Merge tag 'armsoc-multiplatform' of git://git.kernel.org/pub/scm/linux/kernel/git...
[cascardo/linux.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <asm/uaccess.h>
67
68 #include "cxgb4.h"
69 #include "t4_regs.h"
70 #include "t4_values.h"
71 #include "t4_msg.h"
72 #include "t4fw_api.h"
73 #include "t4fw_version.h"
74 #include "cxgb4_dcb.h"
75 #include "cxgb4_debugfs.h"
76 #include "clip_tbl.h"
77 #include "l2t.h"
78
79 char cxgb4_driver_name[] = KBUILD_MODNAME;
80
81 #ifdef DRV_VERSION
82 #undef DRV_VERSION
83 #endif
84 #define DRV_VERSION "2.0.0-ko"
85 const char cxgb4_driver_version[] = DRV_VERSION;
86 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
87
88 /* Host shadow copy of ingress filter entry.  This is in host native format
89  * and doesn't match the ordering or bit order, etc. of the hardware of the
90  * firmware command.  The use of bit-field structure elements is purely to
91  * remind ourselves of the field size limitations and save memory in the case
92  * where the filter table is large.
93  */
94 struct filter_entry {
95         /* Administrative fields for filter.
96          */
97         u32 valid:1;            /* filter allocated and valid */
98         u32 locked:1;           /* filter is administratively locked */
99
100         u32 pending:1;          /* filter action is pending firmware reply */
101         u32 smtidx:8;           /* Source MAC Table index for smac */
102         struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
103
104         /* The filter itself.  Most of this is a straight copy of information
105          * provided by the extended ioctl().  Some fields are translated to
106          * internal forms -- for instance the Ingress Queue ID passed in from
107          * the ioctl() is translated into the Absolute Ingress Queue ID.
108          */
109         struct ch_filter_specification fs;
110 };
111
112 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
113                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
114                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
115
116 /* Macros needed to support the PCI Device ID Table ...
117  */
118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
119         static const struct pci_device_id cxgb4_pci_tbl[] = {
120 #define CH_PCI_DEVICE_ID_FUNCTION 0x4
121
122 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
123  * called for both.
124  */
125 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
126
127 #define CH_PCI_ID_TABLE_ENTRY(devid) \
128                 {PCI_VDEVICE(CHELSIO, (devid)), 4}
129
130 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
131                 { 0, } \
132         }
133
134 #include "t4_pci_id_tbl.h"
135
136 #define FW4_FNAME "cxgb4/t4fw.bin"
137 #define FW5_FNAME "cxgb4/t5fw.bin"
138 #define FW6_FNAME "cxgb4/t6fw.bin"
139 #define FW4_CFNAME "cxgb4/t4-config.txt"
140 #define FW5_CFNAME "cxgb4/t5-config.txt"
141 #define FW6_CFNAME "cxgb4/t6-config.txt"
142 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
143 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
144 #define PHY_AQ1202_DEVICEID 0x4409
145 #define PHY_BCM84834_DEVICEID 0x4486
146
147 MODULE_DESCRIPTION(DRV_DESC);
148 MODULE_AUTHOR("Chelsio Communications");
149 MODULE_LICENSE("Dual BSD/GPL");
150 MODULE_VERSION(DRV_VERSION);
151 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
152 MODULE_FIRMWARE(FW4_FNAME);
153 MODULE_FIRMWARE(FW5_FNAME);
154 MODULE_FIRMWARE(FW6_FNAME);
155
156 /*
157  * Normally we're willing to become the firmware's Master PF but will be happy
158  * if another PF has already become the Master and initialized the adapter.
159  * Setting "force_init" will cause this driver to forcibly establish itself as
160  * the Master PF and initialize the adapter.
161  */
162 static uint force_init;
163
164 module_param(force_init, uint, 0644);
165 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter,"
166                  "deprecated parameter");
167
168 static int dflt_msg_enable = DFLT_MSG_ENABLE;
169
170 module_param(dflt_msg_enable, int, 0644);
171 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
172
173 /*
174  * The driver uses the best interrupt scheme available on a platform in the
175  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
176  * of these schemes the driver may consider as follows:
177  *
178  * msi = 2: choose from among all three options
179  * msi = 1: only consider MSI and INTx interrupts
180  * msi = 0: force INTx interrupts
181  */
182 static int msi = 2;
183
184 module_param(msi, int, 0644);
185 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
186
187 /*
188  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
189  * offset by 2 bytes in order to have the IP headers line up on 4-byte
190  * boundaries.  This is a requirement for many architectures which will throw
191  * a machine check fault if an attempt is made to access one of the 4-byte IP
192  * header fields on a non-4-byte boundary.  And it's a major performance issue
193  * even on some architectures which allow it like some implementations of the
194  * x86 ISA.  However, some architectures don't mind this and for some very
195  * edge-case performance sensitive applications (like forwarding large volumes
196  * of small packets), setting this DMA offset to 0 will decrease the number of
197  * PCI-E Bus transfers enough to measurably affect performance.
198  */
199 static int rx_dma_offset = 2;
200
201 #ifdef CONFIG_PCI_IOV
202 /* Configure the number of PCI-E Virtual Function which are to be instantiated
203  * on SR-IOV Capable Physical Functions.
204  */
205 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
206
207 module_param_array(num_vf, uint, NULL, 0644);
208 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
209 #endif
210
211 /* TX Queue select used to determine what algorithm to use for selecting TX
212  * queue. Select between the kernel provided function (select_queue=0) or user
213  * cxgb_select_queue function (select_queue=1)
214  *
215  * Default: select_queue=0
216  */
217 static int select_queue;
218 module_param(select_queue, int, 0644);
219 MODULE_PARM_DESC(select_queue,
220                  "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
221
222 static struct dentry *cxgb4_debugfs_root;
223
224 static LIST_HEAD(adapter_list);
225 static DEFINE_MUTEX(uld_mutex);
226 /* Adapter list to be accessed from atomic context */
227 static LIST_HEAD(adap_rcu_list);
228 static DEFINE_SPINLOCK(adap_rcu_lock);
229 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
230 static const char *uld_str[] = { "RDMA", "iSCSI" };
231
232 static void link_report(struct net_device *dev)
233 {
234         if (!netif_carrier_ok(dev))
235                 netdev_info(dev, "link down\n");
236         else {
237                 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
238
239                 const char *s;
240                 const struct port_info *p = netdev_priv(dev);
241
242                 switch (p->link_cfg.speed) {
243                 case 10000:
244                         s = "10Gbps";
245                         break;
246                 case 1000:
247                         s = "1000Mbps";
248                         break;
249                 case 100:
250                         s = "100Mbps";
251                         break;
252                 case 40000:
253                         s = "40Gbps";
254                         break;
255                 default:
256                         pr_info("%s: unsupported speed: %d\n",
257                                 dev->name, p->link_cfg.speed);
258                         return;
259                 }
260
261                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
262                             fc[p->link_cfg.fc]);
263         }
264 }
265
266 #ifdef CONFIG_CHELSIO_T4_DCB
267 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
268 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
269 {
270         struct port_info *pi = netdev_priv(dev);
271         struct adapter *adap = pi->adapter;
272         struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
273         int i;
274
275         /* We use a simple mapping of Port TX Queue Index to DCB
276          * Priority when we're enabling DCB.
277          */
278         for (i = 0; i < pi->nqsets; i++, txq++) {
279                 u32 name, value;
280                 int err;
281
282                 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
283                         FW_PARAMS_PARAM_X_V(
284                                 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
285                         FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
286                 value = enable ? i : 0xffffffff;
287
288                 /* Since we can be called while atomic (from "interrupt
289                  * level") we need to issue the Set Parameters Commannd
290                  * without sleeping (timeout < 0).
291                  */
292                 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
293                                             &name, &value,
294                                             -FW_CMD_MAX_TIMEOUT);
295
296                 if (err)
297                         dev_err(adap->pdev_dev,
298                                 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
299                                 enable ? "set" : "unset", pi->port_id, i, -err);
300                 else
301                         txq->dcb_prio = value;
302         }
303 }
304 #endif /* CONFIG_CHELSIO_T4_DCB */
305
306 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
307 {
308         struct net_device *dev = adapter->port[port_id];
309
310         /* Skip changes from disabled ports. */
311         if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
312                 if (link_stat)
313                         netif_carrier_on(dev);
314                 else {
315 #ifdef CONFIG_CHELSIO_T4_DCB
316                         cxgb4_dcb_state_init(dev);
317                         dcb_tx_queue_prio_enable(dev, false);
318 #endif /* CONFIG_CHELSIO_T4_DCB */
319                         netif_carrier_off(dev);
320                 }
321
322                 link_report(dev);
323         }
324 }
325
326 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
327 {
328         static const char *mod_str[] = {
329                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
330         };
331
332         const struct net_device *dev = adap->port[port_id];
333         const struct port_info *pi = netdev_priv(dev);
334
335         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
336                 netdev_info(dev, "port module unplugged\n");
337         else if (pi->mod_type < ARRAY_SIZE(mod_str))
338                 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
339 }
340
341 /*
342  * Configure the exact and hash address filters to handle a port's multicast
343  * and secondary unicast MAC addresses.
344  */
345 static int set_addr_filters(const struct net_device *dev, bool sleep)
346 {
347         u64 mhash = 0;
348         u64 uhash = 0;
349         bool free = true;
350         u16 filt_idx[7];
351         const u8 *addr[7];
352         int ret, naddr = 0;
353         const struct netdev_hw_addr *ha;
354         int uc_cnt = netdev_uc_count(dev);
355         int mc_cnt = netdev_mc_count(dev);
356         const struct port_info *pi = netdev_priv(dev);
357         unsigned int mb = pi->adapter->pf;
358
359         /* first do the secondary unicast addresses */
360         netdev_for_each_uc_addr(ha, dev) {
361                 addr[naddr++] = ha->addr;
362                 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
363                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
364                                         naddr, addr, filt_idx, &uhash, sleep);
365                         if (ret < 0)
366                                 return ret;
367
368                         free = false;
369                         naddr = 0;
370                 }
371         }
372
373         /* next set up the multicast addresses */
374         netdev_for_each_mc_addr(ha, dev) {
375                 addr[naddr++] = ha->addr;
376                 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
377                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
378                                         naddr, addr, filt_idx, &mhash, sleep);
379                         if (ret < 0)
380                                 return ret;
381
382                         free = false;
383                         naddr = 0;
384                 }
385         }
386
387         return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
388                                 uhash | mhash, sleep);
389 }
390
391 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
392 module_param(dbfifo_int_thresh, int, 0644);
393 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
394
395 /*
396  * usecs to sleep while draining the dbfifo
397  */
398 static int dbfifo_drain_delay = 1000;
399 module_param(dbfifo_drain_delay, int, 0644);
400 MODULE_PARM_DESC(dbfifo_drain_delay,
401                  "usecs to sleep while draining the dbfifo");
402
403 /*
404  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
405  * If @mtu is -1 it is left unchanged.
406  */
407 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
408 {
409         int ret;
410         struct port_info *pi = netdev_priv(dev);
411
412         ret = set_addr_filters(dev, sleep_ok);
413         if (ret == 0)
414                 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, mtu,
415                                     (dev->flags & IFF_PROMISC) ? 1 : 0,
416                                     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
417                                     sleep_ok);
418         return ret;
419 }
420
421 /**
422  *      link_start - enable a port
423  *      @dev: the port to enable
424  *
425  *      Performs the MAC and PHY actions needed to enable a port.
426  */
427 static int link_start(struct net_device *dev)
428 {
429         int ret;
430         struct port_info *pi = netdev_priv(dev);
431         unsigned int mb = pi->adapter->pf;
432
433         /*
434          * We do not set address filters and promiscuity here, the stack does
435          * that step explicitly.
436          */
437         ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
438                             !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
439         if (ret == 0) {
440                 ret = t4_change_mac(pi->adapter, mb, pi->viid,
441                                     pi->xact_addr_filt, dev->dev_addr, true,
442                                     true);
443                 if (ret >= 0) {
444                         pi->xact_addr_filt = ret;
445                         ret = 0;
446                 }
447         }
448         if (ret == 0)
449                 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
450                                     &pi->link_cfg);
451         if (ret == 0) {
452                 local_bh_disable();
453                 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
454                                           true, CXGB4_DCB_ENABLED);
455                 local_bh_enable();
456         }
457
458         return ret;
459 }
460
461 int cxgb4_dcb_enabled(const struct net_device *dev)
462 {
463 #ifdef CONFIG_CHELSIO_T4_DCB
464         struct port_info *pi = netdev_priv(dev);
465
466         if (!pi->dcb.enabled)
467                 return 0;
468
469         return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
470                 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
471 #else
472         return 0;
473 #endif
474 }
475 EXPORT_SYMBOL(cxgb4_dcb_enabled);
476
477 #ifdef CONFIG_CHELSIO_T4_DCB
478 /* Handle a Data Center Bridging update message from the firmware. */
479 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
480 {
481         int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
482         struct net_device *dev = adap->port[port];
483         int old_dcb_enabled = cxgb4_dcb_enabled(dev);
484         int new_dcb_enabled;
485
486         cxgb4_dcb_handle_fw_update(adap, pcmd);
487         new_dcb_enabled = cxgb4_dcb_enabled(dev);
488
489         /* If the DCB has become enabled or disabled on the port then we're
490          * going to need to set up/tear down DCB Priority parameters for the
491          * TX Queues associated with the port.
492          */
493         if (new_dcb_enabled != old_dcb_enabled)
494                 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
495 }
496 #endif /* CONFIG_CHELSIO_T4_DCB */
497
498 /* Clear a filter and release any of its resources that we own.  This also
499  * clears the filter's "pending" status.
500  */
501 static void clear_filter(struct adapter *adap, struct filter_entry *f)
502 {
503         /* If the new or old filter have loopback rewriteing rules then we'll
504          * need to free any existing Layer Two Table (L2T) entries of the old
505          * filter rule.  The firmware will handle freeing up any Source MAC
506          * Table (SMT) entries used for rewriting Source MAC Addresses in
507          * loopback rules.
508          */
509         if (f->l2t)
510                 cxgb4_l2t_release(f->l2t);
511
512         /* The zeroing of the filter rule below clears the filter valid,
513          * pending, locked flags, l2t pointer, etc. so it's all we need for
514          * this operation.
515          */
516         memset(f, 0, sizeof(*f));
517 }
518
519 /* Handle a filter write/deletion reply.
520  */
521 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
522 {
523         unsigned int idx = GET_TID(rpl);
524         unsigned int nidx = idx - adap->tids.ftid_base;
525         unsigned int ret;
526         struct filter_entry *f;
527
528         if (idx >= adap->tids.ftid_base && nidx <
529            (adap->tids.nftids + adap->tids.nsftids)) {
530                 idx = nidx;
531                 ret = TCB_COOKIE_G(rpl->cookie);
532                 f = &adap->tids.ftid_tab[idx];
533
534                 if (ret == FW_FILTER_WR_FLT_DELETED) {
535                         /* Clear the filter when we get confirmation from the
536                          * hardware that the filter has been deleted.
537                          */
538                         clear_filter(adap, f);
539                 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
540                         dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
541                                 idx);
542                         clear_filter(adap, f);
543                 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
544                         f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
545                         f->pending = 0;  /* asynchronous setup completed */
546                         f->valid = 1;
547                 } else {
548                         /* Something went wrong.  Issue a warning about the
549                          * problem and clear everything out.
550                          */
551                         dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
552                                 idx, ret);
553                         clear_filter(adap, f);
554                 }
555         }
556 }
557
558 /* Response queue handler for the FW event queue.
559  */
560 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
561                           const struct pkt_gl *gl)
562 {
563         u8 opcode = ((const struct rss_header *)rsp)->opcode;
564
565         rsp++;                                          /* skip RSS header */
566
567         /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
568          */
569         if (unlikely(opcode == CPL_FW4_MSG &&
570            ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
571                 rsp++;
572                 opcode = ((const struct rss_header *)rsp)->opcode;
573                 rsp++;
574                 if (opcode != CPL_SGE_EGR_UPDATE) {
575                         dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
576                                 , opcode);
577                         goto out;
578                 }
579         }
580
581         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
582                 const struct cpl_sge_egr_update *p = (void *)rsp;
583                 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
584                 struct sge_txq *txq;
585
586                 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
587                 txq->restarts++;
588                 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
589                         struct sge_eth_txq *eq;
590
591                         eq = container_of(txq, struct sge_eth_txq, q);
592                         netif_tx_wake_queue(eq->txq);
593                 } else {
594                         struct sge_ofld_txq *oq;
595
596                         oq = container_of(txq, struct sge_ofld_txq, q);
597                         tasklet_schedule(&oq->qresume_tsk);
598                 }
599         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
600                 const struct cpl_fw6_msg *p = (void *)rsp;
601
602 #ifdef CONFIG_CHELSIO_T4_DCB
603                 const struct fw_port_cmd *pcmd = (const void *)p->data;
604                 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
605                 unsigned int action =
606                         FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
607
608                 if (cmd == FW_PORT_CMD &&
609                     action == FW_PORT_ACTION_GET_PORT_INFO) {
610                         int port = FW_PORT_CMD_PORTID_G(
611                                         be32_to_cpu(pcmd->op_to_portid));
612                         struct net_device *dev = q->adap->port[port];
613                         int state_input = ((pcmd->u.info.dcbxdis_pkd &
614                                             FW_PORT_CMD_DCBXDIS_F)
615                                            ? CXGB4_DCB_INPUT_FW_DISABLED
616                                            : CXGB4_DCB_INPUT_FW_ENABLED);
617
618                         cxgb4_dcb_state_fsm(dev, state_input);
619                 }
620
621                 if (cmd == FW_PORT_CMD &&
622                     action == FW_PORT_ACTION_L2_DCB_CFG)
623                         dcb_rpl(q->adap, pcmd);
624                 else
625 #endif
626                         if (p->type == 0)
627                                 t4_handle_fw_rpl(q->adap, p->data);
628         } else if (opcode == CPL_L2T_WRITE_RPL) {
629                 const struct cpl_l2t_write_rpl *p = (void *)rsp;
630
631                 do_l2t_write_rpl(q->adap, p);
632         } else if (opcode == CPL_SET_TCB_RPL) {
633                 const struct cpl_set_tcb_rpl *p = (void *)rsp;
634
635                 filter_rpl(q->adap, p);
636         } else
637                 dev_err(q->adap->pdev_dev,
638                         "unexpected CPL %#x on FW event queue\n", opcode);
639 out:
640         return 0;
641 }
642
643 /**
644  *      uldrx_handler - response queue handler for ULD queues
645  *      @q: the response queue that received the packet
646  *      @rsp: the response queue descriptor holding the offload message
647  *      @gl: the gather list of packet fragments
648  *
649  *      Deliver an ingress offload packet to a ULD.  All processing is done by
650  *      the ULD, we just maintain statistics.
651  */
652 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
653                          const struct pkt_gl *gl)
654 {
655         struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
656
657         /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
658          */
659         if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
660             ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
661                 rsp += 2;
662
663         if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
664                 rxq->stats.nomem++;
665                 return -1;
666         }
667         if (gl == NULL)
668                 rxq->stats.imm++;
669         else if (gl == CXGB4_MSG_AN)
670                 rxq->stats.an++;
671         else
672                 rxq->stats.pkts++;
673         return 0;
674 }
675
676 static void disable_msi(struct adapter *adapter)
677 {
678         if (adapter->flags & USING_MSIX) {
679                 pci_disable_msix(adapter->pdev);
680                 adapter->flags &= ~USING_MSIX;
681         } else if (adapter->flags & USING_MSI) {
682                 pci_disable_msi(adapter->pdev);
683                 adapter->flags &= ~USING_MSI;
684         }
685 }
686
687 /*
688  * Interrupt handler for non-data events used with MSI-X.
689  */
690 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
691 {
692         struct adapter *adap = cookie;
693         u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
694
695         if (v & PFSW_F) {
696                 adap->swintr = 1;
697                 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
698         }
699         if (adap->flags & MASTER_PF)
700                 t4_slow_intr_handler(adap);
701         return IRQ_HANDLED;
702 }
703
704 /*
705  * Name the MSI-X interrupts.
706  */
707 static void name_msix_vecs(struct adapter *adap)
708 {
709         int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
710
711         /* non-data interrupts */
712         snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
713
714         /* FW events */
715         snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
716                  adap->port[0]->name);
717
718         /* Ethernet queues */
719         for_each_port(adap, j) {
720                 struct net_device *d = adap->port[j];
721                 const struct port_info *pi = netdev_priv(d);
722
723                 for (i = 0; i < pi->nqsets; i++, msi_idx++)
724                         snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
725                                  d->name, i);
726         }
727
728         /* offload queues */
729         for_each_iscsirxq(&adap->sge, i)
730                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-iscsi%d",
731                          adap->port[0]->name, i);
732
733         for_each_rdmarxq(&adap->sge, i)
734                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
735                          adap->port[0]->name, i);
736
737         for_each_rdmaciq(&adap->sge, i)
738                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
739                          adap->port[0]->name, i);
740 }
741
742 static int request_msix_queue_irqs(struct adapter *adap)
743 {
744         struct sge *s = &adap->sge;
745         int err, ethqidx, iscsiqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
746         int msi_index = 2;
747
748         err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
749                           adap->msix_info[1].desc, &s->fw_evtq);
750         if (err)
751                 return err;
752
753         for_each_ethrxq(s, ethqidx) {
754                 err = request_irq(adap->msix_info[msi_index].vec,
755                                   t4_sge_intr_msix, 0,
756                                   adap->msix_info[msi_index].desc,
757                                   &s->ethrxq[ethqidx].rspq);
758                 if (err)
759                         goto unwind;
760                 msi_index++;
761         }
762         for_each_iscsirxq(s, iscsiqidx) {
763                 err = request_irq(adap->msix_info[msi_index].vec,
764                                   t4_sge_intr_msix, 0,
765                                   adap->msix_info[msi_index].desc,
766                                   &s->iscsirxq[iscsiqidx].rspq);
767                 if (err)
768                         goto unwind;
769                 msi_index++;
770         }
771         for_each_rdmarxq(s, rdmaqidx) {
772                 err = request_irq(adap->msix_info[msi_index].vec,
773                                   t4_sge_intr_msix, 0,
774                                   adap->msix_info[msi_index].desc,
775                                   &s->rdmarxq[rdmaqidx].rspq);
776                 if (err)
777                         goto unwind;
778                 msi_index++;
779         }
780         for_each_rdmaciq(s, rdmaciqqidx) {
781                 err = request_irq(adap->msix_info[msi_index].vec,
782                                   t4_sge_intr_msix, 0,
783                                   adap->msix_info[msi_index].desc,
784                                   &s->rdmaciq[rdmaciqqidx].rspq);
785                 if (err)
786                         goto unwind;
787                 msi_index++;
788         }
789         return 0;
790
791 unwind:
792         while (--rdmaciqqidx >= 0)
793                 free_irq(adap->msix_info[--msi_index].vec,
794                          &s->rdmaciq[rdmaciqqidx].rspq);
795         while (--rdmaqidx >= 0)
796                 free_irq(adap->msix_info[--msi_index].vec,
797                          &s->rdmarxq[rdmaqidx].rspq);
798         while (--iscsiqidx >= 0)
799                 free_irq(adap->msix_info[--msi_index].vec,
800                          &s->iscsirxq[iscsiqidx].rspq);
801         while (--ethqidx >= 0)
802                 free_irq(adap->msix_info[--msi_index].vec,
803                          &s->ethrxq[ethqidx].rspq);
804         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
805         return err;
806 }
807
808 static void free_msix_queue_irqs(struct adapter *adap)
809 {
810         int i, msi_index = 2;
811         struct sge *s = &adap->sge;
812
813         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
814         for_each_ethrxq(s, i)
815                 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
816         for_each_iscsirxq(s, i)
817                 free_irq(adap->msix_info[msi_index++].vec,
818                          &s->iscsirxq[i].rspq);
819         for_each_rdmarxq(s, i)
820                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
821         for_each_rdmaciq(s, i)
822                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
823 }
824
825 /**
826  *      cxgb4_write_rss - write the RSS table for a given port
827  *      @pi: the port
828  *      @queues: array of queue indices for RSS
829  *
830  *      Sets up the portion of the HW RSS table for the port's VI to distribute
831  *      packets to the Rx queues in @queues.
832  *      Should never be called before setting up sge eth rx queues
833  */
834 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
835 {
836         u16 *rss;
837         int i, err;
838         struct adapter *adapter = pi->adapter;
839         const struct sge_eth_rxq *rxq;
840
841         rxq = &adapter->sge.ethrxq[pi->first_qset];
842         rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
843         if (!rss)
844                 return -ENOMEM;
845
846         /* map the queue indices to queue ids */
847         for (i = 0; i < pi->rss_size; i++, queues++)
848                 rss[i] = rxq[*queues].rspq.abs_id;
849
850         err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
851                                   pi->rss_size, rss, pi->rss_size);
852         /* If Tunnel All Lookup isn't specified in the global RSS
853          * Configuration, then we need to specify a default Ingress
854          * Queue for any ingress packets which aren't hashed.  We'll
855          * use our first ingress queue ...
856          */
857         if (!err)
858                 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
859                                        FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
860                                        FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
861                                        FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
862                                        FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
863                                        FW_RSS_VI_CONFIG_CMD_UDPEN_F,
864                                        rss[0]);
865         kfree(rss);
866         return err;
867 }
868
869 /**
870  *      setup_rss - configure RSS
871  *      @adap: the adapter
872  *
873  *      Sets up RSS for each port.
874  */
875 static int setup_rss(struct adapter *adap)
876 {
877         int i, j, err;
878
879         for_each_port(adap, i) {
880                 const struct port_info *pi = adap2pinfo(adap, i);
881
882                 /* Fill default values with equal distribution */
883                 for (j = 0; j < pi->rss_size; j++)
884                         pi->rss[j] = j % pi->nqsets;
885
886                 err = cxgb4_write_rss(pi, pi->rss);
887                 if (err)
888                         return err;
889         }
890         return 0;
891 }
892
893 /*
894  * Return the channel of the ingress queue with the given qid.
895  */
896 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
897 {
898         qid -= p->ingr_start;
899         return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
900 }
901
902 /*
903  * Wait until all NAPI handlers are descheduled.
904  */
905 static void quiesce_rx(struct adapter *adap)
906 {
907         int i;
908
909         for (i = 0; i < adap->sge.ingr_sz; i++) {
910                 struct sge_rspq *q = adap->sge.ingr_map[i];
911
912                 if (q && q->handler) {
913                         napi_disable(&q->napi);
914                         local_bh_disable();
915                         while (!cxgb_poll_lock_napi(q))
916                                 mdelay(1);
917                         local_bh_enable();
918                 }
919
920         }
921 }
922
923 /* Disable interrupt and napi handler */
924 static void disable_interrupts(struct adapter *adap)
925 {
926         if (adap->flags & FULL_INIT_DONE) {
927                 t4_intr_disable(adap);
928                 if (adap->flags & USING_MSIX) {
929                         free_msix_queue_irqs(adap);
930                         free_irq(adap->msix_info[0].vec, adap);
931                 } else {
932                         free_irq(adap->pdev->irq, adap);
933                 }
934                 quiesce_rx(adap);
935         }
936 }
937
938 /*
939  * Enable NAPI scheduling and interrupt generation for all Rx queues.
940  */
941 static void enable_rx(struct adapter *adap)
942 {
943         int i;
944
945         for (i = 0; i < adap->sge.ingr_sz; i++) {
946                 struct sge_rspq *q = adap->sge.ingr_map[i];
947
948                 if (!q)
949                         continue;
950                 if (q->handler) {
951                         cxgb_busy_poll_init_lock(q);
952                         napi_enable(&q->napi);
953                 }
954                 /* 0-increment GTS to start the timer and enable interrupts */
955                 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
956                              SEINTARM_V(q->intr_params) |
957                              INGRESSQID_V(q->cntxt_id));
958         }
959 }
960
961 static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q,
962                            unsigned int nq, unsigned int per_chan, int msi_idx,
963                            u16 *ids)
964 {
965         int i, err;
966
967         for (i = 0; i < nq; i++, q++) {
968                 if (msi_idx > 0)
969                         msi_idx++;
970                 err = t4_sge_alloc_rxq(adap, &q->rspq, false,
971                                        adap->port[i / per_chan],
972                                        msi_idx, q->fl.size ? &q->fl : NULL,
973                                        uldrx_handler, 0);
974                 if (err)
975                         return err;
976                 memset(&q->stats, 0, sizeof(q->stats));
977                 if (ids)
978                         ids[i] = q->rspq.abs_id;
979         }
980         return 0;
981 }
982
983 /**
984  *      setup_sge_queues - configure SGE Tx/Rx/response queues
985  *      @adap: the adapter
986  *
987  *      Determines how many sets of SGE queues to use and initializes them.
988  *      We support multiple queue sets per port if we have MSI-X, otherwise
989  *      just one queue set per port.
990  */
991 static int setup_sge_queues(struct adapter *adap)
992 {
993         int err, msi_idx, i, j;
994         struct sge *s = &adap->sge;
995
996         bitmap_zero(s->starving_fl, s->egr_sz);
997         bitmap_zero(s->txq_maperr, s->egr_sz);
998
999         if (adap->flags & USING_MSIX)
1000                 msi_idx = 1;         /* vector 0 is for non-queue interrupts */
1001         else {
1002                 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1003                                        NULL, NULL, -1);
1004                 if (err)
1005                         return err;
1006                 msi_idx = -((int)s->intrq.abs_id + 1);
1007         }
1008
1009         /* NOTE: If you add/delete any Ingress/Egress Queue allocations in here,
1010          * don't forget to update the following which need to be
1011          * synchronized to and changes here.
1012          *
1013          * 1. The calculations of MAX_INGQ in cxgb4.h.
1014          *
1015          * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs
1016          *    to accommodate any new/deleted Ingress Queues
1017          *    which need MSI-X Vectors.
1018          *
1019          * 3. Update sge_qinfo_show() to include information on the
1020          *    new/deleted queues.
1021          */
1022         err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1023                                msi_idx, NULL, fwevtq_handler, -1);
1024         if (err) {
1025 freeout:        t4_free_sge_resources(adap);
1026                 return err;
1027         }
1028
1029         for_each_port(adap, i) {
1030                 struct net_device *dev = adap->port[i];
1031                 struct port_info *pi = netdev_priv(dev);
1032                 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1033                 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1034
1035                 for (j = 0; j < pi->nqsets; j++, q++) {
1036                         if (msi_idx > 0)
1037                                 msi_idx++;
1038                         err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1039                                                msi_idx, &q->fl,
1040                                                t4_ethrx_handler,
1041                                                t4_get_mps_bg_map(adap,
1042                                                                  pi->tx_chan));
1043                         if (err)
1044                                 goto freeout;
1045                         q->rspq.idx = j;
1046                         memset(&q->stats, 0, sizeof(q->stats));
1047                 }
1048                 for (j = 0; j < pi->nqsets; j++, t++) {
1049                         err = t4_sge_alloc_eth_txq(adap, t, dev,
1050                                         netdev_get_tx_queue(dev, j),
1051                                         s->fw_evtq.cntxt_id);
1052                         if (err)
1053                                 goto freeout;
1054                 }
1055         }
1056
1057         j = s->iscsiqsets / adap->params.nports; /* iscsi queues per channel */
1058         for_each_iscsirxq(s, i) {
1059                 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
1060                                             adap->port[i / j],
1061                                             s->fw_evtq.cntxt_id);
1062                 if (err)
1063                         goto freeout;
1064         }
1065
1066 #define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids) do { \
1067         err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids); \
1068         if (err) \
1069                 goto freeout; \
1070         if (msi_idx > 0) \
1071                 msi_idx += nq; \
1072 } while (0)
1073
1074         ALLOC_OFLD_RXQS(s->iscsirxq, s->iscsiqsets, j, s->iscsi_rxq);
1075         ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq);
1076         j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */
1077         ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq);
1078
1079 #undef ALLOC_OFLD_RXQS
1080
1081         for_each_port(adap, i) {
1082                 /*
1083                  * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1084                  * have RDMA queues, and that's the right value.
1085                  */
1086                 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1087                                             s->fw_evtq.cntxt_id,
1088                                             s->rdmarxq[i].rspq.cntxt_id);
1089                 if (err)
1090                         goto freeout;
1091         }
1092
1093         t4_write_reg(adap, is_t4(adap->params.chip) ?
1094                                 MPS_TRC_RSS_CONTROL_A :
1095                                 MPS_T5_TRC_RSS_CONTROL_A,
1096                      RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1097                      QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1098         return 0;
1099 }
1100
1101 /*
1102  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1103  * The allocated memory is cleared.
1104  */
1105 void *t4_alloc_mem(size_t size)
1106 {
1107         void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1108
1109         if (!p)
1110                 p = vzalloc(size);
1111         return p;
1112 }
1113
1114 /*
1115  * Free memory allocated through alloc_mem().
1116  */
1117 void t4_free_mem(void *addr)
1118 {
1119         kvfree(addr);
1120 }
1121
1122 /* Send a Work Request to write the filter at a specified index.  We construct
1123  * a Firmware Filter Work Request to have the work done and put the indicated
1124  * filter into "pending" mode which will prevent any further actions against
1125  * it till we get a reply from the firmware on the completion status of the
1126  * request.
1127  */
1128 static int set_filter_wr(struct adapter *adapter, int fidx)
1129 {
1130         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1131         struct sk_buff *skb;
1132         struct fw_filter_wr *fwr;
1133         unsigned int ftid;
1134
1135         skb = alloc_skb(sizeof(*fwr), GFP_KERNEL);
1136         if (!skb)
1137                 return -ENOMEM;
1138
1139         /* If the new filter requires loopback Destination MAC and/or VLAN
1140          * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1141          * the filter.
1142          */
1143         if (f->fs.newdmac || f->fs.newvlan) {
1144                 /* allocate L2T entry for new filter */
1145                 f->l2t = t4_l2t_alloc_switching(adapter, f->fs.vlan,
1146                                                 f->fs.eport, f->fs.dmac);
1147                 if (f->l2t == NULL) {
1148                         kfree_skb(skb);
1149                         return -ENOMEM;
1150                 }
1151         }
1152
1153         ftid = adapter->tids.ftid_base + fidx;
1154
1155         fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1156         memset(fwr, 0, sizeof(*fwr));
1157
1158         /* It would be nice to put most of the following in t4_hw.c but most
1159          * of the work is translating the cxgbtool ch_filter_specification
1160          * into the Work Request and the definition of that structure is
1161          * currently in cxgbtool.h which isn't appropriate to pull into the
1162          * common code.  We may eventually try to come up with a more neutral
1163          * filter specification structure but for now it's easiest to simply
1164          * put this fairly direct code in line ...
1165          */
1166         fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
1167         fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
1168         fwr->tid_to_iq =
1169                 htonl(FW_FILTER_WR_TID_V(ftid) |
1170                       FW_FILTER_WR_RQTYPE_V(f->fs.type) |
1171                       FW_FILTER_WR_NOREPLY_V(0) |
1172                       FW_FILTER_WR_IQ_V(f->fs.iq));
1173         fwr->del_filter_to_l2tix =
1174                 htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
1175                       FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
1176                       FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
1177                       FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
1178                       FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
1179                       FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
1180                       FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
1181                       FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
1182                       FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
1183                                              f->fs.newvlan == VLAN_REWRITE) |
1184                       FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
1185                                             f->fs.newvlan == VLAN_REWRITE) |
1186                       FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
1187                       FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
1188                       FW_FILTER_WR_PRIO_V(f->fs.prio) |
1189                       FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
1190         fwr->ethtype = htons(f->fs.val.ethtype);
1191         fwr->ethtypem = htons(f->fs.mask.ethtype);
1192         fwr->frag_to_ovlan_vldm =
1193                 (FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
1194                  FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
1195                  FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
1196                  FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
1197                  FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
1198                  FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
1199         fwr->smac_sel = 0;
1200         fwr->rx_chan_rx_rpl_iq =
1201                 htons(FW_FILTER_WR_RX_CHAN_V(0) |
1202                       FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
1203         fwr->maci_to_matchtypem =
1204                 htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
1205                       FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
1206                       FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
1207                       FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
1208                       FW_FILTER_WR_PORT_V(f->fs.val.iport) |
1209                       FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
1210                       FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
1211                       FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
1212         fwr->ptcl = f->fs.val.proto;
1213         fwr->ptclm = f->fs.mask.proto;
1214         fwr->ttyp = f->fs.val.tos;
1215         fwr->ttypm = f->fs.mask.tos;
1216         fwr->ivlan = htons(f->fs.val.ivlan);
1217         fwr->ivlanm = htons(f->fs.mask.ivlan);
1218         fwr->ovlan = htons(f->fs.val.ovlan);
1219         fwr->ovlanm = htons(f->fs.mask.ovlan);
1220         memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1221         memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1222         memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1223         memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1224         fwr->lp = htons(f->fs.val.lport);
1225         fwr->lpm = htons(f->fs.mask.lport);
1226         fwr->fp = htons(f->fs.val.fport);
1227         fwr->fpm = htons(f->fs.mask.fport);
1228         if (f->fs.newsmac)
1229                 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1230
1231         /* Mark the filter as "pending" and ship off the Filter Work Request.
1232          * When we get the Work Request Reply we'll clear the pending status.
1233          */
1234         f->pending = 1;
1235         set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1236         t4_ofld_send(adapter, skb);
1237         return 0;
1238 }
1239
1240 /* Delete the filter at a specified index.
1241  */
1242 static int del_filter_wr(struct adapter *adapter, int fidx)
1243 {
1244         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1245         struct sk_buff *skb;
1246         struct fw_filter_wr *fwr;
1247         unsigned int len, ftid;
1248
1249         len = sizeof(*fwr);
1250         ftid = adapter->tids.ftid_base + fidx;
1251
1252         skb = alloc_skb(len, GFP_KERNEL);
1253         if (!skb)
1254                 return -ENOMEM;
1255
1256         fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1257         t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1258
1259         /* Mark the filter as "pending" and ship off the Filter Work Request.
1260          * When we get the Work Request Reply we'll clear the pending status.
1261          */
1262         f->pending = 1;
1263         t4_mgmt_tx(adapter, skb);
1264         return 0;
1265 }
1266
1267 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1268                              void *accel_priv, select_queue_fallback_t fallback)
1269 {
1270         int txq;
1271
1272 #ifdef CONFIG_CHELSIO_T4_DCB
1273         /* If a Data Center Bridging has been successfully negotiated on this
1274          * link then we'll use the skb's priority to map it to a TX Queue.
1275          * The skb's priority is determined via the VLAN Tag Priority Code
1276          * Point field.
1277          */
1278         if (cxgb4_dcb_enabled(dev)) {
1279                 u16 vlan_tci;
1280                 int err;
1281
1282                 err = vlan_get_tag(skb, &vlan_tci);
1283                 if (unlikely(err)) {
1284                         if (net_ratelimit())
1285                                 netdev_warn(dev,
1286                                             "TX Packet without VLAN Tag on DCB Link\n");
1287                         txq = 0;
1288                 } else {
1289                         txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1290 #ifdef CONFIG_CHELSIO_T4_FCOE
1291                         if (skb->protocol == htons(ETH_P_FCOE))
1292                                 txq = skb->priority & 0x7;
1293 #endif /* CONFIG_CHELSIO_T4_FCOE */
1294                 }
1295                 return txq;
1296         }
1297 #endif /* CONFIG_CHELSIO_T4_DCB */
1298
1299         if (select_queue) {
1300                 txq = (skb_rx_queue_recorded(skb)
1301                         ? skb_get_rx_queue(skb)
1302                         : smp_processor_id());
1303
1304                 while (unlikely(txq >= dev->real_num_tx_queues))
1305                         txq -= dev->real_num_tx_queues;
1306
1307                 return txq;
1308         }
1309
1310         return fallback(dev, skb) % dev->real_num_tx_queues;
1311 }
1312
1313 static int closest_timer(const struct sge *s, int time)
1314 {
1315         int i, delta, match = 0, min_delta = INT_MAX;
1316
1317         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1318                 delta = time - s->timer_val[i];
1319                 if (delta < 0)
1320                         delta = -delta;
1321                 if (delta < min_delta) {
1322                         min_delta = delta;
1323                         match = i;
1324                 }
1325         }
1326         return match;
1327 }
1328
1329 static int closest_thres(const struct sge *s, int thres)
1330 {
1331         int i, delta, match = 0, min_delta = INT_MAX;
1332
1333         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1334                 delta = thres - s->counter_val[i];
1335                 if (delta < 0)
1336                         delta = -delta;
1337                 if (delta < min_delta) {
1338                         min_delta = delta;
1339                         match = i;
1340                 }
1341         }
1342         return match;
1343 }
1344
1345 /**
1346  *      cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1347  *      @q: the Rx queue
1348  *      @us: the hold-off time in us, or 0 to disable timer
1349  *      @cnt: the hold-off packet count, or 0 to disable counter
1350  *
1351  *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
1352  *      one of the two needs to be enabled for the queue to generate interrupts.
1353  */
1354 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1355                                unsigned int us, unsigned int cnt)
1356 {
1357         struct adapter *adap = q->adap;
1358
1359         if ((us | cnt) == 0)
1360                 cnt = 1;
1361
1362         if (cnt) {
1363                 int err;
1364                 u32 v, new_idx;
1365
1366                 new_idx = closest_thres(&adap->sge, cnt);
1367                 if (q->desc && q->pktcnt_idx != new_idx) {
1368                         /* the queue has already been created, update it */
1369                         v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1370                             FW_PARAMS_PARAM_X_V(
1371                                         FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1372                             FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1373                         err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1374                                             &v, &new_idx);
1375                         if (err)
1376                                 return err;
1377                 }
1378                 q->pktcnt_idx = new_idx;
1379         }
1380
1381         us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1382         q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1383         return 0;
1384 }
1385
1386 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1387 {
1388         const struct port_info *pi = netdev_priv(dev);
1389         netdev_features_t changed = dev->features ^ features;
1390         int err;
1391
1392         if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1393                 return 0;
1394
1395         err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1396                             -1, -1, -1,
1397                             !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1398         if (unlikely(err))
1399                 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1400         return err;
1401 }
1402
1403 static int setup_debugfs(struct adapter *adap)
1404 {
1405         if (IS_ERR_OR_NULL(adap->debugfs_root))
1406                 return -1;
1407
1408 #ifdef CONFIG_DEBUG_FS
1409         t4_setup_debugfs(adap);
1410 #endif
1411         return 0;
1412 }
1413
1414 /*
1415  * upper-layer driver support
1416  */
1417
1418 /*
1419  * Allocate an active-open TID and set it to the supplied value.
1420  */
1421 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1422 {
1423         int atid = -1;
1424
1425         spin_lock_bh(&t->atid_lock);
1426         if (t->afree) {
1427                 union aopen_entry *p = t->afree;
1428
1429                 atid = (p - t->atid_tab) + t->atid_base;
1430                 t->afree = p->next;
1431                 p->data = data;
1432                 t->atids_in_use++;
1433         }
1434         spin_unlock_bh(&t->atid_lock);
1435         return atid;
1436 }
1437 EXPORT_SYMBOL(cxgb4_alloc_atid);
1438
1439 /*
1440  * Release an active-open TID.
1441  */
1442 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1443 {
1444         union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1445
1446         spin_lock_bh(&t->atid_lock);
1447         p->next = t->afree;
1448         t->afree = p;
1449         t->atids_in_use--;
1450         spin_unlock_bh(&t->atid_lock);
1451 }
1452 EXPORT_SYMBOL(cxgb4_free_atid);
1453
1454 /*
1455  * Allocate a server TID and set it to the supplied value.
1456  */
1457 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1458 {
1459         int stid;
1460
1461         spin_lock_bh(&t->stid_lock);
1462         if (family == PF_INET) {
1463                 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1464                 if (stid < t->nstids)
1465                         __set_bit(stid, t->stid_bmap);
1466                 else
1467                         stid = -1;
1468         } else {
1469                 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1470                 if (stid < 0)
1471                         stid = -1;
1472         }
1473         if (stid >= 0) {
1474                 t->stid_tab[stid].data = data;
1475                 stid += t->stid_base;
1476                 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1477                  * This is equivalent to 4 TIDs. With CLIP enabled it
1478                  * needs 2 TIDs.
1479                  */
1480                 if (family == PF_INET)
1481                         t->stids_in_use++;
1482                 else
1483                         t->stids_in_use += 2;
1484         }
1485         spin_unlock_bh(&t->stid_lock);
1486         return stid;
1487 }
1488 EXPORT_SYMBOL(cxgb4_alloc_stid);
1489
1490 /* Allocate a server filter TID and set it to the supplied value.
1491  */
1492 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1493 {
1494         int stid;
1495
1496         spin_lock_bh(&t->stid_lock);
1497         if (family == PF_INET) {
1498                 stid = find_next_zero_bit(t->stid_bmap,
1499                                 t->nstids + t->nsftids, t->nstids);
1500                 if (stid < (t->nstids + t->nsftids))
1501                         __set_bit(stid, t->stid_bmap);
1502                 else
1503                         stid = -1;
1504         } else {
1505                 stid = -1;
1506         }
1507         if (stid >= 0) {
1508                 t->stid_tab[stid].data = data;
1509                 stid -= t->nstids;
1510                 stid += t->sftid_base;
1511                 t->sftids_in_use++;
1512         }
1513         spin_unlock_bh(&t->stid_lock);
1514         return stid;
1515 }
1516 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1517
1518 /* Release a server TID.
1519  */
1520 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1521 {
1522         /* Is it a server filter TID? */
1523         if (t->nsftids && (stid >= t->sftid_base)) {
1524                 stid -= t->sftid_base;
1525                 stid += t->nstids;
1526         } else {
1527                 stid -= t->stid_base;
1528         }
1529
1530         spin_lock_bh(&t->stid_lock);
1531         if (family == PF_INET)
1532                 __clear_bit(stid, t->stid_bmap);
1533         else
1534                 bitmap_release_region(t->stid_bmap, stid, 1);
1535         t->stid_tab[stid].data = NULL;
1536         if (stid < t->nstids) {
1537                 if (family == PF_INET)
1538                         t->stids_in_use--;
1539                 else
1540                         t->stids_in_use -= 2;
1541         } else {
1542                 t->sftids_in_use--;
1543         }
1544         spin_unlock_bh(&t->stid_lock);
1545 }
1546 EXPORT_SYMBOL(cxgb4_free_stid);
1547
1548 /*
1549  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1550  */
1551 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1552                            unsigned int tid)
1553 {
1554         struct cpl_tid_release *req;
1555
1556         set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1557         req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1558         INIT_TP_WR(req, tid);
1559         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1560 }
1561
1562 /*
1563  * Queue a TID release request and if necessary schedule a work queue to
1564  * process it.
1565  */
1566 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1567                                     unsigned int tid)
1568 {
1569         void **p = &t->tid_tab[tid];
1570         struct adapter *adap = container_of(t, struct adapter, tids);
1571
1572         spin_lock_bh(&adap->tid_release_lock);
1573         *p = adap->tid_release_head;
1574         /* Low 2 bits encode the Tx channel number */
1575         adap->tid_release_head = (void **)((uintptr_t)p | chan);
1576         if (!adap->tid_release_task_busy) {
1577                 adap->tid_release_task_busy = true;
1578                 queue_work(adap->workq, &adap->tid_release_task);
1579         }
1580         spin_unlock_bh(&adap->tid_release_lock);
1581 }
1582
1583 /*
1584  * Process the list of pending TID release requests.
1585  */
1586 static void process_tid_release_list(struct work_struct *work)
1587 {
1588         struct sk_buff *skb;
1589         struct adapter *adap;
1590
1591         adap = container_of(work, struct adapter, tid_release_task);
1592
1593         spin_lock_bh(&adap->tid_release_lock);
1594         while (adap->tid_release_head) {
1595                 void **p = adap->tid_release_head;
1596                 unsigned int chan = (uintptr_t)p & 3;
1597                 p = (void *)p - chan;
1598
1599                 adap->tid_release_head = *p;
1600                 *p = NULL;
1601                 spin_unlock_bh(&adap->tid_release_lock);
1602
1603                 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1604                                          GFP_KERNEL)))
1605                         schedule_timeout_uninterruptible(1);
1606
1607                 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1608                 t4_ofld_send(adap, skb);
1609                 spin_lock_bh(&adap->tid_release_lock);
1610         }
1611         adap->tid_release_task_busy = false;
1612         spin_unlock_bh(&adap->tid_release_lock);
1613 }
1614
1615 /*
1616  * Release a TID and inform HW.  If we are unable to allocate the release
1617  * message we defer to a work queue.
1618  */
1619 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1620 {
1621         struct sk_buff *skb;
1622         struct adapter *adap = container_of(t, struct adapter, tids);
1623
1624         WARN_ON(tid >= t->ntids);
1625
1626         if (t->tid_tab[tid]) {
1627                 t->tid_tab[tid] = NULL;
1628                 if (t->hash_base && (tid >= t->hash_base))
1629                         atomic_dec(&t->hash_tids_in_use);
1630                 else
1631                         atomic_dec(&t->tids_in_use);
1632         }
1633
1634         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1635         if (likely(skb)) {
1636                 mk_tid_release(skb, chan, tid);
1637                 t4_ofld_send(adap, skb);
1638         } else
1639                 cxgb4_queue_tid_release(t, chan, tid);
1640 }
1641 EXPORT_SYMBOL(cxgb4_remove_tid);
1642
1643 /*
1644  * Allocate and initialize the TID tables.  Returns 0 on success.
1645  */
1646 static int tid_init(struct tid_info *t)
1647 {
1648         size_t size;
1649         unsigned int stid_bmap_size;
1650         unsigned int natids = t->natids;
1651         struct adapter *adap = container_of(t, struct adapter, tids);
1652
1653         stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1654         size = t->ntids * sizeof(*t->tid_tab) +
1655                natids * sizeof(*t->atid_tab) +
1656                t->nstids * sizeof(*t->stid_tab) +
1657                t->nsftids * sizeof(*t->stid_tab) +
1658                stid_bmap_size * sizeof(long) +
1659                t->nftids * sizeof(*t->ftid_tab) +
1660                t->nsftids * sizeof(*t->ftid_tab);
1661
1662         t->tid_tab = t4_alloc_mem(size);
1663         if (!t->tid_tab)
1664                 return -ENOMEM;
1665
1666         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1667         t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1668         t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1669         t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1670         spin_lock_init(&t->stid_lock);
1671         spin_lock_init(&t->atid_lock);
1672
1673         t->stids_in_use = 0;
1674         t->sftids_in_use = 0;
1675         t->afree = NULL;
1676         t->atids_in_use = 0;
1677         atomic_set(&t->tids_in_use, 0);
1678         atomic_set(&t->hash_tids_in_use, 0);
1679
1680         /* Setup the free list for atid_tab and clear the stid bitmap. */
1681         if (natids) {
1682                 while (--natids)
1683                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1684                 t->afree = t->atid_tab;
1685         }
1686         bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1687         /* Reserve stid 0 for T4/T5 adapters */
1688         if (!t->stid_base &&
1689             (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
1690                 __set_bit(0, t->stid_bmap);
1691
1692         return 0;
1693 }
1694
1695 /**
1696  *      cxgb4_create_server - create an IP server
1697  *      @dev: the device
1698  *      @stid: the server TID
1699  *      @sip: local IP address to bind server to
1700  *      @sport: the server's TCP port
1701  *      @queue: queue to direct messages from this server to
1702  *
1703  *      Create an IP server for the given port and address.
1704  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1705  */
1706 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1707                         __be32 sip, __be16 sport, __be16 vlan,
1708                         unsigned int queue)
1709 {
1710         unsigned int chan;
1711         struct sk_buff *skb;
1712         struct adapter *adap;
1713         struct cpl_pass_open_req *req;
1714         int ret;
1715
1716         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1717         if (!skb)
1718                 return -ENOMEM;
1719
1720         adap = netdev2adap(dev);
1721         req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1722         INIT_TP_WR(req, 0);
1723         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1724         req->local_port = sport;
1725         req->peer_port = htons(0);
1726         req->local_ip = sip;
1727         req->peer_ip = htonl(0);
1728         chan = rxq_to_chan(&adap->sge, queue);
1729         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1730         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1731                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1732         ret = t4_mgmt_tx(adap, skb);
1733         return net_xmit_eval(ret);
1734 }
1735 EXPORT_SYMBOL(cxgb4_create_server);
1736
1737 /*      cxgb4_create_server6 - create an IPv6 server
1738  *      @dev: the device
1739  *      @stid: the server TID
1740  *      @sip: local IPv6 address to bind server to
1741  *      @sport: the server's TCP port
1742  *      @queue: queue to direct messages from this server to
1743  *
1744  *      Create an IPv6 server for the given port and address.
1745  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1746  */
1747 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1748                          const struct in6_addr *sip, __be16 sport,
1749                          unsigned int queue)
1750 {
1751         unsigned int chan;
1752         struct sk_buff *skb;
1753         struct adapter *adap;
1754         struct cpl_pass_open_req6 *req;
1755         int ret;
1756
1757         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1758         if (!skb)
1759                 return -ENOMEM;
1760
1761         adap = netdev2adap(dev);
1762         req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1763         INIT_TP_WR(req, 0);
1764         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1765         req->local_port = sport;
1766         req->peer_port = htons(0);
1767         req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1768         req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1769         req->peer_ip_hi = cpu_to_be64(0);
1770         req->peer_ip_lo = cpu_to_be64(0);
1771         chan = rxq_to_chan(&adap->sge, queue);
1772         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1773         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1774                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1775         ret = t4_mgmt_tx(adap, skb);
1776         return net_xmit_eval(ret);
1777 }
1778 EXPORT_SYMBOL(cxgb4_create_server6);
1779
1780 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1781                         unsigned int queue, bool ipv6)
1782 {
1783         struct sk_buff *skb;
1784         struct adapter *adap;
1785         struct cpl_close_listsvr_req *req;
1786         int ret;
1787
1788         adap = netdev2adap(dev);
1789
1790         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1791         if (!skb)
1792                 return -ENOMEM;
1793
1794         req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1795         INIT_TP_WR(req, 0);
1796         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1797         req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1798                                 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1799         ret = t4_mgmt_tx(adap, skb);
1800         return net_xmit_eval(ret);
1801 }
1802 EXPORT_SYMBOL(cxgb4_remove_server);
1803
1804 /**
1805  *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1806  *      @mtus: the HW MTU table
1807  *      @mtu: the target MTU
1808  *      @idx: index of selected entry in the MTU table
1809  *
1810  *      Returns the index and the value in the HW MTU table that is closest to
1811  *      but does not exceed @mtu, unless @mtu is smaller than any value in the
1812  *      table, in which case that smallest available value is selected.
1813  */
1814 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1815                             unsigned int *idx)
1816 {
1817         unsigned int i = 0;
1818
1819         while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1820                 ++i;
1821         if (idx)
1822                 *idx = i;
1823         return mtus[i];
1824 }
1825 EXPORT_SYMBOL(cxgb4_best_mtu);
1826
1827 /**
1828  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1829  *     @mtus: the HW MTU table
1830  *     @header_size: Header Size
1831  *     @data_size_max: maximum Data Segment Size
1832  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1833  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1834  *
1835  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1836  *     MTU Table based solely on a Maximum MTU parameter, we break that
1837  *     parameter up into a Header Size and Maximum Data Segment Size, and
1838  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1839  *     the Hardware MTU Table which will result in a Data Segment Size with
1840  *     the requested alignment _and_ that MTU isn't "too far" from the
1841  *     closest MTU, then we'll return that rather than the closest MTU.
1842  */
1843 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1844                                     unsigned short header_size,
1845                                     unsigned short data_size_max,
1846                                     unsigned short data_size_align,
1847                                     unsigned int *mtu_idxp)
1848 {
1849         unsigned short max_mtu = header_size + data_size_max;
1850         unsigned short data_size_align_mask = data_size_align - 1;
1851         int mtu_idx, aligned_mtu_idx;
1852
1853         /* Scan the MTU Table till we find an MTU which is larger than our
1854          * Maximum MTU or we reach the end of the table.  Along the way,
1855          * record the last MTU found, if any, which will result in a Data
1856          * Segment Length matching the requested alignment.
1857          */
1858         for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1859                 unsigned short data_size = mtus[mtu_idx] - header_size;
1860
1861                 /* If this MTU minus the Header Size would result in a
1862                  * Data Segment Size of the desired alignment, remember it.
1863                  */
1864                 if ((data_size & data_size_align_mask) == 0)
1865                         aligned_mtu_idx = mtu_idx;
1866
1867                 /* If we're not at the end of the Hardware MTU Table and the
1868                  * next element is larger than our Maximum MTU, drop out of
1869                  * the loop.
1870                  */
1871                 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1872                         break;
1873         }
1874
1875         /* If we fell out of the loop because we ran to the end of the table,
1876          * then we just have to use the last [largest] entry.
1877          */
1878         if (mtu_idx == NMTUS)
1879                 mtu_idx--;
1880
1881         /* If we found an MTU which resulted in the requested Data Segment
1882          * Length alignment and that's "not far" from the largest MTU which is
1883          * less than or equal to the maximum MTU, then use that.
1884          */
1885         if (aligned_mtu_idx >= 0 &&
1886             mtu_idx - aligned_mtu_idx <= 1)
1887                 mtu_idx = aligned_mtu_idx;
1888
1889         /* If the caller has passed in an MTU Index pointer, pass the
1890          * MTU Index back.  Return the MTU value.
1891          */
1892         if (mtu_idxp)
1893                 *mtu_idxp = mtu_idx;
1894         return mtus[mtu_idx];
1895 }
1896 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1897
1898 /**
1899  *      cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1900  *      @chip: chip type
1901  *      @viid: VI id of the given port
1902  *
1903  *      Return the SMT index for this VI.
1904  */
1905 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1906 {
1907         /* In T4/T5, SMT contains 256 SMAC entries organized in
1908          * 128 rows of 2 entries each.
1909          * In T6, SMT contains 256 SMAC entries in 256 rows.
1910          * TODO: The below code needs to be updated when we add support
1911          * for 256 VFs.
1912          */
1913         if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1914                 return ((viid & 0x7f) << 1);
1915         else
1916                 return (viid & 0x7f);
1917 }
1918 EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1919
1920 /**
1921  *      cxgb4_port_chan - get the HW channel of a port
1922  *      @dev: the net device for the port
1923  *
1924  *      Return the HW Tx channel of the given port.
1925  */
1926 unsigned int cxgb4_port_chan(const struct net_device *dev)
1927 {
1928         return netdev2pinfo(dev)->tx_chan;
1929 }
1930 EXPORT_SYMBOL(cxgb4_port_chan);
1931
1932 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1933 {
1934         struct adapter *adap = netdev2adap(dev);
1935         u32 v1, v2, lp_count, hp_count;
1936
1937         v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1938         v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1939         if (is_t4(adap->params.chip)) {
1940                 lp_count = LP_COUNT_G(v1);
1941                 hp_count = HP_COUNT_G(v1);
1942         } else {
1943                 lp_count = LP_COUNT_T5_G(v1);
1944                 hp_count = HP_COUNT_T5_G(v2);
1945         }
1946         return lpfifo ? lp_count : hp_count;
1947 }
1948 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1949
1950 /**
1951  *      cxgb4_port_viid - get the VI id of a port
1952  *      @dev: the net device for the port
1953  *
1954  *      Return the VI id of the given port.
1955  */
1956 unsigned int cxgb4_port_viid(const struct net_device *dev)
1957 {
1958         return netdev2pinfo(dev)->viid;
1959 }
1960 EXPORT_SYMBOL(cxgb4_port_viid);
1961
1962 /**
1963  *      cxgb4_port_idx - get the index of a port
1964  *      @dev: the net device for the port
1965  *
1966  *      Return the index of the given port.
1967  */
1968 unsigned int cxgb4_port_idx(const struct net_device *dev)
1969 {
1970         return netdev2pinfo(dev)->port_id;
1971 }
1972 EXPORT_SYMBOL(cxgb4_port_idx);
1973
1974 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1975                          struct tp_tcp_stats *v6)
1976 {
1977         struct adapter *adap = pci_get_drvdata(pdev);
1978
1979         spin_lock(&adap->stats_lock);
1980         t4_tp_get_tcp_stats(adap, v4, v6);
1981         spin_unlock(&adap->stats_lock);
1982 }
1983 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1984
1985 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1986                       const unsigned int *pgsz_order)
1987 {
1988         struct adapter *adap = netdev2adap(dev);
1989
1990         t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1991         t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1992                      HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1993                      HPZ3_V(pgsz_order[3]));
1994 }
1995 EXPORT_SYMBOL(cxgb4_iscsi_init);
1996
1997 int cxgb4_flush_eq_cache(struct net_device *dev)
1998 {
1999         struct adapter *adap = netdev2adap(dev);
2000
2001         return t4_sge_ctxt_flush(adap, adap->mbox);
2002 }
2003 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2004
2005 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2006 {
2007         u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
2008         __be64 indices;
2009         int ret;
2010
2011         spin_lock(&adap->win0_lock);
2012         ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2013                            sizeof(indices), (__be32 *)&indices,
2014                            T4_MEMORY_READ);
2015         spin_unlock(&adap->win0_lock);
2016         if (!ret) {
2017                 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2018                 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2019         }
2020         return ret;
2021 }
2022
2023 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2024                         u16 size)
2025 {
2026         struct adapter *adap = netdev2adap(dev);
2027         u16 hw_pidx, hw_cidx;
2028         int ret;
2029
2030         ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2031         if (ret)
2032                 goto out;
2033
2034         if (pidx != hw_pidx) {
2035                 u16 delta;
2036                 u32 val;
2037
2038                 if (pidx >= hw_pidx)
2039                         delta = pidx - hw_pidx;
2040                 else
2041                         delta = size - hw_pidx + pidx;
2042
2043                 if (is_t4(adap->params.chip))
2044                         val = PIDX_V(delta);
2045                 else
2046                         val = PIDX_T5_V(delta);
2047                 wmb();
2048                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2049                              QID_V(qid) | val);
2050         }
2051 out:
2052         return ret;
2053 }
2054 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2055
2056 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2057 {
2058         struct adapter *adap;
2059         u32 offset, memtype, memaddr;
2060         u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2061         u32 edc0_end, edc1_end, mc0_end, mc1_end;
2062         int ret;
2063
2064         adap = netdev2adap(dev);
2065
2066         offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2067
2068         /* Figure out where the offset lands in the Memory Type/Address scheme.
2069          * This code assumes that the memory is laid out starting at offset 0
2070          * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2071          * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
2072          * MC0, and some have both MC0 and MC1.
2073          */
2074         size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2075         edc0_size = EDRAM0_SIZE_G(size) << 20;
2076         size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2077         edc1_size = EDRAM1_SIZE_G(size) << 20;
2078         size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2079         mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2080
2081         edc0_end = edc0_size;
2082         edc1_end = edc0_end + edc1_size;
2083         mc0_end = edc1_end + mc0_size;
2084
2085         if (offset < edc0_end) {
2086                 memtype = MEM_EDC0;
2087                 memaddr = offset;
2088         } else if (offset < edc1_end) {
2089                 memtype = MEM_EDC1;
2090                 memaddr = offset - edc0_end;
2091         } else {
2092                 if (offset < mc0_end) {
2093                         memtype = MEM_MC0;
2094                         memaddr = offset - edc1_end;
2095                 } else if (is_t5(adap->params.chip)) {
2096                         size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2097                         mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2098                         mc1_end = mc0_end + mc1_size;
2099                         if (offset < mc1_end) {
2100                                 memtype = MEM_MC1;
2101                                 memaddr = offset - mc0_end;
2102                         } else {
2103                                 /* offset beyond the end of any memory */
2104                                 goto err;
2105                         }
2106                 } else {
2107                         /* T4/T6 only has a single memory channel */
2108                         goto err;
2109                 }
2110         }
2111
2112         spin_lock(&adap->win0_lock);
2113         ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2114         spin_unlock(&adap->win0_lock);
2115         return ret;
2116
2117 err:
2118         dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2119                 stag, offset);
2120         return -EINVAL;
2121 }
2122 EXPORT_SYMBOL(cxgb4_read_tpte);
2123
2124 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2125 {
2126         u32 hi, lo;
2127         struct adapter *adap;
2128
2129         adap = netdev2adap(dev);
2130         lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2131         hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2132
2133         return ((u64)hi << 32) | (u64)lo;
2134 }
2135 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2136
2137 int cxgb4_bar2_sge_qregs(struct net_device *dev,
2138                          unsigned int qid,
2139                          enum cxgb4_bar2_qtype qtype,
2140                          int user,
2141                          u64 *pbar2_qoffset,
2142                          unsigned int *pbar2_qid)
2143 {
2144         return t4_bar2_sge_qregs(netdev2adap(dev),
2145                                  qid,
2146                                  (qtype == CXGB4_BAR2_QTYPE_EGRESS
2147                                   ? T4_BAR2_QTYPE_EGRESS
2148                                   : T4_BAR2_QTYPE_INGRESS),
2149                                  user,
2150                                  pbar2_qoffset,
2151                                  pbar2_qid);
2152 }
2153 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2154
2155 static struct pci_driver cxgb4_driver;
2156
2157 static void check_neigh_update(struct neighbour *neigh)
2158 {
2159         const struct device *parent;
2160         const struct net_device *netdev = neigh->dev;
2161
2162         if (netdev->priv_flags & IFF_802_1Q_VLAN)
2163                 netdev = vlan_dev_real_dev(netdev);
2164         parent = netdev->dev.parent;
2165         if (parent && parent->driver == &cxgb4_driver.driver)
2166                 t4_l2t_update(dev_get_drvdata(parent), neigh);
2167 }
2168
2169 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2170                        void *data)
2171 {
2172         switch (event) {
2173         case NETEVENT_NEIGH_UPDATE:
2174                 check_neigh_update(data);
2175                 break;
2176         case NETEVENT_REDIRECT:
2177         default:
2178                 break;
2179         }
2180         return 0;
2181 }
2182
2183 static bool netevent_registered;
2184 static struct notifier_block cxgb4_netevent_nb = {
2185         .notifier_call = netevent_cb
2186 };
2187
2188 static void drain_db_fifo(struct adapter *adap, int usecs)
2189 {
2190         u32 v1, v2, lp_count, hp_count;
2191
2192         do {
2193                 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2194                 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2195                 if (is_t4(adap->params.chip)) {
2196                         lp_count = LP_COUNT_G(v1);
2197                         hp_count = HP_COUNT_G(v1);
2198                 } else {
2199                         lp_count = LP_COUNT_T5_G(v1);
2200                         hp_count = HP_COUNT_T5_G(v2);
2201                 }
2202
2203                 if (lp_count == 0 && hp_count == 0)
2204                         break;
2205                 set_current_state(TASK_UNINTERRUPTIBLE);
2206                 schedule_timeout(usecs_to_jiffies(usecs));
2207         } while (1);
2208 }
2209
2210 static void disable_txq_db(struct sge_txq *q)
2211 {
2212         unsigned long flags;
2213
2214         spin_lock_irqsave(&q->db_lock, flags);
2215         q->db_disabled = 1;
2216         spin_unlock_irqrestore(&q->db_lock, flags);
2217 }
2218
2219 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2220 {
2221         spin_lock_irq(&q->db_lock);
2222         if (q->db_pidx_inc) {
2223                 /* Make sure that all writes to the TX descriptors
2224                  * are committed before we tell HW about them.
2225                  */
2226                 wmb();
2227                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2228                              QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2229                 q->db_pidx_inc = 0;
2230         }
2231         q->db_disabled = 0;
2232         spin_unlock_irq(&q->db_lock);
2233 }
2234
2235 static void disable_dbs(struct adapter *adap)
2236 {
2237         int i;
2238
2239         for_each_ethrxq(&adap->sge, i)
2240                 disable_txq_db(&adap->sge.ethtxq[i].q);
2241         for_each_iscsirxq(&adap->sge, i)
2242                 disable_txq_db(&adap->sge.ofldtxq[i].q);
2243         for_each_port(adap, i)
2244                 disable_txq_db(&adap->sge.ctrlq[i].q);
2245 }
2246
2247 static void enable_dbs(struct adapter *adap)
2248 {
2249         int i;
2250
2251         for_each_ethrxq(&adap->sge, i)
2252                 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2253         for_each_iscsirxq(&adap->sge, i)
2254                 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
2255         for_each_port(adap, i)
2256                 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2257 }
2258
2259 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2260 {
2261         if (adap->uld_handle[CXGB4_ULD_RDMA])
2262                 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
2263                                 cmd);
2264 }
2265
2266 static void process_db_full(struct work_struct *work)
2267 {
2268         struct adapter *adap;
2269
2270         adap = container_of(work, struct adapter, db_full_task);
2271
2272         drain_db_fifo(adap, dbfifo_drain_delay);
2273         enable_dbs(adap);
2274         notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2275         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2276                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2277                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2278                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2279         else
2280                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2281                                  DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2282 }
2283
2284 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2285 {
2286         u16 hw_pidx, hw_cidx;
2287         int ret;
2288
2289         spin_lock_irq(&q->db_lock);
2290         ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2291         if (ret)
2292                 goto out;
2293         if (q->db_pidx != hw_pidx) {
2294                 u16 delta;
2295                 u32 val;
2296
2297                 if (q->db_pidx >= hw_pidx)
2298                         delta = q->db_pidx - hw_pidx;
2299                 else
2300                         delta = q->size - hw_pidx + q->db_pidx;
2301
2302                 if (is_t4(adap->params.chip))
2303                         val = PIDX_V(delta);
2304                 else
2305                         val = PIDX_T5_V(delta);
2306                 wmb();
2307                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2308                              QID_V(q->cntxt_id) | val);
2309         }
2310 out:
2311         q->db_disabled = 0;
2312         q->db_pidx_inc = 0;
2313         spin_unlock_irq(&q->db_lock);
2314         if (ret)
2315                 CH_WARN(adap, "DB drop recovery failed.\n");
2316 }
2317 static void recover_all_queues(struct adapter *adap)
2318 {
2319         int i;
2320
2321         for_each_ethrxq(&adap->sge, i)
2322                 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2323         for_each_iscsirxq(&adap->sge, i)
2324                 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2325         for_each_port(adap, i)
2326                 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2327 }
2328
2329 static void process_db_drop(struct work_struct *work)
2330 {
2331         struct adapter *adap;
2332
2333         adap = container_of(work, struct adapter, db_drop_task);
2334
2335         if (is_t4(adap->params.chip)) {
2336                 drain_db_fifo(adap, dbfifo_drain_delay);
2337                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2338                 drain_db_fifo(adap, dbfifo_drain_delay);
2339                 recover_all_queues(adap);
2340                 drain_db_fifo(adap, dbfifo_drain_delay);
2341                 enable_dbs(adap);
2342                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2343         } else if (is_t5(adap->params.chip)) {
2344                 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2345                 u16 qid = (dropped_db >> 15) & 0x1ffff;
2346                 u16 pidx_inc = dropped_db & 0x1fff;
2347                 u64 bar2_qoffset;
2348                 unsigned int bar2_qid;
2349                 int ret;
2350
2351                 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2352                                         0, &bar2_qoffset, &bar2_qid);
2353                 if (ret)
2354                         dev_err(adap->pdev_dev, "doorbell drop recovery: "
2355                                 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2356                 else
2357                         writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2358                                adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2359
2360                 /* Re-enable BAR2 WC */
2361                 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2362         }
2363
2364         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2365                 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2366 }
2367
2368 void t4_db_full(struct adapter *adap)
2369 {
2370         if (is_t4(adap->params.chip)) {
2371                 disable_dbs(adap);
2372                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2373                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2374                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2375                 queue_work(adap->workq, &adap->db_full_task);
2376         }
2377 }
2378
2379 void t4_db_dropped(struct adapter *adap)
2380 {
2381         if (is_t4(adap->params.chip)) {
2382                 disable_dbs(adap);
2383                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2384         }
2385         queue_work(adap->workq, &adap->db_drop_task);
2386 }
2387
2388 static void uld_attach(struct adapter *adap, unsigned int uld)
2389 {
2390         void *handle;
2391         struct cxgb4_lld_info lli;
2392         unsigned short i;
2393
2394         lli.pdev = adap->pdev;
2395         lli.pf = adap->pf;
2396         lli.l2t = adap->l2t;
2397         lli.tids = &adap->tids;
2398         lli.ports = adap->port;
2399         lli.vr = &adap->vres;
2400         lli.mtus = adap->params.mtus;
2401         if (uld == CXGB4_ULD_RDMA) {
2402                 lli.rxq_ids = adap->sge.rdma_rxq;
2403                 lli.ciq_ids = adap->sge.rdma_ciq;
2404                 lli.nrxq = adap->sge.rdmaqs;
2405                 lli.nciq = adap->sge.rdmaciqs;
2406         } else if (uld == CXGB4_ULD_ISCSI) {
2407                 lli.rxq_ids = adap->sge.iscsi_rxq;
2408                 lli.nrxq = adap->sge.iscsiqsets;
2409         }
2410         lli.ntxq = adap->sge.iscsiqsets;
2411         lli.nchan = adap->params.nports;
2412         lli.nports = adap->params.nports;
2413         lli.wr_cred = adap->params.ofldq_wr_cred;
2414         lli.adapter_type = adap->params.chip;
2415         lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A));
2416         lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
2417         lli.udb_density = 1 << adap->params.sge.eq_qpp;
2418         lli.ucq_density = 1 << adap->params.sge.iq_qpp;
2419         lli.filt_mode = adap->params.tp.vlan_pri_map;
2420         /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
2421         for (i = 0; i < NCHAN; i++)
2422                 lli.tx_modq[i] = i;
2423         lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A);
2424         lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A);
2425         lli.fw_vers = adap->params.fw_vers;
2426         lli.dbfifo_int_thresh = dbfifo_int_thresh;
2427         lli.sge_ingpadboundary = adap->sge.fl_align;
2428         lli.sge_egrstatuspagesize = adap->sge.stat_len;
2429         lli.sge_pktshift = adap->sge.pktshift;
2430         lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
2431         lli.max_ordird_qp = adap->params.max_ordird_qp;
2432         lli.max_ird_adapter = adap->params.max_ird_adapter;
2433         lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
2434         lli.nodeid = dev_to_node(adap->pdev_dev);
2435
2436         handle = ulds[uld].add(&lli);
2437         if (IS_ERR(handle)) {
2438                 dev_warn(adap->pdev_dev,
2439                          "could not attach to the %s driver, error %ld\n",
2440                          uld_str[uld], PTR_ERR(handle));
2441                 return;
2442         }
2443
2444         adap->uld_handle[uld] = handle;
2445
2446         if (!netevent_registered) {
2447                 register_netevent_notifier(&cxgb4_netevent_nb);
2448                 netevent_registered = true;
2449         }
2450
2451         if (adap->flags & FULL_INIT_DONE)
2452                 ulds[uld].state_change(handle, CXGB4_STATE_UP);
2453 }
2454
2455 static void attach_ulds(struct adapter *adap)
2456 {
2457         unsigned int i;
2458
2459         spin_lock(&adap_rcu_lock);
2460         list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
2461         spin_unlock(&adap_rcu_lock);
2462
2463         mutex_lock(&uld_mutex);
2464         list_add_tail(&adap->list_node, &adapter_list);
2465         for (i = 0; i < CXGB4_ULD_MAX; i++)
2466                 if (ulds[i].add)
2467                         uld_attach(adap, i);
2468         mutex_unlock(&uld_mutex);
2469 }
2470
2471 static void detach_ulds(struct adapter *adap)
2472 {
2473         unsigned int i;
2474
2475         mutex_lock(&uld_mutex);
2476         list_del(&adap->list_node);
2477         for (i = 0; i < CXGB4_ULD_MAX; i++)
2478                 if (adap->uld_handle[i]) {
2479                         ulds[i].state_change(adap->uld_handle[i],
2480                                              CXGB4_STATE_DETACH);
2481                         adap->uld_handle[i] = NULL;
2482                 }
2483         if (netevent_registered && list_empty(&adapter_list)) {
2484                 unregister_netevent_notifier(&cxgb4_netevent_nb);
2485                 netevent_registered = false;
2486         }
2487         mutex_unlock(&uld_mutex);
2488
2489         spin_lock(&adap_rcu_lock);
2490         list_del_rcu(&adap->rcu_node);
2491         spin_unlock(&adap_rcu_lock);
2492 }
2493
2494 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2495 {
2496         unsigned int i;
2497
2498         mutex_lock(&uld_mutex);
2499         for (i = 0; i < CXGB4_ULD_MAX; i++)
2500                 if (adap->uld_handle[i])
2501                         ulds[i].state_change(adap->uld_handle[i], new_state);
2502         mutex_unlock(&uld_mutex);
2503 }
2504
2505 /**
2506  *      cxgb4_register_uld - register an upper-layer driver
2507  *      @type: the ULD type
2508  *      @p: the ULD methods
2509  *
2510  *      Registers an upper-layer driver with this driver and notifies the ULD
2511  *      about any presently available devices that support its type.  Returns
2512  *      %-EBUSY if a ULD of the same type is already registered.
2513  */
2514 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2515 {
2516         int ret = 0;
2517         struct adapter *adap;
2518
2519         if (type >= CXGB4_ULD_MAX)
2520                 return -EINVAL;
2521         mutex_lock(&uld_mutex);
2522         if (ulds[type].add) {
2523                 ret = -EBUSY;
2524                 goto out;
2525         }
2526         ulds[type] = *p;
2527         list_for_each_entry(adap, &adapter_list, list_node)
2528                 uld_attach(adap, type);
2529 out:    mutex_unlock(&uld_mutex);
2530         return ret;
2531 }
2532 EXPORT_SYMBOL(cxgb4_register_uld);
2533
2534 /**
2535  *      cxgb4_unregister_uld - unregister an upper-layer driver
2536  *      @type: the ULD type
2537  *
2538  *      Unregisters an existing upper-layer driver.
2539  */
2540 int cxgb4_unregister_uld(enum cxgb4_uld type)
2541 {
2542         struct adapter *adap;
2543
2544         if (type >= CXGB4_ULD_MAX)
2545                 return -EINVAL;
2546         mutex_lock(&uld_mutex);
2547         list_for_each_entry(adap, &adapter_list, list_node)
2548                 adap->uld_handle[type] = NULL;
2549         ulds[type].add = NULL;
2550         mutex_unlock(&uld_mutex);
2551         return 0;
2552 }
2553 EXPORT_SYMBOL(cxgb4_unregister_uld);
2554
2555 #if IS_ENABLED(CONFIG_IPV6)
2556 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2557                                    unsigned long event, void *data)
2558 {
2559         struct inet6_ifaddr *ifa = data;
2560         struct net_device *event_dev = ifa->idev->dev;
2561         const struct device *parent = NULL;
2562 #if IS_ENABLED(CONFIG_BONDING)
2563         struct adapter *adap;
2564 #endif
2565         if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2566                 event_dev = vlan_dev_real_dev(event_dev);
2567 #if IS_ENABLED(CONFIG_BONDING)
2568         if (event_dev->flags & IFF_MASTER) {
2569                 list_for_each_entry(adap, &adapter_list, list_node) {
2570                         switch (event) {
2571                         case NETDEV_UP:
2572                                 cxgb4_clip_get(adap->port[0],
2573                                                (const u32 *)ifa, 1);
2574                                 break;
2575                         case NETDEV_DOWN:
2576                                 cxgb4_clip_release(adap->port[0],
2577                                                    (const u32 *)ifa, 1);
2578                                 break;
2579                         default:
2580                                 break;
2581                         }
2582                 }
2583                 return NOTIFY_OK;
2584         }
2585 #endif
2586
2587         if (event_dev)
2588                 parent = event_dev->dev.parent;
2589
2590         if (parent && parent->driver == &cxgb4_driver.driver) {
2591                 switch (event) {
2592                 case NETDEV_UP:
2593                         cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2594                         break;
2595                 case NETDEV_DOWN:
2596                         cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2597                         break;
2598                 default:
2599                         break;
2600                 }
2601         }
2602         return NOTIFY_OK;
2603 }
2604
2605 static bool inet6addr_registered;
2606 static struct notifier_block cxgb4_inet6addr_notifier = {
2607         .notifier_call = cxgb4_inet6addr_handler
2608 };
2609
2610 static void update_clip(const struct adapter *adap)
2611 {
2612         int i;
2613         struct net_device *dev;
2614         int ret;
2615
2616         rcu_read_lock();
2617
2618         for (i = 0; i < MAX_NPORTS; i++) {
2619                 dev = adap->port[i];
2620                 ret = 0;
2621
2622                 if (dev)
2623                         ret = cxgb4_update_root_dev_clip(dev);
2624
2625                 if (ret < 0)
2626                         break;
2627         }
2628         rcu_read_unlock();
2629 }
2630 #endif /* IS_ENABLED(CONFIG_IPV6) */
2631
2632 /**
2633  *      cxgb_up - enable the adapter
2634  *      @adap: adapter being enabled
2635  *
2636  *      Called when the first port is enabled, this function performs the
2637  *      actions necessary to make an adapter operational, such as completing
2638  *      the initialization of HW modules, and enabling interrupts.
2639  *
2640  *      Must be called with the rtnl lock held.
2641  */
2642 static int cxgb_up(struct adapter *adap)
2643 {
2644         int err;
2645
2646         err = setup_sge_queues(adap);
2647         if (err)
2648                 goto out;
2649         err = setup_rss(adap);
2650         if (err)
2651                 goto freeq;
2652
2653         if (adap->flags & USING_MSIX) {
2654                 name_msix_vecs(adap);
2655                 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2656                                   adap->msix_info[0].desc, adap);
2657                 if (err)
2658                         goto irq_err;
2659
2660                 err = request_msix_queue_irqs(adap);
2661                 if (err) {
2662                         free_irq(adap->msix_info[0].vec, adap);
2663                         goto irq_err;
2664                 }
2665         } else {
2666                 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2667                                   (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2668                                   adap->port[0]->name, adap);
2669                 if (err)
2670                         goto irq_err;
2671         }
2672         enable_rx(adap);
2673         t4_sge_start(adap);
2674         t4_intr_enable(adap);
2675         adap->flags |= FULL_INIT_DONE;
2676         notify_ulds(adap, CXGB4_STATE_UP);
2677 #if IS_ENABLED(CONFIG_IPV6)
2678         update_clip(adap);
2679 #endif
2680  out:
2681         return err;
2682  irq_err:
2683         dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2684  freeq:
2685         t4_free_sge_resources(adap);
2686         goto out;
2687 }
2688
2689 static void cxgb_down(struct adapter *adapter)
2690 {
2691         cancel_work_sync(&adapter->tid_release_task);
2692         cancel_work_sync(&adapter->db_full_task);
2693         cancel_work_sync(&adapter->db_drop_task);
2694         adapter->tid_release_task_busy = false;
2695         adapter->tid_release_head = NULL;
2696
2697         t4_sge_stop(adapter);
2698         t4_free_sge_resources(adapter);
2699         adapter->flags &= ~FULL_INIT_DONE;
2700 }
2701
2702 /*
2703  * net_device operations
2704  */
2705 static int cxgb_open(struct net_device *dev)
2706 {
2707         int err;
2708         struct port_info *pi = netdev_priv(dev);
2709         struct adapter *adapter = pi->adapter;
2710
2711         netif_carrier_off(dev);
2712
2713         if (!(adapter->flags & FULL_INIT_DONE)) {
2714                 err = cxgb_up(adapter);
2715                 if (err < 0)
2716                         return err;
2717         }
2718
2719         err = link_start(dev);
2720         if (!err)
2721                 netif_tx_start_all_queues(dev);
2722         return err;
2723 }
2724
2725 static int cxgb_close(struct net_device *dev)
2726 {
2727         struct port_info *pi = netdev_priv(dev);
2728         struct adapter *adapter = pi->adapter;
2729
2730         netif_tx_stop_all_queues(dev);
2731         netif_carrier_off(dev);
2732         return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2733 }
2734
2735 /* Return an error number if the indicated filter isn't writable ...
2736  */
2737 static int writable_filter(struct filter_entry *f)
2738 {
2739         if (f->locked)
2740                 return -EPERM;
2741         if (f->pending)
2742                 return -EBUSY;
2743
2744         return 0;
2745 }
2746
2747 /* Delete the filter at the specified index (if valid).  The checks for all
2748  * the common problems with doing this like the filter being locked, currently
2749  * pending in another operation, etc.
2750  */
2751 static int delete_filter(struct adapter *adapter, unsigned int fidx)
2752 {
2753         struct filter_entry *f;
2754         int ret;
2755
2756         if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
2757                 return -EINVAL;
2758
2759         f = &adapter->tids.ftid_tab[fidx];
2760         ret = writable_filter(f);
2761         if (ret)
2762                 return ret;
2763         if (f->valid)
2764                 return del_filter_wr(adapter, fidx);
2765
2766         return 0;
2767 }
2768
2769 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2770                 __be32 sip, __be16 sport, __be16 vlan,
2771                 unsigned int queue, unsigned char port, unsigned char mask)
2772 {
2773         int ret;
2774         struct filter_entry *f;
2775         struct adapter *adap;
2776         int i;
2777         u8 *val;
2778
2779         adap = netdev2adap(dev);
2780
2781         /* Adjust stid to correct filter index */
2782         stid -= adap->tids.sftid_base;
2783         stid += adap->tids.nftids;
2784
2785         /* Check to make sure the filter requested is writable ...
2786          */
2787         f = &adap->tids.ftid_tab[stid];
2788         ret = writable_filter(f);
2789         if (ret)
2790                 return ret;
2791
2792         /* Clear out any old resources being used by the filter before
2793          * we start constructing the new filter.
2794          */
2795         if (f->valid)
2796                 clear_filter(adap, f);
2797
2798         /* Clear out filter specifications */
2799         memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2800         f->fs.val.lport = cpu_to_be16(sport);
2801         f->fs.mask.lport  = ~0;
2802         val = (u8 *)&sip;
2803         if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2804                 for (i = 0; i < 4; i++) {
2805                         f->fs.val.lip[i] = val[i];
2806                         f->fs.mask.lip[i] = ~0;
2807                 }
2808                 if (adap->params.tp.vlan_pri_map & PORT_F) {
2809                         f->fs.val.iport = port;
2810                         f->fs.mask.iport = mask;
2811                 }
2812         }
2813
2814         if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2815                 f->fs.val.proto = IPPROTO_TCP;
2816                 f->fs.mask.proto = ~0;
2817         }
2818
2819         f->fs.dirsteer = 1;
2820         f->fs.iq = queue;
2821         /* Mark filter as locked */
2822         f->locked = 1;
2823         f->fs.rpttid = 1;
2824
2825         ret = set_filter_wr(adap, stid);
2826         if (ret) {
2827                 clear_filter(adap, f);
2828                 return ret;
2829         }
2830
2831         return 0;
2832 }
2833 EXPORT_SYMBOL(cxgb4_create_server_filter);
2834
2835 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2836                 unsigned int queue, bool ipv6)
2837 {
2838         int ret;
2839         struct filter_entry *f;
2840         struct adapter *adap;
2841
2842         adap = netdev2adap(dev);
2843
2844         /* Adjust stid to correct filter index */
2845         stid -= adap->tids.sftid_base;
2846         stid += adap->tids.nftids;
2847
2848         f = &adap->tids.ftid_tab[stid];
2849         /* Unlock the filter */
2850         f->locked = 0;
2851
2852         ret = delete_filter(adap, stid);
2853         if (ret)
2854                 return ret;
2855
2856         return 0;
2857 }
2858 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2859
2860 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2861                                                 struct rtnl_link_stats64 *ns)
2862 {
2863         struct port_stats stats;
2864         struct port_info *p = netdev_priv(dev);
2865         struct adapter *adapter = p->adapter;
2866
2867         /* Block retrieving statistics during EEH error
2868          * recovery. Otherwise, the recovery might fail
2869          * and the PCI device will be removed permanently
2870          */
2871         spin_lock(&adapter->stats_lock);
2872         if (!netif_device_present(dev)) {
2873                 spin_unlock(&adapter->stats_lock);
2874                 return ns;
2875         }
2876         t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2877                                  &p->stats_base);
2878         spin_unlock(&adapter->stats_lock);
2879
2880         ns->tx_bytes   = stats.tx_octets;
2881         ns->tx_packets = stats.tx_frames;
2882         ns->rx_bytes   = stats.rx_octets;
2883         ns->rx_packets = stats.rx_frames;
2884         ns->multicast  = stats.rx_mcast_frames;
2885
2886         /* detailed rx_errors */
2887         ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2888                                stats.rx_runt;
2889         ns->rx_over_errors   = 0;
2890         ns->rx_crc_errors    = stats.rx_fcs_err;
2891         ns->rx_frame_errors  = stats.rx_symbol_err;
2892         ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
2893                                stats.rx_ovflow2 + stats.rx_ovflow3 +
2894                                stats.rx_trunc0 + stats.rx_trunc1 +
2895                                stats.rx_trunc2 + stats.rx_trunc3;
2896         ns->rx_missed_errors = 0;
2897
2898         /* detailed tx_errors */
2899         ns->tx_aborted_errors   = 0;
2900         ns->tx_carrier_errors   = 0;
2901         ns->tx_fifo_errors      = 0;
2902         ns->tx_heartbeat_errors = 0;
2903         ns->tx_window_errors    = 0;
2904
2905         ns->tx_errors = stats.tx_error_frames;
2906         ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2907                 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2908         return ns;
2909 }
2910
2911 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2912 {
2913         unsigned int mbox;
2914         int ret = 0, prtad, devad;
2915         struct port_info *pi = netdev_priv(dev);
2916         struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2917
2918         switch (cmd) {
2919         case SIOCGMIIPHY:
2920                 if (pi->mdio_addr < 0)
2921                         return -EOPNOTSUPP;
2922                 data->phy_id = pi->mdio_addr;
2923                 break;
2924         case SIOCGMIIREG:
2925         case SIOCSMIIREG:
2926                 if (mdio_phy_id_is_c45(data->phy_id)) {
2927                         prtad = mdio_phy_id_prtad(data->phy_id);
2928                         devad = mdio_phy_id_devad(data->phy_id);
2929                 } else if (data->phy_id < 32) {
2930                         prtad = data->phy_id;
2931                         devad = 0;
2932                         data->reg_num &= 0x1f;
2933                 } else
2934                         return -EINVAL;
2935
2936                 mbox = pi->adapter->pf;
2937                 if (cmd == SIOCGMIIREG)
2938                         ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2939                                          data->reg_num, &data->val_out);
2940                 else
2941                         ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2942                                          data->reg_num, data->val_in);
2943                 break;
2944         case SIOCGHWTSTAMP:
2945                 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2946                                     sizeof(pi->tstamp_config)) ?
2947                         -EFAULT : 0;
2948         case SIOCSHWTSTAMP:
2949                 if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2950                                    sizeof(pi->tstamp_config)))
2951                         return -EFAULT;
2952
2953                 switch (pi->tstamp_config.rx_filter) {
2954                 case HWTSTAMP_FILTER_NONE:
2955                         pi->rxtstamp = false;
2956                         break;
2957                 case HWTSTAMP_FILTER_ALL:
2958                         pi->rxtstamp = true;
2959                         break;
2960                 default:
2961                         pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
2962                         return -ERANGE;
2963                 }
2964
2965                 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2966                                     sizeof(pi->tstamp_config)) ?
2967                         -EFAULT : 0;
2968         default:
2969                 return -EOPNOTSUPP;
2970         }
2971         return ret;
2972 }
2973
2974 static void cxgb_set_rxmode(struct net_device *dev)
2975 {
2976         /* unfortunately we can't return errors to the stack */
2977         set_rxmode(dev, -1, false);
2978 }
2979
2980 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2981 {
2982         int ret;
2983         struct port_info *pi = netdev_priv(dev);
2984
2985         if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
2986                 return -EINVAL;
2987         ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2988                             -1, -1, -1, true);
2989         if (!ret)
2990                 dev->mtu = new_mtu;
2991         return ret;
2992 }
2993
2994 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2995 {
2996         int ret;
2997         struct sockaddr *addr = p;
2998         struct port_info *pi = netdev_priv(dev);
2999
3000         if (!is_valid_ether_addr(addr->sa_data))
3001                 return -EADDRNOTAVAIL;
3002
3003         ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
3004                             pi->xact_addr_filt, addr->sa_data, true, true);
3005         if (ret < 0)
3006                 return ret;
3007
3008         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3009         pi->xact_addr_filt = ret;
3010         return 0;
3011 }
3012
3013 #ifdef CONFIG_NET_POLL_CONTROLLER
3014 static void cxgb_netpoll(struct net_device *dev)
3015 {
3016         struct port_info *pi = netdev_priv(dev);
3017         struct adapter *adap = pi->adapter;
3018
3019         if (adap->flags & USING_MSIX) {
3020                 int i;
3021                 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3022
3023                 for (i = pi->nqsets; i; i--, rx++)
3024                         t4_sge_intr_msix(0, &rx->rspq);
3025         } else
3026                 t4_intr_handler(adap)(0, adap);
3027 }
3028 #endif
3029
3030 static const struct net_device_ops cxgb4_netdev_ops = {
3031         .ndo_open             = cxgb_open,
3032         .ndo_stop             = cxgb_close,
3033         .ndo_start_xmit       = t4_eth_xmit,
3034         .ndo_select_queue     = cxgb_select_queue,
3035         .ndo_get_stats64      = cxgb_get_stats,
3036         .ndo_set_rx_mode      = cxgb_set_rxmode,
3037         .ndo_set_mac_address  = cxgb_set_mac_addr,
3038         .ndo_set_features     = cxgb_set_features,
3039         .ndo_validate_addr    = eth_validate_addr,
3040         .ndo_do_ioctl         = cxgb_ioctl,
3041         .ndo_change_mtu       = cxgb_change_mtu,
3042 #ifdef CONFIG_NET_POLL_CONTROLLER
3043         .ndo_poll_controller  = cxgb_netpoll,
3044 #endif
3045 #ifdef CONFIG_CHELSIO_T4_FCOE
3046         .ndo_fcoe_enable      = cxgb_fcoe_enable,
3047         .ndo_fcoe_disable     = cxgb_fcoe_disable,
3048 #endif /* CONFIG_CHELSIO_T4_FCOE */
3049 #ifdef CONFIG_NET_RX_BUSY_POLL
3050         .ndo_busy_poll        = cxgb_busy_poll,
3051 #endif
3052
3053 };
3054
3055 void t4_fatal_err(struct adapter *adap)
3056 {
3057         t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
3058         t4_intr_disable(adap);
3059         dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3060 }
3061
3062 static void setup_memwin(struct adapter *adap)
3063 {
3064         u32 nic_win_base = t4_get_util_window(adap);
3065
3066         t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3067 }
3068
3069 static void setup_memwin_rdma(struct adapter *adap)
3070 {
3071         if (adap->vres.ocq.size) {
3072                 u32 start;
3073                 unsigned int sz_kb;
3074
3075                 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3076                 start &= PCI_BASE_ADDRESS_MEM_MASK;
3077                 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3078                 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3079                 t4_write_reg(adap,
3080                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3081                              start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3082                 t4_write_reg(adap,
3083                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3084                              adap->vres.ocq.start);
3085                 t4_read_reg(adap,
3086                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3087         }
3088 }
3089
3090 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3091 {
3092         u32 v;
3093         int ret;
3094
3095         /* get device capabilities */
3096         memset(c, 0, sizeof(*c));
3097         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3098                                FW_CMD_REQUEST_F | FW_CMD_READ_F);
3099         c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3100         ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3101         if (ret < 0)
3102                 return ret;
3103
3104         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3105                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3106         ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3107         if (ret < 0)
3108                 return ret;
3109
3110         ret = t4_config_glbl_rss(adap, adap->pf,
3111                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3112                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3113                                  FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3114         if (ret < 0)
3115                 return ret;
3116
3117         ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3118                           MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3119                           FW_CMD_CAP_PF);
3120         if (ret < 0)
3121                 return ret;
3122
3123         t4_sge_init(adap);
3124
3125         /* tweak some settings */
3126         t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3127         t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3128         t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3129         v = t4_read_reg(adap, TP_PIO_DATA_A);
3130         t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3131
3132         /* first 4 Tx modulation queues point to consecutive Tx channels */
3133         adap->params.tp.tx_modq_map = 0xE4;
3134         t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3135                      TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3136
3137         /* associate each Tx modulation queue with consecutive Tx channels */
3138         v = 0x84218421;
3139         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3140                           &v, 1, TP_TX_SCHED_HDR_A);
3141         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3142                           &v, 1, TP_TX_SCHED_FIFO_A);
3143         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3144                           &v, 1, TP_TX_SCHED_PCMD_A);
3145
3146 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3147         if (is_offload(adap)) {
3148                 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3149                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3150                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3151                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3152                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3153                 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3154                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3155                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3156                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3157                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3158         }
3159
3160         /* get basic stuff going */
3161         return t4_early_init(adap, adap->pf);
3162 }
3163
3164 /*
3165  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3166  */
3167 #define MAX_ATIDS 8192U
3168
3169 /*
3170  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3171  *
3172  * If the firmware we're dealing with has Configuration File support, then
3173  * we use that to perform all configuration
3174  */
3175
3176 /*
3177  * Tweak configuration based on module parameters, etc.  Most of these have
3178  * defaults assigned to them by Firmware Configuration Files (if we're using
3179  * them) but need to be explicitly set if we're using hard-coded
3180  * initialization.  But even in the case of using Firmware Configuration
3181  * Files, we'd like to expose the ability to change these via module
3182  * parameters so these are essentially common tweaks/settings for
3183  * Configuration Files and hard-coded initialization ...
3184  */
3185 static int adap_init0_tweaks(struct adapter *adapter)
3186 {
3187         /*
3188          * Fix up various Host-Dependent Parameters like Page Size, Cache
3189          * Line Size, etc.  The firmware default is for a 4KB Page Size and
3190          * 64B Cache Line Size ...
3191          */
3192         t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3193
3194         /*
3195          * Process module parameters which affect early initialization.
3196          */
3197         if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3198                 dev_err(&adapter->pdev->dev,
3199                         "Ignoring illegal rx_dma_offset=%d, using 2\n",
3200                         rx_dma_offset);
3201                 rx_dma_offset = 2;
3202         }
3203         t4_set_reg_field(adapter, SGE_CONTROL_A,
3204                          PKTSHIFT_V(PKTSHIFT_M),
3205                          PKTSHIFT_V(rx_dma_offset));
3206
3207         /*
3208          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3209          * adds the pseudo header itself.
3210          */
3211         t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3212                                CSUM_HAS_PSEUDO_HDR_F, 0);
3213
3214         return 0;
3215 }
3216
3217 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3218  * unto themselves and they contain their own firmware to perform their
3219  * tasks ...
3220  */
3221 static int phy_aq1202_version(const u8 *phy_fw_data,
3222                               size_t phy_fw_size)
3223 {
3224         int offset;
3225
3226         /* At offset 0x8 you're looking for the primary image's
3227          * starting offset which is 3 Bytes wide
3228          *
3229          * At offset 0xa of the primary image, you look for the offset
3230          * of the DRAM segment which is 3 Bytes wide.
3231          *
3232          * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3233          * wide
3234          */
3235         #define be16(__p) (((__p)[0] << 8) | (__p)[1])
3236         #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3237         #define le24(__p) (le16(__p) | ((__p)[2] << 16))
3238
3239         offset = le24(phy_fw_data + 0x8) << 12;
3240         offset = le24(phy_fw_data + offset + 0xa);
3241         return be16(phy_fw_data + offset + 0x27e);
3242
3243         #undef be16
3244         #undef le16
3245         #undef le24
3246 }
3247
3248 static struct info_10gbt_phy_fw {
3249         unsigned int phy_fw_id;         /* PCI Device ID */
3250         char *phy_fw_file;              /* /lib/firmware/ PHY Firmware file */
3251         int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3252         int phy_flash;                  /* Has FLASH for PHY Firmware */
3253 } phy_info_array[] = {
3254         {
3255                 PHY_AQ1202_DEVICEID,
3256                 PHY_AQ1202_FIRMWARE,
3257                 phy_aq1202_version,
3258                 1,
3259         },
3260         {
3261                 PHY_BCM84834_DEVICEID,
3262                 PHY_BCM84834_FIRMWARE,
3263                 NULL,
3264                 0,
3265         },
3266         { 0, NULL, NULL },
3267 };
3268
3269 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3270 {
3271         int i;
3272
3273         for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3274                 if (phy_info_array[i].phy_fw_id == devid)
3275                         return &phy_info_array[i];
3276         }
3277         return NULL;
3278 }
3279
3280 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3281  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3282  * we return a negative error number.  If we transfer new firmware we return 1
3283  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3284  */
3285 static int adap_init0_phy(struct adapter *adap)
3286 {
3287         const struct firmware *phyf;
3288         int ret;
3289         struct info_10gbt_phy_fw *phy_info;
3290
3291         /* Use the device ID to determine which PHY file to flash.
3292          */
3293         phy_info = find_phy_info(adap->pdev->device);
3294         if (!phy_info) {
3295                 dev_warn(adap->pdev_dev,
3296                          "No PHY Firmware file found for this PHY\n");
3297                 return -EOPNOTSUPP;
3298         }
3299
3300         /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3301          * use that. The adapter firmware provides us with a memory buffer
3302          * where we can load a PHY firmware file from the host if we want to
3303          * override the PHY firmware File in flash.
3304          */
3305         ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3306                                       adap->pdev_dev);
3307         if (ret < 0) {
3308                 /* For adapters without FLASH attached to PHY for their
3309                  * firmware, it's obviously a fatal error if we can't get the
3310                  * firmware to the adapter.  For adapters with PHY firmware
3311                  * FLASH storage, it's worth a warning if we can't find the
3312                  * PHY Firmware but we'll neuter the error ...
3313                  */
3314                 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3315                         "/lib/firmware/%s, error %d\n",
3316                         phy_info->phy_fw_file, -ret);
3317                 if (phy_info->phy_flash) {
3318                         int cur_phy_fw_ver = 0;
3319
3320                         t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3321                         dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3322                                  "FLASH copy, version %#x\n", cur_phy_fw_ver);
3323                         ret = 0;
3324                 }
3325
3326                 return ret;
3327         }
3328
3329         /* Load PHY Firmware onto adapter.
3330          */
3331         ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3332                              phy_info->phy_fw_version,
3333                              (u8 *)phyf->data, phyf->size);
3334         if (ret < 0)
3335                 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3336                         -ret);
3337         else if (ret > 0) {
3338                 int new_phy_fw_ver = 0;
3339
3340                 if (phy_info->phy_fw_version)
3341                         new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3342                                                                   phyf->size);
3343                 dev_info(adap->pdev_dev, "Successfully transferred PHY "
3344                          "Firmware /lib/firmware/%s, version %#x\n",
3345                          phy_info->phy_fw_file, new_phy_fw_ver);
3346         }
3347
3348         release_firmware(phyf);
3349
3350         return ret;
3351 }
3352
3353 /*
3354  * Attempt to initialize the adapter via a Firmware Configuration File.
3355  */
3356 static int adap_init0_config(struct adapter *adapter, int reset)
3357 {
3358         struct fw_caps_config_cmd caps_cmd;
3359         const struct firmware *cf;
3360         unsigned long mtype = 0, maddr = 0;
3361         u32 finiver, finicsum, cfcsum;
3362         int ret;
3363         int config_issued = 0;
3364         char *fw_config_file, fw_config_file_path[256];
3365         char *config_name = NULL;
3366
3367         /*
3368          * Reset device if necessary.
3369          */
3370         if (reset) {
3371                 ret = t4_fw_reset(adapter, adapter->mbox,
3372                                   PIORSTMODE_F | PIORST_F);
3373                 if (ret < 0)
3374                         goto bye;
3375         }
3376
3377         /* If this is a 10Gb/s-BT adapter make sure the chip-external
3378          * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
3379          * to be performed after any global adapter RESET above since some
3380          * PHYs only have local RAM copies of the PHY firmware.
3381          */
3382         if (is_10gbt_device(adapter->pdev->device)) {
3383                 ret = adap_init0_phy(adapter);
3384                 if (ret < 0)
3385                         goto bye;
3386         }
3387         /*
3388          * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3389          * then use that.  Otherwise, use the configuration file stored
3390          * in the adapter flash ...
3391          */
3392         switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3393         case CHELSIO_T4:
3394                 fw_config_file = FW4_CFNAME;
3395                 break;
3396         case CHELSIO_T5:
3397                 fw_config_file = FW5_CFNAME;
3398                 break;
3399         case CHELSIO_T6:
3400                 fw_config_file = FW6_CFNAME;
3401                 break;
3402         default:
3403                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3404                        adapter->pdev->device);
3405                 ret = -EINVAL;
3406                 goto bye;
3407         }
3408
3409         ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3410         if (ret < 0) {
3411                 config_name = "On FLASH";
3412                 mtype = FW_MEMTYPE_CF_FLASH;
3413                 maddr = t4_flash_cfg_addr(adapter);
3414         } else {
3415                 u32 params[7], val[7];
3416
3417                 sprintf(fw_config_file_path,
3418                         "/lib/firmware/%s", fw_config_file);
3419                 config_name = fw_config_file_path;
3420
3421                 if (cf->size >= FLASH_CFG_MAX_SIZE)
3422                         ret = -ENOMEM;
3423                 else {
3424                         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3425                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3426                         ret = t4_query_params(adapter, adapter->mbox,
3427                                               adapter->pf, 0, 1, params, val);
3428                         if (ret == 0) {
3429                                 /*
3430                                  * For t4_memory_rw() below addresses and
3431                                  * sizes have to be in terms of multiples of 4
3432                                  * bytes.  So, if the Configuration File isn't
3433                                  * a multiple of 4 bytes in length we'll have
3434                                  * to write that out separately since we can't
3435                                  * guarantee that the bytes following the
3436                                  * residual byte in the buffer returned by
3437                                  * request_firmware() are zeroed out ...
3438                                  */
3439                                 size_t resid = cf->size & 0x3;
3440                                 size_t size = cf->size & ~0x3;
3441                                 __be32 *data = (__be32 *)cf->data;
3442
3443                                 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3444                                 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3445
3446                                 spin_lock(&adapter->win0_lock);
3447                                 ret = t4_memory_rw(adapter, 0, mtype, maddr,
3448                                                    size, data, T4_MEMORY_WRITE);
3449                                 if (ret == 0 && resid != 0) {
3450                                         union {
3451                                                 __be32 word;
3452                                                 char buf[4];
3453                                         } last;
3454                                         int i;
3455
3456                                         last.word = data[size >> 2];
3457                                         for (i = resid; i < 4; i++)
3458                                                 last.buf[i] = 0;
3459                                         ret = t4_memory_rw(adapter, 0, mtype,
3460                                                            maddr + size,
3461                                                            4, &last.word,
3462                                                            T4_MEMORY_WRITE);
3463                                 }
3464                                 spin_unlock(&adapter->win0_lock);
3465                         }
3466                 }
3467
3468                 release_firmware(cf);
3469                 if (ret)
3470                         goto bye;
3471         }
3472
3473         /*
3474          * Issue a Capability Configuration command to the firmware to get it
3475          * to parse the Configuration File.  We don't use t4_fw_config_file()
3476          * because we want the ability to modify various features after we've
3477          * processed the configuration file ...
3478          */
3479         memset(&caps_cmd, 0, sizeof(caps_cmd));
3480         caps_cmd.op_to_write =
3481                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3482                       FW_CMD_REQUEST_F |
3483                       FW_CMD_READ_F);
3484         caps_cmd.cfvalid_to_len16 =
3485                 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3486                       FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3487                       FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3488                       FW_LEN16(caps_cmd));
3489         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3490                          &caps_cmd);
3491
3492         /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3493          * Configuration File in FLASH), our last gasp effort is to use the
3494          * Firmware Configuration File which is embedded in the firmware.  A
3495          * very few early versions of the firmware didn't have one embedded
3496          * but we can ignore those.
3497          */
3498         if (ret == -ENOENT) {
3499                 memset(&caps_cmd, 0, sizeof(caps_cmd));
3500                 caps_cmd.op_to_write =
3501                         htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3502                                         FW_CMD_REQUEST_F |
3503                                         FW_CMD_READ_F);
3504                 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3505                 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3506                                 sizeof(caps_cmd), &caps_cmd);
3507                 config_name = "Firmware Default";
3508         }
3509
3510         config_issued = 1;
3511         if (ret < 0)
3512                 goto bye;
3513
3514         finiver = ntohl(caps_cmd.finiver);
3515         finicsum = ntohl(caps_cmd.finicsum);
3516         cfcsum = ntohl(caps_cmd.cfcsum);
3517         if (finicsum != cfcsum)
3518                 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3519                          "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3520                          finicsum, cfcsum);
3521
3522         /*
3523          * And now tell the firmware to use the configuration we just loaded.
3524          */
3525         caps_cmd.op_to_write =
3526                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3527                       FW_CMD_REQUEST_F |
3528                       FW_CMD_WRITE_F);
3529         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3530         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3531                          NULL);
3532         if (ret < 0)
3533                 goto bye;
3534
3535         /*
3536          * Tweak configuration based on system architecture, module
3537          * parameters, etc.
3538          */
3539         ret = adap_init0_tweaks(adapter);
3540         if (ret < 0)
3541                 goto bye;
3542
3543         /*
3544          * And finally tell the firmware to initialize itself using the
3545          * parameters from the Configuration File.
3546          */
3547         ret = t4_fw_initialize(adapter, adapter->mbox);
3548         if (ret < 0)
3549                 goto bye;
3550
3551         /* Emit Firmware Configuration File information and return
3552          * successfully.
3553          */
3554         dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3555                  "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3556                  config_name, finiver, cfcsum);
3557         return 0;
3558
3559         /*
3560          * Something bad happened.  Return the error ...  (If the "error"
3561          * is that there's no Configuration File on the adapter we don't
3562          * want to issue a warning since this is fairly common.)
3563          */
3564 bye:
3565         if (config_issued && ret != -ENOENT)
3566                 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3567                          config_name, -ret);
3568         return ret;
3569 }
3570
3571 static struct fw_info fw_info_array[] = {
3572         {
3573                 .chip = CHELSIO_T4,
3574                 .fs_name = FW4_CFNAME,
3575                 .fw_mod_name = FW4_FNAME,
3576                 .fw_hdr = {
3577                         .chip = FW_HDR_CHIP_T4,
3578                         .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3579                         .intfver_nic = FW_INTFVER(T4, NIC),
3580                         .intfver_vnic = FW_INTFVER(T4, VNIC),
3581                         .intfver_ri = FW_INTFVER(T4, RI),
3582                         .intfver_iscsi = FW_INTFVER(T4, ISCSI),
3583                         .intfver_fcoe = FW_INTFVER(T4, FCOE),
3584                 },
3585         }, {
3586                 .chip = CHELSIO_T5,
3587                 .fs_name = FW5_CFNAME,
3588                 .fw_mod_name = FW5_FNAME,
3589                 .fw_hdr = {
3590                         .chip = FW_HDR_CHIP_T5,
3591                         .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3592                         .intfver_nic = FW_INTFVER(T5, NIC),
3593                         .intfver_vnic = FW_INTFVER(T5, VNIC),
3594                         .intfver_ri = FW_INTFVER(T5, RI),
3595                         .intfver_iscsi = FW_INTFVER(T5, ISCSI),
3596                         .intfver_fcoe = FW_INTFVER(T5, FCOE),
3597                 },
3598         }, {
3599                 .chip = CHELSIO_T6,
3600                 .fs_name = FW6_CFNAME,
3601                 .fw_mod_name = FW6_FNAME,
3602                 .fw_hdr = {
3603                         .chip = FW_HDR_CHIP_T6,
3604                         .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3605                         .intfver_nic = FW_INTFVER(T6, NIC),
3606                         .intfver_vnic = FW_INTFVER(T6, VNIC),
3607                         .intfver_ofld = FW_INTFVER(T6, OFLD),
3608                         .intfver_ri = FW_INTFVER(T6, RI),
3609                         .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3610                         .intfver_iscsi = FW_INTFVER(T6, ISCSI),
3611                         .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3612                         .intfver_fcoe = FW_INTFVER(T6, FCOE),
3613                 },
3614         }
3615
3616 };
3617
3618 static struct fw_info *find_fw_info(int chip)
3619 {
3620         int i;
3621
3622         for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3623                 if (fw_info_array[i].chip == chip)
3624                         return &fw_info_array[i];
3625         }
3626         return NULL;
3627 }
3628
3629 /*
3630  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3631  */
3632 static int adap_init0(struct adapter *adap)
3633 {
3634         int ret;
3635         u32 v, port_vec;
3636         enum dev_state state;
3637         u32 params[7], val[7];
3638         struct fw_caps_config_cmd caps_cmd;
3639         int reset = 1;
3640
3641         /* Grab Firmware Device Log parameters as early as possible so we have
3642          * access to it for debugging, etc.
3643          */
3644         ret = t4_init_devlog_params(adap);
3645         if (ret < 0)
3646                 return ret;
3647
3648         /* Contact FW, advertising Master capability */
3649         ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
3650         if (ret < 0) {
3651                 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3652                         ret);
3653                 return ret;
3654         }
3655         if (ret == adap->mbox)
3656                 adap->flags |= MASTER_PF;
3657
3658         /*
3659          * If we're the Master PF Driver and the device is uninitialized,
3660          * then let's consider upgrading the firmware ...  (We always want
3661          * to check the firmware version number in order to A. get it for
3662          * later reporting and B. to warn if the currently loaded firmware
3663          * is excessively mismatched relative to the driver.)
3664          */
3665         t4_get_fw_version(adap, &adap->params.fw_vers);
3666         t4_get_tp_version(adap, &adap->params.tp_vers);
3667         ret = t4_check_fw_version(adap);
3668         /* If firmware is too old (not supported by driver) force an update. */
3669         if (ret)
3670                 state = DEV_STATE_UNINIT;
3671         if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3672                 struct fw_info *fw_info;
3673                 struct fw_hdr *card_fw;
3674                 const struct firmware *fw;
3675                 const u8 *fw_data = NULL;
3676                 unsigned int fw_size = 0;
3677
3678                 /* This is the firmware whose headers the driver was compiled
3679                  * against
3680                  */
3681                 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3682                 if (fw_info == NULL) {
3683                         dev_err(adap->pdev_dev,
3684                                 "unable to get firmware info for chip %d.\n",
3685                                 CHELSIO_CHIP_VERSION(adap->params.chip));
3686                         return -EINVAL;
3687                 }
3688
3689                 /* allocate memory to read the header of the firmware on the
3690                  * card
3691                  */
3692                 card_fw = t4_alloc_mem(sizeof(*card_fw));
3693
3694                 /* Get FW from from /lib/firmware/ */
3695                 ret = request_firmware(&fw, fw_info->fw_mod_name,
3696                                        adap->pdev_dev);
3697                 if (ret < 0) {
3698                         dev_err(adap->pdev_dev,
3699                                 "unable to load firmware image %s, error %d\n",
3700                                 fw_info->fw_mod_name, ret);
3701                 } else {
3702                         fw_data = fw->data;
3703                         fw_size = fw->size;
3704                 }
3705
3706                 /* upgrade FW logic */
3707                 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3708                                  state, &reset);
3709
3710                 /* Cleaning up */
3711                 release_firmware(fw);
3712                 t4_free_mem(card_fw);
3713
3714                 if (ret < 0)
3715                         goto bye;
3716         }
3717
3718         /*
3719          * Grab VPD parameters.  This should be done after we establish a
3720          * connection to the firmware since some of the VPD parameters
3721          * (notably the Core Clock frequency) are retrieved via requests to
3722          * the firmware.  On the other hand, we need these fairly early on
3723          * so we do this right after getting ahold of the firmware.
3724          */
3725         ret = t4_get_vpd_params(adap, &adap->params.vpd);
3726         if (ret < 0)
3727                 goto bye;
3728
3729         /*
3730          * Find out what ports are available to us.  Note that we need to do
3731          * this before calling adap_init0_no_config() since it needs nports
3732          * and portvec ...
3733          */
3734         v =
3735             FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3736             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3737         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3738         if (ret < 0)
3739                 goto bye;
3740
3741         adap->params.nports = hweight32(port_vec);
3742         adap->params.portvec = port_vec;
3743
3744         /* If the firmware is initialized already, emit a simply note to that
3745          * effect. Otherwise, it's time to try initializing the adapter.
3746          */
3747         if (state == DEV_STATE_INIT) {
3748                 dev_info(adap->pdev_dev, "Coming up as %s: "\
3749                          "Adapter already initialized\n",
3750                          adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3751         } else {
3752                 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3753                          "Initializing adapter\n");
3754
3755                 /* Find out whether we're dealing with a version of the
3756                  * firmware which has configuration file support.
3757                  */
3758                 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3759                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3760                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3761                                       params, val);
3762
3763                 /* If the firmware doesn't support Configuration Files,
3764                  * return an error.
3765                  */
3766                 if (ret < 0) {
3767                         dev_err(adap->pdev_dev, "firmware doesn't support "
3768                                 "Firmware Configuration Files\n");
3769                         goto bye;
3770                 }
3771
3772                 /* The firmware provides us with a memory buffer where we can
3773                  * load a Configuration File from the host if we want to
3774                  * override the Configuration File in flash.
3775                  */
3776                 ret = adap_init0_config(adap, reset);
3777                 if (ret == -ENOENT) {
3778                         dev_err(adap->pdev_dev, "no Configuration File "
3779                                 "present on adapter.\n");
3780                         goto bye;
3781                 }
3782                 if (ret < 0) {
3783                         dev_err(adap->pdev_dev, "could not initialize "
3784                                 "adapter, error %d\n", -ret);
3785                         goto bye;
3786                 }
3787         }
3788
3789         /* Give the SGE code a chance to pull in anything that it needs ...
3790          * Note that this must be called after we retrieve our VPD parameters
3791          * in order to know how to convert core ticks to seconds, etc.
3792          */
3793         ret = t4_sge_init(adap);
3794         if (ret < 0)
3795                 goto bye;
3796
3797         if (is_bypass_device(adap->pdev->device))
3798                 adap->params.bypass = 1;
3799
3800         /*
3801          * Grab some of our basic fundamental operating parameters.
3802          */
3803 #define FW_PARAM_DEV(param) \
3804         (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3805         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3806
3807 #define FW_PARAM_PFVF(param) \
3808         FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3809         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
3810         FW_PARAMS_PARAM_Y_V(0) | \
3811         FW_PARAMS_PARAM_Z_V(0)
3812
3813         params[0] = FW_PARAM_PFVF(EQ_START);
3814         params[1] = FW_PARAM_PFVF(L2T_START);
3815         params[2] = FW_PARAM_PFVF(L2T_END);
3816         params[3] = FW_PARAM_PFVF(FILTER_START);
3817         params[4] = FW_PARAM_PFVF(FILTER_END);
3818         params[5] = FW_PARAM_PFVF(IQFLINT_START);
3819         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
3820         if (ret < 0)
3821                 goto bye;
3822         adap->sge.egr_start = val[0];
3823         adap->l2t_start = val[1];
3824         adap->l2t_end = val[2];
3825         adap->tids.ftid_base = val[3];
3826         adap->tids.nftids = val[4] - val[3] + 1;
3827         adap->sge.ingr_start = val[5];
3828
3829         /* qids (ingress/egress) returned from firmware can be anywhere
3830          * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3831          * Hence driver needs to allocate memory for this range to
3832          * store the queue info. Get the highest IQFLINT/EQ index returned
3833          * in FW_EQ_*_CMD.alloc command.
3834          */
3835         params[0] = FW_PARAM_PFVF(EQ_END);
3836         params[1] = FW_PARAM_PFVF(IQFLINT_END);
3837         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3838         if (ret < 0)
3839                 goto bye;
3840         adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3841         adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3842
3843         adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3844                                     sizeof(*adap->sge.egr_map), GFP_KERNEL);
3845         if (!adap->sge.egr_map) {
3846                 ret = -ENOMEM;
3847                 goto bye;
3848         }
3849
3850         adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3851                                      sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3852         if (!adap->sge.ingr_map) {
3853                 ret = -ENOMEM;
3854                 goto bye;
3855         }
3856
3857         /* Allocate the memory for the vaious egress queue bitmaps
3858          * ie starving_fl, txq_maperr and blocked_fl.
3859          */
3860         adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3861                                         sizeof(long), GFP_KERNEL);
3862         if (!adap->sge.starving_fl) {
3863                 ret = -ENOMEM;
3864                 goto bye;
3865         }
3866
3867         adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3868                                        sizeof(long), GFP_KERNEL);
3869         if (!adap->sge.txq_maperr) {
3870                 ret = -ENOMEM;
3871                 goto bye;
3872         }
3873
3874 #ifdef CONFIG_DEBUG_FS
3875         adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3876                                        sizeof(long), GFP_KERNEL);
3877         if (!adap->sge.blocked_fl) {
3878                 ret = -ENOMEM;
3879                 goto bye;
3880         }
3881 #endif
3882
3883         params[0] = FW_PARAM_PFVF(CLIP_START);
3884         params[1] = FW_PARAM_PFVF(CLIP_END);
3885         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3886         if (ret < 0)
3887                 goto bye;
3888         adap->clipt_start = val[0];
3889         adap->clipt_end = val[1];
3890
3891         /* query params related to active filter region */
3892         params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3893         params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3894         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3895         /* If Active filter size is set we enable establishing
3896          * offload connection through firmware work request
3897          */
3898         if ((val[0] != val[1]) && (ret >= 0)) {
3899                 adap->flags |= FW_OFLD_CONN;
3900                 adap->tids.aftid_base = val[0];
3901                 adap->tids.aftid_end = val[1];
3902         }
3903
3904         /* If we're running on newer firmware, let it know that we're
3905          * prepared to deal with encapsulated CPL messages.  Older
3906          * firmware won't understand this and we'll just get
3907          * unencapsulated messages ...
3908          */
3909         params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3910         val[0] = 1;
3911         (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
3912
3913         /*
3914          * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3915          * capability.  Earlier versions of the firmware didn't have the
3916          * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3917          * permission to use ULPTX MEMWRITE DSGL.
3918          */
3919         if (is_t4(adap->params.chip)) {
3920                 adap->params.ulptx_memwrite_dsgl = false;
3921         } else {
3922                 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3923                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3924                                       1, params, val);
3925                 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3926         }
3927
3928         /*
3929          * Get device capabilities so we can determine what resources we need
3930          * to manage.
3931          */
3932         memset(&caps_cmd, 0, sizeof(caps_cmd));
3933         caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3934                                      FW_CMD_REQUEST_F | FW_CMD_READ_F);
3935         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3936         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3937                          &caps_cmd);
3938         if (ret < 0)
3939                 goto bye;
3940
3941         if (caps_cmd.ofldcaps) {
3942                 /* query offload-related parameters */
3943                 params[0] = FW_PARAM_DEV(NTID);
3944                 params[1] = FW_PARAM_PFVF(SERVER_START);
3945                 params[2] = FW_PARAM_PFVF(SERVER_END);
3946                 params[3] = FW_PARAM_PFVF(TDDP_START);
3947                 params[4] = FW_PARAM_PFVF(TDDP_END);
3948                 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3949                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3950                                       params, val);
3951                 if (ret < 0)
3952                         goto bye;
3953                 adap->tids.ntids = val[0];
3954                 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3955                 adap->tids.stid_base = val[1];
3956                 adap->tids.nstids = val[2] - val[1] + 1;
3957                 /*
3958                  * Setup server filter region. Divide the available filter
3959                  * region into two parts. Regular filters get 1/3rd and server
3960                  * filters get 2/3rd part. This is only enabled if workarond
3961                  * path is enabled.
3962                  * 1. For regular filters.
3963                  * 2. Server filter: This are special filters which are used
3964                  * to redirect SYN packets to offload queue.
3965                  */
3966                 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
3967                         adap->tids.sftid_base = adap->tids.ftid_base +
3968                                         DIV_ROUND_UP(adap->tids.nftids, 3);
3969                         adap->tids.nsftids = adap->tids.nftids -
3970                                          DIV_ROUND_UP(adap->tids.nftids, 3);
3971                         adap->tids.nftids = adap->tids.sftid_base -
3972                                                 adap->tids.ftid_base;
3973                 }
3974                 adap->vres.ddp.start = val[3];
3975                 adap->vres.ddp.size = val[4] - val[3] + 1;
3976                 adap->params.ofldq_wr_cred = val[5];
3977
3978                 adap->params.offload = 1;
3979         }
3980         if (caps_cmd.rdmacaps) {
3981                 params[0] = FW_PARAM_PFVF(STAG_START);
3982                 params[1] = FW_PARAM_PFVF(STAG_END);
3983                 params[2] = FW_PARAM_PFVF(RQ_START);
3984                 params[3] = FW_PARAM_PFVF(RQ_END);
3985                 params[4] = FW_PARAM_PFVF(PBL_START);
3986                 params[5] = FW_PARAM_PFVF(PBL_END);
3987                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3988                                       params, val);
3989                 if (ret < 0)
3990                         goto bye;
3991                 adap->vres.stag.start = val[0];
3992                 adap->vres.stag.size = val[1] - val[0] + 1;
3993                 adap->vres.rq.start = val[2];
3994                 adap->vres.rq.size = val[3] - val[2] + 1;
3995                 adap->vres.pbl.start = val[4];
3996                 adap->vres.pbl.size = val[5] - val[4] + 1;
3997
3998                 params[0] = FW_PARAM_PFVF(SQRQ_START);
3999                 params[1] = FW_PARAM_PFVF(SQRQ_END);
4000                 params[2] = FW_PARAM_PFVF(CQ_START);
4001                 params[3] = FW_PARAM_PFVF(CQ_END);
4002                 params[4] = FW_PARAM_PFVF(OCQ_START);
4003                 params[5] = FW_PARAM_PFVF(OCQ_END);
4004                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4005                                       val);
4006                 if (ret < 0)
4007                         goto bye;
4008                 adap->vres.qp.start = val[0];
4009                 adap->vres.qp.size = val[1] - val[0] + 1;
4010                 adap->vres.cq.start = val[2];
4011                 adap->vres.cq.size = val[3] - val[2] + 1;
4012                 adap->vres.ocq.start = val[4];
4013                 adap->vres.ocq.size = val[5] - val[4] + 1;
4014
4015                 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4016                 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4017                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
4018                                       val);
4019                 if (ret < 0) {
4020                         adap->params.max_ordird_qp = 8;
4021                         adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4022                         ret = 0;
4023                 } else {
4024                         adap->params.max_ordird_qp = val[0];
4025                         adap->params.max_ird_adapter = val[1];
4026                 }
4027                 dev_info(adap->pdev_dev,
4028                          "max_ordird_qp %d max_ird_adapter %d\n",
4029                          adap->params.max_ordird_qp,
4030                          adap->params.max_ird_adapter);
4031         }
4032         if (caps_cmd.iscsicaps) {
4033                 params[0] = FW_PARAM_PFVF(ISCSI_START);
4034                 params[1] = FW_PARAM_PFVF(ISCSI_END);
4035                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4036                                       params, val);
4037                 if (ret < 0)
4038                         goto bye;
4039                 adap->vres.iscsi.start = val[0];
4040                 adap->vres.iscsi.size = val[1] - val[0] + 1;
4041         }
4042 #undef FW_PARAM_PFVF
4043 #undef FW_PARAM_DEV
4044
4045         /* The MTU/MSS Table is initialized by now, so load their values.  If
4046          * we're initializing the adapter, then we'll make any modifications
4047          * we want to the MTU/MSS Table and also initialize the congestion
4048          * parameters.
4049          */
4050         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4051         if (state != DEV_STATE_INIT) {
4052                 int i;
4053
4054                 /* The default MTU Table contains values 1492 and 1500.
4055                  * However, for TCP, it's better to have two values which are
4056                  * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4057                  * This allows us to have a TCP Data Payload which is a
4058                  * multiple of 8 regardless of what combination of TCP Options
4059                  * are in use (always a multiple of 4 bytes) which is
4060                  * important for performance reasons.  For instance, if no
4061                  * options are in use, then we have a 20-byte IP header and a
4062                  * 20-byte TCP header.  In this case, a 1500-byte MSS would
4063                  * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4064                  * which is not a multiple of 8.  So using an MSS of 1488 in
4065                  * this case results in a TCP Data Payload of 1448 bytes which
4066                  * is a multiple of 8.  On the other hand, if 12-byte TCP Time
4067                  * Stamps have been negotiated, then an MTU of 1500 bytes
4068                  * results in a TCP Data Payload of 1448 bytes which, as
4069                  * above, is a multiple of 8 bytes ...
4070                  */
4071                 for (i = 0; i < NMTUS; i++)
4072                         if (adap->params.mtus[i] == 1492) {
4073                                 adap->params.mtus[i] = 1488;
4074                                 break;
4075                         }
4076
4077                 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4078                              adap->params.b_wnd);
4079         }
4080         t4_init_sge_params(adap);
4081         adap->flags |= FW_OK;
4082         t4_init_tp_params(adap);
4083         return 0;
4084
4085         /*
4086          * Something bad happened.  If a command timed out or failed with EIO
4087          * FW does not operate within its spec or something catastrophic
4088          * happened to HW/FW, stop issuing commands.
4089          */
4090 bye:
4091         kfree(adap->sge.egr_map);
4092         kfree(adap->sge.ingr_map);
4093         kfree(adap->sge.starving_fl);
4094         kfree(adap->sge.txq_maperr);
4095 #ifdef CONFIG_DEBUG_FS
4096         kfree(adap->sge.blocked_fl);
4097 #endif
4098         if (ret != -ETIMEDOUT && ret != -EIO)
4099                 t4_fw_bye(adap, adap->mbox);
4100         return ret;
4101 }
4102
4103 /* EEH callbacks */
4104
4105 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4106                                          pci_channel_state_t state)
4107 {
4108         int i;
4109         struct adapter *adap = pci_get_drvdata(pdev);
4110
4111         if (!adap)
4112                 goto out;
4113
4114         rtnl_lock();
4115         adap->flags &= ~FW_OK;
4116         notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4117         spin_lock(&adap->stats_lock);
4118         for_each_port(adap, i) {
4119                 struct net_device *dev = adap->port[i];
4120
4121                 netif_device_detach(dev);
4122                 netif_carrier_off(dev);
4123         }
4124         spin_unlock(&adap->stats_lock);
4125         disable_interrupts(adap);
4126         if (adap->flags & FULL_INIT_DONE)
4127                 cxgb_down(adap);
4128         rtnl_unlock();
4129         if ((adap->flags & DEV_ENABLED)) {
4130                 pci_disable_device(pdev);
4131                 adap->flags &= ~DEV_ENABLED;
4132         }
4133 out:    return state == pci_channel_io_perm_failure ?
4134                 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4135 }
4136
4137 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4138 {
4139         int i, ret;
4140         struct fw_caps_config_cmd c;
4141         struct adapter *adap = pci_get_drvdata(pdev);
4142
4143         if (!adap) {
4144                 pci_restore_state(pdev);
4145                 pci_save_state(pdev);
4146                 return PCI_ERS_RESULT_RECOVERED;
4147         }
4148
4149         if (!(adap->flags & DEV_ENABLED)) {
4150                 if (pci_enable_device(pdev)) {
4151                         dev_err(&pdev->dev, "Cannot reenable PCI "
4152                                             "device after reset\n");
4153                         return PCI_ERS_RESULT_DISCONNECT;
4154                 }
4155                 adap->flags |= DEV_ENABLED;
4156         }
4157
4158         pci_set_master(pdev);
4159         pci_restore_state(pdev);
4160         pci_save_state(pdev);
4161         pci_cleanup_aer_uncorrect_error_status(pdev);
4162
4163         if (t4_wait_dev_ready(adap->regs) < 0)
4164                 return PCI_ERS_RESULT_DISCONNECT;
4165         if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
4166                 return PCI_ERS_RESULT_DISCONNECT;
4167         adap->flags |= FW_OK;
4168         if (adap_init1(adap, &c))
4169                 return PCI_ERS_RESULT_DISCONNECT;
4170
4171         for_each_port(adap, i) {
4172                 struct port_info *p = adap2pinfo(adap, i);
4173
4174                 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
4175                                   NULL, NULL);
4176                 if (ret < 0)
4177                         return PCI_ERS_RESULT_DISCONNECT;
4178                 p->viid = ret;
4179                 p->xact_addr_filt = -1;
4180         }
4181
4182         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4183                      adap->params.b_wnd);
4184         setup_memwin(adap);
4185         if (cxgb_up(adap))
4186                 return PCI_ERS_RESULT_DISCONNECT;
4187         return PCI_ERS_RESULT_RECOVERED;
4188 }
4189
4190 static void eeh_resume(struct pci_dev *pdev)
4191 {
4192         int i;
4193         struct adapter *adap = pci_get_drvdata(pdev);
4194
4195         if (!adap)
4196                 return;
4197
4198         rtnl_lock();
4199         for_each_port(adap, i) {
4200                 struct net_device *dev = adap->port[i];
4201
4202                 if (netif_running(dev)) {
4203                         link_start(dev);
4204                         cxgb_set_rxmode(dev);
4205                 }
4206                 netif_device_attach(dev);
4207         }
4208         rtnl_unlock();
4209 }
4210
4211 static const struct pci_error_handlers cxgb4_eeh = {
4212         .error_detected = eeh_err_detected,
4213         .slot_reset     = eeh_slot_reset,
4214         .resume         = eeh_resume,
4215 };
4216
4217 static inline bool is_x_10g_port(const struct link_config *lc)
4218 {
4219         return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
4220                (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
4221 }
4222
4223 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
4224                              unsigned int us, unsigned int cnt,
4225                              unsigned int size, unsigned int iqe_size)
4226 {
4227         q->adap = adap;
4228         cxgb4_set_rspq_intr_params(q, us, cnt);
4229         q->iqe_len = iqe_size;
4230         q->size = size;
4231 }
4232
4233 /*
4234  * Perform default configuration of DMA queues depending on the number and type
4235  * of ports we found and the number of available CPUs.  Most settings can be
4236  * modified by the admin prior to actual use.
4237  */
4238 static void cfg_queues(struct adapter *adap)
4239 {
4240         struct sge *s = &adap->sge;
4241         int i, n10g = 0, qidx = 0;
4242 #ifndef CONFIG_CHELSIO_T4_DCB
4243         int q10g = 0;
4244 #endif
4245         int ciq_size;
4246
4247         for_each_port(adap, i)
4248                 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4249 #ifdef CONFIG_CHELSIO_T4_DCB
4250         /* For Data Center Bridging support we need to be able to support up
4251          * to 8 Traffic Priorities; each of which will be assigned to its
4252          * own TX Queue in order to prevent Head-Of-Line Blocking.
4253          */
4254         if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4255                 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4256                         MAX_ETH_QSETS, adap->params.nports * 8);
4257                 BUG_ON(1);
4258         }
4259
4260         for_each_port(adap, i) {
4261                 struct port_info *pi = adap2pinfo(adap, i);
4262
4263                 pi->first_qset = qidx;
4264                 pi->nqsets = 8;
4265                 qidx += pi->nqsets;
4266         }
4267 #else /* !CONFIG_CHELSIO_T4_DCB */
4268         /*
4269          * We default to 1 queue per non-10G port and up to # of cores queues
4270          * per 10G port.
4271          */
4272         if (n10g)
4273                 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4274         if (q10g > netif_get_num_default_rss_queues())
4275                 q10g = netif_get_num_default_rss_queues();
4276
4277         for_each_port(adap, i) {
4278                 struct port_info *pi = adap2pinfo(adap, i);
4279
4280                 pi->first_qset = qidx;
4281                 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4282                 qidx += pi->nqsets;
4283         }
4284 #endif /* !CONFIG_CHELSIO_T4_DCB */
4285
4286         s->ethqsets = qidx;
4287         s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4288
4289         if (is_offload(adap)) {
4290                 /*
4291                  * For offload we use 1 queue/channel if all ports are up to 1G,
4292                  * otherwise we divide all available queues amongst the channels
4293                  * capped by the number of available cores.
4294                  */
4295                 if (n10g) {
4296                         i = min_t(int, ARRAY_SIZE(s->iscsirxq),
4297                                   num_online_cpus());
4298                         s->iscsiqsets = roundup(i, adap->params.nports);
4299                 } else
4300                         s->iscsiqsets = adap->params.nports;
4301                 /* For RDMA one Rx queue per channel suffices */
4302                 s->rdmaqs = adap->params.nports;
4303                 /* Try and allow at least 1 CIQ per cpu rounding down
4304                  * to the number of ports, with a minimum of 1 per port.
4305                  * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port.
4306                  * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port.
4307                  * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port.
4308                  */
4309                 s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus());
4310                 s->rdmaciqs = (s->rdmaciqs / adap->params.nports) *
4311                                 adap->params.nports;
4312                 s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports);
4313         }
4314
4315         for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4316                 struct sge_eth_rxq *r = &s->ethrxq[i];
4317
4318                 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4319                 r->fl.size = 72;
4320         }
4321
4322         for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4323                 s->ethtxq[i].q.size = 1024;
4324
4325         for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4326                 s->ctrlq[i].q.size = 512;
4327
4328         for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4329                 s->ofldtxq[i].q.size = 1024;
4330
4331         for (i = 0; i < ARRAY_SIZE(s->iscsirxq); i++) {
4332                 struct sge_ofld_rxq *r = &s->iscsirxq[i];
4333
4334                 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4335                 r->rspq.uld = CXGB4_ULD_ISCSI;
4336                 r->fl.size = 72;
4337         }
4338
4339         for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
4340                 struct sge_ofld_rxq *r = &s->rdmarxq[i];
4341
4342                 init_rspq(adap, &r->rspq, 5, 1, 511, 64);
4343                 r->rspq.uld = CXGB4_ULD_RDMA;
4344                 r->fl.size = 72;
4345         }
4346
4347         ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
4348         if (ciq_size > SGE_MAX_IQ_SIZE) {
4349                 CH_WARN(adap, "CIQ size too small for available IQs\n");
4350                 ciq_size = SGE_MAX_IQ_SIZE;
4351         }
4352
4353         for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
4354                 struct sge_ofld_rxq *r = &s->rdmaciq[i];
4355
4356                 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
4357                 r->rspq.uld = CXGB4_ULD_RDMA;
4358         }
4359
4360         init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4361         init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
4362 }
4363
4364 /*
4365  * Reduce the number of Ethernet queues across all ports to at most n.
4366  * n provides at least one queue per port.
4367  */
4368 static void reduce_ethqs(struct adapter *adap, int n)
4369 {
4370         int i;
4371         struct port_info *pi;
4372
4373         while (n < adap->sge.ethqsets)
4374                 for_each_port(adap, i) {
4375                         pi = adap2pinfo(adap, i);
4376                         if (pi->nqsets > 1) {
4377                                 pi->nqsets--;
4378                                 adap->sge.ethqsets--;
4379                                 if (adap->sge.ethqsets <= n)
4380                                         break;
4381                         }
4382                 }
4383
4384         n = 0;
4385         for_each_port(adap, i) {
4386                 pi = adap2pinfo(adap, i);
4387                 pi->first_qset = n;
4388                 n += pi->nqsets;
4389         }
4390 }
4391
4392 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4393 #define EXTRA_VECS 2
4394
4395 static int enable_msix(struct adapter *adap)
4396 {
4397         int ofld_need = 0;
4398         int i, want, need, allocated;
4399         struct sge *s = &adap->sge;
4400         unsigned int nchan = adap->params.nports;
4401         struct msix_entry *entries;
4402
4403         entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1),
4404                           GFP_KERNEL);
4405         if (!entries)
4406                 return -ENOMEM;
4407
4408         for (i = 0; i < MAX_INGQ + 1; ++i)
4409                 entries[i].entry = i;
4410
4411         want = s->max_ethqsets + EXTRA_VECS;
4412         if (is_offload(adap)) {
4413                 want += s->rdmaqs + s->rdmaciqs + s->iscsiqsets;
4414                 /* need nchan for each possible ULD */
4415                 ofld_need = 3 * nchan;
4416         }
4417 #ifdef CONFIG_CHELSIO_T4_DCB
4418         /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4419          * each port.
4420          */
4421         need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
4422 #else
4423         need = adap->params.nports + EXTRA_VECS + ofld_need;
4424 #endif
4425         allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4426         if (allocated < 0) {
4427                 dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4428                          " not using MSI-X\n");
4429                 kfree(entries);
4430                 return allocated;
4431         }
4432
4433         /* Distribute available vectors to the various queue groups.
4434          * Every group gets its minimum requirement and NIC gets top
4435          * priority for leftovers.
4436          */
4437         i = allocated - EXTRA_VECS - ofld_need;
4438         if (i < s->max_ethqsets) {
4439                 s->max_ethqsets = i;
4440                 if (i < s->ethqsets)
4441                         reduce_ethqs(adap, i);
4442         }
4443         if (is_offload(adap)) {
4444                 if (allocated < want) {
4445                         s->rdmaqs = nchan;
4446                         s->rdmaciqs = nchan;
4447                 }
4448
4449                 /* leftovers go to OFLD */
4450                 i = allocated - EXTRA_VECS - s->max_ethqsets -
4451                     s->rdmaqs - s->rdmaciqs;
4452                 s->iscsiqsets = (i / nchan) * nchan;  /* round down */
4453         }
4454         for (i = 0; i < allocated; ++i)
4455                 adap->msix_info[i].vec = entries[i].vector;
4456         dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
4457                  "nic %d iscsi %d rdma cpl %d rdma ciq %d\n",
4458                  allocated, s->max_ethqsets, s->iscsiqsets, s->rdmaqs,
4459                  s->rdmaciqs);
4460
4461         kfree(entries);
4462         return 0;
4463 }
4464
4465 #undef EXTRA_VECS
4466
4467 static int init_rss(struct adapter *adap)
4468 {
4469         unsigned int i;
4470         int err;
4471
4472         err = t4_init_rss_mode(adap, adap->mbox);
4473         if (err)
4474                 return err;
4475
4476         for_each_port(adap, i) {
4477                 struct port_info *pi = adap2pinfo(adap, i);
4478
4479                 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4480                 if (!pi->rss)
4481                         return -ENOMEM;
4482         }
4483         return 0;
4484 }
4485
4486 static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap,
4487                                         enum pci_bus_speed *speed,
4488                                         enum pcie_link_width *width)
4489 {
4490         u32 lnkcap1, lnkcap2;
4491         int err1, err2;
4492
4493 #define  PCIE_MLW_CAP_SHIFT 4   /* start of MLW mask in link capabilities */
4494
4495         *speed = PCI_SPEED_UNKNOWN;
4496         *width = PCIE_LNK_WIDTH_UNKNOWN;
4497
4498         err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP,
4499                                           &lnkcap1);
4500         err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2,
4501                                           &lnkcap2);
4502         if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */
4503                 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
4504                         *speed = PCIE_SPEED_8_0GT;
4505                 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
4506                         *speed = PCIE_SPEED_5_0GT;
4507                 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
4508                         *speed = PCIE_SPEED_2_5GT;
4509         }
4510         if (!err1) {
4511                 *width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT;
4512                 if (!lnkcap2) { /* pre-r3.0 */
4513                         if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB)
4514                                 *speed = PCIE_SPEED_5_0GT;
4515                         else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB)
4516                                 *speed = PCIE_SPEED_2_5GT;
4517                 }
4518         }
4519
4520         if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
4521                 return err1 ? err1 : err2 ? err2 : -EINVAL;
4522         return 0;
4523 }
4524
4525 static void cxgb4_check_pcie_caps(struct adapter *adap)
4526 {
4527         enum pcie_link_width width, width_cap;
4528         enum pci_bus_speed speed, speed_cap;
4529
4530 #define PCIE_SPEED_STR(speed) \
4531         (speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \
4532          speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \
4533          speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \
4534          "Unknown")
4535
4536         if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) {
4537                 dev_warn(adap->pdev_dev,
4538                          "Unable to determine PCIe device BW capabilities\n");
4539                 return;
4540         }
4541
4542         if (pcie_get_minimum_link(adap->pdev, &speed, &width) ||
4543             speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) {
4544                 dev_warn(adap->pdev_dev,
4545                          "Unable to determine PCI Express bandwidth.\n");
4546                 return;
4547         }
4548
4549         dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n",
4550                  PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap));
4551         dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n",
4552                  width, width_cap);
4553         if (speed < speed_cap || width < width_cap)
4554                 dev_info(adap->pdev_dev,
4555                          "A slot with more lanes and/or higher speed is "
4556                          "suggested for optimal performance.\n");
4557 }
4558
4559 static void print_port_info(const struct net_device *dev)
4560 {
4561         char buf[80];
4562         char *bufp = buf;
4563         const char *spd = "";
4564         const struct port_info *pi = netdev_priv(dev);
4565         const struct adapter *adap = pi->adapter;
4566
4567         if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4568                 spd = " 2.5 GT/s";
4569         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4570                 spd = " 5 GT/s";
4571         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4572                 spd = " 8 GT/s";
4573
4574         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4575                 bufp += sprintf(bufp, "100/");
4576         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4577                 bufp += sprintf(bufp, "1000/");
4578         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4579                 bufp += sprintf(bufp, "10G/");
4580         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4581                 bufp += sprintf(bufp, "40G/");
4582         if (bufp != buf)
4583                 --bufp;
4584         sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4585
4586         netdev_info(dev, "Chelsio %s rev %d %s %sNIC %s\n",
4587                     adap->params.vpd.id,
4588                     CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
4589                     is_offload(adap) ? "R" : "",
4590                     (adap->flags & USING_MSIX) ? " MSI-X" :
4591                     (adap->flags & USING_MSI) ? " MSI" : "");
4592         netdev_info(dev, "S/N: %s, P/N: %s\n",
4593                     adap->params.vpd.sn, adap->params.vpd.pn);
4594 }
4595
4596 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4597 {
4598         pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4599 }
4600
4601 /*
4602  * Free the following resources:
4603  * - memory used for tables
4604  * - MSI/MSI-X
4605  * - net devices
4606  * - resources FW is holding for us
4607  */
4608 static void free_some_resources(struct adapter *adapter)
4609 {
4610         unsigned int i;
4611
4612         t4_free_mem(adapter->l2t);
4613         t4_free_mem(adapter->tids.tid_tab);
4614         kfree(adapter->sge.egr_map);
4615         kfree(adapter->sge.ingr_map);
4616         kfree(adapter->sge.starving_fl);
4617         kfree(adapter->sge.txq_maperr);
4618 #ifdef CONFIG_DEBUG_FS
4619         kfree(adapter->sge.blocked_fl);
4620 #endif
4621         disable_msi(adapter);
4622
4623         for_each_port(adapter, i)
4624                 if (adapter->port[i]) {
4625                         struct port_info *pi = adap2pinfo(adapter, i);
4626
4627                         if (pi->viid != 0)
4628                                 t4_free_vi(adapter, adapter->mbox, adapter->pf,
4629                                            0, pi->viid);
4630                         kfree(adap2pinfo(adapter, i)->rss);
4631                         free_netdev(adapter->port[i]);
4632                 }
4633         if (adapter->flags & FW_OK)
4634                 t4_fw_bye(adapter, adapter->pf);
4635 }
4636
4637 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4638 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4639                    NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4640 #define SEGMENT_SIZE 128
4641
4642 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
4643 {
4644         u16 device_id;
4645
4646         /* Retrieve adapter's device ID */
4647         pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
4648
4649         switch (device_id >> 12) {
4650         case CHELSIO_T4:
4651                 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4652         case CHELSIO_T5:
4653                 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4654         case CHELSIO_T6:
4655                 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4656         default:
4657                 dev_err(&pdev->dev, "Device %d is not supported\n",
4658                         device_id);
4659         }
4660         return -EINVAL;
4661 }
4662
4663 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4664 {
4665         int func, i, err, s_qpp, qpp, num_seg;
4666         struct port_info *pi;
4667         bool highdma = false;
4668         struct adapter *adapter = NULL;
4669         void __iomem *regs;
4670         u32 whoami, pl_rev;
4671         enum chip_type chip;
4672
4673         printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4674
4675         err = pci_request_regions(pdev, KBUILD_MODNAME);
4676         if (err) {
4677                 /* Just info, some other driver may have claimed the device. */
4678                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4679                 return err;
4680         }
4681
4682         err = pci_enable_device(pdev);
4683         if (err) {
4684                 dev_err(&pdev->dev, "cannot enable PCI device\n");
4685                 goto out_release_regions;
4686         }
4687
4688         regs = pci_ioremap_bar(pdev, 0);
4689         if (!regs) {
4690                 dev_err(&pdev->dev, "cannot map device registers\n");
4691                 err = -ENOMEM;
4692                 goto out_disable_device;
4693         }
4694
4695         err = t4_wait_dev_ready(regs);
4696         if (err < 0)
4697                 goto out_unmap_bar0;
4698
4699         /* We control everything through one PF */
4700         whoami = readl(regs + PL_WHOAMI_A);
4701         pl_rev = REV_G(readl(regs + PL_REV_A));
4702         chip = get_chip_type(pdev, pl_rev);
4703         func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
4704                 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4705         if (func != ent->driver_data) {
4706                 iounmap(regs);
4707                 pci_disable_device(pdev);
4708                 pci_save_state(pdev);        /* to restore SR-IOV later */
4709                 goto sriov;
4710         }
4711
4712         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4713                 highdma = true;
4714                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4715                 if (err) {
4716                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4717                                 "coherent allocations\n");
4718                         goto out_unmap_bar0;
4719                 }
4720         } else {
4721                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4722                 if (err) {
4723                         dev_err(&pdev->dev, "no usable DMA configuration\n");
4724                         goto out_unmap_bar0;
4725                 }
4726         }
4727
4728         pci_enable_pcie_error_reporting(pdev);
4729         enable_pcie_relaxed_ordering(pdev);
4730         pci_set_master(pdev);
4731         pci_save_state(pdev);
4732
4733         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4734         if (!adapter) {
4735                 err = -ENOMEM;
4736                 goto out_unmap_bar0;
4737         }
4738
4739         adapter->workq = create_singlethread_workqueue("cxgb4");
4740         if (!adapter->workq) {
4741                 err = -ENOMEM;
4742                 goto out_free_adapter;
4743         }
4744
4745         /* PCI device has been enabled */
4746         adapter->flags |= DEV_ENABLED;
4747
4748         adapter->regs = regs;
4749         adapter->pdev = pdev;
4750         adapter->pdev_dev = &pdev->dev;
4751         adapter->mbox = func;
4752         adapter->pf = func;
4753         adapter->msg_enable = dflt_msg_enable;
4754         memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4755
4756         spin_lock_init(&adapter->stats_lock);
4757         spin_lock_init(&adapter->tid_release_lock);
4758         spin_lock_init(&adapter->win0_lock);
4759
4760         INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4761         INIT_WORK(&adapter->db_full_task, process_db_full);
4762         INIT_WORK(&adapter->db_drop_task, process_db_drop);
4763
4764         err = t4_prep_adapter(adapter);
4765         if (err)
4766                 goto out_free_adapter;
4767
4768
4769         if (!is_t4(adapter->params.chip)) {
4770                 s_qpp = (QUEUESPERPAGEPF0_S +
4771                         (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4772                         adapter->pf);
4773                 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4774                       SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4775                 num_seg = PAGE_SIZE / SEGMENT_SIZE;
4776
4777                 /* Each segment size is 128B. Write coalescing is enabled only
4778                  * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4779                  * queue is less no of segments that can be accommodated in
4780                  * a page size.
4781                  */
4782                 if (qpp > num_seg) {
4783                         dev_err(&pdev->dev,
4784                                 "Incorrect number of egress queues per page\n");
4785                         err = -EINVAL;
4786                         goto out_free_adapter;
4787                 }
4788                 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4789                 pci_resource_len(pdev, 2));
4790                 if (!adapter->bar2) {
4791                         dev_err(&pdev->dev, "cannot map device bar2 region\n");
4792                         err = -ENOMEM;
4793                         goto out_free_adapter;
4794                 }
4795         }
4796
4797         setup_memwin(adapter);
4798         err = adap_init0(adapter);
4799 #ifdef CONFIG_DEBUG_FS
4800         bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
4801 #endif
4802         setup_memwin_rdma(adapter);
4803         if (err)
4804                 goto out_unmap_bar;
4805
4806         /* configure SGE_STAT_CFG_A to read WC stats */
4807         if (!is_t4(adapter->params.chip))
4808                 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
4809                              (is_t5(adapter->params.chip) ? STATMODE_V(0) :
4810                               T6_STATMODE_V(0)));
4811
4812         for_each_port(adapter, i) {
4813                 struct net_device *netdev;
4814
4815                 netdev = alloc_etherdev_mq(sizeof(struct port_info),
4816                                            MAX_ETH_QSETS);
4817                 if (!netdev) {
4818                         err = -ENOMEM;
4819                         goto out_free_dev;
4820                 }
4821
4822                 SET_NETDEV_DEV(netdev, &pdev->dev);
4823
4824                 adapter->port[i] = netdev;
4825                 pi = netdev_priv(netdev);
4826                 pi->adapter = adapter;
4827                 pi->xact_addr_filt = -1;
4828                 pi->port_id = i;
4829                 netdev->irq = pdev->irq;
4830
4831                 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4832                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4833                         NETIF_F_RXCSUM | NETIF_F_RXHASH |
4834                         NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
4835                 if (highdma)
4836                         netdev->hw_features |= NETIF_F_HIGHDMA;
4837                 netdev->features |= netdev->hw_features;
4838                 netdev->vlan_features = netdev->features & VLAN_FEAT;
4839
4840                 netdev->priv_flags |= IFF_UNICAST_FLT;
4841
4842                 netdev->netdev_ops = &cxgb4_netdev_ops;
4843 #ifdef CONFIG_CHELSIO_T4_DCB
4844                 netdev->dcbnl_ops = &cxgb4_dcb_ops;
4845                 cxgb4_dcb_state_init(netdev);
4846 #endif
4847                 cxgb4_set_ethtool_ops(netdev);
4848         }
4849
4850         pci_set_drvdata(pdev, adapter);
4851
4852         if (adapter->flags & FW_OK) {
4853                 err = t4_port_init(adapter, func, func, 0);
4854                 if (err)
4855                         goto out_free_dev;
4856         } else if (adapter->params.nports == 1) {
4857                 /* If we don't have a connection to the firmware -- possibly
4858                  * because of an error -- grab the raw VPD parameters so we
4859                  * can set the proper MAC Address on the debug network
4860                  * interface that we've created.
4861                  */
4862                 u8 hw_addr[ETH_ALEN];
4863                 u8 *na = adapter->params.vpd.na;
4864
4865                 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
4866                 if (!err) {
4867                         for (i = 0; i < ETH_ALEN; i++)
4868                                 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
4869                                               hex2val(na[2 * i + 1]));
4870                         t4_set_hw_addr(adapter, 0, hw_addr);
4871                 }
4872         }
4873
4874         /* Configure queues and allocate tables now, they can be needed as
4875          * soon as the first register_netdev completes.
4876          */
4877         cfg_queues(adapter);
4878
4879         adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
4880         if (!adapter->l2t) {
4881                 /* We tolerate a lack of L2T, giving up some functionality */
4882                 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
4883                 adapter->params.offload = 0;
4884         }
4885
4886 #if IS_ENABLED(CONFIG_IPV6)
4887         if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) &&
4888             (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
4889                 /* CLIP functionality is not present in hardware,
4890                  * hence disable all offload features
4891                  */
4892                 dev_warn(&pdev->dev,
4893                          "CLIP not enabled in hardware, continuing\n");
4894                 adapter->params.offload = 0;
4895         } else {
4896                 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
4897                                                   adapter->clipt_end);
4898                 if (!adapter->clipt) {
4899                         /* We tolerate a lack of clip_table, giving up
4900                          * some functionality
4901                          */
4902                         dev_warn(&pdev->dev,
4903                                  "could not allocate Clip table, continuing\n");
4904                         adapter->params.offload = 0;
4905                 }
4906         }
4907 #endif
4908         if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
4909                 dev_warn(&pdev->dev, "could not allocate TID table, "
4910                          "continuing\n");
4911                 adapter->params.offload = 0;
4912         }
4913
4914         if (is_offload(adapter)) {
4915                 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
4916                         u32 hash_base, hash_reg;
4917
4918                         if (chip <= CHELSIO_T5) {
4919                                 hash_reg = LE_DB_TID_HASHBASE_A;
4920                                 hash_base = t4_read_reg(adapter, hash_reg);
4921                                 adapter->tids.hash_base = hash_base / 4;
4922                         } else {
4923                                 hash_reg = T6_LE_DB_HASH_TID_BASE_A;
4924                                 hash_base = t4_read_reg(adapter, hash_reg);
4925                                 adapter->tids.hash_base = hash_base;
4926                         }
4927                 }
4928         }
4929
4930         /* See what interrupts we'll be using */
4931         if (msi > 1 && enable_msix(adapter) == 0)
4932                 adapter->flags |= USING_MSIX;
4933         else if (msi > 0 && pci_enable_msi(pdev) == 0)
4934                 adapter->flags |= USING_MSI;
4935
4936         /* check for PCI Express bandwidth capabiltites */
4937         cxgb4_check_pcie_caps(adapter);
4938
4939         err = init_rss(adapter);
4940         if (err)
4941                 goto out_free_dev;
4942
4943         /*
4944          * The card is now ready to go.  If any errors occur during device
4945          * registration we do not fail the whole card but rather proceed only
4946          * with the ports we manage to register successfully.  However we must
4947          * register at least one net device.
4948          */
4949         for_each_port(adapter, i) {
4950                 pi = adap2pinfo(adapter, i);
4951                 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
4952                 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
4953
4954                 err = register_netdev(adapter->port[i]);
4955                 if (err)
4956                         break;
4957                 adapter->chan_map[pi->tx_chan] = i;
4958                 print_port_info(adapter->port[i]);
4959         }
4960         if (i == 0) {
4961                 dev_err(&pdev->dev, "could not register any net devices\n");
4962                 goto out_free_dev;
4963         }
4964         if (err) {
4965                 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
4966                 err = 0;
4967         }
4968
4969         if (cxgb4_debugfs_root) {
4970                 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
4971                                                            cxgb4_debugfs_root);
4972                 setup_debugfs(adapter);
4973         }
4974
4975         /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
4976         pdev->needs_freset = 1;
4977
4978         if (is_offload(adapter))
4979                 attach_ulds(adapter);
4980
4981 sriov:
4982 #ifdef CONFIG_PCI_IOV
4983         if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
4984                 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
4985                         dev_info(&pdev->dev,
4986                                  "instantiated %u virtual functions\n",
4987                                  num_vf[func]);
4988 #endif
4989         return 0;
4990
4991  out_free_dev:
4992         free_some_resources(adapter);
4993  out_unmap_bar:
4994         if (!is_t4(adapter->params.chip))
4995                 iounmap(adapter->bar2);
4996  out_free_adapter:
4997         if (adapter->workq)
4998                 destroy_workqueue(adapter->workq);
4999
5000         kfree(adapter);
5001  out_unmap_bar0:
5002         iounmap(regs);
5003  out_disable_device:
5004         pci_disable_pcie_error_reporting(pdev);
5005         pci_disable_device(pdev);
5006  out_release_regions:
5007         pci_release_regions(pdev);
5008         return err;
5009 }
5010
5011 static void remove_one(struct pci_dev *pdev)
5012 {
5013         struct adapter *adapter = pci_get_drvdata(pdev);
5014
5015 #ifdef CONFIG_PCI_IOV
5016         pci_disable_sriov(pdev);
5017
5018 #endif
5019
5020         if (adapter) {
5021                 int i;
5022
5023                 /* Tear down per-adapter Work Queue first since it can contain
5024                  * references to our adapter data structure.
5025                  */
5026                 destroy_workqueue(adapter->workq);
5027
5028                 if (is_offload(adapter))
5029                         detach_ulds(adapter);
5030
5031                 disable_interrupts(adapter);
5032
5033                 for_each_port(adapter, i)
5034                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5035                                 unregister_netdev(adapter->port[i]);
5036
5037                 debugfs_remove_recursive(adapter->debugfs_root);
5038
5039                 /* If we allocated filters, free up state associated with any
5040                  * valid filters ...
5041                  */
5042                 if (adapter->tids.ftid_tab) {
5043                         struct filter_entry *f = &adapter->tids.ftid_tab[0];
5044                         for (i = 0; i < (adapter->tids.nftids +
5045                                         adapter->tids.nsftids); i++, f++)
5046                                 if (f->valid)
5047                                         clear_filter(adapter, f);
5048                 }
5049
5050                 if (adapter->flags & FULL_INIT_DONE)
5051                         cxgb_down(adapter);
5052
5053                 free_some_resources(adapter);
5054 #if IS_ENABLED(CONFIG_IPV6)
5055                 t4_cleanup_clip_tbl(adapter);
5056 #endif
5057                 iounmap(adapter->regs);
5058                 if (!is_t4(adapter->params.chip))
5059                         iounmap(adapter->bar2);
5060                 pci_disable_pcie_error_reporting(pdev);
5061                 if ((adapter->flags & DEV_ENABLED)) {
5062                         pci_disable_device(pdev);
5063                         adapter->flags &= ~DEV_ENABLED;
5064                 }
5065                 pci_release_regions(pdev);
5066                 synchronize_rcu();
5067                 kfree(adapter);
5068         } else
5069                 pci_release_regions(pdev);
5070 }
5071
5072 static struct pci_driver cxgb4_driver = {
5073         .name     = KBUILD_MODNAME,
5074         .id_table = cxgb4_pci_tbl,
5075         .probe    = init_one,
5076         .remove   = remove_one,
5077         .shutdown = remove_one,
5078         .err_handler = &cxgb4_eeh,
5079 };
5080
5081 static int __init cxgb4_init_module(void)
5082 {
5083         int ret;
5084
5085         /* Debugfs support is optional, just warn if this fails */
5086         cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5087         if (!cxgb4_debugfs_root)
5088                 pr_warn("could not create debugfs entry, continuing\n");
5089
5090         ret = pci_register_driver(&cxgb4_driver);
5091         if (ret < 0)
5092                 debugfs_remove(cxgb4_debugfs_root);
5093
5094 #if IS_ENABLED(CONFIG_IPV6)
5095         if (!inet6addr_registered) {
5096                 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5097                 inet6addr_registered = true;
5098         }
5099 #endif
5100
5101         return ret;
5102 }
5103
5104 static void __exit cxgb4_cleanup_module(void)
5105 {
5106 #if IS_ENABLED(CONFIG_IPV6)
5107         if (inet6addr_registered) {
5108                 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5109                 inet6addr_registered = false;
5110         }
5111 #endif
5112         pci_unregister_driver(&cxgb4_driver);
5113         debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
5114 }
5115
5116 module_init(cxgb4_init_module);
5117 module_exit(cxgb4_cleanup_module);