
9274         /* Set `magic' bit in order to save MF config */
9275         if (!CHIP_IS_E1(bp))
9276                 bnx2x_clp_reset_prep(bp, magic_val);
9277
9278         /* Get shmem offset */
9279         shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9280         validity_offset =
9281                 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9282
9283         /* Clear validity map flags */
9284         if (shmem > 0)
9285                 REG_WR(bp, shmem + validity_offset, 0);
9286 }
9287
9288 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9289 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9290
9291 /**
9292  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9293  *
9294  * @bp: driver handle
9295  */
9296 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9297 {
9298         /* special handling for emulation and FPGA,
9299            wait 10 times longer */
9300         if (CHIP_REV_IS_SLOW(bp))
9301                 msleep(MCP_ONE_TIMEOUT*10);
9302         else
9303                 msleep(MCP_ONE_TIMEOUT);
9304 }
9305
9306 /*
9307  * initializes bp->common.shmem_base and waits for validity signature to appear
9308  */
9309 static int bnx2x_init_shmem(struct bnx2x *bp)
9310 {
9311         int cnt = 0;
9312         u32 val = 0;
9313
9314         do {
9315                 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9316                 if (bp->common.shmem_base) {
9317                         val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9318                         if (val & SHR_MEM_VALIDITY_MB)
9319                                 return 0;
9320                 }
9321
9322                 bnx2x_mcp_wait_one(bp);
9323
9324         } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9325
9326         BNX2X_ERR("BAD MCP validity signature\n");
9327
9328         return -ENODEV;
9329 }
9330
9331 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9332 {
9333         int rc = bnx2x_init_shmem(bp);
9334
9335         /* Restore the `magic' bit value */
9336         if (!CHIP_IS_E1(bp))
9337                 bnx2x_clp_reset_done(bp, magic_val);
9338
9339         return rc;
9340 }
9341
9342 static void bnx2x_pxp_prep(struct bnx2x *bp)
9343 {
9344         if (!CHIP_IS_E1(bp)) {
9345                 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9346                 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9347                 mmiowb();
9348         }
9349 }
9350
9351 /*
9352  * Reset the whole chip except for:
9353  *      - PCIE core
9354  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9355  *              one reset bit)
9356  *      - IGU
9357  *      - MISC (including AEU)
9358  *      - GRC
9359  *      - RBCN, RBCP
9360  */
9361 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9362 {
9363         u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9364         u32 global_bits2, stay_reset2;
9365
9366         /*
9367          * Bits that have to be set in reset_mask2 if we want to reset 'global'
9368          * (per chip) blocks.
9369          */
9370         global_bits2 =
9371                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9372                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9373
9374         /* Don't reset the following blocks.
9375          * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9376          *            reset, as in 4 port device they might still be owned
9377          *            by the MCP (there is only one leader per path).
9378          */
9379         not_reset_mask1 =
9380                 MISC_REGISTERS_RESET_REG_1_RST_HC |
9381                 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9382                 MISC_REGISTERS_RESET_REG_1_RST_PXP;
9383
9384         not_reset_mask2 =
9385                 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9386                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9387                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9388                 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9389                 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9390                 MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9391                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9392                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9393                 MISC_REGISTERS_RESET_REG_2_RST_ATC |
9394                 MISC_REGISTERS_RESET_REG_2_PGLC |
9395                 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9396                 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9397                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9398                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9399                 MISC_REGISTERS_RESET_REG_2_UMAC0 |
9400                 MISC_REGISTERS_RESET_REG_2_UMAC1;
9401
9402         /*
9403          * Keep the following blocks in reset:
9404          *  - all xxMACs are handled by the bnx2x_link code.
9405          */
9406         stay_reset2 =
9407                 MISC_REGISTERS_RESET_REG_2_XMAC |
9408                 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9409
9410         /* Full reset masks according to the chip */
9411         reset_mask1 = 0xffffffff;
9412
9413         if (CHIP_IS_E1(bp))
9414                 reset_mask2 = 0xffff;
9415         else if (CHIP_IS_E1H(bp))
9416                 reset_mask2 = 0x1ffff;
9417         else if (CHIP_IS_E2(bp))
9418                 reset_mask2 = 0xfffff;
9419         else /* CHIP_IS_E3 */
9420                 reset_mask2 = 0x3ffffff;
9421
9422         /* Don't reset global blocks unless we need to */
9423         if (!global)
9424                 reset_mask2 &= ~global_bits2;
9425
9426         /*
9427          * In case of attention in the QM, we need to reset PXP
9428          * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9429          * because otherwise QM reset would release 'close the gates' shortly
9430          * before resetting the PXP, then the PSWRQ would send a write
9431          * request to PGLUE. Then when PXP is reset, PGLUE would try to
9432          * read the payload data from PSWWR, but PSWWR would not
9433          * respond. The write queue in PGLUE would stuck, dmae commands
9434          * would not return. Therefore it's important to reset the second
9435          * reset register (containing the
9436          * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9437          * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9438          * bit).
9439          */
9440         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9441                reset_mask2 & (~not_reset_mask2));
9442
9443         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9444                reset_mask1 & (~not_reset_mask1));
9445
9446         barrier();
9447         mmiowb();
9448
9449         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9450                reset_mask2 & (~stay_reset2));
9451
9452         barrier();
9453         mmiowb();
9454
9455         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9456         mmiowb();
9457 }
9458
9459 /**
9460  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9461  * It should get cleared in no more than 1s.
9462  *
9463  * @bp: driver handle
9464  *
9465  * It should get cleared in no more than 1s. Returns 0 if
9466  * pending writes bit gets cleared.
9467  */
9468 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9469 {
9470         u32 cnt = 1000;
9471         u32 pend_bits = 0;
9472
9473         do {
9474                 pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9475
9476                 if (pend_bits == 0)
9477                         break;
9478
9479                 usleep_range(1000, 2000);
9480         } while (cnt-- > 0);
9481
9482         if (cnt <= 0) {
9483                 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9484                           pend_bits);
9485                 return -EBUSY;
9486         }
9487
9488         return 0;
9489 }
9490
9491 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9492 {
9493         int cnt = 1000;
9494         u32 val = 0;
9495         u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9496         u32 tags_63_32 = 0;
9497
9498         /* Empty the Tetris buffer, wait for 1s */
9499         do {
9500                 sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9501                 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9502                 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9503                 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9504                 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9505                 if (CHIP_IS_E3(bp))
9506                         tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9507
9508                 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9509                     ((port_is_idle_0 & 0x1) == 0x1) &&
9510                     ((port_is_idle_1 & 0x1) == 0x1) &&
9511                     (pgl_exp_rom2 == 0xffffffff) &&
9512                     (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9513                         break;
9514                 usleep_range(1000, 2000);
9515         } while (cnt-- > 0);
9516
9517         if (cnt <= 0) {
9518                 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9519                 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9520                           sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9521                           pgl_exp_rom2);
9522                 return -EAGAIN;
9523         }
9524
9525         barrier();
9526
9527         /* Close gates #2, #3 and #4 */
9528         bnx2x_set_234_gates(bp, true);
9529
9530         /* Poll for IGU VQs for 57712 and newer chips */
9531         if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9532                 return -EAGAIN;
9533
9534         /* TBD: Indicate that "process kill" is in progress to MCP */
9535
9536         /* Clear "unprepared" bit */
9537         REG_WR(bp, MISC_REG_UNPREPARED, 0);
9538         barrier();
9539
9540         /* Make sure all is written to the chip before the reset */
9541         mmiowb();
9542
9543         /* Wait for 1ms to empty GLUE and PCI-E core queues,
9544          * PSWHST, GRC and PSWRD Tetris buffer.
9545          */
9546         usleep_range(1000, 2000);
9547
9548         /* Prepare to chip reset: */
9549         /* MCP */
9550         if (global)
9551                 bnx2x_reset_mcp_prep(bp, &val);
9552
9553         /* PXP */
9554         bnx2x_pxp_prep(bp);
9555         barrier();
9556
9557         /* reset the chip */
9558         bnx2x_process_kill_chip_reset(bp, global);
9559         barrier();
9560
9561         /* clear errors in PGB */
9562         if (!CHIP_IS_E1x(bp))
9563                 REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9564
9565         /* Recover after reset: */
9566         /* MCP */
9567         if (global && bnx2x_reset_mcp_comp(bp, val))
9568                 return -EAGAIN;
9569
9570         /* TBD: Add resetting the NO_MCP mode DB here */
9571
9572         /* Open the gates #2, #3 and #4 */
9573         bnx2x_set_234_gates(bp, false);
9574
9575         /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9576          * reset state, re-enable attentions. */
9577
9578         return 0;
9579 }
9580
9581 static int bnx2x_leader_reset(struct bnx2x *bp)
9582 {
9583         int rc = 0;
9584         bool global = bnx2x_reset_is_global(bp);
9585         u32 load_code;
9586
9587         /* if not going to reset MCP - load "fake" driver to reset HW while
9588          * driver is owner of the HW
9589          */
9590         if (!global && !BP_NOMCP(bp)) {
9591                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9592                                              DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9593                 if (!load_code) {
9594                         BNX2X_ERR("MCP response failure, aborting\n");
9595                         rc = -EAGAIN;
9596                         goto exit_leader_reset;
9597                 }
9598                 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9599                     (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9600                         BNX2X_ERR("MCP unexpected resp, aborting\n");
9601                         rc = -EAGAIN;
9602                         goto exit_leader_reset2;
9603                 }
9604                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9605                 if (!load_code) {
9606                         BNX2X_ERR("MCP response failure, aborting\n");
9607                         rc = -EAGAIN;
9608                         goto exit_leader_reset2;
9609                 }
9610         }
9611
9612         /* Try to recover after the failure */
9613         if (bnx2x_process_kill(bp, global)) {
9614                 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9615                           BP_PATH(bp));
9616                 rc = -EAGAIN;
9617                 goto exit_leader_reset2;
9618         }
9619
9620         /*
9621          * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9622          * state.
9623          */
9624         bnx2x_set_reset_done(bp);
9625         if (global)
9626                 bnx2x_clear_reset_global(bp);
9627
9628 exit_leader_reset2:
9629         /* unload "fake driver" if it was loaded */
9630         if (!global && !BP_NOMCP(bp)) {
9631                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9632                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9633         }
9634 exit_leader_reset:
9635         bp->is_leader = 0;
9636         bnx2x_release_leader_lock(bp);
9637         smp_mb();
9638         return rc;
9639 }
9640
9641 static void bnx2x_recovery_failed(struct bnx2x *bp)
9642 {
9643         netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9644
9645         /* Disconnect this device */
9646         netif_device_detach(bp->dev);
9647
9648         /*
9649          * Block ifup for all function on this engine until "process kill"
9650          * or power cycle.
9651          */
9652         bnx2x_set_reset_in_progress(bp);
9653
9654         /* Shut down the power */
9655         bnx2x_set_power_state(bp, PCI_D3hot);
9656
9657         bp->recovery_state = BNX2X_RECOVERY_FAILED;
9658
9659         smp_mb();
9660 }
9661
9662 /*
9663  * Assumption: runs under rtnl lock. This together with the fact
9664  * that it's called only from bnx2x_sp_rtnl() ensure that it
9665  * will never be called when netif_running(bp->dev) is false.
9666  */
9667 static void bnx2x_parity_recover(struct bnx2x *bp)
9668 {
9669         bool global = false;
9670         u32 error_recovered, error_unrecovered;
9671         bool is_parity;
9672
9673         DP(NETIF_MSG_HW, "Handling parity\n");
9674         while (1) {
9675                 switch (bp->recovery_state) {
9676                 case BNX2X_RECOVERY_INIT:
9677                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9678                         is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9679                         WARN_ON(!is_parity);
9680
9681                         /* Try to get a LEADER_LOCK HW lock */
9682                         if (bnx2x_trylock_leader_lock(bp)) {
9683                                 bnx2x_set_reset_in_progress(bp);
9684                                 /*
9685                                  * Check if there is a global attention and if
9686                                  * there was a global attention, set the global
9687                                  * reset bit.
9688                                  */
9689
9690                                 if (global)
9691                                         bnx2x_set_reset_global(bp);
9692
9693                                 bp->is_leader = 1;
9694                         }
9695
9696                         /* Stop the driver */
9697                         /* If interface has been removed - break */
9698                         if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9699                                 return;
9700
9701                         bp->recovery_state = BNX2X_RECOVERY_WAIT;
9702
9703                         /* Ensure "is_leader", MCP command sequence and
9704                          * "recovery_state" update values are seen on other
9705                          * CPUs.
9706                          */
9707                         smp_mb();
9708                         break;
9709
9710                 case BNX2X_RECOVERY_WAIT:
9711                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9712                         if (bp->is_leader) {
9713                                 int other_engine = BP_PATH(bp) ? 0 : 1;
9714                                 bool other_load_status =
9715                                         bnx2x_get_load_status(bp, other_engine);
9716                                 bool load_status =
9717                                         bnx2x_get_load_status(bp, BP_PATH(bp));
9718                                 global = bnx2x_reset_is_global(bp);
9719
9720                                 /*
9721                                  * In case of a parity in a global block, let
9722                                  * the first leader that performs a
9723                                  * leader_reset() reset the global blocks in
9724                                  * order to clear global attentions. Otherwise
9725                                  * the gates will remain closed for that
9726                                  * engine.
9727                                  */
9728                                 if (load_status ||
9729                                     (global && other_load_status)) {
9730                                         /* Wait until all other functions get
9731                                          * down.
9732                                          */
9733                                         schedule_delayed_work(&bp->sp_rtnl_task,
9734                                                                 HZ/10);
9735                                         return;
9736                                 } else {
9737                                         /* If all other functions got down -
9738                                          * try to bring the chip back to
9739                                          * normal. In any case it's an exit
9740                                          * point for a leader.
9741                                          */
9742                                         if (bnx2x_leader_reset(bp)) {
9743                                                 bnx2x_recovery_failed(bp);
9744                                                 return;
9745                                         }
9746
9747                                         /* If we are here, means that the
9748                                          * leader has succeeded and doesn't
9749                                          * want to be a leader any more. Try
9750                                          * to continue as a none-leader.
9751                                          */
9752                                         break;
9753                                 }
9754                         } else { /* non-leader */
9755                                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9756                                         /* Try to get a LEADER_LOCK HW lock as
9757                                          * long as a former leader may have
9758                                          * been unloaded by the user or
9759                                          * released a leadership by another
9760                                          * reason.
9761                                          */
9762                                         if (bnx2x_trylock_leader_lock(bp)) {
9763                                                 /* I'm a leader now! Restart a
9764                                                  * switch case.
9765                                                  */
9766                                                 bp->is_leader = 1;
9767                                                 break;
9768                                         }
9769
9770                                         schedule_delayed_work(&bp->sp_rtnl_task,
9771                                                                 HZ/10);
9772                                         return;
9773
9774                                 } else {
9775                                         /*
9776                                          * If there was a global attention, wait
9777                                          * for it to be cleared.
9778                                          */
9779                                         if (bnx2x_reset_is_global(bp)) {
9780                                                 schedule_delayed_work(
9781                                                         &bp->sp_rtnl_task,
9782                                                         HZ/10);
9783                                                 return;
9784                                         }
9785
9786                                         error_recovered =
9787                                           bp->eth_stats.recoverable_error;
9788                                         error_unrecovered =
9789                                           bp->eth_stats.unrecoverable_error;
9790                                         bp->recovery_state =
9791                                                 BNX2X_RECOVERY_NIC_LOADING;
9792                                         if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9793                                                 error_unrecovered++;
9794                                                 netdev_err(bp->dev,
9795                                                            "Recovery failed. Power cycle needed\n");
9796                                                 /* Disconnect this device */
9797                                                 netif_device_detach(bp->dev);
9798                                                 /* Shut down the power */
9799                                                 bnx2x_set_power_state(
9800                                                         bp, PCI_D3hot);
9801                                                 smp_mb();
9802                                         } else {
9803                                                 bp->recovery_state =
9804                                                         BNX2X_RECOVERY_DONE;
9805                                                 error_recovered++;
9806                                                 smp_mb();
9807                                         }
9808                                         bp->eth_stats.recoverable_error =
9809                                                 error_recovered;
9810                                         bp->eth_stats.unrecoverable_error =
9811                                                 error_unrecovered;
9812
9813                                         return;
9814                                 }
9815                         }
9816                 default:
9817                         return;
9818                 }
9819         }
9820 }
9821
9822 static int bnx2x_close(struct net_device *dev);
9823
9824 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9825  * scheduled on a general queue in order to prevent a dead lock.
9826  */
9827 static void bnx2x_sp_rtnl_task(struct work_struct *work)
9828 {
9829         struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9830
9831         rtnl_lock();
9832
9833         if (!netif_running(bp->dev)) {
9834                 rtnl_unlock();
9835                 return;
9836         }
9837
9838         if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9839 #ifdef BNX2X_STOP_ON_ERROR
9840                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9841                           "you will need to reboot when done\n");
9842                 goto sp_rtnl_not_reset;
9843 #endif
9844                 /*
9845                  * Clear all pending SP commands as we are going to reset the
9846                  * function anyway.
9847                  */
9848                 bp->sp_rtnl_state = 0;
9849                 smp_mb();
9850
9851                 bnx2x_parity_recover(bp);
9852
9853                 rtnl_unlock();
9854                 return;
9855         }
9856
9857         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
9858 #ifdef BNX2X_STOP_ON_ERROR
9859                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9860                           "you will need to reboot when done\n");
9861                 goto sp_rtnl_not_reset;
9862 #endif
9863
9864                 /*
9865                  * Clear all pending SP commands as we are going to reset the
9866                  * function anyway.
9867                  */
9868                 bp->sp_rtnl_state = 0;
9869                 smp_mb();
9870
9871                 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
9872                 bnx2x_nic_load(bp, LOAD_NORMAL);
9873
9874                 rtnl_unlock();
9875                 return;
9876         }
9877 #ifdef BNX2X_STOP_ON_ERROR
9878 sp_rtnl_not_reset:
9879 #endif
9880         if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
9881                 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
9882         if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
9883                 bnx2x_after_function_update(bp);
9884         /*
9885          * in case of fan failure we need to reset id if the "stop on error"
9886          * debug flag is set, since we trying to prevent permanent overheating
9887          * damage
9888          */
9889         if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
9890                 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
9891                 netif_device_detach(bp->dev);
9892                 bnx2x_close(bp->dev);
9893                 rtnl_unlock();
9894                 return;
9895         }
9896
9897         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
9898                 DP(BNX2X_MSG_SP,
9899                    "sending set mcast vf pf channel message from rtnl sp-task\n");
9900                 bnx2x_vfpf_set_mcast(bp->dev);
9901         }
9902         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
9903                                &bp->sp_rtnl_state)){
9904                 if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
9905                         bnx2x_tx_disable(bp);
9906                         BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
9907                 }
9908         }
9909
9910         if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
9911                 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
9912                 bnx2x_set_rx_mode_inner(bp);
9913         }
9914
9915         if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
9916                                &bp->sp_rtnl_state))
9917                 bnx2x_pf_set_vfs_vlan(bp);
9918
9919         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
9920                 bnx2x_dcbx_stop_hw_tx(bp);
9921                 bnx2x_dcbx_resume_hw_tx(bp);
9922         }
9923
9924         if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
9925                                &bp->sp_rtnl_state))
9926                 bnx2x_update_mng_version(bp);
9927
9928         /* work which needs rtnl lock not-taken (as it takes the lock itself and
9929          * can be called from other contexts as well)
9930          */
9931         rtnl_unlock();
9932
9933         /* enable SR-IOV if applicable */
9934         if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
9935                                                &bp->sp_rtnl_state)) {
9936                 bnx2x_disable_sriov(bp);
9937                 bnx2x_enable_sriov(bp);
9938         }
9939 }
9940
9941 static void bnx2x_period_task(struct work_struct *work)
9942 {
9943         struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
9944
9945         if (!netif_running(bp->dev))
9946                 goto period_task_exit;
9947
9948         if (CHIP_REV_IS_SLOW(bp)) {
9949                 BNX2X_ERR("period task called on emulation, ignoring\n");
9950                 goto period_task_exit;
9951         }
9952
9953         bnx2x_acquire_phy_lock(bp);
9954         /*
9955          * The barrier is needed to ensure the ordering between the writing to
9956          * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
9957          * the reading here.
9958          */
9959         smp_mb();
9960         if (bp->port.pmf) {
9961                 bnx2x_period_func(&bp->link_params, &bp->link_vars);
9962
9963                 /* Re-queue task in 1 sec */
9964                 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
9965         }
9966
9967         bnx2x_release_phy_lock(bp);
9968 period_task_exit:
9969         return;
9970 }
9971
9972 /*
9973  * Init service functions
9974  */
9975
9976 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
9977 {
9978         u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9979         u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
9980         return base + (BP_ABS_FUNC(bp)) * stride;
9981 }
9982
9983 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
9984                                         struct bnx2x_mac_vals *vals)
9985 {
9986         u32 val, base_addr, offset, mask, reset_reg;
9987         bool mac_stopped = false;
9988         u8 port = BP_PORT(bp);
9989
9990         /* reset addresses as they also mark which values were changed */
9991         vals->bmac_addr = 0;
9992         vals->umac_addr = 0;
9993         vals->xmac_addr = 0;
9994         vals->emac_addr = 0;
9995
9996         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
9997
9998         if (!CHIP_IS_E3(bp)) {
9999                 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10000                 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10001                 if ((mask & reset_reg) && val) {
10002                         u32 wb_data[2];
10003                         BNX2X_DEV_INFO("Disable bmac Rx\n");
10004                         base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10005                                                 : NIG_REG_INGRESS_BMAC0_MEM;
10006                         offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10007                                                 : BIGMAC_REGISTER_BMAC_CONTROL;
10008
10009                         /*
10010                          * use rd/wr since we cannot use dmae. This is safe
10011                          * since MCP won't access the bus due to the request
10012                          * to unload, and no function on the path can be
10013                          * loaded at this time.
10014                          */
10015                         wb_data[0] = REG_RD(bp, base_addr + offset);
10016                         wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10017                         vals->bmac_addr = base_addr + offset;
10018                         vals->bmac_val[0] = wb_data[0];
10019                         vals->bmac_val[1] = wb_data[1];
10020                         wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10021                         REG_WR(bp, vals->bmac_addr, wb_data[0]);
10022                         REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10023                 }
10024                 BNX2X_DEV_INFO("Disable emac Rx\n");
10025                 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10026                 vals->emac_val = REG_RD(bp, vals->emac_addr);
10027                 REG_WR(bp, vals->emac_addr, 0);
10028                 mac_stopped = true;
10029         } else {
10030                 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10031                         BNX2X_DEV_INFO("Disable xmac Rx\n");
10032                         base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10033                         val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10034                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10035                                val & ~(1 << 1));
10036                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10037                                val | (1 << 1));
10038                         vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10039                         vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10040                         REG_WR(bp, vals->xmac_addr, 0);
10041                         mac_stopped = true;
10042                 }
10043                 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10044                 if (mask & reset_reg) {
10045                         BNX2X_DEV_INFO("Disable umac Rx\n");
10046                         base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10047                         vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
10048                         vals->umac_val = REG_RD(bp, vals->umac_addr);
10049                         REG_WR(bp, vals->umac_addr, 0);
10050                         mac_stopped = true;
10051                 }
10052         }
10053
10054         if (mac_stopped)
10055                 msleep(20);
10056 }
10057
10058 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10059 #define BNX2X_PREV_UNDI_RCQ(val)        ((val) & 0xffff)
10060 #define BNX2X_PREV_UNDI_BD(val)         ((val) >> 16 & 0xffff)
10061 #define BNX2X_PREV_UNDI_PROD(rcq, bd)   ((bd) << 16 | (rcq))
10062
10063 #define BCM_5710_UNDI_FW_MF_MAJOR       (0x07)
10064 #define BCM_5710_UNDI_FW_MF_MINOR       (0x08)
10065 #define BCM_5710_UNDI_FW_MF_VERS        (0x05)
10066 #define BNX2X_PREV_UNDI_MF_PORT(p) (BAR_TSTRORM_INTMEM + 0x150c + ((p) << 4))
10067 #define BNX2X_PREV_UNDI_MF_FUNC(f) (BAR_TSTRORM_INTMEM + 0x184c + ((f) << 4))
10068
10069 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10070 {
10071         /* UNDI marks its presence in DORQ -
10072          * it initializes CID offset for normal bell to 0x7
10073          */
10074         if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10075             MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10076                 return false;
10077
10078         if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10079                 BNX2X_DEV_INFO("UNDI previously loaded\n");
10080                 return true;
10081         }
10082
10083         return false;
10084 }
10085
10086 static bool bnx2x_prev_unload_undi_fw_supports_mf(struct bnx2x *bp)
10087 {
10088         u8 major, minor, version;
10089         u32 fw;
10090
10091         /* Must check that FW is loaded */
10092         if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10093              MISC_REGISTERS_RESET_REG_1_RST_XSEM)) {
10094                 BNX2X_DEV_INFO("XSEM is reset - UNDI MF FW is not loaded\n");
10095                 return false;
10096         }
10097
10098         /* Read Currently loaded FW version */
10099         fw = REG_RD(bp, XSEM_REG_PRAM);
10100         major = fw & 0xff;
10101         minor = (fw >> 0x8) & 0xff;
10102         version = (fw >> 0x10) & 0xff;
10103         BNX2X_DEV_INFO("Loaded FW: 0x%08x: Major 0x%02x Minor 0x%02x Version 0x%02x\n",
10104                        fw, major, minor, version);
10105
10106         if (major > BCM_5710_UNDI_FW_MF_MAJOR)
10107                 return true;
10108
10109         if ((major == BCM_5710_UNDI_FW_MF_MAJOR) &&
10110             (minor > BCM_5710_UNDI_FW_MF_MINOR))
10111                 return true;
10112
10113         if ((major == BCM_5710_UNDI_FW_MF_MAJOR) &&
10114             (minor == BCM_5710_UNDI_FW_MF_MINOR) &&
10115             (version >= BCM_5710_UNDI_FW_MF_VERS))
10116                 return true;
10117
10118         return false;
10119 }
10120
10121 static void bnx2x_prev_unload_undi_mf(struct bnx2x *bp)
10122 {
10123         int i;
10124
10125         /* Due to legacy (FW) code, the first function on each engine has a
10126          * different offset macro from the rest of the functions.
10127          * Setting this for all 8 functions is harmless regardless of whether
10128          * this is actually a multi-function device.
10129          */
10130         for (i = 0; i < 2; i++)
10131                 REG_WR(bp, BNX2X_PREV_UNDI_MF_PORT(i), 1);
10132
10133         for (i = 2; i < 8; i++)
10134                 REG_WR(bp, BNX2X_PREV_UNDI_MF_FUNC(i - 2), 1);
10135
10136         BNX2X_DEV_INFO("UNDI FW (MF) set to discard\n");
10137 }
10138
10139 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc)
10140 {
10141         u16 rcq, bd;
10142         u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
10143
10144         rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10145         bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10146
10147         tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10148         REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
10149
10150         BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10151                        port, bd, rcq);
10152 }
10153
10154 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10155 {
10156         u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10157                                   DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10158         if (!rc) {
10159                 BNX2X_ERR("MCP response failure, aborting\n");
10160                 return -EBUSY;
10161         }
10162
10163         return 0;
10164 }
10165
10166 static struct bnx2x_prev_path_list *
10167                 bnx2x_prev_path_get_entry(struct bnx2x *bp)
10168 {
10169         struct bnx2x_prev_path_list *tmp_list;
10170
10171         list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10172                 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10173                     bp->pdev->bus->number == tmp_list->bus &&
10174                     BP_PATH(bp) == tmp_list->path)
10175                         return tmp_list;
10176
10177         return NULL;
10178 }
10179
10180 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10181 {
10182         struct bnx2x_prev_path_list *tmp_list;
10183         int rc;
10184
10185         rc = down_interruptible(&bnx2x_prev_sem);
10186         if (rc) {
10187                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10188                 return rc;
10189         }
10190
10191         tmp_list = bnx2x_prev_path_get_entry(bp);
10192         if (tmp_list) {
10193                 tmp_list->aer = 1;
10194                 rc = 0;
10195         } else {
10196                 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10197                           BP_PATH(bp));
10198         }
10199
10200         up(&bnx2x_prev_sem);
10201
10202         return rc;
10203 }
10204
10205 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10206 {
10207         struct bnx2x_prev_path_list *tmp_list;
10208         bool rc = false;
10209
10210         if (down_trylock(&bnx2x_prev_sem))
10211                 return false;
10212
10213         tmp_list = bnx2x_prev_path_get_entry(bp);
10214         if (tmp_list) {
10215                 if (tmp_list->aer) {
10216                         DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10217                            BP_PATH(bp));
10218                 } else {
10219                         rc = true;
10220                         BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10221                                        BP_PATH(bp));
10222                 }
10223         }
10224
10225         up(&bnx2x_prev_sem);
10226
10227         return rc;
10228 }
10229
10230 bool bnx2x_port_after_undi(struct bnx2x *bp)
10231 {
10232         struct bnx2x_prev_path_list *entry;
10233         bool val;
10234
10235         down(&bnx2x_prev_sem);
10236
10237         entry = bnx2x_prev_path_get_entry(bp);
10238         val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10239
10240         up(&bnx2x_prev_sem);
10241
10242         return val;
10243 }
10244
10245 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10246 {
10247         struct bnx2x_prev_path_list *tmp_list;
10248         int rc;
10249
10250         rc = down_interruptible(&bnx2x_prev_sem);
10251         if (rc) {
10252                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10253                 return rc;
10254         }
10255
10256         /* Check whether the entry for this path already exists */
10257         tmp_list = bnx2x_prev_path_get_entry(bp);
10258         if (tmp_list) {
10259                 if (!tmp_list->aer) {
10260                         BNX2X_ERR("Re-Marking the path.\n");
10261                 } else {
10262                         DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10263                            BP_PATH(bp));
10264                         tmp_list->aer = 0;
10265                 }
10266                 up(&bnx2x_prev_sem);
10267                 return 0;
10268         }
10269         up(&bnx2x_prev_sem);
10270
10271         /* Create an entry for this path and add it */
10272         tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10273         if (!tmp_list) {
10274                 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10275                 return -ENOMEM;
10276         }
10277
10278         tmp_list->bus = bp->pdev->bus->number;
10279         tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10280         tmp_list->path = BP_PATH(bp);
10281         tmp_list->aer = 0;
10282         tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10283
10284         rc = down_interruptible(&bnx2x_prev_sem);
10285         if (rc) {
10286                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10287                 kfree(tmp_list);
10288         } else {
10289                 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10290                    BP_PATH(bp));
10291                 list_add(&tmp_list->list, &bnx2x_prev_list);
10292                 up(&bnx2x_prev_sem);
10293         }
10294
10295         return rc;
10296 }
10297
10298 static int bnx2x_do_flr(struct bnx2x *bp)
10299 {
10300         struct pci_dev *dev = bp->pdev;
10301
10302         if (CHIP_IS_E1x(bp)) {
10303                 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10304                 return -EINVAL;
10305         }
10306
10307         /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10308         if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10309                 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10310                           bp->common.bc_ver);
10311                 return -EINVAL;
10312         }
10313
10314         if (!pci_wait_for_pending_transaction(dev))
10315                 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10316
10317         BNX2X_DEV_INFO("Initiating FLR\n");
10318         bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10319
10320         return 0;
10321 }
10322
10323 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10324 {
10325         int rc;
10326
10327         BNX2X_DEV_INFO("Uncommon unload Flow\n");
10328
10329         /* Test if previous unload process was already finished for this path */
10330         if (bnx2x_prev_is_path_marked(bp))
10331                 return bnx2x_prev_mcp_done(bp);
10332
10333         BNX2X_DEV_INFO("Path is unmarked\n");
10334
10335         /* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10336         if (bnx2x_prev_is_after_undi(bp))
10337                 goto out;
10338
10339         /* If function has FLR capabilities, and existing FW version matches
10340          * the one required, then FLR will be sufficient to clean any residue
10341          * left by previous driver
10342          */
10343         rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10344
10345         if (!rc) {
10346                 /* fw version is good */
10347                 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10348                 rc = bnx2x_do_flr(bp);
10349         }
10350
10351         if (!rc) {
10352                 /* FLR was performed */
10353                 BNX2X_DEV_INFO("FLR successful\n");
10354                 return 0;
10355         }
10356
10357         BNX2X_DEV_INFO("Could not FLR\n");
10358
10359 out:
10360         /* Close the MCP request, return failure*/
10361         rc = bnx2x_prev_mcp_done(bp);
10362         if (!rc)
10363                 rc = BNX2X_PREV_WAIT_NEEDED;
10364
10365         return rc;
10366 }
10367
10368 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10369 {
10370         u32 reset_reg, tmp_reg = 0, rc;
10371         bool prev_undi = false;
10372         struct bnx2x_mac_vals mac_vals;
10373
10374         /* It is possible a previous function received 'common' answer,
10375          * but hasn't loaded yet, therefore creating a scenario of
10376          * multiple functions receiving 'common' on the same path.
10377          */
10378         BNX2X_DEV_INFO("Common unload Flow\n");
10379
10380         memset(&mac_vals, 0, sizeof(mac_vals));
10381
10382         if (bnx2x_prev_is_path_marked(bp))
10383                 return bnx2x_prev_mcp_done(bp);
10384
10385         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10386
10387         /* Reset should be performed after BRB is emptied */
10388         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10389                 u32 timer_count = 1000;
10390                 bool need_write = true;
10391
10392                 /* Close the MAC Rx to prevent BRB from filling up */
10393                 bnx2x_prev_unload_close_mac(bp, &mac_vals);
10394
10395                 /* close LLH filters towards the BRB */
10396                 bnx2x_set_rx_filter(&bp->link_params, 0);
10397
10398                 /* Check if the UNDI driver was previously loaded */
10399                 if (bnx2x_prev_is_after_undi(bp)) {
10400                         prev_undi = true;
10401                         /* clear the UNDI indication */
10402                         REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10403                         /* clear possible idle check errors */
10404                         REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10405                 }
10406                 if (!CHIP_IS_E1x(bp))
10407                         /* block FW from writing to host */
10408                         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10409
10410                 /* wait until BRB is empty */
10411                 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10412                 while (timer_count) {
10413                         u32 prev_brb = tmp_reg;
10414
10415                         tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10416                         if (!tmp_reg)
10417                                 break;
10418
10419                         BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10420
10421                         /* reset timer as long as BRB actually gets emptied */
10422                         if (prev_brb > tmp_reg)
10423                                 timer_count = 1000;
10424                         else
10425                                 timer_count--;
10426
10427                         /* New UNDI FW supports MF and contains better
10428                          * cleaning methods - might be redundant but harmless.
10429                          */
10430                         if (bnx2x_prev_unload_undi_fw_supports_mf(bp)) {
10431                                 if (need_write) {
10432                                         bnx2x_prev_unload_undi_mf(bp);
10433                                         need_write = false;
10434                                 }
10435                         } else if (prev_undi) {
10436                                 /* If UNDI resides in memory,
10437                                  * manually increment it
10438                                  */
10439                                 bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
10440                         }
10441                         udelay(10);
10442                 }
10443
10444                 if (!timer_count)
10445                         BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10446         }
10447
10448         /* No packets are in the pipeline, path is ready for reset */
10449         bnx2x_reset_common(bp);
10450
10451         if (mac_vals.xmac_addr)
10452                 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10453         if (mac_vals.umac_addr)
10454                 REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val);
10455         if (mac_vals.emac_addr)
10456                 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10457         if (mac_vals.bmac_addr) {
10458                 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10459                 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10460         }
10461
10462         rc = bnx2x_prev_mark_path(bp, prev_undi);
10463         if (rc) {
10464                 bnx2x_prev_mcp_done(bp);
10465                 return rc;
10466         }
10467
10468         return bnx2x_prev_mcp_done(bp);
10469 }
10470
10471 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
10472  * and boot began, or when kdump kernel was loaded. Either case would invalidate
10473  * the addresses of the transaction, resulting in was-error bit set in the pci
10474  * causing all hw-to-host pcie transactions to timeout. If this happened we want
10475  * to clear the interrupt which detected this from the pglueb and the was done
10476  * bit
10477  */
10478 static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
10479 {
10480         if (!CHIP_IS_E1x(bp)) {
10481                 u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
10482                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
10483                         DP(BNX2X_MSG_SP,
10484                            "'was error' bit was found to be set in pglueb upon startup. Clearing\n");
10485                         REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
10486                                1 << BP_FUNC(bp));
10487                 }
10488         }
10489 }
10490
10491 static int bnx2x_prev_unload(struct bnx2x *bp)
10492 {
10493         int time_counter = 10;
10494         u32 rc, fw, hw_lock_reg, hw_lock_val;
10495         BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10496
10497         /* clear hw from errors which may have resulted from an interrupted
10498          * dmae transaction.
10499          */
10500         bnx2x_prev_interrupted_dmae(bp);
10501
10502         /* Release previously held locks */
10503         hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10504                       (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10505                       (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10506
10507         hw_lock_val = REG_RD(bp, hw_lock_reg);
10508         if (hw_lock_val) {
10509                 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10510                         BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10511                         REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10512                                (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10513                 }
10514
10515                 BNX2X_DEV_INFO("Release Previously held hw lock\n");
10516                 REG_WR(bp, hw_lock_reg, 0xffffffff);
10517         } else
10518                 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10519
10520         if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10521                 BNX2X_DEV_INFO("Release previously held alr\n");
10522                 bnx2x_release_alr(bp);
10523         }
10524
10525         do {
10526                 int aer = 0;
10527                 /* Lock MCP using an unload request */
10528                 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10529                 if (!fw) {
10530                         BNX2X_ERR("MCP response failure, aborting\n");
10531                         rc = -EBUSY;
10532                         break;
10533                 }
10534
10535                 rc = down_interruptible(&bnx2x_prev_sem);
10536                 if (rc) {
10537                         BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10538                                   rc);
10539                 } else {
10540                         /* If Path is marked by EEH, ignore unload status */
10541                         aer = !!(bnx2x_prev_path_get_entry(bp) &&
10542                                  bnx2x_prev_path_get_entry(bp)->aer);
10543                         up(&bnx2x_prev_sem);
10544                 }
10545
10546                 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10547                         rc = bnx2x_prev_unload_common(bp);
10548                         break;
10549                 }
10550
10551                 /* non-common reply from MCP might require looping */
10552                 rc = bnx2x_prev_unload_uncommon(bp);
10553                 if (rc != BNX2X_PREV_WAIT_NEEDED)
10554                         break;
10555
10556                 msleep(20);
10557         } while (--time_counter);
10558
10559         if (!time_counter || rc) {
10560                 BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10561                 rc = -EPROBE_DEFER;
10562         }
10563
10564         /* Mark function if its port was used to boot from SAN */
10565         if (bnx2x_port_after_undi(bp))
10566                 bp->link_params.feature_config_flags |=
10567                         FEATURE_CONFIG_BOOT_FROM_SAN;
10568
10569         BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10570
10571         return rc;
10572 }
10573
10574 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10575 {
10576         u32 val, val2, val3, val4, id, boot_mode;
10577         u16 pmc;
10578
10579         /* Get the chip revision id and number. */
10580         /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10581         val = REG_RD(bp, MISC_REG_CHIP_NUM);
10582         id = ((val & 0xffff) << 16);
10583         val = REG_RD(bp, MISC_REG_CHIP_REV);
10584         id |= ((val & 0xf) << 12);
10585
10586         /* Metal is read from PCI regs, but we can't access >=0x400 from
10587          * the configuration space (so we need to reg_rd)
10588          */
10589         val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10590         id |= (((val >> 24) & 0xf) << 4);
10591         val = REG_RD(bp, MISC_REG_BOND_ID);
10592         id |= (val & 0xf);
10593         bp->common.chip_id = id;
10594
10595         /* force 57811 according to MISC register */
10596         if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10597                 if (CHIP_IS_57810(bp))
10598                         bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10599                                 (bp->common.chip_id & 0x0000FFFF);
10600                 else if (CHIP_IS_57810_MF(bp))
10601                         bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10602                                 (bp->common.chip_id & 0x0000FFFF);
10603                 bp->common.chip_id |= 0x1;
10604         }
10605
10606         /* Set doorbell size */
10607         bp->db_size = (1 << BNX2X_DB_SHIFT);
10608
10609         if (!CHIP_IS_E1x(bp)) {
10610                 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10611                 if ((val & 1) == 0)
10612                         val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10613                 else
10614                         val = (val >> 1) & 1;
10615                 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10616                                                        "2_PORT_MODE");
10617                 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10618                                                  CHIP_2_PORT_MODE;
10619
10620                 if (CHIP_MODE_IS_4_PORT(bp))
10621                         bp->pfid = (bp->pf_num >> 1);   /* 0..3 */
10622                 else
10623                         bp->pfid = (bp->pf_num & 0x6);  /* 0, 2, 4, 6 */
10624         } else {
10625                 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10626                 bp->pfid = bp->pf_num;                  /* 0..7 */
10627         }
10628
10629         BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10630
10631         bp->link_params.chip_id = bp->common.chip_id;
10632         BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10633
10634         val = (REG_RD(bp, 0x2874) & 0x55);
10635         if ((bp->common.chip_id & 0x1) ||
10636             (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10637                 bp->flags |= ONE_PORT_FLAG;
10638                 BNX2X_DEV_INFO("single port device\n");
10639         }
10640
10641         val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10642         bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10643                                  (val & MCPR_NVM_CFG4_FLASH_SIZE));
10644         BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10645                        bp->common.flash_size, bp->common.flash_size);
10646
10647         bnx2x_init_shmem(bp);
10648
10649         bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10650                                         MISC_REG_GENERIC_CR_1 :
10651                                         MISC_REG_GENERIC_CR_0));
10652
10653         bp->link_params.shmem_base = bp->common.shmem_base;
10654         bp->link_params.shmem2_base = bp->common.shmem2_base;
10655         if (SHMEM2_RD(bp, size) >
10656             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10657                 bp->link_params.lfa_base =
10658                 REG_RD(bp, bp->common.shmem2_base +
10659                        (u32)offsetof(struct shmem2_region,
10660                                      lfa_host_addr[BP_PORT(bp)]));
10661         else
10662                 bp->link_params.lfa_base = 0;
10663         BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
10664                        bp->common.shmem_base, bp->common.shmem2_base);
10665
10666         if (!bp->common.shmem_base) {
10667                 BNX2X_DEV_INFO("MCP not active\n");
10668                 bp->flags |= NO_MCP_FLAG;
10669                 return;
10670         }
10671
10672         bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10673         BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10674
10675         bp->link_params.hw_led_mode = ((bp->common.hw_config &
10676                                         SHARED_HW_CFG_LED_MODE_MASK) >>
10677                                        SHARED_HW_CFG_LED_MODE_SHIFT);
10678
10679         bp->link_params.feature_config_flags = 0;
10680         val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10681         if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10682                 bp->link_params.feature_config_flags |=
10683                                 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10684         else
10685                 bp->link_params.feature_config_flags &=
10686                                 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10687
10688         val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10689         bp->common.bc_ver = val;
10690         BNX2X_DEV_INFO("bc_ver %X\n", val);
10691         if (val < BNX2X_BC_VER) {
10692                 /* for now only warn
10693                  * later we might need to enforce this */
10694                 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10695                           BNX2X_BC_VER, val);
10696         }
10697         bp->link_params.feature_config_flags |=
10698                                 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
10699                                 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10700
10701         bp->link_params.feature_config_flags |=
10702                 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10703                 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10704         bp->link_params.feature_config_flags |=
10705                 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10706                 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10707         bp->link_params.feature_config_flags |=
10708                 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10709                 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10710
10711         bp->link_params.feature_config_flags |=
10712                 (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10713                 FEATURE_CONFIG_MT_SUPPORT : 0;
10714
10715         bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10716                         BC_SUPPORTS_PFC_STATS : 0;
10717
10718         bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10719                         BC_SUPPORTS_FCOE_FEATURES : 0;
10720
10721         bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10722                         BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10723
10724         bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
10725                         BC_SUPPORTS_RMMOD_CMD : 0;
10726
10727         boot_mode = SHMEM_RD(bp,
10728                         dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10729                         PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10730         switch (boot_mode) {
10731         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10732                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10733                 break;
10734         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10735                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10736                 break;
10737         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10738                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10739                 break;
10740         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10741                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10742                 break;
10743         }
10744
10745         pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
10746         bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10747
10748         BNX2X_DEV_INFO("%sWoL capable\n",
10749                        (bp->flags & NO_WOL_FLAG) ? "not " : "");
10750
10751         val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10752         val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10753         val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10754         val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10755
10756         dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10757                  val, val2, val3, val4);
10758 }
10759
10760 #define IGU_FID(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10761 #define IGU_VEC(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10762
10763 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10764 {
10765         int pfid = BP_FUNC(bp);
10766         int igu_sb_id;
10767         u32 val;
10768         u8 fid, igu_sb_cnt = 0;
10769
10770         bp->igu_base_sb = 0xff;
10771         if (CHIP_INT_MODE_IS_BC(bp)) {
10772                 int vn = BP_VN(bp);
10773                 igu_sb_cnt = bp->igu_sb_cnt;
10774                 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10775                         FP_SB_MAX_E1x;
10776
10777                 bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
10778                         (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10779
10780                 return 0;
10781         }
10782
10783         /* IGU in normal mode - read CAM */
10784         for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10785              igu_sb_id++) {
10786                 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10787                 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10788                         continue;
10789                 fid = IGU_FID(val);
10790                 if ((fid & IGU_FID_ENCODE_IS_PF)) {
10791                         if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10792                                 continue;
10793                         if (IGU_VEC(val) == 0)
10794                                 /* default status block */
10795                                 bp->igu_dsb_id = igu_sb_id;
10796                         else {
10797                                 if (bp->igu_base_sb == 0xff)
10798                                         bp->igu_base_sb = igu_sb_id;
10799                                 igu_sb_cnt++;
10800                         }
10801                 }
10802         }
10803
10804 #ifdef CONFIG_PCI_MSI
10805         /* Due to new PF resource allocation by MFW T7.4 and above, it's
10806          * optional that number of CAM entries will not be equal to the value
10807          * advertised in PCI.
10808          * Driver should use the minimal value of both as the actual status
10809          * block count
10810          */
10811         bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10812 #endif
10813
10814         if (igu_sb_cnt == 0) {
10815                 BNX2X_ERR("CAM configuration error\n");
10816                 return -EINVAL;
10817         }
10818
10819         return 0;
10820 }
10821
10822 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10823 {
10824         int cfg_size = 0, idx, port = BP_PORT(bp);
10825
10826         /* Aggregation of supported attributes of all external phys */
10827         bp->port.supported[0] = 0;
10828         bp->port.supported[1] = 0;
10829         switch (bp->link_params.num_phys) {
10830         case 1:
10831                 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10832                 cfg_size = 1;
10833                 break;
10834         case 2:
10835                 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10836                 cfg_size = 1;
10837                 break;
10838         case 3:
10839                 if (bp->link_params.multi_phy_config &
10840                     PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10841                         bp->port.supported[1] =
10842                                 bp->link_params.phy[EXT_PHY1].supported;
10843                         bp->port.supported[0] =
10844                                 bp->link_params.phy[EXT_PHY2].supported;
10845                 } else {
10846                         bp->port.supported[0] =
10847                                 bp->link_params.phy[EXT_PHY1].supported;
10848                         bp->port.supported[1] =
10849                                 bp->link_params.phy[EXT_PHY2].supported;
10850                 }
10851                 cfg_size = 2;
10852                 break;
10853         }
10854
10855         if (!(bp->port.supported[0] || bp->port.supported[1])) {
10856                 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10857                            SHMEM_RD(bp,
10858                            dev_info.port_hw_config[port].external_phy_config),
10859                            SHMEM_RD(bp,
10860                            dev_info.port_hw_config[port].external_phy_config2));
10861                         return;
10862         }
10863
10864         if (CHIP_IS_E3(bp))
10865                 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10866         else {
10867                 switch (switch_cfg) {
10868                 case SWITCH_CFG_1G:
10869                         bp->port.phy_addr = REG_RD(
10870                                 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10871                         break;
10872                 case SWITCH_CFG_10G:
10873                         bp->port.phy_addr = REG_RD(
10874                                 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10875                         break;
10876                 default:
10877                         BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10878                                   bp->port.link_config[0]);
10879                         return;
10880                 }
10881         }
10882         BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10883         /* mask what we support according to speed_cap_mask per configuration */
10884         for (idx = 0; idx < cfg_size; idx++) {
10885                 if (!(bp->link_params.speed_cap_mask[idx] &
10886                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
10887                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
10888
10889                 if (!(bp->link_params.speed_cap_mask[idx] &
10890                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
10891                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
10892
10893                 if (!(bp->link_params.speed_cap_mask[idx] &
10894                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
10895                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
10896
10897                 if (!(bp->link_params.speed_cap_mask[idx] &
10898                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
10899                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
10900
10901                 if (!(bp->link_params.speed_cap_mask[idx] &
10902                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
10903                         bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
10904                                                      SUPPORTED_1000baseT_Full);
10905
10906                 if (!(bp->link_params.speed_cap_mask[idx] &
10907                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
10908                         bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
10909
10910                 if (!(bp->link_params.speed_cap_mask[idx] &
10911                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
10912                         bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
10913
10914                 if (!(bp->link_params.speed_cap_mask[idx] &
10915                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
10916                         bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
10917         }
10918
10919         BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
10920                        bp->port.supported[1]);
10921 }
10922
10923 static void bnx2x_link_settings_requested(struct bnx2x *bp)
10924 {
10925         u32 link_config, idx, cfg_size = 0;
10926         bp->port.advertising[0] = 0;
10927         bp->port.advertising[1] = 0;
10928         switch (bp->link_params.num_phys) {
10929         case 1:
10930         case 2:
10931                 cfg_size = 1;
10932                 break;
10933         case 3:
10934                 cfg_size = 2;
10935                 break;
10936         }
10937         for (idx = 0; idx < cfg_size; idx++) {
10938                 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
10939                 link_config = bp->port.link_config[idx];
10940                 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
10941                 case PORT_FEATURE_LINK_SPEED_AUTO:
10942                         if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
10943                                 bp->link_params.req_line_speed[idx] =
10944                                         SPEED_AUTO_NEG;
10945                                 bp->port.advertising[idx] |=
10946                                         bp->port.supported[idx];
10947                                 if (bp->link_params.phy[EXT_PHY1].type ==
10948                                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
10949                                         bp->port.advertising[idx] |=
10950                                         (SUPPORTED_100baseT_Half |
10951                                          SUPPORTED_100baseT_Full);
10952                         } else {
10953                                 /* force 10G, no AN */
10954                                 bp->link_params.req_line_speed[idx] =
10955                                         SPEED_10000;
10956                                 bp->port.advertising[idx] |=
10957                                         (ADVERTISED_10000baseT_Full |
10958                                          ADVERTISED_FIBRE);
10959                                 continue;
10960                         }
10961                         break;
10962
10963                 case PORT_FEATURE_LINK_SPEED_10M_FULL:
10964                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
10965                                 bp->link_params.req_line_speed[idx] =
10966                                         SPEED_10;
10967                                 bp->port.advertising[idx] |=
10968                                         (ADVERTISED_10baseT_Full |
10969                                          ADVERTISED_TP);
10970                         } else {
10971                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10972                                             link_config,
10973                                     bp->link_params.speed_cap_mask[idx]);
10974                                 return;
10975                         }
10976                         break;
10977
10978                 case PORT_FEATURE_LINK_SPEED_10M_HALF:
10979                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
10980                                 bp->link_params.req_line_speed[idx] =
10981                                         SPEED_10;
10982                                 bp->link_params.req_duplex[idx] =
10983                                         DUPLEX_HALF;
10984                                 bp->port.advertising[idx] |=
10985                                         (ADVERTISED_10baseT_Half |
10986                                          ADVERTISED_TP);
10987                         } else {
10988                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10989                                             link_config,
10990                                           bp->link_params.speed_cap_mask[idx]);
10991                                 return;
10992                         }
10993                         break;
10994
10995                 case PORT_FEATURE_LINK_SPEED_100M_FULL:
10996                         if (bp->port.supported[idx] &
10997                             SUPPORTED_100baseT_Full) {
10998                                 bp->link_params.req_line_speed[idx] =
10999                                         SPEED_100;
11000                                 bp->port.advertising[idx] |=
11001                                         (ADVERTISED_100baseT_Full |
11002                                          ADVERTISED_TP);
11003                         } else {
11004                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11005                                             link_config,
11006                                           bp->link_params.speed_cap_mask[idx]);
11007                                 return;
11008                         }
11009                         break;
11010
11011                 case PORT_FEATURE_LINK_SPEED_100M_HALF:
11012                         if (bp->port.supported[idx] &
11013                             SUPPORTED_100baseT_Half) {
11014                                 bp->link_params.req_line_speed[idx] =
11015                                                                 SPEED_100;
11016                                 bp->link_params.req_duplex[idx] =
11017                                                                 DUPLEX_HALF;
11018                                 bp->port.advertising[idx] |=
11019                                         (ADVERTISED_100baseT_Half |
11020                                          ADVERTISED_TP);
11021                         } else {
11022                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11023                                     link_config,
11024                                     bp->link_params.speed_cap_mask[idx]);
11025                                 return;
11026                         }
11027                         break;
11028
11029                 case PORT_FEATURE_LINK_SPEED_1G:
11030                         if (bp->port.supported[idx] &
11031                             SUPPORTED_1000baseT_Full) {
11032                                 bp->link_params.req_line_speed[idx] =
11033                                         SPEED_1000;
11034                                 bp->port.advertising[idx] |=
11035                                         (ADVERTISED_1000baseT_Full |
11036                                          ADVERTISED_TP);
11037                         } else {
11038                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11039                                     link_config,
11040                                     bp->link_params.speed_cap_mask[idx]);
11041                                 return;
11042                         }
11043                         break;
11044
11045                 case PORT_FEATURE_LINK_SPEED_2_5G:
11046                         if (bp->port.supported[idx] &
11047                             SUPPORTED_2500baseX_Full) {
11048                                 bp->link_params.req_line_speed[idx] =
11049                                         SPEED_2500;
11050                                 bp->port.advertising[idx] |=
11051                                         (ADVERTISED_2500baseX_Full |
11052                                                 ADVERTISED_TP);
11053                         } else {
11054                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11055                                     link_config,
11056                                     bp->link_params.speed_cap_mask[idx]);
11057                                 return;
11058                         }
11059                         break;
11060
11061                 case PORT_FEATURE_LINK_SPEED_10G_CX4:
11062                         if (bp->port.supported[idx] &
11063                             SUPPORTED_10000baseT_Full) {
11064                                 bp->link_params.req_line_speed[idx] =
11065                                         SPEED_10000;
11066                                 bp->port.advertising[idx] |=
11067                                         (ADVERTISED_10000baseT_Full |
11068                                                 ADVERTISED_FIBRE);
11069                         } else {
11070                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11071                                     link_config,
11072                                     bp->link_params.speed_cap_mask[idx]);
11073                                 return;
11074                         }
11075                         break;
11076                 case PORT_FEATURE_LINK_SPEED_20G:
11077                         bp->link_params.req_line_speed[idx] = SPEED_20000;
11078
11079                         break;
11080                 default:
11081                         BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11082                                   link_config);
11083                                 bp->link_params.req_line_speed[idx] =
11084                                                         SPEED_AUTO_NEG;
11085                                 bp->port.advertising[idx] =
11086                                                 bp->port.supported[idx];
11087                         break;
11088                 }
11089
11090                 bp->link_params.req_flow_ctrl[idx] = (link_config &
11091                                          PORT_FEATURE_FLOW_CONTROL_MASK);
11092                 if (bp->link_params.req_flow_ctrl[idx] ==
11093                     BNX2X_FLOW_CTRL_AUTO) {
11094                         if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11095                                 bp->link_params.req_flow_ctrl[idx] =
11096                                                         BNX2X_FLOW_CTRL_NONE;
11097                         else
11098                                 bnx2x_set_requested_fc(bp);
11099                 }
11100
11101                 BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11102                                bp->link_params.req_line_speed[idx],
11103                                bp->link_params.req_duplex[idx],
11104                                bp->link_params.req_flow_ctrl[idx],
11105                                bp->port.advertising[idx]);
11106         }
11107 }
11108
11109 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11110 {
11111         __be16 mac_hi_be = cpu_to_be16(mac_hi);
11112         __be32 mac_lo_be = cpu_to_be32(mac_lo);
11113         memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11114         memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11115 }
11116
11117 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11118 {
11119         int port = BP_PORT(bp);
11120         u32 config;
11121         u32 ext_phy_type, ext_phy_config, eee_mode;
11122
11123         bp->link_params.bp = bp;
11124         bp->link_params.port = port;
11125
11126         bp->link_params.lane_config =
11127                 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11128
11129         bp->link_params.speed_cap_mask[0] =
11130                 SHMEM_RD(bp,
11131                          dev_info.port_hw_config[port].speed_capability_mask) &
11132                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11133         bp->link_params.speed_cap_mask[1] =
11134                 SHMEM_RD(bp,
11135                          dev_info.port_hw_config[port].speed_capability_mask2) &
11136                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11137         bp->port.link_config[0] =
11138                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11139
11140         bp->port.link_config[1] =
11141                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11142
11143         bp->link_params.multi_phy_config =
11144                 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11145         /* If the device is capable of WoL, set the default state according
11146          * to the HW
11147          */
11148         config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11149         bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11150                    (config & PORT_FEATURE_WOL_ENABLED));
11151
11152         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11153             PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11154                 bp->flags |= NO_ISCSI_FLAG;
11155         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11156             PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11157                 bp->flags |= NO_FCOE_FLAG;
11158
11159         BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11160                        bp->link_params.lane_config,
11161                        bp->link_params.speed_cap_mask[0],
11162                        bp->port.link_config[0]);
11163
11164         bp->link_params.switch_cfg = (bp->port.link_config[0] &
11165                                       PORT_FEATURE_CONNECTED_SWITCH_MASK);
11166         bnx2x_phy_probe(&bp->link_params);
11167         bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11168
11169         bnx2x_link_settings_requested(bp);
11170
11171         /*
11172          * If connected directly, work with the internal PHY, otherwise, work
11173          * with the external PHY
11174          */
11175         ext_phy_config =
11176                 SHMEM_RD(bp,
11177                          dev_info.port_hw_config[port].external_phy_config);
11178         ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11179         if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11180                 bp->mdio.prtad = bp->port.phy_addr;
11181
11182         else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11183                  (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11184                 bp->mdio.prtad =
11185                         XGXS_EXT_PHY_ADDR(ext_phy_config);
11186
11187         /* Configure link feature according to nvram value */
11188         eee_mode = (((SHMEM_RD(bp, dev_info.
11189                       port_feature_config[port].eee_power_mode)) &
11190                      PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11191                     PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11192         if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11193                 bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11194                                            EEE_MODE_ENABLE_LPI |
11195                                            EEE_MODE_OUTPUT_TIME;
11196         } else {
11197                 bp->link_params.eee_mode = 0;
11198         }
11199 }
11200
11201 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11202 {
11203         u32 no_flags = NO_ISCSI_FLAG;
11204         int port = BP_PORT(bp);
11205         u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11206                                 drv_lic_key[port].max_iscsi_conn);
11207
11208         if (!CNIC_SUPPORT(bp)) {
11209                 bp->flags |= no_flags;
11210                 return;
11211         }
11212
11213         /* Get the number of maximum allowed iSCSI connections */
11214         bp->cnic_eth_dev.max_iscsi_conn =
11215                 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11216                 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11217
11218         BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11219                        bp->cnic_eth_dev.max_iscsi_conn);
11220
11221         /*
11222          * If maximum allowed number of connections is zero -
11223          * disable the feature.
11224          */
11225         if (!bp->cnic_eth_dev.max_iscsi_conn)
11226                 bp->flags |= no_flags;
11227 }
11228
11229 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11230 {
11231         /* Port info */
11232         bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11233                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11234         bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11235                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11236
11237         /* Node info */
11238         bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11239                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11240         bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11241                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11242 }
11243
11244 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11245 {
11246         u8 count = 0;
11247
11248         if (IS_MF(bp)) {
11249                 u8 fid;
11250
11251                 /* iterate over absolute function ids for this path: */
11252                 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11253                         if (IS_MF_SD(bp)) {
11254                                 u32 cfg = MF_CFG_RD(bp,
11255                                                     func_mf_config[fid].config);
11256
11257                                 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11258                                     ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11259                                             FUNC_MF_CFG_PROTOCOL_FCOE))
11260                                         count++;
11261                         } else {
11262                                 u32 cfg = MF_CFG_RD(bp,
11263                                                     func_ext_config[fid].
11264                                                                       func_cfg);
11265
11266                                 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11267                                     (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11268                                         count++;
11269                         }
11270                 }
11271         } else { /* SF */
11272                 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11273
11274                 for (port = 0; port < port_cnt; port++) {
11275                         u32 lic = SHMEM_RD(bp,
11276                                            drv_lic_key[port].max_fcoe_conn) ^
11277                                   FW_ENCODE_32BIT_PATTERN;
11278                         if (lic)
11279                                 count++;
11280                 }
11281         }
11282
11283         return count;
11284 }
11285
11286 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11287 {
11288         int port = BP_PORT(bp);
11289         int func = BP_ABS_FUNC(bp);
11290         u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11291                                 drv_lic_key[port].max_fcoe_conn);
11292         u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11293
11294         if (!CNIC_SUPPORT(bp)) {
11295                 bp->flags |= NO_FCOE_FLAG;
11296                 return;
11297         }
11298
11299         /* Get the number of maximum allowed FCoE connections */
11300         bp->cnic_eth_dev.max_fcoe_conn =
11301                 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11302                 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11303
11304         /* Calculate the number of maximum allowed FCoE tasks */
11305         bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11306
11307         /* check if FCoE resources must be shared between different functions */
11308         if (num_fcoe_func)
11309                 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11310
11311         /* Read the WWN: */
11312         if (!IS_MF(bp)) {
11313                 /* Port info */
11314                 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11315                         SHMEM_RD(bp,
11316                                  dev_info.port_hw_config[port].
11317                                  fcoe_wwn_port_name_upper);
11318                 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11319                         SHMEM_RD(bp,
11320                                  dev_info.port_hw_config[port].
11321                                  fcoe_wwn_port_name_lower);
11322
11323                 /* Node info */
11324                 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11325                         SHMEM_RD(bp,
11326                                  dev_info.port_hw_config[port].
11327                                  fcoe_wwn_node_name_upper);
11328                 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11329                         SHMEM_RD(bp,
11330                                  dev_info.port_hw_config[port].
11331                                  fcoe_wwn_node_name_lower);
11332         } else if (!IS_MF_SD(bp)) {
11333                 /*
11334                  * Read the WWN info only if the FCoE feature is enabled for
11335                  * this function.
11336                  */
11337                 if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11338                         bnx2x_get_ext_wwn_info(bp, func);
11339
11340         } else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) {
11341                 bnx2x_get_ext_wwn_info(bp, func);
11342         }
11343
11344         BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11345
11346         /*
11347          * If maximum allowed number of connections is zero -
11348          * disable the feature.
11349          */
11350         if (!bp->cnic_eth_dev.max_fcoe_conn)
11351                 bp->flags |= NO_FCOE_FLAG;
11352 }
11353
11354 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11355 {
11356         /*
11357          * iSCSI may be dynamically disabled but reading
11358          * info here we will decrease memory usage by driver
11359          * if the feature is disabled for good
11360          */
11361         bnx2x_get_iscsi_info(bp);
11362         bnx2x_get_fcoe_info(bp);
11363 }
11364
11365 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11366 {
11367         u32 val, val2;
11368         int func = BP_ABS_FUNC(bp);
11369         int port = BP_PORT(bp);
11370         u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11371         u8 *fip_mac = bp->fip_mac;
11372
11373         if (IS_MF(bp)) {
11374                 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11375                  * FCoE MAC then the appropriate feature should be disabled.
11376                  * In non SD mode features configuration comes from struct
11377                  * func_ext_config.
11378                  */
11379                 if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) {
11380                         u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11381                         if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11382                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11383                                                  iscsi_mac_addr_upper);
11384                                 val = MF_CFG_RD(bp, func_ext_config[func].
11385                                                 iscsi_mac_addr_lower);
11386                                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11387                                 BNX2X_DEV_INFO
11388                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11389                         } else {
11390                                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11391                         }
11392
11393                         if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11394                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11395                                                  fcoe_mac_addr_upper);
11396                                 val = MF_CFG_RD(bp, func_ext_config[func].
11397                                                 fcoe_mac_addr_lower);
11398                                 bnx2x_set_mac_buf(fip_mac, val, val2);
11399                                 BNX2X_DEV_INFO
11400                                         ("Read FCoE L2 MAC: %pM\n", fip_mac);
11401                         } else {
11402                                 bp->flags |= NO_FCOE_FLAG;
11403                         }
11404
11405                         bp->mf_ext_config = cfg;
11406
11407                 } else { /* SD MODE */
11408                         if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11409                                 /* use primary mac as iscsi mac */
11410                                 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11411
11412                                 BNX2X_DEV_INFO("SD ISCSI MODE\n");
11413                                 BNX2X_DEV_INFO
11414                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11415                         } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11416                                 /* use primary mac as fip mac */
11417                                 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11418                                 BNX2X_DEV_INFO("SD FCoE MODE\n");
11419                                 BNX2X_DEV_INFO
11420                                         ("Read FIP MAC: %pM\n", fip_mac);
11421                         }
11422                 }
11423
11424                 /* If this is a storage-only interface, use SAN mac as
11425                  * primary MAC. Notice that for SD this is already the case,
11426                  * as the SAN mac was copied from the primary MAC.
11427                  */
11428                 if (IS_MF_FCOE_AFEX(bp))
11429                         memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11430         } else {
11431                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11432                                 iscsi_mac_upper);
11433                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11434                                iscsi_mac_lower);
11435                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11436
11437                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11438                                 fcoe_fip_mac_upper);
11439                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11440                                fcoe_fip_mac_lower);
11441                 bnx2x_set_mac_buf(fip_mac, val, val2);
11442         }
11443
11444         /* Disable iSCSI OOO if MAC configuration is invalid. */
11445         if (!is_valid_ether_addr(iscsi_mac)) {
11446                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11447                 memset(iscsi_mac, 0, ETH_ALEN);
11448         }
11449
11450         /* Disable FCoE if MAC configuration is invalid. */
11451         if (!is_valid_ether_addr(fip_mac)) {
11452                 bp->flags |= NO_FCOE_FLAG;
11453                 memset(bp->fip_mac, 0, ETH_ALEN);
11454         }
11455 }
11456
11457 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11458 {
11459         u32 val, val2;
11460         int func = BP_ABS_FUNC(bp);
11461         int port = BP_PORT(bp);
11462
11463         /* Zero primary MAC configuration */
11464         memset(bp->dev->dev_addr, 0, ETH_ALEN);
11465
11466         if (BP_NOMCP(bp)) {
11467                 BNX2X_ERROR("warning: random MAC workaround active\n");
11468                 eth_hw_addr_random(bp->dev);
11469         } else if (IS_MF(bp)) {
11470                 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11471                 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11472                 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11473                     (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11474                         bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11475
11476                 if (CNIC_SUPPORT(bp))
11477                         bnx2x_get_cnic_mac_hwinfo(bp);
11478         } else {
11479                 /* in SF read MACs from port configuration */
11480                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11481                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11482                 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11483
11484                 if (CNIC_SUPPORT(bp))
11485                         bnx2x_get_cnic_mac_hwinfo(bp);
11486         }
11487
11488         if (!BP_NOMCP(bp)) {
11489                 /* Read physical port identifier from shmem */
11490                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11491                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11492                 bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11493                 bp->flags |= HAS_PHYS_PORT_ID;
11494         }
11495
11496         memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11497
11498         if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
11499                 dev_err(&bp->pdev->dev,
11500                         "bad Ethernet MAC address configuration: %pM\n"
11501                         "change it manually before bringing up the appropriate network interface\n",
11502                         bp->dev->dev_addr);
11503 }
11504
11505 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11506 {
11507         int tmp;
11508         u32 cfg;
11509
11510         if (IS_VF(bp))
11511                 return 0;
11512
11513         if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11514                 /* Take function: tmp = func */
11515                 tmp = BP_ABS_FUNC(bp);
11516                 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11517                 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11518         } else {
11519                 /* Take port: tmp = port */
11520                 tmp = BP_PORT(bp);
11521                 cfg = SHMEM_RD(bp,
11522                                dev_info.port_hw_config[tmp].generic_features);
11523                 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11524         }
11525         return cfg;
11526 }
11527
11528 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11529 {
11530         int /*abs*/func = BP_ABS_FUNC(bp);
11531         int vn;
11532         u32 val = 0;
11533         int rc = 0;
11534
11535         bnx2x_get_common_hwinfo(bp);
11536
11537         /*
11538          * initialize IGU parameters
11539          */
11540         if (CHIP_IS_E1x(bp)) {
11541                 bp->common.int_block = INT_BLOCK_HC;
11542
11543                 bp->igu_dsb_id = DEF_SB_IGU_ID;
11544                 bp->igu_base_sb = 0;
11545         } else {
11546                 bp->common.int_block = INT_BLOCK_IGU;
11547
11548                 /* do not allow device reset during IGU info processing */
11549                 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11550
11551                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11552
11553                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11554                         int tout = 5000;
11555
11556                         BNX2X_DEV_INFO("FORCING Normal Mode\n");
11557
11558                         val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11559                         REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11560                         REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11561
11562                         while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11563                                 tout--;
11564                                 usleep_range(1000, 2000);
11565                         }
11566
11567                         if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11568                                 dev_err(&bp->pdev->dev,
11569                                         "FORCING Normal Mode failed!!!\n");
11570                                 bnx2x_release_hw_lock(bp,
11571                                                       HW_LOCK_RESOURCE_RESET);
11572                                 return -EPERM;
11573                         }
11574                 }
11575
11576                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11577                         BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11578                         bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11579                 } else
11580                         BNX2X_DEV_INFO("IGU Normal Mode\n");
11581
11582                 rc = bnx2x_get_igu_cam_info(bp);
11583                 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11584                 if (rc)
11585                         return rc;
11586         }
11587
11588         /*
11589          * set base FW non-default (fast path) status block id, this value is
11590          * used to initialize the fw_sb_id saved on the fp/queue structure to
11591          * determine the id used by the FW.
11592          */
11593         if (CHIP_IS_E1x(bp))
11594                 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11595         else /*
11596               * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11597               * the same queue are indicated on the same IGU SB). So we prefer
11598               * FW and IGU SBs to be the same value.
11599               */
11600                 bp->base_fw_ndsb = bp->igu_base_sb;
11601
11602         BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11603                        "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11604                        bp->igu_sb_cnt, bp->base_fw_ndsb);
11605
11606         /*
11607          * Initialize MF configuration
11608          */
11609
11610         bp->mf_ov = 0;
11611         bp->mf_mode = 0;
11612         vn = BP_VN(bp);
11613
11614         if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11615                 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11616                                bp->common.shmem2_base, SHMEM2_RD(bp, size),
11617                               (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11618
11619                 if (SHMEM2_HAS(bp, mf_cfg_addr))
11620                         bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11621                 else
11622                         bp->common.mf_cfg_base = bp->common.shmem_base +
11623                                 offsetof(struct shmem_region, func_mb) +
11624                                 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11625                 /*
11626                  * get mf configuration:
11627                  * 1. Existence of MF configuration
11628                  * 2. MAC address must be legal (check only upper bytes)
11629                  *    for  Switch-Independent mode;
11630                  *    OVLAN must be legal for Switch-Dependent mode
11631                  * 3. SF_MODE configures specific MF mode
11632                  */
11633                 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11634                         /* get mf configuration */
11635                         val = SHMEM_RD(bp,
11636                                        dev_info.shared_feature_config.config);
11637                         val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11638
11639                         switch (val) {
11640                         case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11641                                 val = MF_CFG_RD(bp, func_mf_config[func].
11642                                                 mac_upper);
11643                                 /* check for legal mac (upper bytes)*/
11644                                 if (val != 0xffff) {
11645                                         bp->mf_mode = MULTI_FUNCTION_SI;
11646                                         bp->mf_config[vn] = MF_CFG_RD(bp,
11647                                                    func_mf_config[func].config);
11648                                 } else
11649                                         BNX2X_DEV_INFO("illegal MAC address for SI\n");
11650                                 break;
11651                         case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11652                                 if ((!CHIP_IS_E1x(bp)) &&
11653                                     (MF_CFG_RD(bp, func_mf_config[func].
11654                                                mac_upper) != 0xffff) &&
11655                                     (SHMEM2_HAS(bp,
11656                                                 afex_driver_support))) {
11657                                         bp->mf_mode = MULTI_FUNCTION_AFEX;
11658                                         bp->mf_config[vn] = MF_CFG_RD(bp,
11659                                                 func_mf_config[func].config);
11660                                 } else {
11661                                         BNX2X_DEV_INFO("can not configure afex mode\n");
11662                                 }
11663                                 break;
11664                         case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11665                                 /* get OV configuration */
11666                                 val = MF_CFG_RD(bp,
11667                                         func_mf_config[FUNC_0].e1hov_tag);
11668                                 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
11669
11670                                 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11671                                         bp->mf_mode = MULTI_FUNCTION_SD;
11672                                         bp->mf_config[vn] = MF_CFG_RD(bp,
11673                                                 func_mf_config[func].config);
11674                                 } else
11675                                         BNX2X_DEV_INFO("illegal OV for SD\n");
11676                                 break;
11677                         case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
11678                                 bp->mf_config[vn] = 0;
11679                                 break;
11680                         default:
11681                                 /* Unknown configuration: reset mf_config */
11682                                 bp->mf_config[vn] = 0;
11683                                 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
11684                         }
11685                 }
11686
11687                 BNX2X_DEV_INFO("%s function mode\n",
11688                                IS_MF(bp) ? "multi" : "single");
11689
11690                 switch (bp->mf_mode) {
11691                 case MULTI_FUNCTION_SD:
11692                         val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
11693                               FUNC_MF_CFG_E1HOV_TAG_MASK;
11694                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11695                                 bp->mf_ov = val;
11696                                 bp->path_has_ovlan = true;
11697
11698                                 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
11699                                                func, bp->mf_ov, bp->mf_ov);
11700                         } else {
11701                                 dev_err(&bp->pdev->dev,
11702                                         "No valid MF OV for func %d, aborting\n",
11703                                         func);
11704                                 return -EPERM;
11705                         }
11706                         break;
11707                 case MULTI_FUNCTION_AFEX:
11708                         BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
11709                         break;
11710                 case MULTI_FUNCTION_SI:
11711                         BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
11712                                        func);
11713                         break;
11714                 default:
11715                         if (vn) {
11716                                 dev_err(&bp->pdev->dev,
11717                                         "VN %d is in a single function mode, aborting\n",
11718                                         vn);
11719                                 return -EPERM;
11720                         }
11721                         break;
11722                 }
11723
11724                 /* check if other port on the path needs ovlan:
11725                  * Since MF configuration is shared between ports
11726                  * Possible mixed modes are only
11727                  * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
11728                  */
11729                 if (CHIP_MODE_IS_4_PORT(bp) &&
11730                     !bp->path_has_ovlan &&
11731                     !IS_MF(bp) &&
11732                     bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11733                         u8 other_port = !BP_PORT(bp);
11734                         u8 other_func = BP_PATH(bp) + 2*other_port;
11735                         val = MF_CFG_RD(bp,
11736                                         func_mf_config[other_func].e1hov_tag);
11737                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
11738                                 bp->path_has_ovlan = true;
11739                 }
11740         }
11741
11742         /* adjust igu_sb_cnt to MF for E1H */
11743         if (CHIP_IS_E1H(bp) && IS_MF(bp))
11744                 bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
11745
11746         /* port info */
11747         bnx2x_get_port_hwinfo(bp);
11748
11749         /* Get MAC addresses */
11750         bnx2x_get_mac_hwinfo(bp);
11751
11752         bnx2x_get_cnic_info(bp);
11753
11754         return rc;
11755 }
11756
11757 static void bnx2x_read_fwinfo(struct bnx2x *bp)
11758 {
11759         int cnt, i, block_end, rodi;
11760         char vpd_start[BNX2X_VPD_LEN+1];
11761         char str_id_reg[VENDOR_ID_LEN+1];
11762         char str_id_cap[VENDOR_ID_LEN+1];
11763         char *vpd_data;
11764         char *vpd_extended_data = NULL;
11765         u8 len;
11766
11767         cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
11768         memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
11769
11770         if (cnt < BNX2X_VPD_LEN)
11771                 goto out_not_found;
11772
11773         /* VPD RO tag should be first tag after identifier string, hence
11774          * we should be able to find it in first BNX2X_VPD_LEN chars
11775          */
11776         i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11777                              PCI_VPD_LRDT_RO_DATA);
11778         if (i < 0)
11779                 goto out_not_found;
11780
11781         block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11782                     pci_vpd_lrdt_size(&vpd_start[i]);
11783
11784         i += PCI_VPD_LRDT_TAG_SIZE;
11785
11786         if (block_end > BNX2X_VPD_LEN) {
11787                 vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11788                 if (vpd_extended_data  == NULL)
11789                         goto out_not_found;
11790
11791                 /* read rest of vpd image into vpd_extended_data */
11792                 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11793                 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11794                                    block_end - BNX2X_VPD_LEN,
11795                                    vpd_extended_data + BNX2X_VPD_LEN);
11796                 if (cnt < (block_end - BNX2X_VPD_LEN))
11797                         goto out_not_found;
11798                 vpd_data = vpd_extended_data;
11799         } else
11800                 vpd_data = vpd_start;
11801
11802         /* now vpd_data holds full vpd content in both cases */
11803
11804         rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11805                                    PCI_VPD_RO_KEYWORD_MFR_ID);
11806         if (rodi < 0)
11807                 goto out_not_found;
11808
11809         len = pci_vpd_info_field_size(&vpd_data[rodi]);
11810
11811         if (len != VENDOR_ID_LEN)
11812                 goto out_not_found;
11813
11814         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11815
11816         /* vendor specific info */
11817         snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11818         snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11819         if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11820             !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11821
11822                 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11823                                                 PCI_VPD_RO_KEYWORD_VENDOR0);
11824                 if (rodi >= 0) {
11825                         len = pci_vpd_info_field_size(&vpd_data[rodi]);
11826
11827                         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11828
11829                         if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11830                                 memcpy(bp->fw_ver, &vpd_data[rodi], len);
11831                                 bp->fw_ver[len] = ' ';
11832                         }
11833                 }
11834                 kfree(vpd_extended_data);
11835                 return;
11836         }
11837 out_not_found:
11838         kfree(vpd_extended_data);
11839         return;
11840 }
11841
11842 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
11843 {
11844         u32 flags = 0;
11845
11846         if (CHIP_REV_IS_FPGA(bp))
11847                 SET_FLAGS(flags, MODE_FPGA);
11848         else if (CHIP_REV_IS_EMUL(bp))
11849                 SET_FLAGS(flags, MODE_EMUL);
11850         else
11851                 SET_FLAGS(flags, MODE_ASIC);
11852
11853         if (CHIP_MODE_IS_4_PORT(bp))
11854                 SET_FLAGS(flags, MODE_PORT4);
11855         else
11856                 SET_FLAGS(flags, MODE_PORT2);
11857
11858         if (CHIP_IS_E2(bp))
11859                 SET_FLAGS(flags, MODE_E2);
11860         else if (CHIP_IS_E3(bp)) {
11861                 SET_FLAGS(flags, MODE_E3);
11862                 if (CHIP_REV(bp) == CHIP_REV_Ax)
11863                         SET_FLAGS(flags, MODE_E3_A0);
11864                 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
11865                         SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
11866         }
11867
11868         if (IS_MF(bp)) {
11869                 SET_FLAGS(flags, MODE_MF);
11870                 switch (bp->mf_mode) {
11871                 case MULTI_FUNCTION_SD:
11872                         SET_FLAGS(flags, MODE_MF_SD);
11873                         break;
11874                 case MULTI_FUNCTION_SI:
11875                         SET_FLAGS(flags, MODE_MF_SI);
11876                         break;
11877                 case MULTI_FUNCTION_AFEX:
11878                         SET_FLAGS(flags, MODE_MF_AFEX);
11879                         break;
11880                 }
11881         } else
11882                 SET_FLAGS(flags, MODE_SF);
11883
11884 #if defined(__LITTLE_ENDIAN)
11885         SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
11886 #else /*(__BIG_ENDIAN)*/
11887         SET_FLAGS(flags, MODE_BIG_ENDIAN);
11888 #endif
11889         INIT_MODE_FLAGS(bp) = flags;
11890 }
11891
11892 static int bnx2x_init_bp(struct bnx2x *bp)
11893 {
11894         int func;
11895         int rc;
11896
11897         mutex_init(&bp->port.phy_mutex);
11898         mutex_init(&bp->fw_mb_mutex);
11899         mutex_init(&bp->drv_info_mutex);
11900         bp->drv_info_mng_owner = false;
11901         spin_lock_init(&bp->stats_lock);
11902         sema_init(&bp->stats_sema, 1);
11903
11904         INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
11905         INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
11906         INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
11907         INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
11908         if (IS_PF(bp)) {
11909                 rc = bnx2x_get_hwinfo(bp);
11910                 if (rc)
11911                         return rc;
11912         } else {
11913                 eth_zero_addr(bp->dev->dev_addr);
11914         }
11915
11916         bnx2x_set_modes_bitmap(bp);
11917
11918         rc = bnx2x_alloc_mem_bp(bp);
11919         if (rc)
11920                 return rc;
11921
11922         bnx2x_read_fwinfo(bp);
11923
11924         func = BP_FUNC(bp);
11925
11926         /* need to reset chip if undi was active */
11927         if (IS_PF(bp) && !BP_NOMCP(bp)) {
11928                 /* init fw_seq */
11929                 bp->fw_seq =
11930                         SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11931                                                         DRV_MSG_SEQ_NUMBER_MASK;
11932                 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11933
11934                 rc = bnx2x_prev_unload(bp);
11935                 if (rc) {
11936                         bnx2x_free_mem_bp(bp);
11937                         return rc;
11938                 }
11939         }
11940
11941         if (CHIP_REV_IS_FPGA(bp))
11942                 dev_err(&bp->pdev->dev, "FPGA detected\n");
11943
11944         if (BP_NOMCP(bp) && (func == 0))
11945                 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
11946
11947         bp->disable_tpa = disable_tpa;
11948         bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
11949         /* Reduce memory usage in kdump environment by disabling TPA */
11950         bp->disable_tpa |= reset_devices;
11951
11952         /* Set TPA flags */
11953         if (bp->disable_tpa) {
11954                 bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11955                 bp->dev->features &= ~NETIF_F_LRO;
11956         } else {
11957                 bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11958                 bp->dev->features |= NETIF_F_LRO;
11959         }
11960
11961         if (CHIP_IS_E1(bp))
11962                 bp->dropless_fc = 0;
11963         else
11964                 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
11965
11966         bp->mrrs = mrrs;
11967
11968         bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
11969         if (IS_VF(bp))
11970                 bp->rx_ring_size = MAX_RX_AVAIL;
11971
11972         /* make sure that the numbers are in the right granularity */
11973         bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
11974         bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
11975
11976         bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
11977
11978         init_timer(&bp->timer);
11979         bp->timer.expires = jiffies + bp->current_interval;
11980         bp->timer.data = (unsigned long) bp;
11981         bp->timer.function = bnx2x_timer;
11982
11983         if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
11984             SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
11985             SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
11986             SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
11987                 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
11988                 bnx2x_dcbx_init_params(bp);
11989         } else {
11990                 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
11991         }
11992
11993         if (CHIP_IS_E1x(bp))
11994                 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
11995         else
11996                 bp->cnic_base_cl_id = FP_SB_MAX_E2;
11997
11998         /* multiple tx priority */
11999         if (IS_VF(bp))
12000                 bp->max_cos = 1;
12001         else if (CHIP_IS_E1x(bp))
12002                 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12003         else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12004                 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12005         else if (CHIP_IS_E3B0(bp))
12006                 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12007         else
12008                 BNX2X_ERR("unknown chip %x revision %x\n",
12009                           CHIP_NUM(bp), CHIP_REV(bp));
12010         BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12011
12012         /* We need at least one default status block for slow-path events,
12013          * second status block for the L2 queue, and a third status block for
12014          * CNIC if supported.
12015          */
12016         if (IS_VF(bp))
12017                 bp->min_msix_vec_cnt = 1;
12018         else if (CNIC_SUPPORT(bp))
12019                 bp->min_msix_vec_cnt = 3;
12020         else /* PF w/o cnic */
12021                 bp->min_msix_vec_cnt = 2;
12022         BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12023
12024         bp->dump_preset_idx = 1;
12025
12026         return rc;
12027 }
12028
12029 /****************************************************************************
12030 * General service functions
12031 ****************************************************************************/
12032
12033 /*
12034  * net_device service functions
12035  */
12036
12037 /* called with rtnl_lock */
12038 static int bnx2x_open(struct net_device *dev)
12039 {
12040         struct bnx2x *bp = netdev_priv(dev);
12041         int rc;
12042
12043         bp->stats_init = true;
12044
12045         netif_carrier_off(dev);
12046
12047         bnx2x_set_power_state(bp, PCI_D0);
12048
12049         /* If parity had happen during the unload, then attentions
12050          * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12051          * want the first function loaded on the current engine to
12052          * complete the recovery.
12053          * Parity recovery is only relevant for PF driver.
12054          */
12055         if (IS_PF(bp)) {
12056                 int other_engine = BP_PATH(bp) ? 0 : 1;
12057                 bool other_load_status, load_status;
12058                 bool global = false;
12059
12060                 other_load_status = bnx2x_get_load_status(bp, other_engine);
12061                 load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12062                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12063                     bnx2x_chk_parity_attn(bp, &global, true)) {
12064                         do {
12065                                 /* If there are attentions and they are in a
12066                                  * global blocks, set the GLOBAL_RESET bit
12067                                  * regardless whether it will be this function
12068                                  * that will complete the recovery or not.
12069                                  */
12070                                 if (global)
12071                                         bnx2x_set_reset_global(bp);
12072
12073                                 /* Only the first function on the current
12074                                  * engine should try to recover in open. In case
12075                                  * of attentions in global blocks only the first
12076                                  * in the chip should try to recover.
12077                                  */
12078                                 if ((!load_status &&
12079                                      (!global || !other_load_status)) &&
12080                                       bnx2x_trylock_leader_lock(bp) &&
12081                                       !bnx2x_leader_reset(bp)) {
12082                                         netdev_info(bp->dev,
12083                                                     "Recovered in open\n");
12084                                         break;
12085                                 }
12086
12087                                 /* recovery has failed... */
12088                                 bnx2x_set_power_state(bp, PCI_D3hot);
12089                                 bp->recovery_state = BNX2X_RECOVERY_FAILED;
12090
12091                                 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12092                                           "If you still see this message after a few retries then power cycle is required.\n");
12093
12094                                 return -EAGAIN;
12095                         } while (0);
12096                 }
12097         }
12098
12099         bp->recovery_state = BNX2X_RECOVERY_DONE;
12100         rc = bnx2x_nic_load(bp, LOAD_OPEN);
12101         if (rc)
12102                 return rc;
12103         return 0;
12104 }
12105
12106 /* called with rtnl_lock */
12107 static int bnx2x_close(struct net_device *dev)
12108 {
12109         struct bnx2x *bp = netdev_priv(dev);
12110
12111         /* Unload the driver, release IRQs */
12112         bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12113
12114         return 0;
12115 }
12116
12117 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12118                                       struct bnx2x_mcast_ramrod_params *p)
12119 {
12120         int mc_count = netdev_mc_count(bp->dev);
12121         struct bnx2x_mcast_list_elem *mc_mac =
12122                 kcalloc(mc_count, sizeof(*mc_mac), GFP_ATOMIC);
12123         struct netdev_hw_addr *ha;
12124
12125         if (!mc_mac)
12126                 return -ENOMEM;
12127
12128         INIT_LIST_HEAD(&p->mcast_list);
12129
12130         netdev_for_each_mc_addr(ha, bp->dev) {
12131                 mc_mac->mac = bnx2x_mc_addr(ha);
12132                 list_add_tail(&mc_mac->link, &p->mcast_list);
12133                 mc_mac++;
12134         }
12135
12136         p->mcast_list_len = mc_count;
12137
12138         return 0;
12139 }
12140
12141 static void bnx2x_free_mcast_macs_list(
12142         struct bnx2x_mcast_ramrod_params *p)
12143 {
12144         struct bnx2x_mcast_list_elem *mc_mac =
12145                 list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
12146                                  link);
12147
12148         WARN_ON(!mc_mac);
12149         kfree(mc_mac);
12150 }
12151
12152 /**
12153  * bnx2x_set_uc_list - configure a new unicast MACs list.
12154  *
12155  * @bp: driver handle
12156  *
12157  * We will use zero (0) as a MAC type for these MACs.
12158  */
12159 static int bnx2x_set_uc_list(struct bnx2x *bp)
12160 {
12161         int rc;
12162         struct net_device *dev = bp->dev;
12163         struct netdev_hw_addr *ha;
12164         struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12165         unsigned long ramrod_flags = 0;
12166
12167         /* First schedule a cleanup up of old configuration */
12168         rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12169         if (rc < 0) {
12170                 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12171                 return rc;
12172         }
12173
12174         netdev_for_each_uc_addr(ha, dev) {
12175                 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12176                                        BNX2X_UC_LIST_MAC, &ramrod_flags);
12177                 if (rc == -EEXIST) {
12178                         DP(BNX2X_MSG_SP,
12179                            "Failed to schedule ADD operations: %d\n", rc);
12180                         /* do not treat adding same MAC as error */
12181                         rc = 0;
12182
12183                 } else if (rc < 0) {
12184
12185                         BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12186                                   rc);
12187                         return rc;
12188                 }
12189         }
12190
12191         /* Execute the pending commands */
12192         __set_bit(RAMROD_CONT, &ramrod_flags);
12193         return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12194                                  BNX2X_UC_LIST_MAC, &ramrod_flags);
12195 }
12196
12197 static int bnx2x_set_mc_list(struct bnx2x *bp)
12198 {
12199         struct net_device *dev = bp->dev;
12200         struct bnx2x_mcast_ramrod_params rparam = {NULL};
12201         int rc = 0;
12202
12203         rparam.mcast_obj = &bp->mcast_obj;
12204
12205         /* first, clear all configured multicast MACs */
12206         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12207         if (rc < 0) {
12208                 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12209                 return rc;
12210         }
12211
12212         /* then, configure a new MACs list */
12213         if (netdev_mc_count(dev)) {
12214                 rc = bnx2x_init_mcast_macs_list(bp, &rparam);
12215                 if (rc) {
12216                         BNX2X_ERR("Failed to create multicast MACs list: %d\n",
12217                                   rc);
12218                         return rc;
12219                 }
12220
12221                 /* Now add the new MACs */
12222                 rc = bnx2x_config_mcast(bp, &rparam,
12223                                         BNX2X_MCAST_CMD_ADD);
12224                 if (rc < 0)
12225                         BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12226                                   rc);
12227
12228                 bnx2x_free_mcast_macs_list(&rparam);
12229         }
12230
12231         return rc;
12232 }
12233
12234 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12235 static void bnx2x_set_rx_mode(struct net_device *dev)
12236 {
12237         struct bnx2x *bp = netdev_priv(dev);
12238
12239         if (bp->state != BNX2X_STATE_OPEN) {
12240                 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12241                 return;
12242         } else {
12243                 /* Schedule an SP task to handle rest of change */
12244                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12245                                        NETIF_MSG_IFUP);
12246         }
12247 }
12248
12249 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12250 {
12251         u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12252
12253         DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12254
12255         netif_addr_lock_bh(bp->dev);
12256
12257         if (bp->dev->flags & IFF_PROMISC) {
12258                 rx_mode = BNX2X_RX_MODE_PROMISC;
12259         } else if ((bp->dev->flags & IFF_ALLMULTI) ||
12260                    ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12261                     CHIP_IS_E1(bp))) {
12262                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12263         } else {
12264                 if (IS_PF(bp)) {
12265                         /* some multicasts */
12266                         if (bnx2x_set_mc_list(bp) < 0)
12267                                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12268
12269                         /* release bh lock, as bnx2x_set_uc_list might sleep */
12270                         netif_addr_unlock_bh(bp->dev);
12271                         if (bnx2x_set_uc_list(bp) < 0)
12272                                 rx_mode = BNX2X_RX_MODE_PROMISC;
12273                         netif_addr_lock_bh(bp->dev);
12274                 } else {
12275                         /* configuring mcast to a vf involves sleeping (when we
12276                          * wait for the pf's response).
12277                          */
12278                         bnx2x_schedule_sp_rtnl(bp,
12279                                                BNX2X_SP_RTNL_VFPF_MCAST, 0);
12280                 }
12281         }
12282
12283         bp->rx_mode = rx_mode;
12284         /* handle ISCSI SD mode */
12285         if (IS_MF_ISCSI_SD(bp))
12286                 bp->rx_mode = BNX2X_RX_MODE_NONE;
12287
12288         /* Schedule the rx_mode command */
12289         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12290                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12291                 netif_addr_unlock_bh(bp->dev);
12292                 return;
12293         }
12294
12295         if (IS_PF(bp)) {
12296                 bnx2x_set_storm_rx_mode(bp);
12297                 netif_addr_unlock_bh(bp->dev);
12298         } else {
12299                 /* VF will need to request the PF to make this change, and so
12300                  * the VF needs to release the bottom-half lock prior to the
12301                  * request (as it will likely require sleep on the VF side)
12302                  */
12303                 netif_addr_unlock_bh(bp->dev);
12304                 bnx2x_vfpf_storm_rx_mode(bp);
12305         }
12306 }
12307
12308 /* called with rtnl_lock */
12309 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12310                            int devad, u16 addr)
12311 {
12312         struct bnx2x *bp = netdev_priv(netdev);
12313         u16 value;
12314         int rc;
12315
12316         DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12317            prtad, devad, addr);
12318
12319         /* The HW expects different devad if CL22 is used */
12320         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12321
12322         bnx2x_acquire_phy_lock(bp);
12323         rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12324         bnx2x_release_phy_lock(bp);
12325         DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12326
12327         if (!rc)
12328                 rc = value;
12329         return rc;
12330 }
12331
12332 /* called with rtnl_lock */
12333 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12334                             u16 addr, u16 value)
12335 {
12336         struct bnx2x *bp = netdev_priv(netdev);
12337         int rc;
12338
12339         DP(NETIF_MSG_LINK,
12340            "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12341            prtad, devad, addr, value);
12342
12343         /* The HW expects different devad if CL22 is used */
12344         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12345
12346         bnx2x_acquire_phy_lock(bp);
12347         rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12348         bnx2x_release_phy_lock(bp);
12349         return rc;
12350 }
12351
12352 /* called with rtnl_lock */
12353 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12354 {
12355         struct bnx2x *bp = netdev_priv(dev);
12356         struct mii_ioctl_data *mdio = if_mii(ifr);
12357
12358         DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12359            mdio->phy_id, mdio->reg_num, mdio->val_in);
12360
12361         if (!netif_running(dev))
12362                 return -EAGAIN;
12363
12364         return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12365 }
12366
12367 #ifdef CONFIG_NET_POLL_CONTROLLER
12368 static void poll_bnx2x(struct net_device *dev)
12369 {
12370         struct bnx2x *bp = netdev_priv(dev);
12371         int i;
12372
12373         for_each_eth_queue(bp, i) {
12374                 struct bnx2x_fastpath *fp = &bp->fp[i];
12375                 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12376         }
12377 }
12378 #endif
12379
12380 static int bnx2x_validate_addr(struct net_device *dev)
12381 {
12382         struct bnx2x *bp = netdev_priv(dev);
12383
12384         /* query the bulletin board for mac address configured by the PF */
12385         if (IS_VF(bp))
12386                 bnx2x_sample_bulletin(bp);
12387
12388         if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
12389                 BNX2X_ERR("Non-valid Ethernet address\n");
12390                 return -EADDRNOTAVAIL;
12391         }
12392         return 0;
12393 }
12394
12395 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12396                                   struct netdev_phys_port_id *ppid)
12397 {
12398         struct bnx2x *bp = netdev_priv(netdev);
12399
12400         if (!(bp->flags & HAS_PHYS_PORT_ID))
12401                 return -EOPNOTSUPP;
12402
12403         ppid->id_len = sizeof(bp->phys_port_id);
12404         memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12405
12406         return 0;
12407 }
12408
12409 static const struct net_device_ops bnx2x_netdev_ops = {
12410         .ndo_open               = bnx2x_open,
12411         .ndo_stop               = bnx2x_close,
12412         .ndo_start_xmit         = bnx2x_start_xmit,
12413         .ndo_select_queue       = bnx2x_select_queue,
12414         .ndo_set_rx_mode        = bnx2x_set_rx_mode,
12415         .ndo_set_mac_address    = bnx2x_change_mac_addr,
12416         .ndo_validate_addr      = bnx2x_validate_addr,
12417         .ndo_do_ioctl           = bnx2x_ioctl,
12418         .ndo_change_mtu         = bnx2x_change_mtu,
12419         .ndo_fix_features       = bnx2x_fix_features,
12420         .ndo_set_features       = bnx2x_set_features,
12421         .ndo_tx_timeout         = bnx2x_tx_timeout,
12422 #ifdef CONFIG_NET_POLL_CONTROLLER
12423         .ndo_poll_controller    = poll_bnx2x,
12424 #endif
12425         .ndo_setup_tc           = bnx2x_setup_tc,
12426 #ifdef CONFIG_BNX2X_SRIOV
12427         .ndo_set_vf_mac         = bnx2x_set_vf_mac,
12428         .ndo_set_vf_vlan        = bnx2x_set_vf_vlan,
12429         .ndo_get_vf_config      = bnx2x_get_vf_config,
12430 #endif
12431 #ifdef NETDEV_FCOE_WWNN
12432         .ndo_fcoe_get_wwn       = bnx2x_fcoe_get_wwn,
12433 #endif
12434
12435 #ifdef CONFIG_NET_RX_BUSY_POLL
12436         .ndo_busy_poll          = bnx2x_low_latency_recv,
12437 #endif
12438         .ndo_get_phys_port_id   = bnx2x_get_phys_port_id,
12439         .ndo_set_vf_link_state  = bnx2x_set_vf_link_state,
12440 };
12441
12442 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
12443 {
12444         struct device *dev = &bp->pdev->dev;
12445
12446         if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
12447             dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
12448                 dev_err(dev, "System does not support DMA, aborting\n");
12449                 return -EIO;
12450         }
12451
12452         return 0;
12453 }
12454
12455 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
12456 {
12457         if (bp->flags & AER_ENABLED) {
12458                 pci_disable_pcie_error_reporting(bp->pdev);
12459                 bp->flags &= ~AER_ENABLED;
12460         }
12461 }
12462
12463 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
12464                           struct net_device *dev, unsigned long board_type)
12465 {
12466         int rc;
12467         u32 pci_cfg_dword;
12468         bool chip_is_e1x = (board_type == BCM57710 ||
12469                             board_type == BCM57711 ||
12470                             board_type == BCM57711E);
12471
12472         SET_NETDEV_DEV(dev, &pdev->dev);
12473
12474         bp->dev = dev;
12475         bp->pdev = pdev;
12476
12477         rc = pci_enable_device(pdev);
12478         if (rc) {
12479                 dev_err(&bp->pdev->dev,
12480                         "Cannot enable PCI device, aborting\n");
12481                 goto err_out;
12482         }
12483
12484         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12485                 dev_err(&bp->pdev->dev,
12486                         "Cannot find PCI device base address, aborting\n");
12487                 rc = -ENODEV;
12488                 goto err_out_disable;
12489         }
12490
12491         if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
12492                 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
12493                 rc = -ENODEV;
12494                 goto err_out_disable;
12495         }
12496
12497         pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
12498         if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
12499             PCICFG_REVESION_ID_ERROR_VAL) {
12500                 pr_err("PCI device error, probably due to fan failure, aborting\n");
12501                 rc = -ENODEV;
12502                 goto err_out_disable;
12503         }
12504
12505         if (atomic_read(&pdev->enable_cnt) == 1) {
12506                 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12507                 if (rc) {
12508                         dev_err(&bp->pdev->dev,
12509                                 "Cannot obtain PCI resources, aborting\n");
12510                         goto err_out_disable;
12511                 }
12512
12513                 pci_set_master(pdev);
12514                 pci_save_state(pdev);
12515         }
12516
12517         if (IS_PF(bp)) {
12518                 if (!pdev->pm_cap) {
12519                         dev_err(&bp->pdev->dev,
12520                                 "Cannot find power management capability, aborting\n");
12521                         rc = -EIO;
12522                         goto err_out_release;
12523                 }
12524         }
12525
12526         if (!pci_is_pcie(pdev)) {
12527                 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
12528                 rc = -EIO;
12529                 goto err_out_release;
12530         }
12531
12532         rc = bnx2x_set_coherency_mask(bp);
12533         if (rc)
12534                 goto err_out_release;
12535
12536         dev->mem_start = pci_resource_start(pdev, 0);
12537         dev->base_addr = dev->mem_start;
12538         dev->mem_end = pci_resource_end(pdev, 0);
12539
12540         dev->irq = pdev->irq;
12541
12542         bp->regview = pci_ioremap_bar(pdev, 0);
12543         if (!bp->regview) {
12544                 dev_err(&bp->pdev->dev,
12545                         "Cannot map register space, aborting\n");
12546                 rc = -ENOMEM;
12547                 goto err_out_release;
12548         }
12549
12550         /* In E1/E1H use pci device function given by kernel.
12551          * In E2/E3 read physical function from ME register since these chips
12552          * support Physical Device Assignment where kernel BDF maybe arbitrary
12553          * (depending on hypervisor).
12554          */
12555         if (chip_is_e1x) {
12556                 bp->pf_num = PCI_FUNC(pdev->devfn);
12557         } else {
12558                 /* chip is E2/3*/
12559                 pci_read_config_dword(bp->pdev,
12560                                       PCICFG_ME_REGISTER, &pci_cfg_dword);
12561                 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
12562                                   ME_REG_ABS_PF_NUM_SHIFT);
12563         }
12564         BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
12565
12566         /* clean indirect addresses */
12567         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
12568                                PCICFG_VENDOR_ID_OFFSET);
12569
12570         /* AER (Advanced Error reporting) configuration */
12571         rc = pci_enable_pcie_error_reporting(pdev);
12572         if (!rc)
12573                 bp->flags |= AER_ENABLED;
12574         else
12575                 BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
12576
12577         /*
12578          * Clean the following indirect addresses for all functions since it
12579          * is not used by the driver.
12580          */
12581         if (IS_PF(bp)) {
12582                 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
12583                 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
12584                 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
12585                 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
12586
12587                 if (chip_is_e1x) {
12588                         REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
12589                         REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
12590                         REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
12591                         REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
12592                 }
12593
12594                 /* Enable internal target-read (in case we are probed after PF
12595                  * FLR). Must be done prior to any BAR read access. Only for
12596                  * 57712 and up
12597                  */
12598                 if (!chip_is_e1x)
12599                         REG_WR(bp,
12600                                PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
12601         }
12602
12603         dev->watchdog_timeo = TX_TIMEOUT;
12604
12605         dev->netdev_ops = &bnx2x_netdev_ops;
12606         bnx2x_set_ethtool_ops(bp, dev);
12607
12608         dev->priv_flags |= IFF_UNICAST_FLT;
12609
12610         dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12611                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12612                 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
12613                 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
12614         if (!CHIP_IS_E1x(bp)) {
12615                 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
12616                                     NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
12617                 dev->hw_enc_features =
12618                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12619                         NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12620                         NETIF_F_GSO_IPIP |
12621                         NETIF_F_GSO_SIT |
12622                         NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12623         }
12624
12625         dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12626                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
12627
12628         dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
12629         dev->features |= NETIF_F_HIGHDMA;
12630
12631         /* Add Loopback capability to the device */
12632         dev->hw_features |= NETIF_F_LOOPBACK;
12633
12634 #ifdef BCM_DCBNL
12635         dev->dcbnl_ops = &bnx2x_dcbnl_ops;
12636 #endif
12637
12638         /* get_port_hwinfo() will set prtad and mmds properly */
12639         bp->mdio.prtad = MDIO_PRTAD_NONE;
12640         bp->mdio.mmds = 0;
12641         bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
12642         bp->mdio.dev = dev;
12643         bp->mdio.mdio_read = bnx2x_mdio_read;
12644         bp->mdio.mdio_write = bnx2x_mdio_write;
12645
12646         return 0;
12647
12648 err_out_release:
12649         if (atomic_read(&pdev->enable_cnt) == 1)
12650                 pci_release_regions(pdev);
12651
12652 err_out_disable:
12653         pci_disable_device(pdev);
12654
12655 err_out:
12656         return rc;
12657 }
12658
12659 static int bnx2x_check_firmware(struct bnx2x *bp)
12660 {
12661         const struct firmware *firmware = bp->firmware;
12662         struct bnx2x_fw_file_hdr *fw_hdr;
12663         struct bnx2x_fw_file_section *sections;
12664         u32 offset, len, num_ops;
12665         __be16 *ops_offsets;
12666         int i;
12667         const u8 *fw_ver;
12668
12669         if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
12670                 BNX2X_ERR("Wrong FW size\n");
12671                 return -EINVAL;
12672         }
12673
12674         fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
12675         sections = (struct bnx2x_fw_file_section *)fw_hdr;
12676
12677         /* Make sure none of the offsets and sizes make us read beyond
12678          * the end of the firmware data */
12679         for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
12680                 offset = be32_to_cpu(sections[i].offset);
12681                 len = be32_to_cpu(sections[i].len);
12682                 if (offset + len > firmware->size) {
12683                         BNX2X_ERR("Section %d length is out of bounds\n", i);
12684                         return -EINVAL;
12685                 }
12686         }
12687
12688         /* Likewise for the init_ops offsets */
12689         offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
12690         ops_offsets = (__force __be16 *)(firmware->data + offset);
12691         num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
12692
12693         for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
12694                 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
12695                         BNX2X_ERR("Section offset %d is out of bounds\n", i);
12696                         return -EINVAL;
12697                 }
12698         }
12699
12700         /* Check FW version */
12701         offset = be32_to_cpu(fw_hdr->fw_version.offset);
12702         fw_ver = firmware->data + offset;
12703         if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
12704             (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
12705             (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
12706             (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
12707                 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
12708                        fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
12709                        BCM_5710_FW_MAJOR_VERSION,
12710                        BCM_5710_FW_MINOR_VERSION,
12711                        BCM_5710_FW_REVISION_VERSION,
12712                        BCM_5710_FW_ENGINEERING_VERSION);
12713                 return -EINVAL;
12714         }
12715
12716         return 0;
12717 }
12718
12719 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12720 {
12721         const __be32 *source = (const __be32 *)_source;
12722         u32 *target = (u32 *)_target;
12723         u32 i;
12724
12725         for (i = 0; i < n/4; i++)
12726                 target[i] = be32_to_cpu(source[i]);
12727 }
12728
12729 /*
12730    Ops array is stored in the following format:
12731    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
12732  */
12733 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
12734 {
12735         const __be32 *source = (const __be32 *)_source;
12736         struct raw_op *target = (struct raw_op *)_target;
12737         u32 i, j, tmp;
12738
12739         for (i = 0, j = 0; i < n/8; i++, j += 2) {
12740                 tmp = be32_to_cpu(source[j]);
12741                 target[i].op = (tmp >> 24) & 0xff;
12742                 target[i].offset = tmp & 0xffffff;
12743                 target[i].raw_data = be32_to_cpu(source[j + 1]);
12744         }
12745 }
12746
12747 /* IRO array is stored in the following format:
12748  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
12749  */
12750 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
12751 {
12752         const __be32 *source = (const __be32 *)_source;
12753         struct iro *target = (struct iro *)_target;
12754         u32 i, j, tmp;
12755
12756         for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
12757                 target[i].base = be32_to_cpu(source[j]);
12758                 j++;
12759                 tmp = be32_to_cpu(source[j]);
12760                 target[i].m1 = (tmp >> 16) & 0xffff;
12761                 target[i].m2 = tmp & 0xffff;
12762                 j++;
12763                 tmp = be32_to_cpu(source[j]);
12764                 target[i].m3 = (tmp >> 16) & 0xffff;
12765                 target[i].size = tmp & 0xffff;
12766                 j++;
12767         }
12768 }
12769
12770 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12771 {
12772         const __be16 *source = (const __be16 *)_source;
12773         u16 *target = (u16 *)_target;
12774         u32 i;
12775
12776         for (i = 0; i < n/2; i++)
12777                 target[i] = be16_to_cpu(source[i]);
12778 }
12779
12780 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)                             \
12781 do {                                                                    \
12782         u32 len = be32_to_cpu(fw_hdr->arr.len);                         \
12783         bp->arr = kmalloc(len, GFP_KERNEL);                             \
12784         if (!bp->arr)                                                   \
12785                 goto lbl;                                               \
12786         func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),      \
12787              (u8 *)bp->arr, len);                                       \
12788 } while (0)
12789
12790 static int bnx2x_init_firmware(struct bnx2x *bp)
12791 {
12792         const char *fw_file_name;
12793         struct bnx2x_fw_file_hdr *fw_hdr;
12794         int rc;
12795
12796         if (bp->firmware)
12797                 return 0;
12798
12799         if (CHIP_IS_E1(bp))
12800                 fw_file_name = FW_FILE_NAME_E1;
12801         else if (CHIP_IS_E1H(bp))
12802                 fw_file_name = FW_FILE_NAME_E1H;
12803         else if (!CHIP_IS_E1x(bp))
12804                 fw_file_name = FW_FILE_NAME_E2;
12805         else {
12806                 BNX2X_ERR("Unsupported chip revision\n");
12807                 return -EINVAL;
12808         }
12809         BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
12810
12811         rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
12812         if (rc) {
12813                 BNX2X_ERR("Can't load firmware file %s\n",
12814                           fw_file_name);
12815                 goto request_firmware_exit;
12816         }
12817
12818         rc = bnx2x_check_firmware(bp);
12819         if (rc) {
12820                 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
12821                 goto request_firmware_exit;
12822         }
12823
12824         fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
12825
12826         /* Initialize the pointers to the init arrays */
12827         /* Blob */
12828         BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
12829
12830         /* Opcodes */
12831         BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
12832
12833         /* Offsets */
12834         BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
12835                             be16_to_cpu_n);
12836
12837         /* STORMs firmware */
12838         INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12839                         be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
12840         INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
12841                         be32_to_cpu(fw_hdr->tsem_pram_data.offset);
12842         INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12843                         be32_to_cpu(fw_hdr->usem_int_table_data.offset);
12844         INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
12845                         be32_to_cpu(fw_hdr->usem_pram_data.offset);
12846         INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12847                         be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
12848         INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
12849                         be32_to_cpu(fw_hdr->xsem_pram_data.offset);
12850         INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12851                         be32_to_cpu(fw_hdr->csem_int_table_data.offset);
12852         INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
12853                         be32_to_cpu(fw_hdr->csem_pram_data.offset);
12854         /* IRO */
12855         BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
12856
12857         return 0;
12858
12859 iro_alloc_err:
12860         kfree(bp->init_ops_offsets);
12861 init_offsets_alloc_err:
12862         kfree(bp->init_ops);
12863 init_ops_alloc_err:
12864         kfree(bp->init_data);
12865 request_firmware_exit:
12866         release_firmware(bp->firmware);
12867         bp->firmware = NULL;
12868
12869         return rc;
12870 }
12871
12872 static void bnx2x_release_firmware(struct bnx2x *bp)
12873 {
12874         kfree(bp->init_ops_offsets);
12875         kfree(bp->init_ops);
12876         kfree(bp->init_data);
12877         release_firmware(bp->firmware);
12878         bp->firmware = NULL;
12879 }
12880
12881 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
12882         .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
12883         .init_hw_cmn      = bnx2x_init_hw_common,
12884         .init_hw_port     = bnx2x_init_hw_port,
12885         .init_hw_func     = bnx2x_init_hw_func,
12886
12887         .reset_hw_cmn     = bnx2x_reset_common,
12888         .reset_hw_port    = bnx2x_reset_port,
12889         .reset_hw_func    = bnx2x_reset_func,
12890
12891         .gunzip_init      = bnx2x_gunzip_init,
12892         .gunzip_end       = bnx2x_gunzip_end,
12893
12894         .init_fw          = bnx2x_init_firmware,
12895         .release_fw       = bnx2x_release_firmware,
12896 };
12897
12898 void bnx2x__init_func_obj(struct bnx2x *bp)
12899 {
12900         /* Prepare DMAE related driver resources */
12901         bnx2x_setup_dmae(bp);
12902
12903         bnx2x_init_func_obj(bp, &bp->func_obj,
12904                             bnx2x_sp(bp, func_rdata),
12905                             bnx2x_sp_mapping(bp, func_rdata),
12906                             bnx2x_sp(bp, func_afex_rdata),
12907                             bnx2x_sp_mapping(bp, func_afex_rdata),
12908                             &bnx2x_func_sp_drv);
12909 }
12910
12911 /* must be called after sriov-enable */
12912 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
12913 {
12914         int cid_count = BNX2X_L2_MAX_CID(bp);
12915
12916         if (IS_SRIOV(bp))
12917                 cid_count += BNX2X_VF_CIDS;
12918
12919         if (CNIC_SUPPORT(bp))
12920                 cid_count += CNIC_CID_MAX;
12921
12922         return roundup(cid_count, QM_CID_ROUND);
12923 }
12924
12925 /**
12926  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
12927  *
12928  * @dev:        pci device
12929  *
12930  */
12931 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
12932 {
12933         int index;
12934         u16 control = 0;
12935
12936         /*
12937          * If MSI-X is not supported - return number of SBs needed to support
12938          * one fast path queue: one FP queue + SB for CNIC
12939          */
12940         if (!pdev->msix_cap) {
12941                 dev_info(&pdev->dev, "no msix capability found\n");
12942                 return 1 + cnic_cnt;
12943         }
12944         dev_info(&pdev->dev, "msix capability found\n");
12945
12946         /*
12947          * The value in the PCI configuration space is the index of the last
12948          * entry, namely one less than the actual size of the table, which is
12949          * exactly what we want to return from this function: number of all SBs
12950          * without the default SB.
12951          * For VFs there is no default SB, then we return (index+1).
12952          */
12953         pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
12954
12955         index = control & PCI_MSIX_FLAGS_QSIZE;
12956
12957         return index;
12958 }
12959
12960 static int set_max_cos_est(int chip_id)
12961 {
12962         switch (chip_id) {
12963         case BCM57710:
12964         case BCM57711:
12965         case BCM57711E:
12966                 return BNX2X_MULTI_TX_COS_E1X;
12967         case BCM57712:
12968         case BCM57712_MF:
12969                 return BNX2X_MULTI_TX_COS_E2_E3A0;
12970         case BCM57800:
12971         case BCM57800_MF:
12972         case BCM57810:
12973         case BCM57810_MF:
12974         case BCM57840_4_10:
12975         case BCM57840_2_20:
12976         case BCM57840_O:
12977         case BCM57840_MFO:
12978         case BCM57840_MF:
12979         case BCM57811:
12980         case BCM57811_MF:
12981                 return BNX2X_MULTI_TX_COS_E3B0;
12982         case BCM57712_VF:
12983         case BCM57800_VF:
12984         case BCM57810_VF:
12985         case BCM57840_VF:
12986         case BCM57811_VF:
12987                 return 1;
12988         default:
12989                 pr_err("Unknown board_type (%d), aborting\n", chip_id);
12990                 return -ENODEV;
12991         }
12992 }
12993
12994 static int set_is_vf(int chip_id)
12995 {
12996         switch (chip_id) {
12997         case BCM57712_VF:
12998         case BCM57800_VF:
12999         case BCM57810_VF:
13000         case BCM57840_VF:
13001         case BCM57811_VF:
13002                 return true;
13003         default:
13004                 return false;
13005         }
13006 }
13007
13008 static int bnx2x_init_one(struct pci_dev *pdev,
13009                                     const struct pci_device_id *ent)
13010 {
13011         struct net_device *dev = NULL;
13012         struct bnx2x *bp;
13013         enum pcie_link_width pcie_width;
13014         enum pci_bus_speed pcie_speed;
13015         int rc, max_non_def_sbs;
13016         int rx_count, tx_count, rss_count, doorbell_size;
13017         int max_cos_est;
13018         bool is_vf;
13019         int cnic_cnt;
13020
13021         /* An estimated maximum supported CoS number according to the chip
13022          * version.
13023          * We will try to roughly estimate the maximum number of CoSes this chip
13024          * may support in order to minimize the memory allocated for Tx
13025          * netdev_queue's. This number will be accurately calculated during the
13026          * initialization of bp->max_cos based on the chip versions AND chip
13027          * revision in the bnx2x_init_bp().
13028          */
13029         max_cos_est = set_max_cos_est(ent->driver_data);
13030         if (max_cos_est < 0)
13031                 return max_cos_est;
13032         is_vf = set_is_vf(ent->driver_data);
13033         cnic_cnt = is_vf ? 0 : 1;
13034
13035         max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13036
13037         /* add another SB for VF as it has no default SB */
13038         max_non_def_sbs += is_vf ? 1 : 0;
13039
13040         /* Maximum number of RSS queues: one IGU SB goes to CNIC */
13041         rss_count = max_non_def_sbs - cnic_cnt;
13042
13043         if (rss_count < 1)
13044                 return -EINVAL;
13045
13046         /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13047         rx_count = rss_count + cnic_cnt;
13048
13049         /* Maximum number of netdev Tx queues:
13050          * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13051          */
13052         tx_count = rss_count * max_cos_est + cnic_cnt;
13053
13054         /* dev zeroed in init_etherdev */
13055         dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13056         if (!dev)
13057                 return -ENOMEM;
13058
13059         bp = netdev_priv(dev);
13060
13061         bp->flags = 0;
13062         if (is_vf)
13063                 bp->flags |= IS_VF_FLAG;
13064
13065         bp->igu_sb_cnt = max_non_def_sbs;
13066         bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13067         bp->msg_enable = debug;
13068         bp->cnic_support = cnic_cnt;
13069         bp->cnic_probe = bnx2x_cnic_probe;
13070
13071         pci_set_drvdata(pdev, dev);
13072
13073         rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13074         if (rc < 0) {
13075                 free_netdev(dev);
13076                 return rc;
13077         }
13078
13079         BNX2X_DEV_INFO("This is a %s function\n",
13080                        IS_PF(bp) ? "physical" : "virtual");
13081         BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13082         BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13083         BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13084                        tx_count, rx_count);
13085
13086         rc = bnx2x_init_bp(bp);
13087         if (rc)
13088                 goto init_one_exit;
13089
13090         /* Map doorbells here as we need the real value of bp->max_cos which
13091          * is initialized in bnx2x_init_bp() to determine the number of
13092          * l2 connections.
13093          */
13094         if (IS_VF(bp)) {
13095                 bp->doorbells = bnx2x_vf_doorbells(bp);
13096                 rc = bnx2x_vf_pci_alloc(bp);
13097                 if (rc)
13098                         goto init_one_exit;
13099         } else {
13100                 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13101                 if (doorbell_size > pci_resource_len(pdev, 2)) {
13102                         dev_err(&bp->pdev->dev,
13103                                 "Cannot map doorbells, bar size too small, aborting\n");
13104                         rc = -ENOMEM;
13105                         goto init_one_exit;
13106                 }
13107                 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
13108                                                 doorbell_size);
13109         }
13110         if (!bp->doorbells) {
13111                 dev_err(&bp->pdev->dev,
13112                         "Cannot map doorbell space, aborting\n");
13113                 rc = -ENOMEM;
13114                 goto init_one_exit;
13115         }
13116
13117         if (IS_VF(bp)) {
13118                 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
13119                 if (rc)
13120                         goto init_one_exit;
13121         }
13122
13123         /* Enable SRIOV if capability found in configuration space */
13124         rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
13125         if (rc)
13126                 goto init_one_exit;
13127
13128         /* calc qm_cid_count */
13129         bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
13130         BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
13131
13132         /* disable FCOE L2 queue for E1x*/
13133         if (CHIP_IS_E1x(bp))
13134                 bp->flags |= NO_FCOE_FLAG;
13135
13136         /* Set bp->num_queues for MSI-X mode*/
13137         bnx2x_set_num_queues(bp);
13138
13139         /* Configure interrupt mode: try to enable MSI-X/MSI if
13140          * needed.
13141          */
13142         rc = bnx2x_set_int_mode(bp);
13143         if (rc) {
13144                 dev_err(&pdev->dev, "Cannot set interrupts\n");
13145                 goto init_one_exit;
13146         }
13147         BNX2X_DEV_INFO("set interrupts successfully\n");
13148
13149         /* register the net device */
13150         rc = register_netdev(dev);
13151         if (rc) {
13152                 dev_err(&pdev->dev, "Cannot register net device\n");
13153                 goto init_one_exit;
13154         }
13155         BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
13156
13157         if (!NO_FCOE(bp)) {
13158                 /* Add storage MAC address */
13159                 rtnl_lock();
13160                 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13161                 rtnl_unlock();
13162         }
13163         if (pcie_get_minimum_link(bp->pdev, &pcie_speed, &pcie_width) ||
13164             pcie_speed == PCI_SPEED_UNKNOWN ||
13165             pcie_width == PCIE_LNK_WIDTH_UNKNOWN)
13166                 BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n");
13167         else
13168                 BNX2X_DEV_INFO(
13169                        "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
13170                        board_info[ent->driver_data].name,
13171                        (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
13172                        pcie_width,
13173                        pcie_speed == PCIE_SPEED_2_5GT ? "2.5GHz" :
13174                        pcie_speed == PCIE_SPEED_5_0GT ? "5.0GHz" :
13175                        pcie_speed == PCIE_SPEED_8_0GT ? "8.0GHz" :
13176                        "Unknown",
13177                        dev->base_addr, bp->pdev->irq, dev->dev_addr);
13178
13179         return 0;
13180
13181 init_one_exit:
13182         bnx2x_disable_pcie_error_reporting(bp);
13183
13184         if (bp->regview)
13185                 iounmap(bp->regview);
13186
13187         if (IS_PF(bp) && bp->doorbells)
13188                 iounmap(bp->doorbells);
13189
13190         free_netdev(dev);
13191
13192         if (atomic_read(&pdev->enable_cnt) == 1)
13193                 pci_release_regions(pdev);
13194
13195         pci_disable_device(pdev);
13196
13197         return rc;
13198 }
13199
13200 static void __bnx2x_remove(struct pci_dev *pdev,
13201                            struct net_device *dev,
13202                            struct bnx2x *bp,
13203                            bool remove_netdev)
13204 {
13205         /* Delete storage MAC address */
13206         if (!NO_FCOE(bp)) {
13207                 rtnl_lock();
13208                 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13209                 rtnl_unlock();
13210         }
13211
13212 #ifdef BCM_DCBNL
13213         /* Delete app tlvs from dcbnl */
13214         bnx2x_dcbnl_update_applist(bp, true);
13215 #endif
13216
13217         if (IS_PF(bp) &&
13218             !BP_NOMCP(bp) &&
13219             (bp->flags & BC_SUPPORTS_RMMOD_CMD))
13220                 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
13221
13222         /* Close the interface - either directly or implicitly */
13223         if (remove_netdev) {
13224                 unregister_netdev(dev);
13225         } else {
13226                 rtnl_lock();
13227                 dev_close(dev);
13228                 rtnl_unlock();
13229         }
13230
13231         bnx2x_iov_remove_one(bp);
13232
13233         /* Power on: we can't let PCI layer write to us while we are in D3 */
13234         if (IS_PF(bp))
13235                 bnx2x_set_power_state(bp, PCI_D0);
13236
13237         /* Disable MSI/MSI-X */
13238         bnx2x_disable_msi(bp);
13239
13240         /* Power off */
13241         if (IS_PF(bp))
13242                 bnx2x_set_power_state(bp, PCI_D3hot);
13243
13244         /* Make sure RESET task is not scheduled before continuing */
13245         cancel_delayed_work_sync(&bp->sp_rtnl_task);
13246
13247         /* send message via vfpf channel to release the resources of this vf */
13248         if (IS_VF(bp))
13249                 bnx2x_vfpf_release(bp);
13250
13251         /* Assumes no further PCIe PM changes will occur */
13252         if (system_state == SYSTEM_POWER_OFF) {
13253                 pci_wake_from_d3(pdev, bp->wol);
13254                 pci_set_power_state(pdev, PCI_D3hot);
13255         }
13256
13257         bnx2x_disable_pcie_error_reporting(bp);
13258         if (remove_netdev) {
13259                 if (bp->regview)
13260                         iounmap(bp->regview);
13261
13262                 /* For vfs, doorbells are part of the regview and were unmapped
13263                  * along with it. FW is only loaded by PF.
13264                  */
13265                 if (IS_PF(bp)) {
13266                         if (bp->doorbells)
13267                                 iounmap(bp->doorbells);
13268
13269                         bnx2x_release_firmware(bp);
13270                 } else {
13271                         bnx2x_vf_pci_dealloc(bp);
13272                 }
13273                 bnx2x_free_mem_bp(bp);
13274
13275                 free_netdev(dev);
13276
13277                 if (atomic_read(&pdev->enable_cnt) == 1)
13278                         pci_release_regions(pdev);
13279
13280                 pci_disable_device(pdev);
13281         }
13282 }
13283
13284 static void bnx2x_remove_one(struct pci_dev *pdev)
13285 {
13286         struct net_device *dev = pci_get_drvdata(pdev);
13287         struct bnx2x *bp;
13288
13289         if (!dev) {
13290                 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
13291                 return;
13292         }
13293         bp = netdev_priv(dev);
13294
13295         __bnx2x_remove(pdev, dev, bp, true);
13296 }
13297
13298 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
13299 {
13300         bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
13301
13302         bp->rx_mode = BNX2X_RX_MODE_NONE;
13303
13304         if (CNIC_LOADED(bp))
13305                 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
13306
13307         /* Stop Tx */
13308         bnx2x_tx_disable(bp);
13309         /* Delete all NAPI objects */
13310         bnx2x_del_all_napi(bp);
13311         if (CNIC_LOADED(bp))
13312                 bnx2x_del_all_napi_cnic(bp);
13313         netdev_reset_tc(bp->dev);
13314
13315         del_timer_sync(&bp->timer);
13316         cancel_delayed_work_sync(&bp->sp_task);
13317         cancel_delayed_work_sync(&bp->period_task);
13318
13319         spin_lock_bh(&bp->stats_lock);
13320         bp->stats_state = STATS_STATE_DISABLED;
13321         spin_unlock_bh(&bp->stats_lock);
13322
13323         bnx2x_save_statistics(bp);
13324
13325         netif_carrier_off(bp->dev);
13326
13327         return 0;
13328 }
13329
13330 /**
13331  * bnx2x_io_error_detected - called when PCI error is detected
13332  * @pdev: Pointer to PCI device
13333  * @state: The current pci connection state
13334  *
13335  * This function is called after a PCI bus error affecting
13336  * this device has been detected.
13337  */
13338 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
13339                                                 pci_channel_state_t state)
13340 {
13341         struct net_device *dev = pci_get_drvdata(pdev);
13342         struct bnx2x *bp = netdev_priv(dev);
13343
13344         rtnl_lock();
13345
13346         BNX2X_ERR("IO error detected\n");
13347
13348         netif_device_detach(dev);
13349
13350         if (state == pci_channel_io_perm_failure) {
13351                 rtnl_unlock();
13352                 return PCI_ERS_RESULT_DISCONNECT;
13353         }
13354
13355         if (netif_running(dev))
13356                 bnx2x_eeh_nic_unload(bp);
13357
13358         bnx2x_prev_path_mark_eeh(bp);
13359
13360         pci_disable_device(pdev);
13361
13362         rtnl_unlock();
13363
13364         /* Request a slot reset */
13365         return PCI_ERS_RESULT_NEED_RESET;
13366 }
13367
13368 /**
13369  * bnx2x_io_slot_reset - called after the PCI bus has been reset
13370  * @pdev: Pointer to PCI device
13371  *
13372  * Restart the card from scratch, as if from a cold-boot.
13373  */
13374 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
13375 {
13376         struct net_device *dev = pci_get_drvdata(pdev);
13377         struct bnx2x *bp = netdev_priv(dev);
13378         int i;
13379
13380         rtnl_lock();
13381         BNX2X_ERR("IO slot reset initializing...\n");
13382         if (pci_enable_device(pdev)) {
13383                 dev_err(&pdev->dev,
13384                         "Cannot re-enable PCI device after reset\n");
13385                 rtnl_unlock();
13386                 return PCI_ERS_RESULT_DISCONNECT;
13387         }
13388
13389         pci_set_master(pdev);
13390         pci_restore_state(pdev);
13391         pci_save_state(pdev);
13392
13393         if (netif_running(dev))
13394                 bnx2x_set_power_state(bp, PCI_D0);
13395
13396         if (netif_running(dev)) {
13397                 BNX2X_ERR("IO slot reset --> driver unload\n");
13398
13399                 /* MCP should have been reset; Need to wait for validity */
13400                 bnx2x_init_shmem(bp);
13401
13402                 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
13403                         u32 v;
13404
13405                         v = SHMEM2_RD(bp,
13406                                       drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
13407                         SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
13408                                   v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
13409                 }
13410                 bnx2x_drain_tx_queues(bp);
13411                 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
13412                 bnx2x_netif_stop(bp, 1);
13413                 bnx2x_free_irq(bp);
13414
13415                 /* Report UNLOAD_DONE to MCP */
13416                 bnx2x_send_unload_done(bp, true);
13417
13418                 bp->sp_state = 0;
13419                 bp->port.pmf = 0;
13420
13421                 bnx2x_prev_unload(bp);
13422
13423                 /* We should have reseted the engine, so It's fair to
13424                  * assume the FW will no longer write to the bnx2x driver.
13425                  */
13426                 bnx2x_squeeze_objects(bp);
13427                 bnx2x_free_skbs(bp);
13428                 for_each_rx_queue(bp, i)
13429                         bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
13430                 bnx2x_free_fp_mem(bp);
13431                 bnx2x_free_mem(bp);
13432
13433                 bp->state = BNX2X_STATE_CLOSED;
13434         }
13435
13436         rtnl_unlock();
13437
13438         /* If AER, perform cleanup of the PCIe registers */
13439         if (bp->flags & AER_ENABLED) {
13440                 if (pci_cleanup_aer_uncorrect_error_status(pdev))
13441                         BNX2X_ERR("pci_cleanup_aer_uncorrect_error_status failed\n");
13442                 else
13443                         DP(NETIF_MSG_HW, "pci_cleanup_aer_uncorrect_error_status succeeded\n");
13444         }
13445
13446         return PCI_ERS_RESULT_RECOVERED;
13447 }
13448
13449 /**
13450  * bnx2x_io_resume - called when traffic can start flowing again
13451  * @pdev: Pointer to PCI device
13452  *
13453  * This callback is called when the error recovery driver tells us that
13454  * its OK to resume normal operation.
13455  */
13456 static void bnx2x_io_resume(struct pci_dev *pdev)
13457 {
13458         struct net_device *dev = pci_get_drvdata(pdev);
13459         struct bnx2x *bp = netdev_priv(dev);
13460
13461         if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
13462                 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
13463                 return;
13464         }
13465
13466         rtnl_lock();
13467
13468         bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
13469                                                         DRV_MSG_SEQ_NUMBER_MASK;
13470
13471         if (netif_running(dev))
13472                 bnx2x_nic_load(bp, LOAD_NORMAL);
13473
13474         netif_device_attach(dev);
13475
13476         rtnl_unlock();
13477 }
13478
13479 static const struct pci_error_handlers bnx2x_err_handler = {
13480         .error_detected = bnx2x_io_error_detected,
13481         .slot_reset     = bnx2x_io_slot_reset,
13482         .resume         = bnx2x_io_resume,
13483 };
13484
13485 static void bnx2x_shutdown(struct pci_dev *pdev)
13486 {
13487         struct net_device *dev = pci_get_drvdata(pdev);
13488         struct bnx2x *bp;
13489
13490         if (!dev)
13491                 return;
13492
13493         bp = netdev_priv(dev);
13494         if (!bp)
13495                 return;
13496
13497         rtnl_lock();
13498         netif_device_detach(dev);
13499         rtnl_unlock();
13500
13501         /* Don't remove the netdevice, as there are scenarios which will cause
13502          * the kernel to hang, e.g., when trying to remove bnx2i while the
13503          * rootfs is mounted from SAN.
13504          */
13505         __bnx2x_remove(pdev, dev, bp, false);
13506 }
13507
13508 static struct pci_driver bnx2x_pci_driver = {
13509         .name        = DRV_MODULE_NAME,
13510         .id_table    = bnx2x_pci_tbl,
13511         .probe       = bnx2x_init_one,
13512         .remove      = bnx2x_remove_one,
13513         .suspend     = bnx2x_suspend,
13514         .resume      = bnx2x_resume,
13515         .err_handler = &bnx2x_err_handler,
13516 #ifdef CONFIG_BNX2X_SRIOV
13517         .sriov_configure = bnx2x_sriov_configure,
13518 #endif
13519         .shutdown    = bnx2x_shutdown,
13520 };
13521
13522 static int __init bnx2x_init(void)
13523 {
13524         int ret;
13525
13526         pr_info("%s", version);
13527
13528         bnx2x_wq = create_singlethread_workqueue("bnx2x");
13529         if (bnx2x_wq == NULL) {
13530                 pr_err("Cannot create workqueue\n");
13531                 return -ENOMEM;
13532         }
13533         bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
13534         if (!bnx2x_iov_wq) {
13535                 pr_err("Cannot create iov workqueue\n");
13536                 destroy_workqueue(bnx2x_wq);
13537                 return -ENOMEM;
13538         }
13539
13540         ret = pci_register_driver(&bnx2x_pci_driver);
13541         if (ret) {
13542                 pr_err("Cannot register driver\n");
13543                 destroy_workqueue(bnx2x_wq);
13544                 destroy_workqueue(bnx2x_iov_wq);
13545         }
13546         return ret;
13547 }
13548
13549 static void __exit bnx2x_cleanup(void)
13550 {
13551         struct list_head *pos, *q;
13552
13553         pci_unregister_driver(&bnx2x_pci_driver);
13554
13555         destroy_workqueue(bnx2x_wq);
13556         destroy_workqueue(bnx2x_iov_wq);
13557
13558         /* Free globally allocated resources */
13559         list_for_each_safe(pos, q, &bnx2x_prev_list) {
13560                 struct bnx2x_prev_path_list *tmp =
13561                         list_entry(pos, struct bnx2x_prev_path_list, list);
13562                 list_del(pos);
13563                 kfree(tmp);
13564         }
13565 }
13566
13567 void bnx2x_notify_link_changed(struct bnx2x *bp)
13568 {
13569         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
13570 }
13571
13572 module_init(bnx2x_init);
13573 module_exit(bnx2x_cleanup);
13574
13575 /**
13576  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
13577  *
13578  * @bp:         driver handle
13579  * @set:        set or clear the CAM entry
13580  *
13581  * This function will wait until the ramrod completion returns.
13582  * Return 0 if success, -ENODEV if ramrod doesn't return.
13583  */
13584 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
13585 {
13586         unsigned long ramrod_flags = 0;
13587
13588         __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
13589         return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
13590                                  &bp->iscsi_l2_mac_obj, true,
13591                                  BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
13592 }
13593
13594 /* count denotes the number of new completions we have seen */
13595 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
13596 {
13597         struct eth_spe *spe;
13598         int cxt_index, cxt_offset;
13599
13600 #ifdef BNX2X_STOP_ON_ERROR
13601         if (unlikely(bp->panic))
13602                 return;
13603 #endif
13604
13605         spin_lock_bh(&bp->spq_lock);
13606         BUG_ON(bp->cnic_spq_pending < count);
13607         bp->cnic_spq_pending -= count;
13608
13609         for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
13610                 u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
13611                                 & SPE_HDR_CONN_TYPE) >>
13612                                 SPE_HDR_CONN_TYPE_SHIFT;
13613                 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
13614                                 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
13615
13616                 /* Set validation for iSCSI L2 client before sending SETUP
13617                  *  ramrod
13618                  */
13619                 if (type == ETH_CONNECTION_TYPE) {
13620                         if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
13621                                 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
13622                                         ILT_PAGE_CIDS;
13623                                 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
13624                                         (cxt_index * ILT_PAGE_CIDS);
13625                                 bnx2x_set_ctx_validation(bp,
13626                                         &bp->context[cxt_index].
13627                                                          vcxt[cxt_offset].eth,
13628                                         BNX2X_ISCSI_ETH_CID(bp));
13629                         }
13630                 }
13631
13632                 /*
13633                  * There may be not more than 8 L2, not more than 8 L5 SPEs
13634                  * and in the air. We also check that number of outstanding
13635                  * COMMON ramrods is not more than the EQ and SPQ can
13636                  * accommodate.
13637                  */
13638                 if (type == ETH_CONNECTION_TYPE) {
13639                         if (!atomic_read(&bp->cq_spq_left))
13640                                 break;
13641                         else
13642                                 atomic_dec(&bp->cq_spq_left);
13643                 } else if (type == NONE_CONNECTION_TYPE) {
13644                         if (!atomic_read(&bp->eq_spq_left))
13645                                 break;
13646                         else
13647                                 atomic_dec(&bp->eq_spq_left);
13648                 } else if ((type == ISCSI_CONNECTION_TYPE) ||
13649                            (type == FCOE_CONNECTION_TYPE)) {
13650                         if (bp->cnic_spq_pending >=
13651                             bp->cnic_eth_dev.max_kwqe_pending)
13652                                 break;
13653                         else
13654                                 bp->cnic_spq_pending++;
13655                 } else {
13656                         BNX2X_ERR("Unknown SPE type: %d\n", type);
13657                         bnx2x_panic();
13658                         break;
13659                 }
13660
13661                 spe = bnx2x_sp_get_next(bp);
13662                 *spe = *bp->cnic_kwq_cons;
13663
13664                 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
13665                    bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
13666
13667                 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
13668                         bp->cnic_kwq_cons = bp->cnic_kwq;
13669                 else
13670                         bp->cnic_kwq_cons++;
13671         }
13672         bnx2x_sp_prod_update(bp);
13673         spin_unlock_bh(&bp->spq_lock);
13674 }
13675
13676 static int bnx2x_cnic_sp_queue(struct net_device *dev,
13677                                struct kwqe_16 *kwqes[], u32 count)
13678 {
13679         struct bnx2x *bp = netdev_priv(dev);
13680         int i;
13681
13682 #ifdef BNX2X_STOP_ON_ERROR
13683         if (unlikely(bp->panic)) {
13684                 BNX2X_ERR("Can't post to SP queue while panic\n");
13685                 return -EIO;
13686         }
13687 #endif
13688
13689         if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
13690             (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
13691                 BNX2X_ERR("Handling parity error recovery. Try again later\n");
13692                 return -EAGAIN;
13693         }
13694
13695         spin_lock_bh(&bp->spq_lock);
13696
13697         for (i = 0; i < count; i++) {
13698                 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
13699
13700                 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
13701                         break;
13702
13703                 *bp->cnic_kwq_prod = *spe;
13704
13705                 bp->cnic_kwq_pending++;
13706
13707                 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
13708                    spe->hdr.conn_and_cmd_data, spe->hdr.type,
13709                    spe->data.update_data_addr.hi,
13710                    spe->data.update_data_addr.lo,
13711                    bp->cnic_kwq_pending);
13712
13713                 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
13714                         bp->cnic_kwq_prod = bp->cnic_kwq;
13715                 else
13716                         bp->cnic_kwq_prod++;
13717         }
13718
13719         spin_unlock_bh(&bp->spq_lock);
13720
13721         if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
13722                 bnx2x_cnic_sp_post(bp, 0);
13723
13724         return i;
13725 }
13726
13727 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13728 {
13729         struct cnic_ops *c_ops;
13730         int rc = 0;
13731
13732         mutex_lock(&bp->cnic_mutex);
13733         c_ops = rcu_dereference_protected(bp->cnic_ops,
13734                                           lockdep_is_held(&bp->cnic_mutex));
13735         if (c_ops)
13736                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13737         mutex_unlock(&bp->cnic_mutex);
13738
13739         return rc;
13740 }
13741
13742 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13743 {
13744         struct cnic_ops *c_ops;
13745         int rc = 0;
13746
13747         rcu_read_lock();
13748         c_ops = rcu_dereference(bp->cnic_ops);
13749         if (c_ops)
13750                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13751         rcu_read_unlock();
13752
13753         return rc;
13754 }
13755
13756 /*
13757  * for commands that have no data
13758  */
13759 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
13760 {
13761         struct cnic_ctl_info ctl = {0};
13762
13763         ctl.cmd = cmd;
13764
13765         return bnx2x_cnic_ctl_send(bp, &ctl);
13766 }
13767
13768 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
13769 {
13770         struct cnic_ctl_info ctl = {0};
13771
13772         /* first we tell CNIC and only then we count this as a completion */
13773         ctl.cmd = CNIC_CTL_COMPLETION_CMD;
13774         ctl.data.comp.cid = cid;
13775         ctl.data.comp.error = err;
13776
13777         bnx2x_cnic_ctl_send_bh(bp, &ctl);
13778         bnx2x_cnic_sp_post(bp, 0);
13779 }
13780
13781 /* Called with netif_addr_lock_bh() taken.
13782  * Sets an rx_mode config for an iSCSI ETH client.
13783  * Doesn't block.
13784  * Completion should be checked outside.
13785  */
13786 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
13787 {
13788         unsigned long accept_flags = 0, ramrod_flags = 0;
13789         u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13790         int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
13791
13792         if (start) {
13793                 /* Start accepting on iSCSI L2 ring. Accept all multicasts
13794                  * because it's the only way for UIO Queue to accept
13795                  * multicasts (in non-promiscuous mode only one Queue per
13796                  * function will receive multicast packets (leading in our
13797                  * case).
13798                  */
13799                 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
13800                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
13801                 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
13802                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
13803
13804                 /* Clear STOP_PENDING bit if START is requested */
13805                 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
13806
13807                 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
13808         } else
13809                 /* Clear START_PENDING bit if STOP is requested */
13810                 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
13811
13812         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
13813                 set_bit(sched_state, &bp->sp_state);
13814         else {
13815                 __set_bit(RAMROD_RX, &ramrod_flags);
13816                 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
13817                                     ramrod_flags);
13818         }
13819 }
13820
13821 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
13822 {
13823         struct bnx2x *bp = netdev_priv(dev);
13824         int rc = 0;
13825
13826         switch (ctl->cmd) {
13827         case DRV_CTL_CTXTBL_WR_CMD: {
13828                 u32 index = ctl->data.io.offset;
13829                 dma_addr_t addr = ctl->data.io.dma_addr;
13830
13831                 bnx2x_ilt_wr(bp, index, addr);
13832                 break;
13833         }
13834
13835         case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
13836                 int count = ctl->data.credit.credit_count;
13837
13838                 bnx2x_cnic_sp_post(bp, count);
13839                 break;
13840         }
13841
13842         /* rtnl_lock is held.  */
13843         case DRV_CTL_START_L2_CMD: {
13844                 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13845                 unsigned long sp_bits = 0;
13846
13847                 /* Configure the iSCSI classification object */
13848                 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
13849                                    cp->iscsi_l2_client_id,
13850                                    cp->iscsi_l2_cid, BP_FUNC(bp),
13851                                    bnx2x_sp(bp, mac_rdata),
13852                                    bnx2x_sp_mapping(bp, mac_rdata),
13853                                    BNX2X_FILTER_MAC_PENDING,
13854                                    &bp->sp_state, BNX2X_OBJ_TYPE_RX,
13855                                    &bp->macs_pool);
13856
13857                 /* Set iSCSI MAC address */
13858                 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
13859                 if (rc)
13860                         break;
13861
13862                 mmiowb();
13863                 barrier();
13864
13865                 /* Start accepting on iSCSI L2 ring */
13866
13867                 netif_addr_lock_bh(dev);
13868                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
13869                 netif_addr_unlock_bh(dev);
13870
13871                 /* bits to wait on */
13872                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13873                 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
13874
13875                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
13876                         BNX2X_ERR("rx_mode completion timed out!\n");
13877
13878                 break;
13879         }
13880
13881         /* rtnl_lock is held.  */
13882         case DRV_CTL_STOP_L2_CMD: {
13883                 unsigned long sp_bits = 0;
13884
13885                 /* Stop accepting on iSCSI L2 ring */
13886                 netif_addr_lock_bh(dev);
13887                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
13888                 netif_addr_unlock_bh(dev);
13889
13890                 /* bits to wait on */
13891                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13892                 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
13893
13894                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
13895                         BNX2X_ERR("rx_mode completion timed out!\n");
13896
13897                 mmiowb();
13898                 barrier();
13899
13900                 /* Unset iSCSI L2 MAC */
13901                 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
13902                                         BNX2X_ISCSI_ETH_MAC, true);
13903                 break;
13904         }
13905         case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
13906                 int count = ctl->data.credit.credit_count;
13907
13908                 smp_mb__before_atomic();
13909                 atomic_add(count, &bp->cq_spq_left);
13910                 smp_mb__after_atomic();
13911                 break;
13912         }
13913         case DRV_CTL_ULP_REGISTER_CMD: {
13914                 int ulp_type = ctl->data.register_data.ulp_type;
13915
13916                 if (CHIP_IS_E3(bp)) {
13917                         int idx = BP_FW_MB_IDX(bp);
13918                         u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13919                         int path = BP_PATH(bp);
13920                         int port = BP_PORT(bp);
13921                         int i;
13922                         u32 scratch_offset;
13923                         u32 *host_addr;
13924
13925                         /* first write capability to shmem2 */
13926                         if (ulp_type == CNIC_ULP_ISCSI)
13927                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13928                         else if (ulp_type == CNIC_ULP_FCOE)
13929                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13930                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13931
13932                         if ((ulp_type != CNIC_ULP_FCOE) ||
13933                             (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
13934                             (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
13935                                 break;
13936
13937                         /* if reached here - should write fcoe capabilities */
13938                         scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
13939                         if (!scratch_offset)
13940                                 break;
13941                         scratch_offset += offsetof(struct glob_ncsi_oem_data,
13942                                                    fcoe_features[path][port]);
13943                         host_addr = (u32 *) &(ctl->data.register_data.
13944                                               fcoe_features);
13945                         for (i = 0; i < sizeof(struct fcoe_capabilities);
13946                              i += 4)
13947                                 REG_WR(bp, scratch_offset + i,
13948                                        *(host_addr + i/4));
13949                 }
13950                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
13951                 break;
13952         }
13953
13954         case DRV_CTL_ULP_UNREGISTER_CMD: {
13955                 int ulp_type = ctl->data.ulp_type;
13956
13957                 if (CHIP_IS_E3(bp)) {
13958                         int idx = BP_FW_MB_IDX(bp);
13959                         u32 cap;
13960
13961                         cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13962                         if (ulp_type == CNIC_ULP_ISCSI)
13963                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13964                         else if (ulp_type == CNIC_ULP_FCOE)
13965                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13966                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13967                 }
13968                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
13969                 break;
13970         }
13971
13972         default:
13973                 BNX2X_ERR("unknown command %x\n", ctl->cmd);
13974                 rc = -EINVAL;
13975         }
13976
13977         return rc;
13978 }
13979
13980 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
13981 {
13982         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13983
13984         if (bp->flags & USING_MSIX_FLAG) {
13985                 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
13986                 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
13987                 cp->irq_arr[0].vector = bp->msix_table[1].vector;
13988         } else {
13989                 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
13990                 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
13991         }
13992         if (!CHIP_IS_E1x(bp))
13993                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
13994         else
13995                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
13996
13997         cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
13998         cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
13999         cp->irq_arr[1].status_blk = bp->def_status_blk;
14000         cp->irq_arr[1].status_blk_num = DEF_SB_ID;
14001         cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
14002
14003         cp->num_irq = 2;
14004 }
14005
14006 void bnx2x_setup_cnic_info(struct bnx2x *bp)
14007 {
14008         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14009
14010         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14011                              bnx2x_cid_ilt_lines(bp);
14012         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14013         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14014         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14015
14016         DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
14017            BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
14018            cp->iscsi_l2_cid);
14019
14020         if (NO_ISCSI_OOO(bp))
14021                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14022 }
14023
14024 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
14025                                void *data)
14026 {
14027         struct bnx2x *bp = netdev_priv(dev);
14028         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14029         int rc;
14030
14031         DP(NETIF_MSG_IFUP, "Register_cnic called\n");
14032
14033         if (ops == NULL) {
14034                 BNX2X_ERR("NULL ops received\n");
14035                 return -EINVAL;
14036         }
14037
14038         if (!CNIC_SUPPORT(bp)) {
14039                 BNX2X_ERR("Can't register CNIC when not supported\n");
14040                 return -EOPNOTSUPP;
14041         }
14042
14043         if (!CNIC_LOADED(bp)) {
14044                 rc = bnx2x_load_cnic(bp);
14045                 if (rc) {
14046                         BNX2X_ERR("CNIC-related load failed\n");
14047                         return rc;
14048                 }
14049         }
14050
14051         bp->cnic_enabled = true;
14052
14053         bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
14054         if (!bp->cnic_kwq)
14055                 return -ENOMEM;
14056
14057         bp->cnic_kwq_cons = bp->cnic_kwq;
14058         bp->cnic_kwq_prod = bp->cnic_kwq;
14059         bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
14060
14061         bp->cnic_spq_pending = 0;
14062         bp->cnic_kwq_pending = 0;
14063
14064         bp->cnic_data = data;
14065
14066         cp->num_irq = 0;
14067         cp->drv_state |= CNIC_DRV_STATE_REGD;
14068         cp->iro_arr = bp->iro_arr;
14069
14070         bnx2x_setup_cnic_irq_info(bp);
14071
14072         rcu_assign_pointer(bp->cnic_ops, ops);
14073
14074         /* Schedule driver to read CNIC driver versions */
14075         bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14076
14077         return 0;
14078 }
14079
14080 static int bnx2x_unregister_cnic(struct net_device *dev)
14081 {
14082         struct bnx2x *bp = netdev_priv(dev);
14083         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14084
14085         mutex_lock(&bp->cnic_mutex);
14086         cp->drv_state = 0;
14087         RCU_INIT_POINTER(bp->cnic_ops, NULL);
14088         mutex_unlock(&bp->cnic_mutex);
14089         synchronize_rcu();
14090         bp->cnic_enabled = false;
14091         kfree(bp->cnic_kwq);
14092         bp->cnic_kwq = NULL;
14093
14094         return 0;
14095 }
14096
14097 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
14098 {
14099         struct bnx2x *bp = netdev_priv(dev);
14100         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14101
14102         /* If both iSCSI and FCoE are disabled - return NULL in
14103          * order to indicate CNIC that it should not try to work
14104          * with this device.
14105          */
14106         if (NO_ISCSI(bp) && NO_FCOE(bp))
14107                 return NULL;
14108
14109         cp->drv_owner = THIS_MODULE;
14110         cp->chip_id = CHIP_ID(bp);
14111         cp->pdev = bp->pdev;
14112         cp->io_base = bp->regview;
14113         cp->io_base2 = bp->doorbells;
14114         cp->max_kwqe_pending = 8;
14115         cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
14116         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14117                              bnx2x_cid_ilt_lines(bp);
14118         cp->ctx_tbl_len = CNIC_ILT_LINES;
14119         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14120         cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
14121         cp->drv_ctl = bnx2x_drv_ctl;
14122         cp->drv_register_cnic = bnx2x_register_cnic;
14123         cp->drv_unregister_cnic = bnx2x_unregister_cnic;
14124         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14125         cp->iscsi_l2_client_id =
14126                 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14127         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14128
14129         if (NO_ISCSI_OOO(bp))
14130                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14131
14132         if (NO_ISCSI(bp))
14133                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
14134
14135         if (NO_FCOE(bp))
14136                 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
14137
14138         BNX2X_DEV_INFO(
14139                 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
14140            cp->ctx_blk_size,
14141            cp->ctx_tbl_offset,
14142            cp->ctx_tbl_len,
14143            cp->starting_cid);
14144         return cp;
14145 }
14146
14147 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
14148 {
14149         struct bnx2x *bp = fp->bp;
14150         u32 offset = BAR_USTRORM_INTMEM;
14151
14152         if (IS_VF(bp))
14153                 return bnx2x_vf_ustorm_prods_offset(bp, fp);
14154         else if (!CHIP_IS_E1x(bp))
14155                 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
14156         else
14157                 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
14158
14159         return offset;
14160 }
14161
14162 /* called only on E1H or E2.
14163  * When pretending to be PF, the pretend value is the function number 0...7
14164  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
14165  * combination
14166  */
14167 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
14168 {
14169         u32 pretend_reg;
14170
14171         if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
14172                 return -1;
14173
14174         /* get my own pretend register */
14175         pretend_reg = bnx2x_get_pretend_reg(bp);
14176         REG_WR(bp, pretend_reg, pretend_func_val);
14177         REG_RD(bp, pretend_reg);
14178         return 0;
14179 }