cxgb4: Add support for ndo_get_vf_config
[cascardo/linux.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <asm/uaccess.h>
67 #include <linux/crash_dump.h>
68
69 #include "cxgb4.h"
70 #include "t4_regs.h"
71 #include "t4_values.h"
72 #include "t4_msg.h"
73 #include "t4fw_api.h"
74 #include "t4fw_version.h"
75 #include "cxgb4_dcb.h"
76 #include "cxgb4_debugfs.h"
77 #include "clip_tbl.h"
78 #include "l2t.h"
79 #include "sched.h"
80
81 char cxgb4_driver_name[] = KBUILD_MODNAME;
82
83 #ifdef DRV_VERSION
84 #undef DRV_VERSION
85 #endif
86 #define DRV_VERSION "2.0.0-ko"
87 const char cxgb4_driver_version[] = DRV_VERSION;
88 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
89
90 /* Host shadow copy of ingress filter entry.  This is in host native format
91  * and doesn't match the ordering or bit order, etc. of the hardware of the
92  * firmware command.  The use of bit-field structure elements is purely to
93  * remind ourselves of the field size limitations and save memory in the case
94  * where the filter table is large.
95  */
96 struct filter_entry {
97         /* Administrative fields for filter.
98          */
99         u32 valid:1;            /* filter allocated and valid */
100         u32 locked:1;           /* filter is administratively locked */
101
102         u32 pending:1;          /* filter action is pending firmware reply */
103         u32 smtidx:8;           /* Source MAC Table index for smac */
104         struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
105
106         /* The filter itself.  Most of this is a straight copy of information
107          * provided by the extended ioctl().  Some fields are translated to
108          * internal forms -- for instance the Ingress Queue ID passed in from
109          * the ioctl() is translated into the Absolute Ingress Queue ID.
110          */
111         struct ch_filter_specification fs;
112 };
113
114 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
115                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
116                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
117
118 /* Macros needed to support the PCI Device ID Table ...
119  */
120 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
121         static const struct pci_device_id cxgb4_pci_tbl[] = {
122 #define CH_PCI_DEVICE_ID_FUNCTION 0x4
123
124 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
125  * called for both.
126  */
127 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
128
129 #define CH_PCI_ID_TABLE_ENTRY(devid) \
130                 {PCI_VDEVICE(CHELSIO, (devid)), 4}
131
132 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
133                 { 0, } \
134         }
135
136 #include "t4_pci_id_tbl.h"
137
138 #define FW4_FNAME "cxgb4/t4fw.bin"
139 #define FW5_FNAME "cxgb4/t5fw.bin"
140 #define FW6_FNAME "cxgb4/t6fw.bin"
141 #define FW4_CFNAME "cxgb4/t4-config.txt"
142 #define FW5_CFNAME "cxgb4/t5-config.txt"
143 #define FW6_CFNAME "cxgb4/t6-config.txt"
144 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
145 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
146 #define PHY_AQ1202_DEVICEID 0x4409
147 #define PHY_BCM84834_DEVICEID 0x4486
148
149 MODULE_DESCRIPTION(DRV_DESC);
150 MODULE_AUTHOR("Chelsio Communications");
151 MODULE_LICENSE("Dual BSD/GPL");
152 MODULE_VERSION(DRV_VERSION);
153 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
154 MODULE_FIRMWARE(FW4_FNAME);
155 MODULE_FIRMWARE(FW5_FNAME);
156 MODULE_FIRMWARE(FW6_FNAME);
157
158 /*
159  * Normally we're willing to become the firmware's Master PF but will be happy
160  * if another PF has already become the Master and initialized the adapter.
161  * Setting "force_init" will cause this driver to forcibly establish itself as
162  * the Master PF and initialize the adapter.
163  */
164 static uint force_init;
165
166 module_param(force_init, uint, 0644);
167 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter,"
168                  "deprecated parameter");
169
170 static int dflt_msg_enable = DFLT_MSG_ENABLE;
171
172 module_param(dflt_msg_enable, int, 0644);
173 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap, "
174                  "deprecated parameter");
175
176 /*
177  * The driver uses the best interrupt scheme available on a platform in the
178  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
179  * of these schemes the driver may consider as follows:
180  *
181  * msi = 2: choose from among all three options
182  * msi = 1: only consider MSI and INTx interrupts
183  * msi = 0: force INTx interrupts
184  */
185 static int msi = 2;
186
187 module_param(msi, int, 0644);
188 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
189
190 /*
191  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
192  * offset by 2 bytes in order to have the IP headers line up on 4-byte
193  * boundaries.  This is a requirement for many architectures which will throw
194  * a machine check fault if an attempt is made to access one of the 4-byte IP
195  * header fields on a non-4-byte boundary.  And it's a major performance issue
196  * even on some architectures which allow it like some implementations of the
197  * x86 ISA.  However, some architectures don't mind this and for some very
198  * edge-case performance sensitive applications (like forwarding large volumes
199  * of small packets), setting this DMA offset to 0 will decrease the number of
200  * PCI-E Bus transfers enough to measurably affect performance.
201  */
202 static int rx_dma_offset = 2;
203
204 #ifdef CONFIG_PCI_IOV
205 /* Configure the number of PCI-E Virtual Function which are to be instantiated
206  * on SR-IOV Capable Physical Functions.
207  */
208 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
209
210 module_param_array(num_vf, uint, NULL, 0644);
211 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3, deprecated parameter - please use the pci sysfs interface.");
212 #endif
213
214 /* TX Queue select used to determine what algorithm to use for selecting TX
215  * queue. Select between the kernel provided function (select_queue=0) or user
216  * cxgb_select_queue function (select_queue=1)
217  *
218  * Default: select_queue=0
219  */
220 static int select_queue;
221 module_param(select_queue, int, 0644);
222 MODULE_PARM_DESC(select_queue,
223                  "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
224
225 static struct dentry *cxgb4_debugfs_root;
226
227 LIST_HEAD(adapter_list);
228 DEFINE_MUTEX(uld_mutex);
229 /* Adapter list to be accessed from atomic context */
230 static LIST_HEAD(adap_rcu_list);
231 static DEFINE_SPINLOCK(adap_rcu_lock);
232 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
233 static const char *const uld_str[] = { "RDMA", "iSCSI", "iSCSIT" };
234
235 static void link_report(struct net_device *dev)
236 {
237         if (!netif_carrier_ok(dev))
238                 netdev_info(dev, "link down\n");
239         else {
240                 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
241
242                 const char *s;
243                 const struct port_info *p = netdev_priv(dev);
244
245                 switch (p->link_cfg.speed) {
246                 case 10000:
247                         s = "10Gbps";
248                         break;
249                 case 1000:
250                         s = "1000Mbps";
251                         break;
252                 case 100:
253                         s = "100Mbps";
254                         break;
255                 case 40000:
256                         s = "40Gbps";
257                         break;
258                 default:
259                         pr_info("%s: unsupported speed: %d\n",
260                                 dev->name, p->link_cfg.speed);
261                         return;
262                 }
263
264                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
265                             fc[p->link_cfg.fc]);
266         }
267 }
268
269 #ifdef CONFIG_CHELSIO_T4_DCB
270 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
271 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
272 {
273         struct port_info *pi = netdev_priv(dev);
274         struct adapter *adap = pi->adapter;
275         struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
276         int i;
277
278         /* We use a simple mapping of Port TX Queue Index to DCB
279          * Priority when we're enabling DCB.
280          */
281         for (i = 0; i < pi->nqsets; i++, txq++) {
282                 u32 name, value;
283                 int err;
284
285                 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
286                         FW_PARAMS_PARAM_X_V(
287                                 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
288                         FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
289                 value = enable ? i : 0xffffffff;
290
291                 /* Since we can be called while atomic (from "interrupt
292                  * level") we need to issue the Set Parameters Commannd
293                  * without sleeping (timeout < 0).
294                  */
295                 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
296                                             &name, &value,
297                                             -FW_CMD_MAX_TIMEOUT);
298
299                 if (err)
300                         dev_err(adap->pdev_dev,
301                                 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
302                                 enable ? "set" : "unset", pi->port_id, i, -err);
303                 else
304                         txq->dcb_prio = value;
305         }
306 }
307 #endif /* CONFIG_CHELSIO_T4_DCB */
308
309 int cxgb4_dcb_enabled(const struct net_device *dev)
310 {
311 #ifdef CONFIG_CHELSIO_T4_DCB
312         struct port_info *pi = netdev_priv(dev);
313
314         if (!pi->dcb.enabled)
315                 return 0;
316
317         return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
318                 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
319 #else
320         return 0;
321 #endif
322 }
323 EXPORT_SYMBOL(cxgb4_dcb_enabled);
324
325 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
326 {
327         struct net_device *dev = adapter->port[port_id];
328
329         /* Skip changes from disabled ports. */
330         if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
331                 if (link_stat)
332                         netif_carrier_on(dev);
333                 else {
334 #ifdef CONFIG_CHELSIO_T4_DCB
335                         if (cxgb4_dcb_enabled(dev)) {
336                                 cxgb4_dcb_state_init(dev);
337                                 dcb_tx_queue_prio_enable(dev, false);
338                         }
339 #endif /* CONFIG_CHELSIO_T4_DCB */
340                         netif_carrier_off(dev);
341                 }
342
343                 link_report(dev);
344         }
345 }
346
347 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
348 {
349         static const char *mod_str[] = {
350                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
351         };
352
353         const struct net_device *dev = adap->port[port_id];
354         const struct port_info *pi = netdev_priv(dev);
355
356         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
357                 netdev_info(dev, "port module unplugged\n");
358         else if (pi->mod_type < ARRAY_SIZE(mod_str))
359                 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
360         else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
361                 netdev_info(dev, "%s: unsupported port module inserted\n",
362                             dev->name);
363         else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
364                 netdev_info(dev, "%s: unknown port module inserted\n",
365                             dev->name);
366         else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
367                 netdev_info(dev, "%s: transceiver module error\n", dev->name);
368         else
369                 netdev_info(dev, "%s: unknown module type %d inserted\n",
370                             dev->name, pi->mod_type);
371 }
372
373 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
374 module_param(dbfifo_int_thresh, int, 0644);
375 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
376
377 /*
378  * usecs to sleep while draining the dbfifo
379  */
380 static int dbfifo_drain_delay = 1000;
381 module_param(dbfifo_drain_delay, int, 0644);
382 MODULE_PARM_DESC(dbfifo_drain_delay,
383                  "usecs to sleep while draining the dbfifo");
384
385 static inline int cxgb4_set_addr_hash(struct port_info *pi)
386 {
387         struct adapter *adap = pi->adapter;
388         u64 vec = 0;
389         bool ucast = false;
390         struct hash_mac_addr *entry;
391
392         /* Calculate the hash vector for the updated list and program it */
393         list_for_each_entry(entry, &adap->mac_hlist, list) {
394                 ucast |= is_unicast_ether_addr(entry->addr);
395                 vec |= (1ULL << hash_mac_addr(entry->addr));
396         }
397         return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
398                                 vec, false);
399 }
400
401 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
402 {
403         struct port_info *pi = netdev_priv(netdev);
404         struct adapter *adap = pi->adapter;
405         int ret;
406         u64 mhash = 0;
407         u64 uhash = 0;
408         bool free = false;
409         bool ucast = is_unicast_ether_addr(mac_addr);
410         const u8 *maclist[1] = {mac_addr};
411         struct hash_mac_addr *new_entry;
412
413         ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
414                                 NULL, ucast ? &uhash : &mhash, false);
415         if (ret < 0)
416                 goto out;
417         /* if hash != 0, then add the addr to hash addr list
418          * so on the end we will calculate the hash for the
419          * list and program it
420          */
421         if (uhash || mhash) {
422                 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
423                 if (!new_entry)
424                         return -ENOMEM;
425                 ether_addr_copy(new_entry->addr, mac_addr);
426                 list_add_tail(&new_entry->list, &adap->mac_hlist);
427                 ret = cxgb4_set_addr_hash(pi);
428         }
429 out:
430         return ret < 0 ? ret : 0;
431 }
432
433 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
434 {
435         struct port_info *pi = netdev_priv(netdev);
436         struct adapter *adap = pi->adapter;
437         int ret;
438         const u8 *maclist[1] = {mac_addr};
439         struct hash_mac_addr *entry, *tmp;
440
441         /* If the MAC address to be removed is in the hash addr
442          * list, delete it from the list and update hash vector
443          */
444         list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
445                 if (ether_addr_equal(entry->addr, mac_addr)) {
446                         list_del(&entry->list);
447                         kfree(entry);
448                         return cxgb4_set_addr_hash(pi);
449                 }
450         }
451
452         ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
453         return ret < 0 ? -EINVAL : 0;
454 }
455
456 /*
457  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
458  * If @mtu is -1 it is left unchanged.
459  */
460 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
461 {
462         struct port_info *pi = netdev_priv(dev);
463         struct adapter *adapter = pi->adapter;
464
465         __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
466         __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
467
468         return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
469                              (dev->flags & IFF_PROMISC) ? 1 : 0,
470                              (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
471                              sleep_ok);
472 }
473
474 /**
475  *      link_start - enable a port
476  *      @dev: the port to enable
477  *
478  *      Performs the MAC and PHY actions needed to enable a port.
479  */
480 static int link_start(struct net_device *dev)
481 {
482         int ret;
483         struct port_info *pi = netdev_priv(dev);
484         unsigned int mb = pi->adapter->pf;
485
486         /*
487          * We do not set address filters and promiscuity here, the stack does
488          * that step explicitly.
489          */
490         ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
491                             !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
492         if (ret == 0) {
493                 ret = t4_change_mac(pi->adapter, mb, pi->viid,
494                                     pi->xact_addr_filt, dev->dev_addr, true,
495                                     true);
496                 if (ret >= 0) {
497                         pi->xact_addr_filt = ret;
498                         ret = 0;
499                 }
500         }
501         if (ret == 0)
502                 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
503                                     &pi->link_cfg);
504         if (ret == 0) {
505                 local_bh_disable();
506                 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
507                                           true, CXGB4_DCB_ENABLED);
508                 local_bh_enable();
509         }
510
511         return ret;
512 }
513
514 #ifdef CONFIG_CHELSIO_T4_DCB
515 /* Handle a Data Center Bridging update message from the firmware. */
516 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
517 {
518         int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
519         struct net_device *dev = adap->port[adap->chan_map[port]];
520         int old_dcb_enabled = cxgb4_dcb_enabled(dev);
521         int new_dcb_enabled;
522
523         cxgb4_dcb_handle_fw_update(adap, pcmd);
524         new_dcb_enabled = cxgb4_dcb_enabled(dev);
525
526         /* If the DCB has become enabled or disabled on the port then we're
527          * going to need to set up/tear down DCB Priority parameters for the
528          * TX Queues associated with the port.
529          */
530         if (new_dcb_enabled != old_dcb_enabled)
531                 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
532 }
533 #endif /* CONFIG_CHELSIO_T4_DCB */
534
535 /* Clear a filter and release any of its resources that we own.  This also
536  * clears the filter's "pending" status.
537  */
538 static void clear_filter(struct adapter *adap, struct filter_entry *f)
539 {
540         /* If the new or old filter have loopback rewriteing rules then we'll
541          * need to free any existing Layer Two Table (L2T) entries of the old
542          * filter rule.  The firmware will handle freeing up any Source MAC
543          * Table (SMT) entries used for rewriting Source MAC Addresses in
544          * loopback rules.
545          */
546         if (f->l2t)
547                 cxgb4_l2t_release(f->l2t);
548
549         /* The zeroing of the filter rule below clears the filter valid,
550          * pending, locked flags, l2t pointer, etc. so it's all we need for
551          * this operation.
552          */
553         memset(f, 0, sizeof(*f));
554 }
555
556 /* Handle a filter write/deletion reply.
557  */
558 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
559 {
560         unsigned int idx = GET_TID(rpl);
561         unsigned int nidx = idx - adap->tids.ftid_base;
562         unsigned int ret;
563         struct filter_entry *f;
564
565         if (idx >= adap->tids.ftid_base && nidx <
566            (adap->tids.nftids + adap->tids.nsftids)) {
567                 idx = nidx;
568                 ret = TCB_COOKIE_G(rpl->cookie);
569                 f = &adap->tids.ftid_tab[idx];
570
571                 if (ret == FW_FILTER_WR_FLT_DELETED) {
572                         /* Clear the filter when we get confirmation from the
573                          * hardware that the filter has been deleted.
574                          */
575                         clear_filter(adap, f);
576                 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
577                         dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
578                                 idx);
579                         clear_filter(adap, f);
580                 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
581                         f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
582                         f->pending = 0;  /* asynchronous setup completed */
583                         f->valid = 1;
584                 } else {
585                         /* Something went wrong.  Issue a warning about the
586                          * problem and clear everything out.
587                          */
588                         dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
589                                 idx, ret);
590                         clear_filter(adap, f);
591                 }
592         }
593 }
594
595 /* Response queue handler for the FW event queue.
596  */
597 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
598                           const struct pkt_gl *gl)
599 {
600         u8 opcode = ((const struct rss_header *)rsp)->opcode;
601
602         rsp++;                                          /* skip RSS header */
603
604         /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
605          */
606         if (unlikely(opcode == CPL_FW4_MSG &&
607            ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
608                 rsp++;
609                 opcode = ((const struct rss_header *)rsp)->opcode;
610                 rsp++;
611                 if (opcode != CPL_SGE_EGR_UPDATE) {
612                         dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
613                                 , opcode);
614                         goto out;
615                 }
616         }
617
618         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
619                 const struct cpl_sge_egr_update *p = (void *)rsp;
620                 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
621                 struct sge_txq *txq;
622
623                 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
624                 txq->restarts++;
625                 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
626                         struct sge_eth_txq *eq;
627
628                         eq = container_of(txq, struct sge_eth_txq, q);
629                         netif_tx_wake_queue(eq->txq);
630                 } else {
631                         struct sge_ofld_txq *oq;
632
633                         oq = container_of(txq, struct sge_ofld_txq, q);
634                         tasklet_schedule(&oq->qresume_tsk);
635                 }
636         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
637                 const struct cpl_fw6_msg *p = (void *)rsp;
638
639 #ifdef CONFIG_CHELSIO_T4_DCB
640                 const struct fw_port_cmd *pcmd = (const void *)p->data;
641                 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
642                 unsigned int action =
643                         FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
644
645                 if (cmd == FW_PORT_CMD &&
646                     action == FW_PORT_ACTION_GET_PORT_INFO) {
647                         int port = FW_PORT_CMD_PORTID_G(
648                                         be32_to_cpu(pcmd->op_to_portid));
649                         struct net_device *dev =
650                                 q->adap->port[q->adap->chan_map[port]];
651                         int state_input = ((pcmd->u.info.dcbxdis_pkd &
652                                             FW_PORT_CMD_DCBXDIS_F)
653                                            ? CXGB4_DCB_INPUT_FW_DISABLED
654                                            : CXGB4_DCB_INPUT_FW_ENABLED);
655
656                         cxgb4_dcb_state_fsm(dev, state_input);
657                 }
658
659                 if (cmd == FW_PORT_CMD &&
660                     action == FW_PORT_ACTION_L2_DCB_CFG)
661                         dcb_rpl(q->adap, pcmd);
662                 else
663 #endif
664                         if (p->type == 0)
665                                 t4_handle_fw_rpl(q->adap, p->data);
666         } else if (opcode == CPL_L2T_WRITE_RPL) {
667                 const struct cpl_l2t_write_rpl *p = (void *)rsp;
668
669                 do_l2t_write_rpl(q->adap, p);
670         } else if (opcode == CPL_SET_TCB_RPL) {
671                 const struct cpl_set_tcb_rpl *p = (void *)rsp;
672
673                 filter_rpl(q->adap, p);
674         } else
675                 dev_err(q->adap->pdev_dev,
676                         "unexpected CPL %#x on FW event queue\n", opcode);
677 out:
678         return 0;
679 }
680
681 /* Flush the aggregated lro sessions */
682 static void uldrx_flush_handler(struct sge_rspq *q)
683 {
684         if (ulds[q->uld].lro_flush)
685                 ulds[q->uld].lro_flush(&q->lro_mgr);
686 }
687
688 /**
689  *      uldrx_handler - response queue handler for ULD queues
690  *      @q: the response queue that received the packet
691  *      @rsp: the response queue descriptor holding the offload message
692  *      @gl: the gather list of packet fragments
693  *
694  *      Deliver an ingress offload packet to a ULD.  All processing is done by
695  *      the ULD, we just maintain statistics.
696  */
697 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
698                          const struct pkt_gl *gl)
699 {
700         struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
701         int ret;
702
703         /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
704          */
705         if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
706             ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
707                 rsp += 2;
708
709         if (q->flush_handler)
710                 ret = ulds[q->uld].lro_rx_handler(q->adap->uld_handle[q->uld],
711                                                   rsp, gl, &q->lro_mgr,
712                                                   &q->napi);
713         else
714                 ret = ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld],
715                                               rsp, gl);
716
717         if (ret) {
718                 rxq->stats.nomem++;
719                 return -1;
720         }
721
722         if (gl == NULL)
723                 rxq->stats.imm++;
724         else if (gl == CXGB4_MSG_AN)
725                 rxq->stats.an++;
726         else
727                 rxq->stats.pkts++;
728         return 0;
729 }
730
731 static void disable_msi(struct adapter *adapter)
732 {
733         if (adapter->flags & USING_MSIX) {
734                 pci_disable_msix(adapter->pdev);
735                 adapter->flags &= ~USING_MSIX;
736         } else if (adapter->flags & USING_MSI) {
737                 pci_disable_msi(adapter->pdev);
738                 adapter->flags &= ~USING_MSI;
739         }
740 }
741
742 /*
743  * Interrupt handler for non-data events used with MSI-X.
744  */
745 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
746 {
747         struct adapter *adap = cookie;
748         u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
749
750         if (v & PFSW_F) {
751                 adap->swintr = 1;
752                 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
753         }
754         if (adap->flags & MASTER_PF)
755                 t4_slow_intr_handler(adap);
756         return IRQ_HANDLED;
757 }
758
759 /*
760  * Name the MSI-X interrupts.
761  */
762 static void name_msix_vecs(struct adapter *adap)
763 {
764         int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
765
766         /* non-data interrupts */
767         snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
768
769         /* FW events */
770         snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
771                  adap->port[0]->name);
772
773         /* Ethernet queues */
774         for_each_port(adap, j) {
775                 struct net_device *d = adap->port[j];
776                 const struct port_info *pi = netdev_priv(d);
777
778                 for (i = 0; i < pi->nqsets; i++, msi_idx++)
779                         snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
780                                  d->name, i);
781         }
782
783         /* offload queues */
784         for_each_iscsirxq(&adap->sge, i)
785                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-iscsi%d",
786                          adap->port[0]->name, i);
787
788         for_each_iscsitrxq(&adap->sge, i)
789                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-iSCSIT%d",
790                          adap->port[0]->name, i);
791
792         for_each_rdmarxq(&adap->sge, i)
793                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
794                          adap->port[0]->name, i);
795
796         for_each_rdmaciq(&adap->sge, i)
797                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
798                          adap->port[0]->name, i);
799 }
800
801 static int request_msix_queue_irqs(struct adapter *adap)
802 {
803         struct sge *s = &adap->sge;
804         int err, ethqidx, iscsiqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
805         int iscsitqidx = 0;
806         int msi_index = 2;
807
808         err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
809                           adap->msix_info[1].desc, &s->fw_evtq);
810         if (err)
811                 return err;
812
813         for_each_ethrxq(s, ethqidx) {
814                 err = request_irq(adap->msix_info[msi_index].vec,
815                                   t4_sge_intr_msix, 0,
816                                   adap->msix_info[msi_index].desc,
817                                   &s->ethrxq[ethqidx].rspq);
818                 if (err)
819                         goto unwind;
820                 msi_index++;
821         }
822         for_each_iscsirxq(s, iscsiqidx) {
823                 err = request_irq(adap->msix_info[msi_index].vec,
824                                   t4_sge_intr_msix, 0,
825                                   adap->msix_info[msi_index].desc,
826                                   &s->iscsirxq[iscsiqidx].rspq);
827                 if (err)
828                         goto unwind;
829                 msi_index++;
830         }
831         for_each_iscsitrxq(s, iscsitqidx) {
832                 err = request_irq(adap->msix_info[msi_index].vec,
833                                   t4_sge_intr_msix, 0,
834                                   adap->msix_info[msi_index].desc,
835                                   &s->iscsitrxq[iscsitqidx].rspq);
836                 if (err)
837                         goto unwind;
838                 msi_index++;
839         }
840         for_each_rdmarxq(s, rdmaqidx) {
841                 err = request_irq(adap->msix_info[msi_index].vec,
842                                   t4_sge_intr_msix, 0,
843                                   adap->msix_info[msi_index].desc,
844                                   &s->rdmarxq[rdmaqidx].rspq);
845                 if (err)
846                         goto unwind;
847                 msi_index++;
848         }
849         for_each_rdmaciq(s, rdmaciqqidx) {
850                 err = request_irq(adap->msix_info[msi_index].vec,
851                                   t4_sge_intr_msix, 0,
852                                   adap->msix_info[msi_index].desc,
853                                   &s->rdmaciq[rdmaciqqidx].rspq);
854                 if (err)
855                         goto unwind;
856                 msi_index++;
857         }
858         return 0;
859
860 unwind:
861         while (--rdmaciqqidx >= 0)
862                 free_irq(adap->msix_info[--msi_index].vec,
863                          &s->rdmaciq[rdmaciqqidx].rspq);
864         while (--rdmaqidx >= 0)
865                 free_irq(adap->msix_info[--msi_index].vec,
866                          &s->rdmarxq[rdmaqidx].rspq);
867         while (--iscsitqidx >= 0)
868                 free_irq(adap->msix_info[--msi_index].vec,
869                          &s->iscsitrxq[iscsitqidx].rspq);
870         while (--iscsiqidx >= 0)
871                 free_irq(adap->msix_info[--msi_index].vec,
872                          &s->iscsirxq[iscsiqidx].rspq);
873         while (--ethqidx >= 0)
874                 free_irq(adap->msix_info[--msi_index].vec,
875                          &s->ethrxq[ethqidx].rspq);
876         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
877         return err;
878 }
879
880 static void free_msix_queue_irqs(struct adapter *adap)
881 {
882         int i, msi_index = 2;
883         struct sge *s = &adap->sge;
884
885         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
886         for_each_ethrxq(s, i)
887                 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
888         for_each_iscsirxq(s, i)
889                 free_irq(adap->msix_info[msi_index++].vec,
890                          &s->iscsirxq[i].rspq);
891         for_each_iscsitrxq(s, i)
892                 free_irq(adap->msix_info[msi_index++].vec,
893                          &s->iscsitrxq[i].rspq);
894         for_each_rdmarxq(s, i)
895                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
896         for_each_rdmaciq(s, i)
897                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
898 }
899
900 /**
901  *      cxgb4_write_rss - write the RSS table for a given port
902  *      @pi: the port
903  *      @queues: array of queue indices for RSS
904  *
905  *      Sets up the portion of the HW RSS table for the port's VI to distribute
906  *      packets to the Rx queues in @queues.
907  *      Should never be called before setting up sge eth rx queues
908  */
909 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
910 {
911         u16 *rss;
912         int i, err;
913         struct adapter *adapter = pi->adapter;
914         const struct sge_eth_rxq *rxq;
915
916         rxq = &adapter->sge.ethrxq[pi->first_qset];
917         rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
918         if (!rss)
919                 return -ENOMEM;
920
921         /* map the queue indices to queue ids */
922         for (i = 0; i < pi->rss_size; i++, queues++)
923                 rss[i] = rxq[*queues].rspq.abs_id;
924
925         err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
926                                   pi->rss_size, rss, pi->rss_size);
927         /* If Tunnel All Lookup isn't specified in the global RSS
928          * Configuration, then we need to specify a default Ingress
929          * Queue for any ingress packets which aren't hashed.  We'll
930          * use our first ingress queue ...
931          */
932         if (!err)
933                 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
934                                        FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
935                                        FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
936                                        FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
937                                        FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
938                                        FW_RSS_VI_CONFIG_CMD_UDPEN_F,
939                                        rss[0]);
940         kfree(rss);
941         return err;
942 }
943
944 /**
945  *      setup_rss - configure RSS
946  *      @adap: the adapter
947  *
948  *      Sets up RSS for each port.
949  */
950 static int setup_rss(struct adapter *adap)
951 {
952         int i, j, err;
953
954         for_each_port(adap, i) {
955                 const struct port_info *pi = adap2pinfo(adap, i);
956
957                 /* Fill default values with equal distribution */
958                 for (j = 0; j < pi->rss_size; j++)
959                         pi->rss[j] = j % pi->nqsets;
960
961                 err = cxgb4_write_rss(pi, pi->rss);
962                 if (err)
963                         return err;
964         }
965         return 0;
966 }
967
968 /*
969  * Return the channel of the ingress queue with the given qid.
970  */
971 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
972 {
973         qid -= p->ingr_start;
974         return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
975 }
976
977 /*
978  * Wait until all NAPI handlers are descheduled.
979  */
980 static void quiesce_rx(struct adapter *adap)
981 {
982         int i;
983
984         for (i = 0; i < adap->sge.ingr_sz; i++) {
985                 struct sge_rspq *q = adap->sge.ingr_map[i];
986
987                 if (q && q->handler) {
988                         napi_disable(&q->napi);
989                         local_bh_disable();
990                         while (!cxgb_poll_lock_napi(q))
991                                 mdelay(1);
992                         local_bh_enable();
993                 }
994
995         }
996 }
997
998 /* Disable interrupt and napi handler */
999 static void disable_interrupts(struct adapter *adap)
1000 {
1001         if (adap->flags & FULL_INIT_DONE) {
1002                 t4_intr_disable(adap);
1003                 if (adap->flags & USING_MSIX) {
1004                         free_msix_queue_irqs(adap);
1005                         free_irq(adap->msix_info[0].vec, adap);
1006                 } else {
1007                         free_irq(adap->pdev->irq, adap);
1008                 }
1009                 quiesce_rx(adap);
1010         }
1011 }
1012
1013 /*
1014  * Enable NAPI scheduling and interrupt generation for all Rx queues.
1015  */
1016 static void enable_rx(struct adapter *adap)
1017 {
1018         int i;
1019
1020         for (i = 0; i < adap->sge.ingr_sz; i++) {
1021                 struct sge_rspq *q = adap->sge.ingr_map[i];
1022
1023                 if (!q)
1024                         continue;
1025                 if (q->handler) {
1026                         cxgb_busy_poll_init_lock(q);
1027                         napi_enable(&q->napi);
1028                 }
1029                 /* 0-increment GTS to start the timer and enable interrupts */
1030                 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
1031                              SEINTARM_V(q->intr_params) |
1032                              INGRESSQID_V(q->cntxt_id));
1033         }
1034 }
1035
1036 static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q,
1037                            unsigned int nq, unsigned int per_chan, int msi_idx,
1038                            u16 *ids, bool lro)
1039 {
1040         int i, err;
1041
1042         for (i = 0; i < nq; i++, q++) {
1043                 if (msi_idx > 0)
1044                         msi_idx++;
1045                 err = t4_sge_alloc_rxq(adap, &q->rspq, false,
1046                                        adap->port[i / per_chan],
1047                                        msi_idx, q->fl.size ? &q->fl : NULL,
1048                                        uldrx_handler,
1049                                        lro ? uldrx_flush_handler : NULL,
1050                                        0);
1051                 if (err)
1052                         return err;
1053                 memset(&q->stats, 0, sizeof(q->stats));
1054                 if (ids)
1055                         ids[i] = q->rspq.abs_id;
1056         }
1057         return 0;
1058 }
1059
1060 /**
1061  *      setup_sge_queues - configure SGE Tx/Rx/response queues
1062  *      @adap: the adapter
1063  *
1064  *      Determines how many sets of SGE queues to use and initializes them.
1065  *      We support multiple queue sets per port if we have MSI-X, otherwise
1066  *      just one queue set per port.
1067  */
1068 static int setup_sge_queues(struct adapter *adap)
1069 {
1070         int err, i, j;
1071         struct sge *s = &adap->sge;
1072
1073         bitmap_zero(s->starving_fl, s->egr_sz);
1074         bitmap_zero(s->txq_maperr, s->egr_sz);
1075
1076         if (adap->flags & USING_MSIX)
1077                 adap->msi_idx = 1;         /* vector 0 is for non-queue interrupts */
1078         else {
1079                 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1080                                        NULL, NULL, NULL, -1);
1081                 if (err)
1082                         return err;
1083                 adap->msi_idx = -((int)s->intrq.abs_id + 1);
1084         }
1085
1086         /* NOTE: If you add/delete any Ingress/Egress Queue allocations in here,
1087          * don't forget to update the following which need to be
1088          * synchronized to and changes here.
1089          *
1090          * 1. The calculations of MAX_INGQ in cxgb4.h.
1091          *
1092          * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs
1093          *    to accommodate any new/deleted Ingress Queues
1094          *    which need MSI-X Vectors.
1095          *
1096          * 3. Update sge_qinfo_show() to include information on the
1097          *    new/deleted queues.
1098          */
1099         err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1100                                adap->msi_idx, NULL, fwevtq_handler, NULL, -1);
1101         if (err) {
1102 freeout:        t4_free_sge_resources(adap);
1103                 return err;
1104         }
1105
1106         for_each_port(adap, i) {
1107                 struct net_device *dev = adap->port[i];
1108                 struct port_info *pi = netdev_priv(dev);
1109                 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1110                 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1111
1112                 for (j = 0; j < pi->nqsets; j++, q++) {
1113                         if (adap->msi_idx > 0)
1114                                 adap->msi_idx++;
1115                         err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1116                                                adap->msi_idx, &q->fl,
1117                                                t4_ethrx_handler,
1118                                                NULL,
1119                                                t4_get_mps_bg_map(adap,
1120                                                                  pi->tx_chan));
1121                         if (err)
1122                                 goto freeout;
1123                         q->rspq.idx = j;
1124                         memset(&q->stats, 0, sizeof(q->stats));
1125                 }
1126                 for (j = 0; j < pi->nqsets; j++, t++) {
1127                         err = t4_sge_alloc_eth_txq(adap, t, dev,
1128                                         netdev_get_tx_queue(dev, j),
1129                                         s->fw_evtq.cntxt_id);
1130                         if (err)
1131                                 goto freeout;
1132                 }
1133         }
1134
1135         j = s->iscsiqsets / adap->params.nports; /* iscsi queues per channel */
1136         for_each_iscsirxq(s, i) {
1137                 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
1138                                             adap->port[i / j],
1139                                             s->fw_evtq.cntxt_id);
1140                 if (err)
1141                         goto freeout;
1142         }
1143
1144 #define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids, lro) do { \
1145         err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, adap->msi_idx, ids, lro); \
1146         if (err) \
1147                 goto freeout; \
1148         if (adap->msi_idx > 0) \
1149                 adap->msi_idx += nq; \
1150 } while (0)
1151
1152         ALLOC_OFLD_RXQS(s->iscsirxq, s->iscsiqsets, j, s->iscsi_rxq, false);
1153         ALLOC_OFLD_RXQS(s->iscsitrxq, s->niscsitq, j, s->iscsit_rxq, true);
1154         ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq, false);
1155         j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */
1156         ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq, false);
1157
1158 #undef ALLOC_OFLD_RXQS
1159
1160         for_each_port(adap, i) {
1161                 /*
1162                  * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1163                  * have RDMA queues, and that's the right value.
1164                  */
1165                 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1166                                             s->fw_evtq.cntxt_id,
1167                                             s->rdmarxq[i].rspq.cntxt_id);
1168                 if (err)
1169                         goto freeout;
1170         }
1171
1172         t4_write_reg(adap, is_t4(adap->params.chip) ?
1173                                 MPS_TRC_RSS_CONTROL_A :
1174                                 MPS_T5_TRC_RSS_CONTROL_A,
1175                      RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1176                      QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1177         return 0;
1178 }
1179
1180 /*
1181  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1182  * The allocated memory is cleared.
1183  */
1184 void *t4_alloc_mem(size_t size)
1185 {
1186         void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1187
1188         if (!p)
1189                 p = vzalloc(size);
1190         return p;
1191 }
1192
1193 /*
1194  * Free memory allocated through alloc_mem().
1195  */
1196 void t4_free_mem(void *addr)
1197 {
1198         kvfree(addr);
1199 }
1200
1201 /* Send a Work Request to write the filter at a specified index.  We construct
1202  * a Firmware Filter Work Request to have the work done and put the indicated
1203  * filter into "pending" mode which will prevent any further actions against
1204  * it till we get a reply from the firmware on the completion status of the
1205  * request.
1206  */
1207 static int set_filter_wr(struct adapter *adapter, int fidx)
1208 {
1209         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1210         struct sk_buff *skb;
1211         struct fw_filter_wr *fwr;
1212         unsigned int ftid;
1213
1214         skb = alloc_skb(sizeof(*fwr), GFP_KERNEL);
1215         if (!skb)
1216                 return -ENOMEM;
1217
1218         /* If the new filter requires loopback Destination MAC and/or VLAN
1219          * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1220          * the filter.
1221          */
1222         if (f->fs.newdmac || f->fs.newvlan) {
1223                 /* allocate L2T entry for new filter */
1224                 f->l2t = t4_l2t_alloc_switching(adapter, f->fs.vlan,
1225                                                 f->fs.eport, f->fs.dmac);
1226                 if (f->l2t == NULL) {
1227                         kfree_skb(skb);
1228                         return -ENOMEM;
1229                 }
1230         }
1231
1232         ftid = adapter->tids.ftid_base + fidx;
1233
1234         fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1235         memset(fwr, 0, sizeof(*fwr));
1236
1237         /* It would be nice to put most of the following in t4_hw.c but most
1238          * of the work is translating the cxgbtool ch_filter_specification
1239          * into the Work Request and the definition of that structure is
1240          * currently in cxgbtool.h which isn't appropriate to pull into the
1241          * common code.  We may eventually try to come up with a more neutral
1242          * filter specification structure but for now it's easiest to simply
1243          * put this fairly direct code in line ...
1244          */
1245         fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
1246         fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
1247         fwr->tid_to_iq =
1248                 htonl(FW_FILTER_WR_TID_V(ftid) |
1249                       FW_FILTER_WR_RQTYPE_V(f->fs.type) |
1250                       FW_FILTER_WR_NOREPLY_V(0) |
1251                       FW_FILTER_WR_IQ_V(f->fs.iq));
1252         fwr->del_filter_to_l2tix =
1253                 htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
1254                       FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
1255                       FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
1256                       FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
1257                       FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
1258                       FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
1259                       FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
1260                       FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
1261                       FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
1262                                              f->fs.newvlan == VLAN_REWRITE) |
1263                       FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
1264                                             f->fs.newvlan == VLAN_REWRITE) |
1265                       FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
1266                       FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
1267                       FW_FILTER_WR_PRIO_V(f->fs.prio) |
1268                       FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
1269         fwr->ethtype = htons(f->fs.val.ethtype);
1270         fwr->ethtypem = htons(f->fs.mask.ethtype);
1271         fwr->frag_to_ovlan_vldm =
1272                 (FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
1273                  FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
1274                  FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
1275                  FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
1276                  FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
1277                  FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
1278         fwr->smac_sel = 0;
1279         fwr->rx_chan_rx_rpl_iq =
1280                 htons(FW_FILTER_WR_RX_CHAN_V(0) |
1281                       FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
1282         fwr->maci_to_matchtypem =
1283                 htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
1284                       FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
1285                       FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
1286                       FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
1287                       FW_FILTER_WR_PORT_V(f->fs.val.iport) |
1288                       FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
1289                       FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
1290                       FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
1291         fwr->ptcl = f->fs.val.proto;
1292         fwr->ptclm = f->fs.mask.proto;
1293         fwr->ttyp = f->fs.val.tos;
1294         fwr->ttypm = f->fs.mask.tos;
1295         fwr->ivlan = htons(f->fs.val.ivlan);
1296         fwr->ivlanm = htons(f->fs.mask.ivlan);
1297         fwr->ovlan = htons(f->fs.val.ovlan);
1298         fwr->ovlanm = htons(f->fs.mask.ovlan);
1299         memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1300         memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1301         memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1302         memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1303         fwr->lp = htons(f->fs.val.lport);
1304         fwr->lpm = htons(f->fs.mask.lport);
1305         fwr->fp = htons(f->fs.val.fport);
1306         fwr->fpm = htons(f->fs.mask.fport);
1307         if (f->fs.newsmac)
1308                 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1309
1310         /* Mark the filter as "pending" and ship off the Filter Work Request.
1311          * When we get the Work Request Reply we'll clear the pending status.
1312          */
1313         f->pending = 1;
1314         set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1315         t4_ofld_send(adapter, skb);
1316         return 0;
1317 }
1318
1319 /* Delete the filter at a specified index.
1320  */
1321 static int del_filter_wr(struct adapter *adapter, int fidx)
1322 {
1323         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1324         struct sk_buff *skb;
1325         struct fw_filter_wr *fwr;
1326         unsigned int len, ftid;
1327
1328         len = sizeof(*fwr);
1329         ftid = adapter->tids.ftid_base + fidx;
1330
1331         skb = alloc_skb(len, GFP_KERNEL);
1332         if (!skb)
1333                 return -ENOMEM;
1334
1335         fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1336         t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1337
1338         /* Mark the filter as "pending" and ship off the Filter Work Request.
1339          * When we get the Work Request Reply we'll clear the pending status.
1340          */
1341         f->pending = 1;
1342         t4_mgmt_tx(adapter, skb);
1343         return 0;
1344 }
1345
1346 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1347                              void *accel_priv, select_queue_fallback_t fallback)
1348 {
1349         int txq;
1350
1351 #ifdef CONFIG_CHELSIO_T4_DCB
1352         /* If a Data Center Bridging has been successfully negotiated on this
1353          * link then we'll use the skb's priority to map it to a TX Queue.
1354          * The skb's priority is determined via the VLAN Tag Priority Code
1355          * Point field.
1356          */
1357         if (cxgb4_dcb_enabled(dev)) {
1358                 u16 vlan_tci;
1359                 int err;
1360
1361                 err = vlan_get_tag(skb, &vlan_tci);
1362                 if (unlikely(err)) {
1363                         if (net_ratelimit())
1364                                 netdev_warn(dev,
1365                                             "TX Packet without VLAN Tag on DCB Link\n");
1366                         txq = 0;
1367                 } else {
1368                         txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1369 #ifdef CONFIG_CHELSIO_T4_FCOE
1370                         if (skb->protocol == htons(ETH_P_FCOE))
1371                                 txq = skb->priority & 0x7;
1372 #endif /* CONFIG_CHELSIO_T4_FCOE */
1373                 }
1374                 return txq;
1375         }
1376 #endif /* CONFIG_CHELSIO_T4_DCB */
1377
1378         if (select_queue) {
1379                 txq = (skb_rx_queue_recorded(skb)
1380                         ? skb_get_rx_queue(skb)
1381                         : smp_processor_id());
1382
1383                 while (unlikely(txq >= dev->real_num_tx_queues))
1384                         txq -= dev->real_num_tx_queues;
1385
1386                 return txq;
1387         }
1388
1389         return fallback(dev, skb) % dev->real_num_tx_queues;
1390 }
1391
1392 static int closest_timer(const struct sge *s, int time)
1393 {
1394         int i, delta, match = 0, min_delta = INT_MAX;
1395
1396         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1397                 delta = time - s->timer_val[i];
1398                 if (delta < 0)
1399                         delta = -delta;
1400                 if (delta < min_delta) {
1401                         min_delta = delta;
1402                         match = i;
1403                 }
1404         }
1405         return match;
1406 }
1407
1408 static int closest_thres(const struct sge *s, int thres)
1409 {
1410         int i, delta, match = 0, min_delta = INT_MAX;
1411
1412         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1413                 delta = thres - s->counter_val[i];
1414                 if (delta < 0)
1415                         delta = -delta;
1416                 if (delta < min_delta) {
1417                         min_delta = delta;
1418                         match = i;
1419                 }
1420         }
1421         return match;
1422 }
1423
1424 /**
1425  *      cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1426  *      @q: the Rx queue
1427  *      @us: the hold-off time in us, or 0 to disable timer
1428  *      @cnt: the hold-off packet count, or 0 to disable counter
1429  *
1430  *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
1431  *      one of the two needs to be enabled for the queue to generate interrupts.
1432  */
1433 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1434                                unsigned int us, unsigned int cnt)
1435 {
1436         struct adapter *adap = q->adap;
1437
1438         if ((us | cnt) == 0)
1439                 cnt = 1;
1440
1441         if (cnt) {
1442                 int err;
1443                 u32 v, new_idx;
1444
1445                 new_idx = closest_thres(&adap->sge, cnt);
1446                 if (q->desc && q->pktcnt_idx != new_idx) {
1447                         /* the queue has already been created, update it */
1448                         v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1449                             FW_PARAMS_PARAM_X_V(
1450                                         FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1451                             FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1452                         err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1453                                             &v, &new_idx);
1454                         if (err)
1455                                 return err;
1456                 }
1457                 q->pktcnt_idx = new_idx;
1458         }
1459
1460         us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1461         q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1462         return 0;
1463 }
1464
1465 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1466 {
1467         const struct port_info *pi = netdev_priv(dev);
1468         netdev_features_t changed = dev->features ^ features;
1469         int err;
1470
1471         if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1472                 return 0;
1473
1474         err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1475                             -1, -1, -1,
1476                             !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1477         if (unlikely(err))
1478                 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1479         return err;
1480 }
1481
1482 static int setup_debugfs(struct adapter *adap)
1483 {
1484         if (IS_ERR_OR_NULL(adap->debugfs_root))
1485                 return -1;
1486
1487 #ifdef CONFIG_DEBUG_FS
1488         t4_setup_debugfs(adap);
1489 #endif
1490         return 0;
1491 }
1492
1493 /*
1494  * upper-layer driver support
1495  */
1496
1497 /*
1498  * Allocate an active-open TID and set it to the supplied value.
1499  */
1500 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1501 {
1502         int atid = -1;
1503
1504         spin_lock_bh(&t->atid_lock);
1505         if (t->afree) {
1506                 union aopen_entry *p = t->afree;
1507
1508                 atid = (p - t->atid_tab) + t->atid_base;
1509                 t->afree = p->next;
1510                 p->data = data;
1511                 t->atids_in_use++;
1512         }
1513         spin_unlock_bh(&t->atid_lock);
1514         return atid;
1515 }
1516 EXPORT_SYMBOL(cxgb4_alloc_atid);
1517
1518 /*
1519  * Release an active-open TID.
1520  */
1521 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1522 {
1523         union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1524
1525         spin_lock_bh(&t->atid_lock);
1526         p->next = t->afree;
1527         t->afree = p;
1528         t->atids_in_use--;
1529         spin_unlock_bh(&t->atid_lock);
1530 }
1531 EXPORT_SYMBOL(cxgb4_free_atid);
1532
1533 /*
1534  * Allocate a server TID and set it to the supplied value.
1535  */
1536 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1537 {
1538         int stid;
1539
1540         spin_lock_bh(&t->stid_lock);
1541         if (family == PF_INET) {
1542                 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1543                 if (stid < t->nstids)
1544                         __set_bit(stid, t->stid_bmap);
1545                 else
1546                         stid = -1;
1547         } else {
1548                 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1549                 if (stid < 0)
1550                         stid = -1;
1551         }
1552         if (stid >= 0) {
1553                 t->stid_tab[stid].data = data;
1554                 stid += t->stid_base;
1555                 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1556                  * This is equivalent to 4 TIDs. With CLIP enabled it
1557                  * needs 2 TIDs.
1558                  */
1559                 if (family == PF_INET)
1560                         t->stids_in_use++;
1561                 else
1562                         t->stids_in_use += 2;
1563         }
1564         spin_unlock_bh(&t->stid_lock);
1565         return stid;
1566 }
1567 EXPORT_SYMBOL(cxgb4_alloc_stid);
1568
1569 /* Allocate a server filter TID and set it to the supplied value.
1570  */
1571 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1572 {
1573         int stid;
1574
1575         spin_lock_bh(&t->stid_lock);
1576         if (family == PF_INET) {
1577                 stid = find_next_zero_bit(t->stid_bmap,
1578                                 t->nstids + t->nsftids, t->nstids);
1579                 if (stid < (t->nstids + t->nsftids))
1580                         __set_bit(stid, t->stid_bmap);
1581                 else
1582                         stid = -1;
1583         } else {
1584                 stid = -1;
1585         }
1586         if (stid >= 0) {
1587                 t->stid_tab[stid].data = data;
1588                 stid -= t->nstids;
1589                 stid += t->sftid_base;
1590                 t->sftids_in_use++;
1591         }
1592         spin_unlock_bh(&t->stid_lock);
1593         return stid;
1594 }
1595 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1596
1597 /* Release a server TID.
1598  */
1599 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1600 {
1601         /* Is it a server filter TID? */
1602         if (t->nsftids && (stid >= t->sftid_base)) {
1603                 stid -= t->sftid_base;
1604                 stid += t->nstids;
1605         } else {
1606                 stid -= t->stid_base;
1607         }
1608
1609         spin_lock_bh(&t->stid_lock);
1610         if (family == PF_INET)
1611                 __clear_bit(stid, t->stid_bmap);
1612         else
1613                 bitmap_release_region(t->stid_bmap, stid, 1);
1614         t->stid_tab[stid].data = NULL;
1615         if (stid < t->nstids) {
1616                 if (family == PF_INET)
1617                         t->stids_in_use--;
1618                 else
1619                         t->stids_in_use -= 2;
1620         } else {
1621                 t->sftids_in_use--;
1622         }
1623         spin_unlock_bh(&t->stid_lock);
1624 }
1625 EXPORT_SYMBOL(cxgb4_free_stid);
1626
1627 /*
1628  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1629  */
1630 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1631                            unsigned int tid)
1632 {
1633         struct cpl_tid_release *req;
1634
1635         set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1636         req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1637         INIT_TP_WR(req, tid);
1638         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1639 }
1640
1641 /*
1642  * Queue a TID release request and if necessary schedule a work queue to
1643  * process it.
1644  */
1645 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1646                                     unsigned int tid)
1647 {
1648         void **p = &t->tid_tab[tid];
1649         struct adapter *adap = container_of(t, struct adapter, tids);
1650
1651         spin_lock_bh(&adap->tid_release_lock);
1652         *p = adap->tid_release_head;
1653         /* Low 2 bits encode the Tx channel number */
1654         adap->tid_release_head = (void **)((uintptr_t)p | chan);
1655         if (!adap->tid_release_task_busy) {
1656                 adap->tid_release_task_busy = true;
1657                 queue_work(adap->workq, &adap->tid_release_task);
1658         }
1659         spin_unlock_bh(&adap->tid_release_lock);
1660 }
1661
1662 /*
1663  * Process the list of pending TID release requests.
1664  */
1665 static void process_tid_release_list(struct work_struct *work)
1666 {
1667         struct sk_buff *skb;
1668         struct adapter *adap;
1669
1670         adap = container_of(work, struct adapter, tid_release_task);
1671
1672         spin_lock_bh(&adap->tid_release_lock);
1673         while (adap->tid_release_head) {
1674                 void **p = adap->tid_release_head;
1675                 unsigned int chan = (uintptr_t)p & 3;
1676                 p = (void *)p - chan;
1677
1678                 adap->tid_release_head = *p;
1679                 *p = NULL;
1680                 spin_unlock_bh(&adap->tid_release_lock);
1681
1682                 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1683                                          GFP_KERNEL)))
1684                         schedule_timeout_uninterruptible(1);
1685
1686                 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1687                 t4_ofld_send(adap, skb);
1688                 spin_lock_bh(&adap->tid_release_lock);
1689         }
1690         adap->tid_release_task_busy = false;
1691         spin_unlock_bh(&adap->tid_release_lock);
1692 }
1693
1694 /*
1695  * Release a TID and inform HW.  If we are unable to allocate the release
1696  * message we defer to a work queue.
1697  */
1698 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1699 {
1700         struct sk_buff *skb;
1701         struct adapter *adap = container_of(t, struct adapter, tids);
1702
1703         WARN_ON(tid >= t->ntids);
1704
1705         if (t->tid_tab[tid]) {
1706                 t->tid_tab[tid] = NULL;
1707                 if (t->hash_base && (tid >= t->hash_base))
1708                         atomic_dec(&t->hash_tids_in_use);
1709                 else
1710                         atomic_dec(&t->tids_in_use);
1711         }
1712
1713         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1714         if (likely(skb)) {
1715                 mk_tid_release(skb, chan, tid);
1716                 t4_ofld_send(adap, skb);
1717         } else
1718                 cxgb4_queue_tid_release(t, chan, tid);
1719 }
1720 EXPORT_SYMBOL(cxgb4_remove_tid);
1721
1722 /*
1723  * Allocate and initialize the TID tables.  Returns 0 on success.
1724  */
1725 static int tid_init(struct tid_info *t)
1726 {
1727         size_t size;
1728         unsigned int stid_bmap_size;
1729         unsigned int natids = t->natids;
1730         struct adapter *adap = container_of(t, struct adapter, tids);
1731
1732         stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1733         size = t->ntids * sizeof(*t->tid_tab) +
1734                natids * sizeof(*t->atid_tab) +
1735                t->nstids * sizeof(*t->stid_tab) +
1736                t->nsftids * sizeof(*t->stid_tab) +
1737                stid_bmap_size * sizeof(long) +
1738                t->nftids * sizeof(*t->ftid_tab) +
1739                t->nsftids * sizeof(*t->ftid_tab);
1740
1741         t->tid_tab = t4_alloc_mem(size);
1742         if (!t->tid_tab)
1743                 return -ENOMEM;
1744
1745         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1746         t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1747         t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1748         t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1749         spin_lock_init(&t->stid_lock);
1750         spin_lock_init(&t->atid_lock);
1751
1752         t->stids_in_use = 0;
1753         t->sftids_in_use = 0;
1754         t->afree = NULL;
1755         t->atids_in_use = 0;
1756         atomic_set(&t->tids_in_use, 0);
1757         atomic_set(&t->hash_tids_in_use, 0);
1758
1759         /* Setup the free list for atid_tab and clear the stid bitmap. */
1760         if (natids) {
1761                 while (--natids)
1762                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1763                 t->afree = t->atid_tab;
1764         }
1765         bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1766         /* Reserve stid 0 for T4/T5 adapters */
1767         if (!t->stid_base &&
1768             (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
1769                 __set_bit(0, t->stid_bmap);
1770
1771         return 0;
1772 }
1773
1774 /**
1775  *      cxgb4_create_server - create an IP server
1776  *      @dev: the device
1777  *      @stid: the server TID
1778  *      @sip: local IP address to bind server to
1779  *      @sport: the server's TCP port
1780  *      @queue: queue to direct messages from this server to
1781  *
1782  *      Create an IP server for the given port and address.
1783  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1784  */
1785 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1786                         __be32 sip, __be16 sport, __be16 vlan,
1787                         unsigned int queue)
1788 {
1789         unsigned int chan;
1790         struct sk_buff *skb;
1791         struct adapter *adap;
1792         struct cpl_pass_open_req *req;
1793         int ret;
1794
1795         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1796         if (!skb)
1797                 return -ENOMEM;
1798
1799         adap = netdev2adap(dev);
1800         req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1801         INIT_TP_WR(req, 0);
1802         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1803         req->local_port = sport;
1804         req->peer_port = htons(0);
1805         req->local_ip = sip;
1806         req->peer_ip = htonl(0);
1807         chan = rxq_to_chan(&adap->sge, queue);
1808         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1809         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1810                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1811         ret = t4_mgmt_tx(adap, skb);
1812         return net_xmit_eval(ret);
1813 }
1814 EXPORT_SYMBOL(cxgb4_create_server);
1815
1816 /*      cxgb4_create_server6 - create an IPv6 server
1817  *      @dev: the device
1818  *      @stid: the server TID
1819  *      @sip: local IPv6 address to bind server to
1820  *      @sport: the server's TCP port
1821  *      @queue: queue to direct messages from this server to
1822  *
1823  *      Create an IPv6 server for the given port and address.
1824  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1825  */
1826 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1827                          const struct in6_addr *sip, __be16 sport,
1828                          unsigned int queue)
1829 {
1830         unsigned int chan;
1831         struct sk_buff *skb;
1832         struct adapter *adap;
1833         struct cpl_pass_open_req6 *req;
1834         int ret;
1835
1836         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1837         if (!skb)
1838                 return -ENOMEM;
1839
1840         adap = netdev2adap(dev);
1841         req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1842         INIT_TP_WR(req, 0);
1843         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1844         req->local_port = sport;
1845         req->peer_port = htons(0);
1846         req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1847         req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1848         req->peer_ip_hi = cpu_to_be64(0);
1849         req->peer_ip_lo = cpu_to_be64(0);
1850         chan = rxq_to_chan(&adap->sge, queue);
1851         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1852         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1853                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1854         ret = t4_mgmt_tx(adap, skb);
1855         return net_xmit_eval(ret);
1856 }
1857 EXPORT_SYMBOL(cxgb4_create_server6);
1858
1859 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1860                         unsigned int queue, bool ipv6)
1861 {
1862         struct sk_buff *skb;
1863         struct adapter *adap;
1864         struct cpl_close_listsvr_req *req;
1865         int ret;
1866
1867         adap = netdev2adap(dev);
1868
1869         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1870         if (!skb)
1871                 return -ENOMEM;
1872
1873         req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1874         INIT_TP_WR(req, 0);
1875         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1876         req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1877                                 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1878         ret = t4_mgmt_tx(adap, skb);
1879         return net_xmit_eval(ret);
1880 }
1881 EXPORT_SYMBOL(cxgb4_remove_server);
1882
1883 /**
1884  *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1885  *      @mtus: the HW MTU table
1886  *      @mtu: the target MTU
1887  *      @idx: index of selected entry in the MTU table
1888  *
1889  *      Returns the index and the value in the HW MTU table that is closest to
1890  *      but does not exceed @mtu, unless @mtu is smaller than any value in the
1891  *      table, in which case that smallest available value is selected.
1892  */
1893 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1894                             unsigned int *idx)
1895 {
1896         unsigned int i = 0;
1897
1898         while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1899                 ++i;
1900         if (idx)
1901                 *idx = i;
1902         return mtus[i];
1903 }
1904 EXPORT_SYMBOL(cxgb4_best_mtu);
1905
1906 /**
1907  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1908  *     @mtus: the HW MTU table
1909  *     @header_size: Header Size
1910  *     @data_size_max: maximum Data Segment Size
1911  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1912  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1913  *
1914  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1915  *     MTU Table based solely on a Maximum MTU parameter, we break that
1916  *     parameter up into a Header Size and Maximum Data Segment Size, and
1917  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1918  *     the Hardware MTU Table which will result in a Data Segment Size with
1919  *     the requested alignment _and_ that MTU isn't "too far" from the
1920  *     closest MTU, then we'll return that rather than the closest MTU.
1921  */
1922 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1923                                     unsigned short header_size,
1924                                     unsigned short data_size_max,
1925                                     unsigned short data_size_align,
1926                                     unsigned int *mtu_idxp)
1927 {
1928         unsigned short max_mtu = header_size + data_size_max;
1929         unsigned short data_size_align_mask = data_size_align - 1;
1930         int mtu_idx, aligned_mtu_idx;
1931
1932         /* Scan the MTU Table till we find an MTU which is larger than our
1933          * Maximum MTU or we reach the end of the table.  Along the way,
1934          * record the last MTU found, if any, which will result in a Data
1935          * Segment Length matching the requested alignment.
1936          */
1937         for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1938                 unsigned short data_size = mtus[mtu_idx] - header_size;
1939
1940                 /* If this MTU minus the Header Size would result in a
1941                  * Data Segment Size of the desired alignment, remember it.
1942                  */
1943                 if ((data_size & data_size_align_mask) == 0)
1944                         aligned_mtu_idx = mtu_idx;
1945
1946                 /* If we're not at the end of the Hardware MTU Table and the
1947                  * next element is larger than our Maximum MTU, drop out of
1948                  * the loop.
1949                  */
1950                 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1951                         break;
1952         }
1953
1954         /* If we fell out of the loop because we ran to the end of the table,
1955          * then we just have to use the last [largest] entry.
1956          */
1957         if (mtu_idx == NMTUS)
1958                 mtu_idx--;
1959
1960         /* If we found an MTU which resulted in the requested Data Segment
1961          * Length alignment and that's "not far" from the largest MTU which is
1962          * less than or equal to the maximum MTU, then use that.
1963          */
1964         if (aligned_mtu_idx >= 0 &&
1965             mtu_idx - aligned_mtu_idx <= 1)
1966                 mtu_idx = aligned_mtu_idx;
1967
1968         /* If the caller has passed in an MTU Index pointer, pass the
1969          * MTU Index back.  Return the MTU value.
1970          */
1971         if (mtu_idxp)
1972                 *mtu_idxp = mtu_idx;
1973         return mtus[mtu_idx];
1974 }
1975 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1976
1977 /**
1978  *      cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1979  *      @chip: chip type
1980  *      @viid: VI id of the given port
1981  *
1982  *      Return the SMT index for this VI.
1983  */
1984 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1985 {
1986         /* In T4/T5, SMT contains 256 SMAC entries organized in
1987          * 128 rows of 2 entries each.
1988          * In T6, SMT contains 256 SMAC entries in 256 rows.
1989          * TODO: The below code needs to be updated when we add support
1990          * for 256 VFs.
1991          */
1992         if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1993                 return ((viid & 0x7f) << 1);
1994         else
1995                 return (viid & 0x7f);
1996 }
1997 EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1998
1999 /**
2000  *      cxgb4_port_chan - get the HW channel of a port
2001  *      @dev: the net device for the port
2002  *
2003  *      Return the HW Tx channel of the given port.
2004  */
2005 unsigned int cxgb4_port_chan(const struct net_device *dev)
2006 {
2007         return netdev2pinfo(dev)->tx_chan;
2008 }
2009 EXPORT_SYMBOL(cxgb4_port_chan);
2010
2011 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
2012 {
2013         struct adapter *adap = netdev2adap(dev);
2014         u32 v1, v2, lp_count, hp_count;
2015
2016         v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2017         v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2018         if (is_t4(adap->params.chip)) {
2019                 lp_count = LP_COUNT_G(v1);
2020                 hp_count = HP_COUNT_G(v1);
2021         } else {
2022                 lp_count = LP_COUNT_T5_G(v1);
2023                 hp_count = HP_COUNT_T5_G(v2);
2024         }
2025         return lpfifo ? lp_count : hp_count;
2026 }
2027 EXPORT_SYMBOL(cxgb4_dbfifo_count);
2028
2029 /**
2030  *      cxgb4_port_viid - get the VI id of a port
2031  *      @dev: the net device for the port
2032  *
2033  *      Return the VI id of the given port.
2034  */
2035 unsigned int cxgb4_port_viid(const struct net_device *dev)
2036 {
2037         return netdev2pinfo(dev)->viid;
2038 }
2039 EXPORT_SYMBOL(cxgb4_port_viid);
2040
2041 /**
2042  *      cxgb4_port_idx - get the index of a port
2043  *      @dev: the net device for the port
2044  *
2045  *      Return the index of the given port.
2046  */
2047 unsigned int cxgb4_port_idx(const struct net_device *dev)
2048 {
2049         return netdev2pinfo(dev)->port_id;
2050 }
2051 EXPORT_SYMBOL(cxgb4_port_idx);
2052
2053 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
2054                          struct tp_tcp_stats *v6)
2055 {
2056         struct adapter *adap = pci_get_drvdata(pdev);
2057
2058         spin_lock(&adap->stats_lock);
2059         t4_tp_get_tcp_stats(adap, v4, v6);
2060         spin_unlock(&adap->stats_lock);
2061 }
2062 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2063
2064 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
2065                       const unsigned int *pgsz_order)
2066 {
2067         struct adapter *adap = netdev2adap(dev);
2068
2069         t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
2070         t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
2071                      HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
2072                      HPZ3_V(pgsz_order[3]));
2073 }
2074 EXPORT_SYMBOL(cxgb4_iscsi_init);
2075
2076 int cxgb4_flush_eq_cache(struct net_device *dev)
2077 {
2078         struct adapter *adap = netdev2adap(dev);
2079
2080         return t4_sge_ctxt_flush(adap, adap->mbox);
2081 }
2082 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2083
2084 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2085 {
2086         u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
2087         __be64 indices;
2088         int ret;
2089
2090         spin_lock(&adap->win0_lock);
2091         ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2092                            sizeof(indices), (__be32 *)&indices,
2093                            T4_MEMORY_READ);
2094         spin_unlock(&adap->win0_lock);
2095         if (!ret) {
2096                 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2097                 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2098         }
2099         return ret;
2100 }
2101
2102 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2103                         u16 size)
2104 {
2105         struct adapter *adap = netdev2adap(dev);
2106         u16 hw_pidx, hw_cidx;
2107         int ret;
2108
2109         ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2110         if (ret)
2111                 goto out;
2112
2113         if (pidx != hw_pidx) {
2114                 u16 delta;
2115                 u32 val;
2116
2117                 if (pidx >= hw_pidx)
2118                         delta = pidx - hw_pidx;
2119                 else
2120                         delta = size - hw_pidx + pidx;
2121
2122                 if (is_t4(adap->params.chip))
2123                         val = PIDX_V(delta);
2124                 else
2125                         val = PIDX_T5_V(delta);
2126                 wmb();
2127                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2128                              QID_V(qid) | val);
2129         }
2130 out:
2131         return ret;
2132 }
2133 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2134
2135 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2136 {
2137         struct adapter *adap;
2138         u32 offset, memtype, memaddr;
2139         u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2140         u32 edc0_end, edc1_end, mc0_end, mc1_end;
2141         int ret;
2142
2143         adap = netdev2adap(dev);
2144
2145         offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2146
2147         /* Figure out where the offset lands in the Memory Type/Address scheme.
2148          * This code assumes that the memory is laid out starting at offset 0
2149          * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2150          * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
2151          * MC0, and some have both MC0 and MC1.
2152          */
2153         size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2154         edc0_size = EDRAM0_SIZE_G(size) << 20;
2155         size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2156         edc1_size = EDRAM1_SIZE_G(size) << 20;
2157         size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2158         mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2159
2160         edc0_end = edc0_size;
2161         edc1_end = edc0_end + edc1_size;
2162         mc0_end = edc1_end + mc0_size;
2163
2164         if (offset < edc0_end) {
2165                 memtype = MEM_EDC0;
2166                 memaddr = offset;
2167         } else if (offset < edc1_end) {
2168                 memtype = MEM_EDC1;
2169                 memaddr = offset - edc0_end;
2170         } else {
2171                 if (offset < mc0_end) {
2172                         memtype = MEM_MC0;
2173                         memaddr = offset - edc1_end;
2174                 } else if (is_t5(adap->params.chip)) {
2175                         size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2176                         mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2177                         mc1_end = mc0_end + mc1_size;
2178                         if (offset < mc1_end) {
2179                                 memtype = MEM_MC1;
2180                                 memaddr = offset - mc0_end;
2181                         } else {
2182                                 /* offset beyond the end of any memory */
2183                                 goto err;
2184                         }
2185                 } else {
2186                         /* T4/T6 only has a single memory channel */
2187                         goto err;
2188                 }
2189         }
2190
2191         spin_lock(&adap->win0_lock);
2192         ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2193         spin_unlock(&adap->win0_lock);
2194         return ret;
2195
2196 err:
2197         dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2198                 stag, offset);
2199         return -EINVAL;
2200 }
2201 EXPORT_SYMBOL(cxgb4_read_tpte);
2202
2203 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2204 {
2205         u32 hi, lo;
2206         struct adapter *adap;
2207
2208         adap = netdev2adap(dev);
2209         lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2210         hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2211
2212         return ((u64)hi << 32) | (u64)lo;
2213 }
2214 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2215
2216 int cxgb4_bar2_sge_qregs(struct net_device *dev,
2217                          unsigned int qid,
2218                          enum cxgb4_bar2_qtype qtype,
2219                          int user,
2220                          u64 *pbar2_qoffset,
2221                          unsigned int *pbar2_qid)
2222 {
2223         return t4_bar2_sge_qregs(netdev2adap(dev),
2224                                  qid,
2225                                  (qtype == CXGB4_BAR2_QTYPE_EGRESS
2226                                   ? T4_BAR2_QTYPE_EGRESS
2227                                   : T4_BAR2_QTYPE_INGRESS),
2228                                  user,
2229                                  pbar2_qoffset,
2230                                  pbar2_qid);
2231 }
2232 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2233
2234 static struct pci_driver cxgb4_driver;
2235
2236 static void check_neigh_update(struct neighbour *neigh)
2237 {
2238         const struct device *parent;
2239         const struct net_device *netdev = neigh->dev;
2240
2241         if (netdev->priv_flags & IFF_802_1Q_VLAN)
2242                 netdev = vlan_dev_real_dev(netdev);
2243         parent = netdev->dev.parent;
2244         if (parent && parent->driver == &cxgb4_driver.driver)
2245                 t4_l2t_update(dev_get_drvdata(parent), neigh);
2246 }
2247
2248 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2249                        void *data)
2250 {
2251         switch (event) {
2252         case NETEVENT_NEIGH_UPDATE:
2253                 check_neigh_update(data);
2254                 break;
2255         case NETEVENT_REDIRECT:
2256         default:
2257                 break;
2258         }
2259         return 0;
2260 }
2261
2262 static bool netevent_registered;
2263 static struct notifier_block cxgb4_netevent_nb = {
2264         .notifier_call = netevent_cb
2265 };
2266
2267 static void drain_db_fifo(struct adapter *adap, int usecs)
2268 {
2269         u32 v1, v2, lp_count, hp_count;
2270
2271         do {
2272                 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2273                 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2274                 if (is_t4(adap->params.chip)) {
2275                         lp_count = LP_COUNT_G(v1);
2276                         hp_count = HP_COUNT_G(v1);
2277                 } else {
2278                         lp_count = LP_COUNT_T5_G(v1);
2279                         hp_count = HP_COUNT_T5_G(v2);
2280                 }
2281
2282                 if (lp_count == 0 && hp_count == 0)
2283                         break;
2284                 set_current_state(TASK_UNINTERRUPTIBLE);
2285                 schedule_timeout(usecs_to_jiffies(usecs));
2286         } while (1);
2287 }
2288
2289 static void disable_txq_db(struct sge_txq *q)
2290 {
2291         unsigned long flags;
2292
2293         spin_lock_irqsave(&q->db_lock, flags);
2294         q->db_disabled = 1;
2295         spin_unlock_irqrestore(&q->db_lock, flags);
2296 }
2297
2298 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2299 {
2300         spin_lock_irq(&q->db_lock);
2301         if (q->db_pidx_inc) {
2302                 /* Make sure that all writes to the TX descriptors
2303                  * are committed before we tell HW about them.
2304                  */
2305                 wmb();
2306                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2307                              QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2308                 q->db_pidx_inc = 0;
2309         }
2310         q->db_disabled = 0;
2311         spin_unlock_irq(&q->db_lock);
2312 }
2313
2314 static void disable_dbs(struct adapter *adap)
2315 {
2316         int i;
2317
2318         for_each_ethrxq(&adap->sge, i)
2319                 disable_txq_db(&adap->sge.ethtxq[i].q);
2320         for_each_iscsirxq(&adap->sge, i)
2321                 disable_txq_db(&adap->sge.ofldtxq[i].q);
2322         for_each_port(adap, i)
2323                 disable_txq_db(&adap->sge.ctrlq[i].q);
2324 }
2325
2326 static void enable_dbs(struct adapter *adap)
2327 {
2328         int i;
2329
2330         for_each_ethrxq(&adap->sge, i)
2331                 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2332         for_each_iscsirxq(&adap->sge, i)
2333                 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
2334         for_each_port(adap, i)
2335                 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2336 }
2337
2338 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2339 {
2340         if (adap->uld_handle[CXGB4_ULD_RDMA])
2341                 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
2342                                 cmd);
2343 }
2344
2345 static void process_db_full(struct work_struct *work)
2346 {
2347         struct adapter *adap;
2348
2349         adap = container_of(work, struct adapter, db_full_task);
2350
2351         drain_db_fifo(adap, dbfifo_drain_delay);
2352         enable_dbs(adap);
2353         notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2354         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2355                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2356                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2357                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2358         else
2359                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2360                                  DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2361 }
2362
2363 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2364 {
2365         u16 hw_pidx, hw_cidx;
2366         int ret;
2367
2368         spin_lock_irq(&q->db_lock);
2369         ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2370         if (ret)
2371                 goto out;
2372         if (q->db_pidx != hw_pidx) {
2373                 u16 delta;
2374                 u32 val;
2375
2376                 if (q->db_pidx >= hw_pidx)
2377                         delta = q->db_pidx - hw_pidx;
2378                 else
2379                         delta = q->size - hw_pidx + q->db_pidx;
2380
2381                 if (is_t4(adap->params.chip))
2382                         val = PIDX_V(delta);
2383                 else
2384                         val = PIDX_T5_V(delta);
2385                 wmb();
2386                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2387                              QID_V(q->cntxt_id) | val);
2388         }
2389 out:
2390         q->db_disabled = 0;
2391         q->db_pidx_inc = 0;
2392         spin_unlock_irq(&q->db_lock);
2393         if (ret)
2394                 CH_WARN(adap, "DB drop recovery failed.\n");
2395 }
2396 static void recover_all_queues(struct adapter *adap)
2397 {
2398         int i;
2399
2400         for_each_ethrxq(&adap->sge, i)
2401                 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2402         for_each_iscsirxq(&adap->sge, i)
2403                 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2404         for_each_port(adap, i)
2405                 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2406 }
2407
2408 static void process_db_drop(struct work_struct *work)
2409 {
2410         struct adapter *adap;
2411
2412         adap = container_of(work, struct adapter, db_drop_task);
2413
2414         if (is_t4(adap->params.chip)) {
2415                 drain_db_fifo(adap, dbfifo_drain_delay);
2416                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2417                 drain_db_fifo(adap, dbfifo_drain_delay);
2418                 recover_all_queues(adap);
2419                 drain_db_fifo(adap, dbfifo_drain_delay);
2420                 enable_dbs(adap);
2421                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2422         } else if (is_t5(adap->params.chip)) {
2423                 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2424                 u16 qid = (dropped_db >> 15) & 0x1ffff;
2425                 u16 pidx_inc = dropped_db & 0x1fff;
2426                 u64 bar2_qoffset;
2427                 unsigned int bar2_qid;
2428                 int ret;
2429
2430                 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2431                                         0, &bar2_qoffset, &bar2_qid);
2432                 if (ret)
2433                         dev_err(adap->pdev_dev, "doorbell drop recovery: "
2434                                 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2435                 else
2436                         writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2437                                adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2438
2439                 /* Re-enable BAR2 WC */
2440                 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2441         }
2442
2443         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2444                 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2445 }
2446
2447 void t4_db_full(struct adapter *adap)
2448 {
2449         if (is_t4(adap->params.chip)) {
2450                 disable_dbs(adap);
2451                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2452                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2453                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2454                 queue_work(adap->workq, &adap->db_full_task);
2455         }
2456 }
2457
2458 void t4_db_dropped(struct adapter *adap)
2459 {
2460         if (is_t4(adap->params.chip)) {
2461                 disable_dbs(adap);
2462                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2463         }
2464         queue_work(adap->workq, &adap->db_drop_task);
2465 }
2466
2467 static void uld_attach(struct adapter *adap, unsigned int uld)
2468 {
2469         void *handle;
2470         struct cxgb4_lld_info lli;
2471         unsigned short i;
2472
2473         lli.pdev = adap->pdev;
2474         lli.pf = adap->pf;
2475         lli.l2t = adap->l2t;
2476         lli.tids = &adap->tids;
2477         lli.ports = adap->port;
2478         lli.vr = &adap->vres;
2479         lli.mtus = adap->params.mtus;
2480         if (uld == CXGB4_ULD_RDMA) {
2481                 lli.rxq_ids = adap->sge.rdma_rxq;
2482                 lli.ciq_ids = adap->sge.rdma_ciq;
2483                 lli.nrxq = adap->sge.rdmaqs;
2484                 lli.nciq = adap->sge.rdmaciqs;
2485         } else if (uld == CXGB4_ULD_ISCSI) {
2486                 lli.rxq_ids = adap->sge.iscsi_rxq;
2487                 lli.nrxq = adap->sge.iscsiqsets;
2488         } else if (uld == CXGB4_ULD_ISCSIT) {
2489                 lli.rxq_ids = adap->sge.iscsit_rxq;
2490                 lli.nrxq = adap->sge.niscsitq;
2491         }
2492         lli.ntxq = adap->sge.iscsiqsets;
2493         lli.nchan = adap->params.nports;
2494         lli.nports = adap->params.nports;
2495         lli.wr_cred = adap->params.ofldq_wr_cred;
2496         lli.adapter_type = adap->params.chip;
2497         lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A));
2498         lli.iscsi_tagmask = t4_read_reg(adap, ULP_RX_ISCSI_TAGMASK_A);
2499         lli.iscsi_pgsz_order = t4_read_reg(adap, ULP_RX_ISCSI_PSZ_A);
2500         lli.iscsi_llimit = t4_read_reg(adap, ULP_RX_ISCSI_LLIMIT_A);
2501         lli.iscsi_ppm = &adap->iscsi_ppm;
2502         lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
2503         lli.udb_density = 1 << adap->params.sge.eq_qpp;
2504         lli.ucq_density = 1 << adap->params.sge.iq_qpp;
2505         lli.filt_mode = adap->params.tp.vlan_pri_map;
2506         /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
2507         for (i = 0; i < NCHAN; i++)
2508                 lli.tx_modq[i] = i;
2509         lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A);
2510         lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A);
2511         lli.fw_vers = adap->params.fw_vers;
2512         lli.dbfifo_int_thresh = dbfifo_int_thresh;
2513         lli.sge_ingpadboundary = adap->sge.fl_align;
2514         lli.sge_egrstatuspagesize = adap->sge.stat_len;
2515         lli.sge_pktshift = adap->sge.pktshift;
2516         lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
2517         lli.max_ordird_qp = adap->params.max_ordird_qp;
2518         lli.max_ird_adapter = adap->params.max_ird_adapter;
2519         lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
2520         lli.nodeid = dev_to_node(adap->pdev_dev);
2521
2522         handle = ulds[uld].add(&lli);
2523         if (IS_ERR(handle)) {
2524                 dev_warn(adap->pdev_dev,
2525                          "could not attach to the %s driver, error %ld\n",
2526                          uld_str[uld], PTR_ERR(handle));
2527                 return;
2528         }
2529
2530         adap->uld_handle[uld] = handle;
2531
2532         if (!netevent_registered) {
2533                 register_netevent_notifier(&cxgb4_netevent_nb);
2534                 netevent_registered = true;
2535         }
2536
2537         if (adap->flags & FULL_INIT_DONE)
2538                 ulds[uld].state_change(handle, CXGB4_STATE_UP);
2539 }
2540
2541 static void attach_ulds(struct adapter *adap)
2542 {
2543         unsigned int i;
2544
2545         spin_lock(&adap_rcu_lock);
2546         list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
2547         spin_unlock(&adap_rcu_lock);
2548
2549         mutex_lock(&uld_mutex);
2550         list_add_tail(&adap->list_node, &adapter_list);
2551         for (i = 0; i < CXGB4_ULD_MAX; i++)
2552                 if (ulds[i].add)
2553                         uld_attach(adap, i);
2554         mutex_unlock(&uld_mutex);
2555 }
2556
2557 static void detach_ulds(struct adapter *adap)
2558 {
2559         unsigned int i;
2560
2561         mutex_lock(&uld_mutex);
2562         list_del(&adap->list_node);
2563         for (i = 0; i < CXGB4_ULD_MAX; i++)
2564                 if (adap->uld_handle[i]) {
2565                         ulds[i].state_change(adap->uld_handle[i],
2566                                              CXGB4_STATE_DETACH);
2567                         adap->uld_handle[i] = NULL;
2568                 }
2569         for (i = 0; i < CXGB4_PCI_ULD_MAX; i++)
2570                 if (adap->uld && adap->uld[i].handle) {
2571                         adap->uld[i].state_change(adap->uld[i].handle,
2572                                              CXGB4_STATE_DETACH);
2573                         adap->uld[i].handle = NULL;
2574                 }
2575         if (netevent_registered && list_empty(&adapter_list)) {
2576                 unregister_netevent_notifier(&cxgb4_netevent_nb);
2577                 netevent_registered = false;
2578         }
2579         mutex_unlock(&uld_mutex);
2580
2581         spin_lock(&adap_rcu_lock);
2582         list_del_rcu(&adap->rcu_node);
2583         spin_unlock(&adap_rcu_lock);
2584 }
2585
2586 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2587 {
2588         unsigned int i;
2589
2590         mutex_lock(&uld_mutex);
2591         for (i = 0; i < CXGB4_ULD_MAX; i++)
2592                 if (adap->uld_handle[i])
2593                         ulds[i].state_change(adap->uld_handle[i], new_state);
2594         for (i = 0; i < CXGB4_PCI_ULD_MAX; i++)
2595                 if (adap->uld && adap->uld[i].handle)
2596                         adap->uld[i].state_change(adap->uld[i].handle,
2597                                                   new_state);
2598         mutex_unlock(&uld_mutex);
2599 }
2600
2601 /**
2602  *      cxgb4_register_uld - register an upper-layer driver
2603  *      @type: the ULD type
2604  *      @p: the ULD methods
2605  *
2606  *      Registers an upper-layer driver with this driver and notifies the ULD
2607  *      about any presently available devices that support its type.  Returns
2608  *      %-EBUSY if a ULD of the same type is already registered.
2609  */
2610 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2611 {
2612         int ret = 0;
2613         struct adapter *adap;
2614
2615         if (type >= CXGB4_ULD_MAX)
2616                 return -EINVAL;
2617         mutex_lock(&uld_mutex);
2618         if (ulds[type].add) {
2619                 ret = -EBUSY;
2620                 goto out;
2621         }
2622         ulds[type] = *p;
2623         list_for_each_entry(adap, &adapter_list, list_node)
2624                 uld_attach(adap, type);
2625 out:    mutex_unlock(&uld_mutex);
2626         return ret;
2627 }
2628 EXPORT_SYMBOL(cxgb4_register_uld);
2629
2630 /**
2631  *      cxgb4_unregister_uld - unregister an upper-layer driver
2632  *      @type: the ULD type
2633  *
2634  *      Unregisters an existing upper-layer driver.
2635  */
2636 int cxgb4_unregister_uld(enum cxgb4_uld type)
2637 {
2638         struct adapter *adap;
2639
2640         if (type >= CXGB4_ULD_MAX)
2641                 return -EINVAL;
2642         mutex_lock(&uld_mutex);
2643         list_for_each_entry(adap, &adapter_list, list_node)
2644                 adap->uld_handle[type] = NULL;
2645         ulds[type].add = NULL;
2646         mutex_unlock(&uld_mutex);
2647         return 0;
2648 }
2649 EXPORT_SYMBOL(cxgb4_unregister_uld);
2650
2651 #if IS_ENABLED(CONFIG_IPV6)
2652 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2653                                    unsigned long event, void *data)
2654 {
2655         struct inet6_ifaddr *ifa = data;
2656         struct net_device *event_dev = ifa->idev->dev;
2657         const struct device *parent = NULL;
2658 #if IS_ENABLED(CONFIG_BONDING)
2659         struct adapter *adap;
2660 #endif
2661         if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2662                 event_dev = vlan_dev_real_dev(event_dev);
2663 #if IS_ENABLED(CONFIG_BONDING)
2664         if (event_dev->flags & IFF_MASTER) {
2665                 list_for_each_entry(adap, &adapter_list, list_node) {
2666                         switch (event) {
2667                         case NETDEV_UP:
2668                                 cxgb4_clip_get(adap->port[0],
2669                                                (const u32 *)ifa, 1);
2670                                 break;
2671                         case NETDEV_DOWN:
2672                                 cxgb4_clip_release(adap->port[0],
2673                                                    (const u32 *)ifa, 1);
2674                                 break;
2675                         default:
2676                                 break;
2677                         }
2678                 }
2679                 return NOTIFY_OK;
2680         }
2681 #endif
2682
2683         if (event_dev)
2684                 parent = event_dev->dev.parent;
2685
2686         if (parent && parent->driver == &cxgb4_driver.driver) {
2687                 switch (event) {
2688                 case NETDEV_UP:
2689                         cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2690                         break;
2691                 case NETDEV_DOWN:
2692                         cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2693                         break;
2694                 default:
2695                         break;
2696                 }
2697         }
2698         return NOTIFY_OK;
2699 }
2700
2701 static bool inet6addr_registered;
2702 static struct notifier_block cxgb4_inet6addr_notifier = {
2703         .notifier_call = cxgb4_inet6addr_handler
2704 };
2705
2706 static void update_clip(const struct adapter *adap)
2707 {
2708         int i;
2709         struct net_device *dev;
2710         int ret;
2711
2712         rcu_read_lock();
2713
2714         for (i = 0; i < MAX_NPORTS; i++) {
2715                 dev = adap->port[i];
2716                 ret = 0;
2717
2718                 if (dev)
2719                         ret = cxgb4_update_root_dev_clip(dev);
2720
2721                 if (ret < 0)
2722                         break;
2723         }
2724         rcu_read_unlock();
2725 }
2726 #endif /* IS_ENABLED(CONFIG_IPV6) */
2727
2728 /**
2729  *      cxgb_up - enable the adapter
2730  *      @adap: adapter being enabled
2731  *
2732  *      Called when the first port is enabled, this function performs the
2733  *      actions necessary to make an adapter operational, such as completing
2734  *      the initialization of HW modules, and enabling interrupts.
2735  *
2736  *      Must be called with the rtnl lock held.
2737  */
2738 static int cxgb_up(struct adapter *adap)
2739 {
2740         int err;
2741
2742         err = setup_sge_queues(adap);
2743         if (err)
2744                 goto out;
2745         err = setup_rss(adap);
2746         if (err)
2747                 goto freeq;
2748
2749         if (adap->flags & USING_MSIX) {
2750                 name_msix_vecs(adap);
2751                 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2752                                   adap->msix_info[0].desc, adap);
2753                 if (err)
2754                         goto irq_err;
2755
2756                 err = request_msix_queue_irqs(adap);
2757                 if (err) {
2758                         free_irq(adap->msix_info[0].vec, adap);
2759                         goto irq_err;
2760                 }
2761         } else {
2762                 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2763                                   (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2764                                   adap->port[0]->name, adap);
2765                 if (err)
2766                         goto irq_err;
2767         }
2768         enable_rx(adap);
2769         t4_sge_start(adap);
2770         t4_intr_enable(adap);
2771         adap->flags |= FULL_INIT_DONE;
2772         notify_ulds(adap, CXGB4_STATE_UP);
2773 #if IS_ENABLED(CONFIG_IPV6)
2774         update_clip(adap);
2775 #endif
2776         /* Initialize hash mac addr list*/
2777         INIT_LIST_HEAD(&adap->mac_hlist);
2778  out:
2779         return err;
2780  irq_err:
2781         dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2782  freeq:
2783         t4_free_sge_resources(adap);
2784         goto out;
2785 }
2786
2787 static void cxgb_down(struct adapter *adapter)
2788 {
2789         cancel_work_sync(&adapter->tid_release_task);
2790         cancel_work_sync(&adapter->db_full_task);
2791         cancel_work_sync(&adapter->db_drop_task);
2792         adapter->tid_release_task_busy = false;
2793         adapter->tid_release_head = NULL;
2794
2795         t4_sge_stop(adapter);
2796         t4_free_sge_resources(adapter);
2797         adapter->flags &= ~FULL_INIT_DONE;
2798 }
2799
2800 /*
2801  * net_device operations
2802  */
2803 static int cxgb_open(struct net_device *dev)
2804 {
2805         int err;
2806         struct port_info *pi = netdev_priv(dev);
2807         struct adapter *adapter = pi->adapter;
2808
2809         netif_carrier_off(dev);
2810
2811         if (!(adapter->flags & FULL_INIT_DONE)) {
2812                 err = cxgb_up(adapter);
2813                 if (err < 0)
2814                         return err;
2815         }
2816
2817         err = link_start(dev);
2818         if (!err)
2819                 netif_tx_start_all_queues(dev);
2820         return err;
2821 }
2822
2823 static int cxgb_close(struct net_device *dev)
2824 {
2825         struct port_info *pi = netdev_priv(dev);
2826         struct adapter *adapter = pi->adapter;
2827
2828         netif_tx_stop_all_queues(dev);
2829         netif_carrier_off(dev);
2830         return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2831 }
2832
2833 /* Return an error number if the indicated filter isn't writable ...
2834  */
2835 static int writable_filter(struct filter_entry *f)
2836 {
2837         if (f->locked)
2838                 return -EPERM;
2839         if (f->pending)
2840                 return -EBUSY;
2841
2842         return 0;
2843 }
2844
2845 /* Delete the filter at the specified index (if valid).  The checks for all
2846  * the common problems with doing this like the filter being locked, currently
2847  * pending in another operation, etc.
2848  */
2849 static int delete_filter(struct adapter *adapter, unsigned int fidx)
2850 {
2851         struct filter_entry *f;
2852         int ret;
2853
2854         if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
2855                 return -EINVAL;
2856
2857         f = &adapter->tids.ftid_tab[fidx];
2858         ret = writable_filter(f);
2859         if (ret)
2860                 return ret;
2861         if (f->valid)
2862                 return del_filter_wr(adapter, fidx);
2863
2864         return 0;
2865 }
2866
2867 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2868                 __be32 sip, __be16 sport, __be16 vlan,
2869                 unsigned int queue, unsigned char port, unsigned char mask)
2870 {
2871         int ret;
2872         struct filter_entry *f;
2873         struct adapter *adap;
2874         int i;
2875         u8 *val;
2876
2877         adap = netdev2adap(dev);
2878
2879         /* Adjust stid to correct filter index */
2880         stid -= adap->tids.sftid_base;
2881         stid += adap->tids.nftids;
2882
2883         /* Check to make sure the filter requested is writable ...
2884          */
2885         f = &adap->tids.ftid_tab[stid];
2886         ret = writable_filter(f);
2887         if (ret)
2888                 return ret;
2889
2890         /* Clear out any old resources being used by the filter before
2891          * we start constructing the new filter.
2892          */
2893         if (f->valid)
2894                 clear_filter(adap, f);
2895
2896         /* Clear out filter specifications */
2897         memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2898         f->fs.val.lport = cpu_to_be16(sport);
2899         f->fs.mask.lport  = ~0;
2900         val = (u8 *)&sip;
2901         if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2902                 for (i = 0; i < 4; i++) {
2903                         f->fs.val.lip[i] = val[i];
2904                         f->fs.mask.lip[i] = ~0;
2905                 }
2906                 if (adap->params.tp.vlan_pri_map & PORT_F) {
2907                         f->fs.val.iport = port;
2908                         f->fs.mask.iport = mask;
2909                 }
2910         }
2911
2912         if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2913                 f->fs.val.proto = IPPROTO_TCP;
2914                 f->fs.mask.proto = ~0;
2915         }
2916
2917         f->fs.dirsteer = 1;
2918         f->fs.iq = queue;
2919         /* Mark filter as locked */
2920         f->locked = 1;
2921         f->fs.rpttid = 1;
2922
2923         ret = set_filter_wr(adap, stid);
2924         if (ret) {
2925                 clear_filter(adap, f);
2926                 return ret;
2927         }
2928
2929         return 0;
2930 }
2931 EXPORT_SYMBOL(cxgb4_create_server_filter);
2932
2933 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2934                 unsigned int queue, bool ipv6)
2935 {
2936         struct filter_entry *f;
2937         struct adapter *adap;
2938
2939         adap = netdev2adap(dev);
2940
2941         /* Adjust stid to correct filter index */
2942         stid -= adap->tids.sftid_base;
2943         stid += adap->tids.nftids;
2944
2945         f = &adap->tids.ftid_tab[stid];
2946         /* Unlock the filter */
2947         f->locked = 0;
2948
2949         return delete_filter(adap, stid);
2950 }
2951 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2952
2953 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2954                                                 struct rtnl_link_stats64 *ns)
2955 {
2956         struct port_stats stats;
2957         struct port_info *p = netdev_priv(dev);
2958         struct adapter *adapter = p->adapter;
2959
2960         /* Block retrieving statistics during EEH error
2961          * recovery. Otherwise, the recovery might fail
2962          * and the PCI device will be removed permanently
2963          */
2964         spin_lock(&adapter->stats_lock);
2965         if (!netif_device_present(dev)) {
2966                 spin_unlock(&adapter->stats_lock);
2967                 return ns;
2968         }
2969         t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2970                                  &p->stats_base);
2971         spin_unlock(&adapter->stats_lock);
2972
2973         ns->tx_bytes   = stats.tx_octets;
2974         ns->tx_packets = stats.tx_frames;
2975         ns->rx_bytes   = stats.rx_octets;
2976         ns->rx_packets = stats.rx_frames;
2977         ns->multicast  = stats.rx_mcast_frames;
2978
2979         /* detailed rx_errors */
2980         ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2981                                stats.rx_runt;
2982         ns->rx_over_errors   = 0;
2983         ns->rx_crc_errors    = stats.rx_fcs_err;
2984         ns->rx_frame_errors  = stats.rx_symbol_err;
2985         ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
2986                                stats.rx_ovflow2 + stats.rx_ovflow3 +
2987                                stats.rx_trunc0 + stats.rx_trunc1 +
2988                                stats.rx_trunc2 + stats.rx_trunc3;
2989         ns->rx_missed_errors = 0;
2990
2991         /* detailed tx_errors */
2992         ns->tx_aborted_errors   = 0;
2993         ns->tx_carrier_errors   = 0;
2994         ns->tx_fifo_errors      = 0;
2995         ns->tx_heartbeat_errors = 0;
2996         ns->tx_window_errors    = 0;
2997
2998         ns->tx_errors = stats.tx_error_frames;
2999         ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
3000                 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
3001         return ns;
3002 }
3003
3004 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
3005 {
3006         unsigned int mbox;
3007         int ret = 0, prtad, devad;
3008         struct port_info *pi = netdev_priv(dev);
3009         struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
3010
3011         switch (cmd) {
3012         case SIOCGMIIPHY:
3013                 if (pi->mdio_addr < 0)
3014                         return -EOPNOTSUPP;
3015                 data->phy_id = pi->mdio_addr;
3016                 break;
3017         case SIOCGMIIREG:
3018         case SIOCSMIIREG:
3019                 if (mdio_phy_id_is_c45(data->phy_id)) {
3020                         prtad = mdio_phy_id_prtad(data->phy_id);
3021                         devad = mdio_phy_id_devad(data->phy_id);
3022                 } else if (data->phy_id < 32) {
3023                         prtad = data->phy_id;
3024                         devad = 0;
3025                         data->reg_num &= 0x1f;
3026                 } else
3027                         return -EINVAL;
3028
3029                 mbox = pi->adapter->pf;
3030                 if (cmd == SIOCGMIIREG)
3031                         ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
3032                                          data->reg_num, &data->val_out);
3033                 else
3034                         ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
3035                                          data->reg_num, data->val_in);
3036                 break;
3037         case SIOCGHWTSTAMP:
3038                 return copy_to_user(req->ifr_data, &pi->tstamp_config,
3039                                     sizeof(pi->tstamp_config)) ?
3040                         -EFAULT : 0;
3041         case SIOCSHWTSTAMP:
3042                 if (copy_from_user(&pi->tstamp_config, req->ifr_data,
3043                                    sizeof(pi->tstamp_config)))
3044                         return -EFAULT;
3045
3046                 switch (pi->tstamp_config.rx_filter) {
3047                 case HWTSTAMP_FILTER_NONE:
3048                         pi->rxtstamp = false;
3049                         break;
3050                 case HWTSTAMP_FILTER_ALL:
3051                         pi->rxtstamp = true;
3052                         break;
3053                 default:
3054                         pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
3055                         return -ERANGE;
3056                 }
3057
3058                 return copy_to_user(req->ifr_data, &pi->tstamp_config,
3059                                     sizeof(pi->tstamp_config)) ?
3060                         -EFAULT : 0;
3061         default:
3062                 return -EOPNOTSUPP;
3063         }
3064         return ret;
3065 }
3066
3067 static void cxgb_set_rxmode(struct net_device *dev)
3068 {
3069         /* unfortunately we can't return errors to the stack */
3070         set_rxmode(dev, -1, false);
3071 }
3072
3073 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
3074 {
3075         int ret;
3076         struct port_info *pi = netdev_priv(dev);
3077
3078         if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
3079                 return -EINVAL;
3080         ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
3081                             -1, -1, -1, true);
3082         if (!ret)
3083                 dev->mtu = new_mtu;
3084         return ret;
3085 }
3086
3087 #ifdef CONFIG_PCI_IOV
3088 static int dummy_open(struct net_device *dev)
3089 {
3090         /* Turn carrier off since we don't have to transmit anything on this
3091          * interface.
3092          */
3093         netif_carrier_off(dev);
3094         return 0;
3095 }
3096
3097 /* Fill MAC address that will be assigned by the FW */
3098 static void fill_vf_station_mac_addr(struct adapter *adap)
3099 {
3100         unsigned int i;
3101         u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
3102         int err;
3103         u8 *na;
3104         u16 a, b;
3105
3106         err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
3107         if (!err) {
3108                 na = adap->params.vpd.na;
3109                 for (i = 0; i < ETH_ALEN; i++)
3110                         hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
3111                                       hex2val(na[2 * i + 1]));
3112                 a = (hw_addr[0] << 8) | hw_addr[1];
3113                 b = (hw_addr[1] << 8) | hw_addr[2];
3114                 a ^= b;
3115                 a |= 0x0200;    /* locally assigned Ethernet MAC address */
3116                 a &= ~0x0100;   /* not a multicast Ethernet MAC address */
3117                 macaddr[0] = a >> 8;
3118                 macaddr[1] = a & 0xff;
3119
3120                 for (i = 2; i < 5; i++)
3121                         macaddr[i] = hw_addr[i + 1];
3122
3123                 for (i = 0; i < adap->num_vfs; i++) {
3124                         macaddr[5] = adap->pf * 16 + i;
3125                         ether_addr_copy(adap->vfinfo[i].vf_mac_addr, macaddr);
3126                 }
3127         }
3128 }
3129
3130 static int cxgb_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
3131 {
3132         struct port_info *pi = netdev_priv(dev);
3133         struct adapter *adap = pi->adapter;
3134         int ret;
3135
3136         /* verify MAC addr is valid */
3137         if (!is_valid_ether_addr(mac)) {
3138                 dev_err(pi->adapter->pdev_dev,
3139                         "Invalid Ethernet address %pM for VF %d\n",
3140                         mac, vf);
3141                 return -EINVAL;
3142         }
3143
3144         dev_info(pi->adapter->pdev_dev,
3145                  "Setting MAC %pM on VF %d\n", mac, vf);
3146         ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
3147         if (!ret)
3148                 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
3149         return ret;
3150 }
3151
3152 static int cxgb_get_vf_config(struct net_device *dev,
3153                               int vf, struct ifla_vf_info *ivi)
3154 {
3155         struct port_info *pi = netdev_priv(dev);
3156         struct adapter *adap = pi->adapter;
3157
3158         if (vf >= adap->num_vfs)
3159                 return -EINVAL;
3160         ivi->vf = vf;
3161         ether_addr_copy(ivi->mac, adap->vfinfo[vf].vf_mac_addr);
3162         return 0;
3163 }
3164 #endif
3165
3166 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3167 {
3168         int ret;
3169         struct sockaddr *addr = p;
3170         struct port_info *pi = netdev_priv(dev);
3171
3172         if (!is_valid_ether_addr(addr->sa_data))
3173                 return -EADDRNOTAVAIL;
3174
3175         ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
3176                             pi->xact_addr_filt, addr->sa_data, true, true);
3177         if (ret < 0)
3178                 return ret;
3179
3180         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3181         pi->xact_addr_filt = ret;
3182         return 0;
3183 }
3184
3185 #ifdef CONFIG_NET_POLL_CONTROLLER
3186 static void cxgb_netpoll(struct net_device *dev)
3187 {
3188         struct port_info *pi = netdev_priv(dev);
3189         struct adapter *adap = pi->adapter;
3190
3191         if (adap->flags & USING_MSIX) {
3192                 int i;
3193                 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3194
3195                 for (i = pi->nqsets; i; i--, rx++)
3196                         t4_sge_intr_msix(0, &rx->rspq);
3197         } else
3198                 t4_intr_handler(adap)(0, adap);
3199 }
3200 #endif
3201
3202 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
3203 {
3204         struct port_info *pi = netdev_priv(dev);
3205         struct adapter *adap = pi->adapter;
3206         struct sched_class *e;
3207         struct ch_sched_params p;
3208         struct ch_sched_queue qe;
3209         u32 req_rate;
3210         int err = 0;
3211
3212         if (!can_sched(dev))
3213                 return -ENOTSUPP;
3214
3215         if (index < 0 || index > pi->nqsets - 1)
3216                 return -EINVAL;
3217
3218         if (!(adap->flags & FULL_INIT_DONE)) {
3219                 dev_err(adap->pdev_dev,
3220                         "Failed to rate limit on queue %d. Link Down?\n",
3221                         index);
3222                 return -EINVAL;
3223         }
3224
3225         /* Convert from Mbps to Kbps */
3226         req_rate = rate << 10;
3227
3228         /* Max rate is 10 Gbps */
3229         if (req_rate >= SCHED_MAX_RATE_KBPS) {
3230                 dev_err(adap->pdev_dev,
3231                         "Invalid rate %u Mbps, Max rate is %u Gbps\n",
3232                         rate, SCHED_MAX_RATE_KBPS);
3233                 return -ERANGE;
3234         }
3235
3236         /* First unbind the queue from any existing class */
3237         memset(&qe, 0, sizeof(qe));
3238         qe.queue = index;
3239         qe.class = SCHED_CLS_NONE;
3240
3241         err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
3242         if (err) {
3243                 dev_err(adap->pdev_dev,
3244                         "Unbinding Queue %d on port %d fail. Err: %d\n",
3245                         index, pi->port_id, err);
3246                 return err;
3247         }
3248
3249         /* Queue already unbound */
3250         if (!req_rate)
3251                 return 0;
3252
3253         /* Fetch any available unused or matching scheduling class */
3254         memset(&p, 0, sizeof(p));
3255         p.type = SCHED_CLASS_TYPE_PACKET;
3256         p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
3257         p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
3258         p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
3259         p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
3260         p.u.params.channel  = pi->tx_chan;
3261         p.u.params.class    = SCHED_CLS_NONE;
3262         p.u.params.minrate  = 0;
3263         p.u.params.maxrate  = req_rate;
3264         p.u.params.weight   = 0;
3265         p.u.params.pktsize  = dev->mtu;
3266
3267         e = cxgb4_sched_class_alloc(dev, &p);
3268         if (!e)
3269                 return -ENOMEM;
3270
3271         /* Bind the queue to a scheduling class */
3272         memset(&qe, 0, sizeof(qe));
3273         qe.queue = index;
3274         qe.class = e->idx;
3275
3276         err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
3277         if (err)
3278                 dev_err(adap->pdev_dev,
3279                         "Queue rate limiting failed. Err: %d\n", err);
3280         return err;
3281 }
3282
3283 static const struct net_device_ops cxgb4_netdev_ops = {
3284         .ndo_open             = cxgb_open,
3285         .ndo_stop             = cxgb_close,
3286         .ndo_start_xmit       = t4_eth_xmit,
3287         .ndo_select_queue     = cxgb_select_queue,
3288         .ndo_get_stats64      = cxgb_get_stats,
3289         .ndo_set_rx_mode      = cxgb_set_rxmode,
3290         .ndo_set_mac_address  = cxgb_set_mac_addr,
3291         .ndo_set_features     = cxgb_set_features,
3292         .ndo_validate_addr    = eth_validate_addr,
3293         .ndo_do_ioctl         = cxgb_ioctl,
3294         .ndo_change_mtu       = cxgb_change_mtu,
3295 #ifdef CONFIG_NET_POLL_CONTROLLER
3296         .ndo_poll_controller  = cxgb_netpoll,
3297 #endif
3298 #ifdef CONFIG_CHELSIO_T4_FCOE
3299         .ndo_fcoe_enable      = cxgb_fcoe_enable,
3300         .ndo_fcoe_disable     = cxgb_fcoe_disable,
3301 #endif /* CONFIG_CHELSIO_T4_FCOE */
3302 #ifdef CONFIG_NET_RX_BUSY_POLL
3303         .ndo_busy_poll        = cxgb_busy_poll,
3304 #endif
3305         .ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
3306 };
3307
3308 #ifdef CONFIG_PCI_IOV
3309 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
3310         .ndo_open             = dummy_open,
3311         .ndo_set_vf_mac       = cxgb_set_vf_mac,
3312         .ndo_get_vf_config    = cxgb_get_vf_config,
3313 };
3314 #endif
3315
3316 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3317 {
3318         struct adapter *adapter = netdev2adap(dev);
3319
3320         strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
3321         strlcpy(info->version, cxgb4_driver_version,
3322                 sizeof(info->version));
3323         strlcpy(info->bus_info, pci_name(adapter->pdev),
3324                 sizeof(info->bus_info));
3325 }
3326
3327 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
3328         .get_drvinfo       = get_drvinfo,
3329 };
3330
3331 void t4_fatal_err(struct adapter *adap)
3332 {
3333         t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
3334         t4_intr_disable(adap);
3335         dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3336 }
3337
3338 static void setup_memwin(struct adapter *adap)
3339 {
3340         u32 nic_win_base = t4_get_util_window(adap);
3341
3342         t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3343 }
3344
3345 static void setup_memwin_rdma(struct adapter *adap)
3346 {
3347         if (adap->vres.ocq.size) {
3348                 u32 start;
3349                 unsigned int sz_kb;
3350
3351                 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3352                 start &= PCI_BASE_ADDRESS_MEM_MASK;
3353                 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3354                 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3355                 t4_write_reg(adap,
3356                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3357                              start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3358                 t4_write_reg(adap,
3359                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3360                              adap->vres.ocq.start);
3361                 t4_read_reg(adap,
3362                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3363         }
3364 }
3365
3366 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3367 {
3368         u32 v;
3369         int ret;
3370
3371         /* get device capabilities */
3372         memset(c, 0, sizeof(*c));
3373         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3374                                FW_CMD_REQUEST_F | FW_CMD_READ_F);
3375         c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3376         ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3377         if (ret < 0)
3378                 return ret;
3379
3380         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3381                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3382         ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3383         if (ret < 0)
3384                 return ret;
3385
3386         ret = t4_config_glbl_rss(adap, adap->pf,
3387                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3388                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3389                                  FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3390         if (ret < 0)
3391                 return ret;
3392
3393         ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3394                           MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3395                           FW_CMD_CAP_PF);
3396         if (ret < 0)
3397                 return ret;
3398
3399         t4_sge_init(adap);
3400
3401         /* tweak some settings */
3402         t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3403         t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3404         t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3405         v = t4_read_reg(adap, TP_PIO_DATA_A);
3406         t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3407
3408         /* first 4 Tx modulation queues point to consecutive Tx channels */
3409         adap->params.tp.tx_modq_map = 0xE4;
3410         t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3411                      TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3412
3413         /* associate each Tx modulation queue with consecutive Tx channels */
3414         v = 0x84218421;
3415         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3416                           &v, 1, TP_TX_SCHED_HDR_A);
3417         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3418                           &v, 1, TP_TX_SCHED_FIFO_A);
3419         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3420                           &v, 1, TP_TX_SCHED_PCMD_A);
3421
3422 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3423         if (is_offload(adap)) {
3424                 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3425                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3426                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3427                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3428                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3429                 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3430                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3431                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3432                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3433                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3434         }
3435
3436         /* get basic stuff going */
3437         return t4_early_init(adap, adap->pf);
3438 }
3439
3440 /*
3441  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3442  */
3443 #define MAX_ATIDS 8192U
3444
3445 /*
3446  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3447  *
3448  * If the firmware we're dealing with has Configuration File support, then
3449  * we use that to perform all configuration
3450  */
3451
3452 /*
3453  * Tweak configuration based on module parameters, etc.  Most of these have
3454  * defaults assigned to them by Firmware Configuration Files (if we're using
3455  * them) but need to be explicitly set if we're using hard-coded
3456  * initialization.  But even in the case of using Firmware Configuration
3457  * Files, we'd like to expose the ability to change these via module
3458  * parameters so these are essentially common tweaks/settings for
3459  * Configuration Files and hard-coded initialization ...
3460  */
3461 static int adap_init0_tweaks(struct adapter *adapter)
3462 {
3463         /*
3464          * Fix up various Host-Dependent Parameters like Page Size, Cache
3465          * Line Size, etc.  The firmware default is for a 4KB Page Size and
3466          * 64B Cache Line Size ...
3467          */
3468         t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3469
3470         /*
3471          * Process module parameters which affect early initialization.
3472          */
3473         if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3474                 dev_err(&adapter->pdev->dev,
3475                         "Ignoring illegal rx_dma_offset=%d, using 2\n",
3476                         rx_dma_offset);
3477                 rx_dma_offset = 2;
3478         }
3479         t4_set_reg_field(adapter, SGE_CONTROL_A,
3480                          PKTSHIFT_V(PKTSHIFT_M),
3481                          PKTSHIFT_V(rx_dma_offset));
3482
3483         /*
3484          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3485          * adds the pseudo header itself.
3486          */
3487         t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3488                                CSUM_HAS_PSEUDO_HDR_F, 0);
3489
3490         return 0;
3491 }
3492
3493 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3494  * unto themselves and they contain their own firmware to perform their
3495  * tasks ...
3496  */
3497 static int phy_aq1202_version(const u8 *phy_fw_data,
3498                               size_t phy_fw_size)
3499 {
3500         int offset;
3501
3502         /* At offset 0x8 you're looking for the primary image's
3503          * starting offset which is 3 Bytes wide
3504          *
3505          * At offset 0xa of the primary image, you look for the offset
3506          * of the DRAM segment which is 3 Bytes wide.
3507          *
3508          * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3509          * wide
3510          */
3511         #define be16(__p) (((__p)[0] << 8) | (__p)[1])
3512         #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3513         #define le24(__p) (le16(__p) | ((__p)[2] << 16))
3514
3515         offset = le24(phy_fw_data + 0x8) << 12;
3516         offset = le24(phy_fw_data + offset + 0xa);
3517         return be16(phy_fw_data + offset + 0x27e);
3518
3519         #undef be16
3520         #undef le16
3521         #undef le24
3522 }
3523
3524 static struct info_10gbt_phy_fw {
3525         unsigned int phy_fw_id;         /* PCI Device ID */
3526         char *phy_fw_file;              /* /lib/firmware/ PHY Firmware file */
3527         int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3528         int phy_flash;                  /* Has FLASH for PHY Firmware */
3529 } phy_info_array[] = {
3530         {
3531                 PHY_AQ1202_DEVICEID,
3532                 PHY_AQ1202_FIRMWARE,
3533                 phy_aq1202_version,
3534                 1,
3535         },
3536         {
3537                 PHY_BCM84834_DEVICEID,
3538                 PHY_BCM84834_FIRMWARE,
3539                 NULL,
3540                 0,
3541         },
3542         { 0, NULL, NULL },
3543 };
3544
3545 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3546 {
3547         int i;
3548
3549         for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3550                 if (phy_info_array[i].phy_fw_id == devid)
3551                         return &phy_info_array[i];
3552         }
3553         return NULL;
3554 }
3555
3556 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3557  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3558  * we return a negative error number.  If we transfer new firmware we return 1
3559  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3560  */
3561 static int adap_init0_phy(struct adapter *adap)
3562 {
3563         const struct firmware *phyf;
3564         int ret;
3565         struct info_10gbt_phy_fw *phy_info;
3566
3567         /* Use the device ID to determine which PHY file to flash.
3568          */
3569         phy_info = find_phy_info(adap->pdev->device);
3570         if (!phy_info) {
3571                 dev_warn(adap->pdev_dev,
3572                          "No PHY Firmware file found for this PHY\n");
3573                 return -EOPNOTSUPP;
3574         }
3575
3576         /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3577          * use that. The adapter firmware provides us with a memory buffer
3578          * where we can load a PHY firmware file from the host if we want to
3579          * override the PHY firmware File in flash.
3580          */
3581         ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3582                                       adap->pdev_dev);
3583         if (ret < 0) {
3584                 /* For adapters without FLASH attached to PHY for their
3585                  * firmware, it's obviously a fatal error if we can't get the
3586                  * firmware to the adapter.  For adapters with PHY firmware
3587                  * FLASH storage, it's worth a warning if we can't find the
3588                  * PHY Firmware but we'll neuter the error ...
3589                  */
3590                 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3591                         "/lib/firmware/%s, error %d\n",
3592                         phy_info->phy_fw_file, -ret);
3593                 if (phy_info->phy_flash) {
3594                         int cur_phy_fw_ver = 0;
3595
3596                         t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3597                         dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3598                                  "FLASH copy, version %#x\n", cur_phy_fw_ver);
3599                         ret = 0;
3600                 }
3601
3602                 return ret;
3603         }
3604
3605         /* Load PHY Firmware onto adapter.
3606          */
3607         ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3608                              phy_info->phy_fw_version,
3609                              (u8 *)phyf->data, phyf->size);
3610         if (ret < 0)
3611                 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3612                         -ret);
3613         else if (ret > 0) {
3614                 int new_phy_fw_ver = 0;
3615
3616                 if (phy_info->phy_fw_version)
3617                         new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3618                                                                   phyf->size);
3619                 dev_info(adap->pdev_dev, "Successfully transferred PHY "
3620                          "Firmware /lib/firmware/%s, version %#x\n",
3621                          phy_info->phy_fw_file, new_phy_fw_ver);
3622         }
3623
3624         release_firmware(phyf);
3625
3626         return ret;
3627 }
3628
3629 /*
3630  * Attempt to initialize the adapter via a Firmware Configuration File.
3631  */
3632 static int adap_init0_config(struct adapter *adapter, int reset)
3633 {
3634         struct fw_caps_config_cmd caps_cmd;
3635         const struct firmware *cf;
3636         unsigned long mtype = 0, maddr = 0;
3637         u32 finiver, finicsum, cfcsum;
3638         int ret;
3639         int config_issued = 0;
3640         char *fw_config_file, fw_config_file_path[256];
3641         char *config_name = NULL;
3642
3643         /*
3644          * Reset device if necessary.
3645          */
3646         if (reset) {
3647                 ret = t4_fw_reset(adapter, adapter->mbox,
3648                                   PIORSTMODE_F | PIORST_F);
3649                 if (ret < 0)
3650                         goto bye;
3651         }
3652
3653         /* If this is a 10Gb/s-BT adapter make sure the chip-external
3654          * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
3655          * to be performed after any global adapter RESET above since some
3656          * PHYs only have local RAM copies of the PHY firmware.
3657          */
3658         if (is_10gbt_device(adapter->pdev->device)) {
3659                 ret = adap_init0_phy(adapter);
3660                 if (ret < 0)
3661                         goto bye;
3662         }
3663         /*
3664          * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3665          * then use that.  Otherwise, use the configuration file stored
3666          * in the adapter flash ...
3667          */
3668         switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3669         case CHELSIO_T4:
3670                 fw_config_file = FW4_CFNAME;
3671                 break;
3672         case CHELSIO_T5:
3673                 fw_config_file = FW5_CFNAME;
3674                 break;
3675         case CHELSIO_T6:
3676                 fw_config_file = FW6_CFNAME;
3677                 break;
3678         default:
3679                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3680                        adapter->pdev->device);
3681                 ret = -EINVAL;
3682                 goto bye;
3683         }
3684
3685         ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3686         if (ret < 0) {
3687                 config_name = "On FLASH";
3688                 mtype = FW_MEMTYPE_CF_FLASH;
3689                 maddr = t4_flash_cfg_addr(adapter);
3690         } else {
3691                 u32 params[7], val[7];
3692
3693                 sprintf(fw_config_file_path,
3694                         "/lib/firmware/%s", fw_config_file);
3695                 config_name = fw_config_file_path;
3696
3697                 if (cf->size >= FLASH_CFG_MAX_SIZE)
3698                         ret = -ENOMEM;
3699                 else {
3700                         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3701                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3702                         ret = t4_query_params(adapter, adapter->mbox,
3703                                               adapter->pf, 0, 1, params, val);
3704                         if (ret == 0) {
3705                                 /*
3706                                  * For t4_memory_rw() below addresses and
3707                                  * sizes have to be in terms of multiples of 4
3708                                  * bytes.  So, if the Configuration File isn't
3709                                  * a multiple of 4 bytes in length we'll have
3710                                  * to write that out separately since we can't
3711                                  * guarantee that the bytes following the
3712                                  * residual byte in the buffer returned by
3713                                  * request_firmware() are zeroed out ...
3714                                  */
3715                                 size_t resid = cf->size & 0x3;
3716                                 size_t size = cf->size & ~0x3;
3717                                 __be32 *data = (__be32 *)cf->data;
3718
3719                                 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3720                                 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3721
3722                                 spin_lock(&adapter->win0_lock);
3723                                 ret = t4_memory_rw(adapter, 0, mtype, maddr,
3724                                                    size, data, T4_MEMORY_WRITE);
3725                                 if (ret == 0 && resid != 0) {
3726                                         union {
3727                                                 __be32 word;
3728                                                 char buf[4];
3729                                         } last;
3730                                         int i;
3731
3732                                         last.word = data[size >> 2];
3733                                         for (i = resid; i < 4; i++)
3734                                                 last.buf[i] = 0;
3735                                         ret = t4_memory_rw(adapter, 0, mtype,
3736                                                            maddr + size,
3737                                                            4, &last.word,
3738                                                            T4_MEMORY_WRITE);
3739                                 }
3740                                 spin_unlock(&adapter->win0_lock);
3741                         }
3742                 }
3743
3744                 release_firmware(cf);
3745                 if (ret)
3746                         goto bye;
3747         }
3748
3749         /*
3750          * Issue a Capability Configuration command to the firmware to get it
3751          * to parse the Configuration File.  We don't use t4_fw_config_file()
3752          * because we want the ability to modify various features after we've
3753          * processed the configuration file ...
3754          */
3755         memset(&caps_cmd, 0, sizeof(caps_cmd));
3756         caps_cmd.op_to_write =
3757                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3758                       FW_CMD_REQUEST_F |
3759                       FW_CMD_READ_F);
3760         caps_cmd.cfvalid_to_len16 =
3761                 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3762                       FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3763                       FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3764                       FW_LEN16(caps_cmd));
3765         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3766                          &caps_cmd);
3767
3768         /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3769          * Configuration File in FLASH), our last gasp effort is to use the
3770          * Firmware Configuration File which is embedded in the firmware.  A
3771          * very few early versions of the firmware didn't have one embedded
3772          * but we can ignore those.
3773          */
3774         if (ret == -ENOENT) {
3775                 memset(&caps_cmd, 0, sizeof(caps_cmd));
3776                 caps_cmd.op_to_write =
3777                         htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3778                                         FW_CMD_REQUEST_F |
3779                                         FW_CMD_READ_F);
3780                 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3781                 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3782                                 sizeof(caps_cmd), &caps_cmd);
3783                 config_name = "Firmware Default";
3784         }
3785
3786         config_issued = 1;
3787         if (ret < 0)
3788                 goto bye;
3789
3790         finiver = ntohl(caps_cmd.finiver);
3791         finicsum = ntohl(caps_cmd.finicsum);
3792         cfcsum = ntohl(caps_cmd.cfcsum);
3793         if (finicsum != cfcsum)
3794                 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3795                          "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3796                          finicsum, cfcsum);
3797
3798         /*
3799          * And now tell the firmware to use the configuration we just loaded.
3800          */
3801         caps_cmd.op_to_write =
3802                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3803                       FW_CMD_REQUEST_F |
3804                       FW_CMD_WRITE_F);
3805         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3806         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3807                          NULL);
3808         if (ret < 0)
3809                 goto bye;
3810
3811         /*
3812          * Tweak configuration based on system architecture, module
3813          * parameters, etc.
3814          */
3815         ret = adap_init0_tweaks(adapter);
3816         if (ret < 0)
3817                 goto bye;
3818
3819         /*
3820          * And finally tell the firmware to initialize itself using the
3821          * parameters from the Configuration File.
3822          */
3823         ret = t4_fw_initialize(adapter, adapter->mbox);
3824         if (ret < 0)
3825                 goto bye;
3826
3827         /* Emit Firmware Configuration File information and return
3828          * successfully.
3829          */
3830         dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3831                  "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3832                  config_name, finiver, cfcsum);
3833         return 0;
3834
3835         /*
3836          * Something bad happened.  Return the error ...  (If the "error"
3837          * is that there's no Configuration File on the adapter we don't
3838          * want to issue a warning since this is fairly common.)
3839          */
3840 bye:
3841         if (config_issued && ret != -ENOENT)
3842                 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3843                          config_name, -ret);
3844         return ret;
3845 }
3846
3847 static struct fw_info fw_info_array[] = {
3848         {
3849                 .chip = CHELSIO_T4,
3850                 .fs_name = FW4_CFNAME,
3851                 .fw_mod_name = FW4_FNAME,
3852                 .fw_hdr = {
3853                         .chip = FW_HDR_CHIP_T4,
3854                         .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3855                         .intfver_nic = FW_INTFVER(T4, NIC),
3856                         .intfver_vnic = FW_INTFVER(T4, VNIC),
3857                         .intfver_ri = FW_INTFVER(T4, RI),
3858                         .intfver_iscsi = FW_INTFVER(T4, ISCSI),
3859                         .intfver_fcoe = FW_INTFVER(T4, FCOE),
3860                 },
3861         }, {
3862                 .chip = CHELSIO_T5,
3863                 .fs_name = FW5_CFNAME,
3864                 .fw_mod_name = FW5_FNAME,
3865                 .fw_hdr = {
3866                         .chip = FW_HDR_CHIP_T5,
3867                         .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3868                         .intfver_nic = FW_INTFVER(T5, NIC),
3869                         .intfver_vnic = FW_INTFVER(T5, VNIC),
3870                         .intfver_ri = FW_INTFVER(T5, RI),
3871                         .intfver_iscsi = FW_INTFVER(T5, ISCSI),
3872                         .intfver_fcoe = FW_INTFVER(T5, FCOE),
3873                 },
3874         }, {
3875                 .chip = CHELSIO_T6,
3876                 .fs_name = FW6_CFNAME,
3877                 .fw_mod_name = FW6_FNAME,
3878                 .fw_hdr = {
3879                         .chip = FW_HDR_CHIP_T6,
3880                         .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3881                         .intfver_nic = FW_INTFVER(T6, NIC),
3882                         .intfver_vnic = FW_INTFVER(T6, VNIC),
3883                         .intfver_ofld = FW_INTFVER(T6, OFLD),
3884                         .intfver_ri = FW_INTFVER(T6, RI),
3885                         .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3886                         .intfver_iscsi = FW_INTFVER(T6, ISCSI),
3887                         .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3888                         .intfver_fcoe = FW_INTFVER(T6, FCOE),
3889                 },
3890         }
3891
3892 };
3893
3894 static struct fw_info *find_fw_info(int chip)
3895 {
3896         int i;
3897
3898         for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3899                 if (fw_info_array[i].chip == chip)
3900                         return &fw_info_array[i];
3901         }
3902         return NULL;
3903 }
3904
3905 /*
3906  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3907  */
3908 static int adap_init0(struct adapter *adap)
3909 {
3910         int ret;
3911         u32 v, port_vec;
3912         enum dev_state state;
3913         u32 params[7], val[7];
3914         struct fw_caps_config_cmd caps_cmd;
3915         int reset = 1;
3916
3917         /* Grab Firmware Device Log parameters as early as possible so we have
3918          * access to it for debugging, etc.
3919          */
3920         ret = t4_init_devlog_params(adap);
3921         if (ret < 0)
3922                 return ret;
3923
3924         /* Contact FW, advertising Master capability */
3925         ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
3926                           is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
3927         if (ret < 0) {
3928                 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3929                         ret);
3930                 return ret;
3931         }
3932         if (ret == adap->mbox)
3933                 adap->flags |= MASTER_PF;
3934
3935         /*
3936          * If we're the Master PF Driver and the device is uninitialized,
3937          * then let's consider upgrading the firmware ...  (We always want
3938          * to check the firmware version number in order to A. get it for
3939          * later reporting and B. to warn if the currently loaded firmware
3940          * is excessively mismatched relative to the driver.)
3941          */
3942         t4_get_fw_version(adap, &adap->params.fw_vers);
3943         t4_get_bs_version(adap, &adap->params.bs_vers);
3944         t4_get_tp_version(adap, &adap->params.tp_vers);
3945         t4_get_exprom_version(adap, &adap->params.er_vers);
3946
3947         ret = t4_check_fw_version(adap);
3948         /* If firmware is too old (not supported by driver) force an update. */
3949         if (ret)
3950                 state = DEV_STATE_UNINIT;
3951         if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3952                 struct fw_info *fw_info;
3953                 struct fw_hdr *card_fw;
3954                 const struct firmware *fw;
3955                 const u8 *fw_data = NULL;
3956                 unsigned int fw_size = 0;
3957
3958                 /* This is the firmware whose headers the driver was compiled
3959                  * against
3960                  */
3961                 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3962                 if (fw_info == NULL) {
3963                         dev_err(adap->pdev_dev,
3964                                 "unable to get firmware info for chip %d.\n",
3965                                 CHELSIO_CHIP_VERSION(adap->params.chip));
3966                         return -EINVAL;
3967                 }
3968
3969                 /* allocate memory to read the header of the firmware on the
3970                  * card
3971                  */
3972                 card_fw = t4_alloc_mem(sizeof(*card_fw));
3973
3974                 /* Get FW from from /lib/firmware/ */
3975                 ret = request_firmware(&fw, fw_info->fw_mod_name,
3976                                        adap->pdev_dev);
3977                 if (ret < 0) {
3978                         dev_err(adap->pdev_dev,
3979                                 "unable to load firmware image %s, error %d\n",
3980                                 fw_info->fw_mod_name, ret);
3981                 } else {
3982                         fw_data = fw->data;
3983                         fw_size = fw->size;
3984                 }
3985
3986                 /* upgrade FW logic */
3987                 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3988                                  state, &reset);
3989
3990                 /* Cleaning up */
3991                 release_firmware(fw);
3992                 t4_free_mem(card_fw);
3993
3994                 if (ret < 0)
3995                         goto bye;
3996         }
3997
3998         /*
3999          * Grab VPD parameters.  This should be done after we establish a
4000          * connection to the firmware since some of the VPD parameters
4001          * (notably the Core Clock frequency) are retrieved via requests to
4002          * the firmware.  On the other hand, we need these fairly early on
4003          * so we do this right after getting ahold of the firmware.
4004          */
4005         ret = t4_get_vpd_params(adap, &adap->params.vpd);
4006         if (ret < 0)
4007                 goto bye;
4008
4009         /*
4010          * Find out what ports are available to us.  Note that we need to do
4011          * this before calling adap_init0_no_config() since it needs nports
4012          * and portvec ...
4013          */
4014         v =
4015             FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4016             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
4017         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
4018         if (ret < 0)
4019                 goto bye;
4020
4021         adap->params.nports = hweight32(port_vec);
4022         adap->params.portvec = port_vec;
4023
4024         /* If the firmware is initialized already, emit a simply note to that
4025          * effect. Otherwise, it's time to try initializing the adapter.
4026          */
4027         if (state == DEV_STATE_INIT) {
4028                 dev_info(adap->pdev_dev, "Coming up as %s: "\
4029                          "Adapter already initialized\n",
4030                          adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
4031         } else {
4032                 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
4033                          "Initializing adapter\n");
4034
4035                 /* Find out whether we're dealing with a version of the
4036                  * firmware which has configuration file support.
4037                  */
4038                 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4039                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4040                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
4041                                       params, val);
4042
4043                 /* If the firmware doesn't support Configuration Files,
4044                  * return an error.
4045                  */
4046                 if (ret < 0) {
4047                         dev_err(adap->pdev_dev, "firmware doesn't support "
4048                                 "Firmware Configuration Files\n");
4049                         goto bye;
4050                 }
4051
4052                 /* The firmware provides us with a memory buffer where we can
4053                  * load a Configuration File from the host if we want to
4054                  * override the Configuration File in flash.
4055                  */
4056                 ret = adap_init0_config(adap, reset);
4057                 if (ret == -ENOENT) {
4058                         dev_err(adap->pdev_dev, "no Configuration File "
4059                                 "present on adapter.\n");
4060                         goto bye;
4061                 }
4062                 if (ret < 0) {
4063                         dev_err(adap->pdev_dev, "could not initialize "
4064                                 "adapter, error %d\n", -ret);
4065                         goto bye;
4066                 }
4067         }
4068
4069         /* Give the SGE code a chance to pull in anything that it needs ...
4070          * Note that this must be called after we retrieve our VPD parameters
4071          * in order to know how to convert core ticks to seconds, etc.
4072          */
4073         ret = t4_sge_init(adap);
4074         if (ret < 0)
4075                 goto bye;
4076
4077         if (is_bypass_device(adap->pdev->device))
4078                 adap->params.bypass = 1;
4079
4080         /*
4081          * Grab some of our basic fundamental operating parameters.
4082          */
4083 #define FW_PARAM_DEV(param) \
4084         (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
4085         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
4086
4087 #define FW_PARAM_PFVF(param) \
4088         FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
4089         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
4090         FW_PARAMS_PARAM_Y_V(0) | \
4091         FW_PARAMS_PARAM_Z_V(0)
4092
4093         params[0] = FW_PARAM_PFVF(EQ_START);
4094         params[1] = FW_PARAM_PFVF(L2T_START);
4095         params[2] = FW_PARAM_PFVF(L2T_END);
4096         params[3] = FW_PARAM_PFVF(FILTER_START);
4097         params[4] = FW_PARAM_PFVF(FILTER_END);
4098         params[5] = FW_PARAM_PFVF(IQFLINT_START);
4099         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
4100         if (ret < 0)
4101                 goto bye;
4102         adap->sge.egr_start = val[0];
4103         adap->l2t_start = val[1];
4104         adap->l2t_end = val[2];
4105         adap->tids.ftid_base = val[3];
4106         adap->tids.nftids = val[4] - val[3] + 1;
4107         adap->sge.ingr_start = val[5];
4108
4109         /* qids (ingress/egress) returned from firmware can be anywhere
4110          * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
4111          * Hence driver needs to allocate memory for this range to
4112          * store the queue info. Get the highest IQFLINT/EQ index returned
4113          * in FW_EQ_*_CMD.alloc command.
4114          */
4115         params[0] = FW_PARAM_PFVF(EQ_END);
4116         params[1] = FW_PARAM_PFVF(IQFLINT_END);
4117         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4118         if (ret < 0)
4119                 goto bye;
4120         adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
4121         adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
4122
4123         adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
4124                                     sizeof(*adap->sge.egr_map), GFP_KERNEL);
4125         if (!adap->sge.egr_map) {
4126                 ret = -ENOMEM;
4127                 goto bye;
4128         }
4129
4130         adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
4131                                      sizeof(*adap->sge.ingr_map), GFP_KERNEL);
4132         if (!adap->sge.ingr_map) {
4133                 ret = -ENOMEM;
4134                 goto bye;
4135         }
4136
4137         /* Allocate the memory for the vaious egress queue bitmaps
4138          * ie starving_fl, txq_maperr and blocked_fl.
4139          */
4140         adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4141                                         sizeof(long), GFP_KERNEL);
4142         if (!adap->sge.starving_fl) {
4143                 ret = -ENOMEM;
4144                 goto bye;
4145         }
4146
4147         adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4148                                        sizeof(long), GFP_KERNEL);
4149         if (!adap->sge.txq_maperr) {
4150                 ret = -ENOMEM;
4151                 goto bye;
4152         }
4153
4154 #ifdef CONFIG_DEBUG_FS
4155         adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4156                                        sizeof(long), GFP_KERNEL);
4157         if (!adap->sge.blocked_fl) {
4158                 ret = -ENOMEM;
4159                 goto bye;
4160         }
4161 #endif
4162
4163         params[0] = FW_PARAM_PFVF(CLIP_START);
4164         params[1] = FW_PARAM_PFVF(CLIP_END);
4165         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4166         if (ret < 0)
4167                 goto bye;
4168         adap->clipt_start = val[0];
4169         adap->clipt_end = val[1];
4170
4171         /* We don't yet have a PARAMs calls to retrieve the number of Traffic
4172          * Classes supported by the hardware/firmware so we hard code it here
4173          * for now.
4174          */
4175         adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
4176
4177         /* query params related to active filter region */
4178         params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
4179         params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
4180         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4181         /* If Active filter size is set we enable establishing
4182          * offload connection through firmware work request
4183          */
4184         if ((val[0] != val[1]) && (ret >= 0)) {
4185                 adap->flags |= FW_OFLD_CONN;
4186                 adap->tids.aftid_base = val[0];
4187                 adap->tids.aftid_end = val[1];
4188         }
4189
4190         /* If we're running on newer firmware, let it know that we're
4191          * prepared to deal with encapsulated CPL messages.  Older
4192          * firmware won't understand this and we'll just get
4193          * unencapsulated messages ...
4194          */
4195         params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
4196         val[0] = 1;
4197         (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
4198
4199         /*
4200          * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
4201          * capability.  Earlier versions of the firmware didn't have the
4202          * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
4203          * permission to use ULPTX MEMWRITE DSGL.
4204          */
4205         if (is_t4(adap->params.chip)) {
4206                 adap->params.ulptx_memwrite_dsgl = false;
4207         } else {
4208                 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
4209                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4210                                       1, params, val);
4211                 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
4212         }
4213
4214         /*
4215          * Get device capabilities so we can determine what resources we need
4216          * to manage.
4217          */
4218         memset(&caps_cmd, 0, sizeof(caps_cmd));
4219         caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4220                                      FW_CMD_REQUEST_F | FW_CMD_READ_F);
4221         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4222         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
4223                          &caps_cmd);
4224         if (ret < 0)
4225                 goto bye;
4226
4227         if (caps_cmd.ofldcaps) {
4228                 /* query offload-related parameters */
4229                 params[0] = FW_PARAM_DEV(NTID);
4230                 params[1] = FW_PARAM_PFVF(SERVER_START);
4231                 params[2] = FW_PARAM_PFVF(SERVER_END);
4232                 params[3] = FW_PARAM_PFVF(TDDP_START);
4233                 params[4] = FW_PARAM_PFVF(TDDP_END);
4234                 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4235                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4236                                       params, val);
4237                 if (ret < 0)
4238                         goto bye;
4239                 adap->tids.ntids = val[0];
4240                 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
4241                 adap->tids.stid_base = val[1];
4242                 adap->tids.nstids = val[2] - val[1] + 1;
4243                 /*
4244                  * Setup server filter region. Divide the available filter
4245                  * region into two parts. Regular filters get 1/3rd and server
4246                  * filters get 2/3rd part. This is only enabled if workarond
4247                  * path is enabled.
4248                  * 1. For regular filters.
4249                  * 2. Server filter: This are special filters which are used
4250                  * to redirect SYN packets to offload queue.
4251                  */
4252                 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
4253                         adap->tids.sftid_base = adap->tids.ftid_base +
4254                                         DIV_ROUND_UP(adap->tids.nftids, 3);
4255                         adap->tids.nsftids = adap->tids.nftids -
4256                                          DIV_ROUND_UP(adap->tids.nftids, 3);
4257                         adap->tids.nftids = adap->tids.sftid_base -
4258                                                 adap->tids.ftid_base;
4259                 }
4260                 adap->vres.ddp.start = val[3];
4261                 adap->vres.ddp.size = val[4] - val[3] + 1;
4262                 adap->params.ofldq_wr_cred = val[5];
4263
4264                 adap->params.offload = 1;
4265         }
4266         if (caps_cmd.rdmacaps) {
4267                 params[0] = FW_PARAM_PFVF(STAG_START);
4268                 params[1] = FW_PARAM_PFVF(STAG_END);
4269                 params[2] = FW_PARAM_PFVF(RQ_START);
4270                 params[3] = FW_PARAM_PFVF(RQ_END);
4271                 params[4] = FW_PARAM_PFVF(PBL_START);
4272                 params[5] = FW_PARAM_PFVF(PBL_END);
4273                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4274                                       params, val);
4275                 if (ret < 0)
4276                         goto bye;
4277                 adap->vres.stag.start = val[0];
4278                 adap->vres.stag.size = val[1] - val[0] + 1;
4279                 adap->vres.rq.start = val[2];
4280                 adap->vres.rq.size = val[3] - val[2] + 1;
4281                 adap->vres.pbl.start = val[4];
4282                 adap->vres.pbl.size = val[5] - val[4] + 1;
4283
4284                 params[0] = FW_PARAM_PFVF(SQRQ_START);
4285                 params[1] = FW_PARAM_PFVF(SQRQ_END);
4286                 params[2] = FW_PARAM_PFVF(CQ_START);
4287                 params[3] = FW_PARAM_PFVF(CQ_END);
4288                 params[4] = FW_PARAM_PFVF(OCQ_START);
4289                 params[5] = FW_PARAM_PFVF(OCQ_END);
4290                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4291                                       val);
4292                 if (ret < 0)
4293                         goto bye;
4294                 adap->vres.qp.start = val[0];
4295                 adap->vres.qp.size = val[1] - val[0] + 1;
4296                 adap->vres.cq.start = val[2];
4297                 adap->vres.cq.size = val[3] - val[2] + 1;
4298                 adap->vres.ocq.start = val[4];
4299                 adap->vres.ocq.size = val[5] - val[4] + 1;
4300
4301                 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4302                 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4303                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
4304                                       val);
4305                 if (ret < 0) {
4306                         adap->params.max_ordird_qp = 8;
4307                         adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4308                         ret = 0;
4309                 } else {
4310                         adap->params.max_ordird_qp = val[0];
4311                         adap->params.max_ird_adapter = val[1];
4312                 }
4313                 dev_info(adap->pdev_dev,
4314                          "max_ordird_qp %d max_ird_adapter %d\n",
4315                          adap->params.max_ordird_qp,
4316                          adap->params.max_ird_adapter);
4317         }
4318         if (caps_cmd.iscsicaps) {
4319                 params[0] = FW_PARAM_PFVF(ISCSI_START);
4320                 params[1] = FW_PARAM_PFVF(ISCSI_END);
4321                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4322                                       params, val);
4323                 if (ret < 0)
4324                         goto bye;
4325                 adap->vres.iscsi.start = val[0];
4326                 adap->vres.iscsi.size = val[1] - val[0] + 1;
4327         }
4328         if (caps_cmd.cryptocaps) {
4329                 /* Should query params here...TODO */
4330                 adap->params.crypto |= ULP_CRYPTO_LOOKASIDE;
4331                 adap->num_uld += 1;
4332         }
4333 #undef FW_PARAM_PFVF
4334 #undef FW_PARAM_DEV
4335
4336         /* The MTU/MSS Table is initialized by now, so load their values.  If
4337          * we're initializing the adapter, then we'll make any modifications
4338          * we want to the MTU/MSS Table and also initialize the congestion
4339          * parameters.
4340          */
4341         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4342         if (state != DEV_STATE_INIT) {
4343                 int i;
4344
4345                 /* The default MTU Table contains values 1492 and 1500.
4346                  * However, for TCP, it's better to have two values which are
4347                  * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4348                  * This allows us to have a TCP Data Payload which is a
4349                  * multiple of 8 regardless of what combination of TCP Options
4350                  * are in use (always a multiple of 4 bytes) which is
4351                  * important for performance reasons.  For instance, if no
4352                  * options are in use, then we have a 20-byte IP header and a
4353                  * 20-byte TCP header.  In this case, a 1500-byte MSS would
4354                  * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4355                  * which is not a multiple of 8.  So using an MSS of 1488 in
4356                  * this case results in a TCP Data Payload of 1448 bytes which
4357                  * is a multiple of 8.  On the other hand, if 12-byte TCP Time
4358                  * Stamps have been negotiated, then an MTU of 1500 bytes
4359                  * results in a TCP Data Payload of 1448 bytes which, as
4360                  * above, is a multiple of 8 bytes ...
4361                  */
4362                 for (i = 0; i < NMTUS; i++)
4363                         if (adap->params.mtus[i] == 1492) {
4364                                 adap->params.mtus[i] = 1488;
4365                                 break;
4366                         }
4367
4368                 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4369                              adap->params.b_wnd);
4370         }
4371         t4_init_sge_params(adap);
4372         adap->flags |= FW_OK;
4373         t4_init_tp_params(adap);
4374         return 0;
4375
4376         /*
4377          * Something bad happened.  If a command timed out or failed with EIO
4378          * FW does not operate within its spec or something catastrophic
4379          * happened to HW/FW, stop issuing commands.
4380          */
4381 bye:
4382         kfree(adap->sge.egr_map);
4383         kfree(adap->sge.ingr_map);
4384         kfree(adap->sge.starving_fl);
4385         kfree(adap->sge.txq_maperr);
4386 #ifdef CONFIG_DEBUG_FS
4387         kfree(adap->sge.blocked_fl);
4388 #endif
4389         if (ret != -ETIMEDOUT && ret != -EIO)
4390                 t4_fw_bye(adap, adap->mbox);
4391         return ret;
4392 }
4393
4394 /* EEH callbacks */
4395
4396 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4397                                          pci_channel_state_t state)
4398 {
4399         int i;
4400         struct adapter *adap = pci_get_drvdata(pdev);
4401
4402         if (!adap)
4403                 goto out;
4404
4405         rtnl_lock();
4406         adap->flags &= ~FW_OK;
4407         notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4408         spin_lock(&adap->stats_lock);
4409         for_each_port(adap, i) {
4410                 struct net_device *dev = adap->port[i];
4411
4412                 netif_device_detach(dev);
4413                 netif_carrier_off(dev);
4414         }
4415         spin_unlock(&adap->stats_lock);
4416         disable_interrupts(adap);
4417         if (adap->flags & FULL_INIT_DONE)
4418                 cxgb_down(adap);
4419         rtnl_unlock();
4420         if ((adap->flags & DEV_ENABLED)) {
4421                 pci_disable_device(pdev);
4422                 adap->flags &= ~DEV_ENABLED;
4423         }
4424 out:    return state == pci_channel_io_perm_failure ?
4425                 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4426 }
4427
4428 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4429 {
4430         int i, ret;
4431         struct fw_caps_config_cmd c;
4432         struct adapter *adap = pci_get_drvdata(pdev);
4433
4434         if (!adap) {
4435                 pci_restore_state(pdev);
4436                 pci_save_state(pdev);
4437                 return PCI_ERS_RESULT_RECOVERED;
4438         }
4439
4440         if (!(adap->flags & DEV_ENABLED)) {
4441                 if (pci_enable_device(pdev)) {
4442                         dev_err(&pdev->dev, "Cannot reenable PCI "
4443                                             "device after reset\n");
4444                         return PCI_ERS_RESULT_DISCONNECT;
4445                 }
4446                 adap->flags |= DEV_ENABLED;
4447         }
4448
4449         pci_set_master(pdev);
4450         pci_restore_state(pdev);
4451         pci_save_state(pdev);
4452         pci_cleanup_aer_uncorrect_error_status(pdev);
4453
4454         if (t4_wait_dev_ready(adap->regs) < 0)
4455                 return PCI_ERS_RESULT_DISCONNECT;
4456         if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
4457                 return PCI_ERS_RESULT_DISCONNECT;
4458         adap->flags |= FW_OK;
4459         if (adap_init1(adap, &c))
4460                 return PCI_ERS_RESULT_DISCONNECT;
4461
4462         for_each_port(adap, i) {
4463                 struct port_info *p = adap2pinfo(adap, i);
4464
4465                 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
4466                                   NULL, NULL);
4467                 if (ret < 0)
4468                         return PCI_ERS_RESULT_DISCONNECT;
4469                 p->viid = ret;
4470                 p->xact_addr_filt = -1;
4471         }
4472
4473         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4474                      adap->params.b_wnd);
4475         setup_memwin(adap);
4476         if (cxgb_up(adap))
4477                 return PCI_ERS_RESULT_DISCONNECT;
4478         return PCI_ERS_RESULT_RECOVERED;
4479 }
4480
4481 static void eeh_resume(struct pci_dev *pdev)
4482 {
4483         int i;
4484         struct adapter *adap = pci_get_drvdata(pdev);
4485
4486         if (!adap)
4487                 return;
4488
4489         rtnl_lock();
4490         for_each_port(adap, i) {
4491                 struct net_device *dev = adap->port[i];
4492
4493                 if (netif_running(dev)) {
4494                         link_start(dev);
4495                         cxgb_set_rxmode(dev);
4496                 }
4497                 netif_device_attach(dev);
4498         }
4499         rtnl_unlock();
4500 }
4501
4502 static const struct pci_error_handlers cxgb4_eeh = {
4503         .error_detected = eeh_err_detected,
4504         .slot_reset     = eeh_slot_reset,
4505         .resume         = eeh_resume,
4506 };
4507
4508 static inline bool is_x_10g_port(const struct link_config *lc)
4509 {
4510         return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
4511                (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
4512 }
4513
4514 /*
4515  * Perform default configuration of DMA queues depending on the number and type
4516  * of ports we found and the number of available CPUs.  Most settings can be
4517  * modified by the admin prior to actual use.
4518  */
4519 static void cfg_queues(struct adapter *adap)
4520 {
4521         struct sge *s = &adap->sge;
4522         int i, n10g = 0, qidx = 0;
4523 #ifndef CONFIG_CHELSIO_T4_DCB
4524         int q10g = 0;
4525 #endif
4526         int ciq_size;
4527
4528         /* Reduce memory usage in kdump environment, disable all offload.
4529          */
4530         if (is_kdump_kernel()) {
4531                 adap->params.offload = 0;
4532                 adap->params.crypto = 0;
4533         } else if (adap->num_uld && uld_mem_alloc(adap)) {
4534                 adap->params.crypto = 0;
4535         }
4536
4537         for_each_port(adap, i)
4538                 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4539 #ifdef CONFIG_CHELSIO_T4_DCB
4540         /* For Data Center Bridging support we need to be able to support up
4541          * to 8 Traffic Priorities; each of which will be assigned to its
4542          * own TX Queue in order to prevent Head-Of-Line Blocking.
4543          */
4544         if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4545                 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4546                         MAX_ETH_QSETS, adap->params.nports * 8);
4547                 BUG_ON(1);
4548         }
4549
4550         for_each_port(adap, i) {
4551                 struct port_info *pi = adap2pinfo(adap, i);
4552
4553                 pi->first_qset = qidx;
4554                 pi->nqsets = 8;
4555                 qidx += pi->nqsets;
4556         }
4557 #else /* !CONFIG_CHELSIO_T4_DCB */
4558         /*
4559          * We default to 1 queue per non-10G port and up to # of cores queues
4560          * per 10G port.
4561          */
4562         if (n10g)
4563                 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4564         if (q10g > netif_get_num_default_rss_queues())
4565                 q10g = netif_get_num_default_rss_queues();
4566
4567         for_each_port(adap, i) {
4568                 struct port_info *pi = adap2pinfo(adap, i);
4569
4570                 pi->first_qset = qidx;
4571                 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4572                 qidx += pi->nqsets;
4573         }
4574 #endif /* !CONFIG_CHELSIO_T4_DCB */
4575
4576         s->ethqsets = qidx;
4577         s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4578
4579         if (is_offload(adap)) {
4580                 /*
4581                  * For offload we use 1 queue/channel if all ports are up to 1G,
4582                  * otherwise we divide all available queues amongst the channels
4583                  * capped by the number of available cores.
4584                  */
4585                 if (n10g) {
4586                         i = min_t(int, ARRAY_SIZE(s->iscsirxq),
4587                                   num_online_cpus());
4588                         s->iscsiqsets = roundup(i, adap->params.nports);
4589                 } else
4590                         s->iscsiqsets = adap->params.nports;
4591                 /* For RDMA one Rx queue per channel suffices */
4592                 s->rdmaqs = adap->params.nports;
4593                 /* Try and allow at least 1 CIQ per cpu rounding down
4594                  * to the number of ports, with a minimum of 1 per port.
4595                  * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port.
4596                  * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port.
4597                  * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port.
4598                  */
4599                 s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus());
4600                 s->rdmaciqs = (s->rdmaciqs / adap->params.nports) *
4601                                 adap->params.nports;
4602                 s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports);
4603
4604                 if (!is_t4(adap->params.chip))
4605                         s->niscsitq = s->iscsiqsets;
4606         }
4607
4608         for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4609                 struct sge_eth_rxq *r = &s->ethrxq[i];
4610
4611                 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4612                 r->fl.size = 72;
4613         }
4614
4615         for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4616                 s->ethtxq[i].q.size = 1024;
4617
4618         for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4619                 s->ctrlq[i].q.size = 512;
4620
4621         for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4622                 s->ofldtxq[i].q.size = 1024;
4623
4624         for (i = 0; i < ARRAY_SIZE(s->iscsirxq); i++) {
4625                 struct sge_ofld_rxq *r = &s->iscsirxq[i];
4626
4627                 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4628                 r->rspq.uld = CXGB4_ULD_ISCSI;
4629                 r->fl.size = 72;
4630         }
4631
4632         if (!is_t4(adap->params.chip)) {
4633                 for (i = 0; i < ARRAY_SIZE(s->iscsitrxq); i++) {
4634                         struct sge_ofld_rxq *r = &s->iscsitrxq[i];
4635
4636                         init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4637                         r->rspq.uld = CXGB4_ULD_ISCSIT;
4638                         r->fl.size = 72;
4639                 }
4640         }
4641
4642         for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
4643                 struct sge_ofld_rxq *r = &s->rdmarxq[i];
4644
4645                 init_rspq(adap, &r->rspq, 5, 1, 511, 64);
4646                 r->rspq.uld = CXGB4_ULD_RDMA;
4647                 r->fl.size = 72;
4648         }
4649
4650         ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
4651         if (ciq_size > SGE_MAX_IQ_SIZE) {
4652                 CH_WARN(adap, "CIQ size too small for available IQs\n");
4653                 ciq_size = SGE_MAX_IQ_SIZE;
4654         }
4655
4656         for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
4657                 struct sge_ofld_rxq *r = &s->rdmaciq[i];
4658
4659                 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
4660                 r->rspq.uld = CXGB4_ULD_RDMA;
4661         }
4662
4663         init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4664         init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
4665 }
4666
4667 /*
4668  * Reduce the number of Ethernet queues across all ports to at most n.
4669  * n provides at least one queue per port.
4670  */
4671 static void reduce_ethqs(struct adapter *adap, int n)
4672 {
4673         int i;
4674         struct port_info *pi;
4675
4676         while (n < adap->sge.ethqsets)
4677                 for_each_port(adap, i) {
4678                         pi = adap2pinfo(adap, i);
4679                         if (pi->nqsets > 1) {
4680                                 pi->nqsets--;
4681                                 adap->sge.ethqsets--;
4682                                 if (adap->sge.ethqsets <= n)
4683                                         break;
4684                         }
4685                 }
4686
4687         n = 0;
4688         for_each_port(adap, i) {
4689                 pi = adap2pinfo(adap, i);
4690                 pi->first_qset = n;
4691                 n += pi->nqsets;
4692         }
4693 }
4694
4695 static int get_msix_info(struct adapter *adap)
4696 {
4697         struct uld_msix_info *msix_info;
4698         int max_ingq = (MAX_OFLD_QSETS * adap->num_uld);
4699
4700         msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL);
4701         if (!msix_info)
4702                 return -ENOMEM;
4703
4704         adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq),
4705                                                  sizeof(long), GFP_KERNEL);
4706         if (!adap->msix_bmap_ulds.msix_bmap) {
4707                 kfree(msix_info);
4708                 return -ENOMEM;
4709         }
4710         spin_lock_init(&adap->msix_bmap_ulds.lock);
4711         adap->msix_info_ulds = msix_info;
4712         return 0;
4713 }
4714
4715 static void free_msix_info(struct adapter *adap)
4716 {
4717         if (!adap->num_uld)
4718                 return;
4719
4720         kfree(adap->msix_info_ulds);
4721         kfree(adap->msix_bmap_ulds.msix_bmap);
4722 }
4723
4724 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4725 #define EXTRA_VECS 2
4726
4727 static int enable_msix(struct adapter *adap)
4728 {
4729         int ofld_need = 0, uld_need = 0;
4730         int i, j, want, need, allocated;
4731         struct sge *s = &adap->sge;
4732         unsigned int nchan = adap->params.nports;
4733         struct msix_entry *entries;
4734         int max_ingq = MAX_INGQ;
4735
4736         max_ingq += (MAX_OFLD_QSETS * adap->num_uld);
4737         entries = kmalloc(sizeof(*entries) * (max_ingq + 1),
4738                           GFP_KERNEL);
4739         if (!entries)
4740                 return -ENOMEM;
4741
4742         /* map for msix */
4743         if (is_pci_uld(adap) && get_msix_info(adap))
4744                 adap->params.crypto = 0;
4745
4746         for (i = 0; i < max_ingq + 1; ++i)
4747                 entries[i].entry = i;
4748
4749         want = s->max_ethqsets + EXTRA_VECS;
4750         if (is_offload(adap)) {
4751                 want += s->rdmaqs + s->rdmaciqs + s->iscsiqsets +
4752                         s->niscsitq;
4753                 /* need nchan for each possible ULD */
4754                 if (is_t4(adap->params.chip))
4755                         ofld_need = 3 * nchan;
4756                 else
4757                         ofld_need = 4 * nchan;
4758         }
4759         if (is_pci_uld(adap)) {
4760                 want += netif_get_num_default_rss_queues() * nchan;
4761                 uld_need = nchan;
4762         }
4763 #ifdef CONFIG_CHELSIO_T4_DCB
4764         /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4765          * each port.
4766          */
4767         need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4768 #else
4769         need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4770 #endif
4771         allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4772         if (allocated < 0) {
4773                 dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4774                          " not using MSI-X\n");
4775                 kfree(entries);
4776                 return allocated;
4777         }
4778
4779         /* Distribute available vectors to the various queue groups.
4780          * Every group gets its minimum requirement and NIC gets top
4781          * priority for leftovers.
4782          */
4783         i = allocated - EXTRA_VECS - ofld_need - uld_need;
4784         if (i < s->max_ethqsets) {
4785                 s->max_ethqsets = i;
4786                 if (i < s->ethqsets)
4787                         reduce_ethqs(adap, i);
4788         }
4789         if (is_pci_uld(adap)) {
4790                 if (allocated < want)
4791                         s->nqs_per_uld = nchan;
4792                 else
4793                         s->nqs_per_uld = netif_get_num_default_rss_queues() *
4794                                         nchan;
4795         }
4796
4797         if (is_offload(adap)) {
4798                 if (allocated < want) {
4799                         s->rdmaqs = nchan;
4800                         s->rdmaciqs = nchan;
4801
4802                         if (!is_t4(adap->params.chip))
4803                                 s->niscsitq = nchan;
4804                 }
4805
4806                 /* leftovers go to OFLD */
4807                 i = allocated - EXTRA_VECS - s->max_ethqsets -
4808                         s->rdmaqs - s->rdmaciqs - s->niscsitq;
4809                 if (is_pci_uld(adap))
4810                         i -= s->nqs_per_uld * adap->num_uld;
4811                 s->iscsiqsets = (i / nchan) * nchan;  /* round down */
4812
4813         }
4814
4815         for (i = 0; i < (allocated - (s->nqs_per_uld * adap->num_uld)); ++i)
4816                 adap->msix_info[i].vec = entries[i].vector;
4817         if (is_pci_uld(adap)) {
4818                 for (j = 0 ; i < allocated; ++i, j++)
4819                         adap->msix_info_ulds[j].vec = entries[i].vector;
4820                 adap->msix_bmap_ulds.mapsize = j;
4821         }
4822         dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
4823                  "nic %d iscsi %d rdma cpl %d rdma ciq %d uld %d\n",
4824                  allocated, s->max_ethqsets, s->iscsiqsets, s->rdmaqs,
4825                  s->rdmaciqs, s->nqs_per_uld);
4826
4827         kfree(entries);
4828         return 0;
4829 }
4830
4831 #undef EXTRA_VECS
4832
4833 static int init_rss(struct adapter *adap)
4834 {
4835         unsigned int i;
4836         int err;
4837
4838         err = t4_init_rss_mode(adap, adap->mbox);
4839         if (err)
4840                 return err;
4841
4842         for_each_port(adap, i) {
4843                 struct port_info *pi = adap2pinfo(adap, i);
4844
4845                 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4846                 if (!pi->rss)
4847                         return -ENOMEM;
4848         }
4849         return 0;
4850 }
4851
4852 static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap,
4853                                         enum pci_bus_speed *speed,
4854                                         enum pcie_link_width *width)
4855 {
4856         u32 lnkcap1, lnkcap2;
4857         int err1, err2;
4858
4859 #define  PCIE_MLW_CAP_SHIFT 4   /* start of MLW mask in link capabilities */
4860
4861         *speed = PCI_SPEED_UNKNOWN;
4862         *width = PCIE_LNK_WIDTH_UNKNOWN;
4863
4864         err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP,
4865                                           &lnkcap1);
4866         err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2,
4867                                           &lnkcap2);
4868         if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */
4869                 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
4870                         *speed = PCIE_SPEED_8_0GT;
4871                 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
4872                         *speed = PCIE_SPEED_5_0GT;
4873                 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
4874                         *speed = PCIE_SPEED_2_5GT;
4875         }
4876         if (!err1) {
4877                 *width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT;
4878                 if (!lnkcap2) { /* pre-r3.0 */
4879                         if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB)
4880                                 *speed = PCIE_SPEED_5_0GT;
4881                         else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB)
4882                                 *speed = PCIE_SPEED_2_5GT;
4883                 }
4884         }
4885
4886         if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
4887                 return err1 ? err1 : err2 ? err2 : -EINVAL;
4888         return 0;
4889 }
4890
4891 static void cxgb4_check_pcie_caps(struct adapter *adap)
4892 {
4893         enum pcie_link_width width, width_cap;
4894         enum pci_bus_speed speed, speed_cap;
4895
4896 #define PCIE_SPEED_STR(speed) \
4897         (speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \
4898          speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \
4899          speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \
4900          "Unknown")
4901
4902         if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) {
4903                 dev_warn(adap->pdev_dev,
4904                          "Unable to determine PCIe device BW capabilities\n");
4905                 return;
4906         }
4907
4908         if (pcie_get_minimum_link(adap->pdev, &speed, &width) ||
4909             speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) {
4910                 dev_warn(adap->pdev_dev,
4911                          "Unable to determine PCI Express bandwidth.\n");
4912                 return;
4913         }
4914
4915         dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n",
4916                  PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap));
4917         dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n",
4918                  width, width_cap);
4919         if (speed < speed_cap || width < width_cap)
4920                 dev_info(adap->pdev_dev,
4921                          "A slot with more lanes and/or higher speed is "
4922                          "suggested for optimal performance.\n");
4923 }
4924
4925 /* Dump basic information about the adapter */
4926 static void print_adapter_info(struct adapter *adapter)
4927 {
4928         /* Device information */
4929         dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
4930                  adapter->params.vpd.id,
4931                  CHELSIO_CHIP_RELEASE(adapter->params.chip));
4932         dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
4933                  adapter->params.vpd.sn, adapter->params.vpd.pn);
4934
4935         /* Firmware Version */
4936         if (!adapter->params.fw_vers)
4937                 dev_warn(adapter->pdev_dev, "No firmware loaded\n");
4938         else
4939                 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
4940                          FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
4941                          FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
4942                          FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
4943                          FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
4944
4945         /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
4946          * Firmware, so dev_info() is more appropriate here.)
4947          */
4948         if (!adapter->params.bs_vers)
4949                 dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
4950         else
4951                 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
4952                          FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
4953                          FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
4954                          FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
4955                          FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
4956
4957         /* TP Microcode Version */
4958         if (!adapter->params.tp_vers)
4959                 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
4960         else
4961                 dev_info(adapter->pdev_dev,
4962                          "TP Microcode version: %u.%u.%u.%u\n",
4963                          FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
4964                          FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
4965                          FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
4966                          FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
4967
4968         /* Expansion ROM version */
4969         if (!adapter->params.er_vers)
4970                 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
4971         else
4972                 dev_info(adapter->pdev_dev,
4973                          "Expansion ROM version: %u.%u.%u.%u\n",
4974                          FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
4975                          FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
4976                          FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
4977                          FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
4978
4979         /* Software/Hardware configuration */
4980         dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
4981                  is_offload(adapter) ? "R" : "",
4982                  ((adapter->flags & USING_MSIX) ? "MSI-X" :
4983                   (adapter->flags & USING_MSI) ? "MSI" : ""),
4984                  is_offload(adapter) ? "Offload" : "non-Offload");
4985 }
4986
4987 static void print_port_info(const struct net_device *dev)
4988 {
4989         char buf[80];
4990         char *bufp = buf;
4991         const char *spd = "";
4992         const struct port_info *pi = netdev_priv(dev);
4993         const struct adapter *adap = pi->adapter;
4994
4995         if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4996                 spd = " 2.5 GT/s";
4997         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4998                 spd = " 5 GT/s";
4999         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
5000                 spd = " 8 GT/s";
5001
5002         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
5003                 bufp += sprintf(bufp, "100/");
5004         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
5005                 bufp += sprintf(bufp, "1000/");
5006         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
5007                 bufp += sprintf(bufp, "10G/");
5008         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
5009                 bufp += sprintf(bufp, "40G/");
5010         if (bufp != buf)
5011                 --bufp;
5012         sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
5013
5014         netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
5015                     dev->name, adap->params.vpd.id, adap->name, buf);
5016 }
5017
5018 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
5019 {
5020         pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
5021 }
5022
5023 /*
5024  * Free the following resources:
5025  * - memory used for tables
5026  * - MSI/MSI-X
5027  * - net devices
5028  * - resources FW is holding for us
5029  */
5030 static void free_some_resources(struct adapter *adapter)
5031 {
5032         unsigned int i;
5033
5034         t4_free_mem(adapter->l2t);
5035         t4_cleanup_sched(adapter);
5036         t4_free_mem(adapter->tids.tid_tab);
5037         kfree(adapter->sge.egr_map);
5038         kfree(adapter->sge.ingr_map);
5039         kfree(adapter->sge.starving_fl);
5040         kfree(adapter->sge.txq_maperr);
5041 #ifdef CONFIG_DEBUG_FS
5042         kfree(adapter->sge.blocked_fl);
5043 #endif
5044         disable_msi(adapter);
5045
5046         for_each_port(adapter, i)
5047                 if (adapter->port[i]) {
5048                         struct port_info *pi = adap2pinfo(adapter, i);
5049
5050                         if (pi->viid != 0)
5051                                 t4_free_vi(adapter, adapter->mbox, adapter->pf,
5052                                            0, pi->viid);
5053                         kfree(adap2pinfo(adapter, i)->rss);
5054                         free_netdev(adapter->port[i]);
5055                 }
5056         if (adapter->flags & FW_OK)
5057                 t4_fw_bye(adapter, adapter->pf);
5058 }
5059
5060 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
5061 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
5062                    NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
5063 #define SEGMENT_SIZE 128
5064
5065 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
5066 {
5067         u16 device_id;
5068
5069         /* Retrieve adapter's device ID */
5070         pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
5071
5072         switch (device_id >> 12) {
5073         case CHELSIO_T4:
5074                 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
5075         case CHELSIO_T5:
5076                 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
5077         case CHELSIO_T6:
5078                 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
5079         default:
5080                 dev_err(&pdev->dev, "Device %d is not supported\n",
5081                         device_id);
5082         }
5083         return -EINVAL;
5084 }
5085
5086 #ifdef CONFIG_PCI_IOV
5087 static void dummy_setup(struct net_device *dev)
5088 {
5089         dev->type = ARPHRD_NONE;
5090         dev->mtu = 0;
5091         dev->hard_header_len = 0;
5092         dev->addr_len = 0;
5093         dev->tx_queue_len = 0;
5094         dev->flags |= IFF_NOARP;
5095         dev->priv_flags |= IFF_NO_QUEUE;
5096
5097         /* Initialize the device structure. */
5098         dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
5099         dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
5100         dev->destructor = free_netdev;
5101 }
5102
5103 static int config_mgmt_dev(struct pci_dev *pdev)
5104 {
5105         struct adapter *adap = pci_get_drvdata(pdev);
5106         struct net_device *netdev;
5107         struct port_info *pi;
5108         char name[IFNAMSIZ];
5109         int err;
5110
5111         snprintf(name, IFNAMSIZ, "mgmtpf%d%d", adap->adap_idx, adap->pf);
5112         netdev = alloc_netdev(0, name, NET_NAME_UNKNOWN, dummy_setup);
5113         if (!netdev)
5114                 return -ENOMEM;
5115
5116         pi = netdev_priv(netdev);
5117         pi->adapter = adap;
5118         SET_NETDEV_DEV(netdev, &pdev->dev);
5119
5120         adap->port[0] = netdev;
5121
5122         err = register_netdev(adap->port[0]);
5123         if (err) {
5124                 pr_info("Unable to register VF mgmt netdev %s\n", name);
5125                 free_netdev(adap->port[0]);
5126                 adap->port[0] = NULL;
5127                 return err;
5128         }
5129         return 0;
5130 }
5131
5132 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
5133 {
5134         struct adapter *adap = pci_get_drvdata(pdev);
5135         int err = 0;
5136         int current_vfs = pci_num_vf(pdev);
5137         u32 pcie_fw;
5138
5139         pcie_fw = readl(adap->regs + PCIE_FW_A);
5140         /* Check if cxgb4 is the MASTER and fw is initialized */
5141         if (!(pcie_fw & PCIE_FW_INIT_F) ||
5142             !(pcie_fw & PCIE_FW_MASTER_VLD_F) ||
5143             PCIE_FW_MASTER_G(pcie_fw) != 4) {
5144                 dev_warn(&pdev->dev,
5145                          "cxgb4 driver needs to be MASTER to support SRIOV\n");
5146                 return -EOPNOTSUPP;
5147         }
5148
5149         /* If any of the VF's is already assigned to Guest OS, then
5150          * SRIOV for the same cannot be modified
5151          */
5152         if (current_vfs && pci_vfs_assigned(pdev)) {
5153                 dev_err(&pdev->dev,
5154                         "Cannot modify SR-IOV while VFs are assigned\n");
5155                 num_vfs = current_vfs;
5156                 return num_vfs;
5157         }
5158
5159         /* Disable SRIOV when zero is passed.
5160          * One needs to disable SRIOV before modifying it, else
5161          * stack throws the below warning:
5162          * " 'n' VFs already enabled. Disable before enabling 'm' VFs."
5163          */
5164         if (!num_vfs) {
5165                 pci_disable_sriov(pdev);
5166                 if (adap->port[0]) {
5167                         unregister_netdev(adap->port[0]);
5168                         adap->port[0] = NULL;
5169                 }
5170                 /* free VF resources */
5171                 kfree(adap->vfinfo);
5172                 adap->vfinfo = NULL;
5173                 adap->num_vfs = 0;
5174                 return num_vfs;
5175         }
5176
5177         if (num_vfs != current_vfs) {
5178                 err = pci_enable_sriov(pdev, num_vfs);
5179                 if (err)
5180                         return err;
5181
5182                 adap->num_vfs = num_vfs;
5183                 err = config_mgmt_dev(pdev);
5184                 if (err)
5185                         return err;
5186         }
5187
5188         adap->vfinfo = kcalloc(adap->num_vfs,
5189                                sizeof(struct vf_info), GFP_KERNEL);
5190         if (adap->vfinfo)
5191                 fill_vf_station_mac_addr(adap);
5192         return num_vfs;
5193 }
5194 #endif
5195
5196 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
5197 {
5198         int func, i, err, s_qpp, qpp, num_seg;
5199         struct port_info *pi;
5200         bool highdma = false;
5201         struct adapter *adapter = NULL;
5202         struct net_device *netdev;
5203         void __iomem *regs;
5204         u32 whoami, pl_rev;
5205         enum chip_type chip;
5206         static int adap_idx = 1;
5207
5208         printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
5209
5210         err = pci_request_regions(pdev, KBUILD_MODNAME);
5211         if (err) {
5212                 /* Just info, some other driver may have claimed the device. */
5213                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
5214                 return err;
5215         }
5216
5217         err = pci_enable_device(pdev);
5218         if (err) {
5219                 dev_err(&pdev->dev, "cannot enable PCI device\n");
5220                 goto out_release_regions;
5221         }
5222
5223         regs = pci_ioremap_bar(pdev, 0);
5224         if (!regs) {
5225                 dev_err(&pdev->dev, "cannot map device registers\n");
5226                 err = -ENOMEM;
5227                 goto out_disable_device;
5228         }
5229
5230         err = t4_wait_dev_ready(regs);
5231         if (err < 0)
5232                 goto out_unmap_bar0;
5233
5234         /* We control everything through one PF */
5235         whoami = readl(regs + PL_WHOAMI_A);
5236         pl_rev = REV_G(readl(regs + PL_REV_A));
5237         chip = get_chip_type(pdev, pl_rev);
5238         func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
5239                 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5240         if (func != ent->driver_data) {
5241 #ifndef CONFIG_PCI_IOV
5242                 iounmap(regs);
5243 #endif
5244                 pci_disable_device(pdev);
5245                 pci_save_state(pdev);        /* to restore SR-IOV later */
5246                 goto sriov;
5247         }
5248
5249         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
5250                 highdma = true;
5251                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
5252                 if (err) {
5253                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
5254                                 "coherent allocations\n");
5255                         goto out_unmap_bar0;
5256                 }
5257         } else {
5258                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5259                 if (err) {
5260                         dev_err(&pdev->dev, "no usable DMA configuration\n");
5261                         goto out_unmap_bar0;
5262                 }
5263         }
5264
5265         pci_enable_pcie_error_reporting(pdev);
5266         enable_pcie_relaxed_ordering(pdev);
5267         pci_set_master(pdev);
5268         pci_save_state(pdev);
5269
5270         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
5271         if (!adapter) {
5272                 err = -ENOMEM;
5273                 goto out_unmap_bar0;
5274         }
5275         adap_idx++;
5276
5277         adapter->workq = create_singlethread_workqueue("cxgb4");
5278         if (!adapter->workq) {
5279                 err = -ENOMEM;
5280                 goto out_free_adapter;
5281         }
5282
5283         adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
5284                                     (sizeof(struct mbox_cmd) *
5285                                      T4_OS_LOG_MBOX_CMDS),
5286                                     GFP_KERNEL);
5287         if (!adapter->mbox_log) {
5288                 err = -ENOMEM;
5289                 goto out_free_adapter;
5290         }
5291         adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
5292
5293         /* PCI device has been enabled */
5294         adapter->flags |= DEV_ENABLED;
5295
5296         adapter->regs = regs;
5297         adapter->pdev = pdev;
5298         adapter->pdev_dev = &pdev->dev;
5299         adapter->name = pci_name(pdev);
5300         adapter->mbox = func;
5301         adapter->pf = func;
5302         adapter->msg_enable = dflt_msg_enable;
5303         memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
5304
5305         spin_lock_init(&adapter->stats_lock);
5306         spin_lock_init(&adapter->tid_release_lock);
5307         spin_lock_init(&adapter->win0_lock);
5308
5309         INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
5310         INIT_WORK(&adapter->db_full_task, process_db_full);
5311         INIT_WORK(&adapter->db_drop_task, process_db_drop);
5312
5313         err = t4_prep_adapter(adapter);
5314         if (err)
5315                 goto out_free_adapter;
5316
5317
5318         if (!is_t4(adapter->params.chip)) {
5319                 s_qpp = (QUEUESPERPAGEPF0_S +
5320                         (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
5321                         adapter->pf);
5322                 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
5323                       SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
5324                 num_seg = PAGE_SIZE / SEGMENT_SIZE;
5325
5326                 /* Each segment size is 128B. Write coalescing is enabled only
5327                  * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
5328                  * queue is less no of segments that can be accommodated in
5329                  * a page size.
5330                  */
5331                 if (qpp > num_seg) {
5332                         dev_err(&pdev->dev,
5333                                 "Incorrect number of egress queues per page\n");
5334                         err = -EINVAL;
5335                         goto out_free_adapter;
5336                 }
5337                 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
5338                 pci_resource_len(pdev, 2));
5339                 if (!adapter->bar2) {
5340                         dev_err(&pdev->dev, "cannot map device bar2 region\n");
5341                         err = -ENOMEM;
5342                         goto out_free_adapter;
5343                 }
5344         }
5345
5346         setup_memwin(adapter);
5347         err = adap_init0(adapter);
5348 #ifdef CONFIG_DEBUG_FS
5349         bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
5350 #endif
5351         setup_memwin_rdma(adapter);
5352         if (err)
5353                 goto out_unmap_bar;
5354
5355         /* configure SGE_STAT_CFG_A to read WC stats */
5356         if (!is_t4(adapter->params.chip))
5357                 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
5358                              (is_t5(adapter->params.chip) ? STATMODE_V(0) :
5359                               T6_STATMODE_V(0)));
5360
5361         for_each_port(adapter, i) {
5362                 netdev = alloc_etherdev_mq(sizeof(struct port_info),
5363                                            MAX_ETH_QSETS);
5364                 if (!netdev) {
5365                         err = -ENOMEM;
5366                         goto out_free_dev;
5367                 }
5368
5369                 SET_NETDEV_DEV(netdev, &pdev->dev);
5370
5371                 adapter->port[i] = netdev;
5372                 pi = netdev_priv(netdev);
5373                 pi->adapter = adapter;
5374                 pi->xact_addr_filt = -1;
5375                 pi->port_id = i;
5376                 netdev->irq = pdev->irq;
5377
5378                 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
5379                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5380                         NETIF_F_RXCSUM | NETIF_F_RXHASH |
5381                         NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
5382                 if (highdma)
5383                         netdev->hw_features |= NETIF_F_HIGHDMA;
5384                 netdev->features |= netdev->hw_features;
5385                 netdev->vlan_features = netdev->features & VLAN_FEAT;
5386
5387                 netdev->priv_flags |= IFF_UNICAST_FLT;
5388
5389                 netdev->netdev_ops = &cxgb4_netdev_ops;
5390 #ifdef CONFIG_CHELSIO_T4_DCB
5391                 netdev->dcbnl_ops = &cxgb4_dcb_ops;
5392                 cxgb4_dcb_state_init(netdev);
5393 #endif
5394                 cxgb4_set_ethtool_ops(netdev);
5395         }
5396
5397         pci_set_drvdata(pdev, adapter);
5398
5399         if (adapter->flags & FW_OK) {
5400                 err = t4_port_init(adapter, func, func, 0);
5401                 if (err)
5402                         goto out_free_dev;
5403         } else if (adapter->params.nports == 1) {
5404                 /* If we don't have a connection to the firmware -- possibly
5405                  * because of an error -- grab the raw VPD parameters so we
5406                  * can set the proper MAC Address on the debug network
5407                  * interface that we've created.
5408                  */
5409                 u8 hw_addr[ETH_ALEN];
5410                 u8 *na = adapter->params.vpd.na;
5411
5412                 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
5413                 if (!err) {
5414                         for (i = 0; i < ETH_ALEN; i++)
5415                                 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
5416                                               hex2val(na[2 * i + 1]));
5417                         t4_set_hw_addr(adapter, 0, hw_addr);
5418                 }
5419         }
5420
5421         /* Configure queues and allocate tables now, they can be needed as
5422          * soon as the first register_netdev completes.
5423          */
5424         cfg_queues(adapter);
5425
5426         adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
5427         if (!adapter->l2t) {
5428                 /* We tolerate a lack of L2T, giving up some functionality */
5429                 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
5430                 adapter->params.offload = 0;
5431         }
5432
5433 #if IS_ENABLED(CONFIG_IPV6)
5434         if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) &&
5435             (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
5436                 /* CLIP functionality is not present in hardware,
5437                  * hence disable all offload features
5438                  */
5439                 dev_warn(&pdev->dev,
5440                          "CLIP not enabled in hardware, continuing\n");
5441                 adapter->params.offload = 0;
5442         } else {
5443                 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
5444                                                   adapter->clipt_end);
5445                 if (!adapter->clipt) {
5446                         /* We tolerate a lack of clip_table, giving up
5447                          * some functionality
5448                          */
5449                         dev_warn(&pdev->dev,
5450                                  "could not allocate Clip table, continuing\n");
5451                         adapter->params.offload = 0;
5452                 }
5453         }
5454 #endif
5455
5456         for_each_port(adapter, i) {
5457                 pi = adap2pinfo(adapter, i);
5458                 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
5459                 if (!pi->sched_tbl)
5460                         dev_warn(&pdev->dev,
5461                                  "could not activate scheduling on port %d\n",
5462                                  i);
5463         }
5464
5465         if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
5466                 dev_warn(&pdev->dev, "could not allocate TID table, "
5467                          "continuing\n");
5468                 adapter->params.offload = 0;
5469         }
5470
5471         if (is_offload(adapter)) {
5472                 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
5473                         u32 hash_base, hash_reg;
5474
5475                         if (chip <= CHELSIO_T5) {
5476                                 hash_reg = LE_DB_TID_HASHBASE_A;
5477                                 hash_base = t4_read_reg(adapter, hash_reg);
5478                                 adapter->tids.hash_base = hash_base / 4;
5479                         } else {
5480                                 hash_reg = T6_LE_DB_HASH_TID_BASE_A;
5481                                 hash_base = t4_read_reg(adapter, hash_reg);
5482                                 adapter->tids.hash_base = hash_base;
5483                         }
5484                 }
5485         }
5486
5487         /* See what interrupts we'll be using */
5488         if (msi > 1 && enable_msix(adapter) == 0)
5489                 adapter->flags |= USING_MSIX;
5490         else if (msi > 0 && pci_enable_msi(pdev) == 0) {
5491                 adapter->flags |= USING_MSI;
5492                 if (msi > 1)
5493                         free_msix_info(adapter);
5494         }
5495
5496         /* check for PCI Express bandwidth capabiltites */
5497         cxgb4_check_pcie_caps(adapter);
5498
5499         err = init_rss(adapter);
5500         if (err)
5501                 goto out_free_dev;
5502
5503         /*
5504          * The card is now ready to go.  If any errors occur during device
5505          * registration we do not fail the whole card but rather proceed only
5506          * with the ports we manage to register successfully.  However we must
5507          * register at least one net device.
5508          */
5509         for_each_port(adapter, i) {
5510                 pi = adap2pinfo(adapter, i);
5511                 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
5512                 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
5513
5514                 err = register_netdev(adapter->port[i]);
5515                 if (err)
5516                         break;
5517                 adapter->chan_map[pi->tx_chan] = i;
5518                 print_port_info(adapter->port[i]);
5519         }
5520         if (i == 0) {
5521                 dev_err(&pdev->dev, "could not register any net devices\n");
5522                 goto out_free_dev;
5523         }
5524         if (err) {
5525                 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
5526                 err = 0;
5527         }
5528
5529         if (cxgb4_debugfs_root) {
5530                 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
5531                                                            cxgb4_debugfs_root);
5532                 setup_debugfs(adapter);
5533         }
5534
5535         /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
5536         pdev->needs_freset = 1;
5537
5538         if (is_offload(adapter))
5539                 attach_ulds(adapter);
5540
5541         print_adapter_info(adapter);
5542         return 0;
5543
5544 sriov:
5545 #ifdef CONFIG_PCI_IOV
5546         if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0) {
5547                 dev_warn(&pdev->dev,
5548                          "Enabling SR-IOV VFs using the num_vf module "
5549                          "parameter is deprecated - please use the pci sysfs "
5550                          "interface instead.\n");
5551                 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
5552                         dev_info(&pdev->dev,
5553                                  "instantiated %u virtual functions\n",
5554                                  num_vf[func]);
5555         }
5556
5557         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
5558         if (!adapter) {
5559                 err = -ENOMEM;
5560                 goto free_pci_region;
5561         }
5562
5563         adapter->pdev = pdev;
5564         adapter->pdev_dev = &pdev->dev;
5565         adapter->name = pci_name(pdev);
5566         adapter->mbox = func;
5567         adapter->pf = func;
5568         adapter->regs = regs;
5569         adapter->adap_idx = adap_idx;
5570         adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
5571                                     (sizeof(struct mbox_cmd) *
5572                                      T4_OS_LOG_MBOX_CMDS),
5573                                     GFP_KERNEL);
5574         if (!adapter->mbox_log) {
5575                 err = -ENOMEM;
5576                 goto free_adapter;
5577         }
5578         pci_set_drvdata(pdev, adapter);
5579         return 0;
5580
5581  free_adapter:
5582         kfree(adapter);
5583  free_pci_region:
5584         iounmap(regs);
5585         pci_disable_sriov(pdev);
5586         pci_release_regions(pdev);
5587         return err;
5588 #else
5589         return 0;
5590 #endif
5591
5592  out_free_dev:
5593         free_some_resources(adapter);
5594         if (adapter->flags & USING_MSIX)
5595                 free_msix_info(adapter);
5596         if (adapter->num_uld)
5597                 uld_mem_free(adapter);
5598  out_unmap_bar:
5599         if (!is_t4(adapter->params.chip))
5600                 iounmap(adapter->bar2);
5601  out_free_adapter:
5602         if (adapter->workq)
5603                 destroy_workqueue(adapter->workq);
5604
5605         kfree(adapter->mbox_log);
5606         kfree(adapter);
5607  out_unmap_bar0:
5608         iounmap(regs);
5609  out_disable_device:
5610         pci_disable_pcie_error_reporting(pdev);
5611         pci_disable_device(pdev);
5612  out_release_regions:
5613         pci_release_regions(pdev);
5614         return err;
5615 }
5616
5617 static void remove_one(struct pci_dev *pdev)
5618 {
5619         struct adapter *adapter = pci_get_drvdata(pdev);
5620
5621         if (!adapter) {
5622                 pci_release_regions(pdev);
5623                 return;
5624         }
5625
5626         if (adapter->pf == 4) {
5627                 int i;
5628
5629                 /* Tear down per-adapter Work Queue first since it can contain
5630                  * references to our adapter data structure.
5631                  */
5632                 destroy_workqueue(adapter->workq);
5633
5634                 if (is_offload(adapter))
5635                         detach_ulds(adapter);
5636
5637                 disable_interrupts(adapter);
5638
5639                 for_each_port(adapter, i)
5640                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5641                                 unregister_netdev(adapter->port[i]);
5642
5643                 debugfs_remove_recursive(adapter->debugfs_root);
5644
5645                 /* If we allocated filters, free up state associated with any
5646                  * valid filters ...
5647                  */
5648                 if (adapter->tids.ftid_tab) {
5649                         struct filter_entry *f = &adapter->tids.ftid_tab[0];
5650                         for (i = 0; i < (adapter->tids.nftids +
5651                                         adapter->tids.nsftids); i++, f++)
5652                                 if (f->valid)
5653                                         clear_filter(adapter, f);
5654                 }
5655
5656                 if (adapter->flags & FULL_INIT_DONE)
5657                         cxgb_down(adapter);
5658
5659                 if (adapter->flags & USING_MSIX)
5660                         free_msix_info(adapter);
5661                 if (adapter->num_uld)
5662                         uld_mem_free(adapter);
5663                 free_some_resources(adapter);
5664 #if IS_ENABLED(CONFIG_IPV6)
5665                 t4_cleanup_clip_tbl(adapter);
5666 #endif
5667                 iounmap(adapter->regs);
5668                 if (!is_t4(adapter->params.chip))
5669                         iounmap(adapter->bar2);
5670                 pci_disable_pcie_error_reporting(pdev);
5671                 if ((adapter->flags & DEV_ENABLED)) {
5672                         pci_disable_device(pdev);
5673                         adapter->flags &= ~DEV_ENABLED;
5674                 }
5675                 pci_release_regions(pdev);
5676                 kfree(adapter->mbox_log);
5677                 synchronize_rcu();
5678                 kfree(adapter);
5679         }
5680 #ifdef CONFIG_PCI_IOV
5681         else {
5682                 if (adapter->port[0])
5683                         unregister_netdev(adapter->port[0]);
5684                 iounmap(adapter->regs);
5685                 kfree(adapter->vfinfo);
5686                 kfree(adapter);
5687                 pci_disable_sriov(pdev);
5688                 pci_release_regions(pdev);
5689         }
5690 #endif
5691 }
5692
5693 static struct pci_driver cxgb4_driver = {
5694         .name     = KBUILD_MODNAME,
5695         .id_table = cxgb4_pci_tbl,
5696         .probe    = init_one,
5697         .remove   = remove_one,
5698         .shutdown = remove_one,
5699 #ifdef CONFIG_PCI_IOV
5700         .sriov_configure = cxgb4_iov_configure,
5701 #endif
5702         .err_handler = &cxgb4_eeh,
5703 };
5704
5705 static int __init cxgb4_init_module(void)
5706 {
5707         int ret;
5708
5709         /* Debugfs support is optional, just warn if this fails */
5710         cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5711         if (!cxgb4_debugfs_root)
5712                 pr_warn("could not create debugfs entry, continuing\n");
5713
5714         ret = pci_register_driver(&cxgb4_driver);
5715         if (ret < 0)
5716                 debugfs_remove(cxgb4_debugfs_root);
5717
5718 #if IS_ENABLED(CONFIG_IPV6)
5719         if (!inet6addr_registered) {
5720                 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5721                 inet6addr_registered = true;
5722         }
5723 #endif
5724
5725         return ret;
5726 }
5727
5728 static void __exit cxgb4_cleanup_module(void)
5729 {
5730 #if IS_ENABLED(CONFIG_IPV6)
5731         if (inet6addr_registered) {
5732                 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5733                 inet6addr_registered = false;
5734         }
5735 #endif
5736         pci_unregister_driver(&cxgb4_driver);
5737         debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
5738 }
5739
5740 module_init(cxgb4_init_module);
5741 module_exit(cxgb4_cleanup_module);