bnxt_en: Fix zero padding of tx push data.
[cascardo/linux.git] / drivers / net / ethernet / broadcom / bnxt / bnxt.c
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2015 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  */
9
10 #include <linux/module.h>
11
12 #include <linux/stringify.h>
13 #include <linux/kernel.h>
14 #include <linux/timer.h>
15 #include <linux/errno.h>
16 #include <linux/ioport.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19 #include <linux/interrupt.h>
20 #include <linux/pci.h>
21 #include <linux/netdevice.h>
22 #include <linux/etherdevice.h>
23 #include <linux/skbuff.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/bitops.h>
26 #include <linux/io.h>
27 #include <linux/irq.h>
28 #include <linux/delay.h>
29 #include <asm/byteorder.h>
30 #include <asm/page.h>
31 #include <linux/time.h>
32 #include <linux/mii.h>
33 #include <linux/if.h>
34 #include <linux/if_vlan.h>
35 #include <net/ip.h>
36 #include <net/tcp.h>
37 #include <net/udp.h>
38 #include <net/checksum.h>
39 #include <net/ip6_checksum.h>
40 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE)
41 #include <net/vxlan.h>
42 #endif
43 #ifdef CONFIG_NET_RX_BUSY_POLL
44 #include <net/busy_poll.h>
45 #endif
46 #include <linux/workqueue.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53
54 #include "bnxt_hsi.h"
55 #include "bnxt.h"
56 #include "bnxt_sriov.h"
57 #include "bnxt_ethtool.h"
58
59 #define BNXT_TX_TIMEOUT         (5 * HZ)
60
61 static const char version[] =
62         "Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
63
64 MODULE_LICENSE("GPL");
65 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
66 MODULE_VERSION(DRV_MODULE_VERSION);
67
68 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
69 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
70 #define BNXT_RX_COPY_THRESH 256
71
72 #define BNXT_TX_PUSH_THRESH 164
73
74 enum board_idx {
75         BCM57301,
76         BCM57302,
77         BCM57304,
78         BCM57402,
79         BCM57404,
80         BCM57406,
81         BCM57304_VF,
82         BCM57404_VF,
83 };
84
85 /* indexed by enum above */
86 static const struct {
87         char *name;
88 } board_info[] = {
89         { "Broadcom BCM57301 NetXtreme-C Single-port 10Gb Ethernet" },
90         { "Broadcom BCM57302 NetXtreme-C Dual-port 10Gb/25Gb Ethernet" },
91         { "Broadcom BCM57304 NetXtreme-C Dual-port 10Gb/25Gb/40Gb/50Gb Ethernet" },
92         { "Broadcom BCM57402 NetXtreme-E Dual-port 10Gb Ethernet" },
93         { "Broadcom BCM57404 NetXtreme-E Dual-port 10Gb/25Gb Ethernet" },
94         { "Broadcom BCM57406 NetXtreme-E Dual-port 10GBase-T Ethernet" },
95         { "Broadcom BCM57304 NetXtreme-C Ethernet Virtual Function" },
96         { "Broadcom BCM57404 NetXtreme-E Ethernet Virtual Function" },
97 };
98
99 static const struct pci_device_id bnxt_pci_tbl[] = {
100         { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
101         { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
102         { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
103         { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
104         { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
105         { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
106 #ifdef CONFIG_BNXT_SRIOV
107         { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = BCM57304_VF },
108         { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = BCM57404_VF },
109 #endif
110         { 0 }
111 };
112
113 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
114
115 static const u16 bnxt_vf_req_snif[] = {
116         HWRM_FUNC_CFG,
117         HWRM_PORT_PHY_QCFG,
118         HWRM_CFA_L2_FILTER_ALLOC,
119 };
120
121 static bool bnxt_vf_pciid(enum board_idx idx)
122 {
123         return (idx == BCM57304_VF || idx == BCM57404_VF);
124 }
125
126 #define DB_CP_REARM_FLAGS       (DB_KEY_CP | DB_IDX_VALID)
127 #define DB_CP_FLAGS             (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
128 #define DB_CP_IRQ_DIS_FLAGS     (DB_KEY_CP | DB_IRQ_DIS)
129
130 #define BNXT_CP_DB_REARM(db, raw_cons)                                  \
131                 writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
132
133 #define BNXT_CP_DB(db, raw_cons)                                        \
134                 writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
135
136 #define BNXT_CP_DB_IRQ_DIS(db)                                          \
137                 writel(DB_CP_IRQ_DIS_FLAGS, db)
138
139 static inline u32 bnxt_tx_avail(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
140 {
141         /* Tell compiler to fetch tx indices from memory. */
142         barrier();
143
144         return bp->tx_ring_size -
145                 ((txr->tx_prod - txr->tx_cons) & bp->tx_ring_mask);
146 }
147
148 static const u16 bnxt_lhint_arr[] = {
149         TX_BD_FLAGS_LHINT_512_AND_SMALLER,
150         TX_BD_FLAGS_LHINT_512_TO_1023,
151         TX_BD_FLAGS_LHINT_1024_TO_2047,
152         TX_BD_FLAGS_LHINT_1024_TO_2047,
153         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
154         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
155         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
156         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
157         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
158         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
159         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
160         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
161         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
162         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
163         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
164         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
165         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
166         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
167         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
168 };
169
170 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
171 {
172         struct bnxt *bp = netdev_priv(dev);
173         struct tx_bd *txbd;
174         struct tx_bd_ext *txbd1;
175         struct netdev_queue *txq;
176         int i;
177         dma_addr_t mapping;
178         unsigned int length, pad = 0;
179         u32 len, free_size, vlan_tag_flags, cfa_action, flags;
180         u16 prod, last_frag;
181         struct pci_dev *pdev = bp->pdev;
182         struct bnxt_tx_ring_info *txr;
183         struct bnxt_sw_tx_bd *tx_buf;
184
185         i = skb_get_queue_mapping(skb);
186         if (unlikely(i >= bp->tx_nr_rings)) {
187                 dev_kfree_skb_any(skb);
188                 return NETDEV_TX_OK;
189         }
190
191         txr = &bp->tx_ring[i];
192         txq = netdev_get_tx_queue(dev, i);
193         prod = txr->tx_prod;
194
195         free_size = bnxt_tx_avail(bp, txr);
196         if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
197                 netif_tx_stop_queue(txq);
198                 return NETDEV_TX_BUSY;
199         }
200
201         length = skb->len;
202         len = skb_headlen(skb);
203         last_frag = skb_shinfo(skb)->nr_frags;
204
205         txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
206
207         txbd->tx_bd_opaque = prod;
208
209         tx_buf = &txr->tx_buf_ring[prod];
210         tx_buf->skb = skb;
211         tx_buf->nr_frags = last_frag;
212
213         vlan_tag_flags = 0;
214         cfa_action = 0;
215         if (skb_vlan_tag_present(skb)) {
216                 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
217                                  skb_vlan_tag_get(skb);
218                 /* Currently supports 8021Q, 8021AD vlan offloads
219                  * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
220                  */
221                 if (skb->vlan_proto == htons(ETH_P_8021Q))
222                         vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
223         }
224
225         if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
226                 struct tx_push_buffer *tx_push_buf = txr->tx_push;
227                 struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
228                 struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
229                 void *pdata = tx_push_buf->data;
230                 u64 *end;
231                 int j, push_len;
232
233                 /* Set COAL_NOW to be ready quickly for the next push */
234                 tx_push->tx_bd_len_flags_type =
235                         cpu_to_le32((length << TX_BD_LEN_SHIFT) |
236                                         TX_BD_TYPE_LONG_TX_BD |
237                                         TX_BD_FLAGS_LHINT_512_AND_SMALLER |
238                                         TX_BD_FLAGS_COAL_NOW |
239                                         TX_BD_FLAGS_PACKET_END |
240                                         (2 << TX_BD_FLAGS_BD_CNT_SHIFT));
241
242                 if (skb->ip_summed == CHECKSUM_PARTIAL)
243                         tx_push1->tx_bd_hsize_lflags =
244                                         cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
245                 else
246                         tx_push1->tx_bd_hsize_lflags = 0;
247
248                 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
249                 tx_push1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
250
251                 end = pdata + length;
252                 end = PTR_ALIGN(end, 8) - 1;
253                 *end = 0;
254
255                 skb_copy_from_linear_data(skb, pdata, len);
256                 pdata += len;
257                 for (j = 0; j < last_frag; j++) {
258                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
259                         void *fptr;
260
261                         fptr = skb_frag_address_safe(frag);
262                         if (!fptr)
263                                 goto normal_tx;
264
265                         memcpy(pdata, fptr, skb_frag_size(frag));
266                         pdata += skb_frag_size(frag);
267                 }
268
269                 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
270                 txbd->tx_bd_haddr = txr->data_mapping;
271                 prod = NEXT_TX(prod);
272                 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
273                 memcpy(txbd, tx_push1, sizeof(*txbd));
274                 prod = NEXT_TX(prod);
275                 tx_push->doorbell =
276                         cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
277                 txr->tx_prod = prod;
278
279                 netdev_tx_sent_queue(txq, skb->len);
280
281                 push_len = (length + sizeof(*tx_push) + 7) / 8;
282                 if (push_len > 16) {
283                         __iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16);
284                         __iowrite64_copy(txr->tx_doorbell + 4, tx_push_buf + 1,
285                                          push_len - 16);
286                 } else {
287                         __iowrite64_copy(txr->tx_doorbell, tx_push_buf,
288                                          push_len);
289                 }
290
291                 tx_buf->is_push = 1;
292                 goto tx_done;
293         }
294
295 normal_tx:
296         if (length < BNXT_MIN_PKT_SIZE) {
297                 pad = BNXT_MIN_PKT_SIZE - length;
298                 if (skb_pad(skb, pad)) {
299                         /* SKB already freed. */
300                         tx_buf->skb = NULL;
301                         return NETDEV_TX_OK;
302                 }
303                 length = BNXT_MIN_PKT_SIZE;
304         }
305
306         mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
307
308         if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
309                 dev_kfree_skb_any(skb);
310                 tx_buf->skb = NULL;
311                 return NETDEV_TX_OK;
312         }
313
314         dma_unmap_addr_set(tx_buf, mapping, mapping);
315         flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
316                 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
317
318         txbd->tx_bd_haddr = cpu_to_le64(mapping);
319
320         prod = NEXT_TX(prod);
321         txbd1 = (struct tx_bd_ext *)
322                 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
323
324         txbd1->tx_bd_hsize_lflags = 0;
325         if (skb_is_gso(skb)) {
326                 u32 hdr_len;
327
328                 if (skb->encapsulation)
329                         hdr_len = skb_inner_network_offset(skb) +
330                                 skb_inner_network_header_len(skb) +
331                                 inner_tcp_hdrlen(skb);
332                 else
333                         hdr_len = skb_transport_offset(skb) +
334                                 tcp_hdrlen(skb);
335
336                 txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
337                                         TX_BD_FLAGS_T_IPID |
338                                         (hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
339                 length = skb_shinfo(skb)->gso_size;
340                 txbd1->tx_bd_mss = cpu_to_le32(length);
341                 length += hdr_len;
342         } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
343                 txbd1->tx_bd_hsize_lflags =
344                         cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
345                 txbd1->tx_bd_mss = 0;
346         }
347
348         length >>= 9;
349         flags |= bnxt_lhint_arr[length];
350         txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
351
352         txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
353         txbd1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
354         for (i = 0; i < last_frag; i++) {
355                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
356
357                 prod = NEXT_TX(prod);
358                 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
359
360                 len = skb_frag_size(frag);
361                 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
362                                            DMA_TO_DEVICE);
363
364                 if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
365                         goto tx_dma_error;
366
367                 tx_buf = &txr->tx_buf_ring[prod];
368                 dma_unmap_addr_set(tx_buf, mapping, mapping);
369
370                 txbd->tx_bd_haddr = cpu_to_le64(mapping);
371
372                 flags = len << TX_BD_LEN_SHIFT;
373                 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
374         }
375
376         flags &= ~TX_BD_LEN;
377         txbd->tx_bd_len_flags_type =
378                 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
379                             TX_BD_FLAGS_PACKET_END);
380
381         netdev_tx_sent_queue(txq, skb->len);
382
383         /* Sync BD data before updating doorbell */
384         wmb();
385
386         prod = NEXT_TX(prod);
387         txr->tx_prod = prod;
388
389         writel(DB_KEY_TX | prod, txr->tx_doorbell);
390         writel(DB_KEY_TX | prod, txr->tx_doorbell);
391
392 tx_done:
393
394         mmiowb();
395
396         if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
397                 netif_tx_stop_queue(txq);
398
399                 /* netif_tx_stop_queue() must be done before checking
400                  * tx index in bnxt_tx_avail() below, because in
401                  * bnxt_tx_int(), we update tx index before checking for
402                  * netif_tx_queue_stopped().
403                  */
404                 smp_mb();
405                 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
406                         netif_tx_wake_queue(txq);
407         }
408         return NETDEV_TX_OK;
409
410 tx_dma_error:
411         last_frag = i;
412
413         /* start back at beginning and unmap skb */
414         prod = txr->tx_prod;
415         tx_buf = &txr->tx_buf_ring[prod];
416         tx_buf->skb = NULL;
417         dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
418                          skb_headlen(skb), PCI_DMA_TODEVICE);
419         prod = NEXT_TX(prod);
420
421         /* unmap remaining mapped pages */
422         for (i = 0; i < last_frag; i++) {
423                 prod = NEXT_TX(prod);
424                 tx_buf = &txr->tx_buf_ring[prod];
425                 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
426                                skb_frag_size(&skb_shinfo(skb)->frags[i]),
427                                PCI_DMA_TODEVICE);
428         }
429
430         dev_kfree_skb_any(skb);
431         return NETDEV_TX_OK;
432 }
433
434 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
435 {
436         struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
437         int index = txr - &bp->tx_ring[0];
438         struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, index);
439         u16 cons = txr->tx_cons;
440         struct pci_dev *pdev = bp->pdev;
441         int i;
442         unsigned int tx_bytes = 0;
443
444         for (i = 0; i < nr_pkts; i++) {
445                 struct bnxt_sw_tx_bd *tx_buf;
446                 struct sk_buff *skb;
447                 int j, last;
448
449                 tx_buf = &txr->tx_buf_ring[cons];
450                 cons = NEXT_TX(cons);
451                 skb = tx_buf->skb;
452                 tx_buf->skb = NULL;
453
454                 if (tx_buf->is_push) {
455                         tx_buf->is_push = 0;
456                         goto next_tx_int;
457                 }
458
459                 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
460                                  skb_headlen(skb), PCI_DMA_TODEVICE);
461                 last = tx_buf->nr_frags;
462
463                 for (j = 0; j < last; j++) {
464                         cons = NEXT_TX(cons);
465                         tx_buf = &txr->tx_buf_ring[cons];
466                         dma_unmap_page(
467                                 &pdev->dev,
468                                 dma_unmap_addr(tx_buf, mapping),
469                                 skb_frag_size(&skb_shinfo(skb)->frags[j]),
470                                 PCI_DMA_TODEVICE);
471                 }
472
473 next_tx_int:
474                 cons = NEXT_TX(cons);
475
476                 tx_bytes += skb->len;
477                 dev_kfree_skb_any(skb);
478         }
479
480         netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
481         txr->tx_cons = cons;
482
483         /* Need to make the tx_cons update visible to bnxt_start_xmit()
484          * before checking for netif_tx_queue_stopped().  Without the
485          * memory barrier, there is a small possibility that bnxt_start_xmit()
486          * will miss it and cause the queue to be stopped forever.
487          */
488         smp_mb();
489
490         if (unlikely(netif_tx_queue_stopped(txq)) &&
491             (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
492                 __netif_tx_lock(txq, smp_processor_id());
493                 if (netif_tx_queue_stopped(txq) &&
494                     bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
495                     txr->dev_state != BNXT_DEV_STATE_CLOSING)
496                         netif_tx_wake_queue(txq);
497                 __netif_tx_unlock(txq);
498         }
499 }
500
501 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
502                                        gfp_t gfp)
503 {
504         u8 *data;
505         struct pci_dev *pdev = bp->pdev;
506
507         data = kmalloc(bp->rx_buf_size, gfp);
508         if (!data)
509                 return NULL;
510
511         *mapping = dma_map_single(&pdev->dev, data + BNXT_RX_DMA_OFFSET,
512                                   bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
513
514         if (dma_mapping_error(&pdev->dev, *mapping)) {
515                 kfree(data);
516                 data = NULL;
517         }
518         return data;
519 }
520
521 static inline int bnxt_alloc_rx_data(struct bnxt *bp,
522                                      struct bnxt_rx_ring_info *rxr,
523                                      u16 prod, gfp_t gfp)
524 {
525         struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
526         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
527         u8 *data;
528         dma_addr_t mapping;
529
530         data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
531         if (!data)
532                 return -ENOMEM;
533
534         rx_buf->data = data;
535         dma_unmap_addr_set(rx_buf, mapping, mapping);
536
537         rxbd->rx_bd_haddr = cpu_to_le64(mapping);
538
539         return 0;
540 }
541
542 static void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons,
543                                u8 *data)
544 {
545         u16 prod = rxr->rx_prod;
546         struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
547         struct rx_bd *cons_bd, *prod_bd;
548
549         prod_rx_buf = &rxr->rx_buf_ring[prod];
550         cons_rx_buf = &rxr->rx_buf_ring[cons];
551
552         prod_rx_buf->data = data;
553
554         dma_unmap_addr_set(prod_rx_buf, mapping,
555                            dma_unmap_addr(cons_rx_buf, mapping));
556
557         prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
558         cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
559
560         prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
561 }
562
563 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
564 {
565         u16 next, max = rxr->rx_agg_bmap_size;
566
567         next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
568         if (next >= max)
569                 next = find_first_zero_bit(rxr->rx_agg_bmap, max);
570         return next;
571 }
572
573 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
574                                      struct bnxt_rx_ring_info *rxr,
575                                      u16 prod, gfp_t gfp)
576 {
577         struct rx_bd *rxbd =
578                 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
579         struct bnxt_sw_rx_agg_bd *rx_agg_buf;
580         struct pci_dev *pdev = bp->pdev;
581         struct page *page;
582         dma_addr_t mapping;
583         u16 sw_prod = rxr->rx_sw_agg_prod;
584
585         page = alloc_page(gfp);
586         if (!page)
587                 return -ENOMEM;
588
589         mapping = dma_map_page(&pdev->dev, page, 0, PAGE_SIZE,
590                                PCI_DMA_FROMDEVICE);
591         if (dma_mapping_error(&pdev->dev, mapping)) {
592                 __free_page(page);
593                 return -EIO;
594         }
595
596         if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
597                 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
598
599         __set_bit(sw_prod, rxr->rx_agg_bmap);
600         rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
601         rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
602
603         rx_agg_buf->page = page;
604         rx_agg_buf->mapping = mapping;
605         rxbd->rx_bd_haddr = cpu_to_le64(mapping);
606         rxbd->rx_bd_opaque = sw_prod;
607         return 0;
608 }
609
610 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
611                                    u32 agg_bufs)
612 {
613         struct bnxt *bp = bnapi->bp;
614         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
615         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
616         u16 prod = rxr->rx_agg_prod;
617         u16 sw_prod = rxr->rx_sw_agg_prod;
618         u32 i;
619
620         for (i = 0; i < agg_bufs; i++) {
621                 u16 cons;
622                 struct rx_agg_cmp *agg;
623                 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
624                 struct rx_bd *prod_bd;
625                 struct page *page;
626
627                 agg = (struct rx_agg_cmp *)
628                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
629                 cons = agg->rx_agg_cmp_opaque;
630                 __clear_bit(cons, rxr->rx_agg_bmap);
631
632                 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
633                         sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
634
635                 __set_bit(sw_prod, rxr->rx_agg_bmap);
636                 prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
637                 cons_rx_buf = &rxr->rx_agg_ring[cons];
638
639                 /* It is possible for sw_prod to be equal to cons, so
640                  * set cons_rx_buf->page to NULL first.
641                  */
642                 page = cons_rx_buf->page;
643                 cons_rx_buf->page = NULL;
644                 prod_rx_buf->page = page;
645
646                 prod_rx_buf->mapping = cons_rx_buf->mapping;
647
648                 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
649
650                 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
651                 prod_bd->rx_bd_opaque = sw_prod;
652
653                 prod = NEXT_RX_AGG(prod);
654                 sw_prod = NEXT_RX_AGG(sw_prod);
655                 cp_cons = NEXT_CMP(cp_cons);
656         }
657         rxr->rx_agg_prod = prod;
658         rxr->rx_sw_agg_prod = sw_prod;
659 }
660
661 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
662                                    struct bnxt_rx_ring_info *rxr, u16 cons,
663                                    u16 prod, u8 *data, dma_addr_t dma_addr,
664                                    unsigned int len)
665 {
666         int err;
667         struct sk_buff *skb;
668
669         err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
670         if (unlikely(err)) {
671                 bnxt_reuse_rx_data(rxr, cons, data);
672                 return NULL;
673         }
674
675         skb = build_skb(data, 0);
676         dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
677                          PCI_DMA_FROMDEVICE);
678         if (!skb) {
679                 kfree(data);
680                 return NULL;
681         }
682
683         skb_reserve(skb, BNXT_RX_OFFSET);
684         skb_put(skb, len);
685         return skb;
686 }
687
688 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
689                                      struct sk_buff *skb, u16 cp_cons,
690                                      u32 agg_bufs)
691 {
692         struct pci_dev *pdev = bp->pdev;
693         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
694         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
695         u16 prod = rxr->rx_agg_prod;
696         u32 i;
697
698         for (i = 0; i < agg_bufs; i++) {
699                 u16 cons, frag_len;
700                 struct rx_agg_cmp *agg;
701                 struct bnxt_sw_rx_agg_bd *cons_rx_buf;
702                 struct page *page;
703                 dma_addr_t mapping;
704
705                 agg = (struct rx_agg_cmp *)
706                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
707                 cons = agg->rx_agg_cmp_opaque;
708                 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
709                             RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
710
711                 cons_rx_buf = &rxr->rx_agg_ring[cons];
712                 skb_fill_page_desc(skb, i, cons_rx_buf->page, 0, frag_len);
713                 __clear_bit(cons, rxr->rx_agg_bmap);
714
715                 /* It is possible for bnxt_alloc_rx_page() to allocate
716                  * a sw_prod index that equals the cons index, so we
717                  * need to clear the cons entry now.
718                  */
719                 mapping = dma_unmap_addr(cons_rx_buf, mapping);
720                 page = cons_rx_buf->page;
721                 cons_rx_buf->page = NULL;
722
723                 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
724                         struct skb_shared_info *shinfo;
725                         unsigned int nr_frags;
726
727                         shinfo = skb_shinfo(skb);
728                         nr_frags = --shinfo->nr_frags;
729                         __skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
730
731                         dev_kfree_skb(skb);
732
733                         cons_rx_buf->page = page;
734
735                         /* Update prod since possibly some pages have been
736                          * allocated already.
737                          */
738                         rxr->rx_agg_prod = prod;
739                         bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
740                         return NULL;
741                 }
742
743                 dma_unmap_page(&pdev->dev, mapping, PAGE_SIZE,
744                                PCI_DMA_FROMDEVICE);
745
746                 skb->data_len += frag_len;
747                 skb->len += frag_len;
748                 skb->truesize += PAGE_SIZE;
749
750                 prod = NEXT_RX_AGG(prod);
751                 cp_cons = NEXT_CMP(cp_cons);
752         }
753         rxr->rx_agg_prod = prod;
754         return skb;
755 }
756
757 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
758                                u8 agg_bufs, u32 *raw_cons)
759 {
760         u16 last;
761         struct rx_agg_cmp *agg;
762
763         *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
764         last = RING_CMP(*raw_cons);
765         agg = (struct rx_agg_cmp *)
766                 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
767         return RX_AGG_CMP_VALID(agg, *raw_cons);
768 }
769
770 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
771                                             unsigned int len,
772                                             dma_addr_t mapping)
773 {
774         struct bnxt *bp = bnapi->bp;
775         struct pci_dev *pdev = bp->pdev;
776         struct sk_buff *skb;
777
778         skb = napi_alloc_skb(&bnapi->napi, len);
779         if (!skb)
780                 return NULL;
781
782         dma_sync_single_for_cpu(&pdev->dev, mapping,
783                                 bp->rx_copy_thresh, PCI_DMA_FROMDEVICE);
784
785         memcpy(skb->data - BNXT_RX_OFFSET, data, len + BNXT_RX_OFFSET);
786
787         dma_sync_single_for_device(&pdev->dev, mapping,
788                                    bp->rx_copy_thresh,
789                                    PCI_DMA_FROMDEVICE);
790
791         skb_put(skb, len);
792         return skb;
793 }
794
795 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
796                            struct rx_tpa_start_cmp *tpa_start,
797                            struct rx_tpa_start_cmp_ext *tpa_start1)
798 {
799         u8 agg_id = TPA_START_AGG_ID(tpa_start);
800         u16 cons, prod;
801         struct bnxt_tpa_info *tpa_info;
802         struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
803         struct rx_bd *prod_bd;
804         dma_addr_t mapping;
805
806         cons = tpa_start->rx_tpa_start_cmp_opaque;
807         prod = rxr->rx_prod;
808         cons_rx_buf = &rxr->rx_buf_ring[cons];
809         prod_rx_buf = &rxr->rx_buf_ring[prod];
810         tpa_info = &rxr->rx_tpa[agg_id];
811
812         prod_rx_buf->data = tpa_info->data;
813
814         mapping = tpa_info->mapping;
815         dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
816
817         prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
818
819         prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
820
821         tpa_info->data = cons_rx_buf->data;
822         cons_rx_buf->data = NULL;
823         tpa_info->mapping = dma_unmap_addr(cons_rx_buf, mapping);
824
825         tpa_info->len =
826                 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
827                                 RX_TPA_START_CMP_LEN_SHIFT;
828         if (likely(TPA_START_HASH_VALID(tpa_start))) {
829                 u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
830
831                 tpa_info->hash_type = PKT_HASH_TYPE_L4;
832                 tpa_info->gso_type = SKB_GSO_TCPV4;
833                 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
834                 if (hash_type == 3)
835                         tpa_info->gso_type = SKB_GSO_TCPV6;
836                 tpa_info->rss_hash =
837                         le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
838         } else {
839                 tpa_info->hash_type = PKT_HASH_TYPE_NONE;
840                 tpa_info->gso_type = 0;
841                 if (netif_msg_rx_err(bp))
842                         netdev_warn(bp->dev, "TPA packet without valid hash\n");
843         }
844         tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
845         tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
846
847         rxr->rx_prod = NEXT_RX(prod);
848         cons = NEXT_RX(cons);
849         cons_rx_buf = &rxr->rx_buf_ring[cons];
850
851         bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
852         rxr->rx_prod = NEXT_RX(rxr->rx_prod);
853         cons_rx_buf->data = NULL;
854 }
855
856 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
857                            u16 cp_cons, u32 agg_bufs)
858 {
859         if (agg_bufs)
860                 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
861 }
862
863 #define BNXT_IPV4_HDR_SIZE      (sizeof(struct iphdr) + sizeof(struct tcphdr))
864 #define BNXT_IPV6_HDR_SIZE      (sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
865
866 static inline struct sk_buff *bnxt_gro_skb(struct bnxt_tpa_info *tpa_info,
867                                            struct rx_tpa_end_cmp *tpa_end,
868                                            struct rx_tpa_end_cmp_ext *tpa_end1,
869                                            struct sk_buff *skb)
870 {
871 #ifdef CONFIG_INET
872         struct tcphdr *th;
873         int payload_off, tcp_opt_len = 0;
874         int len, nw_off;
875         u16 segs;
876
877         segs = TPA_END_TPA_SEGS(tpa_end);
878         if (segs == 1)
879                 return skb;
880
881         NAPI_GRO_CB(skb)->count = segs;
882         skb_shinfo(skb)->gso_size =
883                 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
884         skb_shinfo(skb)->gso_type = tpa_info->gso_type;
885         payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
886                        RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
887                       RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
888         if (TPA_END_GRO_TS(tpa_end))
889                 tcp_opt_len = 12;
890
891         if (tpa_info->gso_type == SKB_GSO_TCPV4) {
892                 struct iphdr *iph;
893
894                 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
895                          ETH_HLEN;
896                 skb_set_network_header(skb, nw_off);
897                 iph = ip_hdr(skb);
898                 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
899                 len = skb->len - skb_transport_offset(skb);
900                 th = tcp_hdr(skb);
901                 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
902         } else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
903                 struct ipv6hdr *iph;
904
905                 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
906                          ETH_HLEN;
907                 skb_set_network_header(skb, nw_off);
908                 iph = ipv6_hdr(skb);
909                 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
910                 len = skb->len - skb_transport_offset(skb);
911                 th = tcp_hdr(skb);
912                 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
913         } else {
914                 dev_kfree_skb_any(skb);
915                 return NULL;
916         }
917         tcp_gro_complete(skb);
918
919         if (nw_off) { /* tunnel */
920                 struct udphdr *uh = NULL;
921
922                 if (skb->protocol == htons(ETH_P_IP)) {
923                         struct iphdr *iph = (struct iphdr *)skb->data;
924
925                         if (iph->protocol == IPPROTO_UDP)
926                                 uh = (struct udphdr *)(iph + 1);
927                 } else {
928                         struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
929
930                         if (iph->nexthdr == IPPROTO_UDP)
931                                 uh = (struct udphdr *)(iph + 1);
932                 }
933                 if (uh) {
934                         if (uh->check)
935                                 skb_shinfo(skb)->gso_type |=
936                                         SKB_GSO_UDP_TUNNEL_CSUM;
937                         else
938                                 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
939                 }
940         }
941 #endif
942         return skb;
943 }
944
945 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
946                                            struct bnxt_napi *bnapi,
947                                            u32 *raw_cons,
948                                            struct rx_tpa_end_cmp *tpa_end,
949                                            struct rx_tpa_end_cmp_ext *tpa_end1,
950                                            bool *agg_event)
951 {
952         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
953         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
954         u8 agg_id = TPA_END_AGG_ID(tpa_end);
955         u8 *data, agg_bufs;
956         u16 cp_cons = RING_CMP(*raw_cons);
957         unsigned int len;
958         struct bnxt_tpa_info *tpa_info;
959         dma_addr_t mapping;
960         struct sk_buff *skb;
961
962         tpa_info = &rxr->rx_tpa[agg_id];
963         data = tpa_info->data;
964         prefetch(data);
965         len = tpa_info->len;
966         mapping = tpa_info->mapping;
967
968         agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
969                     RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
970
971         if (agg_bufs) {
972                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
973                         return ERR_PTR(-EBUSY);
974
975                 *agg_event = true;
976                 cp_cons = NEXT_CMP(cp_cons);
977         }
978
979         if (unlikely(agg_bufs > MAX_SKB_FRAGS)) {
980                 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
981                 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
982                             agg_bufs, (int)MAX_SKB_FRAGS);
983                 return NULL;
984         }
985
986         if (len <= bp->rx_copy_thresh) {
987                 skb = bnxt_copy_skb(bnapi, data, len, mapping);
988                 if (!skb) {
989                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
990                         return NULL;
991                 }
992         } else {
993                 u8 *new_data;
994                 dma_addr_t new_mapping;
995
996                 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
997                 if (!new_data) {
998                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
999                         return NULL;
1000                 }
1001
1002                 tpa_info->data = new_data;
1003                 tpa_info->mapping = new_mapping;
1004
1005                 skb = build_skb(data, 0);
1006                 dma_unmap_single(&bp->pdev->dev, mapping, bp->rx_buf_use_size,
1007                                  PCI_DMA_FROMDEVICE);
1008
1009                 if (!skb) {
1010                         kfree(data);
1011                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1012                         return NULL;
1013                 }
1014                 skb_reserve(skb, BNXT_RX_OFFSET);
1015                 skb_put(skb, len);
1016         }
1017
1018         if (agg_bufs) {
1019                 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1020                 if (!skb) {
1021                         /* Page reuse already handled by bnxt_rx_pages(). */
1022                         return NULL;
1023                 }
1024         }
1025         skb->protocol = eth_type_trans(skb, bp->dev);
1026
1027         if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1028                 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1029
1030         if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) {
1031                 netdev_features_t features = skb->dev->features;
1032                 u16 vlan_proto = tpa_info->metadata >>
1033                         RX_CMP_FLAGS2_METADATA_TPID_SFT;
1034
1035                 if (((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1036                      vlan_proto == ETH_P_8021Q) ||
1037                     ((features & NETIF_F_HW_VLAN_STAG_RX) &&
1038                      vlan_proto == ETH_P_8021AD)) {
1039                         __vlan_hwaccel_put_tag(skb, htons(vlan_proto),
1040                                                tpa_info->metadata &
1041                                                RX_CMP_FLAGS2_METADATA_VID_MASK);
1042                 }
1043         }
1044
1045         skb_checksum_none_assert(skb);
1046         if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1047                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1048                 skb->csum_level =
1049                         (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1050         }
1051
1052         if (TPA_END_GRO(tpa_end))
1053                 skb = bnxt_gro_skb(tpa_info, tpa_end, tpa_end1, skb);
1054
1055         return skb;
1056 }
1057
1058 /* returns the following:
1059  * 1       - 1 packet successfully received
1060  * 0       - successful TPA_START, packet not completed yet
1061  * -EBUSY  - completion ring does not have all the agg buffers yet
1062  * -ENOMEM - packet aborted due to out of memory
1063  * -EIO    - packet aborted due to hw error indicated in BD
1064  */
1065 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1066                        bool *agg_event)
1067 {
1068         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1069         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1070         struct net_device *dev = bp->dev;
1071         struct rx_cmp *rxcmp;
1072         struct rx_cmp_ext *rxcmp1;
1073         u32 tmp_raw_cons = *raw_cons;
1074         u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1075         struct bnxt_sw_rx_bd *rx_buf;
1076         unsigned int len;
1077         u8 *data, agg_bufs, cmp_type;
1078         dma_addr_t dma_addr;
1079         struct sk_buff *skb;
1080         int rc = 0;
1081
1082         rxcmp = (struct rx_cmp *)
1083                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1084
1085         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1086         cp_cons = RING_CMP(tmp_raw_cons);
1087         rxcmp1 = (struct rx_cmp_ext *)
1088                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1089
1090         if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1091                 return -EBUSY;
1092
1093         cmp_type = RX_CMP_TYPE(rxcmp);
1094
1095         prod = rxr->rx_prod;
1096
1097         if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1098                 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1099                                (struct rx_tpa_start_cmp_ext *)rxcmp1);
1100
1101                 goto next_rx_no_prod;
1102
1103         } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1104                 skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1105                                    (struct rx_tpa_end_cmp *)rxcmp,
1106                                    (struct rx_tpa_end_cmp_ext *)rxcmp1,
1107                                    agg_event);
1108
1109                 if (unlikely(IS_ERR(skb)))
1110                         return -EBUSY;
1111
1112                 rc = -ENOMEM;
1113                 if (likely(skb)) {
1114                         skb_record_rx_queue(skb, bnapi->index);
1115                         skb_mark_napi_id(skb, &bnapi->napi);
1116                         if (bnxt_busy_polling(bnapi))
1117                                 netif_receive_skb(skb);
1118                         else
1119                                 napi_gro_receive(&bnapi->napi, skb);
1120                         rc = 1;
1121                 }
1122                 goto next_rx_no_prod;
1123         }
1124
1125         cons = rxcmp->rx_cmp_opaque;
1126         rx_buf = &rxr->rx_buf_ring[cons];
1127         data = rx_buf->data;
1128         prefetch(data);
1129
1130         agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & RX_CMP_AGG_BUFS) >>
1131                                 RX_CMP_AGG_BUFS_SHIFT;
1132
1133         if (agg_bufs) {
1134                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1135                         return -EBUSY;
1136
1137                 cp_cons = NEXT_CMP(cp_cons);
1138                 *agg_event = true;
1139         }
1140
1141         rx_buf->data = NULL;
1142         if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1143                 bnxt_reuse_rx_data(rxr, cons, data);
1144                 if (agg_bufs)
1145                         bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1146
1147                 rc = -EIO;
1148                 goto next_rx;
1149         }
1150
1151         len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1152         dma_addr = dma_unmap_addr(rx_buf, mapping);
1153
1154         if (len <= bp->rx_copy_thresh) {
1155                 skb = bnxt_copy_skb(bnapi, data, len, dma_addr);
1156                 bnxt_reuse_rx_data(rxr, cons, data);
1157                 if (!skb) {
1158                         rc = -ENOMEM;
1159                         goto next_rx;
1160                 }
1161         } else {
1162                 skb = bnxt_rx_skb(bp, rxr, cons, prod, data, dma_addr, len);
1163                 if (!skb) {
1164                         rc = -ENOMEM;
1165                         goto next_rx;
1166                 }
1167         }
1168
1169         if (agg_bufs) {
1170                 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1171                 if (!skb) {
1172                         rc = -ENOMEM;
1173                         goto next_rx;
1174                 }
1175         }
1176
1177         if (RX_CMP_HASH_VALID(rxcmp)) {
1178                 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1179                 enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1180
1181                 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1182                 if (hash_type != 1 && hash_type != 3)
1183                         type = PKT_HASH_TYPE_L3;
1184                 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1185         }
1186
1187         skb->protocol = eth_type_trans(skb, dev);
1188
1189         if (rxcmp1->rx_cmp_flags2 &
1190             cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) {
1191                 netdev_features_t features = skb->dev->features;
1192                 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1193                 u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1194
1195                 if (((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1196                      vlan_proto == ETH_P_8021Q) ||
1197                     ((features & NETIF_F_HW_VLAN_STAG_RX) &&
1198                      vlan_proto == ETH_P_8021AD))
1199                         __vlan_hwaccel_put_tag(skb, htons(vlan_proto),
1200                                                meta_data &
1201                                                RX_CMP_FLAGS2_METADATA_VID_MASK);
1202         }
1203
1204         skb_checksum_none_assert(skb);
1205         if (RX_CMP_L4_CS_OK(rxcmp1)) {
1206                 if (dev->features & NETIF_F_RXCSUM) {
1207                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1208                         skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1209                 }
1210         } else {
1211                 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1212                         if (dev->features & NETIF_F_RXCSUM)
1213                                 cpr->rx_l4_csum_errors++;
1214                 }
1215         }
1216
1217         skb_record_rx_queue(skb, bnapi->index);
1218         skb_mark_napi_id(skb, &bnapi->napi);
1219         if (bnxt_busy_polling(bnapi))
1220                 netif_receive_skb(skb);
1221         else
1222                 napi_gro_receive(&bnapi->napi, skb);
1223         rc = 1;
1224
1225 next_rx:
1226         rxr->rx_prod = NEXT_RX(prod);
1227
1228 next_rx_no_prod:
1229         *raw_cons = tmp_raw_cons;
1230
1231         return rc;
1232 }
1233
1234 static int bnxt_async_event_process(struct bnxt *bp,
1235                                     struct hwrm_async_event_cmpl *cmpl)
1236 {
1237         u16 event_id = le16_to_cpu(cmpl->event_id);
1238
1239         /* TODO CHIMP_FW: Define event id's for link change, error etc */
1240         switch (event_id) {
1241         case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1242                 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1243                 schedule_work(&bp->sp_task);
1244                 break;
1245         default:
1246                 netdev_err(bp->dev, "unhandled ASYNC event (id 0x%x)\n",
1247                            event_id);
1248                 break;
1249         }
1250         return 0;
1251 }
1252
1253 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1254 {
1255         u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1256         struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1257         struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1258                                 (struct hwrm_fwd_req_cmpl *)txcmp;
1259
1260         switch (cmpl_type) {
1261         case CMPL_BASE_TYPE_HWRM_DONE:
1262                 seq_id = le16_to_cpu(h_cmpl->sequence_id);
1263                 if (seq_id == bp->hwrm_intr_seq_id)
1264                         bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1265                 else
1266                         netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1267                 break;
1268
1269         case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1270                 vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1271
1272                 if ((vf_id < bp->pf.first_vf_id) ||
1273                     (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1274                         netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1275                                    vf_id);
1276                         return -EINVAL;
1277                 }
1278
1279                 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1280                 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1281                 schedule_work(&bp->sp_task);
1282                 break;
1283
1284         case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1285                 bnxt_async_event_process(bp,
1286                                          (struct hwrm_async_event_cmpl *)txcmp);
1287
1288         default:
1289                 break;
1290         }
1291
1292         return 0;
1293 }
1294
1295 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1296 {
1297         struct bnxt_napi *bnapi = dev_instance;
1298         struct bnxt *bp = bnapi->bp;
1299         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1300         u32 cons = RING_CMP(cpr->cp_raw_cons);
1301
1302         prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1303         napi_schedule(&bnapi->napi);
1304         return IRQ_HANDLED;
1305 }
1306
1307 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1308 {
1309         u32 raw_cons = cpr->cp_raw_cons;
1310         u16 cons = RING_CMP(raw_cons);
1311         struct tx_cmp *txcmp;
1312
1313         txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1314
1315         return TX_CMP_VALID(txcmp, raw_cons);
1316 }
1317
1318 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1319 {
1320         struct bnxt_napi *bnapi = dev_instance;
1321         struct bnxt *bp = bnapi->bp;
1322         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1323         u32 cons = RING_CMP(cpr->cp_raw_cons);
1324         u32 int_status;
1325
1326         prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1327
1328         if (!bnxt_has_work(bp, cpr)) {
1329                 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1330                 /* return if erroneous interrupt */
1331                 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1332                         return IRQ_NONE;
1333         }
1334
1335         /* disable ring IRQ */
1336         BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1337
1338         /* Return here if interrupt is shared and is disabled. */
1339         if (unlikely(atomic_read(&bp->intr_sem) != 0))
1340                 return IRQ_HANDLED;
1341
1342         napi_schedule(&bnapi->napi);
1343         return IRQ_HANDLED;
1344 }
1345
1346 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1347 {
1348         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1349         u32 raw_cons = cpr->cp_raw_cons;
1350         u32 cons;
1351         int tx_pkts = 0;
1352         int rx_pkts = 0;
1353         bool rx_event = false;
1354         bool agg_event = false;
1355         struct tx_cmp *txcmp;
1356
1357         while (1) {
1358                 int rc;
1359
1360                 cons = RING_CMP(raw_cons);
1361                 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1362
1363                 if (!TX_CMP_VALID(txcmp, raw_cons))
1364                         break;
1365
1366                 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1367                         tx_pkts++;
1368                         /* return full budget so NAPI will complete. */
1369                         if (unlikely(tx_pkts > bp->tx_wake_thresh))
1370                                 rx_pkts = budget;
1371                 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1372                         rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &agg_event);
1373                         if (likely(rc >= 0))
1374                                 rx_pkts += rc;
1375                         else if (rc == -EBUSY)  /* partial completion */
1376                                 break;
1377                         rx_event = true;
1378                 } else if (unlikely((TX_CMP_TYPE(txcmp) ==
1379                                      CMPL_BASE_TYPE_HWRM_DONE) ||
1380                                     (TX_CMP_TYPE(txcmp) ==
1381                                      CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1382                                     (TX_CMP_TYPE(txcmp) ==
1383                                      CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1384                         bnxt_hwrm_handler(bp, txcmp);
1385                 }
1386                 raw_cons = NEXT_RAW_CMP(raw_cons);
1387
1388                 if (rx_pkts == budget)
1389                         break;
1390         }
1391
1392         cpr->cp_raw_cons = raw_cons;
1393         /* ACK completion ring before freeing tx ring and producing new
1394          * buffers in rx/agg rings to prevent overflowing the completion
1395          * ring.
1396          */
1397         BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1398
1399         if (tx_pkts)
1400                 bnxt_tx_int(bp, bnapi, tx_pkts);
1401
1402         if (rx_event) {
1403                 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1404
1405                 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1406                 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1407                 if (agg_event) {
1408                         writel(DB_KEY_RX | rxr->rx_agg_prod,
1409                                rxr->rx_agg_doorbell);
1410                         writel(DB_KEY_RX | rxr->rx_agg_prod,
1411                                rxr->rx_agg_doorbell);
1412                 }
1413         }
1414         return rx_pkts;
1415 }
1416
1417 static int bnxt_poll(struct napi_struct *napi, int budget)
1418 {
1419         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1420         struct bnxt *bp = bnapi->bp;
1421         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1422         int work_done = 0;
1423
1424         if (!bnxt_lock_napi(bnapi))
1425                 return budget;
1426
1427         while (1) {
1428                 work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
1429
1430                 if (work_done >= budget)
1431                         break;
1432
1433                 if (!bnxt_has_work(bp, cpr)) {
1434                         napi_complete(napi);
1435                         BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1436                         break;
1437                 }
1438         }
1439         mmiowb();
1440         bnxt_unlock_napi(bnapi);
1441         return work_done;
1442 }
1443
1444 #ifdef CONFIG_NET_RX_BUSY_POLL
1445 static int bnxt_busy_poll(struct napi_struct *napi)
1446 {
1447         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1448         struct bnxt *bp = bnapi->bp;
1449         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1450         int rx_work, budget = 4;
1451
1452         if (atomic_read(&bp->intr_sem) != 0)
1453                 return LL_FLUSH_FAILED;
1454
1455         if (!bnxt_lock_poll(bnapi))
1456                 return LL_FLUSH_BUSY;
1457
1458         rx_work = bnxt_poll_work(bp, bnapi, budget);
1459
1460         BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1461
1462         bnxt_unlock_poll(bnapi);
1463         return rx_work;
1464 }
1465 #endif
1466
1467 static void bnxt_free_tx_skbs(struct bnxt *bp)
1468 {
1469         int i, max_idx;
1470         struct pci_dev *pdev = bp->pdev;
1471
1472         if (!bp->tx_ring)
1473                 return;
1474
1475         max_idx = bp->tx_nr_pages * TX_DESC_CNT;
1476         for (i = 0; i < bp->tx_nr_rings; i++) {
1477                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1478                 int j;
1479
1480                 for (j = 0; j < max_idx;) {
1481                         struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
1482                         struct sk_buff *skb = tx_buf->skb;
1483                         int k, last;
1484
1485                         if (!skb) {
1486                                 j++;
1487                                 continue;
1488                         }
1489
1490                         tx_buf->skb = NULL;
1491
1492                         if (tx_buf->is_push) {
1493                                 dev_kfree_skb(skb);
1494                                 j += 2;
1495                                 continue;
1496                         }
1497
1498                         dma_unmap_single(&pdev->dev,
1499                                          dma_unmap_addr(tx_buf, mapping),
1500                                          skb_headlen(skb),
1501                                          PCI_DMA_TODEVICE);
1502
1503                         last = tx_buf->nr_frags;
1504                         j += 2;
1505                         for (k = 0; k < last; k++, j++) {
1506                                 int ring_idx = j & bp->tx_ring_mask;
1507                                 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
1508
1509                                 tx_buf = &txr->tx_buf_ring[ring_idx];
1510                                 dma_unmap_page(
1511                                         &pdev->dev,
1512                                         dma_unmap_addr(tx_buf, mapping),
1513                                         skb_frag_size(frag), PCI_DMA_TODEVICE);
1514                         }
1515                         dev_kfree_skb(skb);
1516                 }
1517                 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
1518         }
1519 }
1520
1521 static void bnxt_free_rx_skbs(struct bnxt *bp)
1522 {
1523         int i, max_idx, max_agg_idx;
1524         struct pci_dev *pdev = bp->pdev;
1525
1526         if (!bp->rx_ring)
1527                 return;
1528
1529         max_idx = bp->rx_nr_pages * RX_DESC_CNT;
1530         max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
1531         for (i = 0; i < bp->rx_nr_rings; i++) {
1532                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1533                 int j;
1534
1535                 if (rxr->rx_tpa) {
1536                         for (j = 0; j < MAX_TPA; j++) {
1537                                 struct bnxt_tpa_info *tpa_info =
1538                                                         &rxr->rx_tpa[j];
1539                                 u8 *data = tpa_info->data;
1540
1541                                 if (!data)
1542                                         continue;
1543
1544                                 dma_unmap_single(
1545                                         &pdev->dev,
1546                                         dma_unmap_addr(tpa_info, mapping),
1547                                         bp->rx_buf_use_size,
1548                                         PCI_DMA_FROMDEVICE);
1549
1550                                 tpa_info->data = NULL;
1551
1552                                 kfree(data);
1553                         }
1554                 }
1555
1556                 for (j = 0; j < max_idx; j++) {
1557                         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
1558                         u8 *data = rx_buf->data;
1559
1560                         if (!data)
1561                                 continue;
1562
1563                         dma_unmap_single(&pdev->dev,
1564                                          dma_unmap_addr(rx_buf, mapping),
1565                                          bp->rx_buf_use_size,
1566                                          PCI_DMA_FROMDEVICE);
1567
1568                         rx_buf->data = NULL;
1569
1570                         kfree(data);
1571                 }
1572
1573                 for (j = 0; j < max_agg_idx; j++) {
1574                         struct bnxt_sw_rx_agg_bd *rx_agg_buf =
1575                                 &rxr->rx_agg_ring[j];
1576                         struct page *page = rx_agg_buf->page;
1577
1578                         if (!page)
1579                                 continue;
1580
1581                         dma_unmap_page(&pdev->dev,
1582                                        dma_unmap_addr(rx_agg_buf, mapping),
1583                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
1584
1585                         rx_agg_buf->page = NULL;
1586                         __clear_bit(j, rxr->rx_agg_bmap);
1587
1588                         __free_page(page);
1589                 }
1590         }
1591 }
1592
1593 static void bnxt_free_skbs(struct bnxt *bp)
1594 {
1595         bnxt_free_tx_skbs(bp);
1596         bnxt_free_rx_skbs(bp);
1597 }
1598
1599 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1600 {
1601         struct pci_dev *pdev = bp->pdev;
1602         int i;
1603
1604         for (i = 0; i < ring->nr_pages; i++) {
1605                 if (!ring->pg_arr[i])
1606                         continue;
1607
1608                 dma_free_coherent(&pdev->dev, ring->page_size,
1609                                   ring->pg_arr[i], ring->dma_arr[i]);
1610
1611                 ring->pg_arr[i] = NULL;
1612         }
1613         if (ring->pg_tbl) {
1614                 dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
1615                                   ring->pg_tbl, ring->pg_tbl_map);
1616                 ring->pg_tbl = NULL;
1617         }
1618         if (ring->vmem_size && *ring->vmem) {
1619                 vfree(*ring->vmem);
1620                 *ring->vmem = NULL;
1621         }
1622 }
1623
1624 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1625 {
1626         int i;
1627         struct pci_dev *pdev = bp->pdev;
1628
1629         if (ring->nr_pages > 1) {
1630                 ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
1631                                                   ring->nr_pages * 8,
1632                                                   &ring->pg_tbl_map,
1633                                                   GFP_KERNEL);
1634                 if (!ring->pg_tbl)
1635                         return -ENOMEM;
1636         }
1637
1638         for (i = 0; i < ring->nr_pages; i++) {
1639                 ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
1640                                                      ring->page_size,
1641                                                      &ring->dma_arr[i],
1642                                                      GFP_KERNEL);
1643                 if (!ring->pg_arr[i])
1644                         return -ENOMEM;
1645
1646                 if (ring->nr_pages > 1)
1647                         ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
1648         }
1649
1650         if (ring->vmem_size) {
1651                 *ring->vmem = vzalloc(ring->vmem_size);
1652                 if (!(*ring->vmem))
1653                         return -ENOMEM;
1654         }
1655         return 0;
1656 }
1657
1658 static void bnxt_free_rx_rings(struct bnxt *bp)
1659 {
1660         int i;
1661
1662         if (!bp->rx_ring)
1663                 return;
1664
1665         for (i = 0; i < bp->rx_nr_rings; i++) {
1666                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1667                 struct bnxt_ring_struct *ring;
1668
1669                 kfree(rxr->rx_tpa);
1670                 rxr->rx_tpa = NULL;
1671
1672                 kfree(rxr->rx_agg_bmap);
1673                 rxr->rx_agg_bmap = NULL;
1674
1675                 ring = &rxr->rx_ring_struct;
1676                 bnxt_free_ring(bp, ring);
1677
1678                 ring = &rxr->rx_agg_ring_struct;
1679                 bnxt_free_ring(bp, ring);
1680         }
1681 }
1682
1683 static int bnxt_alloc_rx_rings(struct bnxt *bp)
1684 {
1685         int i, rc, agg_rings = 0, tpa_rings = 0;
1686
1687         if (!bp->rx_ring)
1688                 return -ENOMEM;
1689
1690         if (bp->flags & BNXT_FLAG_AGG_RINGS)
1691                 agg_rings = 1;
1692
1693         if (bp->flags & BNXT_FLAG_TPA)
1694                 tpa_rings = 1;
1695
1696         for (i = 0; i < bp->rx_nr_rings; i++) {
1697                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1698                 struct bnxt_ring_struct *ring;
1699
1700                 ring = &rxr->rx_ring_struct;
1701
1702                 rc = bnxt_alloc_ring(bp, ring);
1703                 if (rc)
1704                         return rc;
1705
1706                 if (agg_rings) {
1707                         u16 mem_size;
1708
1709                         ring = &rxr->rx_agg_ring_struct;
1710                         rc = bnxt_alloc_ring(bp, ring);
1711                         if (rc)
1712                                 return rc;
1713
1714                         rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
1715                         mem_size = rxr->rx_agg_bmap_size / 8;
1716                         rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
1717                         if (!rxr->rx_agg_bmap)
1718                                 return -ENOMEM;
1719
1720                         if (tpa_rings) {
1721                                 rxr->rx_tpa = kcalloc(MAX_TPA,
1722                                                 sizeof(struct bnxt_tpa_info),
1723                                                 GFP_KERNEL);
1724                                 if (!rxr->rx_tpa)
1725                                         return -ENOMEM;
1726                         }
1727                 }
1728         }
1729         return 0;
1730 }
1731
1732 static void bnxt_free_tx_rings(struct bnxt *bp)
1733 {
1734         int i;
1735         struct pci_dev *pdev = bp->pdev;
1736
1737         if (!bp->tx_ring)
1738                 return;
1739
1740         for (i = 0; i < bp->tx_nr_rings; i++) {
1741                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1742                 struct bnxt_ring_struct *ring;
1743
1744                 if (txr->tx_push) {
1745                         dma_free_coherent(&pdev->dev, bp->tx_push_size,
1746                                           txr->tx_push, txr->tx_push_mapping);
1747                         txr->tx_push = NULL;
1748                 }
1749
1750                 ring = &txr->tx_ring_struct;
1751
1752                 bnxt_free_ring(bp, ring);
1753         }
1754 }
1755
1756 static int bnxt_alloc_tx_rings(struct bnxt *bp)
1757 {
1758         int i, j, rc;
1759         struct pci_dev *pdev = bp->pdev;
1760
1761         bp->tx_push_size = 0;
1762         if (bp->tx_push_thresh) {
1763                 int push_size;
1764
1765                 push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
1766                                         bp->tx_push_thresh);
1767
1768                 if (push_size > 256) {
1769                         push_size = 0;
1770                         bp->tx_push_thresh = 0;
1771                 }
1772
1773                 bp->tx_push_size = push_size;
1774         }
1775
1776         for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
1777                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1778                 struct bnxt_ring_struct *ring;
1779
1780                 ring = &txr->tx_ring_struct;
1781
1782                 rc = bnxt_alloc_ring(bp, ring);
1783                 if (rc)
1784                         return rc;
1785
1786                 if (bp->tx_push_size) {
1787                         dma_addr_t mapping;
1788
1789                         /* One pre-allocated DMA buffer to backup
1790                          * TX push operation
1791                          */
1792                         txr->tx_push = dma_alloc_coherent(&pdev->dev,
1793                                                 bp->tx_push_size,
1794                                                 &txr->tx_push_mapping,
1795                                                 GFP_KERNEL);
1796
1797                         if (!txr->tx_push)
1798                                 return -ENOMEM;
1799
1800                         mapping = txr->tx_push_mapping +
1801                                 sizeof(struct tx_push_bd);
1802                         txr->data_mapping = cpu_to_le64(mapping);
1803
1804                         memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
1805                 }
1806                 ring->queue_id = bp->q_info[j].queue_id;
1807                 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
1808                         j++;
1809         }
1810         return 0;
1811 }
1812
1813 static void bnxt_free_cp_rings(struct bnxt *bp)
1814 {
1815         int i;
1816
1817         if (!bp->bnapi)
1818                 return;
1819
1820         for (i = 0; i < bp->cp_nr_rings; i++) {
1821                 struct bnxt_napi *bnapi = bp->bnapi[i];
1822                 struct bnxt_cp_ring_info *cpr;
1823                 struct bnxt_ring_struct *ring;
1824
1825                 if (!bnapi)
1826                         continue;
1827
1828                 cpr = &bnapi->cp_ring;
1829                 ring = &cpr->cp_ring_struct;
1830
1831                 bnxt_free_ring(bp, ring);
1832         }
1833 }
1834
1835 static int bnxt_alloc_cp_rings(struct bnxt *bp)
1836 {
1837         int i, rc;
1838
1839         for (i = 0; i < bp->cp_nr_rings; i++) {
1840                 struct bnxt_napi *bnapi = bp->bnapi[i];
1841                 struct bnxt_cp_ring_info *cpr;
1842                 struct bnxt_ring_struct *ring;
1843
1844                 if (!bnapi)
1845                         continue;
1846
1847                 cpr = &bnapi->cp_ring;
1848                 ring = &cpr->cp_ring_struct;
1849
1850                 rc = bnxt_alloc_ring(bp, ring);
1851                 if (rc)
1852                         return rc;
1853         }
1854         return 0;
1855 }
1856
1857 static void bnxt_init_ring_struct(struct bnxt *bp)
1858 {
1859         int i;
1860
1861         for (i = 0; i < bp->cp_nr_rings; i++) {
1862                 struct bnxt_napi *bnapi = bp->bnapi[i];
1863                 struct bnxt_cp_ring_info *cpr;
1864                 struct bnxt_rx_ring_info *rxr;
1865                 struct bnxt_tx_ring_info *txr;
1866                 struct bnxt_ring_struct *ring;
1867
1868                 if (!bnapi)
1869                         continue;
1870
1871                 cpr = &bnapi->cp_ring;
1872                 ring = &cpr->cp_ring_struct;
1873                 ring->nr_pages = bp->cp_nr_pages;
1874                 ring->page_size = HW_CMPD_RING_SIZE;
1875                 ring->pg_arr = (void **)cpr->cp_desc_ring;
1876                 ring->dma_arr = cpr->cp_desc_mapping;
1877                 ring->vmem_size = 0;
1878
1879                 rxr = bnapi->rx_ring;
1880                 if (!rxr)
1881                         goto skip_rx;
1882
1883                 ring = &rxr->rx_ring_struct;
1884                 ring->nr_pages = bp->rx_nr_pages;
1885                 ring->page_size = HW_RXBD_RING_SIZE;
1886                 ring->pg_arr = (void **)rxr->rx_desc_ring;
1887                 ring->dma_arr = rxr->rx_desc_mapping;
1888                 ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
1889                 ring->vmem = (void **)&rxr->rx_buf_ring;
1890
1891                 ring = &rxr->rx_agg_ring_struct;
1892                 ring->nr_pages = bp->rx_agg_nr_pages;
1893                 ring->page_size = HW_RXBD_RING_SIZE;
1894                 ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
1895                 ring->dma_arr = rxr->rx_agg_desc_mapping;
1896                 ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
1897                 ring->vmem = (void **)&rxr->rx_agg_ring;
1898
1899 skip_rx:
1900                 txr = bnapi->tx_ring;
1901                 if (!txr)
1902                         continue;
1903
1904                 ring = &txr->tx_ring_struct;
1905                 ring->nr_pages = bp->tx_nr_pages;
1906                 ring->page_size = HW_RXBD_RING_SIZE;
1907                 ring->pg_arr = (void **)txr->tx_desc_ring;
1908                 ring->dma_arr = txr->tx_desc_mapping;
1909                 ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
1910                 ring->vmem = (void **)&txr->tx_buf_ring;
1911         }
1912 }
1913
1914 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
1915 {
1916         int i;
1917         u32 prod;
1918         struct rx_bd **rx_buf_ring;
1919
1920         rx_buf_ring = (struct rx_bd **)ring->pg_arr;
1921         for (i = 0, prod = 0; i < ring->nr_pages; i++) {
1922                 int j;
1923                 struct rx_bd *rxbd;
1924
1925                 rxbd = rx_buf_ring[i];
1926                 if (!rxbd)
1927                         continue;
1928
1929                 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
1930                         rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
1931                         rxbd->rx_bd_opaque = prod;
1932                 }
1933         }
1934 }
1935
1936 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
1937 {
1938         struct net_device *dev = bp->dev;
1939         struct bnxt_rx_ring_info *rxr;
1940         struct bnxt_ring_struct *ring;
1941         u32 prod, type;
1942         int i;
1943
1944         type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
1945                 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
1946
1947         if (NET_IP_ALIGN == 2)
1948                 type |= RX_BD_FLAGS_SOP;
1949
1950         rxr = &bp->rx_ring[ring_nr];
1951         ring = &rxr->rx_ring_struct;
1952         bnxt_init_rxbd_pages(ring, type);
1953
1954         prod = rxr->rx_prod;
1955         for (i = 0; i < bp->rx_ring_size; i++) {
1956                 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
1957                         netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
1958                                     ring_nr, i, bp->rx_ring_size);
1959                         break;
1960                 }
1961                 prod = NEXT_RX(prod);
1962         }
1963         rxr->rx_prod = prod;
1964         ring->fw_ring_id = INVALID_HW_RING_ID;
1965
1966         ring = &rxr->rx_agg_ring_struct;
1967         ring->fw_ring_id = INVALID_HW_RING_ID;
1968
1969         if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
1970                 return 0;
1971
1972         type = ((u32)PAGE_SIZE << RX_BD_LEN_SHIFT) |
1973                 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
1974
1975         bnxt_init_rxbd_pages(ring, type);
1976
1977         prod = rxr->rx_agg_prod;
1978         for (i = 0; i < bp->rx_agg_ring_size; i++) {
1979                 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
1980                         netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
1981                                     ring_nr, i, bp->rx_ring_size);
1982                         break;
1983                 }
1984                 prod = NEXT_RX_AGG(prod);
1985         }
1986         rxr->rx_agg_prod = prod;
1987
1988         if (bp->flags & BNXT_FLAG_TPA) {
1989                 if (rxr->rx_tpa) {
1990                         u8 *data;
1991                         dma_addr_t mapping;
1992
1993                         for (i = 0; i < MAX_TPA; i++) {
1994                                 data = __bnxt_alloc_rx_data(bp, &mapping,
1995                                                             GFP_KERNEL);
1996                                 if (!data)
1997                                         return -ENOMEM;
1998
1999                                 rxr->rx_tpa[i].data = data;
2000                                 rxr->rx_tpa[i].mapping = mapping;
2001                         }
2002                 } else {
2003                         netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2004                         return -ENOMEM;
2005                 }
2006         }
2007
2008         return 0;
2009 }
2010
2011 static int bnxt_init_rx_rings(struct bnxt *bp)
2012 {
2013         int i, rc = 0;
2014
2015         for (i = 0; i < bp->rx_nr_rings; i++) {
2016                 rc = bnxt_init_one_rx_ring(bp, i);
2017                 if (rc)
2018                         break;
2019         }
2020
2021         return rc;
2022 }
2023
2024 static int bnxt_init_tx_rings(struct bnxt *bp)
2025 {
2026         u16 i;
2027
2028         bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2029                                    MAX_SKB_FRAGS + 1);
2030
2031         for (i = 0; i < bp->tx_nr_rings; i++) {
2032                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2033                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2034
2035                 ring->fw_ring_id = INVALID_HW_RING_ID;
2036         }
2037
2038         return 0;
2039 }
2040
2041 static void bnxt_free_ring_grps(struct bnxt *bp)
2042 {
2043         kfree(bp->grp_info);
2044         bp->grp_info = NULL;
2045 }
2046
2047 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2048 {
2049         int i;
2050
2051         if (irq_re_init) {
2052                 bp->grp_info = kcalloc(bp->cp_nr_rings,
2053                                        sizeof(struct bnxt_ring_grp_info),
2054                                        GFP_KERNEL);
2055                 if (!bp->grp_info)
2056                         return -ENOMEM;
2057         }
2058         for (i = 0; i < bp->cp_nr_rings; i++) {
2059                 if (irq_re_init)
2060                         bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2061                 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2062                 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2063                 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2064                 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2065         }
2066         return 0;
2067 }
2068
2069 static void bnxt_free_vnics(struct bnxt *bp)
2070 {
2071         kfree(bp->vnic_info);
2072         bp->vnic_info = NULL;
2073         bp->nr_vnics = 0;
2074 }
2075
2076 static int bnxt_alloc_vnics(struct bnxt *bp)
2077 {
2078         int num_vnics = 1;
2079
2080 #ifdef CONFIG_RFS_ACCEL
2081         if (bp->flags & BNXT_FLAG_RFS)
2082                 num_vnics += bp->rx_nr_rings;
2083 #endif
2084
2085         bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2086                                 GFP_KERNEL);
2087         if (!bp->vnic_info)
2088                 return -ENOMEM;
2089
2090         bp->nr_vnics = num_vnics;
2091         return 0;
2092 }
2093
2094 static void bnxt_init_vnics(struct bnxt *bp)
2095 {
2096         int i;
2097
2098         for (i = 0; i < bp->nr_vnics; i++) {
2099                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2100
2101                 vnic->fw_vnic_id = INVALID_HW_RING_ID;
2102                 vnic->fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
2103                 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2104
2105                 if (bp->vnic_info[i].rss_hash_key) {
2106                         if (i == 0)
2107                                 prandom_bytes(vnic->rss_hash_key,
2108                                               HW_HASH_KEY_SIZE);
2109                         else
2110                                 memcpy(vnic->rss_hash_key,
2111                                        bp->vnic_info[0].rss_hash_key,
2112                                        HW_HASH_KEY_SIZE);
2113                 }
2114         }
2115 }
2116
2117 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2118 {
2119         int pages;
2120
2121         pages = ring_size / desc_per_pg;
2122
2123         if (!pages)
2124                 return 1;
2125
2126         pages++;
2127
2128         while (pages & (pages - 1))
2129                 pages++;
2130
2131         return pages;
2132 }
2133
2134 static void bnxt_set_tpa_flags(struct bnxt *bp)
2135 {
2136         bp->flags &= ~BNXT_FLAG_TPA;
2137         if (bp->dev->features & NETIF_F_LRO)
2138                 bp->flags |= BNXT_FLAG_LRO;
2139         if ((bp->dev->features & NETIF_F_GRO) && (bp->pdev->revision > 0))
2140                 bp->flags |= BNXT_FLAG_GRO;
2141 }
2142
2143 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2144  * be set on entry.
2145  */
2146 void bnxt_set_ring_params(struct bnxt *bp)
2147 {
2148         u32 ring_size, rx_size, rx_space;
2149         u32 agg_factor = 0, agg_ring_size = 0;
2150
2151         /* 8 for CRC and VLAN */
2152         rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2153
2154         rx_space = rx_size + NET_SKB_PAD +
2155                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2156
2157         bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2158         ring_size = bp->rx_ring_size;
2159         bp->rx_agg_ring_size = 0;
2160         bp->rx_agg_nr_pages = 0;
2161
2162         if (bp->flags & BNXT_FLAG_TPA)
2163                 agg_factor = 4;
2164
2165         bp->flags &= ~BNXT_FLAG_JUMBO;
2166         if (rx_space > PAGE_SIZE) {
2167                 u32 jumbo_factor;
2168
2169                 bp->flags |= BNXT_FLAG_JUMBO;
2170                 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2171                 if (jumbo_factor > agg_factor)
2172                         agg_factor = jumbo_factor;
2173         }
2174         agg_ring_size = ring_size * agg_factor;
2175
2176         if (agg_ring_size) {
2177                 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2178                                                         RX_DESC_CNT);
2179                 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2180                         u32 tmp = agg_ring_size;
2181
2182                         bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2183                         agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2184                         netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2185                                     tmp, agg_ring_size);
2186                 }
2187                 bp->rx_agg_ring_size = agg_ring_size;
2188                 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2189                 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2190                 rx_space = rx_size + NET_SKB_PAD +
2191                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2192         }
2193
2194         bp->rx_buf_use_size = rx_size;
2195         bp->rx_buf_size = rx_space;
2196
2197         bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2198         bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2199
2200         ring_size = bp->tx_ring_size;
2201         bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2202         bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2203
2204         ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2205         bp->cp_ring_size = ring_size;
2206
2207         bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2208         if (bp->cp_nr_pages > MAX_CP_PAGES) {
2209                 bp->cp_nr_pages = MAX_CP_PAGES;
2210                 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2211                 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2212                             ring_size, bp->cp_ring_size);
2213         }
2214         bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2215         bp->cp_ring_mask = bp->cp_bit - 1;
2216 }
2217
2218 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2219 {
2220         int i;
2221         struct bnxt_vnic_info *vnic;
2222         struct pci_dev *pdev = bp->pdev;
2223
2224         if (!bp->vnic_info)
2225                 return;
2226
2227         for (i = 0; i < bp->nr_vnics; i++) {
2228                 vnic = &bp->vnic_info[i];
2229
2230                 kfree(vnic->fw_grp_ids);
2231                 vnic->fw_grp_ids = NULL;
2232
2233                 kfree(vnic->uc_list);
2234                 vnic->uc_list = NULL;
2235
2236                 if (vnic->mc_list) {
2237                         dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2238                                           vnic->mc_list, vnic->mc_list_mapping);
2239                         vnic->mc_list = NULL;
2240                 }
2241
2242                 if (vnic->rss_table) {
2243                         dma_free_coherent(&pdev->dev, PAGE_SIZE,
2244                                           vnic->rss_table,
2245                                           vnic->rss_table_dma_addr);
2246                         vnic->rss_table = NULL;
2247                 }
2248
2249                 vnic->rss_hash_key = NULL;
2250                 vnic->flags = 0;
2251         }
2252 }
2253
2254 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2255 {
2256         int i, rc = 0, size;
2257         struct bnxt_vnic_info *vnic;
2258         struct pci_dev *pdev = bp->pdev;
2259         int max_rings;
2260
2261         for (i = 0; i < bp->nr_vnics; i++) {
2262                 vnic = &bp->vnic_info[i];
2263
2264                 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2265                         int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2266
2267                         if (mem_size > 0) {
2268                                 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2269                                 if (!vnic->uc_list) {
2270                                         rc = -ENOMEM;
2271                                         goto out;
2272                                 }
2273                         }
2274                 }
2275
2276                 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2277                         vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2278                         vnic->mc_list =
2279                                 dma_alloc_coherent(&pdev->dev,
2280                                                    vnic->mc_list_size,
2281                                                    &vnic->mc_list_mapping,
2282                                                    GFP_KERNEL);
2283                         if (!vnic->mc_list) {
2284                                 rc = -ENOMEM;
2285                                 goto out;
2286                         }
2287                 }
2288
2289                 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2290                         max_rings = bp->rx_nr_rings;
2291                 else
2292                         max_rings = 1;
2293
2294                 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2295                 if (!vnic->fw_grp_ids) {
2296                         rc = -ENOMEM;
2297                         goto out;
2298                 }
2299
2300                 /* Allocate rss table and hash key */
2301                 vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2302                                                      &vnic->rss_table_dma_addr,
2303                                                      GFP_KERNEL);
2304                 if (!vnic->rss_table) {
2305                         rc = -ENOMEM;
2306                         goto out;
2307                 }
2308
2309                 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2310
2311                 vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
2312                 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
2313         }
2314         return 0;
2315
2316 out:
2317         return rc;
2318 }
2319
2320 static void bnxt_free_hwrm_resources(struct bnxt *bp)
2321 {
2322         struct pci_dev *pdev = bp->pdev;
2323
2324         dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
2325                           bp->hwrm_cmd_resp_dma_addr);
2326
2327         bp->hwrm_cmd_resp_addr = NULL;
2328         if (bp->hwrm_dbg_resp_addr) {
2329                 dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
2330                                   bp->hwrm_dbg_resp_addr,
2331                                   bp->hwrm_dbg_resp_dma_addr);
2332
2333                 bp->hwrm_dbg_resp_addr = NULL;
2334         }
2335 }
2336
2337 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
2338 {
2339         struct pci_dev *pdev = bp->pdev;
2340
2341         bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2342                                                    &bp->hwrm_cmd_resp_dma_addr,
2343                                                    GFP_KERNEL);
2344         if (!bp->hwrm_cmd_resp_addr)
2345                 return -ENOMEM;
2346         bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
2347                                                     HWRM_DBG_REG_BUF_SIZE,
2348                                                     &bp->hwrm_dbg_resp_dma_addr,
2349                                                     GFP_KERNEL);
2350         if (!bp->hwrm_dbg_resp_addr)
2351                 netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
2352
2353         return 0;
2354 }
2355
2356 static void bnxt_free_stats(struct bnxt *bp)
2357 {
2358         u32 size, i;
2359         struct pci_dev *pdev = bp->pdev;
2360
2361         if (!bp->bnapi)
2362                 return;
2363
2364         size = sizeof(struct ctx_hw_stats);
2365
2366         for (i = 0; i < bp->cp_nr_rings; i++) {
2367                 struct bnxt_napi *bnapi = bp->bnapi[i];
2368                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2369
2370                 if (cpr->hw_stats) {
2371                         dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
2372                                           cpr->hw_stats_map);
2373                         cpr->hw_stats = NULL;
2374                 }
2375         }
2376 }
2377
2378 static int bnxt_alloc_stats(struct bnxt *bp)
2379 {
2380         u32 size, i;
2381         struct pci_dev *pdev = bp->pdev;
2382
2383         size = sizeof(struct ctx_hw_stats);
2384
2385         for (i = 0; i < bp->cp_nr_rings; i++) {
2386                 struct bnxt_napi *bnapi = bp->bnapi[i];
2387                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2388
2389                 cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
2390                                                    &cpr->hw_stats_map,
2391                                                    GFP_KERNEL);
2392                 if (!cpr->hw_stats)
2393                         return -ENOMEM;
2394
2395                 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
2396         }
2397         return 0;
2398 }
2399
2400 static void bnxt_clear_ring_indices(struct bnxt *bp)
2401 {
2402         int i;
2403
2404         if (!bp->bnapi)
2405                 return;
2406
2407         for (i = 0; i < bp->cp_nr_rings; i++) {
2408                 struct bnxt_napi *bnapi = bp->bnapi[i];
2409                 struct bnxt_cp_ring_info *cpr;
2410                 struct bnxt_rx_ring_info *rxr;
2411                 struct bnxt_tx_ring_info *txr;
2412
2413                 if (!bnapi)
2414                         continue;
2415
2416                 cpr = &bnapi->cp_ring;
2417                 cpr->cp_raw_cons = 0;
2418
2419                 txr = bnapi->tx_ring;
2420                 if (txr) {
2421                         txr->tx_prod = 0;
2422                         txr->tx_cons = 0;
2423                 }
2424
2425                 rxr = bnapi->rx_ring;
2426                 if (rxr) {
2427                         rxr->rx_prod = 0;
2428                         rxr->rx_agg_prod = 0;
2429                         rxr->rx_sw_agg_prod = 0;
2430                 }
2431         }
2432 }
2433
2434 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
2435 {
2436 #ifdef CONFIG_RFS_ACCEL
2437         int i;
2438
2439         /* Under rtnl_lock and all our NAPIs have been disabled.  It's
2440          * safe to delete the hash table.
2441          */
2442         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
2443                 struct hlist_head *head;
2444                 struct hlist_node *tmp;
2445                 struct bnxt_ntuple_filter *fltr;
2446
2447                 head = &bp->ntp_fltr_hash_tbl[i];
2448                 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
2449                         hlist_del(&fltr->hash);
2450                         kfree(fltr);
2451                 }
2452         }
2453         if (irq_reinit) {
2454                 kfree(bp->ntp_fltr_bmap);
2455                 bp->ntp_fltr_bmap = NULL;
2456         }
2457         bp->ntp_fltr_count = 0;
2458 #endif
2459 }
2460
2461 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
2462 {
2463 #ifdef CONFIG_RFS_ACCEL
2464         int i, rc = 0;
2465
2466         if (!(bp->flags & BNXT_FLAG_RFS))
2467                 return 0;
2468
2469         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
2470                 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
2471
2472         bp->ntp_fltr_count = 0;
2473         bp->ntp_fltr_bmap = kzalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
2474                                     GFP_KERNEL);
2475
2476         if (!bp->ntp_fltr_bmap)
2477                 rc = -ENOMEM;
2478
2479         return rc;
2480 #else
2481         return 0;
2482 #endif
2483 }
2484
2485 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
2486 {
2487         bnxt_free_vnic_attributes(bp);
2488         bnxt_free_tx_rings(bp);
2489         bnxt_free_rx_rings(bp);
2490         bnxt_free_cp_rings(bp);
2491         bnxt_free_ntp_fltrs(bp, irq_re_init);
2492         if (irq_re_init) {
2493                 bnxt_free_stats(bp);
2494                 bnxt_free_ring_grps(bp);
2495                 bnxt_free_vnics(bp);
2496                 kfree(bp->tx_ring);
2497                 bp->tx_ring = NULL;
2498                 kfree(bp->rx_ring);
2499                 bp->rx_ring = NULL;
2500                 kfree(bp->bnapi);
2501                 bp->bnapi = NULL;
2502         } else {
2503                 bnxt_clear_ring_indices(bp);
2504         }
2505 }
2506
2507 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
2508 {
2509         int i, j, rc, size, arr_size;
2510         void *bnapi;
2511
2512         if (irq_re_init) {
2513                 /* Allocate bnapi mem pointer array and mem block for
2514                  * all queues
2515                  */
2516                 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
2517                                 bp->cp_nr_rings);
2518                 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
2519                 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
2520                 if (!bnapi)
2521                         return -ENOMEM;
2522
2523                 bp->bnapi = bnapi;
2524                 bnapi += arr_size;
2525                 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
2526                         bp->bnapi[i] = bnapi;
2527                         bp->bnapi[i]->index = i;
2528                         bp->bnapi[i]->bp = bp;
2529                 }
2530
2531                 bp->rx_ring = kcalloc(bp->rx_nr_rings,
2532                                       sizeof(struct bnxt_rx_ring_info),
2533                                       GFP_KERNEL);
2534                 if (!bp->rx_ring)
2535                         return -ENOMEM;
2536
2537                 for (i = 0; i < bp->rx_nr_rings; i++) {
2538                         bp->rx_ring[i].bnapi = bp->bnapi[i];
2539                         bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
2540                 }
2541
2542                 bp->tx_ring = kcalloc(bp->tx_nr_rings,
2543                                       sizeof(struct bnxt_tx_ring_info),
2544                                       GFP_KERNEL);
2545                 if (!bp->tx_ring)
2546                         return -ENOMEM;
2547
2548                 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
2549                         j = 0;
2550                 else
2551                         j = bp->rx_nr_rings;
2552
2553                 for (i = 0; i < bp->tx_nr_rings; i++, j++) {
2554                         bp->tx_ring[i].bnapi = bp->bnapi[j];
2555                         bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
2556                 }
2557
2558                 rc = bnxt_alloc_stats(bp);
2559                 if (rc)
2560                         goto alloc_mem_err;
2561
2562                 rc = bnxt_alloc_ntp_fltrs(bp);
2563                 if (rc)
2564                         goto alloc_mem_err;
2565
2566                 rc = bnxt_alloc_vnics(bp);
2567                 if (rc)
2568                         goto alloc_mem_err;
2569         }
2570
2571         bnxt_init_ring_struct(bp);
2572
2573         rc = bnxt_alloc_rx_rings(bp);
2574         if (rc)
2575                 goto alloc_mem_err;
2576
2577         rc = bnxt_alloc_tx_rings(bp);
2578         if (rc)
2579                 goto alloc_mem_err;
2580
2581         rc = bnxt_alloc_cp_rings(bp);
2582         if (rc)
2583                 goto alloc_mem_err;
2584
2585         bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
2586                                   BNXT_VNIC_UCAST_FLAG;
2587         rc = bnxt_alloc_vnic_attributes(bp);
2588         if (rc)
2589                 goto alloc_mem_err;
2590         return 0;
2591
2592 alloc_mem_err:
2593         bnxt_free_mem(bp, true);
2594         return rc;
2595 }
2596
2597 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
2598                             u16 cmpl_ring, u16 target_id)
2599 {
2600         struct hwrm_cmd_req_hdr *req = request;
2601
2602         req->cmpl_ring_req_type =
2603                 cpu_to_le32(req_type | (cmpl_ring << HWRM_CMPL_RING_SFT));
2604         req->target_id_seq_id = cpu_to_le32(target_id << HWRM_TARGET_FID_SFT);
2605         req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
2606 }
2607
2608 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
2609 {
2610         int i, intr_process, rc;
2611         struct hwrm_cmd_req_hdr *req = msg;
2612         u32 *data = msg;
2613         __le32 *resp_len, *valid;
2614         u16 cp_ring_id, len = 0;
2615         struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
2616
2617         req->target_id_seq_id |= cpu_to_le32(bp->hwrm_cmd_seq++);
2618         memset(resp, 0, PAGE_SIZE);
2619         cp_ring_id = (le32_to_cpu(req->cmpl_ring_req_type) &
2620                       HWRM_CMPL_RING_MASK) >>
2621                      HWRM_CMPL_RING_SFT;
2622         intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
2623
2624         /* Write request msg to hwrm channel */
2625         __iowrite32_copy(bp->bar0, data, msg_len / 4);
2626
2627         for (i = msg_len; i < HWRM_MAX_REQ_LEN; i += 4)
2628                 writel(0, bp->bar0 + i);
2629
2630         /* currently supports only one outstanding message */
2631         if (intr_process)
2632                 bp->hwrm_intr_seq_id = le32_to_cpu(req->target_id_seq_id) &
2633                                        HWRM_SEQ_ID_MASK;
2634
2635         /* Ring channel doorbell */
2636         writel(1, bp->bar0 + 0x100);
2637
2638         i = 0;
2639         if (intr_process) {
2640                 /* Wait until hwrm response cmpl interrupt is processed */
2641                 while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
2642                        i++ < timeout) {
2643                         usleep_range(600, 800);
2644                 }
2645
2646                 if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
2647                         netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
2648                                    req->cmpl_ring_req_type);
2649                         return -1;
2650                 }
2651         } else {
2652                 /* Check if response len is updated */
2653                 resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
2654                 for (i = 0; i < timeout; i++) {
2655                         len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
2656                               HWRM_RESP_LEN_SFT;
2657                         if (len)
2658                                 break;
2659                         usleep_range(600, 800);
2660                 }
2661
2662                 if (i >= timeout) {
2663                         netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
2664                                    timeout, req->cmpl_ring_req_type,
2665                                    req->target_id_seq_id, *resp_len);
2666                         return -1;
2667                 }
2668
2669                 /* Last word of resp contains valid bit */
2670                 valid = bp->hwrm_cmd_resp_addr + len - 4;
2671                 for (i = 0; i < timeout; i++) {
2672                         if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK)
2673                                 break;
2674                         usleep_range(600, 800);
2675                 }
2676
2677                 if (i >= timeout) {
2678                         netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
2679                                    timeout, req->cmpl_ring_req_type,
2680                                    req->target_id_seq_id, len, *valid);
2681                         return -1;
2682                 }
2683         }
2684
2685         rc = le16_to_cpu(resp->error_code);
2686         if (rc) {
2687                 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
2688                            le16_to_cpu(resp->req_type),
2689                            le16_to_cpu(resp->seq_id), rc);
2690                 return rc;
2691         }
2692         return 0;
2693 }
2694
2695 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
2696 {
2697         int rc;
2698
2699         mutex_lock(&bp->hwrm_cmd_lock);
2700         rc = _hwrm_send_message(bp, msg, msg_len, timeout);
2701         mutex_unlock(&bp->hwrm_cmd_lock);
2702         return rc;
2703 }
2704
2705 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
2706 {
2707         struct hwrm_func_drv_rgtr_input req = {0};
2708         int i;
2709
2710         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
2711
2712         req.enables =
2713                 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
2714                             FUNC_DRV_RGTR_REQ_ENABLES_VER |
2715                             FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
2716
2717         /* TODO: current async event fwd bits are not defined and the firmware
2718          * only checks if it is non-zero to enable async event forwarding
2719          */
2720         req.async_event_fwd[0] |= cpu_to_le32(1);
2721         req.os_type = cpu_to_le16(1);
2722         req.ver_maj = DRV_VER_MAJ;
2723         req.ver_min = DRV_VER_MIN;
2724         req.ver_upd = DRV_VER_UPD;
2725
2726         if (BNXT_PF(bp)) {
2727                 DECLARE_BITMAP(vf_req_snif_bmap, 256);
2728                 u32 *data = (u32 *)vf_req_snif_bmap;
2729
2730                 memset(vf_req_snif_bmap, 0, sizeof(vf_req_snif_bmap));
2731                 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++)
2732                         __set_bit(bnxt_vf_req_snif[i], vf_req_snif_bmap);
2733
2734                 for (i = 0; i < 8; i++)
2735                         req.vf_req_fwd[i] = cpu_to_le32(data[i]);
2736
2737                 req.enables |=
2738                         cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
2739         }
2740
2741         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2742 }
2743
2744 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
2745 {
2746         struct hwrm_func_drv_unrgtr_input req = {0};
2747
2748         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
2749         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2750 }
2751
2752 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
2753 {
2754         u32 rc = 0;
2755         struct hwrm_tunnel_dst_port_free_input req = {0};
2756
2757         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
2758         req.tunnel_type = tunnel_type;
2759
2760         switch (tunnel_type) {
2761         case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
2762                 req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
2763                 break;
2764         case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
2765                 req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
2766                 break;
2767         default:
2768                 break;
2769         }
2770
2771         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2772         if (rc)
2773                 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
2774                            rc);
2775         return rc;
2776 }
2777
2778 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
2779                                            u8 tunnel_type)
2780 {
2781         u32 rc = 0;
2782         struct hwrm_tunnel_dst_port_alloc_input req = {0};
2783         struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
2784
2785         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
2786
2787         req.tunnel_type = tunnel_type;
2788         req.tunnel_dst_port_val = port;
2789
2790         mutex_lock(&bp->hwrm_cmd_lock);
2791         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2792         if (rc) {
2793                 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
2794                            rc);
2795                 goto err_out;
2796         }
2797
2798         if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN)
2799                 bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
2800
2801         else if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE)
2802                 bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
2803 err_out:
2804         mutex_unlock(&bp->hwrm_cmd_lock);
2805         return rc;
2806 }
2807
2808 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
2809 {
2810         struct hwrm_cfa_l2_set_rx_mask_input req = {0};
2811         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2812
2813         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
2814         req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
2815
2816         req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
2817         req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
2818         req.mask = cpu_to_le32(vnic->rx_mask);
2819         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2820 }
2821
2822 #ifdef CONFIG_RFS_ACCEL
2823 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
2824                                             struct bnxt_ntuple_filter *fltr)
2825 {
2826         struct hwrm_cfa_ntuple_filter_free_input req = {0};
2827
2828         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
2829         req.ntuple_filter_id = fltr->filter_id;
2830         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2831 }
2832
2833 #define BNXT_NTP_FLTR_FLAGS                                     \
2834         (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |     \
2835          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |        \
2836          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |      \
2837          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |      \
2838          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |       \
2839          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |  \
2840          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |       \
2841          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |  \
2842          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |      \
2843          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |         \
2844          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |    \
2845          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |         \
2846          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |    \
2847          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
2848
2849 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
2850                                              struct bnxt_ntuple_filter *fltr)
2851 {
2852         int rc = 0;
2853         struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
2854         struct hwrm_cfa_ntuple_filter_alloc_output *resp =
2855                 bp->hwrm_cmd_resp_addr;
2856         struct flow_keys *keys = &fltr->fkeys;
2857         struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
2858
2859         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
2860         req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[0];
2861
2862         req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
2863
2864         req.ethertype = htons(ETH_P_IP);
2865         memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
2866         req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
2867         req.ip_protocol = keys->basic.ip_proto;
2868
2869         req.src_ipaddr[0] = keys->addrs.v4addrs.src;
2870         req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
2871         req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
2872         req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
2873
2874         req.src_port = keys->ports.src;
2875         req.src_port_mask = cpu_to_be16(0xffff);
2876         req.dst_port = keys->ports.dst;
2877         req.dst_port_mask = cpu_to_be16(0xffff);
2878
2879         req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
2880         mutex_lock(&bp->hwrm_cmd_lock);
2881         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2882         if (!rc)
2883                 fltr->filter_id = resp->ntuple_filter_id;
2884         mutex_unlock(&bp->hwrm_cmd_lock);
2885         return rc;
2886 }
2887 #endif
2888
2889 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
2890                                      u8 *mac_addr)
2891 {
2892         u32 rc = 0;
2893         struct hwrm_cfa_l2_filter_alloc_input req = {0};
2894         struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
2895
2896         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
2897         req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX |
2898                                 CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
2899         req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
2900         req.enables =
2901                 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
2902                             CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
2903                             CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
2904         memcpy(req.l2_addr, mac_addr, ETH_ALEN);
2905         req.l2_addr_mask[0] = 0xff;
2906         req.l2_addr_mask[1] = 0xff;
2907         req.l2_addr_mask[2] = 0xff;
2908         req.l2_addr_mask[3] = 0xff;
2909         req.l2_addr_mask[4] = 0xff;
2910         req.l2_addr_mask[5] = 0xff;
2911
2912         mutex_lock(&bp->hwrm_cmd_lock);
2913         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2914         if (!rc)
2915                 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
2916                                                         resp->l2_filter_id;
2917         mutex_unlock(&bp->hwrm_cmd_lock);
2918         return rc;
2919 }
2920
2921 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
2922 {
2923         u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
2924         int rc = 0;
2925
2926         /* Any associated ntuple filters will also be cleared by firmware. */
2927         mutex_lock(&bp->hwrm_cmd_lock);
2928         for (i = 0; i < num_of_vnics; i++) {
2929                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2930
2931                 for (j = 0; j < vnic->uc_filter_count; j++) {
2932                         struct hwrm_cfa_l2_filter_free_input req = {0};
2933
2934                         bnxt_hwrm_cmd_hdr_init(bp, &req,
2935                                                HWRM_CFA_L2_FILTER_FREE, -1, -1);
2936
2937                         req.l2_filter_id = vnic->fw_l2_filter_id[j];
2938
2939                         rc = _hwrm_send_message(bp, &req, sizeof(req),
2940                                                 HWRM_CMD_TIMEOUT);
2941                 }
2942                 vnic->uc_filter_count = 0;
2943         }
2944         mutex_unlock(&bp->hwrm_cmd_lock);
2945
2946         return rc;
2947 }
2948
2949 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
2950 {
2951         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2952         struct hwrm_vnic_tpa_cfg_input req = {0};
2953
2954         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
2955
2956         if (tpa_flags) {
2957                 u16 mss = bp->dev->mtu - 40;
2958                 u32 nsegs, n, segs = 0, flags;
2959
2960                 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
2961                         VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
2962                         VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
2963                         VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
2964                         VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
2965                 if (tpa_flags & BNXT_FLAG_GRO)
2966                         flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
2967
2968                 req.flags = cpu_to_le32(flags);
2969
2970                 req.enables =
2971                         cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
2972                                     VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
2973                                     VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
2974
2975                 /* Number of segs are log2 units, and first packet is not
2976                  * included as part of this units.
2977                  */
2978                 if (mss <= PAGE_SIZE) {
2979                         n = PAGE_SIZE / mss;
2980                         nsegs = (MAX_SKB_FRAGS - 1) * n;
2981                 } else {
2982                         n = mss / PAGE_SIZE;
2983                         if (mss & (PAGE_SIZE - 1))
2984                                 n++;
2985                         nsegs = (MAX_SKB_FRAGS - n) / n;
2986                 }
2987
2988                 segs = ilog2(nsegs);
2989                 req.max_agg_segs = cpu_to_le16(segs);
2990                 req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
2991
2992                 req.min_agg_len = cpu_to_le32(512);
2993         }
2994         req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
2995
2996         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2997 }
2998
2999 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
3000 {
3001         u32 i, j, max_rings;
3002         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3003         struct hwrm_vnic_rss_cfg_input req = {0};
3004
3005         if (vnic->fw_rss_cos_lb_ctx == INVALID_HW_RING_ID)
3006                 return 0;
3007
3008         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
3009         if (set_rss) {
3010                 vnic->hash_type = BNXT_RSS_HASH_TYPE_FLAG_IPV4 |
3011                                  BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV4 |
3012                                  BNXT_RSS_HASH_TYPE_FLAG_IPV6 |
3013                                  BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV6;
3014
3015                 req.hash_type = cpu_to_le32(vnic->hash_type);
3016
3017                 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3018                         max_rings = bp->rx_nr_rings;
3019                 else
3020                         max_rings = 1;
3021
3022                 /* Fill the RSS indirection table with ring group ids */
3023                 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
3024                         if (j == max_rings)
3025                                 j = 0;
3026                         vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
3027                 }
3028
3029                 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
3030                 req.hash_key_tbl_addr =
3031                         cpu_to_le64(vnic->rss_hash_key_dma_addr);
3032         }
3033         req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx);
3034         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3035 }
3036
3037 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
3038 {
3039         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3040         struct hwrm_vnic_plcmodes_cfg_input req = {0};
3041
3042         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
3043         req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
3044                                 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
3045                                 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
3046         req.enables =
3047                 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
3048                             VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
3049         /* thresholds not implemented in firmware yet */
3050         req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
3051         req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
3052         req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3053         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3054 }
3055
3056 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id)
3057 {
3058         struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
3059
3060         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
3061         req.rss_cos_lb_ctx_id =
3062                 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx);
3063
3064         hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3065         bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
3066 }
3067
3068 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
3069 {
3070         int i;
3071
3072         for (i = 0; i < bp->nr_vnics; i++) {
3073                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3074
3075                 if (vnic->fw_rss_cos_lb_ctx != INVALID_HW_RING_ID)
3076                         bnxt_hwrm_vnic_ctx_free_one(bp, i);
3077         }
3078         bp->rsscos_nr_ctxs = 0;
3079 }
3080
3081 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id)
3082 {
3083         int rc;
3084         struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
3085         struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
3086                                                 bp->hwrm_cmd_resp_addr;
3087
3088         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
3089                                -1);
3090
3091         mutex_lock(&bp->hwrm_cmd_lock);
3092         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3093         if (!rc)
3094                 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx =
3095                         le16_to_cpu(resp->rss_cos_lb_ctx_id);
3096         mutex_unlock(&bp->hwrm_cmd_lock);
3097
3098         return rc;
3099 }
3100
3101 static int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
3102 {
3103         unsigned int ring = 0, grp_idx;
3104         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3105         struct hwrm_vnic_cfg_input req = {0};
3106
3107         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
3108         /* Only RSS support for now TBD: COS & LB */
3109         req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP |
3110                                   VNIC_CFG_REQ_ENABLES_RSS_RULE);
3111         req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx);
3112         req.cos_rule = cpu_to_le16(0xffff);
3113         if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3114                 ring = 0;
3115         else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
3116                 ring = vnic_id - 1;
3117
3118         grp_idx = bp->rx_ring[ring].bnapi->index;
3119         req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3120         req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
3121
3122         req.lb_rule = cpu_to_le16(0xffff);
3123         req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
3124                               VLAN_HLEN);
3125
3126         if (bp->flags & BNXT_FLAG_STRIP_VLAN)
3127                 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
3128
3129         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3130 }
3131
3132 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
3133 {
3134         u32 rc = 0;
3135
3136         if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
3137                 struct hwrm_vnic_free_input req = {0};
3138
3139                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
3140                 req.vnic_id =
3141                         cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
3142
3143                 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3144                 if (rc)
3145                         return rc;
3146                 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
3147         }
3148         return rc;
3149 }
3150
3151 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
3152 {
3153         u16 i;
3154
3155         for (i = 0; i < bp->nr_vnics; i++)
3156                 bnxt_hwrm_vnic_free_one(bp, i);
3157 }
3158
3159 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
3160                                 unsigned int start_rx_ring_idx,
3161                                 unsigned int nr_rings)
3162 {
3163         int rc = 0;
3164         unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
3165         struct hwrm_vnic_alloc_input req = {0};
3166         struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3167
3168         /* map ring groups to this vnic */
3169         for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
3170                 grp_idx = bp->rx_ring[i].bnapi->index;
3171                 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
3172                         netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
3173                                    j, nr_rings);
3174                         break;
3175                 }
3176                 bp->vnic_info[vnic_id].fw_grp_ids[j] =
3177                                         bp->grp_info[grp_idx].fw_grp_id;
3178         }
3179
3180         bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
3181         if (vnic_id == 0)
3182                 req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
3183
3184         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
3185
3186         mutex_lock(&bp->hwrm_cmd_lock);
3187         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3188         if (!rc)
3189                 bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
3190         mutex_unlock(&bp->hwrm_cmd_lock);
3191         return rc;
3192 }
3193
3194 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
3195 {
3196         u16 i;
3197         u32 rc = 0;
3198
3199         mutex_lock(&bp->hwrm_cmd_lock);
3200         for (i = 0; i < bp->rx_nr_rings; i++) {
3201                 struct hwrm_ring_grp_alloc_input req = {0};
3202                 struct hwrm_ring_grp_alloc_output *resp =
3203                                         bp->hwrm_cmd_resp_addr;
3204                 unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
3205
3206                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
3207
3208                 req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
3209                 req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
3210                 req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
3211                 req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
3212
3213                 rc = _hwrm_send_message(bp, &req, sizeof(req),
3214                                         HWRM_CMD_TIMEOUT);
3215                 if (rc)
3216                         break;
3217
3218                 bp->grp_info[grp_idx].fw_grp_id =
3219                         le32_to_cpu(resp->ring_group_id);
3220         }
3221         mutex_unlock(&bp->hwrm_cmd_lock);
3222         return rc;
3223 }
3224
3225 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
3226 {
3227         u16 i;
3228         u32 rc = 0;
3229         struct hwrm_ring_grp_free_input req = {0};
3230
3231         if (!bp->grp_info)
3232                 return 0;
3233
3234         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
3235
3236         mutex_lock(&bp->hwrm_cmd_lock);
3237         for (i = 0; i < bp->cp_nr_rings; i++) {
3238                 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
3239                         continue;
3240                 req.ring_group_id =
3241                         cpu_to_le32(bp->grp_info[i].fw_grp_id);
3242
3243                 rc = _hwrm_send_message(bp, &req, sizeof(req),
3244                                         HWRM_CMD_TIMEOUT);
3245                 if (rc)
3246                         break;
3247                 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3248         }
3249         mutex_unlock(&bp->hwrm_cmd_lock);
3250         return rc;
3251 }
3252
3253 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
3254                                     struct bnxt_ring_struct *ring,
3255                                     u32 ring_type, u32 map_index,
3256                                     u32 stats_ctx_id)
3257 {
3258         int rc = 0, err = 0;
3259         struct hwrm_ring_alloc_input req = {0};
3260         struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3261         u16 ring_id;
3262
3263         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
3264
3265         req.enables = 0;
3266         if (ring->nr_pages > 1) {
3267                 req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
3268                 /* Page size is in log2 units */
3269                 req.page_size = BNXT_PAGE_SHIFT;
3270                 req.page_tbl_depth = 1;
3271         } else {
3272                 req.page_tbl_addr =  cpu_to_le64(ring->dma_arr[0]);
3273         }
3274         req.fbo = 0;
3275         /* Association of ring index with doorbell index and MSIX number */
3276         req.logical_id = cpu_to_le16(map_index);
3277
3278         switch (ring_type) {
3279         case HWRM_RING_ALLOC_TX:
3280                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
3281                 /* Association of transmit ring with completion ring */
3282                 req.cmpl_ring_id =
3283                         cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id);
3284                 req.length = cpu_to_le32(bp->tx_ring_mask + 1);
3285                 req.stat_ctx_id = cpu_to_le32(stats_ctx_id);
3286                 req.queue_id = cpu_to_le16(ring->queue_id);
3287                 break;
3288         case HWRM_RING_ALLOC_RX:
3289                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3290                 req.length = cpu_to_le32(bp->rx_ring_mask + 1);
3291                 break;
3292         case HWRM_RING_ALLOC_AGG:
3293                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3294                 req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
3295                 break;
3296         case HWRM_RING_ALLOC_CMPL:
3297                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_CMPL;
3298                 req.length = cpu_to_le32(bp->cp_ring_mask + 1);
3299                 if (bp->flags & BNXT_FLAG_USING_MSIX)
3300                         req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
3301                 break;
3302         default:
3303                 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
3304                            ring_type);
3305                 return -1;
3306         }
3307
3308         mutex_lock(&bp->hwrm_cmd_lock);
3309         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3310         err = le16_to_cpu(resp->error_code);
3311         ring_id = le16_to_cpu(resp->ring_id);
3312         mutex_unlock(&bp->hwrm_cmd_lock);
3313
3314         if (rc || err) {
3315                 switch (ring_type) {
3316                 case RING_FREE_REQ_RING_TYPE_CMPL:
3317                         netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n",
3318                                    rc, err);
3319                         return -1;
3320
3321                 case RING_FREE_REQ_RING_TYPE_RX:
3322                         netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n",
3323                                    rc, err);
3324                         return -1;
3325
3326                 case RING_FREE_REQ_RING_TYPE_TX:
3327                         netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n",
3328                                    rc, err);
3329                         return -1;
3330
3331                 default:
3332                         netdev_err(bp->dev, "Invalid ring\n");
3333                         return -1;
3334                 }
3335         }
3336         ring->fw_ring_id = ring_id;
3337         return rc;
3338 }
3339
3340 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
3341 {
3342         int i, rc = 0;
3343
3344         for (i = 0; i < bp->cp_nr_rings; i++) {
3345                 struct bnxt_napi *bnapi = bp->bnapi[i];
3346                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3347                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3348
3349                 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL, i,
3350                                               INVALID_STATS_CTX_ID);
3351                 if (rc)
3352                         goto err_out;
3353                 cpr->cp_doorbell = bp->bar1 + i * 0x80;
3354                 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3355                 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
3356         }
3357
3358         for (i = 0; i < bp->tx_nr_rings; i++) {
3359                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3360                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3361                 u32 map_idx = txr->bnapi->index;
3362                 u16 fw_stats_ctx = bp->grp_info[map_idx].fw_stats_ctx;
3363
3364                 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
3365                                               map_idx, fw_stats_ctx);
3366                 if (rc)
3367                         goto err_out;
3368                 txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
3369         }
3370
3371         for (i = 0; i < bp->rx_nr_rings; i++) {
3372                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3373                 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3374                 u32 map_idx = rxr->bnapi->index;
3375
3376                 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
3377                                               map_idx, INVALID_STATS_CTX_ID);
3378                 if (rc)
3379                         goto err_out;
3380                 rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
3381                 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
3382                 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
3383         }
3384
3385         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
3386                 for (i = 0; i < bp->rx_nr_rings; i++) {
3387                         struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3388                         struct bnxt_ring_struct *ring =
3389                                                 &rxr->rx_agg_ring_struct;
3390                         u32 grp_idx = rxr->bnapi->index;
3391                         u32 map_idx = grp_idx + bp->rx_nr_rings;
3392
3393                         rc = hwrm_ring_alloc_send_msg(bp, ring,
3394                                                       HWRM_RING_ALLOC_AGG,
3395                                                       map_idx,
3396                                                       INVALID_STATS_CTX_ID);
3397                         if (rc)
3398                                 goto err_out;
3399
3400                         rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
3401                         writel(DB_KEY_RX | rxr->rx_agg_prod,
3402                                rxr->rx_agg_doorbell);
3403                         bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
3404                 }
3405         }
3406 err_out:
3407         return rc;
3408 }
3409
3410 static int hwrm_ring_free_send_msg(struct bnxt *bp,
3411                                    struct bnxt_ring_struct *ring,
3412                                    u32 ring_type, int cmpl_ring_id)
3413 {
3414         int rc;
3415         struct hwrm_ring_free_input req = {0};
3416         struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
3417         u16 error_code;
3418
3419         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
3420         req.ring_type = ring_type;
3421         req.ring_id = cpu_to_le16(ring->fw_ring_id);
3422
3423         mutex_lock(&bp->hwrm_cmd_lock);
3424         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3425         error_code = le16_to_cpu(resp->error_code);
3426         mutex_unlock(&bp->hwrm_cmd_lock);
3427
3428         if (rc || error_code) {
3429                 switch (ring_type) {
3430                 case RING_FREE_REQ_RING_TYPE_CMPL:
3431                         netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n",
3432                                    rc);
3433                         return rc;
3434                 case RING_FREE_REQ_RING_TYPE_RX:
3435                         netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n",
3436                                    rc);
3437                         return rc;
3438                 case RING_FREE_REQ_RING_TYPE_TX:
3439                         netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n",
3440                                    rc);
3441                         return rc;
3442                 default:
3443                         netdev_err(bp->dev, "Invalid ring\n");
3444                         return -1;
3445                 }
3446         }
3447         return 0;
3448 }
3449
3450 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
3451 {
3452         int i;
3453
3454         if (!bp->bnapi)
3455                 return;
3456
3457         for (i = 0; i < bp->tx_nr_rings; i++) {
3458                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3459                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3460                 u32 grp_idx = txr->bnapi->index;
3461                 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3462
3463                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3464                         hwrm_ring_free_send_msg(bp, ring,
3465                                                 RING_FREE_REQ_RING_TYPE_TX,
3466                                                 close_path ? cmpl_ring_id :
3467                                                 INVALID_HW_RING_ID);
3468                         ring->fw_ring_id = INVALID_HW_RING_ID;
3469                 }
3470         }
3471
3472         for (i = 0; i < bp->rx_nr_rings; i++) {
3473                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3474                 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3475                 u32 grp_idx = rxr->bnapi->index;
3476                 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3477
3478                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3479                         hwrm_ring_free_send_msg(bp, ring,
3480                                                 RING_FREE_REQ_RING_TYPE_RX,
3481                                                 close_path ? cmpl_ring_id :
3482                                                 INVALID_HW_RING_ID);
3483                         ring->fw_ring_id = INVALID_HW_RING_ID;
3484                         bp->grp_info[grp_idx].rx_fw_ring_id =
3485                                 INVALID_HW_RING_ID;
3486                 }
3487         }
3488
3489         for (i = 0; i < bp->rx_nr_rings; i++) {
3490                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3491                 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
3492                 u32 grp_idx = rxr->bnapi->index;
3493                 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3494
3495                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3496                         hwrm_ring_free_send_msg(bp, ring,
3497                                                 RING_FREE_REQ_RING_TYPE_RX,
3498                                                 close_path ? cmpl_ring_id :
3499                                                 INVALID_HW_RING_ID);
3500                         ring->fw_ring_id = INVALID_HW_RING_ID;
3501                         bp->grp_info[grp_idx].agg_fw_ring_id =
3502                                 INVALID_HW_RING_ID;
3503                 }
3504         }
3505
3506         for (i = 0; i < bp->cp_nr_rings; i++) {
3507                 struct bnxt_napi *bnapi = bp->bnapi[i];
3508                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3509                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3510
3511                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3512                         hwrm_ring_free_send_msg(bp, ring,
3513                                                 RING_FREE_REQ_RING_TYPE_CMPL,
3514                                                 INVALID_HW_RING_ID);
3515                         ring->fw_ring_id = INVALID_HW_RING_ID;
3516                         bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3517                 }
3518         }
3519 }
3520
3521 int bnxt_hwrm_set_coal(struct bnxt *bp)
3522 {
3523         int i, rc = 0;
3524         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req = {0};
3525         u16 max_buf, max_buf_irq;
3526         u16 buf_tmr, buf_tmr_irq;
3527         u32 flags;
3528
3529         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS,
3530                                -1, -1);
3531
3532         /* Each rx completion (2 records) should be DMAed immediately */
3533         max_buf = min_t(u16, bp->coal_bufs / 4, 2);
3534         /* max_buf must not be zero */
3535         max_buf = clamp_t(u16, max_buf, 1, 63);
3536         max_buf_irq = clamp_t(u16, bp->coal_bufs_irq, 1, 63);
3537         buf_tmr = max_t(u16, bp->coal_ticks / 4, 1);
3538         buf_tmr_irq = max_t(u16, bp->coal_ticks_irq, 1);
3539
3540         flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
3541
3542         /* RING_IDLE generates more IRQs for lower latency.  Enable it only
3543          * if coal_ticks is less than 25 us.
3544          */
3545         if (BNXT_COAL_TIMER_TO_USEC(bp->coal_ticks) < 25)
3546                 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
3547
3548         req.flags = cpu_to_le16(flags);
3549         req.num_cmpl_dma_aggr = cpu_to_le16(max_buf);
3550         req.num_cmpl_dma_aggr_during_int = cpu_to_le16(max_buf_irq);
3551         req.cmpl_aggr_dma_tmr = cpu_to_le16(buf_tmr);
3552         req.cmpl_aggr_dma_tmr_during_int = cpu_to_le16(buf_tmr_irq);
3553         req.int_lat_tmr_min = cpu_to_le16(buf_tmr);
3554         req.int_lat_tmr_max = cpu_to_le16(bp->coal_ticks);
3555         req.num_cmpl_aggr_int = cpu_to_le16(bp->coal_bufs);
3556
3557         mutex_lock(&bp->hwrm_cmd_lock);
3558         for (i = 0; i < bp->cp_nr_rings; i++) {
3559                 req.ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
3560
3561                 rc = _hwrm_send_message(bp, &req, sizeof(req),
3562                                         HWRM_CMD_TIMEOUT);
3563                 if (rc)
3564                         break;
3565         }
3566         mutex_unlock(&bp->hwrm_cmd_lock);
3567         return rc;
3568 }
3569
3570 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
3571 {
3572         int rc = 0, i;
3573         struct hwrm_stat_ctx_free_input req = {0};
3574
3575         if (!bp->bnapi)
3576                 return 0;
3577
3578         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
3579
3580         mutex_lock(&bp->hwrm_cmd_lock);
3581         for (i = 0; i < bp->cp_nr_rings; i++) {
3582                 struct bnxt_napi *bnapi = bp->bnapi[i];
3583                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3584
3585                 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
3586                         req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
3587
3588                         rc = _hwrm_send_message(bp, &req, sizeof(req),
3589                                                 HWRM_CMD_TIMEOUT);
3590                         if (rc)
3591                                 break;
3592
3593                         cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3594                 }
3595         }
3596         mutex_unlock(&bp->hwrm_cmd_lock);
3597         return rc;
3598 }
3599
3600 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
3601 {
3602         int rc = 0, i;
3603         struct hwrm_stat_ctx_alloc_input req = {0};
3604         struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3605
3606         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
3607
3608         req.update_period_ms = cpu_to_le32(1000);
3609
3610         mutex_lock(&bp->hwrm_cmd_lock);
3611         for (i = 0; i < bp->cp_nr_rings; i++) {
3612                 struct bnxt_napi *bnapi = bp->bnapi[i];
3613                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3614
3615                 req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
3616
3617                 rc = _hwrm_send_message(bp, &req, sizeof(req),
3618                                         HWRM_CMD_TIMEOUT);
3619                 if (rc)
3620                         break;
3621
3622                 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
3623
3624                 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
3625         }
3626         mutex_unlock(&bp->hwrm_cmd_lock);
3627         return 0;
3628 }
3629
3630 int bnxt_hwrm_func_qcaps(struct bnxt *bp)
3631 {
3632         int rc = 0;
3633         struct hwrm_func_qcaps_input req = {0};
3634         struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
3635
3636         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
3637         req.fid = cpu_to_le16(0xffff);
3638
3639         mutex_lock(&bp->hwrm_cmd_lock);
3640         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3641         if (rc)
3642                 goto hwrm_func_qcaps_exit;
3643
3644         if (BNXT_PF(bp)) {
3645                 struct bnxt_pf_info *pf = &bp->pf;
3646
3647                 pf->fw_fid = le16_to_cpu(resp->fid);
3648                 pf->port_id = le16_to_cpu(resp->port_id);
3649                 memcpy(pf->mac_addr, resp->perm_mac_address, ETH_ALEN);
3650                 memcpy(bp->dev->dev_addr, pf->mac_addr, ETH_ALEN);
3651                 pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
3652                 pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
3653                 pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
3654                 pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
3655                 pf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
3656                 if (!pf->max_hw_ring_grps)
3657                         pf->max_hw_ring_grps = pf->max_tx_rings;
3658                 pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
3659                 pf->max_vnics = le16_to_cpu(resp->max_vnics);
3660                 pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
3661                 pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
3662                 pf->max_vfs = le16_to_cpu(resp->max_vfs);
3663                 pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
3664                 pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
3665                 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
3666                 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
3667                 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
3668                 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
3669         } else {
3670 #ifdef CONFIG_BNXT_SRIOV
3671                 struct bnxt_vf_info *vf = &bp->vf;
3672
3673                 vf->fw_fid = le16_to_cpu(resp->fid);
3674                 memcpy(vf->mac_addr, resp->perm_mac_address, ETH_ALEN);
3675                 if (is_valid_ether_addr(vf->mac_addr))
3676                         /* overwrite netdev dev_adr with admin VF MAC */
3677                         memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
3678                 else
3679                         random_ether_addr(bp->dev->dev_addr);
3680
3681                 vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
3682                 vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
3683                 vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
3684                 vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
3685                 vf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
3686                 if (!vf->max_hw_ring_grps)
3687                         vf->max_hw_ring_grps = vf->max_tx_rings;
3688                 vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
3689                 vf->max_vnics = le16_to_cpu(resp->max_vnics);
3690                 vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
3691 #endif
3692         }
3693
3694         bp->tx_push_thresh = 0;
3695         if (resp->flags &
3696             cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED))
3697                 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
3698
3699 hwrm_func_qcaps_exit:
3700         mutex_unlock(&bp->hwrm_cmd_lock);
3701         return rc;
3702 }
3703
3704 static int bnxt_hwrm_func_reset(struct bnxt *bp)
3705 {
3706         struct hwrm_func_reset_input req = {0};
3707
3708         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
3709         req.enables = 0;
3710
3711         return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
3712 }
3713
3714 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
3715 {
3716         int rc = 0;
3717         struct hwrm_queue_qportcfg_input req = {0};
3718         struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
3719         u8 i, *qptr;
3720
3721         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
3722
3723         mutex_lock(&bp->hwrm_cmd_lock);
3724         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3725         if (rc)
3726                 goto qportcfg_exit;
3727
3728         if (!resp->max_configurable_queues) {
3729                 rc = -EINVAL;
3730                 goto qportcfg_exit;
3731         }
3732         bp->max_tc = resp->max_configurable_queues;
3733         if (bp->max_tc > BNXT_MAX_QUEUE)
3734                 bp->max_tc = BNXT_MAX_QUEUE;
3735
3736         qptr = &resp->queue_id0;
3737         for (i = 0; i < bp->max_tc; i++) {
3738                 bp->q_info[i].queue_id = *qptr++;
3739                 bp->q_info[i].queue_profile = *qptr++;
3740         }
3741
3742 qportcfg_exit:
3743         mutex_unlock(&bp->hwrm_cmd_lock);
3744         return rc;
3745 }
3746
3747 static int bnxt_hwrm_ver_get(struct bnxt *bp)
3748 {
3749         int rc;
3750         struct hwrm_ver_get_input req = {0};
3751         struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
3752
3753         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
3754         req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
3755         req.hwrm_intf_min = HWRM_VERSION_MINOR;
3756         req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
3757         mutex_lock(&bp->hwrm_cmd_lock);
3758         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3759         if (rc)
3760                 goto hwrm_ver_get_exit;
3761
3762         memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
3763
3764         if (resp->hwrm_intf_maj < 1) {
3765                 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
3766                             resp->hwrm_intf_maj, resp->hwrm_intf_min,
3767                             resp->hwrm_intf_upd);
3768                 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
3769         }
3770         snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "bc %d.%d.%d rm %d.%d.%d",
3771                  resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld,
3772                  resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd);
3773
3774 hwrm_ver_get_exit:
3775         mutex_unlock(&bp->hwrm_cmd_lock);
3776         return rc;
3777 }
3778
3779 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
3780 {
3781         if (bp->vxlan_port_cnt) {
3782                 bnxt_hwrm_tunnel_dst_port_free(
3783                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
3784         }
3785         bp->vxlan_port_cnt = 0;
3786         if (bp->nge_port_cnt) {
3787                 bnxt_hwrm_tunnel_dst_port_free(
3788                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
3789         }
3790         bp->nge_port_cnt = 0;
3791 }
3792
3793 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
3794 {
3795         int rc, i;
3796         u32 tpa_flags = 0;
3797
3798         if (set_tpa)
3799                 tpa_flags = bp->flags & BNXT_FLAG_TPA;
3800         for (i = 0; i < bp->nr_vnics; i++) {
3801                 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
3802                 if (rc) {
3803                         netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
3804                                    rc, i);
3805                         return rc;
3806                 }
3807         }
3808         return 0;
3809 }
3810
3811 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
3812 {
3813         int i;
3814
3815         for (i = 0; i < bp->nr_vnics; i++)
3816                 bnxt_hwrm_vnic_set_rss(bp, i, false);
3817 }
3818
3819 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
3820                                     bool irq_re_init)
3821 {
3822         if (bp->vnic_info) {
3823                 bnxt_hwrm_clear_vnic_filter(bp);
3824                 /* clear all RSS setting before free vnic ctx */
3825                 bnxt_hwrm_clear_vnic_rss(bp);
3826                 bnxt_hwrm_vnic_ctx_free(bp);
3827                 /* before free the vnic, undo the vnic tpa settings */
3828                 if (bp->flags & BNXT_FLAG_TPA)
3829                         bnxt_set_tpa(bp, false);
3830                 bnxt_hwrm_vnic_free(bp);
3831         }
3832         bnxt_hwrm_ring_free(bp, close_path);
3833         bnxt_hwrm_ring_grp_free(bp);
3834         if (irq_re_init) {
3835                 bnxt_hwrm_stat_ctx_free(bp);
3836                 bnxt_hwrm_free_tunnel_ports(bp);
3837         }
3838 }
3839
3840 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
3841 {
3842         int rc;
3843
3844         /* allocate context for vnic */
3845         rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id);
3846         if (rc) {
3847                 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
3848                            vnic_id, rc);
3849                 goto vnic_setup_err;
3850         }
3851         bp->rsscos_nr_ctxs++;
3852
3853         /* configure default vnic, ring grp */
3854         rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
3855         if (rc) {
3856                 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
3857                            vnic_id, rc);
3858                 goto vnic_setup_err;
3859         }
3860
3861         /* Enable RSS hashing on vnic */
3862         rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
3863         if (rc) {
3864                 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
3865                            vnic_id, rc);
3866                 goto vnic_setup_err;
3867         }
3868
3869         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
3870                 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
3871                 if (rc) {
3872                         netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
3873                                    vnic_id, rc);
3874                 }
3875         }
3876
3877 vnic_setup_err:
3878         return rc;
3879 }
3880
3881 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
3882 {
3883 #ifdef CONFIG_RFS_ACCEL
3884         int i, rc = 0;
3885
3886         for (i = 0; i < bp->rx_nr_rings; i++) {
3887                 u16 vnic_id = i + 1;
3888                 u16 ring_id = i;
3889
3890                 if (vnic_id >= bp->nr_vnics)
3891                         break;
3892
3893                 bp->vnic_info[vnic_id].flags |= BNXT_VNIC_RFS_FLAG;
3894                 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
3895                 if (rc) {
3896                         netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
3897                                    vnic_id, rc);
3898                         break;
3899                 }
3900                 rc = bnxt_setup_vnic(bp, vnic_id);
3901                 if (rc)
3902                         break;
3903         }
3904         return rc;
3905 #else
3906         return 0;
3907 #endif
3908 }
3909
3910 static int bnxt_cfg_rx_mode(struct bnxt *);
3911
3912 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
3913 {
3914         int rc = 0;
3915
3916         if (irq_re_init) {
3917                 rc = bnxt_hwrm_stat_ctx_alloc(bp);
3918                 if (rc) {
3919                         netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
3920                                    rc);
3921                         goto err_out;
3922                 }
3923         }
3924
3925         rc = bnxt_hwrm_ring_alloc(bp);
3926         if (rc) {
3927                 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
3928                 goto err_out;
3929         }
3930
3931         rc = bnxt_hwrm_ring_grp_alloc(bp);
3932         if (rc) {
3933                 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
3934                 goto err_out;
3935         }
3936
3937         /* default vnic 0 */
3938         rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, bp->rx_nr_rings);
3939         if (rc) {
3940                 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
3941                 goto err_out;
3942         }
3943
3944         rc = bnxt_setup_vnic(bp, 0);
3945         if (rc)
3946                 goto err_out;
3947
3948         if (bp->flags & BNXT_FLAG_RFS) {
3949                 rc = bnxt_alloc_rfs_vnics(bp);
3950                 if (rc)
3951                         goto err_out;
3952         }
3953
3954         if (bp->flags & BNXT_FLAG_TPA) {
3955                 rc = bnxt_set_tpa(bp, true);
3956                 if (rc)
3957                         goto err_out;
3958         }
3959
3960         if (BNXT_VF(bp))
3961                 bnxt_update_vf_mac(bp);
3962
3963         /* Filter for default vnic 0 */
3964         rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
3965         if (rc) {
3966                 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
3967                 goto err_out;
3968         }
3969         bp->vnic_info[0].uc_filter_count = 1;
3970
3971         bp->vnic_info[0].rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
3972
3973         if ((bp->dev->flags & IFF_PROMISC) && BNXT_PF(bp))
3974                 bp->vnic_info[0].rx_mask |=
3975                                 CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
3976
3977         rc = bnxt_cfg_rx_mode(bp);
3978         if (rc)
3979                 goto err_out;
3980
3981         rc = bnxt_hwrm_set_coal(bp);
3982         if (rc)
3983                 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
3984                             rc);
3985
3986         return 0;
3987
3988 err_out:
3989         bnxt_hwrm_resource_free(bp, 0, true);
3990
3991         return rc;
3992 }
3993
3994 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
3995 {
3996         bnxt_hwrm_resource_free(bp, 1, irq_re_init);
3997         return 0;
3998 }
3999
4000 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
4001 {
4002         bnxt_init_rx_rings(bp);
4003         bnxt_init_tx_rings(bp);
4004         bnxt_init_ring_grps(bp, irq_re_init);
4005         bnxt_init_vnics(bp);
4006
4007         return bnxt_init_chip(bp, irq_re_init);
4008 }
4009
4010 static void bnxt_disable_int(struct bnxt *bp)
4011 {
4012         int i;
4013
4014         if (!bp->bnapi)
4015                 return;
4016
4017         for (i = 0; i < bp->cp_nr_rings; i++) {
4018                 struct bnxt_napi *bnapi = bp->bnapi[i];
4019                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4020
4021                 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
4022         }
4023 }
4024
4025 static void bnxt_enable_int(struct bnxt *bp)
4026 {
4027         int i;
4028
4029         atomic_set(&bp->intr_sem, 0);
4030         for (i = 0; i < bp->cp_nr_rings; i++) {
4031                 struct bnxt_napi *bnapi = bp->bnapi[i];
4032                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4033
4034                 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
4035         }
4036 }
4037
4038 static int bnxt_set_real_num_queues(struct bnxt *bp)
4039 {
4040         int rc;
4041         struct net_device *dev = bp->dev;
4042
4043         rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings);
4044         if (rc)
4045                 return rc;
4046
4047         rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
4048         if (rc)
4049                 return rc;
4050
4051 #ifdef CONFIG_RFS_ACCEL
4052         if (bp->flags & BNXT_FLAG_RFS)
4053                 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
4054 #endif
4055
4056         return rc;
4057 }
4058
4059 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
4060                            bool shared)
4061 {
4062         int _rx = *rx, _tx = *tx;
4063
4064         if (shared) {
4065                 *rx = min_t(int, _rx, max);
4066                 *tx = min_t(int, _tx, max);
4067         } else {
4068                 if (max < 2)
4069                         return -ENOMEM;
4070
4071                 while (_rx + _tx > max) {
4072                         if (_rx > _tx && _rx > 1)
4073                                 _rx--;
4074                         else if (_tx > 1)
4075                                 _tx--;
4076                 }
4077                 *rx = _rx;
4078                 *tx = _tx;
4079         }
4080         return 0;
4081 }
4082
4083 static int bnxt_setup_msix(struct bnxt *bp)
4084 {
4085         struct msix_entry *msix_ent;
4086         struct net_device *dev = bp->dev;
4087         int i, total_vecs, rc = 0, min = 1;
4088         const int len = sizeof(bp->irq_tbl[0].name);
4089
4090         bp->flags &= ~BNXT_FLAG_USING_MSIX;
4091         total_vecs = bp->cp_nr_rings;
4092
4093         msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
4094         if (!msix_ent)
4095                 return -ENOMEM;
4096
4097         for (i = 0; i < total_vecs; i++) {
4098                 msix_ent[i].entry = i;
4099                 msix_ent[i].vector = 0;
4100         }
4101
4102         if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
4103                 min = 2;
4104
4105         total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
4106         if (total_vecs < 0) {
4107                 rc = -ENODEV;
4108                 goto msix_setup_exit;
4109         }
4110
4111         bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
4112         if (bp->irq_tbl) {
4113                 int tcs;
4114
4115                 /* Trim rings based upon num of vectors allocated */
4116                 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
4117                                      total_vecs, min == 1);
4118                 if (rc)
4119                         goto msix_setup_exit;
4120
4121                 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4122                 tcs = netdev_get_num_tc(dev);
4123                 if (tcs > 1) {
4124                         bp->tx_nr_rings_per_tc = bp->tx_nr_rings / tcs;
4125                         if (bp->tx_nr_rings_per_tc == 0) {
4126                                 netdev_reset_tc(dev);
4127                                 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4128                         } else {
4129                                 int i, off, count;
4130
4131                                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tcs;
4132                                 for (i = 0; i < tcs; i++) {
4133                                         count = bp->tx_nr_rings_per_tc;
4134                                         off = i * count;
4135                                         netdev_set_tc_queue(dev, i, count, off);
4136                                 }
4137                         }
4138                 }
4139                 bp->cp_nr_rings = total_vecs;
4140
4141                 for (i = 0; i < bp->cp_nr_rings; i++) {
4142                         char *attr;
4143
4144                         bp->irq_tbl[i].vector = msix_ent[i].vector;
4145                         if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4146                                 attr = "TxRx";
4147                         else if (i < bp->rx_nr_rings)
4148                                 attr = "rx";
4149                         else
4150                                 attr = "tx";
4151
4152                         snprintf(bp->irq_tbl[i].name, len,
4153                                  "%s-%s-%d", dev->name, attr, i);
4154                         bp->irq_tbl[i].handler = bnxt_msix;
4155                 }
4156                 rc = bnxt_set_real_num_queues(bp);
4157                 if (rc)
4158                         goto msix_setup_exit;
4159         } else {
4160                 rc = -ENOMEM;
4161                 goto msix_setup_exit;
4162         }
4163         bp->flags |= BNXT_FLAG_USING_MSIX;
4164         kfree(msix_ent);
4165         return 0;
4166
4167 msix_setup_exit:
4168         netdev_err(bp->dev, "bnxt_setup_msix err: %x\n", rc);
4169         pci_disable_msix(bp->pdev);
4170         kfree(msix_ent);
4171         return rc;
4172 }
4173
4174 static int bnxt_setup_inta(struct bnxt *bp)
4175 {
4176         int rc;
4177         const int len = sizeof(bp->irq_tbl[0].name);
4178
4179         if (netdev_get_num_tc(bp->dev))
4180                 netdev_reset_tc(bp->dev);
4181
4182         bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
4183         if (!bp->irq_tbl) {
4184                 rc = -ENOMEM;
4185                 return rc;
4186         }
4187         bp->rx_nr_rings = 1;
4188         bp->tx_nr_rings = 1;
4189         bp->cp_nr_rings = 1;
4190         bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4191         bp->flags |= BNXT_FLAG_SHARED_RINGS;
4192         bp->irq_tbl[0].vector = bp->pdev->irq;
4193         snprintf(bp->irq_tbl[0].name, len,
4194                  "%s-%s-%d", bp->dev->name, "TxRx", 0);
4195         bp->irq_tbl[0].handler = bnxt_inta;
4196         rc = bnxt_set_real_num_queues(bp);
4197         return rc;
4198 }
4199
4200 static int bnxt_setup_int_mode(struct bnxt *bp)
4201 {
4202         int rc = 0;
4203
4204         if (bp->flags & BNXT_FLAG_MSIX_CAP)
4205                 rc = bnxt_setup_msix(bp);
4206
4207         if (!(bp->flags & BNXT_FLAG_USING_MSIX)) {
4208                 /* fallback to INTA */
4209                 rc = bnxt_setup_inta(bp);
4210         }
4211         return rc;
4212 }
4213
4214 static void bnxt_free_irq(struct bnxt *bp)
4215 {
4216         struct bnxt_irq *irq;
4217         int i;
4218
4219 #ifdef CONFIG_RFS_ACCEL
4220         free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
4221         bp->dev->rx_cpu_rmap = NULL;
4222 #endif
4223         if (!bp->irq_tbl)
4224                 return;
4225
4226         for (i = 0; i < bp->cp_nr_rings; i++) {
4227                 irq = &bp->irq_tbl[i];
4228                 if (irq->requested)
4229                         free_irq(irq->vector, bp->bnapi[i]);
4230                 irq->requested = 0;
4231         }
4232         if (bp->flags & BNXT_FLAG_USING_MSIX)
4233                 pci_disable_msix(bp->pdev);
4234         kfree(bp->irq_tbl);
4235         bp->irq_tbl = NULL;
4236 }
4237
4238 static int bnxt_request_irq(struct bnxt *bp)
4239 {
4240         int i, j, rc = 0;
4241         unsigned long flags = 0;
4242 #ifdef CONFIG_RFS_ACCEL
4243         struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap;
4244 #endif
4245
4246         if (!(bp->flags & BNXT_FLAG_USING_MSIX))
4247                 flags = IRQF_SHARED;
4248
4249         for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
4250                 struct bnxt_irq *irq = &bp->irq_tbl[i];
4251 #ifdef CONFIG_RFS_ACCEL
4252                 if (rmap && bp->bnapi[i]->rx_ring) {
4253                         rc = irq_cpu_rmap_add(rmap, irq->vector);
4254                         if (rc)
4255                                 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
4256                                             j);
4257                         j++;
4258                 }
4259 #endif
4260                 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
4261                                  bp->bnapi[i]);
4262                 if (rc)
4263                         break;
4264
4265                 irq->requested = 1;
4266         }
4267         return rc;
4268 }
4269
4270 static void bnxt_del_napi(struct bnxt *bp)
4271 {
4272         int i;
4273
4274         if (!bp->bnapi)
4275                 return;
4276
4277         for (i = 0; i < bp->cp_nr_rings; i++) {
4278                 struct bnxt_napi *bnapi = bp->bnapi[i];
4279
4280                 napi_hash_del(&bnapi->napi);
4281                 netif_napi_del(&bnapi->napi);
4282         }
4283 }
4284
4285 static void bnxt_init_napi(struct bnxt *bp)
4286 {
4287         int i;
4288         struct bnxt_napi *bnapi;
4289
4290         if (bp->flags & BNXT_FLAG_USING_MSIX) {
4291                 for (i = 0; i < bp->cp_nr_rings; i++) {
4292                         bnapi = bp->bnapi[i];
4293                         netif_napi_add(bp->dev, &bnapi->napi,
4294                                        bnxt_poll, 64);
4295                 }
4296         } else {
4297                 bnapi = bp->bnapi[0];
4298                 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
4299         }
4300 }
4301
4302 static void bnxt_disable_napi(struct bnxt *bp)
4303 {
4304         int i;
4305
4306         if (!bp->bnapi)
4307                 return;
4308
4309         for (i = 0; i < bp->cp_nr_rings; i++) {
4310                 napi_disable(&bp->bnapi[i]->napi);
4311                 bnxt_disable_poll(bp->bnapi[i]);
4312         }
4313 }
4314
4315 static void bnxt_enable_napi(struct bnxt *bp)
4316 {
4317         int i;
4318
4319         for (i = 0; i < bp->cp_nr_rings; i++) {
4320                 bnxt_enable_poll(bp->bnapi[i]);
4321                 napi_enable(&bp->bnapi[i]->napi);
4322         }
4323 }
4324
4325 static void bnxt_tx_disable(struct bnxt *bp)
4326 {
4327         int i;
4328         struct bnxt_tx_ring_info *txr;
4329         struct netdev_queue *txq;
4330
4331         if (bp->tx_ring) {
4332                 for (i = 0; i < bp->tx_nr_rings; i++) {
4333                         txr = &bp->tx_ring[i];
4334                         txq = netdev_get_tx_queue(bp->dev, i);
4335                         __netif_tx_lock(txq, smp_processor_id());
4336                         txr->dev_state = BNXT_DEV_STATE_CLOSING;
4337                         __netif_tx_unlock(txq);
4338                 }
4339         }
4340         /* Stop all TX queues */
4341         netif_tx_disable(bp->dev);
4342         netif_carrier_off(bp->dev);
4343 }
4344
4345 static void bnxt_tx_enable(struct bnxt *bp)
4346 {
4347         int i;
4348         struct bnxt_tx_ring_info *txr;
4349         struct netdev_queue *txq;
4350
4351         for (i = 0; i < bp->tx_nr_rings; i++) {
4352                 txr = &bp->tx_ring[i];
4353                 txq = netdev_get_tx_queue(bp->dev, i);
4354                 txr->dev_state = 0;
4355         }
4356         netif_tx_wake_all_queues(bp->dev);
4357         if (bp->link_info.link_up)
4358                 netif_carrier_on(bp->dev);
4359 }
4360
4361 static void bnxt_report_link(struct bnxt *bp)
4362 {
4363         if (bp->link_info.link_up) {
4364                 const char *duplex;
4365                 const char *flow_ctrl;
4366                 u16 speed;
4367
4368                 netif_carrier_on(bp->dev);
4369                 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
4370                         duplex = "full";
4371                 else
4372                         duplex = "half";
4373                 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
4374                         flow_ctrl = "ON - receive & transmit";
4375                 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
4376                         flow_ctrl = "ON - transmit";
4377                 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
4378                         flow_ctrl = "ON - receive";
4379                 else
4380                         flow_ctrl = "none";
4381                 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
4382                 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
4383                             speed, duplex, flow_ctrl);
4384         } else {
4385                 netif_carrier_off(bp->dev);
4386                 netdev_err(bp->dev, "NIC Link is Down\n");
4387         }
4388 }
4389
4390 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
4391 {
4392         int rc = 0;
4393         struct bnxt_link_info *link_info = &bp->link_info;
4394         struct hwrm_port_phy_qcfg_input req = {0};
4395         struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4396         u8 link_up = link_info->link_up;
4397
4398         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
4399
4400         mutex_lock(&bp->hwrm_cmd_lock);
4401         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4402         if (rc) {
4403                 mutex_unlock(&bp->hwrm_cmd_lock);
4404                 return rc;
4405         }
4406
4407         memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
4408         link_info->phy_link_status = resp->link;
4409         link_info->duplex =  resp->duplex;
4410         link_info->pause = resp->pause;
4411         link_info->auto_mode = resp->auto_mode;
4412         link_info->auto_pause_setting = resp->auto_pause;
4413         link_info->force_pause_setting = resp->force_pause;
4414         link_info->duplex_setting = resp->duplex;
4415         if (link_info->phy_link_status == BNXT_LINK_LINK)
4416                 link_info->link_speed = le16_to_cpu(resp->link_speed);
4417         else
4418                 link_info->link_speed = 0;
4419         link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
4420         link_info->auto_link_speed = le16_to_cpu(resp->auto_link_speed);
4421         link_info->support_speeds = le16_to_cpu(resp->support_speeds);
4422         link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
4423         link_info->preemphasis = le32_to_cpu(resp->preemphasis);
4424         link_info->phy_ver[0] = resp->phy_maj;
4425         link_info->phy_ver[1] = resp->phy_min;
4426         link_info->phy_ver[2] = resp->phy_bld;
4427         link_info->media_type = resp->media_type;
4428         link_info->transceiver = resp->transceiver_type;
4429         link_info->phy_addr = resp->phy_addr;
4430
4431         /* TODO: need to add more logic to report VF link */
4432         if (chng_link_state) {
4433                 if (link_info->phy_link_status == BNXT_LINK_LINK)
4434                         link_info->link_up = 1;
4435                 else
4436                         link_info->link_up = 0;
4437                 if (link_up != link_info->link_up)
4438                         bnxt_report_link(bp);
4439         } else {
4440                 /* alwasy link down if not require to update link state */
4441                 link_info->link_up = 0;
4442         }
4443         mutex_unlock(&bp->hwrm_cmd_lock);
4444         return 0;
4445 }
4446
4447 static void
4448 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
4449 {
4450         if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
4451                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
4452                         req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
4453                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
4454                         req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
4455                 req->enables |=
4456                         cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
4457         } else {
4458                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
4459                         req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
4460                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
4461                         req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
4462                 req->enables |=
4463                         cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
4464         }
4465 }
4466
4467 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
4468                                       struct hwrm_port_phy_cfg_input *req)
4469 {
4470         u8 autoneg = bp->link_info.autoneg;
4471         u16 fw_link_speed = bp->link_info.req_link_speed;
4472         u32 advertising = bp->link_info.advertising;
4473
4474         if (autoneg & BNXT_AUTONEG_SPEED) {
4475                 req->auto_mode |=
4476                         PORT_PHY_CFG_REQ_AUTO_MODE_MASK;
4477
4478                 req->enables |= cpu_to_le32(
4479                         PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
4480                 req->auto_link_speed_mask = cpu_to_le16(advertising);
4481
4482                 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
4483                 req->flags |=
4484                         cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
4485         } else {
4486                 req->force_link_speed = cpu_to_le16(fw_link_speed);
4487                 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
4488         }
4489
4490         /* currently don't support half duplex */
4491         req->auto_duplex = PORT_PHY_CFG_REQ_AUTO_DUPLEX_FULL;
4492         req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_DUPLEX);
4493         /* tell chimp that the setting takes effect immediately */
4494         req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
4495 }
4496
4497 int bnxt_hwrm_set_pause(struct bnxt *bp)
4498 {
4499         struct hwrm_port_phy_cfg_input req = {0};
4500         int rc;
4501
4502         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
4503         bnxt_hwrm_set_pause_common(bp, &req);
4504
4505         if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
4506             bp->link_info.force_link_chng)
4507                 bnxt_hwrm_set_link_common(bp, &req);
4508
4509         mutex_lock(&bp->hwrm_cmd_lock);
4510         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4511         if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
4512                 /* since changing of pause setting doesn't trigger any link
4513                  * change event, the driver needs to update the current pause
4514                  * result upon successfully return of the phy_cfg command
4515                  */
4516                 bp->link_info.pause =
4517                 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
4518                 bp->link_info.auto_pause_setting = 0;
4519                 if (!bp->link_info.force_link_chng)
4520                         bnxt_report_link(bp);
4521         }
4522         bp->link_info.force_link_chng = false;
4523         mutex_unlock(&bp->hwrm_cmd_lock);
4524         return rc;
4525 }
4526
4527 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause)
4528 {
4529         struct hwrm_port_phy_cfg_input req = {0};
4530
4531         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
4532         if (set_pause)
4533                 bnxt_hwrm_set_pause_common(bp, &req);
4534
4535         bnxt_hwrm_set_link_common(bp, &req);
4536         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4537 }
4538
4539 static int bnxt_update_phy_setting(struct bnxt *bp)
4540 {
4541         int rc;
4542         bool update_link = false;
4543         bool update_pause = false;
4544         struct bnxt_link_info *link_info = &bp->link_info;
4545
4546         rc = bnxt_update_link(bp, true);
4547         if (rc) {
4548                 netdev_err(bp->dev, "failed to update link (rc: %x)\n",
4549                            rc);
4550                 return rc;
4551         }
4552         if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
4553             link_info->auto_pause_setting != link_info->req_flow_ctrl)
4554                 update_pause = true;
4555         if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
4556             link_info->force_pause_setting != link_info->req_flow_ctrl)
4557                 update_pause = true;
4558         if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
4559                 if (BNXT_AUTO_MODE(link_info->auto_mode))
4560                         update_link = true;
4561                 if (link_info->req_link_speed != link_info->force_link_speed)
4562                         update_link = true;
4563                 if (link_info->req_duplex != link_info->duplex_setting)
4564                         update_link = true;
4565         } else {
4566                 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
4567                         update_link = true;
4568                 if (link_info->advertising != link_info->auto_link_speeds)
4569                         update_link = true;
4570         }
4571
4572         if (update_link)
4573                 rc = bnxt_hwrm_set_link_setting(bp, update_pause);
4574         else if (update_pause)
4575                 rc = bnxt_hwrm_set_pause(bp);
4576         if (rc) {
4577                 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
4578                            rc);
4579                 return rc;
4580         }
4581
4582         return rc;
4583 }
4584
4585 /* Common routine to pre-map certain register block to different GRC window.
4586  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
4587  * in PF and 3 windows in VF that can be customized to map in different
4588  * register blocks.
4589  */
4590 static void bnxt_preset_reg_win(struct bnxt *bp)
4591 {
4592         if (BNXT_PF(bp)) {
4593                 /* CAG registers map to GRC window #4 */
4594                 writel(BNXT_CAG_REG_BASE,
4595                        bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
4596         }
4597 }
4598
4599 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4600 {
4601         int rc = 0;
4602
4603         bnxt_preset_reg_win(bp);
4604         netif_carrier_off(bp->dev);
4605         if (irq_re_init) {
4606                 rc = bnxt_setup_int_mode(bp);
4607                 if (rc) {
4608                         netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
4609                                    rc);
4610                         return rc;
4611                 }
4612         }
4613         if ((bp->flags & BNXT_FLAG_RFS) &&
4614             !(bp->flags & BNXT_FLAG_USING_MSIX)) {
4615                 /* disable RFS if falling back to INTA */
4616                 bp->dev->hw_features &= ~NETIF_F_NTUPLE;
4617                 bp->flags &= ~BNXT_FLAG_RFS;
4618         }
4619
4620         rc = bnxt_alloc_mem(bp, irq_re_init);
4621         if (rc) {
4622                 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
4623                 goto open_err_free_mem;
4624         }
4625
4626         if (irq_re_init) {
4627                 bnxt_init_napi(bp);
4628                 rc = bnxt_request_irq(bp);
4629                 if (rc) {
4630                         netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
4631                         goto open_err;
4632                 }
4633         }
4634
4635         bnxt_enable_napi(bp);
4636
4637         rc = bnxt_init_nic(bp, irq_re_init);
4638         if (rc) {
4639                 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
4640                 goto open_err;
4641         }
4642
4643         if (link_re_init) {
4644                 rc = bnxt_update_phy_setting(bp);
4645                 if (rc)
4646                         netdev_warn(bp->dev, "failed to update phy settings\n");
4647         }
4648
4649         if (irq_re_init) {
4650 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE)
4651                 vxlan_get_rx_port(bp->dev);
4652 #endif
4653                 if (!bnxt_hwrm_tunnel_dst_port_alloc(
4654                                 bp, htons(0x17c1),
4655                                 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE))
4656                         bp->nge_port_cnt = 1;
4657         }
4658
4659         set_bit(BNXT_STATE_OPEN, &bp->state);
4660         bnxt_enable_int(bp);
4661         /* Enable TX queues */
4662         bnxt_tx_enable(bp);
4663         mod_timer(&bp->timer, jiffies + bp->current_interval);
4664         bnxt_update_link(bp, true);
4665
4666         return 0;
4667
4668 open_err:
4669         bnxt_disable_napi(bp);
4670         bnxt_del_napi(bp);
4671
4672 open_err_free_mem:
4673         bnxt_free_skbs(bp);
4674         bnxt_free_irq(bp);
4675         bnxt_free_mem(bp, true);
4676         return rc;
4677 }
4678
4679 /* rtnl_lock held */
4680 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4681 {
4682         int rc = 0;
4683
4684         rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
4685         if (rc) {
4686                 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
4687                 dev_close(bp->dev);
4688         }
4689         return rc;
4690 }
4691
4692 static int bnxt_open(struct net_device *dev)
4693 {
4694         struct bnxt *bp = netdev_priv(dev);
4695         int rc = 0;
4696
4697         rc = bnxt_hwrm_func_reset(bp);
4698         if (rc) {
4699                 netdev_err(bp->dev, "hwrm chip reset failure rc: %x\n",
4700                            rc);
4701                 rc = -1;
4702                 return rc;
4703         }
4704         return __bnxt_open_nic(bp, true, true);
4705 }
4706
4707 static void bnxt_disable_int_sync(struct bnxt *bp)
4708 {
4709         int i;
4710
4711         atomic_inc(&bp->intr_sem);
4712         if (!netif_running(bp->dev))
4713                 return;
4714
4715         bnxt_disable_int(bp);
4716         for (i = 0; i < bp->cp_nr_rings; i++)
4717                 synchronize_irq(bp->irq_tbl[i].vector);
4718 }
4719
4720 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4721 {
4722         int rc = 0;
4723
4724 #ifdef CONFIG_BNXT_SRIOV
4725         if (bp->sriov_cfg) {
4726                 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
4727                                                       !bp->sriov_cfg,
4728                                                       BNXT_SRIOV_CFG_WAIT_TMO);
4729                 if (rc)
4730                         netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
4731         }
4732 #endif
4733         /* Change device state to avoid TX queue wake up's */
4734         bnxt_tx_disable(bp);
4735
4736         clear_bit(BNXT_STATE_OPEN, &bp->state);
4737         smp_mb__after_atomic();
4738         while (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state))
4739                 msleep(20);
4740
4741         /* Flush rings before disabling interrupts */
4742         bnxt_shutdown_nic(bp, irq_re_init);
4743
4744         /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
4745
4746         bnxt_disable_napi(bp);
4747         bnxt_disable_int_sync(bp);
4748         del_timer_sync(&bp->timer);
4749         bnxt_free_skbs(bp);
4750
4751         if (irq_re_init) {
4752                 bnxt_free_irq(bp);
4753                 bnxt_del_napi(bp);
4754         }
4755         bnxt_free_mem(bp, irq_re_init);
4756         return rc;
4757 }
4758
4759 static int bnxt_close(struct net_device *dev)
4760 {
4761         struct bnxt *bp = netdev_priv(dev);
4762
4763         bnxt_close_nic(bp, true, true);
4764         return 0;
4765 }
4766
4767 /* rtnl_lock held */
4768 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4769 {
4770         switch (cmd) {
4771         case SIOCGMIIPHY:
4772                 /* fallthru */
4773         case SIOCGMIIREG: {
4774                 if (!netif_running(dev))
4775                         return -EAGAIN;
4776
4777                 return 0;
4778         }
4779
4780         case SIOCSMIIREG:
4781                 if (!netif_running(dev))
4782                         return -EAGAIN;
4783
4784                 return 0;
4785
4786         default:
4787                 /* do nothing */
4788                 break;
4789         }
4790         return -EOPNOTSUPP;
4791 }
4792
4793 static struct rtnl_link_stats64 *
4794 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
4795 {
4796         u32 i;
4797         struct bnxt *bp = netdev_priv(dev);
4798
4799         memset(stats, 0, sizeof(struct rtnl_link_stats64));
4800
4801         if (!bp->bnapi)
4802                 return stats;
4803
4804         /* TODO check if we need to synchronize with bnxt_close path */
4805         for (i = 0; i < bp->cp_nr_rings; i++) {
4806                 struct bnxt_napi *bnapi = bp->bnapi[i];
4807                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4808                 struct ctx_hw_stats *hw_stats = cpr->hw_stats;
4809
4810                 stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
4811                 stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
4812                 stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
4813
4814                 stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
4815                 stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
4816                 stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
4817
4818                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
4819                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
4820                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
4821
4822                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
4823                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
4824                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
4825
4826                 stats->rx_missed_errors +=
4827                         le64_to_cpu(hw_stats->rx_discard_pkts);
4828
4829                 stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
4830
4831                 stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
4832         }
4833
4834         return stats;
4835 }
4836
4837 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
4838 {
4839         struct net_device *dev = bp->dev;
4840         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4841         struct netdev_hw_addr *ha;
4842         u8 *haddr;
4843         int mc_count = 0;
4844         bool update = false;
4845         int off = 0;
4846
4847         netdev_for_each_mc_addr(ha, dev) {
4848                 if (mc_count >= BNXT_MAX_MC_ADDRS) {
4849                         *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4850                         vnic->mc_list_count = 0;
4851                         return false;
4852                 }
4853                 haddr = ha->addr;
4854                 if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
4855                         memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
4856                         update = true;
4857                 }
4858                 off += ETH_ALEN;
4859                 mc_count++;
4860         }
4861         if (mc_count)
4862                 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
4863
4864         if (mc_count != vnic->mc_list_count) {
4865                 vnic->mc_list_count = mc_count;
4866                 update = true;
4867         }
4868         return update;
4869 }
4870
4871 static bool bnxt_uc_list_updated(struct bnxt *bp)
4872 {
4873         struct net_device *dev = bp->dev;
4874         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4875         struct netdev_hw_addr *ha;
4876         int off = 0;
4877
4878         if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
4879                 return true;
4880
4881         netdev_for_each_uc_addr(ha, dev) {
4882                 if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
4883                         return true;
4884
4885                 off += ETH_ALEN;
4886         }
4887         return false;
4888 }
4889
4890 static void bnxt_set_rx_mode(struct net_device *dev)
4891 {
4892         struct bnxt *bp = netdev_priv(dev);
4893         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4894         u32 mask = vnic->rx_mask;
4895         bool mc_update = false;
4896         bool uc_update;
4897
4898         if (!netif_running(dev))
4899                 return;
4900
4901         mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
4902                   CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
4903                   CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
4904
4905         /* Only allow PF to be in promiscuous mode */
4906         if ((dev->flags & IFF_PROMISC) && BNXT_PF(bp))
4907                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
4908
4909         uc_update = bnxt_uc_list_updated(bp);
4910
4911         if (dev->flags & IFF_ALLMULTI) {
4912                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4913                 vnic->mc_list_count = 0;
4914         } else {
4915                 mc_update = bnxt_mc_list_updated(bp, &mask);
4916         }
4917
4918         if (mask != vnic->rx_mask || uc_update || mc_update) {
4919                 vnic->rx_mask = mask;
4920
4921                 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
4922                 schedule_work(&bp->sp_task);
4923         }
4924 }
4925
4926 static int bnxt_cfg_rx_mode(struct bnxt *bp)
4927 {
4928         struct net_device *dev = bp->dev;
4929         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4930         struct netdev_hw_addr *ha;
4931         int i, off = 0, rc;
4932         bool uc_update;
4933
4934         netif_addr_lock_bh(dev);
4935         uc_update = bnxt_uc_list_updated(bp);
4936         netif_addr_unlock_bh(dev);
4937
4938         if (!uc_update)
4939                 goto skip_uc;
4940
4941         mutex_lock(&bp->hwrm_cmd_lock);
4942         for (i = 1; i < vnic->uc_filter_count; i++) {
4943                 struct hwrm_cfa_l2_filter_free_input req = {0};
4944
4945                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
4946                                        -1);
4947
4948                 req.l2_filter_id = vnic->fw_l2_filter_id[i];
4949
4950                 rc = _hwrm_send_message(bp, &req, sizeof(req),
4951                                         HWRM_CMD_TIMEOUT);
4952         }
4953         mutex_unlock(&bp->hwrm_cmd_lock);
4954
4955         vnic->uc_filter_count = 1;
4956
4957         netif_addr_lock_bh(dev);
4958         if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
4959                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
4960         } else {
4961                 netdev_for_each_uc_addr(ha, dev) {
4962                         memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
4963                         off += ETH_ALEN;
4964                         vnic->uc_filter_count++;
4965                 }
4966         }
4967         netif_addr_unlock_bh(dev);
4968
4969         for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
4970                 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
4971                 if (rc) {
4972                         netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
4973                                    rc);
4974                         vnic->uc_filter_count = i;
4975                         return rc;
4976                 }
4977         }
4978
4979 skip_uc:
4980         rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
4981         if (rc)
4982                 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
4983                            rc);
4984
4985         return rc;
4986 }
4987
4988 static bool bnxt_rfs_capable(struct bnxt *bp)
4989 {
4990 #ifdef CONFIG_RFS_ACCEL
4991         struct bnxt_pf_info *pf = &bp->pf;
4992         int vnics;
4993
4994         if (BNXT_VF(bp) || !(bp->flags & BNXT_FLAG_MSIX_CAP))
4995                 return false;
4996
4997         vnics = 1 + bp->rx_nr_rings;
4998         if (vnics > pf->max_rsscos_ctxs || vnics > pf->max_vnics)
4999                 return false;
5000
5001         return true;
5002 #else
5003         return false;
5004 #endif
5005 }
5006
5007 static netdev_features_t bnxt_fix_features(struct net_device *dev,
5008                                            netdev_features_t features)
5009 {
5010         struct bnxt *bp = netdev_priv(dev);
5011
5012         if (!bnxt_rfs_capable(bp))
5013                 features &= ~NETIF_F_NTUPLE;
5014         return features;
5015 }
5016
5017 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
5018 {
5019         struct bnxt *bp = netdev_priv(dev);
5020         u32 flags = bp->flags;
5021         u32 changes;
5022         int rc = 0;
5023         bool re_init = false;
5024         bool update_tpa = false;
5025
5026         flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
5027         if ((features & NETIF_F_GRO) && (bp->pdev->revision > 0))
5028                 flags |= BNXT_FLAG_GRO;
5029         if (features & NETIF_F_LRO)
5030                 flags |= BNXT_FLAG_LRO;
5031
5032         if (features & NETIF_F_HW_VLAN_CTAG_RX)
5033                 flags |= BNXT_FLAG_STRIP_VLAN;
5034
5035         if (features & NETIF_F_NTUPLE)
5036                 flags |= BNXT_FLAG_RFS;
5037
5038         changes = flags ^ bp->flags;
5039         if (changes & BNXT_FLAG_TPA) {
5040                 update_tpa = true;
5041                 if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
5042                     (flags & BNXT_FLAG_TPA) == 0)
5043                         re_init = true;
5044         }
5045
5046         if (changes & ~BNXT_FLAG_TPA)
5047                 re_init = true;
5048
5049         if (flags != bp->flags) {
5050                 u32 old_flags = bp->flags;
5051
5052                 bp->flags = flags;
5053
5054                 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
5055                         if (update_tpa)
5056                                 bnxt_set_ring_params(bp);
5057                         return rc;
5058                 }
5059
5060                 if (re_init) {
5061                         bnxt_close_nic(bp, false, false);
5062                         if (update_tpa)
5063                                 bnxt_set_ring_params(bp);
5064
5065                         return bnxt_open_nic(bp, false, false);
5066                 }
5067                 if (update_tpa) {
5068                         rc = bnxt_set_tpa(bp,
5069                                           (flags & BNXT_FLAG_TPA) ?
5070                                           true : false);
5071                         if (rc)
5072                                 bp->flags = old_flags;
5073                 }
5074         }
5075         return rc;
5076 }
5077
5078 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
5079 {
5080         struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
5081         int i = bnapi->index;
5082
5083         if (!txr)
5084                 return;
5085
5086         netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
5087                     i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
5088                     txr->tx_cons);
5089 }
5090
5091 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
5092 {
5093         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
5094         int i = bnapi->index;
5095
5096         if (!rxr)
5097                 return;
5098
5099         netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
5100                     i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
5101                     rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
5102                     rxr->rx_sw_agg_prod);
5103 }
5104
5105 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
5106 {
5107         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5108         int i = bnapi->index;
5109
5110         netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
5111                     i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
5112 }
5113
5114 static void bnxt_dbg_dump_states(struct bnxt *bp)
5115 {
5116         int i;
5117         struct bnxt_napi *bnapi;
5118
5119         for (i = 0; i < bp->cp_nr_rings; i++) {
5120                 bnapi = bp->bnapi[i];
5121                 if (netif_msg_drv(bp)) {
5122                         bnxt_dump_tx_sw_state(bnapi);
5123                         bnxt_dump_rx_sw_state(bnapi);
5124                         bnxt_dump_cp_sw_state(bnapi);
5125                 }
5126         }
5127 }
5128
5129 static void bnxt_reset_task(struct bnxt *bp)
5130 {
5131         bnxt_dbg_dump_states(bp);
5132         if (netif_running(bp->dev)) {
5133                 bnxt_close_nic(bp, false, false);
5134                 bnxt_open_nic(bp, false, false);
5135         }
5136 }
5137
5138 static void bnxt_tx_timeout(struct net_device *dev)
5139 {
5140         struct bnxt *bp = netdev_priv(dev);
5141
5142         netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
5143         set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
5144         schedule_work(&bp->sp_task);
5145 }
5146
5147 #ifdef CONFIG_NET_POLL_CONTROLLER
5148 static void bnxt_poll_controller(struct net_device *dev)
5149 {
5150         struct bnxt *bp = netdev_priv(dev);
5151         int i;
5152
5153         for (i = 0; i < bp->cp_nr_rings; i++) {
5154                 struct bnxt_irq *irq = &bp->irq_tbl[i];
5155
5156                 disable_irq(irq->vector);
5157                 irq->handler(irq->vector, bp->bnapi[i]);
5158                 enable_irq(irq->vector);
5159         }
5160 }
5161 #endif
5162
5163 static void bnxt_timer(unsigned long data)
5164 {
5165         struct bnxt *bp = (struct bnxt *)data;
5166         struct net_device *dev = bp->dev;
5167
5168         if (!netif_running(dev))
5169                 return;
5170
5171         if (atomic_read(&bp->intr_sem) != 0)
5172                 goto bnxt_restart_timer;
5173
5174 bnxt_restart_timer:
5175         mod_timer(&bp->timer, jiffies + bp->current_interval);
5176 }
5177
5178 static void bnxt_cfg_ntp_filters(struct bnxt *);
5179
5180 static void bnxt_sp_task(struct work_struct *work)
5181 {
5182         struct bnxt *bp = container_of(work, struct bnxt, sp_task);
5183         int rc;
5184
5185         set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5186         smp_mb__after_atomic();
5187         if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
5188                 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5189                 return;
5190         }
5191
5192         if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
5193                 bnxt_cfg_rx_mode(bp);
5194
5195         if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
5196                 bnxt_cfg_ntp_filters(bp);
5197         if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
5198                 rc = bnxt_update_link(bp, true);
5199                 if (rc)
5200                         netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
5201                                    rc);
5202         }
5203         if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
5204                 bnxt_hwrm_exec_fwd_req(bp);
5205         if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
5206                 bnxt_hwrm_tunnel_dst_port_alloc(
5207                         bp, bp->vxlan_port,
5208                         TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5209         }
5210         if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
5211                 bnxt_hwrm_tunnel_dst_port_free(
5212                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5213         }
5214         if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) {
5215                 /* bnxt_reset_task() calls bnxt_close_nic() which waits
5216                  * for BNXT_STATE_IN_SP_TASK to clear.
5217                  */
5218                 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5219                 rtnl_lock();
5220                 bnxt_reset_task(bp);
5221                 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5222                 rtnl_unlock();
5223         }
5224
5225         smp_mb__before_atomic();
5226         clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5227 }
5228
5229 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
5230 {
5231         int rc;
5232         struct bnxt *bp = netdev_priv(dev);
5233
5234         SET_NETDEV_DEV(dev, &pdev->dev);
5235
5236         /* enable device (incl. PCI PM wakeup), and bus-mastering */
5237         rc = pci_enable_device(pdev);
5238         if (rc) {
5239                 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
5240                 goto init_err;
5241         }
5242
5243         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
5244                 dev_err(&pdev->dev,
5245                         "Cannot find PCI device base address, aborting\n");
5246                 rc = -ENODEV;
5247                 goto init_err_disable;
5248         }
5249
5250         rc = pci_request_regions(pdev, DRV_MODULE_NAME);
5251         if (rc) {
5252                 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
5253                 goto init_err_disable;
5254         }
5255
5256         if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
5257             dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
5258                 dev_err(&pdev->dev, "System does not support DMA, aborting\n");
5259                 goto init_err_disable;
5260         }
5261
5262         pci_set_master(pdev);
5263
5264         bp->dev = dev;
5265         bp->pdev = pdev;
5266
5267         bp->bar0 = pci_ioremap_bar(pdev, 0);
5268         if (!bp->bar0) {
5269                 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5270                 rc = -ENOMEM;
5271                 goto init_err_release;
5272         }
5273
5274         bp->bar1 = pci_ioremap_bar(pdev, 2);
5275         if (!bp->bar1) {
5276                 dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
5277                 rc = -ENOMEM;
5278                 goto init_err_release;
5279         }
5280
5281         bp->bar2 = pci_ioremap_bar(pdev, 4);
5282         if (!bp->bar2) {
5283                 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
5284                 rc = -ENOMEM;
5285                 goto init_err_release;
5286         }
5287
5288         INIT_WORK(&bp->sp_task, bnxt_sp_task);
5289
5290         spin_lock_init(&bp->ntp_fltr_lock);
5291
5292         bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
5293         bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
5294
5295         bp->coal_ticks = BNXT_USEC_TO_COAL_TIMER(4);
5296         bp->coal_bufs = 20;
5297         bp->coal_ticks_irq = BNXT_USEC_TO_COAL_TIMER(1);
5298         bp->coal_bufs_irq = 2;
5299
5300         init_timer(&bp->timer);
5301         bp->timer.data = (unsigned long)bp;
5302         bp->timer.function = bnxt_timer;
5303         bp->current_interval = BNXT_TIMER_INTERVAL;
5304
5305         clear_bit(BNXT_STATE_OPEN, &bp->state);
5306
5307         return 0;
5308
5309 init_err_release:
5310         if (bp->bar2) {
5311                 pci_iounmap(pdev, bp->bar2);
5312                 bp->bar2 = NULL;
5313         }
5314
5315         if (bp->bar1) {
5316                 pci_iounmap(pdev, bp->bar1);
5317                 bp->bar1 = NULL;
5318         }
5319
5320         if (bp->bar0) {
5321                 pci_iounmap(pdev, bp->bar0);
5322                 bp->bar0 = NULL;
5323         }
5324
5325         pci_release_regions(pdev);
5326
5327 init_err_disable:
5328         pci_disable_device(pdev);
5329
5330 init_err:
5331         return rc;
5332 }
5333
5334 /* rtnl_lock held */
5335 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
5336 {
5337         struct sockaddr *addr = p;
5338         struct bnxt *bp = netdev_priv(dev);
5339         int rc = 0;
5340
5341         if (!is_valid_ether_addr(addr->sa_data))
5342                 return -EADDRNOTAVAIL;
5343
5344 #ifdef CONFIG_BNXT_SRIOV
5345         if (BNXT_VF(bp) && is_valid_ether_addr(bp->vf.mac_addr))
5346                 return -EADDRNOTAVAIL;
5347 #endif
5348
5349         if (ether_addr_equal(addr->sa_data, dev->dev_addr))
5350                 return 0;
5351
5352         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5353         if (netif_running(dev)) {
5354                 bnxt_close_nic(bp, false, false);
5355                 rc = bnxt_open_nic(bp, false, false);
5356         }
5357
5358         return rc;
5359 }
5360
5361 /* rtnl_lock held */
5362 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
5363 {
5364         struct bnxt *bp = netdev_priv(dev);
5365
5366         if (new_mtu < 60 || new_mtu > 9000)
5367                 return -EINVAL;
5368
5369         if (netif_running(dev))
5370                 bnxt_close_nic(bp, false, false);
5371
5372         dev->mtu = new_mtu;
5373         bnxt_set_ring_params(bp);
5374
5375         if (netif_running(dev))
5376                 return bnxt_open_nic(bp, false, false);
5377
5378         return 0;
5379 }
5380
5381 static int bnxt_setup_tc(struct net_device *dev, u8 tc)
5382 {
5383         struct bnxt *bp = netdev_priv(dev);
5384
5385         if (tc > bp->max_tc) {
5386                 netdev_err(dev, "too many traffic classes requested: %d Max supported is %d\n",
5387                            tc, bp->max_tc);
5388                 return -EINVAL;
5389         }
5390
5391         if (netdev_get_num_tc(dev) == tc)
5392                 return 0;
5393
5394         if (tc) {
5395                 int max_rx_rings, max_tx_rings, rc;
5396                 bool sh = false;
5397
5398                 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5399                         sh = true;
5400
5401                 rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh);
5402                 if (rc || bp->tx_nr_rings_per_tc * tc > max_tx_rings)
5403                         return -ENOMEM;
5404         }
5405
5406         /* Needs to close the device and do hw resource re-allocations */
5407         if (netif_running(bp->dev))
5408                 bnxt_close_nic(bp, true, false);
5409
5410         if (tc) {
5411                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
5412                 netdev_set_num_tc(dev, tc);
5413         } else {
5414                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
5415                 netdev_reset_tc(dev);
5416         }
5417         bp->cp_nr_rings = max_t(int, bp->tx_nr_rings, bp->rx_nr_rings);
5418         bp->num_stat_ctxs = bp->cp_nr_rings;
5419
5420         if (netif_running(bp->dev))
5421                 return bnxt_open_nic(bp, true, false);
5422
5423         return 0;
5424 }
5425
5426 #ifdef CONFIG_RFS_ACCEL
5427 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
5428                             struct bnxt_ntuple_filter *f2)
5429 {
5430         struct flow_keys *keys1 = &f1->fkeys;
5431         struct flow_keys *keys2 = &f2->fkeys;
5432
5433         if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
5434             keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
5435             keys1->ports.ports == keys2->ports.ports &&
5436             keys1->basic.ip_proto == keys2->basic.ip_proto &&
5437             keys1->basic.n_proto == keys2->basic.n_proto &&
5438             ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr))
5439                 return true;
5440
5441         return false;
5442 }
5443
5444 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
5445                               u16 rxq_index, u32 flow_id)
5446 {
5447         struct bnxt *bp = netdev_priv(dev);
5448         struct bnxt_ntuple_filter *fltr, *new_fltr;
5449         struct flow_keys *fkeys;
5450         struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
5451         int rc = 0, idx, bit_id;
5452         struct hlist_head *head;
5453
5454         if (skb->encapsulation)
5455                 return -EPROTONOSUPPORT;
5456
5457         new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
5458         if (!new_fltr)
5459                 return -ENOMEM;
5460
5461         fkeys = &new_fltr->fkeys;
5462         if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
5463                 rc = -EPROTONOSUPPORT;
5464                 goto err_free;
5465         }
5466
5467         if ((fkeys->basic.n_proto != htons(ETH_P_IP)) ||
5468             ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
5469              (fkeys->basic.ip_proto != IPPROTO_UDP))) {
5470                 rc = -EPROTONOSUPPORT;
5471                 goto err_free;
5472         }
5473
5474         memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
5475
5476         idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
5477         head = &bp->ntp_fltr_hash_tbl[idx];
5478         rcu_read_lock();
5479         hlist_for_each_entry_rcu(fltr, head, hash) {
5480                 if (bnxt_fltr_match(fltr, new_fltr)) {
5481                         rcu_read_unlock();
5482                         rc = 0;
5483                         goto err_free;
5484                 }
5485         }
5486         rcu_read_unlock();
5487
5488         spin_lock_bh(&bp->ntp_fltr_lock);
5489         bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
5490                                          BNXT_NTP_FLTR_MAX_FLTR, 0);
5491         if (bit_id < 0) {
5492                 spin_unlock_bh(&bp->ntp_fltr_lock);
5493                 rc = -ENOMEM;
5494                 goto err_free;
5495         }
5496
5497         new_fltr->sw_id = (u16)bit_id;
5498         new_fltr->flow_id = flow_id;
5499         new_fltr->rxq = rxq_index;
5500         hlist_add_head_rcu(&new_fltr->hash, head);
5501         bp->ntp_fltr_count++;
5502         spin_unlock_bh(&bp->ntp_fltr_lock);
5503
5504         set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
5505         schedule_work(&bp->sp_task);
5506
5507         return new_fltr->sw_id;
5508
5509 err_free:
5510         kfree(new_fltr);
5511         return rc;
5512 }
5513
5514 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
5515 {
5516         int i;
5517
5518         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
5519                 struct hlist_head *head;
5520                 struct hlist_node *tmp;
5521                 struct bnxt_ntuple_filter *fltr;
5522                 int rc;
5523
5524                 head = &bp->ntp_fltr_hash_tbl[i];
5525                 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
5526                         bool del = false;
5527
5528                         if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
5529                                 if (rps_may_expire_flow(bp->dev, fltr->rxq,
5530                                                         fltr->flow_id,
5531                                                         fltr->sw_id)) {
5532                                         bnxt_hwrm_cfa_ntuple_filter_free(bp,
5533                                                                          fltr);
5534                                         del = true;
5535                                 }
5536                         } else {
5537                                 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
5538                                                                        fltr);
5539                                 if (rc)
5540                                         del = true;
5541                                 else
5542                                         set_bit(BNXT_FLTR_VALID, &fltr->state);
5543                         }
5544
5545                         if (del) {
5546                                 spin_lock_bh(&bp->ntp_fltr_lock);
5547                                 hlist_del_rcu(&fltr->hash);
5548                                 bp->ntp_fltr_count--;
5549                                 spin_unlock_bh(&bp->ntp_fltr_lock);
5550                                 synchronize_rcu();
5551                                 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
5552                                 kfree(fltr);
5553                         }
5554                 }
5555         }
5556 }
5557
5558 #else
5559
5560 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
5561 {
5562 }
5563
5564 #endif /* CONFIG_RFS_ACCEL */
5565
5566 static void bnxt_add_vxlan_port(struct net_device *dev, sa_family_t sa_family,
5567                                 __be16 port)
5568 {
5569         struct bnxt *bp = netdev_priv(dev);
5570
5571         if (!netif_running(dev))
5572                 return;
5573
5574         if (sa_family != AF_INET6 && sa_family != AF_INET)
5575                 return;
5576
5577         if (bp->vxlan_port_cnt && bp->vxlan_port != port)
5578                 return;
5579
5580         bp->vxlan_port_cnt++;
5581         if (bp->vxlan_port_cnt == 1) {
5582                 bp->vxlan_port = port;
5583                 set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
5584                 schedule_work(&bp->sp_task);
5585         }
5586 }
5587
5588 static void bnxt_del_vxlan_port(struct net_device *dev, sa_family_t sa_family,
5589                                 __be16 port)
5590 {
5591         struct bnxt *bp = netdev_priv(dev);
5592
5593         if (!netif_running(dev))
5594                 return;
5595
5596         if (sa_family != AF_INET6 && sa_family != AF_INET)
5597                 return;
5598
5599         if (bp->vxlan_port_cnt && bp->vxlan_port == port) {
5600                 bp->vxlan_port_cnt--;
5601
5602                 if (bp->vxlan_port_cnt == 0) {
5603                         set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
5604                         schedule_work(&bp->sp_task);
5605                 }
5606         }
5607 }
5608
5609 static const struct net_device_ops bnxt_netdev_ops = {
5610         .ndo_open               = bnxt_open,
5611         .ndo_start_xmit         = bnxt_start_xmit,
5612         .ndo_stop               = bnxt_close,
5613         .ndo_get_stats64        = bnxt_get_stats64,
5614         .ndo_set_rx_mode        = bnxt_set_rx_mode,
5615         .ndo_do_ioctl           = bnxt_ioctl,
5616         .ndo_validate_addr      = eth_validate_addr,
5617         .ndo_set_mac_address    = bnxt_change_mac_addr,
5618         .ndo_change_mtu         = bnxt_change_mtu,
5619         .ndo_fix_features       = bnxt_fix_features,
5620         .ndo_set_features       = bnxt_set_features,
5621         .ndo_tx_timeout         = bnxt_tx_timeout,
5622 #ifdef CONFIG_BNXT_SRIOV
5623         .ndo_get_vf_config      = bnxt_get_vf_config,
5624         .ndo_set_vf_mac         = bnxt_set_vf_mac,
5625         .ndo_set_vf_vlan        = bnxt_set_vf_vlan,
5626         .ndo_set_vf_rate        = bnxt_set_vf_bw,
5627         .ndo_set_vf_link_state  = bnxt_set_vf_link_state,
5628         .ndo_set_vf_spoofchk    = bnxt_set_vf_spoofchk,
5629 #endif
5630 #ifdef CONFIG_NET_POLL_CONTROLLER
5631         .ndo_poll_controller    = bnxt_poll_controller,
5632 #endif
5633         .ndo_setup_tc           = bnxt_setup_tc,
5634 #ifdef CONFIG_RFS_ACCEL
5635         .ndo_rx_flow_steer      = bnxt_rx_flow_steer,
5636 #endif
5637         .ndo_add_vxlan_port     = bnxt_add_vxlan_port,
5638         .ndo_del_vxlan_port     = bnxt_del_vxlan_port,
5639 #ifdef CONFIG_NET_RX_BUSY_POLL
5640         .ndo_busy_poll          = bnxt_busy_poll,
5641 #endif
5642 };
5643
5644 static void bnxt_remove_one(struct pci_dev *pdev)
5645 {
5646         struct net_device *dev = pci_get_drvdata(pdev);
5647         struct bnxt *bp = netdev_priv(dev);
5648
5649         if (BNXT_PF(bp))
5650                 bnxt_sriov_disable(bp);
5651
5652         unregister_netdev(dev);
5653         cancel_work_sync(&bp->sp_task);
5654         bp->sp_event = 0;
5655
5656         bnxt_hwrm_func_drv_unrgtr(bp);
5657         bnxt_free_hwrm_resources(bp);
5658         pci_iounmap(pdev, bp->bar2);
5659         pci_iounmap(pdev, bp->bar1);
5660         pci_iounmap(pdev, bp->bar0);
5661         free_netdev(dev);
5662
5663         pci_release_regions(pdev);
5664         pci_disable_device(pdev);
5665 }
5666
5667 static int bnxt_probe_phy(struct bnxt *bp)
5668 {
5669         int rc = 0;
5670         struct bnxt_link_info *link_info = &bp->link_info;
5671         char phy_ver[PHY_VER_STR_LEN];
5672
5673         rc = bnxt_update_link(bp, false);
5674         if (rc) {
5675                 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
5676                            rc);
5677                 return rc;
5678         }
5679
5680         /*initialize the ethool setting copy with NVM settings */
5681         if (BNXT_AUTO_MODE(link_info->auto_mode)) {
5682                 link_info->autoneg = BNXT_AUTONEG_SPEED |
5683                                      BNXT_AUTONEG_FLOW_CTRL;
5684                 link_info->advertising = link_info->auto_link_speeds;
5685                 link_info->req_flow_ctrl = link_info->auto_pause_setting;
5686         } else {
5687                 link_info->req_link_speed = link_info->force_link_speed;
5688                 link_info->req_duplex = link_info->duplex_setting;
5689                 link_info->req_flow_ctrl = link_info->force_pause_setting;
5690         }
5691         snprintf(phy_ver, PHY_VER_STR_LEN, " ph %d.%d.%d",
5692                  link_info->phy_ver[0],
5693                  link_info->phy_ver[1],
5694                  link_info->phy_ver[2]);
5695         strcat(bp->fw_ver_str, phy_ver);
5696         return rc;
5697 }
5698
5699 static int bnxt_get_max_irq(struct pci_dev *pdev)
5700 {
5701         u16 ctrl;
5702
5703         if (!pdev->msix_cap)
5704                 return 1;
5705
5706         pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
5707         return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
5708 }
5709
5710 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
5711                                 int *max_cp)
5712 {
5713         int max_ring_grps = 0;
5714
5715 #ifdef CONFIG_BNXT_SRIOV
5716         if (!BNXT_PF(bp)) {
5717                 *max_tx = bp->vf.max_tx_rings;
5718                 *max_rx = bp->vf.max_rx_rings;
5719                 *max_cp = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings);
5720                 *max_cp = min_t(int, *max_cp, bp->vf.max_stat_ctxs);
5721                 max_ring_grps = bp->vf.max_hw_ring_grps;
5722         } else
5723 #endif
5724         {
5725                 *max_tx = bp->pf.max_tx_rings;
5726                 *max_rx = bp->pf.max_rx_rings;
5727                 *max_cp = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings);
5728                 *max_cp = min_t(int, *max_cp, bp->pf.max_stat_ctxs);
5729                 max_ring_grps = bp->pf.max_hw_ring_grps;
5730         }
5731
5732         if (bp->flags & BNXT_FLAG_AGG_RINGS)
5733                 *max_rx >>= 1;
5734         *max_rx = min_t(int, *max_rx, max_ring_grps);
5735 }
5736
5737 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
5738 {
5739         int rx, tx, cp;
5740
5741         _bnxt_get_max_rings(bp, &rx, &tx, &cp);
5742         if (!rx || !tx || !cp)
5743                 return -ENOMEM;
5744
5745         *max_rx = rx;
5746         *max_tx = tx;
5747         return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
5748 }
5749
5750 static int bnxt_set_dflt_rings(struct bnxt *bp)
5751 {
5752         int dflt_rings, max_rx_rings, max_tx_rings, rc;
5753         bool sh = true;
5754
5755         if (sh)
5756                 bp->flags |= BNXT_FLAG_SHARED_RINGS;
5757         dflt_rings = netif_get_num_default_rss_queues();
5758         rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh);
5759         if (rc)
5760                 return rc;
5761         bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
5762         bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
5763         bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
5764         bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
5765                                bp->tx_nr_rings + bp->rx_nr_rings;
5766         bp->num_stat_ctxs = bp->cp_nr_rings;
5767         return rc;
5768 }
5769
5770 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
5771 {
5772         static int version_printed;
5773         struct net_device *dev;
5774         struct bnxt *bp;
5775         int rc, max_irqs;
5776
5777         if (version_printed++ == 0)
5778                 pr_info("%s", version);
5779
5780         max_irqs = bnxt_get_max_irq(pdev);
5781         dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
5782         if (!dev)
5783                 return -ENOMEM;
5784
5785         bp = netdev_priv(dev);
5786
5787         if (bnxt_vf_pciid(ent->driver_data))
5788                 bp->flags |= BNXT_FLAG_VF;
5789
5790         if (pdev->msix_cap)
5791                 bp->flags |= BNXT_FLAG_MSIX_CAP;
5792
5793         rc = bnxt_init_board(pdev, dev);
5794         if (rc < 0)
5795                 goto init_err_free;
5796
5797         dev->netdev_ops = &bnxt_netdev_ops;
5798         dev->watchdog_timeo = BNXT_TX_TIMEOUT;
5799         dev->ethtool_ops = &bnxt_ethtool_ops;
5800
5801         pci_set_drvdata(pdev, dev);
5802
5803         dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
5804                            NETIF_F_TSO | NETIF_F_TSO6 |
5805                            NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
5806                            NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT |
5807                            NETIF_F_RXHASH |
5808                            NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO;
5809
5810         dev->hw_enc_features =
5811                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
5812                         NETIF_F_TSO | NETIF_F_TSO6 |
5813                         NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
5814                         NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
5815         dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
5816         dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
5817                             NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
5818         dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
5819         dev->priv_flags |= IFF_UNICAST_FLT;
5820
5821 #ifdef CONFIG_BNXT_SRIOV
5822         init_waitqueue_head(&bp->sriov_cfg_wait);
5823 #endif
5824         rc = bnxt_alloc_hwrm_resources(bp);
5825         if (rc)
5826                 goto init_err;
5827
5828         mutex_init(&bp->hwrm_cmd_lock);
5829         bnxt_hwrm_ver_get(bp);
5830
5831         rc = bnxt_hwrm_func_drv_rgtr(bp);
5832         if (rc)
5833                 goto init_err;
5834
5835         /* Get the MAX capabilities for this function */
5836         rc = bnxt_hwrm_func_qcaps(bp);
5837         if (rc) {
5838                 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
5839                            rc);
5840                 rc = -1;
5841                 goto init_err;
5842         }
5843
5844         rc = bnxt_hwrm_queue_qportcfg(bp);
5845         if (rc) {
5846                 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
5847                            rc);
5848                 rc = -1;
5849                 goto init_err;
5850         }
5851
5852         bnxt_set_tpa_flags(bp);
5853         bnxt_set_ring_params(bp);
5854         if (BNXT_PF(bp))
5855                 bp->pf.max_irqs = max_irqs;
5856 #if defined(CONFIG_BNXT_SRIOV)
5857         else
5858                 bp->vf.max_irqs = max_irqs;
5859 #endif
5860         bnxt_set_dflt_rings(bp);
5861
5862         if (BNXT_PF(bp)) {
5863                 dev->hw_features |= NETIF_F_NTUPLE;
5864                 if (bnxt_rfs_capable(bp)) {
5865                         bp->flags |= BNXT_FLAG_RFS;
5866                         dev->features |= NETIF_F_NTUPLE;
5867                 }
5868         }
5869
5870         if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
5871                 bp->flags |= BNXT_FLAG_STRIP_VLAN;
5872
5873         rc = bnxt_probe_phy(bp);
5874         if (rc)
5875                 goto init_err;
5876
5877         rc = register_netdev(dev);
5878         if (rc)
5879                 goto init_err;
5880
5881         netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
5882                     board_info[ent->driver_data].name,
5883                     (long)pci_resource_start(pdev, 0), dev->dev_addr);
5884
5885         return 0;
5886
5887 init_err:
5888         pci_iounmap(pdev, bp->bar0);
5889         pci_release_regions(pdev);
5890         pci_disable_device(pdev);
5891
5892 init_err_free:
5893         free_netdev(dev);
5894         return rc;
5895 }
5896
5897 static struct pci_driver bnxt_pci_driver = {
5898         .name           = DRV_MODULE_NAME,
5899         .id_table       = bnxt_pci_tbl,
5900         .probe          = bnxt_init_one,
5901         .remove         = bnxt_remove_one,
5902 #if defined(CONFIG_BNXT_SRIOV)
5903         .sriov_configure = bnxt_sriov_configure,
5904 #endif
5905 };
5906
5907 module_pci_driver(bnxt_pci_driver);