Merge tag 'binfmt-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb...
[cascardo/linux.git] / drivers / net / ethernet / cavium / liquidio / lio_main.c
1 /**********************************************************************
2 * Author: Cavium, Inc.
3 *
4 * Contact: support@cavium.com
5 *          Please include "LiquidIO" in the subject.
6 *
7 * Copyright (c) 2003-2015 Cavium, Inc.
8 *
9 * This file is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License, Version 2, as
11 * published by the Free Software Foundation.
12 *
13 * This file is distributed in the hope that it will be useful, but
14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16 * NONINFRINGEMENT.  See the GNU General Public License for more
17 * details.
18 *
19 * This file may also be available under a different license from Cavium.
20 * Contact Cavium, Inc. for more information
21 **********************************************************************/
22 #include <linux/version.h>
23 #include <linux/pci.h>
24 #include <linux/net_tstamp.h>
25 #include <linux/if_vlan.h>
26 #include <linux/firmware.h>
27 #include <linux/ptp_clock_kernel.h>
28 #include <net/vxlan.h>
29 #include "liquidio_common.h"
30 #include "octeon_droq.h"
31 #include "octeon_iq.h"
32 #include "response_manager.h"
33 #include "octeon_device.h"
34 #include "octeon_nic.h"
35 #include "octeon_main.h"
36 #include "octeon_network.h"
37 #include "cn66xx_regs.h"
38 #include "cn66xx_device.h"
39 #include "cn68xx_device.h"
40 #include "liquidio_image.h"
41
42 MODULE_AUTHOR("Cavium Networks, <support@cavium.com>");
43 MODULE_DESCRIPTION("Cavium LiquidIO Intelligent Server Adapter Driver");
44 MODULE_LICENSE("GPL");
45 MODULE_VERSION(LIQUIDIO_VERSION);
46 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_210SV_NAME LIO_FW_NAME_SUFFIX);
47 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_210NV_NAME LIO_FW_NAME_SUFFIX);
48 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_410NV_NAME LIO_FW_NAME_SUFFIX);
49
50 static int ddr_timeout = 10000;
51 module_param(ddr_timeout, int, 0644);
52 MODULE_PARM_DESC(ddr_timeout,
53                  "Number of milliseconds to wait for DDR initialization. 0 waits for ddr_timeout to be set to non-zero value before starting to check");
54
55 static u32 console_bitmask;
56 module_param(console_bitmask, int, 0644);
57 MODULE_PARM_DESC(console_bitmask,
58                  "Bitmask indicating which consoles have debug output redirected to syslog.");
59
60 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
61
62 #define INCR_INSTRQUEUE_PKT_COUNT(octeon_dev_ptr, iq_no, field, count)  \
63         (octeon_dev_ptr->instr_queue[iq_no]->stats.field += count)
64
65 static int debug = -1;
66 module_param(debug, int, 0644);
67 MODULE_PARM_DESC(debug, "NETIF_MSG debug bits");
68
69 static char fw_type[LIO_MAX_FW_TYPE_LEN];
70 module_param_string(fw_type, fw_type, sizeof(fw_type), 0000);
71 MODULE_PARM_DESC(fw_type, "Type of firmware to be loaded. Default \"nic\"");
72
73 static int conf_type;
74 module_param(conf_type, int, 0);
75 MODULE_PARM_DESC(conf_type, "select octeon configuration 0 default 1 ovs");
76
77 static int ptp_enable = 1;
78
79 /* Bit mask values for lio->ifstate */
80 #define   LIO_IFSTATE_DROQ_OPS             0x01
81 #define   LIO_IFSTATE_REGISTERED           0x02
82 #define   LIO_IFSTATE_RUNNING              0x04
83 #define   LIO_IFSTATE_RX_TIMESTAMP_ENABLED 0x08
84
85 /* Polling interval for determining when NIC application is alive */
86 #define LIQUIDIO_STARTER_POLL_INTERVAL_MS 100
87
88 /* runtime link query interval */
89 #define LIQUIDIO_LINK_QUERY_INTERVAL_MS         1000
90
91 struct liquidio_if_cfg_context {
92         int octeon_id;
93
94         wait_queue_head_t wc;
95
96         int cond;
97 };
98
99 struct liquidio_if_cfg_resp {
100         u64 rh;
101         struct liquidio_if_cfg_info cfg_info;
102         u64 status;
103 };
104
105 struct oct_link_status_resp {
106         u64 rh;
107         struct oct_link_info link_info;
108         u64 status;
109 };
110
111 struct oct_timestamp_resp {
112         u64 rh;
113         u64 timestamp;
114         u64 status;
115 };
116
117 #define OCT_TIMESTAMP_RESP_SIZE (sizeof(struct oct_timestamp_resp))
118
119 union tx_info {
120         u64 u64;
121         struct {
122 #ifdef __BIG_ENDIAN_BITFIELD
123                 u16 gso_size;
124                 u16 gso_segs;
125                 u32 reserved;
126 #else
127                 u32 reserved;
128                 u16 gso_segs;
129                 u16 gso_size;
130 #endif
131         } s;
132 };
133
134 /** Octeon device properties to be used by the NIC module.
135  * Each octeon device in the system will be represented
136  * by this structure in the NIC module.
137  */
138
139 #define OCTNIC_MAX_SG  (MAX_SKB_FRAGS)
140
141 #define OCTNIC_GSO_MAX_HEADER_SIZE 128
142 #define OCTNIC_GSO_MAX_SIZE (GSO_MAX_SIZE - OCTNIC_GSO_MAX_HEADER_SIZE)
143
144 /** Structure of a node in list of gather components maintained by
145  * NIC driver for each network device.
146  */
147 struct octnic_gather {
148         /** List manipulation. Next and prev pointers. */
149         struct list_head list;
150
151         /** Size of the gather component at sg in bytes. */
152         int sg_size;
153
154         /** Number of bytes that sg was adjusted to make it 8B-aligned. */
155         int adjust;
156
157         /** Gather component that can accommodate max sized fragment list
158          *  received from the IP layer.
159          */
160         struct octeon_sg_entry *sg;
161
162         u64 sg_dma_ptr;
163 };
164
165 /** This structure is used by NIC driver to store information required
166  * to free the sk_buff when the packet has been fetched by Octeon.
167  * Bytes offset below assume worst-case of a 64-bit system.
168  */
169 struct octnet_buf_free_info {
170         /** Bytes 1-8.  Pointer to network device private structure. */
171         struct lio *lio;
172
173         /** Bytes 9-16.  Pointer to sk_buff. */
174         struct sk_buff *skb;
175
176         /** Bytes 17-24.  Pointer to gather list. */
177         struct octnic_gather *g;
178
179         /** Bytes 25-32. Physical address of skb->data or gather list. */
180         u64 dptr;
181
182         /** Bytes 33-47. Piggybacked soft command, if any */
183         struct octeon_soft_command *sc;
184 };
185
186 struct handshake {
187         struct completion init;
188         struct completion started;
189         struct pci_dev *pci_dev;
190         int init_ok;
191         int started_ok;
192 };
193
194 struct octeon_device_priv {
195         /** Tasklet structures for this device. */
196         struct tasklet_struct droq_tasklet;
197         unsigned long napi_mask;
198 };
199
200 static int octeon_device_init(struct octeon_device *);
201 static void liquidio_remove(struct pci_dev *pdev);
202 static int liquidio_probe(struct pci_dev *pdev,
203                           const struct pci_device_id *ent);
204
205 static struct handshake handshake[MAX_OCTEON_DEVICES];
206 static struct completion first_stage;
207
208 static void octeon_droq_bh(unsigned long pdev)
209 {
210         int q_no;
211         int reschedule = 0;
212         struct octeon_device *oct = (struct octeon_device *)pdev;
213         struct octeon_device_priv *oct_priv =
214                 (struct octeon_device_priv *)oct->priv;
215
216         /* for (q_no = 0; q_no < oct->num_oqs; q_no++) { */
217         for (q_no = 0; q_no < MAX_OCTEON_OUTPUT_QUEUES(oct); q_no++) {
218                 if (!(oct->io_qmask.oq & (1ULL << q_no)))
219                         continue;
220                 reschedule |= octeon_droq_process_packets(oct, oct->droq[q_no],
221                                                           MAX_PACKET_BUDGET);
222         }
223
224         if (reschedule)
225                 tasklet_schedule(&oct_priv->droq_tasklet);
226 }
227
228 static int lio_wait_for_oq_pkts(struct octeon_device *oct)
229 {
230         struct octeon_device_priv *oct_priv =
231                 (struct octeon_device_priv *)oct->priv;
232         int retry = 100, pkt_cnt = 0, pending_pkts = 0;
233         int i;
234
235         do {
236                 pending_pkts = 0;
237
238                 for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) {
239                         if (!(oct->io_qmask.oq & (1ULL << i)))
240                                 continue;
241                         pkt_cnt += octeon_droq_check_hw_for_pkts(oct->droq[i]);
242                 }
243                 if (pkt_cnt > 0) {
244                         pending_pkts += pkt_cnt;
245                         tasklet_schedule(&oct_priv->droq_tasklet);
246                 }
247                 pkt_cnt = 0;
248                 schedule_timeout_uninterruptible(1);
249
250         } while (retry-- && pending_pkts);
251
252         return pkt_cnt;
253 }
254
255 void octeon_report_tx_completion_to_bql(void *txq, unsigned int pkts_compl,
256                                         unsigned int bytes_compl)
257 {
258         struct netdev_queue *netdev_queue = txq;
259
260         netdev_tx_completed_queue(netdev_queue, pkts_compl, bytes_compl);
261 }
262
263 void octeon_update_tx_completion_counters(void *buf, int reqtype,
264                                           unsigned int *pkts_compl,
265                                           unsigned int *bytes_compl)
266 {
267         struct octnet_buf_free_info *finfo;
268         struct sk_buff *skb = NULL;
269         struct octeon_soft_command *sc;
270
271         switch (reqtype) {
272         case REQTYPE_NORESP_NET:
273         case REQTYPE_NORESP_NET_SG:
274                 finfo = buf;
275                 skb = finfo->skb;
276                 break;
277
278         case REQTYPE_RESP_NET_SG:
279         case REQTYPE_RESP_NET:
280                 sc = buf;
281                 skb = sc->callback_arg;
282                 break;
283
284         default:
285                 return;
286         }
287
288         (*pkts_compl)++;
289         *bytes_compl += skb->len;
290 }
291
292 void octeon_report_sent_bytes_to_bql(void *buf, int reqtype)
293 {
294         struct octnet_buf_free_info *finfo;
295         struct sk_buff *skb;
296         struct octeon_soft_command *sc;
297         struct netdev_queue *txq;
298
299         switch (reqtype) {
300         case REQTYPE_NORESP_NET:
301         case REQTYPE_NORESP_NET_SG:
302                 finfo = buf;
303                 skb = finfo->skb;
304                 break;
305
306         case REQTYPE_RESP_NET_SG:
307         case REQTYPE_RESP_NET:
308                 sc = buf;
309                 skb = sc->callback_arg;
310                 break;
311
312         default:
313                 return;
314         }
315
316         txq = netdev_get_tx_queue(skb->dev, skb_get_queue_mapping(skb));
317         netdev_tx_sent_queue(txq, skb->len);
318 }
319
320 int octeon_console_debug_enabled(u32 console)
321 {
322         return (console_bitmask >> (console)) & 0x1;
323 }
324
325 /**
326  * \brief Forces all IO queues off on a given device
327  * @param oct Pointer to Octeon device
328  */
329 static void force_io_queues_off(struct octeon_device *oct)
330 {
331         if ((oct->chip_id == OCTEON_CN66XX) ||
332             (oct->chip_id == OCTEON_CN68XX)) {
333                 /* Reset the Enable bits for Input Queues. */
334                 octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, 0);
335
336                 /* Reset the Enable bits for Output Queues. */
337                 octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, 0);
338         }
339 }
340
341 /**
342  * \brief wait for all pending requests to complete
343  * @param oct Pointer to Octeon device
344  *
345  * Called during shutdown sequence
346  */
347 static int wait_for_pending_requests(struct octeon_device *oct)
348 {
349         int i, pcount = 0;
350
351         for (i = 0; i < 100; i++) {
352                 pcount =
353                         atomic_read(&oct->response_list
354                                 [OCTEON_ORDERED_SC_LIST].pending_req_count);
355                 if (pcount)
356                         schedule_timeout_uninterruptible(HZ / 10);
357                 else
358                         break;
359         }
360
361         if (pcount)
362                 return 1;
363
364         return 0;
365 }
366
367 /**
368  * \brief Cause device to go quiet so it can be safely removed/reset/etc
369  * @param oct Pointer to Octeon device
370  */
371 static inline void pcierror_quiesce_device(struct octeon_device *oct)
372 {
373         int i;
374
375         /* Disable the input and output queues now. No more packets will
376          * arrive from Octeon, but we should wait for all packet processing
377          * to finish.
378          */
379         force_io_queues_off(oct);
380
381         /* To allow for in-flight requests */
382         schedule_timeout_uninterruptible(100);
383
384         if (wait_for_pending_requests(oct))
385                 dev_err(&oct->pci_dev->dev, "There were pending requests\n");
386
387         /* Force all requests waiting to be fetched by OCTEON to complete. */
388         for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
389                 struct octeon_instr_queue *iq;
390
391                 if (!(oct->io_qmask.iq & (1ULL << i)))
392                         continue;
393                 iq = oct->instr_queue[i];
394
395                 if (atomic_read(&iq->instr_pending)) {
396                         spin_lock_bh(&iq->lock);
397                         iq->fill_cnt = 0;
398                         iq->octeon_read_index = iq->host_write_index;
399                         iq->stats.instr_processed +=
400                                 atomic_read(&iq->instr_pending);
401                         lio_process_iq_request_list(oct, iq, 0);
402                         spin_unlock_bh(&iq->lock);
403                 }
404         }
405
406         /* Force all pending ordered list requests to time out. */
407         lio_process_ordered_list(oct, 1);
408
409         /* We do not need to wait for output queue packets to be processed. */
410 }
411
412 /**
413  * \brief Cleanup PCI AER uncorrectable error status
414  * @param dev Pointer to PCI device
415  */
416 static void cleanup_aer_uncorrect_error_status(struct pci_dev *dev)
417 {
418         int pos = 0x100;
419         u32 status, mask;
420
421         pr_info("%s :\n", __func__);
422
423         pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, &status);
424         pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_SEVER, &mask);
425         if (dev->error_state == pci_channel_io_normal)
426                 status &= ~mask;        /* Clear corresponding nonfatal bits */
427         else
428                 status &= mask;         /* Clear corresponding fatal bits */
429         pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, status);
430 }
431
432 /**
433  * \brief Stop all PCI IO to a given device
434  * @param dev Pointer to Octeon device
435  */
436 static void stop_pci_io(struct octeon_device *oct)
437 {
438         /* No more instructions will be forwarded. */
439         atomic_set(&oct->status, OCT_DEV_IN_RESET);
440
441         pci_disable_device(oct->pci_dev);
442
443         /* Disable interrupts  */
444         oct->fn_list.disable_interrupt(oct->chip);
445
446         pcierror_quiesce_device(oct);
447
448         /* Release the interrupt line */
449         free_irq(oct->pci_dev->irq, oct);
450
451         if (oct->flags & LIO_FLAG_MSI_ENABLED)
452                 pci_disable_msi(oct->pci_dev);
453
454         dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n",
455                 lio_get_state_string(&oct->status));
456
457         /* cn63xx_cleanup_aer_uncorrect_error_status(oct->pci_dev); */
458         /* making it a common function for all OCTEON models */
459         cleanup_aer_uncorrect_error_status(oct->pci_dev);
460 }
461
462 /**
463  * \brief called when PCI error is detected
464  * @param pdev Pointer to PCI device
465  * @param state The current pci connection state
466  *
467  * This function is called after a PCI bus error affecting
468  * this device has been detected.
469  */
470 static pci_ers_result_t liquidio_pcie_error_detected(struct pci_dev *pdev,
471                                                      pci_channel_state_t state)
472 {
473         struct octeon_device *oct = pci_get_drvdata(pdev);
474
475         /* Non-correctable Non-fatal errors */
476         if (state == pci_channel_io_normal) {
477                 dev_err(&oct->pci_dev->dev, "Non-correctable non-fatal error reported:\n");
478                 cleanup_aer_uncorrect_error_status(oct->pci_dev);
479                 return PCI_ERS_RESULT_CAN_RECOVER;
480         }
481
482         /* Non-correctable Fatal errors */
483         dev_err(&oct->pci_dev->dev, "Non-correctable FATAL reported by PCI AER driver\n");
484         stop_pci_io(oct);
485
486         /* Always return a DISCONNECT. There is no support for recovery but only
487          * for a clean shutdown.
488          */
489         return PCI_ERS_RESULT_DISCONNECT;
490 }
491
492 /**
493  * \brief mmio handler
494  * @param pdev Pointer to PCI device
495  */
496 static pci_ers_result_t liquidio_pcie_mmio_enabled(
497                                 struct pci_dev *pdev __attribute__((unused)))
498 {
499         /* We should never hit this since we never ask for a reset for a Fatal
500          * Error. We always return DISCONNECT in io_error above.
501          * But play safe and return RECOVERED for now.
502          */
503         return PCI_ERS_RESULT_RECOVERED;
504 }
505
506 /**
507  * \brief called after the pci bus has been reset.
508  * @param pdev Pointer to PCI device
509  *
510  * Restart the card from scratch, as if from a cold-boot. Implementation
511  * resembles the first-half of the octeon_resume routine.
512  */
513 static pci_ers_result_t liquidio_pcie_slot_reset(
514                                 struct pci_dev *pdev __attribute__((unused)))
515 {
516         /* We should never hit this since we never ask for a reset for a Fatal
517          * Error. We always return DISCONNECT in io_error above.
518          * But play safe and return RECOVERED for now.
519          */
520         return PCI_ERS_RESULT_RECOVERED;
521 }
522
523 /**
524  * \brief called when traffic can start flowing again.
525  * @param pdev Pointer to PCI device
526  *
527  * This callback is called when the error recovery driver tells us that
528  * its OK to resume normal operation. Implementation resembles the
529  * second-half of the octeon_resume routine.
530  */
531 static void liquidio_pcie_resume(struct pci_dev *pdev __attribute__((unused)))
532 {
533         /* Nothing to be done here. */
534 }
535
536 #ifdef CONFIG_PM
537 /**
538  * \brief called when suspending
539  * @param pdev Pointer to PCI device
540  * @param state state to suspend to
541  */
542 static int liquidio_suspend(struct pci_dev *pdev __attribute__((unused)),
543                             pm_message_t state __attribute__((unused)))
544 {
545         return 0;
546 }
547
548 /**
549  * \brief called when resuming
550  * @param pdev Pointer to PCI device
551  */
552 static int liquidio_resume(struct pci_dev *pdev __attribute__((unused)))
553 {
554         return 0;
555 }
556 #endif
557
558 /* For PCI-E Advanced Error Recovery (AER) Interface */
559 static const struct pci_error_handlers liquidio_err_handler = {
560         .error_detected = liquidio_pcie_error_detected,
561         .mmio_enabled   = liquidio_pcie_mmio_enabled,
562         .slot_reset     = liquidio_pcie_slot_reset,
563         .resume         = liquidio_pcie_resume,
564 };
565
566 static const struct pci_device_id liquidio_pci_tbl[] = {
567         {       /* 68xx */
568                 PCI_VENDOR_ID_CAVIUM, 0x91, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
569         },
570         {       /* 66xx */
571                 PCI_VENDOR_ID_CAVIUM, 0x92, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
572         },
573         {
574                 0, 0, 0, 0, 0, 0, 0
575         }
576 };
577 MODULE_DEVICE_TABLE(pci, liquidio_pci_tbl);
578
579 static struct pci_driver liquidio_pci_driver = {
580         .name           = "LiquidIO",
581         .id_table       = liquidio_pci_tbl,
582         .probe          = liquidio_probe,
583         .remove         = liquidio_remove,
584         .err_handler    = &liquidio_err_handler,    /* For AER */
585
586 #ifdef CONFIG_PM
587         .suspend        = liquidio_suspend,
588         .resume         = liquidio_resume,
589 #endif
590
591 };
592
593 /**
594  * \brief register PCI driver
595  */
596 static int liquidio_init_pci(void)
597 {
598         return pci_register_driver(&liquidio_pci_driver);
599 }
600
601 /**
602  * \brief unregister PCI driver
603  */
604 static void liquidio_deinit_pci(void)
605 {
606         pci_unregister_driver(&liquidio_pci_driver);
607 }
608
609 /**
610  * \brief check interface state
611  * @param lio per-network private data
612  * @param state_flag flag state to check
613  */
614 static inline int ifstate_check(struct lio *lio, int state_flag)
615 {
616         return atomic_read(&lio->ifstate) & state_flag;
617 }
618
619 /**
620  * \brief set interface state
621  * @param lio per-network private data
622  * @param state_flag flag state to set
623  */
624 static inline void ifstate_set(struct lio *lio, int state_flag)
625 {
626         atomic_set(&lio->ifstate, (atomic_read(&lio->ifstate) | state_flag));
627 }
628
629 /**
630  * \brief clear interface state
631  * @param lio per-network private data
632  * @param state_flag flag state to clear
633  */
634 static inline void ifstate_reset(struct lio *lio, int state_flag)
635 {
636         atomic_set(&lio->ifstate, (atomic_read(&lio->ifstate) & ~(state_flag)));
637 }
638
639 /**
640  * \brief Stop Tx queues
641  * @param netdev network device
642  */
643 static inline void txqs_stop(struct net_device *netdev)
644 {
645         if (netif_is_multiqueue(netdev)) {
646                 int i;
647
648                 for (i = 0; i < netdev->num_tx_queues; i++)
649                         netif_stop_subqueue(netdev, i);
650         } else {
651                 netif_stop_queue(netdev);
652         }
653 }
654
655 /**
656  * \brief Start Tx queues
657  * @param netdev network device
658  */
659 static inline void txqs_start(struct net_device *netdev)
660 {
661         if (netif_is_multiqueue(netdev)) {
662                 int i;
663
664                 for (i = 0; i < netdev->num_tx_queues; i++)
665                         netif_start_subqueue(netdev, i);
666         } else {
667                 netif_start_queue(netdev);
668         }
669 }
670
671 /**
672  * \brief Wake Tx queues
673  * @param netdev network device
674  */
675 static inline void txqs_wake(struct net_device *netdev)
676 {
677         struct lio *lio = GET_LIO(netdev);
678
679         if (netif_is_multiqueue(netdev)) {
680                 int i;
681
682                 for (i = 0; i < netdev->num_tx_queues; i++) {
683                         int qno = lio->linfo.txpciq[i %
684                                 (lio->linfo.num_txpciq)].s.q_no;
685
686                         if (__netif_subqueue_stopped(netdev, i)) {
687                                 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, qno,
688                                                           tx_restart, 1);
689                                 netif_wake_subqueue(netdev, i);
690                         }
691                 }
692         } else {
693                 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, lio->txq,
694                                           tx_restart, 1);
695                 netif_wake_queue(netdev);
696         }
697 }
698
699 /**
700  * \brief Stop Tx queue
701  * @param netdev network device
702  */
703 static void stop_txq(struct net_device *netdev)
704 {
705         txqs_stop(netdev);
706 }
707
708 /**
709  * \brief Start Tx queue
710  * @param netdev network device
711  */
712 static void start_txq(struct net_device *netdev)
713 {
714         struct lio *lio = GET_LIO(netdev);
715
716         if (lio->linfo.link.s.link_up) {
717                 txqs_start(netdev);
718                 return;
719         }
720 }
721
722 /**
723  * \brief Wake a queue
724  * @param netdev network device
725  * @param q which queue to wake
726  */
727 static inline void wake_q(struct net_device *netdev, int q)
728 {
729         if (netif_is_multiqueue(netdev))
730                 netif_wake_subqueue(netdev, q);
731         else
732                 netif_wake_queue(netdev);
733 }
734
735 /**
736  * \brief Stop a queue
737  * @param netdev network device
738  * @param q which queue to stop
739  */
740 static inline void stop_q(struct net_device *netdev, int q)
741 {
742         if (netif_is_multiqueue(netdev))
743                 netif_stop_subqueue(netdev, q);
744         else
745                 netif_stop_queue(netdev);
746 }
747
748 /**
749  * \brief Check Tx queue status, and take appropriate action
750  * @param lio per-network private data
751  * @returns 0 if full, number of queues woken up otherwise
752  */
753 static inline int check_txq_status(struct lio *lio)
754 {
755         int ret_val = 0;
756
757         if (netif_is_multiqueue(lio->netdev)) {
758                 int numqs = lio->netdev->num_tx_queues;
759                 int q, iq = 0;
760
761                 /* check each sub-queue state */
762                 for (q = 0; q < numqs; q++) {
763                         iq = lio->linfo.txpciq[q %
764                                 (lio->linfo.num_txpciq)].s.q_no;
765                         if (octnet_iq_is_full(lio->oct_dev, iq))
766                                 continue;
767                         if (__netif_subqueue_stopped(lio->netdev, q)) {
768                                 wake_q(lio->netdev, q);
769                                 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq,
770                                                           tx_restart, 1);
771                                 ret_val++;
772                         }
773                 }
774         } else {
775                 if (octnet_iq_is_full(lio->oct_dev, lio->txq))
776                         return 0;
777                 wake_q(lio->netdev, lio->txq);
778                 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, lio->txq,
779                                           tx_restart, 1);
780                 ret_val = 1;
781         }
782         return ret_val;
783 }
784
785 /**
786  * Remove the node at the head of the list. The list would be empty at
787  * the end of this call if there are no more nodes in the list.
788  */
789 static inline struct list_head *list_delete_head(struct list_head *root)
790 {
791         struct list_head *node;
792
793         if ((root->prev == root) && (root->next == root))
794                 node = NULL;
795         else
796                 node = root->next;
797
798         if (node)
799                 list_del(node);
800
801         return node;
802 }
803
804 /**
805  * \brief Delete gather lists
806  * @param lio per-network private data
807  */
808 static void delete_glists(struct lio *lio)
809 {
810         struct octnic_gather *g;
811         int i;
812
813         if (!lio->glist)
814                 return;
815
816         for (i = 0; i < lio->linfo.num_txpciq; i++) {
817                 do {
818                         g = (struct octnic_gather *)
819                                 list_delete_head(&lio->glist[i]);
820                         if (g) {
821                                 if (g->sg) {
822                                         dma_unmap_single(&lio->oct_dev->
823                                                          pci_dev->dev,
824                                                          g->sg_dma_ptr,
825                                                          g->sg_size,
826                                                          DMA_TO_DEVICE);
827                                         kfree((void *)((unsigned long)g->sg -
828                                                        g->adjust));
829                                 }
830                                 kfree(g);
831                         }
832                 } while (g);
833         }
834
835         kfree((void *)lio->glist);
836 }
837
838 /**
839  * \brief Setup gather lists
840  * @param lio per-network private data
841  */
842 static int setup_glists(struct octeon_device *oct, struct lio *lio, int num_iqs)
843 {
844         int i, j;
845         struct octnic_gather *g;
846
847         lio->glist_lock = kcalloc(num_iqs, sizeof(*lio->glist_lock),
848                                   GFP_KERNEL);
849         if (!lio->glist_lock)
850                 return 1;
851
852         lio->glist = kcalloc(num_iqs, sizeof(*lio->glist),
853                              GFP_KERNEL);
854         if (!lio->glist) {
855                 kfree((void *)lio->glist_lock);
856                 return 1;
857         }
858
859         for (i = 0; i < num_iqs; i++) {
860                 int numa_node = cpu_to_node(i % num_online_cpus());
861
862                 spin_lock_init(&lio->glist_lock[i]);
863
864                 INIT_LIST_HEAD(&lio->glist[i]);
865
866                 for (j = 0; j < lio->tx_qsize; j++) {
867                         g = kzalloc_node(sizeof(*g), GFP_KERNEL,
868                                          numa_node);
869                         if (!g)
870                                 g = kzalloc(sizeof(*g), GFP_KERNEL);
871                         if (!g)
872                                 break;
873
874                         g->sg_size = ((ROUNDUP4(OCTNIC_MAX_SG) >> 2) *
875                                       OCT_SG_ENTRY_SIZE);
876
877                         g->sg = kmalloc_node(g->sg_size + 8,
878                                              GFP_KERNEL, numa_node);
879                         if (!g->sg)
880                                 g->sg = kmalloc(g->sg_size + 8, GFP_KERNEL);
881                         if (!g->sg) {
882                                 kfree(g);
883                                 break;
884                         }
885
886                         /* The gather component should be aligned on 64-bit
887                          * boundary
888                          */
889                         if (((unsigned long)g->sg) & 7) {
890                                 g->adjust = 8 - (((unsigned long)g->sg) & 7);
891                                 g->sg = (struct octeon_sg_entry *)
892                                         ((unsigned long)g->sg + g->adjust);
893                         }
894                         g->sg_dma_ptr = dma_map_single(&oct->pci_dev->dev,
895                                                        g->sg, g->sg_size,
896                                                        DMA_TO_DEVICE);
897                         if (dma_mapping_error(&oct->pci_dev->dev,
898                                               g->sg_dma_ptr)) {
899                                 kfree((void *)((unsigned long)g->sg -
900                                                g->adjust));
901                                 kfree(g);
902                                 break;
903                         }
904
905                         list_add_tail(&g->list, &lio->glist[i]);
906                 }
907
908                 if (j != lio->tx_qsize) {
909                         delete_glists(lio);
910                         return 1;
911                 }
912         }
913
914         return 0;
915 }
916
917 /**
918  * \brief Print link information
919  * @param netdev network device
920  */
921 static void print_link_info(struct net_device *netdev)
922 {
923         struct lio *lio = GET_LIO(netdev);
924
925         if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED) {
926                 struct oct_link_info *linfo = &lio->linfo;
927
928                 if (linfo->link.s.link_up) {
929                         netif_info(lio, link, lio->netdev, "%d Mbps %s Duplex UP\n",
930                                    linfo->link.s.speed,
931                                    (linfo->link.s.duplex) ? "Full" : "Half");
932                 } else {
933                         netif_info(lio, link, lio->netdev, "Link Down\n");
934                 }
935         }
936 }
937
938 /**
939  * \brief Update link status
940  * @param netdev network device
941  * @param ls link status structure
942  *
943  * Called on receipt of a link status response from the core application to
944  * update each interface's link status.
945  */
946 static inline void update_link_status(struct net_device *netdev,
947                                       union oct_link_status *ls)
948 {
949         struct lio *lio = GET_LIO(netdev);
950         int changed = (lio->linfo.link.u64 != ls->u64);
951
952         lio->linfo.link.u64 = ls->u64;
953
954         if ((lio->intf_open) && (changed)) {
955                 print_link_info(netdev);
956                 lio->link_changes++;
957
958                 if (lio->linfo.link.s.link_up) {
959                         netif_carrier_on(netdev);
960                         /* start_txq(netdev); */
961                         txqs_wake(netdev);
962                 } else {
963                         netif_carrier_off(netdev);
964                         stop_txq(netdev);
965                 }
966         }
967 }
968
969 /* Runs in interrupt context. */
970 static void update_txq_status(struct octeon_device *oct, int iq_num)
971 {
972         struct net_device *netdev;
973         struct lio *lio;
974         struct octeon_instr_queue *iq = oct->instr_queue[iq_num];
975
976         /*octeon_update_iq_read_idx(oct, iq);*/
977
978         netdev = oct->props[iq->ifidx].netdev;
979
980         /* This is needed because the first IQ does not have
981          * a netdev associated with it.
982          */
983         if (!netdev)
984                 return;
985
986         lio = GET_LIO(netdev);
987         if (netif_is_multiqueue(netdev)) {
988                 if (__netif_subqueue_stopped(netdev, iq->q_index) &&
989                     lio->linfo.link.s.link_up &&
990                     (!octnet_iq_is_full(oct, iq_num))) {
991                         INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq_num,
992                                                   tx_restart, 1);
993                         netif_wake_subqueue(netdev, iq->q_index);
994                 } else {
995                         if (!octnet_iq_is_full(oct, lio->txq)) {
996                                 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev,
997                                                           lio->txq,
998                                                           tx_restart, 1);
999                                 wake_q(netdev, lio->txq);
1000                         }
1001                 }
1002         }
1003 }
1004
1005 /**
1006  * \brief Droq packet processor sceduler
1007  * @param oct octeon device
1008  */
1009 static
1010 void liquidio_schedule_droq_pkt_handlers(struct octeon_device *oct)
1011 {
1012         struct octeon_device_priv *oct_priv =
1013                 (struct octeon_device_priv *)oct->priv;
1014         u64 oq_no;
1015         struct octeon_droq *droq;
1016
1017         if (oct->int_status & OCT_DEV_INTR_PKT_DATA) {
1018                 for (oq_no = 0; oq_no < MAX_OCTEON_OUTPUT_QUEUES(oct);
1019                      oq_no++) {
1020                         if (!(oct->droq_intr & (1ULL << oq_no)))
1021                                 continue;
1022
1023                         droq = oct->droq[oq_no];
1024
1025                         if (droq->ops.poll_mode) {
1026                                 droq->ops.napi_fn(droq);
1027                                 oct_priv->napi_mask |= (1 << oq_no);
1028                         } else {
1029                                 tasklet_schedule(&oct_priv->droq_tasklet);
1030                         }
1031                 }
1032         }
1033 }
1034
1035 /**
1036  * \brief Interrupt handler for octeon
1037  * @param irq unused
1038  * @param dev octeon device
1039  */
1040 static
1041 irqreturn_t liquidio_intr_handler(int irq __attribute__((unused)), void *dev)
1042 {
1043         struct octeon_device *oct = (struct octeon_device *)dev;
1044         irqreturn_t ret;
1045
1046         /* Disable our interrupts for the duration of ISR */
1047         oct->fn_list.disable_interrupt(oct->chip);
1048
1049         ret = oct->fn_list.process_interrupt_regs(oct);
1050
1051         if (ret == IRQ_HANDLED)
1052                 liquidio_schedule_droq_pkt_handlers(oct);
1053
1054         /* Re-enable our interrupts  */
1055         if (!(atomic_read(&oct->status) == OCT_DEV_IN_RESET))
1056                 oct->fn_list.enable_interrupt(oct->chip);
1057
1058         return ret;
1059 }
1060
1061 /**
1062  * \brief Setup interrupt for octeon device
1063  * @param oct octeon device
1064  *
1065  *  Enable interrupt in Octeon device as given in the PCI interrupt mask.
1066  */
1067 static int octeon_setup_interrupt(struct octeon_device *oct)
1068 {
1069         int irqret, err;
1070
1071         err = pci_enable_msi(oct->pci_dev);
1072         if (err)
1073                 dev_warn(&oct->pci_dev->dev, "Reverting to legacy interrupts. Error: %d\n",
1074                          err);
1075         else
1076                 oct->flags |= LIO_FLAG_MSI_ENABLED;
1077
1078         irqret = request_irq(oct->pci_dev->irq, liquidio_intr_handler,
1079                              IRQF_SHARED, "octeon", oct);
1080         if (irqret) {
1081                 if (oct->flags & LIO_FLAG_MSI_ENABLED)
1082                         pci_disable_msi(oct->pci_dev);
1083                 dev_err(&oct->pci_dev->dev, "Request IRQ failed with code: %d\n",
1084                         irqret);
1085                 return 1;
1086         }
1087
1088         return 0;
1089 }
1090
1091 /**
1092  * \brief PCI probe handler
1093  * @param pdev PCI device structure
1094  * @param ent unused
1095  */
1096 static int
1097 liquidio_probe(struct pci_dev *pdev,
1098                const struct pci_device_id *ent __attribute__((unused)))
1099 {
1100         struct octeon_device *oct_dev = NULL;
1101         struct handshake *hs;
1102
1103         oct_dev = octeon_allocate_device(pdev->device,
1104                                          sizeof(struct octeon_device_priv));
1105         if (!oct_dev) {
1106                 dev_err(&pdev->dev, "Unable to allocate device\n");
1107                 return -ENOMEM;
1108         }
1109
1110         dev_info(&pdev->dev, "Initializing device %x:%x.\n",
1111                  (u32)pdev->vendor, (u32)pdev->device);
1112
1113         /* Assign octeon_device for this device to the private data area. */
1114         pci_set_drvdata(pdev, oct_dev);
1115
1116         /* set linux specific device pointer */
1117         oct_dev->pci_dev = (void *)pdev;
1118
1119         hs = &handshake[oct_dev->octeon_id];
1120         init_completion(&hs->init);
1121         init_completion(&hs->started);
1122         hs->pci_dev = pdev;
1123
1124         if (oct_dev->octeon_id == 0)
1125                 /* first LiquidIO NIC is detected */
1126                 complete(&first_stage);
1127
1128         if (octeon_device_init(oct_dev)) {
1129                 liquidio_remove(pdev);
1130                 return -ENOMEM;
1131         }
1132
1133         oct_dev->rx_pause = 1;
1134         oct_dev->tx_pause = 1;
1135
1136         dev_dbg(&oct_dev->pci_dev->dev, "Device is ready\n");
1137
1138         return 0;
1139 }
1140
1141 /**
1142  *\brief Destroy resources associated with octeon device
1143  * @param pdev PCI device structure
1144  * @param ent unused
1145  */
1146 static void octeon_destroy_resources(struct octeon_device *oct)
1147 {
1148         int i;
1149         struct octeon_device_priv *oct_priv =
1150                 (struct octeon_device_priv *)oct->priv;
1151
1152         struct handshake *hs;
1153
1154         switch (atomic_read(&oct->status)) {
1155         case OCT_DEV_RUNNING:
1156         case OCT_DEV_CORE_OK:
1157
1158                 /* No more instructions will be forwarded. */
1159                 atomic_set(&oct->status, OCT_DEV_IN_RESET);
1160
1161                 oct->app_mode = CVM_DRV_INVALID_APP;
1162                 dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n",
1163                         lio_get_state_string(&oct->status));
1164
1165                 schedule_timeout_uninterruptible(HZ / 10);
1166
1167                 /* fallthrough */
1168         case OCT_DEV_HOST_OK:
1169
1170                 /* fallthrough */
1171         case OCT_DEV_CONSOLE_INIT_DONE:
1172                 /* Remove any consoles */
1173                 octeon_remove_consoles(oct);
1174
1175                 /* fallthrough */
1176         case OCT_DEV_IO_QUEUES_DONE:
1177                 if (wait_for_pending_requests(oct))
1178                         dev_err(&oct->pci_dev->dev, "There were pending requests\n");
1179
1180                 if (lio_wait_for_instr_fetch(oct))
1181                         dev_err(&oct->pci_dev->dev, "IQ had pending instructions\n");
1182
1183                 /* Disable the input and output queues now. No more packets will
1184                  * arrive from Octeon, but we should wait for all packet
1185                  * processing to finish.
1186                  */
1187                 oct->fn_list.disable_io_queues(oct);
1188
1189                 if (lio_wait_for_oq_pkts(oct))
1190                         dev_err(&oct->pci_dev->dev, "OQ had pending packets\n");
1191
1192                 /* Disable interrupts  */
1193                 oct->fn_list.disable_interrupt(oct->chip);
1194
1195                 /* Release the interrupt line */
1196                 free_irq(oct->pci_dev->irq, oct);
1197
1198                 if (oct->flags & LIO_FLAG_MSI_ENABLED)
1199                         pci_disable_msi(oct->pci_dev);
1200
1201                 /* fallthrough */
1202         case OCT_DEV_IN_RESET:
1203         case OCT_DEV_DROQ_INIT_DONE:
1204                 /*atomic_set(&oct->status, OCT_DEV_DROQ_INIT_DONE);*/
1205                 mdelay(100);
1206                 for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) {
1207                         if (!(oct->io_qmask.oq & (1ULL << i)))
1208                                 continue;
1209                         octeon_delete_droq(oct, i);
1210                 }
1211
1212                 /* Force any pending handshakes to complete */
1213                 for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
1214                         hs = &handshake[i];
1215
1216                         if (hs->pci_dev) {
1217                                 handshake[oct->octeon_id].init_ok = 0;
1218                                 complete(&handshake[oct->octeon_id].init);
1219                                 handshake[oct->octeon_id].started_ok = 0;
1220                                 complete(&handshake[oct->octeon_id].started);
1221                         }
1222                 }
1223
1224                 /* fallthrough */
1225         case OCT_DEV_RESP_LIST_INIT_DONE:
1226                 octeon_delete_response_list(oct);
1227
1228                 /* fallthrough */
1229         case OCT_DEV_SC_BUFF_POOL_INIT_DONE:
1230                 octeon_free_sc_buffer_pool(oct);
1231
1232                 /* fallthrough */
1233         case OCT_DEV_INSTR_QUEUE_INIT_DONE:
1234                 for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
1235                         if (!(oct->io_qmask.iq & (1ULL << i)))
1236                                 continue;
1237                         octeon_delete_instr_queue(oct, i);
1238                 }
1239
1240                 /* fallthrough */
1241         case OCT_DEV_DISPATCH_INIT_DONE:
1242                 octeon_delete_dispatch_list(oct);
1243                 cancel_delayed_work_sync(&oct->nic_poll_work.work);
1244
1245                 /* fallthrough */
1246         case OCT_DEV_PCI_MAP_DONE:
1247
1248                 /* Soft reset the octeon device before exiting */
1249                 oct->fn_list.soft_reset(oct);
1250
1251                 octeon_unmap_pci_barx(oct, 0);
1252                 octeon_unmap_pci_barx(oct, 1);
1253
1254                 /* fallthrough */
1255         case OCT_DEV_BEGIN_STATE:
1256                 /* Disable the device, releasing the PCI INT */
1257                 pci_disable_device(oct->pci_dev);
1258
1259                 /* Nothing to be done here either */
1260                 break;
1261         }                       /* end switch (oct->status) */
1262
1263         tasklet_kill(&oct_priv->droq_tasklet);
1264 }
1265
1266 /**
1267  * \brief Send Rx control command
1268  * @param lio per-network private data
1269  * @param start_stop whether to start or stop
1270  */
1271 static void send_rx_ctrl_cmd(struct lio *lio, int start_stop)
1272 {
1273         struct octnic_ctrl_pkt nctrl;
1274
1275         memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
1276
1277         nctrl.ncmd.s.cmd = OCTNET_CMD_RX_CTL;
1278         nctrl.ncmd.s.param1 = start_stop;
1279         nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
1280         nctrl.netpndev = (u64)lio->netdev;
1281
1282         if (octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl) < 0)
1283                 netif_info(lio, rx_err, lio->netdev, "Failed to send RX Control message\n");
1284 }
1285
1286 /**
1287  * \brief Destroy NIC device interface
1288  * @param oct octeon device
1289  * @param ifidx which interface to destroy
1290  *
1291  * Cleanup associated with each interface for an Octeon device  when NIC
1292  * module is being unloaded or if initialization fails during load.
1293  */
1294 static void liquidio_destroy_nic_device(struct octeon_device *oct, int ifidx)
1295 {
1296         struct net_device *netdev = oct->props[ifidx].netdev;
1297         struct lio *lio;
1298         struct napi_struct *napi, *n;
1299
1300         if (!netdev) {
1301                 dev_err(&oct->pci_dev->dev, "%s No netdevice ptr for index %d\n",
1302                         __func__, ifidx);
1303                 return;
1304         }
1305
1306         lio = GET_LIO(netdev);
1307
1308         dev_dbg(&oct->pci_dev->dev, "NIC device cleanup\n");
1309
1310         send_rx_ctrl_cmd(lio, 0);
1311
1312         if (atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING)
1313                 txqs_stop(netdev);
1314
1315         if (oct->props[lio->ifidx].napi_enabled == 1) {
1316                 list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list)
1317                         napi_disable(napi);
1318
1319                 oct->props[lio->ifidx].napi_enabled = 0;
1320         }
1321
1322         if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED)
1323                 unregister_netdev(netdev);
1324
1325         delete_glists(lio);
1326
1327         free_netdev(netdev);
1328
1329         oct->props[ifidx].gmxport = -1;
1330
1331         oct->props[ifidx].netdev = NULL;
1332 }
1333
1334 /**
1335  * \brief Stop complete NIC functionality
1336  * @param oct octeon device
1337  */
1338 static int liquidio_stop_nic_module(struct octeon_device *oct)
1339 {
1340         int i, j;
1341         struct lio *lio;
1342
1343         dev_dbg(&oct->pci_dev->dev, "Stopping network interfaces\n");
1344         if (!oct->ifcount) {
1345                 dev_err(&oct->pci_dev->dev, "Init for Octeon was not completed\n");
1346                 return 1;
1347         }
1348
1349         spin_lock_bh(&oct->cmd_resp_wqlock);
1350         oct->cmd_resp_state = OCT_DRV_OFFLINE;
1351         spin_unlock_bh(&oct->cmd_resp_wqlock);
1352
1353         for (i = 0; i < oct->ifcount; i++) {
1354                 lio = GET_LIO(oct->props[i].netdev);
1355                 for (j = 0; j < lio->linfo.num_rxpciq; j++)
1356                         octeon_unregister_droq_ops(oct,
1357                                                    lio->linfo.rxpciq[j].s.q_no);
1358         }
1359
1360         for (i = 0; i < oct->ifcount; i++)
1361                 liquidio_destroy_nic_device(oct, i);
1362
1363         dev_dbg(&oct->pci_dev->dev, "Network interfaces stopped\n");
1364         return 0;
1365 }
1366
1367 /**
1368  * \brief Cleans up resources at unload time
1369  * @param pdev PCI device structure
1370  */
1371 static void liquidio_remove(struct pci_dev *pdev)
1372 {
1373         struct octeon_device *oct_dev = pci_get_drvdata(pdev);
1374
1375         dev_dbg(&oct_dev->pci_dev->dev, "Stopping device\n");
1376
1377         if (oct_dev->app_mode && (oct_dev->app_mode == CVM_DRV_NIC_APP))
1378                 liquidio_stop_nic_module(oct_dev);
1379
1380         /* Reset the octeon device and cleanup all memory allocated for
1381          * the octeon device by driver.
1382          */
1383         octeon_destroy_resources(oct_dev);
1384
1385         dev_info(&oct_dev->pci_dev->dev, "Device removed\n");
1386
1387         /* This octeon device has been removed. Update the global
1388          * data structure to reflect this. Free the device structure.
1389          */
1390         octeon_free_device_mem(oct_dev);
1391 }
1392
1393 /**
1394  * \brief Identify the Octeon device and to map the BAR address space
1395  * @param oct octeon device
1396  */
1397 static int octeon_chip_specific_setup(struct octeon_device *oct)
1398 {
1399         u32 dev_id, rev_id;
1400         int ret = 1;
1401         char *s;
1402
1403         pci_read_config_dword(oct->pci_dev, 0, &dev_id);
1404         pci_read_config_dword(oct->pci_dev, 8, &rev_id);
1405         oct->rev_id = rev_id & 0xff;
1406
1407         switch (dev_id) {
1408         case OCTEON_CN68XX_PCIID:
1409                 oct->chip_id = OCTEON_CN68XX;
1410                 ret = lio_setup_cn68xx_octeon_device(oct);
1411                 s = "CN68XX";
1412                 break;
1413
1414         case OCTEON_CN66XX_PCIID:
1415                 oct->chip_id = OCTEON_CN66XX;
1416                 ret = lio_setup_cn66xx_octeon_device(oct);
1417                 s = "CN66XX";
1418                 break;
1419
1420         default:
1421                 s = "?";
1422                 dev_err(&oct->pci_dev->dev, "Unknown device found (dev_id: %x)\n",
1423                         dev_id);
1424         }
1425
1426         if (!ret)
1427                 dev_info(&oct->pci_dev->dev, "%s PASS%d.%d %s Version: %s\n", s,
1428                          OCTEON_MAJOR_REV(oct),
1429                          OCTEON_MINOR_REV(oct),
1430                          octeon_get_conf(oct)->card_name,
1431                          LIQUIDIO_VERSION);
1432
1433         return ret;
1434 }
1435
1436 /**
1437  * \brief PCI initialization for each Octeon device.
1438  * @param oct octeon device
1439  */
1440 static int octeon_pci_os_setup(struct octeon_device *oct)
1441 {
1442         /* setup PCI stuff first */
1443         if (pci_enable_device(oct->pci_dev)) {
1444                 dev_err(&oct->pci_dev->dev, "pci_enable_device failed\n");
1445                 return 1;
1446         }
1447
1448         if (dma_set_mask_and_coherent(&oct->pci_dev->dev, DMA_BIT_MASK(64))) {
1449                 dev_err(&oct->pci_dev->dev, "Unexpected DMA device capability\n");
1450                 return 1;
1451         }
1452
1453         /* Enable PCI DMA Master. */
1454         pci_set_master(oct->pci_dev);
1455
1456         return 0;
1457 }
1458
1459 static inline int skb_iq(struct lio *lio, struct sk_buff *skb)
1460 {
1461         int q = 0;
1462
1463         if (netif_is_multiqueue(lio->netdev))
1464                 q = skb->queue_mapping % lio->linfo.num_txpciq;
1465
1466         return q;
1467 }
1468
1469 /**
1470  * \brief Check Tx queue state for a given network buffer
1471  * @param lio per-network private data
1472  * @param skb network buffer
1473  */
1474 static inline int check_txq_state(struct lio *lio, struct sk_buff *skb)
1475 {
1476         int q = 0, iq = 0;
1477
1478         if (netif_is_multiqueue(lio->netdev)) {
1479                 q = skb->queue_mapping;
1480                 iq = lio->linfo.txpciq[(q % (lio->linfo.num_txpciq))].s.q_no;
1481         } else {
1482                 iq = lio->txq;
1483                 q = iq;
1484         }
1485
1486         if (octnet_iq_is_full(lio->oct_dev, iq))
1487                 return 0;
1488
1489         if (__netif_subqueue_stopped(lio->netdev, q)) {
1490                 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq, tx_restart, 1);
1491                 wake_q(lio->netdev, q);
1492         }
1493         return 1;
1494 }
1495
1496 /**
1497  * \brief Unmap and free network buffer
1498  * @param buf buffer
1499  */
1500 static void free_netbuf(void *buf)
1501 {
1502         struct sk_buff *skb;
1503         struct octnet_buf_free_info *finfo;
1504         struct lio *lio;
1505
1506         finfo = (struct octnet_buf_free_info *)buf;
1507         skb = finfo->skb;
1508         lio = finfo->lio;
1509
1510         dma_unmap_single(&lio->oct_dev->pci_dev->dev, finfo->dptr, skb->len,
1511                          DMA_TO_DEVICE);
1512
1513         check_txq_state(lio, skb);
1514
1515         tx_buffer_free(skb);
1516 }
1517
1518 /**
1519  * \brief Unmap and free gather buffer
1520  * @param buf buffer
1521  */
1522 static void free_netsgbuf(void *buf)
1523 {
1524         struct octnet_buf_free_info *finfo;
1525         struct sk_buff *skb;
1526         struct lio *lio;
1527         struct octnic_gather *g;
1528         int i, frags, iq;
1529
1530         finfo = (struct octnet_buf_free_info *)buf;
1531         skb = finfo->skb;
1532         lio = finfo->lio;
1533         g = finfo->g;
1534         frags = skb_shinfo(skb)->nr_frags;
1535
1536         dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1537                          g->sg[0].ptr[0], (skb->len - skb->data_len),
1538                          DMA_TO_DEVICE);
1539
1540         i = 1;
1541         while (frags--) {
1542                 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1543
1544                 pci_unmap_page((lio->oct_dev)->pci_dev,
1545                                g->sg[(i >> 2)].ptr[(i & 3)],
1546                                frag->size, DMA_TO_DEVICE);
1547                 i++;
1548         }
1549
1550         dma_sync_single_for_cpu(&lio->oct_dev->pci_dev->dev,
1551                                 g->sg_dma_ptr, g->sg_size, DMA_TO_DEVICE);
1552
1553         iq = skb_iq(lio, skb);
1554         spin_lock(&lio->glist_lock[iq]);
1555         list_add_tail(&g->list, &lio->glist[iq]);
1556         spin_unlock(&lio->glist_lock[iq]);
1557
1558         check_txq_state(lio, skb);     /* mq support: sub-queue state check */
1559
1560         tx_buffer_free(skb);
1561 }
1562
1563 /**
1564  * \brief Unmap and free gather buffer with response
1565  * @param buf buffer
1566  */
1567 static void free_netsgbuf_with_resp(void *buf)
1568 {
1569         struct octeon_soft_command *sc;
1570         struct octnet_buf_free_info *finfo;
1571         struct sk_buff *skb;
1572         struct lio *lio;
1573         struct octnic_gather *g;
1574         int i, frags, iq;
1575
1576         sc = (struct octeon_soft_command *)buf;
1577         skb = (struct sk_buff *)sc->callback_arg;
1578         finfo = (struct octnet_buf_free_info *)&skb->cb;
1579
1580         lio = finfo->lio;
1581         g = finfo->g;
1582         frags = skb_shinfo(skb)->nr_frags;
1583
1584         dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1585                          g->sg[0].ptr[0], (skb->len - skb->data_len),
1586                          DMA_TO_DEVICE);
1587
1588         i = 1;
1589         while (frags--) {
1590                 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1591
1592                 pci_unmap_page((lio->oct_dev)->pci_dev,
1593                                g->sg[(i >> 2)].ptr[(i & 3)],
1594                                frag->size, DMA_TO_DEVICE);
1595                 i++;
1596         }
1597
1598         dma_sync_single_for_cpu(&lio->oct_dev->pci_dev->dev,
1599                                 g->sg_dma_ptr, g->sg_size, DMA_TO_DEVICE);
1600
1601         iq = skb_iq(lio, skb);
1602
1603         spin_lock(&lio->glist_lock[iq]);
1604         list_add_tail(&g->list, &lio->glist[iq]);
1605         spin_unlock(&lio->glist_lock[iq]);
1606
1607         /* Don't free the skb yet */
1608
1609         check_txq_state(lio, skb);
1610 }
1611
1612 /**
1613  * \brief Adjust ptp frequency
1614  * @param ptp PTP clock info
1615  * @param ppb how much to adjust by, in parts-per-billion
1616  */
1617 static int liquidio_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
1618 {
1619         struct lio *lio = container_of(ptp, struct lio, ptp_info);
1620         struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1621         u64 comp, delta;
1622         unsigned long flags;
1623         bool neg_adj = false;
1624
1625         if (ppb < 0) {
1626                 neg_adj = true;
1627                 ppb = -ppb;
1628         }
1629
1630         /* The hardware adds the clock compensation value to the
1631          * PTP clock on every coprocessor clock cycle, so we
1632          * compute the delta in terms of coprocessor clocks.
1633          */
1634         delta = (u64)ppb << 32;
1635         do_div(delta, oct->coproc_clock_rate);
1636
1637         spin_lock_irqsave(&lio->ptp_lock, flags);
1638         comp = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_COMP);
1639         if (neg_adj)
1640                 comp -= delta;
1641         else
1642                 comp += delta;
1643         lio_pci_writeq(oct, comp, CN6XXX_MIO_PTP_CLOCK_COMP);
1644         spin_unlock_irqrestore(&lio->ptp_lock, flags);
1645
1646         return 0;
1647 }
1648
1649 /**
1650  * \brief Adjust ptp time
1651  * @param ptp PTP clock info
1652  * @param delta how much to adjust by, in nanosecs
1653  */
1654 static int liquidio_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
1655 {
1656         unsigned long flags;
1657         struct lio *lio = container_of(ptp, struct lio, ptp_info);
1658
1659         spin_lock_irqsave(&lio->ptp_lock, flags);
1660         lio->ptp_adjust += delta;
1661         spin_unlock_irqrestore(&lio->ptp_lock, flags);
1662
1663         return 0;
1664 }
1665
1666 /**
1667  * \brief Get hardware clock time, including any adjustment
1668  * @param ptp PTP clock info
1669  * @param ts timespec
1670  */
1671 static int liquidio_ptp_gettime(struct ptp_clock_info *ptp,
1672                                 struct timespec64 *ts)
1673 {
1674         u64 ns;
1675         unsigned long flags;
1676         struct lio *lio = container_of(ptp, struct lio, ptp_info);
1677         struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1678
1679         spin_lock_irqsave(&lio->ptp_lock, flags);
1680         ns = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_HI);
1681         ns += lio->ptp_adjust;
1682         spin_unlock_irqrestore(&lio->ptp_lock, flags);
1683
1684         *ts = ns_to_timespec64(ns);
1685
1686         return 0;
1687 }
1688
1689 /**
1690  * \brief Set hardware clock time. Reset adjustment
1691  * @param ptp PTP clock info
1692  * @param ts timespec
1693  */
1694 static int liquidio_ptp_settime(struct ptp_clock_info *ptp,
1695                                 const struct timespec64 *ts)
1696 {
1697         u64 ns;
1698         unsigned long flags;
1699         struct lio *lio = container_of(ptp, struct lio, ptp_info);
1700         struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1701
1702         ns = timespec_to_ns(ts);
1703
1704         spin_lock_irqsave(&lio->ptp_lock, flags);
1705         lio_pci_writeq(oct, ns, CN6XXX_MIO_PTP_CLOCK_HI);
1706         lio->ptp_adjust = 0;
1707         spin_unlock_irqrestore(&lio->ptp_lock, flags);
1708
1709         return 0;
1710 }
1711
1712 /**
1713  * \brief Check if PTP is enabled
1714  * @param ptp PTP clock info
1715  * @param rq request
1716  * @param on is it on
1717  */
1718 static int
1719 liquidio_ptp_enable(struct ptp_clock_info *ptp __attribute__((unused)),
1720                     struct ptp_clock_request *rq __attribute__((unused)),
1721                     int on __attribute__((unused)))
1722 {
1723         return -EOPNOTSUPP;
1724 }
1725
1726 /**
1727  * \brief Open PTP clock source
1728  * @param netdev network device
1729  */
1730 static void oct_ptp_open(struct net_device *netdev)
1731 {
1732         struct lio *lio = GET_LIO(netdev);
1733         struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1734
1735         spin_lock_init(&lio->ptp_lock);
1736
1737         snprintf(lio->ptp_info.name, 16, "%s", netdev->name);
1738         lio->ptp_info.owner = THIS_MODULE;
1739         lio->ptp_info.max_adj = 250000000;
1740         lio->ptp_info.n_alarm = 0;
1741         lio->ptp_info.n_ext_ts = 0;
1742         lio->ptp_info.n_per_out = 0;
1743         lio->ptp_info.pps = 0;
1744         lio->ptp_info.adjfreq = liquidio_ptp_adjfreq;
1745         lio->ptp_info.adjtime = liquidio_ptp_adjtime;
1746         lio->ptp_info.gettime64 = liquidio_ptp_gettime;
1747         lio->ptp_info.settime64 = liquidio_ptp_settime;
1748         lio->ptp_info.enable = liquidio_ptp_enable;
1749
1750         lio->ptp_adjust = 0;
1751
1752         lio->ptp_clock = ptp_clock_register(&lio->ptp_info,
1753                                              &oct->pci_dev->dev);
1754
1755         if (IS_ERR(lio->ptp_clock))
1756                 lio->ptp_clock = NULL;
1757 }
1758
1759 /**
1760  * \brief Init PTP clock
1761  * @param oct octeon device
1762  */
1763 static void liquidio_ptp_init(struct octeon_device *oct)
1764 {
1765         u64 clock_comp, cfg;
1766
1767         clock_comp = (u64)NSEC_PER_SEC << 32;
1768         do_div(clock_comp, oct->coproc_clock_rate);
1769         lio_pci_writeq(oct, clock_comp, CN6XXX_MIO_PTP_CLOCK_COMP);
1770
1771         /* Enable */
1772         cfg = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_CFG);
1773         lio_pci_writeq(oct, cfg | 0x01, CN6XXX_MIO_PTP_CLOCK_CFG);
1774 }
1775
1776 /**
1777  * \brief Load firmware to device
1778  * @param oct octeon device
1779  *
1780  * Maps device to firmware filename, requests firmware, and downloads it
1781  */
1782 static int load_firmware(struct octeon_device *oct)
1783 {
1784         int ret = 0;
1785         const struct firmware *fw;
1786         char fw_name[LIO_MAX_FW_FILENAME_LEN];
1787         char *tmp_fw_type;
1788
1789         if (strncmp(fw_type, LIO_FW_NAME_TYPE_NONE,
1790                     sizeof(LIO_FW_NAME_TYPE_NONE)) == 0) {
1791                 dev_info(&oct->pci_dev->dev, "Skipping firmware load\n");
1792                 return ret;
1793         }
1794
1795         if (fw_type[0] == '\0')
1796                 tmp_fw_type = LIO_FW_NAME_TYPE_NIC;
1797         else
1798                 tmp_fw_type = fw_type;
1799
1800         sprintf(fw_name, "%s%s%s_%s%s", LIO_FW_DIR, LIO_FW_BASE_NAME,
1801                 octeon_get_conf(oct)->card_name, tmp_fw_type,
1802                 LIO_FW_NAME_SUFFIX);
1803
1804         ret = request_firmware(&fw, fw_name, &oct->pci_dev->dev);
1805         if (ret) {
1806                 dev_err(&oct->pci_dev->dev, "Request firmware failed. Could not find file %s.\n.",
1807                         fw_name);
1808                 release_firmware(fw);
1809                 return ret;
1810         }
1811
1812         ret = octeon_download_firmware(oct, fw->data, fw->size);
1813
1814         release_firmware(fw);
1815
1816         return ret;
1817 }
1818
1819 /**
1820  * \brief Setup output queue
1821  * @param oct octeon device
1822  * @param q_no which queue
1823  * @param num_descs how many descriptors
1824  * @param desc_size size of each descriptor
1825  * @param app_ctx application context
1826  */
1827 static int octeon_setup_droq(struct octeon_device *oct, int q_no, int num_descs,
1828                              int desc_size, void *app_ctx)
1829 {
1830         int ret_val = 0;
1831
1832         dev_dbg(&oct->pci_dev->dev, "Creating Droq: %d\n", q_no);
1833         /* droq creation and local register settings. */
1834         ret_val = octeon_create_droq(oct, q_no, num_descs, desc_size, app_ctx);
1835         if (ret_val < 0)
1836                 return ret_val;
1837
1838         if (ret_val == 1) {
1839                 dev_dbg(&oct->pci_dev->dev, "Using default droq %d\n", q_no);
1840                 return 0;
1841         }
1842         /* tasklet creation for the droq */
1843
1844         /* Enable the droq queues */
1845         octeon_set_droq_pkt_op(oct, q_no, 1);
1846
1847         /* Send Credit for Octeon Output queues. Credits are always
1848          * sent after the output queue is enabled.
1849          */
1850         writel(oct->droq[q_no]->max_count,
1851                oct->droq[q_no]->pkts_credit_reg);
1852
1853         return ret_val;
1854 }
1855
1856 /**
1857  * \brief Callback for getting interface configuration
1858  * @param status status of request
1859  * @param buf pointer to resp structure
1860  */
1861 static void if_cfg_callback(struct octeon_device *oct,
1862                             u32 status __attribute__((unused)),
1863                             void *buf)
1864 {
1865         struct octeon_soft_command *sc = (struct octeon_soft_command *)buf;
1866         struct liquidio_if_cfg_resp *resp;
1867         struct liquidio_if_cfg_context *ctx;
1868
1869         resp = (struct liquidio_if_cfg_resp *)sc->virtrptr;
1870         ctx  = (struct liquidio_if_cfg_context *)sc->ctxptr;
1871
1872         oct = lio_get_device(ctx->octeon_id);
1873         if (resp->status)
1874                 dev_err(&oct->pci_dev->dev, "nic if cfg instruction failed. Status: %llx\n",
1875                         CVM_CAST64(resp->status));
1876         WRITE_ONCE(ctx->cond, 1);
1877
1878         snprintf(oct->fw_info.liquidio_firmware_version, 32, "%s",
1879                  resp->cfg_info.liquidio_firmware_version);
1880
1881         /* This barrier is required to be sure that the response has been
1882          * written fully before waking up the handler
1883          */
1884         wmb();
1885
1886         wake_up_interruptible(&ctx->wc);
1887 }
1888
1889 /**
1890  * \brief Select queue based on hash
1891  * @param dev Net device
1892  * @param skb sk_buff structure
1893  * @returns selected queue number
1894  */
1895 static u16 select_q(struct net_device *dev, struct sk_buff *skb,
1896                     void *accel_priv __attribute__((unused)),
1897                     select_queue_fallback_t fallback __attribute__((unused)))
1898 {
1899         u32 qindex = 0;
1900         struct lio *lio;
1901
1902         lio = GET_LIO(dev);
1903         qindex = skb_tx_hash(dev, skb);
1904
1905         return (u16)(qindex % (lio->linfo.num_txpciq));
1906 }
1907
1908 /** Routine to push packets arriving on Octeon interface upto network layer.
1909  * @param oct_id   - octeon device id.
1910  * @param skbuff   - skbuff struct to be passed to network layer.
1911  * @param len      - size of total data received.
1912  * @param rh       - Control header associated with the packet
1913  * @param param    - additional control data with the packet
1914  * @param arg      - farg registered in droq_ops
1915  */
1916 static void
1917 liquidio_push_packet(u32 octeon_id __attribute__((unused)),
1918                      void *skbuff,
1919                      u32 len,
1920                      union octeon_rh *rh,
1921                      void *param,
1922                      void *arg)
1923 {
1924         struct napi_struct *napi = param;
1925         struct sk_buff *skb = (struct sk_buff *)skbuff;
1926         struct skb_shared_hwtstamps *shhwtstamps;
1927         u64 ns;
1928         u16 vtag = 0;
1929         struct net_device *netdev = (struct net_device *)arg;
1930         struct octeon_droq *droq = container_of(param, struct octeon_droq,
1931                                                 napi);
1932         if (netdev) {
1933                 int packet_was_received;
1934                 struct lio *lio = GET_LIO(netdev);
1935                 struct octeon_device *oct = lio->oct_dev;
1936
1937                 /* Do not proceed if the interface is not in RUNNING state. */
1938                 if (!ifstate_check(lio, LIO_IFSTATE_RUNNING)) {
1939                         recv_buffer_free(skb);
1940                         droq->stats.rx_dropped++;
1941                         return;
1942                 }
1943
1944                 skb->dev = netdev;
1945
1946                 skb_record_rx_queue(skb, droq->q_no);
1947                 if (likely(len > MIN_SKB_SIZE)) {
1948                         struct octeon_skb_page_info *pg_info;
1949                         unsigned char *va;
1950
1951                         pg_info = ((struct octeon_skb_page_info *)(skb->cb));
1952                         if (pg_info->page) {
1953                                 /* For Paged allocation use the frags */
1954                                 va = page_address(pg_info->page) +
1955                                         pg_info->page_offset;
1956                                 memcpy(skb->data, va, MIN_SKB_SIZE);
1957                                 skb_put(skb, MIN_SKB_SIZE);
1958                                 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
1959                                                 pg_info->page,
1960                                                 pg_info->page_offset +
1961                                                 MIN_SKB_SIZE,
1962                                                 len - MIN_SKB_SIZE,
1963                                                 LIO_RXBUFFER_SZ);
1964                         }
1965                 } else {
1966                         struct octeon_skb_page_info *pg_info =
1967                                 ((struct octeon_skb_page_info *)(skb->cb));
1968                         skb_copy_to_linear_data(skb, page_address(pg_info->page)
1969                                                 + pg_info->page_offset, len);
1970                         skb_put(skb, len);
1971                         put_page(pg_info->page);
1972                 }
1973
1974                 if (((oct->chip_id == OCTEON_CN66XX) ||
1975                      (oct->chip_id == OCTEON_CN68XX)) &&
1976                     ptp_enable) {
1977                         if (rh->r_dh.has_hwtstamp) {
1978                                 /* timestamp is included from the hardware at
1979                                  * the beginning of the packet.
1980                                  */
1981                                 if (ifstate_check
1982                                     (lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED)) {
1983                                         /* Nanoseconds are in the first 64-bits
1984                                          * of the packet.
1985                                          */
1986                                         memcpy(&ns, (skb->data), sizeof(ns));
1987                                         shhwtstamps = skb_hwtstamps(skb);
1988                                         shhwtstamps->hwtstamp =
1989                                                 ns_to_ktime(ns +
1990                                                             lio->ptp_adjust);
1991                                 }
1992                                 skb_pull(skb, sizeof(ns));
1993                         }
1994                 }
1995
1996                 skb->protocol = eth_type_trans(skb, skb->dev);
1997                 if ((netdev->features & NETIF_F_RXCSUM) &&
1998                     (((rh->r_dh.encap_on) &&
1999                       (rh->r_dh.csum_verified & CNNIC_TUN_CSUM_VERIFIED)) ||
2000                      (!(rh->r_dh.encap_on) &&
2001                       (rh->r_dh.csum_verified & CNNIC_CSUM_VERIFIED))))
2002                         /* checksum has already been verified */
2003                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2004                 else
2005                         skb->ip_summed = CHECKSUM_NONE;
2006
2007                 /* Setting Encapsulation field on basis of status received
2008                  * from the firmware
2009                  */
2010                 if (rh->r_dh.encap_on) {
2011                         skb->encapsulation = 1;
2012                         skb->csum_level = 1;
2013                         droq->stats.rx_vxlan++;
2014                 }
2015
2016                 /* inbound VLAN tag */
2017                 if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
2018                     (rh->r_dh.vlan != 0)) {
2019                         u16 vid = rh->r_dh.vlan;
2020                         u16 priority = rh->r_dh.priority;
2021
2022                         vtag = priority << 13 | vid;
2023                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag);
2024                 }
2025
2026                 packet_was_received = napi_gro_receive(napi, skb) != GRO_DROP;
2027
2028                 if (packet_was_received) {
2029                         droq->stats.rx_bytes_received += len;
2030                         droq->stats.rx_pkts_received++;
2031                         netdev->last_rx = jiffies;
2032                 } else {
2033                         droq->stats.rx_dropped++;
2034                         netif_info(lio, rx_err, lio->netdev,
2035                                    "droq:%d  error rx_dropped:%llu\n",
2036                                    droq->q_no, droq->stats.rx_dropped);
2037                 }
2038
2039         } else {
2040                 recv_buffer_free(skb);
2041         }
2042 }
2043
2044 /**
2045  * \brief wrapper for calling napi_schedule
2046  * @param param parameters to pass to napi_schedule
2047  *
2048  * Used when scheduling on different CPUs
2049  */
2050 static void napi_schedule_wrapper(void *param)
2051 {
2052         struct napi_struct *napi = param;
2053
2054         napi_schedule(napi);
2055 }
2056
2057 /**
2058  * \brief callback when receive interrupt occurs and we are in NAPI mode
2059  * @param arg pointer to octeon output queue
2060  */
2061 static void liquidio_napi_drv_callback(void *arg)
2062 {
2063         struct octeon_droq *droq = arg;
2064         int this_cpu = smp_processor_id();
2065
2066         if (droq->cpu_id == this_cpu) {
2067                 napi_schedule(&droq->napi);
2068         } else {
2069                 struct call_single_data *csd = &droq->csd;
2070
2071                 csd->func = napi_schedule_wrapper;
2072                 csd->info = &droq->napi;
2073                 csd->flags = 0;
2074
2075                 smp_call_function_single_async(droq->cpu_id, csd);
2076         }
2077 }
2078
2079 /**
2080  * \brief Entry point for NAPI polling
2081  * @param napi NAPI structure
2082  * @param budget maximum number of items to process
2083  */
2084 static int liquidio_napi_poll(struct napi_struct *napi, int budget)
2085 {
2086         struct octeon_droq *droq;
2087         int work_done;
2088         int tx_done = 0, iq_no;
2089         struct octeon_instr_queue *iq;
2090         struct octeon_device *oct;
2091
2092         droq = container_of(napi, struct octeon_droq, napi);
2093         oct = droq->oct_dev;
2094         iq_no = droq->q_no;
2095         /* Handle Droq descriptors */
2096         work_done = octeon_process_droq_poll_cmd(oct, droq->q_no,
2097                                                  POLL_EVENT_PROCESS_PKTS,
2098                                                  budget);
2099
2100         /* Flush the instruction queue */
2101         iq = oct->instr_queue[iq_no];
2102         if (iq) {
2103                 /* Process iq buffers with in the budget limits */
2104                 tx_done = octeon_flush_iq(oct, iq, 1, budget);
2105                 /* Update iq read-index rather than waiting for next interrupt.
2106                  * Return back if tx_done is false.
2107                  */
2108                 update_txq_status(oct, iq_no);
2109                 /*tx_done = (iq->flush_index == iq->octeon_read_index);*/
2110         } else {
2111                 dev_err(&oct->pci_dev->dev, "%s:  iq (%d) num invalid\n",
2112                         __func__, iq_no);
2113         }
2114
2115         if ((work_done < budget) && (tx_done)) {
2116                 napi_complete(napi);
2117                 octeon_process_droq_poll_cmd(droq->oct_dev, droq->q_no,
2118                                              POLL_EVENT_ENABLE_INTR, 0);
2119                 return 0;
2120         }
2121
2122         return (!tx_done) ? (budget) : (work_done);
2123 }
2124
2125 /**
2126  * \brief Setup input and output queues
2127  * @param octeon_dev octeon device
2128  * @param ifidx  Interface Index
2129  *
2130  * Note: Queues are with respect to the octeon device. Thus
2131  * an input queue is for egress packets, and output queues
2132  * are for ingress packets.
2133  */
2134 static inline int setup_io_queues(struct octeon_device *octeon_dev,
2135                                   int ifidx)
2136 {
2137         struct octeon_droq_ops droq_ops;
2138         struct net_device *netdev;
2139         static int cpu_id;
2140         static int cpu_id_modulus;
2141         struct octeon_droq *droq;
2142         struct napi_struct *napi;
2143         int q, q_no, retval = 0;
2144         struct lio *lio;
2145         int num_tx_descs;
2146
2147         netdev = octeon_dev->props[ifidx].netdev;
2148
2149         lio = GET_LIO(netdev);
2150
2151         memset(&droq_ops, 0, sizeof(struct octeon_droq_ops));
2152
2153         droq_ops.fptr = liquidio_push_packet;
2154         droq_ops.farg = (void *)netdev;
2155
2156         droq_ops.poll_mode = 1;
2157         droq_ops.napi_fn = liquidio_napi_drv_callback;
2158         cpu_id = 0;
2159         cpu_id_modulus = num_present_cpus();
2160
2161         /* set up DROQs. */
2162         for (q = 0; q < lio->linfo.num_rxpciq; q++) {
2163                 q_no = lio->linfo.rxpciq[q].s.q_no;
2164                 dev_dbg(&octeon_dev->pci_dev->dev,
2165                         "setup_io_queues index:%d linfo.rxpciq.s.q_no:%d\n",
2166                         q, q_no);
2167                 retval = octeon_setup_droq(octeon_dev, q_no,
2168                                            CFG_GET_NUM_RX_DESCS_NIC_IF
2169                                                    (octeon_get_conf(octeon_dev),
2170                                                    lio->ifidx),
2171                                            CFG_GET_NUM_RX_BUF_SIZE_NIC_IF
2172                                                    (octeon_get_conf(octeon_dev),
2173                                                    lio->ifidx), NULL);
2174                 if (retval) {
2175                         dev_err(&octeon_dev->pci_dev->dev,
2176                                 " %s : Runtime DROQ(RxQ) creation failed.\n",
2177                                 __func__);
2178                         return 1;
2179                 }
2180
2181                 droq = octeon_dev->droq[q_no];
2182                 napi = &droq->napi;
2183                 dev_dbg(&octeon_dev->pci_dev->dev,
2184                         "netif_napi_add netdev:%llx oct:%llx\n",
2185                         (u64)netdev,
2186                         (u64)octeon_dev);
2187                 netif_napi_add(netdev, napi, liquidio_napi_poll, 64);
2188
2189                 /* designate a CPU for this droq */
2190                 droq->cpu_id = cpu_id;
2191                 cpu_id++;
2192                 if (cpu_id >= cpu_id_modulus)
2193                         cpu_id = 0;
2194
2195                 octeon_register_droq_ops(octeon_dev, q_no, &droq_ops);
2196         }
2197
2198         /* set up IQs. */
2199         for (q = 0; q < lio->linfo.num_txpciq; q++) {
2200                 num_tx_descs = CFG_GET_NUM_TX_DESCS_NIC_IF(octeon_get_conf
2201                                                            (octeon_dev),
2202                                                            lio->ifidx);
2203                 retval = octeon_setup_iq(octeon_dev, ifidx, q,
2204                                          lio->linfo.txpciq[q], num_tx_descs,
2205                                          netdev_get_tx_queue(netdev, q));
2206                 if (retval) {
2207                         dev_err(&octeon_dev->pci_dev->dev,
2208                                 " %s : Runtime IQ(TxQ) creation failed.\n",
2209                                 __func__);
2210                         return 1;
2211                 }
2212         }
2213
2214         return 0;
2215 }
2216
2217 /**
2218  * \brief Poll routine for checking transmit queue status
2219  * @param work work_struct data structure
2220  */
2221 static void octnet_poll_check_txq_status(struct work_struct *work)
2222 {
2223         struct cavium_wk *wk = (struct cavium_wk *)work;
2224         struct lio *lio = (struct lio *)wk->ctxptr;
2225
2226         if (!ifstate_check(lio, LIO_IFSTATE_RUNNING))
2227                 return;
2228
2229         check_txq_status(lio);
2230         queue_delayed_work(lio->txq_status_wq.wq,
2231                            &lio->txq_status_wq.wk.work, msecs_to_jiffies(1));
2232 }
2233
2234 /**
2235  * \brief Sets up the txq poll check
2236  * @param netdev network device
2237  */
2238 static inline void setup_tx_poll_fn(struct net_device *netdev)
2239 {
2240         struct lio *lio = GET_LIO(netdev);
2241         struct octeon_device *oct = lio->oct_dev;
2242
2243         lio->txq_status_wq.wq = alloc_workqueue("txq-status",
2244                                                 WQ_MEM_RECLAIM, 0);
2245         if (!lio->txq_status_wq.wq) {
2246                 dev_err(&oct->pci_dev->dev, "unable to create cavium txq status wq\n");
2247                 return;
2248         }
2249         INIT_DELAYED_WORK(&lio->txq_status_wq.wk.work,
2250                           octnet_poll_check_txq_status);
2251         lio->txq_status_wq.wk.ctxptr = lio;
2252         queue_delayed_work(lio->txq_status_wq.wq,
2253                            &lio->txq_status_wq.wk.work, msecs_to_jiffies(1));
2254 }
2255
2256 static inline void cleanup_tx_poll_fn(struct net_device *netdev)
2257 {
2258         struct lio *lio = GET_LIO(netdev);
2259
2260         cancel_delayed_work_sync(&lio->txq_status_wq.wk.work);
2261         destroy_workqueue(lio->txq_status_wq.wq);
2262 }
2263
2264 /**
2265  * \brief Net device open for LiquidIO
2266  * @param netdev network device
2267  */
2268 static int liquidio_open(struct net_device *netdev)
2269 {
2270         struct lio *lio = GET_LIO(netdev);
2271         struct octeon_device *oct = lio->oct_dev;
2272         struct napi_struct *napi, *n;
2273
2274         if (oct->props[lio->ifidx].napi_enabled == 0) {
2275                 list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list)
2276                         napi_enable(napi);
2277
2278                 oct->props[lio->ifidx].napi_enabled = 1;
2279         }
2280
2281         oct_ptp_open(netdev);
2282
2283         ifstate_set(lio, LIO_IFSTATE_RUNNING);
2284
2285         setup_tx_poll_fn(netdev);
2286
2287         start_txq(netdev);
2288
2289         netif_info(lio, ifup, lio->netdev, "Interface Open, ready for traffic\n");
2290
2291         /* tell Octeon to start forwarding packets to host */
2292         send_rx_ctrl_cmd(lio, 1);
2293
2294         /* Ready for link status updates */
2295         lio->intf_open = 1;
2296
2297         dev_info(&oct->pci_dev->dev, "%s interface is opened\n",
2298                  netdev->name);
2299
2300         return 0;
2301 }
2302
2303 /**
2304  * \brief Net device stop for LiquidIO
2305  * @param netdev network device
2306  */
2307 static int liquidio_stop(struct net_device *netdev)
2308 {
2309         struct lio *lio = GET_LIO(netdev);
2310         struct octeon_device *oct = lio->oct_dev;
2311
2312         ifstate_reset(lio, LIO_IFSTATE_RUNNING);
2313
2314         netif_tx_disable(netdev);
2315
2316         /* Inform that netif carrier is down */
2317         netif_carrier_off(netdev);
2318         lio->intf_open = 0;
2319         lio->linfo.link.s.link_up = 0;
2320         lio->link_changes++;
2321
2322         /* Pause for a moment and wait for Octeon to flush out (to the wire) any
2323          * egress packets that are in-flight.
2324          */
2325         set_current_state(TASK_INTERRUPTIBLE);
2326         schedule_timeout(msecs_to_jiffies(100));
2327
2328         /* Now it should be safe to tell Octeon that nic interface is down. */
2329         send_rx_ctrl_cmd(lio, 0);
2330
2331         cleanup_tx_poll_fn(netdev);
2332
2333         if (lio->ptp_clock) {
2334                 ptp_clock_unregister(lio->ptp_clock);
2335                 lio->ptp_clock = NULL;
2336         }
2337
2338         dev_info(&oct->pci_dev->dev, "%s interface is stopped\n", netdev->name);
2339
2340         return 0;
2341 }
2342
2343 void liquidio_link_ctrl_cmd_completion(void *nctrl_ptr)
2344 {
2345         struct octnic_ctrl_pkt *nctrl = (struct octnic_ctrl_pkt *)nctrl_ptr;
2346         struct net_device *netdev = (struct net_device *)nctrl->netpndev;
2347         struct lio *lio = GET_LIO(netdev);
2348         struct octeon_device *oct = lio->oct_dev;
2349         u8 *mac;
2350
2351         switch (nctrl->ncmd.s.cmd) {
2352         case OCTNET_CMD_CHANGE_DEVFLAGS:
2353         case OCTNET_CMD_SET_MULTI_LIST:
2354                 break;
2355
2356         case OCTNET_CMD_CHANGE_MACADDR:
2357                 mac = ((u8 *)&nctrl->udd[0]) + 2;
2358                 netif_info(lio, probe, lio->netdev,
2359                            "%s %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
2360                            "MACAddr changed to", mac[0], mac[1],
2361                            mac[2], mac[3], mac[4], mac[5]);
2362                 break;
2363
2364         case OCTNET_CMD_CHANGE_MTU:
2365                 /* If command is successful, change the MTU. */
2366                 netif_info(lio, probe, lio->netdev, " MTU Changed from %d to %d\n",
2367                            netdev->mtu, nctrl->ncmd.s.param1);
2368                 dev_info(&oct->pci_dev->dev, "%s MTU Changed from %d to %d\n",
2369                          netdev->name, netdev->mtu,
2370                          nctrl->ncmd.s.param1);
2371                 rtnl_lock();
2372                 netdev->mtu = nctrl->ncmd.s.param1;
2373                 call_netdevice_notifiers(NETDEV_CHANGEMTU, netdev);
2374                 rtnl_unlock();
2375                 break;
2376
2377         case OCTNET_CMD_GPIO_ACCESS:
2378                 netif_info(lio, probe, lio->netdev, "LED Flashing visual identification\n");
2379
2380                 break;
2381
2382         case OCTNET_CMD_LRO_ENABLE:
2383                 dev_info(&oct->pci_dev->dev, "%s LRO Enabled\n", netdev->name);
2384                 break;
2385
2386         case OCTNET_CMD_LRO_DISABLE:
2387                 dev_info(&oct->pci_dev->dev, "%s LRO Disabled\n",
2388                          netdev->name);
2389                 break;
2390
2391         case OCTNET_CMD_VERBOSE_ENABLE:
2392                 dev_info(&oct->pci_dev->dev, "%s LRO Enabled\n", netdev->name);
2393                 break;
2394
2395         case OCTNET_CMD_VERBOSE_DISABLE:
2396                 dev_info(&oct->pci_dev->dev, "%s LRO Disabled\n",
2397                          netdev->name);
2398                 break;
2399
2400         case OCTNET_CMD_ENABLE_VLAN_FILTER:
2401                 dev_info(&oct->pci_dev->dev, "%s VLAN filter enabled\n",
2402                          netdev->name);
2403                 break;
2404
2405         case OCTNET_CMD_ADD_VLAN_FILTER:
2406                 dev_info(&oct->pci_dev->dev, "%s VLAN filter %d added\n",
2407                          netdev->name, nctrl->ncmd.s.param1);
2408                 break;
2409
2410         case OCTNET_CMD_DEL_VLAN_FILTER:
2411                 dev_info(&oct->pci_dev->dev, "%s VLAN filter %d removed\n",
2412                          netdev->name, nctrl->ncmd.s.param1);
2413                 break;
2414
2415         case OCTNET_CMD_SET_SETTINGS:
2416                 dev_info(&oct->pci_dev->dev, "%s settings changed\n",
2417                          netdev->name);
2418
2419                 break;
2420                 /* Case to handle "OCTNET_CMD_TNL_RX_CSUM_CTL"
2421                  * Command passed by NIC driver
2422                  */
2423         case OCTNET_CMD_TNL_RX_CSUM_CTL:
2424                 if (nctrl->ncmd.s.param1 == OCTNET_CMD_RXCSUM_ENABLE) {
2425                         netif_info(lio, probe, lio->netdev,
2426                                    "%s RX Checksum Offload Enabled\n",
2427                                    netdev->name);
2428                 } else if (nctrl->ncmd.s.param1 ==
2429                            OCTNET_CMD_RXCSUM_DISABLE) {
2430                         netif_info(lio, probe, lio->netdev,
2431                                    "%s RX Checksum Offload Disabled\n",
2432                                    netdev->name);
2433                 }
2434                 break;
2435
2436                 /* Case to handle "OCTNET_CMD_TNL_TX_CSUM_CTL"
2437                  * Command passed by NIC driver
2438                  */
2439         case OCTNET_CMD_TNL_TX_CSUM_CTL:
2440                 if (nctrl->ncmd.s.param1 == OCTNET_CMD_TXCSUM_ENABLE) {
2441                         netif_info(lio, probe, lio->netdev,
2442                                    "%s TX Checksum Offload Enabled\n",
2443                                    netdev->name);
2444                 } else if (nctrl->ncmd.s.param1 ==
2445                            OCTNET_CMD_TXCSUM_DISABLE) {
2446                         netif_info(lio, probe, lio->netdev,
2447                                    "%s TX Checksum Offload Disabled\n",
2448                                    netdev->name);
2449                 }
2450                 break;
2451
2452                 /* Case to handle "OCTNET_CMD_VXLAN_PORT_CONFIG"
2453                  * Command passed by NIC driver
2454                  */
2455         case OCTNET_CMD_VXLAN_PORT_CONFIG:
2456                 if (nctrl->ncmd.s.more == OCTNET_CMD_VXLAN_PORT_ADD) {
2457                         netif_info(lio, probe, lio->netdev,
2458                                    "%s VxLAN Destination UDP PORT:%d ADDED\n",
2459                                    netdev->name,
2460                                    nctrl->ncmd.s.param1);
2461                 } else if (nctrl->ncmd.s.more ==
2462                            OCTNET_CMD_VXLAN_PORT_DEL) {
2463                         netif_info(lio, probe, lio->netdev,
2464                                    "%s VxLAN Destination UDP PORT:%d DELETED\n",
2465                                    netdev->name,
2466                                    nctrl->ncmd.s.param1);
2467                 }
2468                 break;
2469
2470         case OCTNET_CMD_SET_FLOW_CTL:
2471                 netif_info(lio, probe, lio->netdev, "Set RX/TX flow control parameters\n");
2472                 break;
2473
2474         default:
2475                 dev_err(&oct->pci_dev->dev, "%s Unknown cmd %d\n", __func__,
2476                         nctrl->ncmd.s.cmd);
2477         }
2478 }
2479
2480 /**
2481  * \brief Converts a mask based on net device flags
2482  * @param netdev network device
2483  *
2484  * This routine generates a octnet_ifflags mask from the net device flags
2485  * received from the OS.
2486  */
2487 static inline enum octnet_ifflags get_new_flags(struct net_device *netdev)
2488 {
2489         enum octnet_ifflags f = OCTNET_IFFLAG_UNICAST;
2490
2491         if (netdev->flags & IFF_PROMISC)
2492                 f |= OCTNET_IFFLAG_PROMISC;
2493
2494         if (netdev->flags & IFF_ALLMULTI)
2495                 f |= OCTNET_IFFLAG_ALLMULTI;
2496
2497         if (netdev->flags & IFF_MULTICAST) {
2498                 f |= OCTNET_IFFLAG_MULTICAST;
2499
2500                 /* Accept all multicast addresses if there are more than we
2501                  * can handle
2502                  */
2503                 if (netdev_mc_count(netdev) > MAX_OCTEON_MULTICAST_ADDR)
2504                         f |= OCTNET_IFFLAG_ALLMULTI;
2505         }
2506
2507         if (netdev->flags & IFF_BROADCAST)
2508                 f |= OCTNET_IFFLAG_BROADCAST;
2509
2510         return f;
2511 }
2512
2513 /**
2514  * \brief Net device set_multicast_list
2515  * @param netdev network device
2516  */
2517 static void liquidio_set_mcast_list(struct net_device *netdev)
2518 {
2519         struct lio *lio = GET_LIO(netdev);
2520         struct octeon_device *oct = lio->oct_dev;
2521         struct octnic_ctrl_pkt nctrl;
2522         struct netdev_hw_addr *ha;
2523         u64 *mc;
2524         int ret;
2525         int mc_count = min(netdev_mc_count(netdev), MAX_OCTEON_MULTICAST_ADDR);
2526
2527         memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2528
2529         /* Create a ctrl pkt command to be sent to core app. */
2530         nctrl.ncmd.u64 = 0;
2531         nctrl.ncmd.s.cmd = OCTNET_CMD_SET_MULTI_LIST;
2532         nctrl.ncmd.s.param1 = get_new_flags(netdev);
2533         nctrl.ncmd.s.param2 = mc_count;
2534         nctrl.ncmd.s.more = mc_count;
2535         nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
2536         nctrl.netpndev = (u64)netdev;
2537         nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2538
2539         /* copy all the addresses into the udd */
2540         mc = &nctrl.udd[0];
2541         netdev_for_each_mc_addr(ha, netdev) {
2542                 *mc = 0;
2543                 memcpy(((u8 *)mc) + 2, ha->addr, ETH_ALEN);
2544                 /* no need to swap bytes */
2545
2546                 if (++mc > &nctrl.udd[mc_count])
2547                         break;
2548         }
2549
2550         /* Apparently, any activity in this call from the kernel has to
2551          * be atomic. So we won't wait for response.
2552          */
2553         nctrl.wait_time = 0;
2554
2555         ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
2556         if (ret < 0) {
2557                 dev_err(&oct->pci_dev->dev, "DEVFLAGS change failed in core (ret: 0x%x)\n",
2558                         ret);
2559         }
2560 }
2561
2562 /**
2563  * \brief Net device set_mac_address
2564  * @param netdev network device
2565  */
2566 static int liquidio_set_mac(struct net_device *netdev, void *p)
2567 {
2568         int ret = 0;
2569         struct lio *lio = GET_LIO(netdev);
2570         struct octeon_device *oct = lio->oct_dev;
2571         struct sockaddr *addr = (struct sockaddr *)p;
2572         struct octnic_ctrl_pkt nctrl;
2573
2574         if (!is_valid_ether_addr(addr->sa_data))
2575                 return -EADDRNOTAVAIL;
2576
2577         memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2578
2579         nctrl.ncmd.u64 = 0;
2580         nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MACADDR;
2581         nctrl.ncmd.s.param1 = 0;
2582         nctrl.ncmd.s.more = 1;
2583         nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
2584         nctrl.netpndev = (u64)netdev;
2585         nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2586         nctrl.wait_time = 100;
2587
2588         nctrl.udd[0] = 0;
2589         /* The MAC Address is presented in network byte order. */
2590         memcpy((u8 *)&nctrl.udd[0] + 2, addr->sa_data, ETH_ALEN);
2591
2592         ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
2593         if (ret < 0) {
2594                 dev_err(&oct->pci_dev->dev, "MAC Address change failed\n");
2595                 return -ENOMEM;
2596         }
2597         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2598         memcpy(((u8 *)&lio->linfo.hw_addr) + 2, addr->sa_data, ETH_ALEN);
2599
2600         return 0;
2601 }
2602
2603 /**
2604  * \brief Net device get_stats
2605  * @param netdev network device
2606  */
2607 static struct net_device_stats *liquidio_get_stats(struct net_device *netdev)
2608 {
2609         struct lio *lio = GET_LIO(netdev);
2610         struct net_device_stats *stats = &netdev->stats;
2611         struct octeon_device *oct;
2612         u64 pkts = 0, drop = 0, bytes = 0;
2613         struct oct_droq_stats *oq_stats;
2614         struct oct_iq_stats *iq_stats;
2615         int i, iq_no, oq_no;
2616
2617         oct = lio->oct_dev;
2618
2619         for (i = 0; i < lio->linfo.num_txpciq; i++) {
2620                 iq_no = lio->linfo.txpciq[i].s.q_no;
2621                 iq_stats = &oct->instr_queue[iq_no]->stats;
2622                 pkts += iq_stats->tx_done;
2623                 drop += iq_stats->tx_dropped;
2624                 bytes += iq_stats->tx_tot_bytes;
2625         }
2626
2627         stats->tx_packets = pkts;
2628         stats->tx_bytes = bytes;
2629         stats->tx_dropped = drop;
2630
2631         pkts = 0;
2632         drop = 0;
2633         bytes = 0;
2634
2635         for (i = 0; i < lio->linfo.num_rxpciq; i++) {
2636                 oq_no = lio->linfo.rxpciq[i].s.q_no;
2637                 oq_stats = &oct->droq[oq_no]->stats;
2638                 pkts += oq_stats->rx_pkts_received;
2639                 drop += (oq_stats->rx_dropped +
2640                          oq_stats->dropped_nodispatch +
2641                          oq_stats->dropped_toomany +
2642                          oq_stats->dropped_nomem);
2643                 bytes += oq_stats->rx_bytes_received;
2644         }
2645
2646         stats->rx_bytes = bytes;
2647         stats->rx_packets = pkts;
2648         stats->rx_dropped = drop;
2649
2650         return stats;
2651 }
2652
2653 /**
2654  * \brief Net device change_mtu
2655  * @param netdev network device
2656  */
2657 static int liquidio_change_mtu(struct net_device *netdev, int new_mtu)
2658 {
2659         struct lio *lio = GET_LIO(netdev);
2660         struct octeon_device *oct = lio->oct_dev;
2661         struct octnic_ctrl_pkt nctrl;
2662         int ret = 0;
2663
2664         /* Limit the MTU to make sure the ethernet packets are between 68 bytes
2665          * and 16000 bytes
2666          */
2667         if ((new_mtu < LIO_MIN_MTU_SIZE) ||
2668             (new_mtu > LIO_MAX_MTU_SIZE)) {
2669                 dev_err(&oct->pci_dev->dev, "Invalid MTU: %d\n", new_mtu);
2670                 dev_err(&oct->pci_dev->dev, "Valid range %d and %d\n",
2671                         LIO_MIN_MTU_SIZE, LIO_MAX_MTU_SIZE);
2672                 return -EINVAL;
2673         }
2674
2675         memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2676
2677         nctrl.ncmd.u64 = 0;
2678         nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MTU;
2679         nctrl.ncmd.s.param1 = new_mtu;
2680         nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
2681         nctrl.wait_time = 100;
2682         nctrl.netpndev = (u64)netdev;
2683         nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2684
2685         ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
2686         if (ret < 0) {
2687                 dev_err(&oct->pci_dev->dev, "Failed to set MTU\n");
2688                 return -1;
2689         }
2690
2691         lio->mtu = new_mtu;
2692
2693         return 0;
2694 }
2695
2696 /**
2697  * \brief Handler for SIOCSHWTSTAMP ioctl
2698  * @param netdev network device
2699  * @param ifr interface request
2700  * @param cmd command
2701  */
2702 static int hwtstamp_ioctl(struct net_device *netdev, struct ifreq *ifr)
2703 {
2704         struct hwtstamp_config conf;
2705         struct lio *lio = GET_LIO(netdev);
2706
2707         if (copy_from_user(&conf, ifr->ifr_data, sizeof(conf)))
2708                 return -EFAULT;
2709
2710         if (conf.flags)
2711                 return -EINVAL;
2712
2713         switch (conf.tx_type) {
2714         case HWTSTAMP_TX_ON:
2715         case HWTSTAMP_TX_OFF:
2716                 break;
2717         default:
2718                 return -ERANGE;
2719         }
2720
2721         switch (conf.rx_filter) {
2722         case HWTSTAMP_FILTER_NONE:
2723                 break;
2724         case HWTSTAMP_FILTER_ALL:
2725         case HWTSTAMP_FILTER_SOME:
2726         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2727         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2728         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2729         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2730         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2731         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2732         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2733         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2734         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2735         case HWTSTAMP_FILTER_PTP_V2_EVENT:
2736         case HWTSTAMP_FILTER_PTP_V2_SYNC:
2737         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2738                 conf.rx_filter = HWTSTAMP_FILTER_ALL;
2739                 break;
2740         default:
2741                 return -ERANGE;
2742         }
2743
2744         if (conf.rx_filter == HWTSTAMP_FILTER_ALL)
2745                 ifstate_set(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED);
2746
2747         else
2748                 ifstate_reset(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED);
2749
2750         return copy_to_user(ifr->ifr_data, &conf, sizeof(conf)) ? -EFAULT : 0;
2751 }
2752
2753 /**
2754  * \brief ioctl handler
2755  * @param netdev network device
2756  * @param ifr interface request
2757  * @param cmd command
2758  */
2759 static int liquidio_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2760 {
2761         switch (cmd) {
2762         case SIOCSHWTSTAMP:
2763                 return hwtstamp_ioctl(netdev, ifr);
2764         default:
2765                 return -EOPNOTSUPP;
2766         }
2767 }
2768
2769 /**
2770  * \brief handle a Tx timestamp response
2771  * @param status response status
2772  * @param buf pointer to skb
2773  */
2774 static void handle_timestamp(struct octeon_device *oct,
2775                              u32 status,
2776                              void *buf)
2777 {
2778         struct octnet_buf_free_info *finfo;
2779         struct octeon_soft_command *sc;
2780         struct oct_timestamp_resp *resp;
2781         struct lio *lio;
2782         struct sk_buff *skb = (struct sk_buff *)buf;
2783
2784         finfo = (struct octnet_buf_free_info *)skb->cb;
2785         lio = finfo->lio;
2786         sc = finfo->sc;
2787         oct = lio->oct_dev;
2788         resp = (struct oct_timestamp_resp *)sc->virtrptr;
2789
2790         if (status != OCTEON_REQUEST_DONE) {
2791                 dev_err(&oct->pci_dev->dev, "Tx timestamp instruction failed. Status: %llx\n",
2792                         CVM_CAST64(status));
2793                 resp->timestamp = 0;
2794         }
2795
2796         octeon_swap_8B_data(&resp->timestamp, 1);
2797
2798         if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) != 0)) {
2799                 struct skb_shared_hwtstamps ts;
2800                 u64 ns = resp->timestamp;
2801
2802                 netif_info(lio, tx_done, lio->netdev,
2803                            "Got resulting SKBTX_HW_TSTAMP skb=%p ns=%016llu\n",
2804                            skb, (unsigned long long)ns);
2805                 ts.hwtstamp = ns_to_ktime(ns + lio->ptp_adjust);
2806                 skb_tstamp_tx(skb, &ts);
2807         }
2808
2809         octeon_free_soft_command(oct, sc);
2810         tx_buffer_free(skb);
2811 }
2812
2813 /* \brief Send a data packet that will be timestamped
2814  * @param oct octeon device
2815  * @param ndata pointer to network data
2816  * @param finfo pointer to private network data
2817  */
2818 static inline int send_nic_timestamp_pkt(struct octeon_device *oct,
2819                                          struct octnic_data_pkt *ndata,
2820                                          struct octnet_buf_free_info *finfo,
2821                                          int xmit_more)
2822 {
2823         int retval;
2824         struct octeon_soft_command *sc;
2825         struct lio *lio;
2826         int ring_doorbell;
2827         u32 len;
2828
2829         lio = finfo->lio;
2830
2831         sc = octeon_alloc_soft_command_resp(oct, &ndata->cmd,
2832                                             sizeof(struct oct_timestamp_resp));
2833         finfo->sc = sc;
2834
2835         if (!sc) {
2836                 dev_err(&oct->pci_dev->dev, "No memory for timestamped data packet\n");
2837                 return IQ_SEND_FAILED;
2838         }
2839
2840         if (ndata->reqtype == REQTYPE_NORESP_NET)
2841                 ndata->reqtype = REQTYPE_RESP_NET;
2842         else if (ndata->reqtype == REQTYPE_NORESP_NET_SG)
2843                 ndata->reqtype = REQTYPE_RESP_NET_SG;
2844
2845         sc->callback = handle_timestamp;
2846         sc->callback_arg = finfo->skb;
2847         sc->iq_no = ndata->q_no;
2848
2849         len = (u32)((struct octeon_instr_ih2 *)(&sc->cmd.cmd2.ih2))->dlengsz;
2850
2851         ring_doorbell = !xmit_more;
2852         retval = octeon_send_command(oct, sc->iq_no, ring_doorbell, &sc->cmd,
2853                                      sc, len, ndata->reqtype);
2854
2855         if (retval == IQ_SEND_FAILED) {
2856                 dev_err(&oct->pci_dev->dev, "timestamp data packet failed status: %x\n",
2857                         retval);
2858                 octeon_free_soft_command(oct, sc);
2859         } else {
2860                 netif_info(lio, tx_queued, lio->netdev, "Queued timestamp packet\n");
2861         }
2862
2863         return retval;
2864 }
2865
2866 /** \brief Transmit networks packets to the Octeon interface
2867  * @param skbuff   skbuff struct to be passed to network layer.
2868  * @param netdev    pointer to network device
2869  * @returns whether the packet was transmitted to the device okay or not
2870  *             (NETDEV_TX_OK or NETDEV_TX_BUSY)
2871  */
2872 static int liquidio_xmit(struct sk_buff *skb, struct net_device *netdev)
2873 {
2874         struct lio *lio;
2875         struct octnet_buf_free_info *finfo;
2876         union octnic_cmd_setup cmdsetup;
2877         struct octnic_data_pkt ndata;
2878         struct octeon_device *oct;
2879         struct oct_iq_stats *stats;
2880         struct octeon_instr_irh *irh;
2881         union tx_info *tx_info;
2882         int status = 0;
2883         int q_idx = 0, iq_no = 0;
2884         int xmit_more, j;
2885         u64 dptr = 0;
2886         u32 tag = 0;
2887
2888         lio = GET_LIO(netdev);
2889         oct = lio->oct_dev;
2890
2891         if (netif_is_multiqueue(netdev)) {
2892                 q_idx = skb->queue_mapping;
2893                 q_idx = (q_idx % (lio->linfo.num_txpciq));
2894                 tag = q_idx;
2895                 iq_no = lio->linfo.txpciq[q_idx].s.q_no;
2896         } else {
2897                 iq_no = lio->txq;
2898         }
2899
2900         stats = &oct->instr_queue[iq_no]->stats;
2901
2902         /* Check for all conditions in which the current packet cannot be
2903          * transmitted.
2904          */
2905         if (!(atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING) ||
2906             (!lio->linfo.link.s.link_up) ||
2907             (skb->len <= 0)) {
2908                 netif_info(lio, tx_err, lio->netdev,
2909                            "Transmit failed link_status : %d\n",
2910                            lio->linfo.link.s.link_up);
2911                 goto lio_xmit_failed;
2912         }
2913
2914         /* Use space in skb->cb to store info used to unmap and
2915          * free the buffers.
2916          */
2917         finfo = (struct octnet_buf_free_info *)skb->cb;
2918         finfo->lio = lio;
2919         finfo->skb = skb;
2920         finfo->sc = NULL;
2921
2922         /* Prepare the attributes for the data to be passed to OSI. */
2923         memset(&ndata, 0, sizeof(struct octnic_data_pkt));
2924
2925         ndata.buf = (void *)finfo;
2926
2927         ndata.q_no = iq_no;
2928
2929         if (netif_is_multiqueue(netdev)) {
2930                 if (octnet_iq_is_full(oct, ndata.q_no)) {
2931                         /* defer sending if queue is full */
2932                         netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n",
2933                                    ndata.q_no);
2934                         stats->tx_iq_busy++;
2935                         return NETDEV_TX_BUSY;
2936                 }
2937         } else {
2938                 if (octnet_iq_is_full(oct, lio->txq)) {
2939                         /* defer sending if queue is full */
2940                         stats->tx_iq_busy++;
2941                         netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n",
2942                                    lio->txq);
2943                         return NETDEV_TX_BUSY;
2944                 }
2945         }
2946         /* pr_info(" XMIT - valid Qs: %d, 1st Q no: %d, cpu:  %d, q_no:%d\n",
2947          *      lio->linfo.num_txpciq, lio->txq, cpu, ndata.q_no);
2948          */
2949
2950         ndata.datasize = skb->len;
2951
2952         cmdsetup.u64 = 0;
2953         cmdsetup.s.iq_no = iq_no;
2954
2955         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2956                 if (skb->encapsulation) {
2957                         cmdsetup.s.tnl_csum = 1;
2958                         stats->tx_vxlan++;
2959                 } else {
2960                         cmdsetup.s.transport_csum = 1;
2961                 }
2962         }
2963         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
2964                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2965                 cmdsetup.s.timestamp = 1;
2966         }
2967
2968         if (skb_shinfo(skb)->nr_frags == 0) {
2969                 cmdsetup.s.u.datasize = skb->len;
2970                 octnet_prepare_pci_cmd(oct, &ndata.cmd, &cmdsetup, tag);
2971
2972                 /* Offload checksum calculation for TCP/UDP packets */
2973                 dptr = dma_map_single(&oct->pci_dev->dev,
2974                                       skb->data,
2975                                       skb->len,
2976                                       DMA_TO_DEVICE);
2977                 if (dma_mapping_error(&oct->pci_dev->dev, dptr)) {
2978                         dev_err(&oct->pci_dev->dev, "%s DMA mapping error 1\n",
2979                                 __func__);
2980                         return NETDEV_TX_BUSY;
2981                 }
2982
2983                 ndata.cmd.cmd2.dptr = dptr;
2984                 finfo->dptr = dptr;
2985                 ndata.reqtype = REQTYPE_NORESP_NET;
2986
2987         } else {
2988                 int i, frags;
2989                 struct skb_frag_struct *frag;
2990                 struct octnic_gather *g;
2991
2992                 spin_lock(&lio->glist_lock[q_idx]);
2993                 g = (struct octnic_gather *)
2994                         list_delete_head(&lio->glist[q_idx]);
2995                 spin_unlock(&lio->glist_lock[q_idx]);
2996
2997                 if (!g) {
2998                         netif_info(lio, tx_err, lio->netdev,
2999                                    "Transmit scatter gather: glist null!\n");
3000                         goto lio_xmit_failed;
3001                 }
3002
3003                 cmdsetup.s.gather = 1;
3004                 cmdsetup.s.u.gatherptrs = (skb_shinfo(skb)->nr_frags + 1);
3005                 octnet_prepare_pci_cmd(oct, &ndata.cmd, &cmdsetup, tag);
3006
3007                 memset(g->sg, 0, g->sg_size);
3008
3009                 g->sg[0].ptr[0] = dma_map_single(&oct->pci_dev->dev,
3010                                                  skb->data,
3011                                                  (skb->len - skb->data_len),
3012                                                  DMA_TO_DEVICE);
3013                 if (dma_mapping_error(&oct->pci_dev->dev, g->sg[0].ptr[0])) {
3014                         dev_err(&oct->pci_dev->dev, "%s DMA mapping error 2\n",
3015                                 __func__);
3016                         return NETDEV_TX_BUSY;
3017                 }
3018                 add_sg_size(&g->sg[0], (skb->len - skb->data_len), 0);
3019
3020                 frags = skb_shinfo(skb)->nr_frags;
3021                 i = 1;
3022                 while (frags--) {
3023                         frag = &skb_shinfo(skb)->frags[i - 1];
3024
3025                         g->sg[(i >> 2)].ptr[(i & 3)] =
3026                                 dma_map_page(&oct->pci_dev->dev,
3027                                              frag->page.p,
3028                                              frag->page_offset,
3029                                              frag->size,
3030                                              DMA_TO_DEVICE);
3031
3032                         if (dma_mapping_error(&oct->pci_dev->dev,
3033                                               g->sg[i >> 2].ptr[i & 3])) {
3034                                 dma_unmap_single(&oct->pci_dev->dev,
3035                                                  g->sg[0].ptr[0],
3036                                                  skb->len - skb->data_len,
3037                                                  DMA_TO_DEVICE);
3038                                 for (j = 1; j < i; j++) {
3039                                         frag = &skb_shinfo(skb)->frags[j - 1];
3040                                         dma_unmap_page(&oct->pci_dev->dev,
3041                                                        g->sg[j >> 2].ptr[j & 3],
3042                                                        frag->size,
3043                                                        DMA_TO_DEVICE);
3044                                 }
3045                                 dev_err(&oct->pci_dev->dev, "%s DMA mapping error 3\n",
3046                                         __func__);
3047                                 return NETDEV_TX_BUSY;
3048                         }
3049
3050                         add_sg_size(&g->sg[(i >> 2)], frag->size, (i & 3));
3051                         i++;
3052                 }
3053
3054                 dma_sync_single_for_device(&oct->pci_dev->dev, g->sg_dma_ptr,
3055                                            g->sg_size, DMA_TO_DEVICE);
3056                 dptr = g->sg_dma_ptr;
3057
3058                 ndata.cmd.cmd2.dptr = dptr;
3059                 finfo->dptr = dptr;
3060                 finfo->g = g;
3061
3062                 ndata.reqtype = REQTYPE_NORESP_NET_SG;
3063         }
3064
3065         irh = (struct octeon_instr_irh *)&ndata.cmd.cmd2.irh;
3066         tx_info = (union tx_info *)&ndata.cmd.cmd2.ossp[0];
3067
3068         if (skb_shinfo(skb)->gso_size) {
3069                 tx_info->s.gso_size = skb_shinfo(skb)->gso_size;
3070                 tx_info->s.gso_segs = skb_shinfo(skb)->gso_segs;
3071                 stats->tx_gso++;
3072         }
3073
3074         /* HW insert VLAN tag */
3075         if (skb_vlan_tag_present(skb)) {
3076                 irh->priority = skb_vlan_tag_get(skb) >> 13;
3077                 irh->vlan = skb_vlan_tag_get(skb) & 0xfff;
3078         }
3079
3080         xmit_more = skb->xmit_more;
3081
3082         if (unlikely(cmdsetup.s.timestamp))
3083                 status = send_nic_timestamp_pkt(oct, &ndata, finfo, xmit_more);
3084         else
3085                 status = octnet_send_nic_data_pkt(oct, &ndata, xmit_more);
3086         if (status == IQ_SEND_FAILED)
3087                 goto lio_xmit_failed;
3088
3089         netif_info(lio, tx_queued, lio->netdev, "Transmit queued successfully\n");
3090
3091         if (status == IQ_SEND_STOP)
3092                 stop_q(lio->netdev, q_idx);
3093
3094         netif_trans_update(netdev);
3095
3096         if (skb_shinfo(skb)->gso_size)
3097                 stats->tx_done += skb_shinfo(skb)->gso_segs;
3098         else
3099                 stats->tx_done++;
3100         stats->tx_tot_bytes += skb->len;
3101
3102         return NETDEV_TX_OK;
3103
3104 lio_xmit_failed:
3105         stats->tx_dropped++;
3106         netif_info(lio, tx_err, lio->netdev, "IQ%d Transmit dropped:%llu\n",
3107                    iq_no, stats->tx_dropped);
3108         if (dptr)
3109                 dma_unmap_single(&oct->pci_dev->dev, dptr,
3110                                  ndata.datasize, DMA_TO_DEVICE);
3111         tx_buffer_free(skb);
3112         return NETDEV_TX_OK;
3113 }
3114
3115 /** \brief Network device Tx timeout
3116  * @param netdev    pointer to network device
3117  */
3118 static void liquidio_tx_timeout(struct net_device *netdev)
3119 {
3120         struct lio *lio;
3121
3122         lio = GET_LIO(netdev);
3123
3124         netif_info(lio, tx_err, lio->netdev,
3125                    "Transmit timeout tx_dropped:%ld, waking up queues now!!\n",
3126                    netdev->stats.tx_dropped);
3127         netif_trans_update(netdev);
3128         txqs_wake(netdev);
3129 }
3130
3131 static int liquidio_vlan_rx_add_vid(struct net_device *netdev,
3132                                     __be16 proto __attribute__((unused)),
3133                                     u16 vid)
3134 {
3135         struct lio *lio = GET_LIO(netdev);
3136         struct octeon_device *oct = lio->oct_dev;
3137         struct octnic_ctrl_pkt nctrl;
3138         int ret = 0;
3139
3140         memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
3141
3142         nctrl.ncmd.u64 = 0;
3143         nctrl.ncmd.s.cmd = OCTNET_CMD_ADD_VLAN_FILTER;
3144         nctrl.ncmd.s.param1 = vid;
3145         nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3146         nctrl.wait_time = 100;
3147         nctrl.netpndev = (u64)netdev;
3148         nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
3149
3150         ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
3151         if (ret < 0) {
3152                 dev_err(&oct->pci_dev->dev, "Add VLAN filter failed in core (ret: 0x%x)\n",
3153                         ret);
3154         }
3155
3156         return ret;
3157 }
3158
3159 static int liquidio_vlan_rx_kill_vid(struct net_device *netdev,
3160                                      __be16 proto __attribute__((unused)),
3161                                      u16 vid)
3162 {
3163         struct lio *lio = GET_LIO(netdev);
3164         struct octeon_device *oct = lio->oct_dev;
3165         struct octnic_ctrl_pkt nctrl;
3166         int ret = 0;
3167
3168         memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
3169
3170         nctrl.ncmd.u64 = 0;
3171         nctrl.ncmd.s.cmd = OCTNET_CMD_DEL_VLAN_FILTER;
3172         nctrl.ncmd.s.param1 = vid;
3173         nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3174         nctrl.wait_time = 100;
3175         nctrl.netpndev = (u64)netdev;
3176         nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
3177
3178         ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
3179         if (ret < 0) {
3180                 dev_err(&oct->pci_dev->dev, "Add VLAN filter failed in core (ret: 0x%x)\n",
3181                         ret);
3182         }
3183         return ret;
3184 }
3185
3186 /** Sending command to enable/disable RX checksum offload
3187  * @param netdev                pointer to network device
3188  * @param command               OCTNET_CMD_TNL_RX_CSUM_CTL
3189  * @param rx_cmd_bit            OCTNET_CMD_RXCSUM_ENABLE/
3190  *                              OCTNET_CMD_RXCSUM_DISABLE
3191  * @returns                     SUCCESS or FAILURE
3192  */
3193 int liquidio_set_rxcsum_command(struct net_device *netdev, int command,
3194                                 u8 rx_cmd)
3195 {
3196         struct lio *lio = GET_LIO(netdev);
3197         struct octeon_device *oct = lio->oct_dev;
3198         struct octnic_ctrl_pkt nctrl;
3199         int ret = 0;
3200
3201         nctrl.ncmd.u64 = 0;
3202         nctrl.ncmd.s.cmd = command;
3203         nctrl.ncmd.s.param1 = rx_cmd;
3204         nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3205         nctrl.wait_time = 100;
3206         nctrl.netpndev = (u64)netdev;
3207         nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
3208
3209         ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
3210         if (ret < 0) {
3211                 dev_err(&oct->pci_dev->dev,
3212                         "DEVFLAGS RXCSUM change failed in core(ret:0x%x)\n",
3213                         ret);
3214         }
3215         return ret;
3216 }
3217
3218 /** Sending command to add/delete VxLAN UDP port to firmware
3219  * @param netdev                pointer to network device
3220  * @param command               OCTNET_CMD_VXLAN_PORT_CONFIG
3221  * @param vxlan_port            VxLAN port to be added or deleted
3222  * @param vxlan_cmd_bit         OCTNET_CMD_VXLAN_PORT_ADD,
3223  *                              OCTNET_CMD_VXLAN_PORT_DEL
3224  * @returns                     SUCCESS or FAILURE
3225  */
3226 static int liquidio_vxlan_port_command(struct net_device *netdev, int command,
3227                                        u16 vxlan_port, u8 vxlan_cmd_bit)
3228 {
3229         struct lio *lio = GET_LIO(netdev);
3230         struct octeon_device *oct = lio->oct_dev;
3231         struct octnic_ctrl_pkt nctrl;
3232         int ret = 0;
3233
3234         nctrl.ncmd.u64 = 0;
3235         nctrl.ncmd.s.cmd = command;
3236         nctrl.ncmd.s.more = vxlan_cmd_bit;
3237         nctrl.ncmd.s.param1 = vxlan_port;
3238         nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3239         nctrl.wait_time = 100;
3240         nctrl.netpndev = (u64)netdev;
3241         nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
3242
3243         ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
3244         if (ret < 0) {
3245                 dev_err(&oct->pci_dev->dev,
3246                         "VxLAN port add/delete failed in core (ret:0x%x)\n",
3247                         ret);
3248         }
3249         return ret;
3250 }
3251
3252 int liquidio_set_feature(struct net_device *netdev, int cmd, u16 param1)
3253 {
3254         struct lio *lio = GET_LIO(netdev);
3255         struct octeon_device *oct = lio->oct_dev;
3256         struct octnic_ctrl_pkt nctrl;
3257         int ret = 0;
3258
3259         memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
3260
3261         nctrl.ncmd.u64 = 0;
3262         nctrl.ncmd.s.cmd = cmd;
3263         nctrl.ncmd.s.param1 = param1;
3264         nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3265         nctrl.wait_time = 100;
3266         nctrl.netpndev = (u64)netdev;
3267         nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
3268
3269         ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
3270         if (ret < 0) {
3271                 dev_err(&oct->pci_dev->dev, "Feature change failed in core (ret: 0x%x)\n",
3272                         ret);
3273         }
3274         return ret;
3275 }
3276
3277 /** \brief Net device fix features
3278  * @param netdev  pointer to network device
3279  * @param request features requested
3280  * @returns updated features list
3281  */
3282 static netdev_features_t liquidio_fix_features(struct net_device *netdev,
3283                                                netdev_features_t request)
3284 {
3285         struct lio *lio = netdev_priv(netdev);
3286
3287         if ((request & NETIF_F_RXCSUM) &&
3288             !(lio->dev_capability & NETIF_F_RXCSUM))
3289                 request &= ~NETIF_F_RXCSUM;
3290
3291         if ((request & NETIF_F_HW_CSUM) &&
3292             !(lio->dev_capability & NETIF_F_HW_CSUM))
3293                 request &= ~NETIF_F_HW_CSUM;
3294
3295         if ((request & NETIF_F_TSO) && !(lio->dev_capability & NETIF_F_TSO))
3296                 request &= ~NETIF_F_TSO;
3297
3298         if ((request & NETIF_F_TSO6) && !(lio->dev_capability & NETIF_F_TSO6))
3299                 request &= ~NETIF_F_TSO6;
3300
3301         if ((request & NETIF_F_LRO) && !(lio->dev_capability & NETIF_F_LRO))
3302                 request &= ~NETIF_F_LRO;
3303
3304         /*Disable LRO if RXCSUM is off */
3305         if (!(request & NETIF_F_RXCSUM) && (netdev->features & NETIF_F_LRO) &&
3306             (lio->dev_capability & NETIF_F_LRO))
3307                 request &= ~NETIF_F_LRO;
3308
3309         return request;
3310 }
3311
3312 /** \brief Net device set features
3313  * @param netdev  pointer to network device
3314  * @param features features to enable/disable
3315  */
3316 static int liquidio_set_features(struct net_device *netdev,
3317                                  netdev_features_t features)
3318 {
3319         struct lio *lio = netdev_priv(netdev);
3320
3321         if (!((netdev->features ^ features) & NETIF_F_LRO))
3322                 return 0;
3323
3324         if ((features & NETIF_F_LRO) && (lio->dev_capability & NETIF_F_LRO))
3325                 liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE,
3326                                      OCTNIC_LROIPV4 | OCTNIC_LROIPV6);
3327         else if (!(features & NETIF_F_LRO) &&
3328                  (lio->dev_capability & NETIF_F_LRO))
3329                 liquidio_set_feature(netdev, OCTNET_CMD_LRO_DISABLE,
3330                                      OCTNIC_LROIPV4 | OCTNIC_LROIPV6);
3331
3332         /* Sending command to firmware to enable/disable RX checksum
3333          * offload settings using ethtool
3334          */
3335         if (!(netdev->features & NETIF_F_RXCSUM) &&
3336             (lio->enc_dev_capability & NETIF_F_RXCSUM) &&
3337             (features & NETIF_F_RXCSUM))
3338                 liquidio_set_rxcsum_command(netdev,
3339                                             OCTNET_CMD_TNL_RX_CSUM_CTL,
3340                                             OCTNET_CMD_RXCSUM_ENABLE);
3341         else if ((netdev->features & NETIF_F_RXCSUM) &&
3342                  (lio->enc_dev_capability & NETIF_F_RXCSUM) &&
3343                  !(features & NETIF_F_RXCSUM))
3344                 liquidio_set_rxcsum_command(netdev, OCTNET_CMD_TNL_RX_CSUM_CTL,
3345                                             OCTNET_CMD_RXCSUM_DISABLE);
3346
3347         return 0;
3348 }
3349
3350 static void liquidio_add_vxlan_port(struct net_device *netdev,
3351                                     struct udp_tunnel_info *ti)
3352 {
3353         if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3354                 return;
3355
3356         liquidio_vxlan_port_command(netdev,
3357                                     OCTNET_CMD_VXLAN_PORT_CONFIG,
3358                                     htons(ti->port),
3359                                     OCTNET_CMD_VXLAN_PORT_ADD);
3360 }
3361
3362 static void liquidio_del_vxlan_port(struct net_device *netdev,
3363                                     struct udp_tunnel_info *ti)
3364 {
3365         if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3366                 return;
3367
3368         liquidio_vxlan_port_command(netdev,
3369                                     OCTNET_CMD_VXLAN_PORT_CONFIG,
3370                                     htons(ti->port),
3371                                     OCTNET_CMD_VXLAN_PORT_DEL);
3372 }
3373
3374 static struct net_device_ops lionetdevops = {
3375         .ndo_open               = liquidio_open,
3376         .ndo_stop               = liquidio_stop,
3377         .ndo_start_xmit         = liquidio_xmit,
3378         .ndo_get_stats          = liquidio_get_stats,
3379         .ndo_set_mac_address    = liquidio_set_mac,
3380         .ndo_set_rx_mode        = liquidio_set_mcast_list,
3381         .ndo_tx_timeout         = liquidio_tx_timeout,
3382
3383         .ndo_vlan_rx_add_vid    = liquidio_vlan_rx_add_vid,
3384         .ndo_vlan_rx_kill_vid   = liquidio_vlan_rx_kill_vid,
3385         .ndo_change_mtu         = liquidio_change_mtu,
3386         .ndo_do_ioctl           = liquidio_ioctl,
3387         .ndo_fix_features       = liquidio_fix_features,
3388         .ndo_set_features       = liquidio_set_features,
3389         .ndo_udp_tunnel_add     = liquidio_add_vxlan_port,
3390         .ndo_udp_tunnel_del     = liquidio_del_vxlan_port,
3391 };
3392
3393 /** \brief Entry point for the liquidio module
3394  */
3395 static int __init liquidio_init(void)
3396 {
3397         int i;
3398         struct handshake *hs;
3399
3400         init_completion(&first_stage);
3401
3402         octeon_init_device_list(conf_type);
3403
3404         if (liquidio_init_pci())
3405                 return -EINVAL;
3406
3407         wait_for_completion_timeout(&first_stage, msecs_to_jiffies(1000));
3408
3409         for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
3410                 hs = &handshake[i];
3411                 if (hs->pci_dev) {
3412                         wait_for_completion(&hs->init);
3413                         if (!hs->init_ok) {
3414                                 /* init handshake failed */
3415                                 dev_err(&hs->pci_dev->dev,
3416                                         "Failed to init device\n");
3417                                 liquidio_deinit_pci();
3418                                 return -EIO;
3419                         }
3420                 }
3421         }
3422
3423         for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
3424                 hs = &handshake[i];
3425                 if (hs->pci_dev) {
3426                         wait_for_completion_timeout(&hs->started,
3427                                                     msecs_to_jiffies(30000));
3428                         if (!hs->started_ok) {
3429                                 /* starter handshake failed */
3430                                 dev_err(&hs->pci_dev->dev,
3431                                         "Firmware failed to start\n");
3432                                 liquidio_deinit_pci();
3433                                 return -EIO;
3434                         }
3435                 }
3436         }
3437
3438         return 0;
3439 }
3440
3441 static int lio_nic_info(struct octeon_recv_info *recv_info, void *buf)
3442 {
3443         struct octeon_device *oct = (struct octeon_device *)buf;
3444         struct octeon_recv_pkt *recv_pkt = recv_info->recv_pkt;
3445         int gmxport = 0;
3446         union oct_link_status *ls;
3447         int i;
3448
3449         if (recv_pkt->buffer_size[0] != sizeof(*ls)) {
3450                 dev_err(&oct->pci_dev->dev, "Malformed NIC_INFO, len=%d, ifidx=%d\n",
3451                         recv_pkt->buffer_size[0],
3452                         recv_pkt->rh.r_nic_info.gmxport);
3453                 goto nic_info_err;
3454         }
3455
3456         gmxport = recv_pkt->rh.r_nic_info.gmxport;
3457         ls = (union oct_link_status *)get_rbd(recv_pkt->buffer_ptr[0]);
3458
3459         octeon_swap_8B_data((u64 *)ls, (sizeof(union oct_link_status)) >> 3);
3460         for (i = 0; i < oct->ifcount; i++) {
3461                 if (oct->props[i].gmxport == gmxport) {
3462                         update_link_status(oct->props[i].netdev, ls);
3463                         break;
3464                 }
3465         }
3466
3467 nic_info_err:
3468         for (i = 0; i < recv_pkt->buffer_count; i++)
3469                 recv_buffer_free(recv_pkt->buffer_ptr[i]);
3470         octeon_free_recv_info(recv_info);
3471         return 0;
3472 }
3473
3474 /**
3475  * \brief Setup network interfaces
3476  * @param octeon_dev  octeon device
3477  *
3478  * Called during init time for each device. It assumes the NIC
3479  * is already up and running.  The link information for each
3480  * interface is passed in link_info.
3481  */
3482 static int setup_nic_devices(struct octeon_device *octeon_dev)
3483 {
3484         struct lio *lio = NULL;
3485         struct net_device *netdev;
3486         u8 mac[6], i, j;
3487         struct octeon_soft_command *sc;
3488         struct liquidio_if_cfg_context *ctx;
3489         struct liquidio_if_cfg_resp *resp;
3490         struct octdev_props *props;
3491         int retval, num_iqueues, num_oqueues;
3492         union oct_nic_if_cfg if_cfg;
3493         unsigned int base_queue;
3494         unsigned int gmx_port_id;
3495         u32 resp_size, ctx_size;
3496         u32 ifidx_or_pfnum;
3497
3498         /* This is to handle link status changes */
3499         octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC,
3500                                     OPCODE_NIC_INFO,
3501                                     lio_nic_info, octeon_dev);
3502
3503         /* REQTYPE_RESP_NET and REQTYPE_SOFT_COMMAND do not have free functions.
3504          * They are handled directly.
3505          */
3506         octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET,
3507                                         free_netbuf);
3508
3509         octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET_SG,
3510                                         free_netsgbuf);
3511
3512         octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_RESP_NET_SG,
3513                                         free_netsgbuf_with_resp);
3514
3515         for (i = 0; i < octeon_dev->ifcount; i++) {
3516                 resp_size = sizeof(struct liquidio_if_cfg_resp);
3517                 ctx_size = sizeof(struct liquidio_if_cfg_context);
3518                 sc = (struct octeon_soft_command *)
3519                         octeon_alloc_soft_command(octeon_dev, 0,
3520                                                   resp_size, ctx_size);
3521                 resp = (struct liquidio_if_cfg_resp *)sc->virtrptr;
3522                 ctx  = (struct liquidio_if_cfg_context *)sc->ctxptr;
3523
3524                 num_iqueues =
3525                         CFG_GET_NUM_TXQS_NIC_IF(octeon_get_conf(octeon_dev), i);
3526                 num_oqueues =
3527                         CFG_GET_NUM_RXQS_NIC_IF(octeon_get_conf(octeon_dev), i);
3528                 base_queue =
3529                         CFG_GET_BASE_QUE_NIC_IF(octeon_get_conf(octeon_dev), i);
3530                 gmx_port_id =
3531                         CFG_GET_GMXID_NIC_IF(octeon_get_conf(octeon_dev), i);
3532                 ifidx_or_pfnum = i;
3533
3534                 dev_dbg(&octeon_dev->pci_dev->dev,
3535                         "requesting config for interface %d, iqs %d, oqs %d\n",
3536                         ifidx_or_pfnum, num_iqueues, num_oqueues);
3537                 WRITE_ONCE(ctx->cond, 0);
3538                 ctx->octeon_id = lio_get_device_id(octeon_dev);
3539                 init_waitqueue_head(&ctx->wc);
3540
3541                 if_cfg.u64 = 0;
3542                 if_cfg.s.num_iqueues = num_iqueues;
3543                 if_cfg.s.num_oqueues = num_oqueues;
3544                 if_cfg.s.base_queue = base_queue;
3545                 if_cfg.s.gmx_port_id = gmx_port_id;
3546
3547                 sc->iq_no = 0;
3548
3549                 octeon_prepare_soft_command(octeon_dev, sc, OPCODE_NIC,
3550                                             OPCODE_NIC_IF_CFG, 0,
3551                                             if_cfg.u64, 0);
3552
3553                 sc->callback = if_cfg_callback;
3554                 sc->callback_arg = sc;
3555                 sc->wait_time = 3000;
3556
3557                 retval = octeon_send_soft_command(octeon_dev, sc);
3558                 if (retval == IQ_SEND_FAILED) {
3559                         dev_err(&octeon_dev->pci_dev->dev,
3560                                 "iq/oq config failed status: %x\n",
3561                                 retval);
3562                         /* Soft instr is freed by driver in case of failure. */
3563                         goto setup_nic_dev_fail;
3564                 }
3565
3566                 /* Sleep on a wait queue till the cond flag indicates that the
3567                  * response arrived or timed-out.
3568                  */
3569                 sleep_cond(&ctx->wc, &ctx->cond);
3570                 retval = resp->status;
3571                 if (retval) {
3572                         dev_err(&octeon_dev->pci_dev->dev, "iq/oq config failed\n");
3573                         goto setup_nic_dev_fail;
3574                 }
3575
3576                 octeon_swap_8B_data((u64 *)(&resp->cfg_info),
3577                                     (sizeof(struct liquidio_if_cfg_info)) >> 3);
3578
3579                 num_iqueues = hweight64(resp->cfg_info.iqmask);
3580                 num_oqueues = hweight64(resp->cfg_info.oqmask);
3581
3582                 if (!(num_iqueues) || !(num_oqueues)) {
3583                         dev_err(&octeon_dev->pci_dev->dev,
3584                                 "Got bad iqueues (%016llx) or oqueues (%016llx) from firmware.\n",
3585                                 resp->cfg_info.iqmask,
3586                                 resp->cfg_info.oqmask);
3587                         goto setup_nic_dev_fail;
3588                 }
3589                 dev_dbg(&octeon_dev->pci_dev->dev,
3590                         "interface %d, iqmask %016llx, oqmask %016llx, numiqueues %d, numoqueues %d\n",
3591                         i, resp->cfg_info.iqmask, resp->cfg_info.oqmask,
3592                         num_iqueues, num_oqueues);
3593                 netdev = alloc_etherdev_mq(LIO_SIZE, num_iqueues);
3594
3595                 if (!netdev) {
3596                         dev_err(&octeon_dev->pci_dev->dev, "Device allocation failed\n");
3597                         goto setup_nic_dev_fail;
3598                 }
3599
3600                 SET_NETDEV_DEV(netdev, &octeon_dev->pci_dev->dev);
3601
3602                 if (num_iqueues > 1)
3603                         lionetdevops.ndo_select_queue = select_q;
3604
3605                 /* Associate the routines that will handle different
3606                  * netdev tasks.
3607                  */
3608                 netdev->netdev_ops = &lionetdevops;
3609
3610                 lio = GET_LIO(netdev);
3611
3612                 memset(lio, 0, sizeof(struct lio));
3613
3614                 lio->ifidx = ifidx_or_pfnum;
3615
3616                 props = &octeon_dev->props[i];
3617                 props->gmxport = resp->cfg_info.linfo.gmxport;
3618                 props->netdev = netdev;
3619
3620                 lio->linfo.num_rxpciq = num_oqueues;
3621                 lio->linfo.num_txpciq = num_iqueues;
3622                 for (j = 0; j < num_oqueues; j++) {
3623                         lio->linfo.rxpciq[j].u64 =
3624                                 resp->cfg_info.linfo.rxpciq[j].u64;
3625                 }
3626                 for (j = 0; j < num_iqueues; j++) {
3627                         lio->linfo.txpciq[j].u64 =
3628                                 resp->cfg_info.linfo.txpciq[j].u64;
3629                 }
3630                 lio->linfo.hw_addr = resp->cfg_info.linfo.hw_addr;
3631                 lio->linfo.gmxport = resp->cfg_info.linfo.gmxport;
3632                 lio->linfo.link.u64 = resp->cfg_info.linfo.link.u64;
3633
3634                 lio->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3635
3636                 lio->dev_capability = NETIF_F_HIGHDMA
3637                                 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3638                                 | NETIF_F_SG | NETIF_F_RXCSUM
3639                                 | NETIF_F_GRO
3640                                 | NETIF_F_TSO | NETIF_F_TSO6
3641                                 | NETIF_F_LRO;
3642                 netif_set_gso_max_size(netdev, OCTNIC_GSO_MAX_SIZE);
3643
3644                 /*  Copy of transmit encapsulation capabilities:
3645                  *  TSO, TSO6, Checksums for this device
3646                  */
3647                 lio->enc_dev_capability = NETIF_F_IP_CSUM
3648                                           | NETIF_F_IPV6_CSUM
3649                                           | NETIF_F_GSO_UDP_TUNNEL
3650                                           | NETIF_F_HW_CSUM | NETIF_F_SG
3651                                           | NETIF_F_RXCSUM
3652                                           | NETIF_F_TSO | NETIF_F_TSO6
3653                                           | NETIF_F_LRO;
3654
3655                 netdev->hw_enc_features = (lio->enc_dev_capability &
3656                                            ~NETIF_F_LRO);
3657
3658                 lio->dev_capability |= NETIF_F_GSO_UDP_TUNNEL;
3659
3660                 netdev->vlan_features = lio->dev_capability;
3661                 /* Add any unchangeable hw features */
3662                 lio->dev_capability |=  NETIF_F_HW_VLAN_CTAG_FILTER |
3663                                         NETIF_F_HW_VLAN_CTAG_RX |
3664                                         NETIF_F_HW_VLAN_CTAG_TX;
3665
3666                 netdev->features = (lio->dev_capability & ~NETIF_F_LRO);
3667
3668                 netdev->hw_features = lio->dev_capability;
3669                 /*HW_VLAN_RX and HW_VLAN_FILTER is always on*/
3670                 netdev->hw_features = netdev->hw_features &
3671                         ~NETIF_F_HW_VLAN_CTAG_RX;
3672
3673                 /* Point to the  properties for octeon device to which this
3674                  * interface belongs.
3675                  */
3676                 lio->oct_dev = octeon_dev;
3677                 lio->octprops = props;
3678                 lio->netdev = netdev;
3679
3680                 dev_dbg(&octeon_dev->pci_dev->dev,
3681                         "if%d gmx: %d hw_addr: 0x%llx\n", i,
3682                         lio->linfo.gmxport, CVM_CAST64(lio->linfo.hw_addr));
3683
3684                 /* 64-bit swap required on LE machines */
3685                 octeon_swap_8B_data(&lio->linfo.hw_addr, 1);
3686                 for (j = 0; j < 6; j++)
3687                         mac[j] = *((u8 *)(((u8 *)&lio->linfo.hw_addr) + 2 + j));
3688
3689                 /* Copy MAC Address to OS network device structure */
3690
3691                 ether_addr_copy(netdev->dev_addr, mac);
3692
3693                 /* By default all interfaces on a single Octeon uses the same
3694                  * tx and rx queues
3695                  */
3696                 lio->txq = lio->linfo.txpciq[0].s.q_no;
3697                 lio->rxq = lio->linfo.rxpciq[0].s.q_no;
3698                 if (setup_io_queues(octeon_dev, i)) {
3699                         dev_err(&octeon_dev->pci_dev->dev, "I/O queues creation failed\n");
3700                         goto setup_nic_dev_fail;
3701                 }
3702
3703                 ifstate_set(lio, LIO_IFSTATE_DROQ_OPS);
3704
3705                 lio->tx_qsize = octeon_get_tx_qsize(octeon_dev, lio->txq);
3706                 lio->rx_qsize = octeon_get_rx_qsize(octeon_dev, lio->rxq);
3707
3708                 if (setup_glists(octeon_dev, lio, num_iqueues)) {
3709                         dev_err(&octeon_dev->pci_dev->dev,
3710                                 "Gather list allocation failed\n");
3711                         goto setup_nic_dev_fail;
3712                 }
3713
3714                 /* Register ethtool support */
3715                 liquidio_set_ethtool_ops(netdev);
3716                 octeon_dev->priv_flags = 0x0;
3717
3718                 if (netdev->features & NETIF_F_LRO)
3719                         liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE,
3720                                              OCTNIC_LROIPV4 | OCTNIC_LROIPV6);
3721
3722                 liquidio_set_feature(netdev, OCTNET_CMD_ENABLE_VLAN_FILTER, 0);
3723
3724                 if ((debug != -1) && (debug & NETIF_MSG_HW))
3725                         liquidio_set_feature(netdev,
3726                                              OCTNET_CMD_VERBOSE_ENABLE, 0);
3727
3728                 /* Register the network device with the OS */
3729                 if (register_netdev(netdev)) {
3730                         dev_err(&octeon_dev->pci_dev->dev, "Device registration failed\n");
3731                         goto setup_nic_dev_fail;
3732                 }
3733
3734                 dev_dbg(&octeon_dev->pci_dev->dev,
3735                         "Setup NIC ifidx:%d mac:%02x%02x%02x%02x%02x%02x\n",
3736                         i, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
3737                 netif_carrier_off(netdev);
3738                 lio->link_changes++;
3739
3740                 ifstate_set(lio, LIO_IFSTATE_REGISTERED);
3741
3742                 /* Sending command to firmware to enable Rx checksum offload
3743                  * by default at the time of setup of Liquidio driver for
3744                  * this device
3745                  */
3746                 liquidio_set_rxcsum_command(netdev, OCTNET_CMD_TNL_RX_CSUM_CTL,
3747                                             OCTNET_CMD_RXCSUM_ENABLE);
3748                 liquidio_set_feature(netdev, OCTNET_CMD_TNL_TX_CSUM_CTL,
3749                                      OCTNET_CMD_TXCSUM_ENABLE);
3750
3751                 dev_dbg(&octeon_dev->pci_dev->dev,
3752                         "NIC ifidx:%d Setup successful\n", i);
3753
3754                 octeon_free_soft_command(octeon_dev, sc);
3755         }
3756
3757         return 0;
3758
3759 setup_nic_dev_fail:
3760
3761         octeon_free_soft_command(octeon_dev, sc);
3762
3763         while (i--) {
3764                 dev_err(&octeon_dev->pci_dev->dev,
3765                         "NIC ifidx:%d Setup failed\n", i);
3766                 liquidio_destroy_nic_device(octeon_dev, i);
3767         }
3768         return -ENODEV;
3769 }
3770
3771 /**
3772  * \brief initialize the NIC
3773  * @param oct octeon device
3774  *
3775  * This initialization routine is called once the Octeon device application is
3776  * up and running
3777  */
3778 static int liquidio_init_nic_module(struct octeon_device *oct)
3779 {
3780         struct oct_intrmod_cfg *intrmod_cfg;
3781         int i, retval = 0;
3782         int num_nic_ports = CFG_GET_NUM_NIC_PORTS(octeon_get_conf(oct));
3783
3784         dev_dbg(&oct->pci_dev->dev, "Initializing network interfaces\n");
3785
3786         /* only default iq and oq were initialized
3787          * initialize the rest as well
3788          */
3789         /* run port_config command for each port */
3790         oct->ifcount = num_nic_ports;
3791
3792         memset(oct->props, 0,
3793                sizeof(struct octdev_props) * num_nic_ports);
3794
3795         for (i = 0; i < MAX_OCTEON_LINKS; i++)
3796                 oct->props[i].gmxport = -1;
3797
3798         retval = setup_nic_devices(oct);
3799         if (retval) {
3800                 dev_err(&oct->pci_dev->dev, "Setup NIC devices failed\n");
3801                 goto octnet_init_failure;
3802         }
3803
3804         liquidio_ptp_init(oct);
3805
3806         /* Initialize interrupt moderation params */
3807         intrmod_cfg = &((struct octeon_device *)oct)->intrmod;
3808         intrmod_cfg->rx_enable = 1;
3809         intrmod_cfg->check_intrvl =   LIO_INTRMOD_CHECK_INTERVAL;
3810         intrmod_cfg->maxpkt_ratethr = LIO_INTRMOD_MAXPKT_RATETHR;
3811         intrmod_cfg->minpkt_ratethr = LIO_INTRMOD_MINPKT_RATETHR;
3812         intrmod_cfg->rx_maxcnt_trigger = LIO_INTRMOD_RXMAXCNT_TRIGGER;
3813         intrmod_cfg->rx_maxtmr_trigger = LIO_INTRMOD_RXMAXTMR_TRIGGER;
3814         intrmod_cfg->rx_mintmr_trigger = LIO_INTRMOD_RXMINTMR_TRIGGER;
3815         intrmod_cfg->rx_mincnt_trigger = LIO_INTRMOD_RXMINCNT_TRIGGER;
3816         intrmod_cfg->tx_enable = 1;
3817         intrmod_cfg->tx_maxcnt_trigger = LIO_INTRMOD_TXMAXCNT_TRIGGER;
3818         intrmod_cfg->tx_mincnt_trigger = LIO_INTRMOD_TXMINCNT_TRIGGER;
3819         intrmod_cfg->rx_frames = CFG_GET_OQ_INTR_PKT(octeon_get_conf(oct));
3820         intrmod_cfg->rx_usecs = CFG_GET_OQ_INTR_TIME(octeon_get_conf(oct));
3821         dev_dbg(&oct->pci_dev->dev, "Network interfaces ready\n");
3822
3823         return retval;
3824
3825 octnet_init_failure:
3826
3827         oct->ifcount = 0;
3828
3829         return retval;
3830 }
3831
3832 /**
3833  * \brief starter callback that invokes the remaining initialization work after
3834  * the NIC is up and running.
3835  * @param octptr  work struct work_struct
3836  */
3837 static void nic_starter(struct work_struct *work)
3838 {
3839         struct octeon_device *oct;
3840         struct cavium_wk *wk = (struct cavium_wk *)work;
3841
3842         oct = (struct octeon_device *)wk->ctxptr;
3843
3844         if (atomic_read(&oct->status) == OCT_DEV_RUNNING)
3845                 return;
3846
3847         /* If the status of the device is CORE_OK, the core
3848          * application has reported its application type. Call
3849          * any registered handlers now and move to the RUNNING
3850          * state.
3851          */
3852         if (atomic_read(&oct->status) != OCT_DEV_CORE_OK) {
3853                 schedule_delayed_work(&oct->nic_poll_work.work,
3854                                       LIQUIDIO_STARTER_POLL_INTERVAL_MS);
3855                 return;
3856         }
3857
3858         atomic_set(&oct->status, OCT_DEV_RUNNING);
3859
3860         if (oct->app_mode && oct->app_mode == CVM_DRV_NIC_APP) {
3861                 dev_dbg(&oct->pci_dev->dev, "Starting NIC module\n");
3862
3863                 if (liquidio_init_nic_module(oct))
3864                         dev_err(&oct->pci_dev->dev, "NIC initialization failed\n");
3865                 else
3866                         handshake[oct->octeon_id].started_ok = 1;
3867         } else {
3868                 dev_err(&oct->pci_dev->dev,
3869                         "Unexpected application running on NIC (%d). Check firmware.\n",
3870                         oct->app_mode);
3871         }
3872
3873         complete(&handshake[oct->octeon_id].started);
3874 }
3875
3876 /**
3877  * \brief Device initialization for each Octeon device that is probed
3878  * @param octeon_dev  octeon device
3879  */
3880 static int octeon_device_init(struct octeon_device *octeon_dev)
3881 {
3882         int j, ret;
3883         char bootcmd[] = "\n";
3884         struct octeon_device_priv *oct_priv =
3885                 (struct octeon_device_priv *)octeon_dev->priv;
3886         atomic_set(&octeon_dev->status, OCT_DEV_BEGIN_STATE);
3887
3888         /* Enable access to the octeon device and make its DMA capability
3889          * known to the OS.
3890          */
3891         if (octeon_pci_os_setup(octeon_dev))
3892                 return 1;
3893
3894         /* Identify the Octeon type and map the BAR address space. */
3895         if (octeon_chip_specific_setup(octeon_dev)) {
3896                 dev_err(&octeon_dev->pci_dev->dev, "Chip specific setup failed\n");
3897                 return 1;
3898         }
3899
3900         atomic_set(&octeon_dev->status, OCT_DEV_PCI_MAP_DONE);
3901
3902         octeon_dev->app_mode = CVM_DRV_INVALID_APP;
3903
3904         /* Do a soft reset of the Octeon device. */
3905         if (octeon_dev->fn_list.soft_reset(octeon_dev))
3906                 return 1;
3907
3908         /* Initialize the dispatch mechanism used to push packets arriving on
3909          * Octeon Output queues.
3910          */
3911         if (octeon_init_dispatch_list(octeon_dev))
3912                 return 1;
3913
3914         octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC,
3915                                     OPCODE_NIC_CORE_DRV_ACTIVE,
3916                                     octeon_core_drv_init,
3917                                     octeon_dev);
3918
3919         INIT_DELAYED_WORK(&octeon_dev->nic_poll_work.work, nic_starter);
3920         octeon_dev->nic_poll_work.ctxptr = (void *)octeon_dev;
3921         schedule_delayed_work(&octeon_dev->nic_poll_work.work,
3922                               LIQUIDIO_STARTER_POLL_INTERVAL_MS);
3923
3924         atomic_set(&octeon_dev->status, OCT_DEV_DISPATCH_INIT_DONE);
3925
3926         octeon_set_io_queues_off(octeon_dev);
3927
3928         /*  Setup the data structures that manage this Octeon's Input queues. */
3929         if (octeon_setup_instr_queues(octeon_dev)) {
3930                 dev_err(&octeon_dev->pci_dev->dev,
3931                         "instruction queue initialization failed\n");
3932                 /* On error, release any previously allocated queues */
3933                 for (j = 0; j < octeon_dev->num_iqs; j++)
3934                         octeon_delete_instr_queue(octeon_dev, j);
3935                 return 1;
3936         }
3937         atomic_set(&octeon_dev->status, OCT_DEV_INSTR_QUEUE_INIT_DONE);
3938
3939         /* Initialize soft command buffer pool
3940          */
3941         if (octeon_setup_sc_buffer_pool(octeon_dev)) {
3942                 dev_err(&octeon_dev->pci_dev->dev, "sc buffer pool allocation failed\n");
3943                 return 1;
3944         }
3945         atomic_set(&octeon_dev->status, OCT_DEV_SC_BUFF_POOL_INIT_DONE);
3946
3947         /* Initialize lists to manage the requests of different types that
3948          * arrive from user & kernel applications for this octeon device.
3949          */
3950         if (octeon_setup_response_list(octeon_dev)) {
3951                 dev_err(&octeon_dev->pci_dev->dev, "Response list allocation failed\n");
3952                 return 1;
3953         }
3954         atomic_set(&octeon_dev->status, OCT_DEV_RESP_LIST_INIT_DONE);
3955
3956         if (octeon_setup_output_queues(octeon_dev)) {
3957                 dev_err(&octeon_dev->pci_dev->dev, "Output queue initialization failed\n");
3958                 /* Release any previously allocated queues */
3959                 for (j = 0; j < octeon_dev->num_oqs; j++)
3960                         octeon_delete_droq(octeon_dev, j);
3961                 return 1;
3962         }
3963
3964         atomic_set(&octeon_dev->status, OCT_DEV_DROQ_INIT_DONE);
3965
3966         /* The input and output queue registers were setup earlier (the queues
3967          * were not enabled). Any additional registers that need to be
3968          * programmed should be done now.
3969          */
3970         ret = octeon_dev->fn_list.setup_device_regs(octeon_dev);
3971         if (ret) {
3972                 dev_err(&octeon_dev->pci_dev->dev,
3973                         "Failed to configure device registers\n");
3974                 return ret;
3975         }
3976
3977         /* Initialize the tasklet that handles output queue packet processing.*/
3978         dev_dbg(&octeon_dev->pci_dev->dev, "Initializing droq tasklet\n");
3979         tasklet_init(&oct_priv->droq_tasklet, octeon_droq_bh,
3980                      (unsigned long)octeon_dev);
3981
3982         /* Setup the interrupt handler and record the INT SUM register address
3983          */
3984         if (octeon_setup_interrupt(octeon_dev))
3985                 return 1;
3986
3987         /* Enable Octeon device interrupts */
3988         octeon_dev->fn_list.enable_interrupt(octeon_dev->chip);
3989
3990         /* Enable the input and output queues for this Octeon device */
3991         octeon_dev->fn_list.enable_io_queues(octeon_dev);
3992
3993         atomic_set(&octeon_dev->status, OCT_DEV_IO_QUEUES_DONE);
3994
3995         dev_dbg(&octeon_dev->pci_dev->dev, "Waiting for DDR initialization...\n");
3996
3997         if (ddr_timeout == 0)
3998                 dev_info(&octeon_dev->pci_dev->dev, "WAITING. Set ddr_timeout to non-zero value to proceed with initialization.\n");
3999
4000         schedule_timeout_uninterruptible(HZ * LIO_RESET_SECS);
4001
4002         /* Wait for the octeon to initialize DDR after the soft-reset. */
4003         while (ddr_timeout == 0) {
4004                 set_current_state(TASK_INTERRUPTIBLE);
4005                 if (schedule_timeout(HZ / 10)) {
4006                         /* user probably pressed Control-C */
4007                         return 1;
4008                 }
4009         }
4010         ret = octeon_wait_for_ddr_init(octeon_dev, &ddr_timeout);
4011         if (ret) {
4012                 dev_err(&octeon_dev->pci_dev->dev,
4013                         "DDR not initialized. Please confirm that board is configured to boot from Flash, ret: %d\n",
4014                         ret);
4015                 return 1;
4016         }
4017
4018         if (octeon_wait_for_bootloader(octeon_dev, 1000) != 0) {
4019                 dev_err(&octeon_dev->pci_dev->dev, "Board not responding\n");
4020                 return 1;
4021         }
4022
4023         /* Divert uboot to take commands from host instead. */
4024         ret = octeon_console_send_cmd(octeon_dev, bootcmd, 50);
4025
4026         dev_dbg(&octeon_dev->pci_dev->dev, "Initializing consoles\n");
4027         ret = octeon_init_consoles(octeon_dev);
4028         if (ret) {
4029                 dev_err(&octeon_dev->pci_dev->dev, "Could not access board consoles\n");
4030                 return 1;
4031         }
4032         ret = octeon_add_console(octeon_dev, 0);
4033         if (ret) {
4034                 dev_err(&octeon_dev->pci_dev->dev, "Could not access board console\n");
4035                 return 1;
4036         }
4037
4038         atomic_set(&octeon_dev->status, OCT_DEV_CONSOLE_INIT_DONE);
4039
4040         dev_dbg(&octeon_dev->pci_dev->dev, "Loading firmware\n");
4041         ret = load_firmware(octeon_dev);
4042         if (ret) {
4043                 dev_err(&octeon_dev->pci_dev->dev, "Could not load firmware to board\n");
4044                 return 1;
4045         }
4046
4047         handshake[octeon_dev->octeon_id].init_ok = 1;
4048         complete(&handshake[octeon_dev->octeon_id].init);
4049
4050         atomic_set(&octeon_dev->status, OCT_DEV_HOST_OK);
4051
4052         /* Send Credit for Octeon Output queues. Credits are always sent after
4053          * the output queue is enabled.
4054          */
4055         for (j = 0; j < octeon_dev->num_oqs; j++)
4056                 writel(octeon_dev->droq[j]->max_count,
4057                        octeon_dev->droq[j]->pkts_credit_reg);
4058
4059         /* Packets can start arriving on the output queues from this point. */
4060
4061         return 0;
4062 }
4063
4064 /**
4065  * \brief Exits the module
4066  */
4067 static void __exit liquidio_exit(void)
4068 {
4069         liquidio_deinit_pci();
4070
4071         pr_info("LiquidIO network module is now unloaded\n");
4072 }
4073
4074 module_init(liquidio_init);
4075 module_exit(liquidio_exit);