Merge branch 'drm-intel-next' of git://anongit.freedesktop.org/drm-intel into drm...
[cascardo/linux.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <asm/uaccess.h>
67
68 #include "cxgb4.h"
69 #include "t4_regs.h"
70 #include "t4_values.h"
71 #include "t4_msg.h"
72 #include "t4fw_api.h"
73 #include "t4fw_version.h"
74 #include "cxgb4_dcb.h"
75 #include "cxgb4_debugfs.h"
76 #include "clip_tbl.h"
77 #include "l2t.h"
78
79 char cxgb4_driver_name[] = KBUILD_MODNAME;
80
81 #ifdef DRV_VERSION
82 #undef DRV_VERSION
83 #endif
84 #define DRV_VERSION "2.0.0-ko"
85 const char cxgb4_driver_version[] = DRV_VERSION;
86 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
87
88 /* Host shadow copy of ingress filter entry.  This is in host native format
89  * and doesn't match the ordering or bit order, etc. of the hardware of the
90  * firmware command.  The use of bit-field structure elements is purely to
91  * remind ourselves of the field size limitations and save memory in the case
92  * where the filter table is large.
93  */
94 struct filter_entry {
95         /* Administrative fields for filter.
96          */
97         u32 valid:1;            /* filter allocated and valid */
98         u32 locked:1;           /* filter is administratively locked */
99
100         u32 pending:1;          /* filter action is pending firmware reply */
101         u32 smtidx:8;           /* Source MAC Table index for smac */
102         struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
103
104         /* The filter itself.  Most of this is a straight copy of information
105          * provided by the extended ioctl().  Some fields are translated to
106          * internal forms -- for instance the Ingress Queue ID passed in from
107          * the ioctl() is translated into the Absolute Ingress Queue ID.
108          */
109         struct ch_filter_specification fs;
110 };
111
112 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
113                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
114                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
115
116 /* Macros needed to support the PCI Device ID Table ...
117  */
118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
119         static const struct pci_device_id cxgb4_pci_tbl[] = {
120 #define CH_PCI_DEVICE_ID_FUNCTION 0x4
121
122 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
123  * called for both.
124  */
125 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
126
127 #define CH_PCI_ID_TABLE_ENTRY(devid) \
128                 {PCI_VDEVICE(CHELSIO, (devid)), 4}
129
130 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
131                 { 0, } \
132         }
133
134 #include "t4_pci_id_tbl.h"
135
136 #define FW4_FNAME "cxgb4/t4fw.bin"
137 #define FW5_FNAME "cxgb4/t5fw.bin"
138 #define FW6_FNAME "cxgb4/t6fw.bin"
139 #define FW4_CFNAME "cxgb4/t4-config.txt"
140 #define FW5_CFNAME "cxgb4/t5-config.txt"
141 #define FW6_CFNAME "cxgb4/t6-config.txt"
142 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
143 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
144 #define PHY_AQ1202_DEVICEID 0x4409
145 #define PHY_BCM84834_DEVICEID 0x4486
146
147 MODULE_DESCRIPTION(DRV_DESC);
148 MODULE_AUTHOR("Chelsio Communications");
149 MODULE_LICENSE("Dual BSD/GPL");
150 MODULE_VERSION(DRV_VERSION);
151 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
152 MODULE_FIRMWARE(FW4_FNAME);
153 MODULE_FIRMWARE(FW5_FNAME);
154 MODULE_FIRMWARE(FW6_FNAME);
155
156 /*
157  * Normally we're willing to become the firmware's Master PF but will be happy
158  * if another PF has already become the Master and initialized the adapter.
159  * Setting "force_init" will cause this driver to forcibly establish itself as
160  * the Master PF and initialize the adapter.
161  */
162 static uint force_init;
163
164 module_param(force_init, uint, 0644);
165 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter,"
166                  "deprecated parameter");
167
168 static int dflt_msg_enable = DFLT_MSG_ENABLE;
169
170 module_param(dflt_msg_enable, int, 0644);
171 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap, "
172                  "deprecated parameter");
173
174 /*
175  * The driver uses the best interrupt scheme available on a platform in the
176  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
177  * of these schemes the driver may consider as follows:
178  *
179  * msi = 2: choose from among all three options
180  * msi = 1: only consider MSI and INTx interrupts
181  * msi = 0: force INTx interrupts
182  */
183 static int msi = 2;
184
185 module_param(msi, int, 0644);
186 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
187
188 /*
189  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
190  * offset by 2 bytes in order to have the IP headers line up on 4-byte
191  * boundaries.  This is a requirement for many architectures which will throw
192  * a machine check fault if an attempt is made to access one of the 4-byte IP
193  * header fields on a non-4-byte boundary.  And it's a major performance issue
194  * even on some architectures which allow it like some implementations of the
195  * x86 ISA.  However, some architectures don't mind this and for some very
196  * edge-case performance sensitive applications (like forwarding large volumes
197  * of small packets), setting this DMA offset to 0 will decrease the number of
198  * PCI-E Bus transfers enough to measurably affect performance.
199  */
200 static int rx_dma_offset = 2;
201
202 #ifdef CONFIG_PCI_IOV
203 /* Configure the number of PCI-E Virtual Function which are to be instantiated
204  * on SR-IOV Capable Physical Functions.
205  */
206 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
207
208 module_param_array(num_vf, uint, NULL, 0644);
209 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
210 #endif
211
212 /* TX Queue select used to determine what algorithm to use for selecting TX
213  * queue. Select between the kernel provided function (select_queue=0) or user
214  * cxgb_select_queue function (select_queue=1)
215  *
216  * Default: select_queue=0
217  */
218 static int select_queue;
219 module_param(select_queue, int, 0644);
220 MODULE_PARM_DESC(select_queue,
221                  "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
222
223 static struct dentry *cxgb4_debugfs_root;
224
225 static LIST_HEAD(adapter_list);
226 static DEFINE_MUTEX(uld_mutex);
227 /* Adapter list to be accessed from atomic context */
228 static LIST_HEAD(adap_rcu_list);
229 static DEFINE_SPINLOCK(adap_rcu_lock);
230 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
231 static const char *const uld_str[] = { "RDMA", "iSCSI", "iSCSIT" };
232
233 static void link_report(struct net_device *dev)
234 {
235         if (!netif_carrier_ok(dev))
236                 netdev_info(dev, "link down\n");
237         else {
238                 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
239
240                 const char *s;
241                 const struct port_info *p = netdev_priv(dev);
242
243                 switch (p->link_cfg.speed) {
244                 case 10000:
245                         s = "10Gbps";
246                         break;
247                 case 1000:
248                         s = "1000Mbps";
249                         break;
250                 case 100:
251                         s = "100Mbps";
252                         break;
253                 case 40000:
254                         s = "40Gbps";
255                         break;
256                 default:
257                         pr_info("%s: unsupported speed: %d\n",
258                                 dev->name, p->link_cfg.speed);
259                         return;
260                 }
261
262                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
263                             fc[p->link_cfg.fc]);
264         }
265 }
266
267 #ifdef CONFIG_CHELSIO_T4_DCB
268 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
269 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
270 {
271         struct port_info *pi = netdev_priv(dev);
272         struct adapter *adap = pi->adapter;
273         struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
274         int i;
275
276         /* We use a simple mapping of Port TX Queue Index to DCB
277          * Priority when we're enabling DCB.
278          */
279         for (i = 0; i < pi->nqsets; i++, txq++) {
280                 u32 name, value;
281                 int err;
282
283                 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
284                         FW_PARAMS_PARAM_X_V(
285                                 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
286                         FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
287                 value = enable ? i : 0xffffffff;
288
289                 /* Since we can be called while atomic (from "interrupt
290                  * level") we need to issue the Set Parameters Commannd
291                  * without sleeping (timeout < 0).
292                  */
293                 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
294                                             &name, &value,
295                                             -FW_CMD_MAX_TIMEOUT);
296
297                 if (err)
298                         dev_err(adap->pdev_dev,
299                                 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
300                                 enable ? "set" : "unset", pi->port_id, i, -err);
301                 else
302                         txq->dcb_prio = value;
303         }
304 }
305 #endif /* CONFIG_CHELSIO_T4_DCB */
306
307 int cxgb4_dcb_enabled(const struct net_device *dev)
308 {
309 #ifdef CONFIG_CHELSIO_T4_DCB
310         struct port_info *pi = netdev_priv(dev);
311
312         if (!pi->dcb.enabled)
313                 return 0;
314
315         return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
316                 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
317 #else
318         return 0;
319 #endif
320 }
321 EXPORT_SYMBOL(cxgb4_dcb_enabled);
322
323 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
324 {
325         struct net_device *dev = adapter->port[port_id];
326
327         /* Skip changes from disabled ports. */
328         if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
329                 if (link_stat)
330                         netif_carrier_on(dev);
331                 else {
332 #ifdef CONFIG_CHELSIO_T4_DCB
333                         if (cxgb4_dcb_enabled(dev)) {
334                                 cxgb4_dcb_state_init(dev);
335                                 dcb_tx_queue_prio_enable(dev, false);
336                         }
337 #endif /* CONFIG_CHELSIO_T4_DCB */
338                         netif_carrier_off(dev);
339                 }
340
341                 link_report(dev);
342         }
343 }
344
345 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
346 {
347         static const char *mod_str[] = {
348                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
349         };
350
351         const struct net_device *dev = adap->port[port_id];
352         const struct port_info *pi = netdev_priv(dev);
353
354         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
355                 netdev_info(dev, "port module unplugged\n");
356         else if (pi->mod_type < ARRAY_SIZE(mod_str))
357                 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
358         else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
359                 netdev_info(dev, "%s: unsupported port module inserted\n",
360                             dev->name);
361         else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
362                 netdev_info(dev, "%s: unknown port module inserted\n",
363                             dev->name);
364         else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
365                 netdev_info(dev, "%s: transceiver module error\n", dev->name);
366         else
367                 netdev_info(dev, "%s: unknown module type %d inserted\n",
368                             dev->name, pi->mod_type);
369 }
370
371 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
372 module_param(dbfifo_int_thresh, int, 0644);
373 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
374
375 /*
376  * usecs to sleep while draining the dbfifo
377  */
378 static int dbfifo_drain_delay = 1000;
379 module_param(dbfifo_drain_delay, int, 0644);
380 MODULE_PARM_DESC(dbfifo_drain_delay,
381                  "usecs to sleep while draining the dbfifo");
382
383 static inline int cxgb4_set_addr_hash(struct port_info *pi)
384 {
385         struct adapter *adap = pi->adapter;
386         u64 vec = 0;
387         bool ucast = false;
388         struct hash_mac_addr *entry;
389
390         /* Calculate the hash vector for the updated list and program it */
391         list_for_each_entry(entry, &adap->mac_hlist, list) {
392                 ucast |= is_unicast_ether_addr(entry->addr);
393                 vec |= (1ULL << hash_mac_addr(entry->addr));
394         }
395         return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
396                                 vec, false);
397 }
398
399 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
400 {
401         struct port_info *pi = netdev_priv(netdev);
402         struct adapter *adap = pi->adapter;
403         int ret;
404         u64 mhash = 0;
405         u64 uhash = 0;
406         bool free = false;
407         bool ucast = is_unicast_ether_addr(mac_addr);
408         const u8 *maclist[1] = {mac_addr};
409         struct hash_mac_addr *new_entry;
410
411         ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
412                                 NULL, ucast ? &uhash : &mhash, false);
413         if (ret < 0)
414                 goto out;
415         /* if hash != 0, then add the addr to hash addr list
416          * so on the end we will calculate the hash for the
417          * list and program it
418          */
419         if (uhash || mhash) {
420                 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
421                 if (!new_entry)
422                         return -ENOMEM;
423                 ether_addr_copy(new_entry->addr, mac_addr);
424                 list_add_tail(&new_entry->list, &adap->mac_hlist);
425                 ret = cxgb4_set_addr_hash(pi);
426         }
427 out:
428         return ret < 0 ? ret : 0;
429 }
430
431 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
432 {
433         struct port_info *pi = netdev_priv(netdev);
434         struct adapter *adap = pi->adapter;
435         int ret;
436         const u8 *maclist[1] = {mac_addr};
437         struct hash_mac_addr *entry, *tmp;
438
439         /* If the MAC address to be removed is in the hash addr
440          * list, delete it from the list and update hash vector
441          */
442         list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
443                 if (ether_addr_equal(entry->addr, mac_addr)) {
444                         list_del(&entry->list);
445                         kfree(entry);
446                         return cxgb4_set_addr_hash(pi);
447                 }
448         }
449
450         ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
451         return ret < 0 ? -EINVAL : 0;
452 }
453
454 /*
455  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
456  * If @mtu is -1 it is left unchanged.
457  */
458 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
459 {
460         struct port_info *pi = netdev_priv(dev);
461         struct adapter *adapter = pi->adapter;
462
463         if (!(dev->flags & IFF_PROMISC)) {
464                 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
465                 if (!(dev->flags & IFF_ALLMULTI))
466                         __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
467         }
468
469         return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
470                              (dev->flags & IFF_PROMISC) ? 1 : 0,
471                              (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
472                              sleep_ok);
473 }
474
475 /**
476  *      link_start - enable a port
477  *      @dev: the port to enable
478  *
479  *      Performs the MAC and PHY actions needed to enable a port.
480  */
481 static int link_start(struct net_device *dev)
482 {
483         int ret;
484         struct port_info *pi = netdev_priv(dev);
485         unsigned int mb = pi->adapter->pf;
486
487         /*
488          * We do not set address filters and promiscuity here, the stack does
489          * that step explicitly.
490          */
491         ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
492                             !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
493         if (ret == 0) {
494                 ret = t4_change_mac(pi->adapter, mb, pi->viid,
495                                     pi->xact_addr_filt, dev->dev_addr, true,
496                                     true);
497                 if (ret >= 0) {
498                         pi->xact_addr_filt = ret;
499                         ret = 0;
500                 }
501         }
502         if (ret == 0)
503                 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
504                                     &pi->link_cfg);
505         if (ret == 0) {
506                 local_bh_disable();
507                 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
508                                           true, CXGB4_DCB_ENABLED);
509                 local_bh_enable();
510         }
511
512         return ret;
513 }
514
515 #ifdef CONFIG_CHELSIO_T4_DCB
516 /* Handle a Data Center Bridging update message from the firmware. */
517 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
518 {
519         int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
520         struct net_device *dev = adap->port[adap->chan_map[port]];
521         int old_dcb_enabled = cxgb4_dcb_enabled(dev);
522         int new_dcb_enabled;
523
524         cxgb4_dcb_handle_fw_update(adap, pcmd);
525         new_dcb_enabled = cxgb4_dcb_enabled(dev);
526
527         /* If the DCB has become enabled or disabled on the port then we're
528          * going to need to set up/tear down DCB Priority parameters for the
529          * TX Queues associated with the port.
530          */
531         if (new_dcb_enabled != old_dcb_enabled)
532                 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
533 }
534 #endif /* CONFIG_CHELSIO_T4_DCB */
535
536 /* Clear a filter and release any of its resources that we own.  This also
537  * clears the filter's "pending" status.
538  */
539 static void clear_filter(struct adapter *adap, struct filter_entry *f)
540 {
541         /* If the new or old filter have loopback rewriteing rules then we'll
542          * need to free any existing Layer Two Table (L2T) entries of the old
543          * filter rule.  The firmware will handle freeing up any Source MAC
544          * Table (SMT) entries used for rewriting Source MAC Addresses in
545          * loopback rules.
546          */
547         if (f->l2t)
548                 cxgb4_l2t_release(f->l2t);
549
550         /* The zeroing of the filter rule below clears the filter valid,
551          * pending, locked flags, l2t pointer, etc. so it's all we need for
552          * this operation.
553          */
554         memset(f, 0, sizeof(*f));
555 }
556
557 /* Handle a filter write/deletion reply.
558  */
559 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
560 {
561         unsigned int idx = GET_TID(rpl);
562         unsigned int nidx = idx - adap->tids.ftid_base;
563         unsigned int ret;
564         struct filter_entry *f;
565
566         if (idx >= adap->tids.ftid_base && nidx <
567            (adap->tids.nftids + adap->tids.nsftids)) {
568                 idx = nidx;
569                 ret = TCB_COOKIE_G(rpl->cookie);
570                 f = &adap->tids.ftid_tab[idx];
571
572                 if (ret == FW_FILTER_WR_FLT_DELETED) {
573                         /* Clear the filter when we get confirmation from the
574                          * hardware that the filter has been deleted.
575                          */
576                         clear_filter(adap, f);
577                 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
578                         dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
579                                 idx);
580                         clear_filter(adap, f);
581                 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
582                         f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
583                         f->pending = 0;  /* asynchronous setup completed */
584                         f->valid = 1;
585                 } else {
586                         /* Something went wrong.  Issue a warning about the
587                          * problem and clear everything out.
588                          */
589                         dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
590                                 idx, ret);
591                         clear_filter(adap, f);
592                 }
593         }
594 }
595
596 /* Response queue handler for the FW event queue.
597  */
598 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
599                           const struct pkt_gl *gl)
600 {
601         u8 opcode = ((const struct rss_header *)rsp)->opcode;
602
603         rsp++;                                          /* skip RSS header */
604
605         /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
606          */
607         if (unlikely(opcode == CPL_FW4_MSG &&
608            ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
609                 rsp++;
610                 opcode = ((const struct rss_header *)rsp)->opcode;
611                 rsp++;
612                 if (opcode != CPL_SGE_EGR_UPDATE) {
613                         dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
614                                 , opcode);
615                         goto out;
616                 }
617         }
618
619         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
620                 const struct cpl_sge_egr_update *p = (void *)rsp;
621                 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
622                 struct sge_txq *txq;
623
624                 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
625                 txq->restarts++;
626                 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
627                         struct sge_eth_txq *eq;
628
629                         eq = container_of(txq, struct sge_eth_txq, q);
630                         netif_tx_wake_queue(eq->txq);
631                 } else {
632                         struct sge_ofld_txq *oq;
633
634                         oq = container_of(txq, struct sge_ofld_txq, q);
635                         tasklet_schedule(&oq->qresume_tsk);
636                 }
637         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
638                 const struct cpl_fw6_msg *p = (void *)rsp;
639
640 #ifdef CONFIG_CHELSIO_T4_DCB
641                 const struct fw_port_cmd *pcmd = (const void *)p->data;
642                 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
643                 unsigned int action =
644                         FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
645
646                 if (cmd == FW_PORT_CMD &&
647                     action == FW_PORT_ACTION_GET_PORT_INFO) {
648                         int port = FW_PORT_CMD_PORTID_G(
649                                         be32_to_cpu(pcmd->op_to_portid));
650                         struct net_device *dev =
651                                 q->adap->port[q->adap->chan_map[port]];
652                         int state_input = ((pcmd->u.info.dcbxdis_pkd &
653                                             FW_PORT_CMD_DCBXDIS_F)
654                                            ? CXGB4_DCB_INPUT_FW_DISABLED
655                                            : CXGB4_DCB_INPUT_FW_ENABLED);
656
657                         cxgb4_dcb_state_fsm(dev, state_input);
658                 }
659
660                 if (cmd == FW_PORT_CMD &&
661                     action == FW_PORT_ACTION_L2_DCB_CFG)
662                         dcb_rpl(q->adap, pcmd);
663                 else
664 #endif
665                         if (p->type == 0)
666                                 t4_handle_fw_rpl(q->adap, p->data);
667         } else if (opcode == CPL_L2T_WRITE_RPL) {
668                 const struct cpl_l2t_write_rpl *p = (void *)rsp;
669
670                 do_l2t_write_rpl(q->adap, p);
671         } else if (opcode == CPL_SET_TCB_RPL) {
672                 const struct cpl_set_tcb_rpl *p = (void *)rsp;
673
674                 filter_rpl(q->adap, p);
675         } else
676                 dev_err(q->adap->pdev_dev,
677                         "unexpected CPL %#x on FW event queue\n", opcode);
678 out:
679         return 0;
680 }
681
682 /* Flush the aggregated lro sessions */
683 static void uldrx_flush_handler(struct sge_rspq *q)
684 {
685         if (ulds[q->uld].lro_flush)
686                 ulds[q->uld].lro_flush(&q->lro_mgr);
687 }
688
689 /**
690  *      uldrx_handler - response queue handler for ULD queues
691  *      @q: the response queue that received the packet
692  *      @rsp: the response queue descriptor holding the offload message
693  *      @gl: the gather list of packet fragments
694  *
695  *      Deliver an ingress offload packet to a ULD.  All processing is done by
696  *      the ULD, we just maintain statistics.
697  */
698 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
699                          const struct pkt_gl *gl)
700 {
701         struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
702         int ret;
703
704         /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
705          */
706         if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
707             ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
708                 rsp += 2;
709
710         if (q->flush_handler)
711                 ret = ulds[q->uld].lro_rx_handler(q->adap->uld_handle[q->uld],
712                                                   rsp, gl, &q->lro_mgr,
713                                                   &q->napi);
714         else
715                 ret = ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld],
716                                               rsp, gl);
717
718         if (ret) {
719                 rxq->stats.nomem++;
720                 return -1;
721         }
722
723         if (gl == NULL)
724                 rxq->stats.imm++;
725         else if (gl == CXGB4_MSG_AN)
726                 rxq->stats.an++;
727         else
728                 rxq->stats.pkts++;
729         return 0;
730 }
731
732 static void disable_msi(struct adapter *adapter)
733 {
734         if (adapter->flags & USING_MSIX) {
735                 pci_disable_msix(adapter->pdev);
736                 adapter->flags &= ~USING_MSIX;
737         } else if (adapter->flags & USING_MSI) {
738                 pci_disable_msi(adapter->pdev);
739                 adapter->flags &= ~USING_MSI;
740         }
741 }
742
743 /*
744  * Interrupt handler for non-data events used with MSI-X.
745  */
746 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
747 {
748         struct adapter *adap = cookie;
749         u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
750
751         if (v & PFSW_F) {
752                 adap->swintr = 1;
753                 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
754         }
755         if (adap->flags & MASTER_PF)
756                 t4_slow_intr_handler(adap);
757         return IRQ_HANDLED;
758 }
759
760 /*
761  * Name the MSI-X interrupts.
762  */
763 static void name_msix_vecs(struct adapter *adap)
764 {
765         int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
766
767         /* non-data interrupts */
768         snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
769
770         /* FW events */
771         snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
772                  adap->port[0]->name);
773
774         /* Ethernet queues */
775         for_each_port(adap, j) {
776                 struct net_device *d = adap->port[j];
777                 const struct port_info *pi = netdev_priv(d);
778
779                 for (i = 0; i < pi->nqsets; i++, msi_idx++)
780                         snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
781                                  d->name, i);
782         }
783
784         /* offload queues */
785         for_each_iscsirxq(&adap->sge, i)
786                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-iscsi%d",
787                          adap->port[0]->name, i);
788
789         for_each_iscsitrxq(&adap->sge, i)
790                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-iSCSIT%d",
791                          adap->port[0]->name, i);
792
793         for_each_rdmarxq(&adap->sge, i)
794                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
795                          adap->port[0]->name, i);
796
797         for_each_rdmaciq(&adap->sge, i)
798                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
799                          adap->port[0]->name, i);
800 }
801
802 static int request_msix_queue_irqs(struct adapter *adap)
803 {
804         struct sge *s = &adap->sge;
805         int err, ethqidx, iscsiqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
806         int iscsitqidx = 0;
807         int msi_index = 2;
808
809         err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
810                           adap->msix_info[1].desc, &s->fw_evtq);
811         if (err)
812                 return err;
813
814         for_each_ethrxq(s, ethqidx) {
815                 err = request_irq(adap->msix_info[msi_index].vec,
816                                   t4_sge_intr_msix, 0,
817                                   adap->msix_info[msi_index].desc,
818                                   &s->ethrxq[ethqidx].rspq);
819                 if (err)
820                         goto unwind;
821                 msi_index++;
822         }
823         for_each_iscsirxq(s, iscsiqidx) {
824                 err = request_irq(adap->msix_info[msi_index].vec,
825                                   t4_sge_intr_msix, 0,
826                                   adap->msix_info[msi_index].desc,
827                                   &s->iscsirxq[iscsiqidx].rspq);
828                 if (err)
829                         goto unwind;
830                 msi_index++;
831         }
832         for_each_iscsitrxq(s, iscsitqidx) {
833                 err = request_irq(adap->msix_info[msi_index].vec,
834                                   t4_sge_intr_msix, 0,
835                                   adap->msix_info[msi_index].desc,
836                                   &s->iscsitrxq[iscsitqidx].rspq);
837                 if (err)
838                         goto unwind;
839                 msi_index++;
840         }
841         for_each_rdmarxq(s, rdmaqidx) {
842                 err = request_irq(adap->msix_info[msi_index].vec,
843                                   t4_sge_intr_msix, 0,
844                                   adap->msix_info[msi_index].desc,
845                                   &s->rdmarxq[rdmaqidx].rspq);
846                 if (err)
847                         goto unwind;
848                 msi_index++;
849         }
850         for_each_rdmaciq(s, rdmaciqqidx) {
851                 err = request_irq(adap->msix_info[msi_index].vec,
852                                   t4_sge_intr_msix, 0,
853                                   adap->msix_info[msi_index].desc,
854                                   &s->rdmaciq[rdmaciqqidx].rspq);
855                 if (err)
856                         goto unwind;
857                 msi_index++;
858         }
859         return 0;
860
861 unwind:
862         while (--rdmaciqqidx >= 0)
863                 free_irq(adap->msix_info[--msi_index].vec,
864                          &s->rdmaciq[rdmaciqqidx].rspq);
865         while (--rdmaqidx >= 0)
866                 free_irq(adap->msix_info[--msi_index].vec,
867                          &s->rdmarxq[rdmaqidx].rspq);
868         while (--iscsitqidx >= 0)
869                 free_irq(adap->msix_info[--msi_index].vec,
870                          &s->iscsitrxq[iscsitqidx].rspq);
871         while (--iscsiqidx >= 0)
872                 free_irq(adap->msix_info[--msi_index].vec,
873                          &s->iscsirxq[iscsiqidx].rspq);
874         while (--ethqidx >= 0)
875                 free_irq(adap->msix_info[--msi_index].vec,
876                          &s->ethrxq[ethqidx].rspq);
877         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
878         return err;
879 }
880
881 static void free_msix_queue_irqs(struct adapter *adap)
882 {
883         int i, msi_index = 2;
884         struct sge *s = &adap->sge;
885
886         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
887         for_each_ethrxq(s, i)
888                 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
889         for_each_iscsirxq(s, i)
890                 free_irq(adap->msix_info[msi_index++].vec,
891                          &s->iscsirxq[i].rspq);
892         for_each_iscsitrxq(s, i)
893                 free_irq(adap->msix_info[msi_index++].vec,
894                          &s->iscsitrxq[i].rspq);
895         for_each_rdmarxq(s, i)
896                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
897         for_each_rdmaciq(s, i)
898                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
899 }
900
901 /**
902  *      cxgb4_write_rss - write the RSS table for a given port
903  *      @pi: the port
904  *      @queues: array of queue indices for RSS
905  *
906  *      Sets up the portion of the HW RSS table for the port's VI to distribute
907  *      packets to the Rx queues in @queues.
908  *      Should never be called before setting up sge eth rx queues
909  */
910 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
911 {
912         u16 *rss;
913         int i, err;
914         struct adapter *adapter = pi->adapter;
915         const struct sge_eth_rxq *rxq;
916
917         rxq = &adapter->sge.ethrxq[pi->first_qset];
918         rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
919         if (!rss)
920                 return -ENOMEM;
921
922         /* map the queue indices to queue ids */
923         for (i = 0; i < pi->rss_size; i++, queues++)
924                 rss[i] = rxq[*queues].rspq.abs_id;
925
926         err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
927                                   pi->rss_size, rss, pi->rss_size);
928         /* If Tunnel All Lookup isn't specified in the global RSS
929          * Configuration, then we need to specify a default Ingress
930          * Queue for any ingress packets which aren't hashed.  We'll
931          * use our first ingress queue ...
932          */
933         if (!err)
934                 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
935                                        FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
936                                        FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
937                                        FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
938                                        FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
939                                        FW_RSS_VI_CONFIG_CMD_UDPEN_F,
940                                        rss[0]);
941         kfree(rss);
942         return err;
943 }
944
945 /**
946  *      setup_rss - configure RSS
947  *      @adap: the adapter
948  *
949  *      Sets up RSS for each port.
950  */
951 static int setup_rss(struct adapter *adap)
952 {
953         int i, j, err;
954
955         for_each_port(adap, i) {
956                 const struct port_info *pi = adap2pinfo(adap, i);
957
958                 /* Fill default values with equal distribution */
959                 for (j = 0; j < pi->rss_size; j++)
960                         pi->rss[j] = j % pi->nqsets;
961
962                 err = cxgb4_write_rss(pi, pi->rss);
963                 if (err)
964                         return err;
965         }
966         return 0;
967 }
968
969 /*
970  * Return the channel of the ingress queue with the given qid.
971  */
972 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
973 {
974         qid -= p->ingr_start;
975         return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
976 }
977
978 /*
979  * Wait until all NAPI handlers are descheduled.
980  */
981 static void quiesce_rx(struct adapter *adap)
982 {
983         int i;
984
985         for (i = 0; i < adap->sge.ingr_sz; i++) {
986                 struct sge_rspq *q = adap->sge.ingr_map[i];
987
988                 if (q && q->handler) {
989                         napi_disable(&q->napi);
990                         local_bh_disable();
991                         while (!cxgb_poll_lock_napi(q))
992                                 mdelay(1);
993                         local_bh_enable();
994                 }
995
996         }
997 }
998
999 /* Disable interrupt and napi handler */
1000 static void disable_interrupts(struct adapter *adap)
1001 {
1002         if (adap->flags & FULL_INIT_DONE) {
1003                 t4_intr_disable(adap);
1004                 if (adap->flags & USING_MSIX) {
1005                         free_msix_queue_irqs(adap);
1006                         free_irq(adap->msix_info[0].vec, adap);
1007                 } else {
1008                         free_irq(adap->pdev->irq, adap);
1009                 }
1010                 quiesce_rx(adap);
1011         }
1012 }
1013
1014 /*
1015  * Enable NAPI scheduling and interrupt generation for all Rx queues.
1016  */
1017 static void enable_rx(struct adapter *adap)
1018 {
1019         int i;
1020
1021         for (i = 0; i < adap->sge.ingr_sz; i++) {
1022                 struct sge_rspq *q = adap->sge.ingr_map[i];
1023
1024                 if (!q)
1025                         continue;
1026                 if (q->handler) {
1027                         cxgb_busy_poll_init_lock(q);
1028                         napi_enable(&q->napi);
1029                 }
1030                 /* 0-increment GTS to start the timer and enable interrupts */
1031                 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
1032                              SEINTARM_V(q->intr_params) |
1033                              INGRESSQID_V(q->cntxt_id));
1034         }
1035 }
1036
1037 static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q,
1038                            unsigned int nq, unsigned int per_chan, int msi_idx,
1039                            u16 *ids, bool lro)
1040 {
1041         int i, err;
1042
1043         for (i = 0; i < nq; i++, q++) {
1044                 if (msi_idx > 0)
1045                         msi_idx++;
1046                 err = t4_sge_alloc_rxq(adap, &q->rspq, false,
1047                                        adap->port[i / per_chan],
1048                                        msi_idx, q->fl.size ? &q->fl : NULL,
1049                                        uldrx_handler,
1050                                        lro ? uldrx_flush_handler : NULL,
1051                                        0);
1052                 if (err)
1053                         return err;
1054                 memset(&q->stats, 0, sizeof(q->stats));
1055                 if (ids)
1056                         ids[i] = q->rspq.abs_id;
1057         }
1058         return 0;
1059 }
1060
1061 /**
1062  *      setup_sge_queues - configure SGE Tx/Rx/response queues
1063  *      @adap: the adapter
1064  *
1065  *      Determines how many sets of SGE queues to use and initializes them.
1066  *      We support multiple queue sets per port if we have MSI-X, otherwise
1067  *      just one queue set per port.
1068  */
1069 static int setup_sge_queues(struct adapter *adap)
1070 {
1071         int err, msi_idx, i, j;
1072         struct sge *s = &adap->sge;
1073
1074         bitmap_zero(s->starving_fl, s->egr_sz);
1075         bitmap_zero(s->txq_maperr, s->egr_sz);
1076
1077         if (adap->flags & USING_MSIX)
1078                 msi_idx = 1;         /* vector 0 is for non-queue interrupts */
1079         else {
1080                 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1081                                        NULL, NULL, NULL, -1);
1082                 if (err)
1083                         return err;
1084                 msi_idx = -((int)s->intrq.abs_id + 1);
1085         }
1086
1087         /* NOTE: If you add/delete any Ingress/Egress Queue allocations in here,
1088          * don't forget to update the following which need to be
1089          * synchronized to and changes here.
1090          *
1091          * 1. The calculations of MAX_INGQ in cxgb4.h.
1092          *
1093          * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs
1094          *    to accommodate any new/deleted Ingress Queues
1095          *    which need MSI-X Vectors.
1096          *
1097          * 3. Update sge_qinfo_show() to include information on the
1098          *    new/deleted queues.
1099          */
1100         err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1101                                msi_idx, NULL, fwevtq_handler, NULL, -1);
1102         if (err) {
1103 freeout:        t4_free_sge_resources(adap);
1104                 return err;
1105         }
1106
1107         for_each_port(adap, i) {
1108                 struct net_device *dev = adap->port[i];
1109                 struct port_info *pi = netdev_priv(dev);
1110                 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1111                 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1112
1113                 for (j = 0; j < pi->nqsets; j++, q++) {
1114                         if (msi_idx > 0)
1115                                 msi_idx++;
1116                         err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1117                                                msi_idx, &q->fl,
1118                                                t4_ethrx_handler,
1119                                                NULL,
1120                                                t4_get_mps_bg_map(adap,
1121                                                                  pi->tx_chan));
1122                         if (err)
1123                                 goto freeout;
1124                         q->rspq.idx = j;
1125                         memset(&q->stats, 0, sizeof(q->stats));
1126                 }
1127                 for (j = 0; j < pi->nqsets; j++, t++) {
1128                         err = t4_sge_alloc_eth_txq(adap, t, dev,
1129                                         netdev_get_tx_queue(dev, j),
1130                                         s->fw_evtq.cntxt_id);
1131                         if (err)
1132                                 goto freeout;
1133                 }
1134         }
1135
1136         j = s->iscsiqsets / adap->params.nports; /* iscsi queues per channel */
1137         for_each_iscsirxq(s, i) {
1138                 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
1139                                             adap->port[i / j],
1140                                             s->fw_evtq.cntxt_id);
1141                 if (err)
1142                         goto freeout;
1143         }
1144
1145 #define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids, lro) do { \
1146         err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids, lro); \
1147         if (err) \
1148                 goto freeout; \
1149         if (msi_idx > 0) \
1150                 msi_idx += nq; \
1151 } while (0)
1152
1153         ALLOC_OFLD_RXQS(s->iscsirxq, s->iscsiqsets, j, s->iscsi_rxq, false);
1154         ALLOC_OFLD_RXQS(s->iscsitrxq, s->niscsitq, j, s->iscsit_rxq, true);
1155         ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq, false);
1156         j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */
1157         ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq, false);
1158
1159 #undef ALLOC_OFLD_RXQS
1160
1161         for_each_port(adap, i) {
1162                 /*
1163                  * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1164                  * have RDMA queues, and that's the right value.
1165                  */
1166                 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1167                                             s->fw_evtq.cntxt_id,
1168                                             s->rdmarxq[i].rspq.cntxt_id);
1169                 if (err)
1170                         goto freeout;
1171         }
1172
1173         t4_write_reg(adap, is_t4(adap->params.chip) ?
1174                                 MPS_TRC_RSS_CONTROL_A :
1175                                 MPS_T5_TRC_RSS_CONTROL_A,
1176                      RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1177                      QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1178         return 0;
1179 }
1180
1181 /*
1182  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1183  * The allocated memory is cleared.
1184  */
1185 void *t4_alloc_mem(size_t size)
1186 {
1187         void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1188
1189         if (!p)
1190                 p = vzalloc(size);
1191         return p;
1192 }
1193
1194 /*
1195  * Free memory allocated through alloc_mem().
1196  */
1197 void t4_free_mem(void *addr)
1198 {
1199         kvfree(addr);
1200 }
1201
1202 /* Send a Work Request to write the filter at a specified index.  We construct
1203  * a Firmware Filter Work Request to have the work done and put the indicated
1204  * filter into "pending" mode which will prevent any further actions against
1205  * it till we get a reply from the firmware on the completion status of the
1206  * request.
1207  */
1208 static int set_filter_wr(struct adapter *adapter, int fidx)
1209 {
1210         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1211         struct sk_buff *skb;
1212         struct fw_filter_wr *fwr;
1213         unsigned int ftid;
1214
1215         skb = alloc_skb(sizeof(*fwr), GFP_KERNEL);
1216         if (!skb)
1217                 return -ENOMEM;
1218
1219         /* If the new filter requires loopback Destination MAC and/or VLAN
1220          * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1221          * the filter.
1222          */
1223         if (f->fs.newdmac || f->fs.newvlan) {
1224                 /* allocate L2T entry for new filter */
1225                 f->l2t = t4_l2t_alloc_switching(adapter, f->fs.vlan,
1226                                                 f->fs.eport, f->fs.dmac);
1227                 if (f->l2t == NULL) {
1228                         kfree_skb(skb);
1229                         return -ENOMEM;
1230                 }
1231         }
1232
1233         ftid = adapter->tids.ftid_base + fidx;
1234
1235         fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1236         memset(fwr, 0, sizeof(*fwr));
1237
1238         /* It would be nice to put most of the following in t4_hw.c but most
1239          * of the work is translating the cxgbtool ch_filter_specification
1240          * into the Work Request and the definition of that structure is
1241          * currently in cxgbtool.h which isn't appropriate to pull into the
1242          * common code.  We may eventually try to come up with a more neutral
1243          * filter specification structure but for now it's easiest to simply
1244          * put this fairly direct code in line ...
1245          */
1246         fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
1247         fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
1248         fwr->tid_to_iq =
1249                 htonl(FW_FILTER_WR_TID_V(ftid) |
1250                       FW_FILTER_WR_RQTYPE_V(f->fs.type) |
1251                       FW_FILTER_WR_NOREPLY_V(0) |
1252                       FW_FILTER_WR_IQ_V(f->fs.iq));
1253         fwr->del_filter_to_l2tix =
1254                 htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
1255                       FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
1256                       FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
1257                       FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
1258                       FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
1259                       FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
1260                       FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
1261                       FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
1262                       FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
1263                                              f->fs.newvlan == VLAN_REWRITE) |
1264                       FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
1265                                             f->fs.newvlan == VLAN_REWRITE) |
1266                       FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
1267                       FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
1268                       FW_FILTER_WR_PRIO_V(f->fs.prio) |
1269                       FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
1270         fwr->ethtype = htons(f->fs.val.ethtype);
1271         fwr->ethtypem = htons(f->fs.mask.ethtype);
1272         fwr->frag_to_ovlan_vldm =
1273                 (FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
1274                  FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
1275                  FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
1276                  FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
1277                  FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
1278                  FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
1279         fwr->smac_sel = 0;
1280         fwr->rx_chan_rx_rpl_iq =
1281                 htons(FW_FILTER_WR_RX_CHAN_V(0) |
1282                       FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
1283         fwr->maci_to_matchtypem =
1284                 htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
1285                       FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
1286                       FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
1287                       FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
1288                       FW_FILTER_WR_PORT_V(f->fs.val.iport) |
1289                       FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
1290                       FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
1291                       FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
1292         fwr->ptcl = f->fs.val.proto;
1293         fwr->ptclm = f->fs.mask.proto;
1294         fwr->ttyp = f->fs.val.tos;
1295         fwr->ttypm = f->fs.mask.tos;
1296         fwr->ivlan = htons(f->fs.val.ivlan);
1297         fwr->ivlanm = htons(f->fs.mask.ivlan);
1298         fwr->ovlan = htons(f->fs.val.ovlan);
1299         fwr->ovlanm = htons(f->fs.mask.ovlan);
1300         memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1301         memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1302         memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1303         memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1304         fwr->lp = htons(f->fs.val.lport);
1305         fwr->lpm = htons(f->fs.mask.lport);
1306         fwr->fp = htons(f->fs.val.fport);
1307         fwr->fpm = htons(f->fs.mask.fport);
1308         if (f->fs.newsmac)
1309                 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1310
1311         /* Mark the filter as "pending" and ship off the Filter Work Request.
1312          * When we get the Work Request Reply we'll clear the pending status.
1313          */
1314         f->pending = 1;
1315         set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1316         t4_ofld_send(adapter, skb);
1317         return 0;
1318 }
1319
1320 /* Delete the filter at a specified index.
1321  */
1322 static int del_filter_wr(struct adapter *adapter, int fidx)
1323 {
1324         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1325         struct sk_buff *skb;
1326         struct fw_filter_wr *fwr;
1327         unsigned int len, ftid;
1328
1329         len = sizeof(*fwr);
1330         ftid = adapter->tids.ftid_base + fidx;
1331
1332         skb = alloc_skb(len, GFP_KERNEL);
1333         if (!skb)
1334                 return -ENOMEM;
1335
1336         fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1337         t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1338
1339         /* Mark the filter as "pending" and ship off the Filter Work Request.
1340          * When we get the Work Request Reply we'll clear the pending status.
1341          */
1342         f->pending = 1;
1343         t4_mgmt_tx(adapter, skb);
1344         return 0;
1345 }
1346
1347 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1348                              void *accel_priv, select_queue_fallback_t fallback)
1349 {
1350         int txq;
1351
1352 #ifdef CONFIG_CHELSIO_T4_DCB
1353         /* If a Data Center Bridging has been successfully negotiated on this
1354          * link then we'll use the skb's priority to map it to a TX Queue.
1355          * The skb's priority is determined via the VLAN Tag Priority Code
1356          * Point field.
1357          */
1358         if (cxgb4_dcb_enabled(dev)) {
1359                 u16 vlan_tci;
1360                 int err;
1361
1362                 err = vlan_get_tag(skb, &vlan_tci);
1363                 if (unlikely(err)) {
1364                         if (net_ratelimit())
1365                                 netdev_warn(dev,
1366                                             "TX Packet without VLAN Tag on DCB Link\n");
1367                         txq = 0;
1368                 } else {
1369                         txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1370 #ifdef CONFIG_CHELSIO_T4_FCOE
1371                         if (skb->protocol == htons(ETH_P_FCOE))
1372                                 txq = skb->priority & 0x7;
1373 #endif /* CONFIG_CHELSIO_T4_FCOE */
1374                 }
1375                 return txq;
1376         }
1377 #endif /* CONFIG_CHELSIO_T4_DCB */
1378
1379         if (select_queue) {
1380                 txq = (skb_rx_queue_recorded(skb)
1381                         ? skb_get_rx_queue(skb)
1382                         : smp_processor_id());
1383
1384                 while (unlikely(txq >= dev->real_num_tx_queues))
1385                         txq -= dev->real_num_tx_queues;
1386
1387                 return txq;
1388         }
1389
1390         return fallback(dev, skb) % dev->real_num_tx_queues;
1391 }
1392
1393 static int closest_timer(const struct sge *s, int time)
1394 {
1395         int i, delta, match = 0, min_delta = INT_MAX;
1396
1397         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1398                 delta = time - s->timer_val[i];
1399                 if (delta < 0)
1400                         delta = -delta;
1401                 if (delta < min_delta) {
1402                         min_delta = delta;
1403                         match = i;
1404                 }
1405         }
1406         return match;
1407 }
1408
1409 static int closest_thres(const struct sge *s, int thres)
1410 {
1411         int i, delta, match = 0, min_delta = INT_MAX;
1412
1413         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1414                 delta = thres - s->counter_val[i];
1415                 if (delta < 0)
1416                         delta = -delta;
1417                 if (delta < min_delta) {
1418                         min_delta = delta;
1419                         match = i;
1420                 }
1421         }
1422         return match;
1423 }
1424
1425 /**
1426  *      cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1427  *      @q: the Rx queue
1428  *      @us: the hold-off time in us, or 0 to disable timer
1429  *      @cnt: the hold-off packet count, or 0 to disable counter
1430  *
1431  *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
1432  *      one of the two needs to be enabled for the queue to generate interrupts.
1433  */
1434 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1435                                unsigned int us, unsigned int cnt)
1436 {
1437         struct adapter *adap = q->adap;
1438
1439         if ((us | cnt) == 0)
1440                 cnt = 1;
1441
1442         if (cnt) {
1443                 int err;
1444                 u32 v, new_idx;
1445
1446                 new_idx = closest_thres(&adap->sge, cnt);
1447                 if (q->desc && q->pktcnt_idx != new_idx) {
1448                         /* the queue has already been created, update it */
1449                         v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1450                             FW_PARAMS_PARAM_X_V(
1451                                         FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1452                             FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1453                         err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1454                                             &v, &new_idx);
1455                         if (err)
1456                                 return err;
1457                 }
1458                 q->pktcnt_idx = new_idx;
1459         }
1460
1461         us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1462         q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1463         return 0;
1464 }
1465
1466 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1467 {
1468         const struct port_info *pi = netdev_priv(dev);
1469         netdev_features_t changed = dev->features ^ features;
1470         int err;
1471
1472         if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1473                 return 0;
1474
1475         err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1476                             -1, -1, -1,
1477                             !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1478         if (unlikely(err))
1479                 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1480         return err;
1481 }
1482
1483 static int setup_debugfs(struct adapter *adap)
1484 {
1485         if (IS_ERR_OR_NULL(adap->debugfs_root))
1486                 return -1;
1487
1488 #ifdef CONFIG_DEBUG_FS
1489         t4_setup_debugfs(adap);
1490 #endif
1491         return 0;
1492 }
1493
1494 /*
1495  * upper-layer driver support
1496  */
1497
1498 /*
1499  * Allocate an active-open TID and set it to the supplied value.
1500  */
1501 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1502 {
1503         int atid = -1;
1504
1505         spin_lock_bh(&t->atid_lock);
1506         if (t->afree) {
1507                 union aopen_entry *p = t->afree;
1508
1509                 atid = (p - t->atid_tab) + t->atid_base;
1510                 t->afree = p->next;
1511                 p->data = data;
1512                 t->atids_in_use++;
1513         }
1514         spin_unlock_bh(&t->atid_lock);
1515         return atid;
1516 }
1517 EXPORT_SYMBOL(cxgb4_alloc_atid);
1518
1519 /*
1520  * Release an active-open TID.
1521  */
1522 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1523 {
1524         union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1525
1526         spin_lock_bh(&t->atid_lock);
1527         p->next = t->afree;
1528         t->afree = p;
1529         t->atids_in_use--;
1530         spin_unlock_bh(&t->atid_lock);
1531 }
1532 EXPORT_SYMBOL(cxgb4_free_atid);
1533
1534 /*
1535  * Allocate a server TID and set it to the supplied value.
1536  */
1537 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1538 {
1539         int stid;
1540
1541         spin_lock_bh(&t->stid_lock);
1542         if (family == PF_INET) {
1543                 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1544                 if (stid < t->nstids)
1545                         __set_bit(stid, t->stid_bmap);
1546                 else
1547                         stid = -1;
1548         } else {
1549                 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1550                 if (stid < 0)
1551                         stid = -1;
1552         }
1553         if (stid >= 0) {
1554                 t->stid_tab[stid].data = data;
1555                 stid += t->stid_base;
1556                 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1557                  * This is equivalent to 4 TIDs. With CLIP enabled it
1558                  * needs 2 TIDs.
1559                  */
1560                 if (family == PF_INET)
1561                         t->stids_in_use++;
1562                 else
1563                         t->stids_in_use += 2;
1564         }
1565         spin_unlock_bh(&t->stid_lock);
1566         return stid;
1567 }
1568 EXPORT_SYMBOL(cxgb4_alloc_stid);
1569
1570 /* Allocate a server filter TID and set it to the supplied value.
1571  */
1572 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1573 {
1574         int stid;
1575
1576         spin_lock_bh(&t->stid_lock);
1577         if (family == PF_INET) {
1578                 stid = find_next_zero_bit(t->stid_bmap,
1579                                 t->nstids + t->nsftids, t->nstids);
1580                 if (stid < (t->nstids + t->nsftids))
1581                         __set_bit(stid, t->stid_bmap);
1582                 else
1583                         stid = -1;
1584         } else {
1585                 stid = -1;
1586         }
1587         if (stid >= 0) {
1588                 t->stid_tab[stid].data = data;
1589                 stid -= t->nstids;
1590                 stid += t->sftid_base;
1591                 t->sftids_in_use++;
1592         }
1593         spin_unlock_bh(&t->stid_lock);
1594         return stid;
1595 }
1596 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1597
1598 /* Release a server TID.
1599  */
1600 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1601 {
1602         /* Is it a server filter TID? */
1603         if (t->nsftids && (stid >= t->sftid_base)) {
1604                 stid -= t->sftid_base;
1605                 stid += t->nstids;
1606         } else {
1607                 stid -= t->stid_base;
1608         }
1609
1610         spin_lock_bh(&t->stid_lock);
1611         if (family == PF_INET)
1612                 __clear_bit(stid, t->stid_bmap);
1613         else
1614                 bitmap_release_region(t->stid_bmap, stid, 1);
1615         t->stid_tab[stid].data = NULL;
1616         if (stid < t->nstids) {
1617                 if (family == PF_INET)
1618                         t->stids_in_use--;
1619                 else
1620                         t->stids_in_use -= 2;
1621         } else {
1622                 t->sftids_in_use--;
1623         }
1624         spin_unlock_bh(&t->stid_lock);
1625 }
1626 EXPORT_SYMBOL(cxgb4_free_stid);
1627
1628 /*
1629  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1630  */
1631 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1632                            unsigned int tid)
1633 {
1634         struct cpl_tid_release *req;
1635
1636         set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1637         req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1638         INIT_TP_WR(req, tid);
1639         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1640 }
1641
1642 /*
1643  * Queue a TID release request and if necessary schedule a work queue to
1644  * process it.
1645  */
1646 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1647                                     unsigned int tid)
1648 {
1649         void **p = &t->tid_tab[tid];
1650         struct adapter *adap = container_of(t, struct adapter, tids);
1651
1652         spin_lock_bh(&adap->tid_release_lock);
1653         *p = adap->tid_release_head;
1654         /* Low 2 bits encode the Tx channel number */
1655         adap->tid_release_head = (void **)((uintptr_t)p | chan);
1656         if (!adap->tid_release_task_busy) {
1657                 adap->tid_release_task_busy = true;
1658                 queue_work(adap->workq, &adap->tid_release_task);
1659         }
1660         spin_unlock_bh(&adap->tid_release_lock);
1661 }
1662
1663 /*
1664  * Process the list of pending TID release requests.
1665  */
1666 static void process_tid_release_list(struct work_struct *work)
1667 {
1668         struct sk_buff *skb;
1669         struct adapter *adap;
1670
1671         adap = container_of(work, struct adapter, tid_release_task);
1672
1673         spin_lock_bh(&adap->tid_release_lock);
1674         while (adap->tid_release_head) {
1675                 void **p = adap->tid_release_head;
1676                 unsigned int chan = (uintptr_t)p & 3;
1677                 p = (void *)p - chan;
1678
1679                 adap->tid_release_head = *p;
1680                 *p = NULL;
1681                 spin_unlock_bh(&adap->tid_release_lock);
1682
1683                 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1684                                          GFP_KERNEL)))
1685                         schedule_timeout_uninterruptible(1);
1686
1687                 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1688                 t4_ofld_send(adap, skb);
1689                 spin_lock_bh(&adap->tid_release_lock);
1690         }
1691         adap->tid_release_task_busy = false;
1692         spin_unlock_bh(&adap->tid_release_lock);
1693 }
1694
1695 /*
1696  * Release a TID and inform HW.  If we are unable to allocate the release
1697  * message we defer to a work queue.
1698  */
1699 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1700 {
1701         struct sk_buff *skb;
1702         struct adapter *adap = container_of(t, struct adapter, tids);
1703
1704         WARN_ON(tid >= t->ntids);
1705
1706         if (t->tid_tab[tid]) {
1707                 t->tid_tab[tid] = NULL;
1708                 if (t->hash_base && (tid >= t->hash_base))
1709                         atomic_dec(&t->hash_tids_in_use);
1710                 else
1711                         atomic_dec(&t->tids_in_use);
1712         }
1713
1714         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1715         if (likely(skb)) {
1716                 mk_tid_release(skb, chan, tid);
1717                 t4_ofld_send(adap, skb);
1718         } else
1719                 cxgb4_queue_tid_release(t, chan, tid);
1720 }
1721 EXPORT_SYMBOL(cxgb4_remove_tid);
1722
1723 /*
1724  * Allocate and initialize the TID tables.  Returns 0 on success.
1725  */
1726 static int tid_init(struct tid_info *t)
1727 {
1728         size_t size;
1729         unsigned int stid_bmap_size;
1730         unsigned int natids = t->natids;
1731         struct adapter *adap = container_of(t, struct adapter, tids);
1732
1733         stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1734         size = t->ntids * sizeof(*t->tid_tab) +
1735                natids * sizeof(*t->atid_tab) +
1736                t->nstids * sizeof(*t->stid_tab) +
1737                t->nsftids * sizeof(*t->stid_tab) +
1738                stid_bmap_size * sizeof(long) +
1739                t->nftids * sizeof(*t->ftid_tab) +
1740                t->nsftids * sizeof(*t->ftid_tab);
1741
1742         t->tid_tab = t4_alloc_mem(size);
1743         if (!t->tid_tab)
1744                 return -ENOMEM;
1745
1746         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1747         t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1748         t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1749         t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1750         spin_lock_init(&t->stid_lock);
1751         spin_lock_init(&t->atid_lock);
1752
1753         t->stids_in_use = 0;
1754         t->sftids_in_use = 0;
1755         t->afree = NULL;
1756         t->atids_in_use = 0;
1757         atomic_set(&t->tids_in_use, 0);
1758         atomic_set(&t->hash_tids_in_use, 0);
1759
1760         /* Setup the free list for atid_tab and clear the stid bitmap. */
1761         if (natids) {
1762                 while (--natids)
1763                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1764                 t->afree = t->atid_tab;
1765         }
1766         bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1767         /* Reserve stid 0 for T4/T5 adapters */
1768         if (!t->stid_base &&
1769             (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
1770                 __set_bit(0, t->stid_bmap);
1771
1772         return 0;
1773 }
1774
1775 /**
1776  *      cxgb4_create_server - create an IP server
1777  *      @dev: the device
1778  *      @stid: the server TID
1779  *      @sip: local IP address to bind server to
1780  *      @sport: the server's TCP port
1781  *      @queue: queue to direct messages from this server to
1782  *
1783  *      Create an IP server for the given port and address.
1784  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1785  */
1786 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1787                         __be32 sip, __be16 sport, __be16 vlan,
1788                         unsigned int queue)
1789 {
1790         unsigned int chan;
1791         struct sk_buff *skb;
1792         struct adapter *adap;
1793         struct cpl_pass_open_req *req;
1794         int ret;
1795
1796         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1797         if (!skb)
1798                 return -ENOMEM;
1799
1800         adap = netdev2adap(dev);
1801         req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1802         INIT_TP_WR(req, 0);
1803         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1804         req->local_port = sport;
1805         req->peer_port = htons(0);
1806         req->local_ip = sip;
1807         req->peer_ip = htonl(0);
1808         chan = rxq_to_chan(&adap->sge, queue);
1809         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1810         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1811                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1812         ret = t4_mgmt_tx(adap, skb);
1813         return net_xmit_eval(ret);
1814 }
1815 EXPORT_SYMBOL(cxgb4_create_server);
1816
1817 /*      cxgb4_create_server6 - create an IPv6 server
1818  *      @dev: the device
1819  *      @stid: the server TID
1820  *      @sip: local IPv6 address to bind server to
1821  *      @sport: the server's TCP port
1822  *      @queue: queue to direct messages from this server to
1823  *
1824  *      Create an IPv6 server for the given port and address.
1825  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1826  */
1827 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1828                          const struct in6_addr *sip, __be16 sport,
1829                          unsigned int queue)
1830 {
1831         unsigned int chan;
1832         struct sk_buff *skb;
1833         struct adapter *adap;
1834         struct cpl_pass_open_req6 *req;
1835         int ret;
1836
1837         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1838         if (!skb)
1839                 return -ENOMEM;
1840
1841         adap = netdev2adap(dev);
1842         req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1843         INIT_TP_WR(req, 0);
1844         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1845         req->local_port = sport;
1846         req->peer_port = htons(0);
1847         req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1848         req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1849         req->peer_ip_hi = cpu_to_be64(0);
1850         req->peer_ip_lo = cpu_to_be64(0);
1851         chan = rxq_to_chan(&adap->sge, queue);
1852         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1853         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1854                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1855         ret = t4_mgmt_tx(adap, skb);
1856         return net_xmit_eval(ret);
1857 }
1858 EXPORT_SYMBOL(cxgb4_create_server6);
1859
1860 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1861                         unsigned int queue, bool ipv6)
1862 {
1863         struct sk_buff *skb;
1864         struct adapter *adap;
1865         struct cpl_close_listsvr_req *req;
1866         int ret;
1867
1868         adap = netdev2adap(dev);
1869
1870         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1871         if (!skb)
1872                 return -ENOMEM;
1873
1874         req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1875         INIT_TP_WR(req, 0);
1876         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1877         req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1878                                 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1879         ret = t4_mgmt_tx(adap, skb);
1880         return net_xmit_eval(ret);
1881 }
1882 EXPORT_SYMBOL(cxgb4_remove_server);
1883
1884 /**
1885  *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1886  *      @mtus: the HW MTU table
1887  *      @mtu: the target MTU
1888  *      @idx: index of selected entry in the MTU table
1889  *
1890  *      Returns the index and the value in the HW MTU table that is closest to
1891  *      but does not exceed @mtu, unless @mtu is smaller than any value in the
1892  *      table, in which case that smallest available value is selected.
1893  */
1894 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1895                             unsigned int *idx)
1896 {
1897         unsigned int i = 0;
1898
1899         while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1900                 ++i;
1901         if (idx)
1902                 *idx = i;
1903         return mtus[i];
1904 }
1905 EXPORT_SYMBOL(cxgb4_best_mtu);
1906
1907 /**
1908  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1909  *     @mtus: the HW MTU table
1910  *     @header_size: Header Size
1911  *     @data_size_max: maximum Data Segment Size
1912  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1913  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1914  *
1915  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1916  *     MTU Table based solely on a Maximum MTU parameter, we break that
1917  *     parameter up into a Header Size and Maximum Data Segment Size, and
1918  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1919  *     the Hardware MTU Table which will result in a Data Segment Size with
1920  *     the requested alignment _and_ that MTU isn't "too far" from the
1921  *     closest MTU, then we'll return that rather than the closest MTU.
1922  */
1923 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1924                                     unsigned short header_size,
1925                                     unsigned short data_size_max,
1926                                     unsigned short data_size_align,
1927                                     unsigned int *mtu_idxp)
1928 {
1929         unsigned short max_mtu = header_size + data_size_max;
1930         unsigned short data_size_align_mask = data_size_align - 1;
1931         int mtu_idx, aligned_mtu_idx;
1932
1933         /* Scan the MTU Table till we find an MTU which is larger than our
1934          * Maximum MTU or we reach the end of the table.  Along the way,
1935          * record the last MTU found, if any, which will result in a Data
1936          * Segment Length matching the requested alignment.
1937          */
1938         for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1939                 unsigned short data_size = mtus[mtu_idx] - header_size;
1940
1941                 /* If this MTU minus the Header Size would result in a
1942                  * Data Segment Size of the desired alignment, remember it.
1943                  */
1944                 if ((data_size & data_size_align_mask) == 0)
1945                         aligned_mtu_idx = mtu_idx;
1946
1947                 /* If we're not at the end of the Hardware MTU Table and the
1948                  * next element is larger than our Maximum MTU, drop out of
1949                  * the loop.
1950                  */
1951                 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1952                         break;
1953         }
1954
1955         /* If we fell out of the loop because we ran to the end of the table,
1956          * then we just have to use the last [largest] entry.
1957          */
1958         if (mtu_idx == NMTUS)
1959                 mtu_idx--;
1960
1961         /* If we found an MTU which resulted in the requested Data Segment
1962          * Length alignment and that's "not far" from the largest MTU which is
1963          * less than or equal to the maximum MTU, then use that.
1964          */
1965         if (aligned_mtu_idx >= 0 &&
1966             mtu_idx - aligned_mtu_idx <= 1)
1967                 mtu_idx = aligned_mtu_idx;
1968
1969         /* If the caller has passed in an MTU Index pointer, pass the
1970          * MTU Index back.  Return the MTU value.
1971          */
1972         if (mtu_idxp)
1973                 *mtu_idxp = mtu_idx;
1974         return mtus[mtu_idx];
1975 }
1976 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1977
1978 /**
1979  *      cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1980  *      @chip: chip type
1981  *      @viid: VI id of the given port
1982  *
1983  *      Return the SMT index for this VI.
1984  */
1985 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1986 {
1987         /* In T4/T5, SMT contains 256 SMAC entries organized in
1988          * 128 rows of 2 entries each.
1989          * In T6, SMT contains 256 SMAC entries in 256 rows.
1990          * TODO: The below code needs to be updated when we add support
1991          * for 256 VFs.
1992          */
1993         if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1994                 return ((viid & 0x7f) << 1);
1995         else
1996                 return (viid & 0x7f);
1997 }
1998 EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1999
2000 /**
2001  *      cxgb4_port_chan - get the HW channel of a port
2002  *      @dev: the net device for the port
2003  *
2004  *      Return the HW Tx channel of the given port.
2005  */
2006 unsigned int cxgb4_port_chan(const struct net_device *dev)
2007 {
2008         return netdev2pinfo(dev)->tx_chan;
2009 }
2010 EXPORT_SYMBOL(cxgb4_port_chan);
2011
2012 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
2013 {
2014         struct adapter *adap = netdev2adap(dev);
2015         u32 v1, v2, lp_count, hp_count;
2016
2017         v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2018         v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2019         if (is_t4(adap->params.chip)) {
2020                 lp_count = LP_COUNT_G(v1);
2021                 hp_count = HP_COUNT_G(v1);
2022         } else {
2023                 lp_count = LP_COUNT_T5_G(v1);
2024                 hp_count = HP_COUNT_T5_G(v2);
2025         }
2026         return lpfifo ? lp_count : hp_count;
2027 }
2028 EXPORT_SYMBOL(cxgb4_dbfifo_count);
2029
2030 /**
2031  *      cxgb4_port_viid - get the VI id of a port
2032  *      @dev: the net device for the port
2033  *
2034  *      Return the VI id of the given port.
2035  */
2036 unsigned int cxgb4_port_viid(const struct net_device *dev)
2037 {
2038         return netdev2pinfo(dev)->viid;
2039 }
2040 EXPORT_SYMBOL(cxgb4_port_viid);
2041
2042 /**
2043  *      cxgb4_port_idx - get the index of a port
2044  *      @dev: the net device for the port
2045  *
2046  *      Return the index of the given port.
2047  */
2048 unsigned int cxgb4_port_idx(const struct net_device *dev)
2049 {
2050         return netdev2pinfo(dev)->port_id;
2051 }
2052 EXPORT_SYMBOL(cxgb4_port_idx);
2053
2054 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
2055                          struct tp_tcp_stats *v6)
2056 {
2057         struct adapter *adap = pci_get_drvdata(pdev);
2058
2059         spin_lock(&adap->stats_lock);
2060         t4_tp_get_tcp_stats(adap, v4, v6);
2061         spin_unlock(&adap->stats_lock);
2062 }
2063 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2064
2065 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
2066                       const unsigned int *pgsz_order)
2067 {
2068         struct adapter *adap = netdev2adap(dev);
2069
2070         t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
2071         t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
2072                      HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
2073                      HPZ3_V(pgsz_order[3]));
2074 }
2075 EXPORT_SYMBOL(cxgb4_iscsi_init);
2076
2077 int cxgb4_flush_eq_cache(struct net_device *dev)
2078 {
2079         struct adapter *adap = netdev2adap(dev);
2080
2081         return t4_sge_ctxt_flush(adap, adap->mbox);
2082 }
2083 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2084
2085 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2086 {
2087         u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
2088         __be64 indices;
2089         int ret;
2090
2091         spin_lock(&adap->win0_lock);
2092         ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2093                            sizeof(indices), (__be32 *)&indices,
2094                            T4_MEMORY_READ);
2095         spin_unlock(&adap->win0_lock);
2096         if (!ret) {
2097                 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2098                 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2099         }
2100         return ret;
2101 }
2102
2103 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2104                         u16 size)
2105 {
2106         struct adapter *adap = netdev2adap(dev);
2107         u16 hw_pidx, hw_cidx;
2108         int ret;
2109
2110         ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2111         if (ret)
2112                 goto out;
2113
2114         if (pidx != hw_pidx) {
2115                 u16 delta;
2116                 u32 val;
2117
2118                 if (pidx >= hw_pidx)
2119                         delta = pidx - hw_pidx;
2120                 else
2121                         delta = size - hw_pidx + pidx;
2122
2123                 if (is_t4(adap->params.chip))
2124                         val = PIDX_V(delta);
2125                 else
2126                         val = PIDX_T5_V(delta);
2127                 wmb();
2128                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2129                              QID_V(qid) | val);
2130         }
2131 out:
2132         return ret;
2133 }
2134 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2135
2136 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2137 {
2138         struct adapter *adap;
2139         u32 offset, memtype, memaddr;
2140         u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2141         u32 edc0_end, edc1_end, mc0_end, mc1_end;
2142         int ret;
2143
2144         adap = netdev2adap(dev);
2145
2146         offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2147
2148         /* Figure out where the offset lands in the Memory Type/Address scheme.
2149          * This code assumes that the memory is laid out starting at offset 0
2150          * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2151          * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
2152          * MC0, and some have both MC0 and MC1.
2153          */
2154         size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2155         edc0_size = EDRAM0_SIZE_G(size) << 20;
2156         size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2157         edc1_size = EDRAM1_SIZE_G(size) << 20;
2158         size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2159         mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2160
2161         edc0_end = edc0_size;
2162         edc1_end = edc0_end + edc1_size;
2163         mc0_end = edc1_end + mc0_size;
2164
2165         if (offset < edc0_end) {
2166                 memtype = MEM_EDC0;
2167                 memaddr = offset;
2168         } else if (offset < edc1_end) {
2169                 memtype = MEM_EDC1;
2170                 memaddr = offset - edc0_end;
2171         } else {
2172                 if (offset < mc0_end) {
2173                         memtype = MEM_MC0;
2174                         memaddr = offset - edc1_end;
2175                 } else if (is_t5(adap->params.chip)) {
2176                         size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2177                         mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2178                         mc1_end = mc0_end + mc1_size;
2179                         if (offset < mc1_end) {
2180                                 memtype = MEM_MC1;
2181                                 memaddr = offset - mc0_end;
2182                         } else {
2183                                 /* offset beyond the end of any memory */
2184                                 goto err;
2185                         }
2186                 } else {
2187                         /* T4/T6 only has a single memory channel */
2188                         goto err;
2189                 }
2190         }
2191
2192         spin_lock(&adap->win0_lock);
2193         ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2194         spin_unlock(&adap->win0_lock);
2195         return ret;
2196
2197 err:
2198         dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2199                 stag, offset);
2200         return -EINVAL;
2201 }
2202 EXPORT_SYMBOL(cxgb4_read_tpte);
2203
2204 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2205 {
2206         u32 hi, lo;
2207         struct adapter *adap;
2208
2209         adap = netdev2adap(dev);
2210         lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2211         hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2212
2213         return ((u64)hi << 32) | (u64)lo;
2214 }
2215 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2216
2217 int cxgb4_bar2_sge_qregs(struct net_device *dev,
2218                          unsigned int qid,
2219                          enum cxgb4_bar2_qtype qtype,
2220                          int user,
2221                          u64 *pbar2_qoffset,
2222                          unsigned int *pbar2_qid)
2223 {
2224         return t4_bar2_sge_qregs(netdev2adap(dev),
2225                                  qid,
2226                                  (qtype == CXGB4_BAR2_QTYPE_EGRESS
2227                                   ? T4_BAR2_QTYPE_EGRESS
2228                                   : T4_BAR2_QTYPE_INGRESS),
2229                                  user,
2230                                  pbar2_qoffset,
2231                                  pbar2_qid);
2232 }
2233 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2234
2235 static struct pci_driver cxgb4_driver;
2236
2237 static void check_neigh_update(struct neighbour *neigh)
2238 {
2239         const struct device *parent;
2240         const struct net_device *netdev = neigh->dev;
2241
2242         if (netdev->priv_flags & IFF_802_1Q_VLAN)
2243                 netdev = vlan_dev_real_dev(netdev);
2244         parent = netdev->dev.parent;
2245         if (parent && parent->driver == &cxgb4_driver.driver)
2246                 t4_l2t_update(dev_get_drvdata(parent), neigh);
2247 }
2248
2249 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2250                        void *data)
2251 {
2252         switch (event) {
2253         case NETEVENT_NEIGH_UPDATE:
2254                 check_neigh_update(data);
2255                 break;
2256         case NETEVENT_REDIRECT:
2257         default:
2258                 break;
2259         }
2260         return 0;
2261 }
2262
2263 static bool netevent_registered;
2264 static struct notifier_block cxgb4_netevent_nb = {
2265         .notifier_call = netevent_cb
2266 };
2267
2268 static void drain_db_fifo(struct adapter *adap, int usecs)
2269 {
2270         u32 v1, v2, lp_count, hp_count;
2271
2272         do {
2273                 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2274                 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2275                 if (is_t4(adap->params.chip)) {
2276                         lp_count = LP_COUNT_G(v1);
2277                         hp_count = HP_COUNT_G(v1);
2278                 } else {
2279                         lp_count = LP_COUNT_T5_G(v1);
2280                         hp_count = HP_COUNT_T5_G(v2);
2281                 }
2282
2283                 if (lp_count == 0 && hp_count == 0)
2284                         break;
2285                 set_current_state(TASK_UNINTERRUPTIBLE);
2286                 schedule_timeout(usecs_to_jiffies(usecs));
2287         } while (1);
2288 }
2289
2290 static void disable_txq_db(struct sge_txq *q)
2291 {
2292         unsigned long flags;
2293
2294         spin_lock_irqsave(&q->db_lock, flags);
2295         q->db_disabled = 1;
2296         spin_unlock_irqrestore(&q->db_lock, flags);
2297 }
2298
2299 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2300 {
2301         spin_lock_irq(&q->db_lock);
2302         if (q->db_pidx_inc) {
2303                 /* Make sure that all writes to the TX descriptors
2304                  * are committed before we tell HW about them.
2305                  */
2306                 wmb();
2307                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2308                              QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2309                 q->db_pidx_inc = 0;
2310         }
2311         q->db_disabled = 0;
2312         spin_unlock_irq(&q->db_lock);
2313 }
2314
2315 static void disable_dbs(struct adapter *adap)
2316 {
2317         int i;
2318
2319         for_each_ethrxq(&adap->sge, i)
2320                 disable_txq_db(&adap->sge.ethtxq[i].q);
2321         for_each_iscsirxq(&adap->sge, i)
2322                 disable_txq_db(&adap->sge.ofldtxq[i].q);
2323         for_each_port(adap, i)
2324                 disable_txq_db(&adap->sge.ctrlq[i].q);
2325 }
2326
2327 static void enable_dbs(struct adapter *adap)
2328 {
2329         int i;
2330
2331         for_each_ethrxq(&adap->sge, i)
2332                 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2333         for_each_iscsirxq(&adap->sge, i)
2334                 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
2335         for_each_port(adap, i)
2336                 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2337 }
2338
2339 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2340 {
2341         if (adap->uld_handle[CXGB4_ULD_RDMA])
2342                 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
2343                                 cmd);
2344 }
2345
2346 static void process_db_full(struct work_struct *work)
2347 {
2348         struct adapter *adap;
2349
2350         adap = container_of(work, struct adapter, db_full_task);
2351
2352         drain_db_fifo(adap, dbfifo_drain_delay);
2353         enable_dbs(adap);
2354         notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2355         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2356                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2357                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2358                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2359         else
2360                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2361                                  DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2362 }
2363
2364 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2365 {
2366         u16 hw_pidx, hw_cidx;
2367         int ret;
2368
2369         spin_lock_irq(&q->db_lock);
2370         ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2371         if (ret)
2372                 goto out;
2373         if (q->db_pidx != hw_pidx) {
2374                 u16 delta;
2375                 u32 val;
2376
2377                 if (q->db_pidx >= hw_pidx)
2378                         delta = q->db_pidx - hw_pidx;
2379                 else
2380                         delta = q->size - hw_pidx + q->db_pidx;
2381
2382                 if (is_t4(adap->params.chip))
2383                         val = PIDX_V(delta);
2384                 else
2385                         val = PIDX_T5_V(delta);
2386                 wmb();
2387                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2388                              QID_V(q->cntxt_id) | val);
2389         }
2390 out:
2391         q->db_disabled = 0;
2392         q->db_pidx_inc = 0;
2393         spin_unlock_irq(&q->db_lock);
2394         if (ret)
2395                 CH_WARN(adap, "DB drop recovery failed.\n");
2396 }
2397 static void recover_all_queues(struct adapter *adap)
2398 {
2399         int i;
2400
2401         for_each_ethrxq(&adap->sge, i)
2402                 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2403         for_each_iscsirxq(&adap->sge, i)
2404                 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2405         for_each_port(adap, i)
2406                 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2407 }
2408
2409 static void process_db_drop(struct work_struct *work)
2410 {
2411         struct adapter *adap;
2412
2413         adap = container_of(work, struct adapter, db_drop_task);
2414
2415         if (is_t4(adap->params.chip)) {
2416                 drain_db_fifo(adap, dbfifo_drain_delay);
2417                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2418                 drain_db_fifo(adap, dbfifo_drain_delay);
2419                 recover_all_queues(adap);
2420                 drain_db_fifo(adap, dbfifo_drain_delay);
2421                 enable_dbs(adap);
2422                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2423         } else if (is_t5(adap->params.chip)) {
2424                 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2425                 u16 qid = (dropped_db >> 15) & 0x1ffff;
2426                 u16 pidx_inc = dropped_db & 0x1fff;
2427                 u64 bar2_qoffset;
2428                 unsigned int bar2_qid;
2429                 int ret;
2430
2431                 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2432                                         0, &bar2_qoffset, &bar2_qid);
2433                 if (ret)
2434                         dev_err(adap->pdev_dev, "doorbell drop recovery: "
2435                                 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2436                 else
2437                         writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2438                                adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2439
2440                 /* Re-enable BAR2 WC */
2441                 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2442         }
2443
2444         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2445                 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2446 }
2447
2448 void t4_db_full(struct adapter *adap)
2449 {
2450         if (is_t4(adap->params.chip)) {
2451                 disable_dbs(adap);
2452                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2453                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2454                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2455                 queue_work(adap->workq, &adap->db_full_task);
2456         }
2457 }
2458
2459 void t4_db_dropped(struct adapter *adap)
2460 {
2461         if (is_t4(adap->params.chip)) {
2462                 disable_dbs(adap);
2463                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2464         }
2465         queue_work(adap->workq, &adap->db_drop_task);
2466 }
2467
2468 static void uld_attach(struct adapter *adap, unsigned int uld)
2469 {
2470         void *handle;
2471         struct cxgb4_lld_info lli;
2472         unsigned short i;
2473
2474         lli.pdev = adap->pdev;
2475         lli.pf = adap->pf;
2476         lli.l2t = adap->l2t;
2477         lli.tids = &adap->tids;
2478         lli.ports = adap->port;
2479         lli.vr = &adap->vres;
2480         lli.mtus = adap->params.mtus;
2481         if (uld == CXGB4_ULD_RDMA) {
2482                 lli.rxq_ids = adap->sge.rdma_rxq;
2483                 lli.ciq_ids = adap->sge.rdma_ciq;
2484                 lli.nrxq = adap->sge.rdmaqs;
2485                 lli.nciq = adap->sge.rdmaciqs;
2486         } else if (uld == CXGB4_ULD_ISCSI) {
2487                 lli.rxq_ids = adap->sge.iscsi_rxq;
2488                 lli.nrxq = adap->sge.iscsiqsets;
2489         } else if (uld == CXGB4_ULD_ISCSIT) {
2490                 lli.rxq_ids = adap->sge.iscsit_rxq;
2491                 lli.nrxq = adap->sge.niscsitq;
2492         }
2493         lli.ntxq = adap->sge.iscsiqsets;
2494         lli.nchan = adap->params.nports;
2495         lli.nports = adap->params.nports;
2496         lli.wr_cred = adap->params.ofldq_wr_cred;
2497         lli.adapter_type = adap->params.chip;
2498         lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A));
2499         lli.iscsi_tagmask = t4_read_reg(adap, ULP_RX_ISCSI_TAGMASK_A);
2500         lli.iscsi_pgsz_order = t4_read_reg(adap, ULP_RX_ISCSI_PSZ_A);
2501         lli.iscsi_llimit = t4_read_reg(adap, ULP_RX_ISCSI_LLIMIT_A);
2502         lli.iscsi_ppm = &adap->iscsi_ppm;
2503         lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
2504         lli.udb_density = 1 << adap->params.sge.eq_qpp;
2505         lli.ucq_density = 1 << adap->params.sge.iq_qpp;
2506         lli.filt_mode = adap->params.tp.vlan_pri_map;
2507         /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
2508         for (i = 0; i < NCHAN; i++)
2509                 lli.tx_modq[i] = i;
2510         lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A);
2511         lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A);
2512         lli.fw_vers = adap->params.fw_vers;
2513         lli.dbfifo_int_thresh = dbfifo_int_thresh;
2514         lli.sge_ingpadboundary = adap->sge.fl_align;
2515         lli.sge_egrstatuspagesize = adap->sge.stat_len;
2516         lli.sge_pktshift = adap->sge.pktshift;
2517         lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
2518         lli.max_ordird_qp = adap->params.max_ordird_qp;
2519         lli.max_ird_adapter = adap->params.max_ird_adapter;
2520         lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
2521         lli.nodeid = dev_to_node(adap->pdev_dev);
2522
2523         handle = ulds[uld].add(&lli);
2524         if (IS_ERR(handle)) {
2525                 dev_warn(adap->pdev_dev,
2526                          "could not attach to the %s driver, error %ld\n",
2527                          uld_str[uld], PTR_ERR(handle));
2528                 return;
2529         }
2530
2531         adap->uld_handle[uld] = handle;
2532
2533         if (!netevent_registered) {
2534                 register_netevent_notifier(&cxgb4_netevent_nb);
2535                 netevent_registered = true;
2536         }
2537
2538         if (adap->flags & FULL_INIT_DONE)
2539                 ulds[uld].state_change(handle, CXGB4_STATE_UP);
2540 }
2541
2542 static void attach_ulds(struct adapter *adap)
2543 {
2544         unsigned int i;
2545
2546         spin_lock(&adap_rcu_lock);
2547         list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
2548         spin_unlock(&adap_rcu_lock);
2549
2550         mutex_lock(&uld_mutex);
2551         list_add_tail(&adap->list_node, &adapter_list);
2552         for (i = 0; i < CXGB4_ULD_MAX; i++)
2553                 if (ulds[i].add)
2554                         uld_attach(adap, i);
2555         mutex_unlock(&uld_mutex);
2556 }
2557
2558 static void detach_ulds(struct adapter *adap)
2559 {
2560         unsigned int i;
2561
2562         mutex_lock(&uld_mutex);
2563         list_del(&adap->list_node);
2564         for (i = 0; i < CXGB4_ULD_MAX; i++)
2565                 if (adap->uld_handle[i]) {
2566                         ulds[i].state_change(adap->uld_handle[i],
2567                                              CXGB4_STATE_DETACH);
2568                         adap->uld_handle[i] = NULL;
2569                 }
2570         if (netevent_registered && list_empty(&adapter_list)) {
2571                 unregister_netevent_notifier(&cxgb4_netevent_nb);
2572                 netevent_registered = false;
2573         }
2574         mutex_unlock(&uld_mutex);
2575
2576         spin_lock(&adap_rcu_lock);
2577         list_del_rcu(&adap->rcu_node);
2578         spin_unlock(&adap_rcu_lock);
2579 }
2580
2581 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2582 {
2583         unsigned int i;
2584
2585         mutex_lock(&uld_mutex);
2586         for (i = 0; i < CXGB4_ULD_MAX; i++)
2587                 if (adap->uld_handle[i])
2588                         ulds[i].state_change(adap->uld_handle[i], new_state);
2589         mutex_unlock(&uld_mutex);
2590 }
2591
2592 /**
2593  *      cxgb4_register_uld - register an upper-layer driver
2594  *      @type: the ULD type
2595  *      @p: the ULD methods
2596  *
2597  *      Registers an upper-layer driver with this driver and notifies the ULD
2598  *      about any presently available devices that support its type.  Returns
2599  *      %-EBUSY if a ULD of the same type is already registered.
2600  */
2601 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2602 {
2603         int ret = 0;
2604         struct adapter *adap;
2605
2606         if (type >= CXGB4_ULD_MAX)
2607                 return -EINVAL;
2608         mutex_lock(&uld_mutex);
2609         if (ulds[type].add) {
2610                 ret = -EBUSY;
2611                 goto out;
2612         }
2613         ulds[type] = *p;
2614         list_for_each_entry(adap, &adapter_list, list_node)
2615                 uld_attach(adap, type);
2616 out:    mutex_unlock(&uld_mutex);
2617         return ret;
2618 }
2619 EXPORT_SYMBOL(cxgb4_register_uld);
2620
2621 /**
2622  *      cxgb4_unregister_uld - unregister an upper-layer driver
2623  *      @type: the ULD type
2624  *
2625  *      Unregisters an existing upper-layer driver.
2626  */
2627 int cxgb4_unregister_uld(enum cxgb4_uld type)
2628 {
2629         struct adapter *adap;
2630
2631         if (type >= CXGB4_ULD_MAX)
2632                 return -EINVAL;
2633         mutex_lock(&uld_mutex);
2634         list_for_each_entry(adap, &adapter_list, list_node)
2635                 adap->uld_handle[type] = NULL;
2636         ulds[type].add = NULL;
2637         mutex_unlock(&uld_mutex);
2638         return 0;
2639 }
2640 EXPORT_SYMBOL(cxgb4_unregister_uld);
2641
2642 #if IS_ENABLED(CONFIG_IPV6)
2643 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2644                                    unsigned long event, void *data)
2645 {
2646         struct inet6_ifaddr *ifa = data;
2647         struct net_device *event_dev = ifa->idev->dev;
2648         const struct device *parent = NULL;
2649 #if IS_ENABLED(CONFIG_BONDING)
2650         struct adapter *adap;
2651 #endif
2652         if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2653                 event_dev = vlan_dev_real_dev(event_dev);
2654 #if IS_ENABLED(CONFIG_BONDING)
2655         if (event_dev->flags & IFF_MASTER) {
2656                 list_for_each_entry(adap, &adapter_list, list_node) {
2657                         switch (event) {
2658                         case NETDEV_UP:
2659                                 cxgb4_clip_get(adap->port[0],
2660                                                (const u32 *)ifa, 1);
2661                                 break;
2662                         case NETDEV_DOWN:
2663                                 cxgb4_clip_release(adap->port[0],
2664                                                    (const u32 *)ifa, 1);
2665                                 break;
2666                         default:
2667                                 break;
2668                         }
2669                 }
2670                 return NOTIFY_OK;
2671         }
2672 #endif
2673
2674         if (event_dev)
2675                 parent = event_dev->dev.parent;
2676
2677         if (parent && parent->driver == &cxgb4_driver.driver) {
2678                 switch (event) {
2679                 case NETDEV_UP:
2680                         cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2681                         break;
2682                 case NETDEV_DOWN:
2683                         cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2684                         break;
2685                 default:
2686                         break;
2687                 }
2688         }
2689         return NOTIFY_OK;
2690 }
2691
2692 static bool inet6addr_registered;
2693 static struct notifier_block cxgb4_inet6addr_notifier = {
2694         .notifier_call = cxgb4_inet6addr_handler
2695 };
2696
2697 static void update_clip(const struct adapter *adap)
2698 {
2699         int i;
2700         struct net_device *dev;
2701         int ret;
2702
2703         rcu_read_lock();
2704
2705         for (i = 0; i < MAX_NPORTS; i++) {
2706                 dev = adap->port[i];
2707                 ret = 0;
2708
2709                 if (dev)
2710                         ret = cxgb4_update_root_dev_clip(dev);
2711
2712                 if (ret < 0)
2713                         break;
2714         }
2715         rcu_read_unlock();
2716 }
2717 #endif /* IS_ENABLED(CONFIG_IPV6) */
2718
2719 /**
2720  *      cxgb_up - enable the adapter
2721  *      @adap: adapter being enabled
2722  *
2723  *      Called when the first port is enabled, this function performs the
2724  *      actions necessary to make an adapter operational, such as completing
2725  *      the initialization of HW modules, and enabling interrupts.
2726  *
2727  *      Must be called with the rtnl lock held.
2728  */
2729 static int cxgb_up(struct adapter *adap)
2730 {
2731         int err;
2732
2733         err = setup_sge_queues(adap);
2734         if (err)
2735                 goto out;
2736         err = setup_rss(adap);
2737         if (err)
2738                 goto freeq;
2739
2740         if (adap->flags & USING_MSIX) {
2741                 name_msix_vecs(adap);
2742                 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2743                                   adap->msix_info[0].desc, adap);
2744                 if (err)
2745                         goto irq_err;
2746
2747                 err = request_msix_queue_irqs(adap);
2748                 if (err) {
2749                         free_irq(adap->msix_info[0].vec, adap);
2750                         goto irq_err;
2751                 }
2752         } else {
2753                 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2754                                   (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2755                                   adap->port[0]->name, adap);
2756                 if (err)
2757                         goto irq_err;
2758         }
2759         enable_rx(adap);
2760         t4_sge_start(adap);
2761         t4_intr_enable(adap);
2762         adap->flags |= FULL_INIT_DONE;
2763         notify_ulds(adap, CXGB4_STATE_UP);
2764 #if IS_ENABLED(CONFIG_IPV6)
2765         update_clip(adap);
2766 #endif
2767         /* Initialize hash mac addr list*/
2768         INIT_LIST_HEAD(&adap->mac_hlist);
2769  out:
2770         return err;
2771  irq_err:
2772         dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2773  freeq:
2774         t4_free_sge_resources(adap);
2775         goto out;
2776 }
2777
2778 static void cxgb_down(struct adapter *adapter)
2779 {
2780         cancel_work_sync(&adapter->tid_release_task);
2781         cancel_work_sync(&adapter->db_full_task);
2782         cancel_work_sync(&adapter->db_drop_task);
2783         adapter->tid_release_task_busy = false;
2784         adapter->tid_release_head = NULL;
2785
2786         t4_sge_stop(adapter);
2787         t4_free_sge_resources(adapter);
2788         adapter->flags &= ~FULL_INIT_DONE;
2789 }
2790
2791 /*
2792  * net_device operations
2793  */
2794 static int cxgb_open(struct net_device *dev)
2795 {
2796         int err;
2797         struct port_info *pi = netdev_priv(dev);
2798         struct adapter *adapter = pi->adapter;
2799
2800         netif_carrier_off(dev);
2801
2802         if (!(adapter->flags & FULL_INIT_DONE)) {
2803                 err = cxgb_up(adapter);
2804                 if (err < 0)
2805                         return err;
2806         }
2807
2808         err = link_start(dev);
2809         if (!err)
2810                 netif_tx_start_all_queues(dev);
2811         return err;
2812 }
2813
2814 static int cxgb_close(struct net_device *dev)
2815 {
2816         struct port_info *pi = netdev_priv(dev);
2817         struct adapter *adapter = pi->adapter;
2818
2819         netif_tx_stop_all_queues(dev);
2820         netif_carrier_off(dev);
2821         return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2822 }
2823
2824 /* Return an error number if the indicated filter isn't writable ...
2825  */
2826 static int writable_filter(struct filter_entry *f)
2827 {
2828         if (f->locked)
2829                 return -EPERM;
2830         if (f->pending)
2831                 return -EBUSY;
2832
2833         return 0;
2834 }
2835
2836 /* Delete the filter at the specified index (if valid).  The checks for all
2837  * the common problems with doing this like the filter being locked, currently
2838  * pending in another operation, etc.
2839  */
2840 static int delete_filter(struct adapter *adapter, unsigned int fidx)
2841 {
2842         struct filter_entry *f;
2843         int ret;
2844
2845         if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
2846                 return -EINVAL;
2847
2848         f = &adapter->tids.ftid_tab[fidx];
2849         ret = writable_filter(f);
2850         if (ret)
2851                 return ret;
2852         if (f->valid)
2853                 return del_filter_wr(adapter, fidx);
2854
2855         return 0;
2856 }
2857
2858 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2859                 __be32 sip, __be16 sport, __be16 vlan,
2860                 unsigned int queue, unsigned char port, unsigned char mask)
2861 {
2862         int ret;
2863         struct filter_entry *f;
2864         struct adapter *adap;
2865         int i;
2866         u8 *val;
2867
2868         adap = netdev2adap(dev);
2869
2870         /* Adjust stid to correct filter index */
2871         stid -= adap->tids.sftid_base;
2872         stid += adap->tids.nftids;
2873
2874         /* Check to make sure the filter requested is writable ...
2875          */
2876         f = &adap->tids.ftid_tab[stid];
2877         ret = writable_filter(f);
2878         if (ret)
2879                 return ret;
2880
2881         /* Clear out any old resources being used by the filter before
2882          * we start constructing the new filter.
2883          */
2884         if (f->valid)
2885                 clear_filter(adap, f);
2886
2887         /* Clear out filter specifications */
2888         memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2889         f->fs.val.lport = cpu_to_be16(sport);
2890         f->fs.mask.lport  = ~0;
2891         val = (u8 *)&sip;
2892         if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2893                 for (i = 0; i < 4; i++) {
2894                         f->fs.val.lip[i] = val[i];
2895                         f->fs.mask.lip[i] = ~0;
2896                 }
2897                 if (adap->params.tp.vlan_pri_map & PORT_F) {
2898                         f->fs.val.iport = port;
2899                         f->fs.mask.iport = mask;
2900                 }
2901         }
2902
2903         if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2904                 f->fs.val.proto = IPPROTO_TCP;
2905                 f->fs.mask.proto = ~0;
2906         }
2907
2908         f->fs.dirsteer = 1;
2909         f->fs.iq = queue;
2910         /* Mark filter as locked */
2911         f->locked = 1;
2912         f->fs.rpttid = 1;
2913
2914         ret = set_filter_wr(adap, stid);
2915         if (ret) {
2916                 clear_filter(adap, f);
2917                 return ret;
2918         }
2919
2920         return 0;
2921 }
2922 EXPORT_SYMBOL(cxgb4_create_server_filter);
2923
2924 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2925                 unsigned int queue, bool ipv6)
2926 {
2927         int ret;
2928         struct filter_entry *f;
2929         struct adapter *adap;
2930
2931         adap = netdev2adap(dev);
2932
2933         /* Adjust stid to correct filter index */
2934         stid -= adap->tids.sftid_base;
2935         stid += adap->tids.nftids;
2936
2937         f = &adap->tids.ftid_tab[stid];
2938         /* Unlock the filter */
2939         f->locked = 0;
2940
2941         ret = delete_filter(adap, stid);
2942         if (ret)
2943                 return ret;
2944
2945         return 0;
2946 }
2947 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2948
2949 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2950                                                 struct rtnl_link_stats64 *ns)
2951 {
2952         struct port_stats stats;
2953         struct port_info *p = netdev_priv(dev);
2954         struct adapter *adapter = p->adapter;
2955
2956         /* Block retrieving statistics during EEH error
2957          * recovery. Otherwise, the recovery might fail
2958          * and the PCI device will be removed permanently
2959          */
2960         spin_lock(&adapter->stats_lock);
2961         if (!netif_device_present(dev)) {
2962                 spin_unlock(&adapter->stats_lock);
2963                 return ns;
2964         }
2965         t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2966                                  &p->stats_base);
2967         spin_unlock(&adapter->stats_lock);
2968
2969         ns->tx_bytes   = stats.tx_octets;
2970         ns->tx_packets = stats.tx_frames;
2971         ns->rx_bytes   = stats.rx_octets;
2972         ns->rx_packets = stats.rx_frames;
2973         ns->multicast  = stats.rx_mcast_frames;
2974
2975         /* detailed rx_errors */
2976         ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2977                                stats.rx_runt;
2978         ns->rx_over_errors   = 0;
2979         ns->rx_crc_errors    = stats.rx_fcs_err;
2980         ns->rx_frame_errors  = stats.rx_symbol_err;
2981         ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
2982                                stats.rx_ovflow2 + stats.rx_ovflow3 +
2983                                stats.rx_trunc0 + stats.rx_trunc1 +
2984                                stats.rx_trunc2 + stats.rx_trunc3;
2985         ns->rx_missed_errors = 0;
2986
2987         /* detailed tx_errors */
2988         ns->tx_aborted_errors   = 0;
2989         ns->tx_carrier_errors   = 0;
2990         ns->tx_fifo_errors      = 0;
2991         ns->tx_heartbeat_errors = 0;
2992         ns->tx_window_errors    = 0;
2993
2994         ns->tx_errors = stats.tx_error_frames;
2995         ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2996                 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2997         return ns;
2998 }
2999
3000 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
3001 {
3002         unsigned int mbox;
3003         int ret = 0, prtad, devad;
3004         struct port_info *pi = netdev_priv(dev);
3005         struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
3006
3007         switch (cmd) {
3008         case SIOCGMIIPHY:
3009                 if (pi->mdio_addr < 0)
3010                         return -EOPNOTSUPP;
3011                 data->phy_id = pi->mdio_addr;
3012                 break;
3013         case SIOCGMIIREG:
3014         case SIOCSMIIREG:
3015                 if (mdio_phy_id_is_c45(data->phy_id)) {
3016                         prtad = mdio_phy_id_prtad(data->phy_id);
3017                         devad = mdio_phy_id_devad(data->phy_id);
3018                 } else if (data->phy_id < 32) {
3019                         prtad = data->phy_id;
3020                         devad = 0;
3021                         data->reg_num &= 0x1f;
3022                 } else
3023                         return -EINVAL;
3024
3025                 mbox = pi->adapter->pf;
3026                 if (cmd == SIOCGMIIREG)
3027                         ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
3028                                          data->reg_num, &data->val_out);
3029                 else
3030                         ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
3031                                          data->reg_num, data->val_in);
3032                 break;
3033         case SIOCGHWTSTAMP:
3034                 return copy_to_user(req->ifr_data, &pi->tstamp_config,
3035                                     sizeof(pi->tstamp_config)) ?
3036                         -EFAULT : 0;
3037         case SIOCSHWTSTAMP:
3038                 if (copy_from_user(&pi->tstamp_config, req->ifr_data,
3039                                    sizeof(pi->tstamp_config)))
3040                         return -EFAULT;
3041
3042                 switch (pi->tstamp_config.rx_filter) {
3043                 case HWTSTAMP_FILTER_NONE:
3044                         pi->rxtstamp = false;
3045                         break;
3046                 case HWTSTAMP_FILTER_ALL:
3047                         pi->rxtstamp = true;
3048                         break;
3049                 default:
3050                         pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
3051                         return -ERANGE;
3052                 }
3053
3054                 return copy_to_user(req->ifr_data, &pi->tstamp_config,
3055                                     sizeof(pi->tstamp_config)) ?
3056                         -EFAULT : 0;
3057         default:
3058                 return -EOPNOTSUPP;
3059         }
3060         return ret;
3061 }
3062
3063 static void cxgb_set_rxmode(struct net_device *dev)
3064 {
3065         /* unfortunately we can't return errors to the stack */
3066         set_rxmode(dev, -1, false);
3067 }
3068
3069 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
3070 {
3071         int ret;
3072         struct port_info *pi = netdev_priv(dev);
3073
3074         if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
3075                 return -EINVAL;
3076         ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
3077                             -1, -1, -1, true);
3078         if (!ret)
3079                 dev->mtu = new_mtu;
3080         return ret;
3081 }
3082
3083 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3084 {
3085         int ret;
3086         struct sockaddr *addr = p;
3087         struct port_info *pi = netdev_priv(dev);
3088
3089         if (!is_valid_ether_addr(addr->sa_data))
3090                 return -EADDRNOTAVAIL;
3091
3092         ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
3093                             pi->xact_addr_filt, addr->sa_data, true, true);
3094         if (ret < 0)
3095                 return ret;
3096
3097         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3098         pi->xact_addr_filt = ret;
3099         return 0;
3100 }
3101
3102 #ifdef CONFIG_NET_POLL_CONTROLLER
3103 static void cxgb_netpoll(struct net_device *dev)
3104 {
3105         struct port_info *pi = netdev_priv(dev);
3106         struct adapter *adap = pi->adapter;
3107
3108         if (adap->flags & USING_MSIX) {
3109                 int i;
3110                 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3111
3112                 for (i = pi->nqsets; i; i--, rx++)
3113                         t4_sge_intr_msix(0, &rx->rspq);
3114         } else
3115                 t4_intr_handler(adap)(0, adap);
3116 }
3117 #endif
3118
3119 static const struct net_device_ops cxgb4_netdev_ops = {
3120         .ndo_open             = cxgb_open,
3121         .ndo_stop             = cxgb_close,
3122         .ndo_start_xmit       = t4_eth_xmit,
3123         .ndo_select_queue     = cxgb_select_queue,
3124         .ndo_get_stats64      = cxgb_get_stats,
3125         .ndo_set_rx_mode      = cxgb_set_rxmode,
3126         .ndo_set_mac_address  = cxgb_set_mac_addr,
3127         .ndo_set_features     = cxgb_set_features,
3128         .ndo_validate_addr    = eth_validate_addr,
3129         .ndo_do_ioctl         = cxgb_ioctl,
3130         .ndo_change_mtu       = cxgb_change_mtu,
3131 #ifdef CONFIG_NET_POLL_CONTROLLER
3132         .ndo_poll_controller  = cxgb_netpoll,
3133 #endif
3134 #ifdef CONFIG_CHELSIO_T4_FCOE
3135         .ndo_fcoe_enable      = cxgb_fcoe_enable,
3136         .ndo_fcoe_disable     = cxgb_fcoe_disable,
3137 #endif /* CONFIG_CHELSIO_T4_FCOE */
3138 #ifdef CONFIG_NET_RX_BUSY_POLL
3139         .ndo_busy_poll        = cxgb_busy_poll,
3140 #endif
3141
3142 };
3143
3144 void t4_fatal_err(struct adapter *adap)
3145 {
3146         t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
3147         t4_intr_disable(adap);
3148         dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3149 }
3150
3151 static void setup_memwin(struct adapter *adap)
3152 {
3153         u32 nic_win_base = t4_get_util_window(adap);
3154
3155         t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3156 }
3157
3158 static void setup_memwin_rdma(struct adapter *adap)
3159 {
3160         if (adap->vres.ocq.size) {
3161                 u32 start;
3162                 unsigned int sz_kb;
3163
3164                 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3165                 start &= PCI_BASE_ADDRESS_MEM_MASK;
3166                 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3167                 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3168                 t4_write_reg(adap,
3169                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3170                              start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3171                 t4_write_reg(adap,
3172                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3173                              adap->vres.ocq.start);
3174                 t4_read_reg(adap,
3175                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3176         }
3177 }
3178
3179 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3180 {
3181         u32 v;
3182         int ret;
3183
3184         /* get device capabilities */
3185         memset(c, 0, sizeof(*c));
3186         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3187                                FW_CMD_REQUEST_F | FW_CMD_READ_F);
3188         c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3189         ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3190         if (ret < 0)
3191                 return ret;
3192
3193         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3194                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3195         ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3196         if (ret < 0)
3197                 return ret;
3198
3199         ret = t4_config_glbl_rss(adap, adap->pf,
3200                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3201                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3202                                  FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3203         if (ret < 0)
3204                 return ret;
3205
3206         ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3207                           MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3208                           FW_CMD_CAP_PF);
3209         if (ret < 0)
3210                 return ret;
3211
3212         t4_sge_init(adap);
3213
3214         /* tweak some settings */
3215         t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3216         t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3217         t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3218         v = t4_read_reg(adap, TP_PIO_DATA_A);
3219         t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3220
3221         /* first 4 Tx modulation queues point to consecutive Tx channels */
3222         adap->params.tp.tx_modq_map = 0xE4;
3223         t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3224                      TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3225
3226         /* associate each Tx modulation queue with consecutive Tx channels */
3227         v = 0x84218421;
3228         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3229                           &v, 1, TP_TX_SCHED_HDR_A);
3230         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3231                           &v, 1, TP_TX_SCHED_FIFO_A);
3232         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3233                           &v, 1, TP_TX_SCHED_PCMD_A);
3234
3235 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3236         if (is_offload(adap)) {
3237                 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3238                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3239                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3240                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3241                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3242                 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3243                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3244                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3245                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3246                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3247         }
3248
3249         /* get basic stuff going */
3250         return t4_early_init(adap, adap->pf);
3251 }
3252
3253 /*
3254  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3255  */
3256 #define MAX_ATIDS 8192U
3257
3258 /*
3259  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3260  *
3261  * If the firmware we're dealing with has Configuration File support, then
3262  * we use that to perform all configuration
3263  */
3264
3265 /*
3266  * Tweak configuration based on module parameters, etc.  Most of these have
3267  * defaults assigned to them by Firmware Configuration Files (if we're using
3268  * them) but need to be explicitly set if we're using hard-coded
3269  * initialization.  But even in the case of using Firmware Configuration
3270  * Files, we'd like to expose the ability to change these via module
3271  * parameters so these are essentially common tweaks/settings for
3272  * Configuration Files and hard-coded initialization ...
3273  */
3274 static int adap_init0_tweaks(struct adapter *adapter)
3275 {
3276         /*
3277          * Fix up various Host-Dependent Parameters like Page Size, Cache
3278          * Line Size, etc.  The firmware default is for a 4KB Page Size and
3279          * 64B Cache Line Size ...
3280          */
3281         t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3282
3283         /*
3284          * Process module parameters which affect early initialization.
3285          */
3286         if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3287                 dev_err(&adapter->pdev->dev,
3288                         "Ignoring illegal rx_dma_offset=%d, using 2\n",
3289                         rx_dma_offset);
3290                 rx_dma_offset = 2;
3291         }
3292         t4_set_reg_field(adapter, SGE_CONTROL_A,
3293                          PKTSHIFT_V(PKTSHIFT_M),
3294                          PKTSHIFT_V(rx_dma_offset));
3295
3296         /*
3297          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3298          * adds the pseudo header itself.
3299          */
3300         t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3301                                CSUM_HAS_PSEUDO_HDR_F, 0);
3302
3303         return 0;
3304 }
3305
3306 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3307  * unto themselves and they contain their own firmware to perform their
3308  * tasks ...
3309  */
3310 static int phy_aq1202_version(const u8 *phy_fw_data,
3311                               size_t phy_fw_size)
3312 {
3313         int offset;
3314
3315         /* At offset 0x8 you're looking for the primary image's
3316          * starting offset which is 3 Bytes wide
3317          *
3318          * At offset 0xa of the primary image, you look for the offset
3319          * of the DRAM segment which is 3 Bytes wide.
3320          *
3321          * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3322          * wide
3323          */
3324         #define be16(__p) (((__p)[0] << 8) | (__p)[1])
3325         #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3326         #define le24(__p) (le16(__p) | ((__p)[2] << 16))
3327
3328         offset = le24(phy_fw_data + 0x8) << 12;
3329         offset = le24(phy_fw_data + offset + 0xa);
3330         return be16(phy_fw_data + offset + 0x27e);
3331
3332         #undef be16
3333         #undef le16
3334         #undef le24
3335 }
3336
3337 static struct info_10gbt_phy_fw {
3338         unsigned int phy_fw_id;         /* PCI Device ID */
3339         char *phy_fw_file;              /* /lib/firmware/ PHY Firmware file */
3340         int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3341         int phy_flash;                  /* Has FLASH for PHY Firmware */
3342 } phy_info_array[] = {
3343         {
3344                 PHY_AQ1202_DEVICEID,
3345                 PHY_AQ1202_FIRMWARE,
3346                 phy_aq1202_version,
3347                 1,
3348         },
3349         {
3350                 PHY_BCM84834_DEVICEID,
3351                 PHY_BCM84834_FIRMWARE,
3352                 NULL,
3353                 0,
3354         },
3355         { 0, NULL, NULL },
3356 };
3357
3358 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3359 {
3360         int i;
3361
3362         for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3363                 if (phy_info_array[i].phy_fw_id == devid)
3364                         return &phy_info_array[i];
3365         }
3366         return NULL;
3367 }
3368
3369 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3370  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3371  * we return a negative error number.  If we transfer new firmware we return 1
3372  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3373  */
3374 static int adap_init0_phy(struct adapter *adap)
3375 {
3376         const struct firmware *phyf;
3377         int ret;
3378         struct info_10gbt_phy_fw *phy_info;
3379
3380         /* Use the device ID to determine which PHY file to flash.
3381          */
3382         phy_info = find_phy_info(adap->pdev->device);
3383         if (!phy_info) {
3384                 dev_warn(adap->pdev_dev,
3385                          "No PHY Firmware file found for this PHY\n");
3386                 return -EOPNOTSUPP;
3387         }
3388
3389         /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3390          * use that. The adapter firmware provides us with a memory buffer
3391          * where we can load a PHY firmware file from the host if we want to
3392          * override the PHY firmware File in flash.
3393          */
3394         ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3395                                       adap->pdev_dev);
3396         if (ret < 0) {
3397                 /* For adapters without FLASH attached to PHY for their
3398                  * firmware, it's obviously a fatal error if we can't get the
3399                  * firmware to the adapter.  For adapters with PHY firmware
3400                  * FLASH storage, it's worth a warning if we can't find the
3401                  * PHY Firmware but we'll neuter the error ...
3402                  */
3403                 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3404                         "/lib/firmware/%s, error %d\n",
3405                         phy_info->phy_fw_file, -ret);
3406                 if (phy_info->phy_flash) {
3407                         int cur_phy_fw_ver = 0;
3408
3409                         t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3410                         dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3411                                  "FLASH copy, version %#x\n", cur_phy_fw_ver);
3412                         ret = 0;
3413                 }
3414
3415                 return ret;
3416         }
3417
3418         /* Load PHY Firmware onto adapter.
3419          */
3420         ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3421                              phy_info->phy_fw_version,
3422                              (u8 *)phyf->data, phyf->size);
3423         if (ret < 0)
3424                 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3425                         -ret);
3426         else if (ret > 0) {
3427                 int new_phy_fw_ver = 0;
3428
3429                 if (phy_info->phy_fw_version)
3430                         new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3431                                                                   phyf->size);
3432                 dev_info(adap->pdev_dev, "Successfully transferred PHY "
3433                          "Firmware /lib/firmware/%s, version %#x\n",
3434                          phy_info->phy_fw_file, new_phy_fw_ver);
3435         }
3436
3437         release_firmware(phyf);
3438
3439         return ret;
3440 }
3441
3442 /*
3443  * Attempt to initialize the adapter via a Firmware Configuration File.
3444  */
3445 static int adap_init0_config(struct adapter *adapter, int reset)
3446 {
3447         struct fw_caps_config_cmd caps_cmd;
3448         const struct firmware *cf;
3449         unsigned long mtype = 0, maddr = 0;
3450         u32 finiver, finicsum, cfcsum;
3451         int ret;
3452         int config_issued = 0;
3453         char *fw_config_file, fw_config_file_path[256];
3454         char *config_name = NULL;
3455
3456         /*
3457          * Reset device if necessary.
3458          */
3459         if (reset) {
3460                 ret = t4_fw_reset(adapter, adapter->mbox,
3461                                   PIORSTMODE_F | PIORST_F);
3462                 if (ret < 0)
3463                         goto bye;
3464         }
3465
3466         /* If this is a 10Gb/s-BT adapter make sure the chip-external
3467          * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
3468          * to be performed after any global adapter RESET above since some
3469          * PHYs only have local RAM copies of the PHY firmware.
3470          */
3471         if (is_10gbt_device(adapter->pdev->device)) {
3472                 ret = adap_init0_phy(adapter);
3473                 if (ret < 0)
3474                         goto bye;
3475         }
3476         /*
3477          * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3478          * then use that.  Otherwise, use the configuration file stored
3479          * in the adapter flash ...
3480          */
3481         switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3482         case CHELSIO_T4:
3483                 fw_config_file = FW4_CFNAME;
3484                 break;
3485         case CHELSIO_T5:
3486                 fw_config_file = FW5_CFNAME;
3487                 break;
3488         case CHELSIO_T6:
3489                 fw_config_file = FW6_CFNAME;
3490                 break;
3491         default:
3492                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3493                        adapter->pdev->device);
3494                 ret = -EINVAL;
3495                 goto bye;
3496         }
3497
3498         ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3499         if (ret < 0) {
3500                 config_name = "On FLASH";
3501                 mtype = FW_MEMTYPE_CF_FLASH;
3502                 maddr = t4_flash_cfg_addr(adapter);
3503         } else {
3504                 u32 params[7], val[7];
3505
3506                 sprintf(fw_config_file_path,
3507                         "/lib/firmware/%s", fw_config_file);
3508                 config_name = fw_config_file_path;
3509
3510                 if (cf->size >= FLASH_CFG_MAX_SIZE)
3511                         ret = -ENOMEM;
3512                 else {
3513                         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3514                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3515                         ret = t4_query_params(adapter, adapter->mbox,
3516                                               adapter->pf, 0, 1, params, val);
3517                         if (ret == 0) {
3518                                 /*
3519                                  * For t4_memory_rw() below addresses and
3520                                  * sizes have to be in terms of multiples of 4
3521                                  * bytes.  So, if the Configuration File isn't
3522                                  * a multiple of 4 bytes in length we'll have
3523                                  * to write that out separately since we can't
3524                                  * guarantee that the bytes following the
3525                                  * residual byte in the buffer returned by
3526                                  * request_firmware() are zeroed out ...
3527                                  */
3528                                 size_t resid = cf->size & 0x3;
3529                                 size_t size = cf->size & ~0x3;
3530                                 __be32 *data = (__be32 *)cf->data;
3531
3532                                 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3533                                 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3534
3535                                 spin_lock(&adapter->win0_lock);
3536                                 ret = t4_memory_rw(adapter, 0, mtype, maddr,
3537                                                    size, data, T4_MEMORY_WRITE);
3538                                 if (ret == 0 && resid != 0) {
3539                                         union {
3540                                                 __be32 word;
3541                                                 char buf[4];
3542                                         } last;
3543                                         int i;
3544
3545                                         last.word = data[size >> 2];
3546                                         for (i = resid; i < 4; i++)
3547                                                 last.buf[i] = 0;
3548                                         ret = t4_memory_rw(adapter, 0, mtype,
3549                                                            maddr + size,
3550                                                            4, &last.word,
3551                                                            T4_MEMORY_WRITE);
3552                                 }
3553                                 spin_unlock(&adapter->win0_lock);
3554                         }
3555                 }
3556
3557                 release_firmware(cf);
3558                 if (ret)
3559                         goto bye;
3560         }
3561
3562         /*
3563          * Issue a Capability Configuration command to the firmware to get it
3564          * to parse the Configuration File.  We don't use t4_fw_config_file()
3565          * because we want the ability to modify various features after we've
3566          * processed the configuration file ...
3567          */
3568         memset(&caps_cmd, 0, sizeof(caps_cmd));
3569         caps_cmd.op_to_write =
3570                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3571                       FW_CMD_REQUEST_F |
3572                       FW_CMD_READ_F);
3573         caps_cmd.cfvalid_to_len16 =
3574                 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3575                       FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3576                       FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3577                       FW_LEN16(caps_cmd));
3578         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3579                          &caps_cmd);
3580
3581         /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3582          * Configuration File in FLASH), our last gasp effort is to use the
3583          * Firmware Configuration File which is embedded in the firmware.  A
3584          * very few early versions of the firmware didn't have one embedded
3585          * but we can ignore those.
3586          */
3587         if (ret == -ENOENT) {
3588                 memset(&caps_cmd, 0, sizeof(caps_cmd));
3589                 caps_cmd.op_to_write =
3590                         htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3591                                         FW_CMD_REQUEST_F |
3592                                         FW_CMD_READ_F);
3593                 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3594                 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3595                                 sizeof(caps_cmd), &caps_cmd);
3596                 config_name = "Firmware Default";
3597         }
3598
3599         config_issued = 1;
3600         if (ret < 0)
3601                 goto bye;
3602
3603         finiver = ntohl(caps_cmd.finiver);
3604         finicsum = ntohl(caps_cmd.finicsum);
3605         cfcsum = ntohl(caps_cmd.cfcsum);
3606         if (finicsum != cfcsum)
3607                 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3608                          "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3609                          finicsum, cfcsum);
3610
3611         /*
3612          * And now tell the firmware to use the configuration we just loaded.
3613          */
3614         caps_cmd.op_to_write =
3615                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3616                       FW_CMD_REQUEST_F |
3617                       FW_CMD_WRITE_F);
3618         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3619         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3620                          NULL);
3621         if (ret < 0)
3622                 goto bye;
3623
3624         /*
3625          * Tweak configuration based on system architecture, module
3626          * parameters, etc.
3627          */
3628         ret = adap_init0_tweaks(adapter);
3629         if (ret < 0)
3630                 goto bye;
3631
3632         /*
3633          * And finally tell the firmware to initialize itself using the
3634          * parameters from the Configuration File.
3635          */
3636         ret = t4_fw_initialize(adapter, adapter->mbox);
3637         if (ret < 0)
3638                 goto bye;
3639
3640         /* Emit Firmware Configuration File information and return
3641          * successfully.
3642          */
3643         dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3644                  "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3645                  config_name, finiver, cfcsum);
3646         return 0;
3647
3648         /*
3649          * Something bad happened.  Return the error ...  (If the "error"
3650          * is that there's no Configuration File on the adapter we don't
3651          * want to issue a warning since this is fairly common.)
3652          */
3653 bye:
3654         if (config_issued && ret != -ENOENT)
3655                 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3656                          config_name, -ret);
3657         return ret;
3658 }
3659
3660 static struct fw_info fw_info_array[] = {
3661         {
3662                 .chip = CHELSIO_T4,
3663                 .fs_name = FW4_CFNAME,
3664                 .fw_mod_name = FW4_FNAME,
3665                 .fw_hdr = {
3666                         .chip = FW_HDR_CHIP_T4,
3667                         .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3668                         .intfver_nic = FW_INTFVER(T4, NIC),
3669                         .intfver_vnic = FW_INTFVER(T4, VNIC),
3670                         .intfver_ri = FW_INTFVER(T4, RI),
3671                         .intfver_iscsi = FW_INTFVER(T4, ISCSI),
3672                         .intfver_fcoe = FW_INTFVER(T4, FCOE),
3673                 },
3674         }, {
3675                 .chip = CHELSIO_T5,
3676                 .fs_name = FW5_CFNAME,
3677                 .fw_mod_name = FW5_FNAME,
3678                 .fw_hdr = {
3679                         .chip = FW_HDR_CHIP_T5,
3680                         .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3681                         .intfver_nic = FW_INTFVER(T5, NIC),
3682                         .intfver_vnic = FW_INTFVER(T5, VNIC),
3683                         .intfver_ri = FW_INTFVER(T5, RI),
3684                         .intfver_iscsi = FW_INTFVER(T5, ISCSI),
3685                         .intfver_fcoe = FW_INTFVER(T5, FCOE),
3686                 },
3687         }, {
3688                 .chip = CHELSIO_T6,
3689                 .fs_name = FW6_CFNAME,
3690                 .fw_mod_name = FW6_FNAME,
3691                 .fw_hdr = {
3692                         .chip = FW_HDR_CHIP_T6,
3693                         .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3694                         .intfver_nic = FW_INTFVER(T6, NIC),
3695                         .intfver_vnic = FW_INTFVER(T6, VNIC),
3696                         .intfver_ofld = FW_INTFVER(T6, OFLD),
3697                         .intfver_ri = FW_INTFVER(T6, RI),
3698                         .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3699                         .intfver_iscsi = FW_INTFVER(T6, ISCSI),
3700                         .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3701                         .intfver_fcoe = FW_INTFVER(T6, FCOE),
3702                 },
3703         }
3704
3705 };
3706
3707 static struct fw_info *find_fw_info(int chip)
3708 {
3709         int i;
3710
3711         for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3712                 if (fw_info_array[i].chip == chip)
3713                         return &fw_info_array[i];
3714         }
3715         return NULL;
3716 }
3717
3718 /*
3719  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3720  */
3721 static int adap_init0(struct adapter *adap)
3722 {
3723         int ret;
3724         u32 v, port_vec;
3725         enum dev_state state;
3726         u32 params[7], val[7];
3727         struct fw_caps_config_cmd caps_cmd;
3728         int reset = 1;
3729
3730         /* Grab Firmware Device Log parameters as early as possible so we have
3731          * access to it for debugging, etc.
3732          */
3733         ret = t4_init_devlog_params(adap);
3734         if (ret < 0)
3735                 return ret;
3736
3737         /* Contact FW, advertising Master capability */
3738         ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
3739         if (ret < 0) {
3740                 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3741                         ret);
3742                 return ret;
3743         }
3744         if (ret == adap->mbox)
3745                 adap->flags |= MASTER_PF;
3746
3747         /*
3748          * If we're the Master PF Driver and the device is uninitialized,
3749          * then let's consider upgrading the firmware ...  (We always want
3750          * to check the firmware version number in order to A. get it for
3751          * later reporting and B. to warn if the currently loaded firmware
3752          * is excessively mismatched relative to the driver.)
3753          */
3754         t4_get_fw_version(adap, &adap->params.fw_vers);
3755         t4_get_bs_version(adap, &adap->params.bs_vers);
3756         t4_get_tp_version(adap, &adap->params.tp_vers);
3757         t4_get_exprom_version(adap, &adap->params.er_vers);
3758
3759         ret = t4_check_fw_version(adap);
3760         /* If firmware is too old (not supported by driver) force an update. */
3761         if (ret)
3762                 state = DEV_STATE_UNINIT;
3763         if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3764                 struct fw_info *fw_info;
3765                 struct fw_hdr *card_fw;
3766                 const struct firmware *fw;
3767                 const u8 *fw_data = NULL;
3768                 unsigned int fw_size = 0;
3769
3770                 /* This is the firmware whose headers the driver was compiled
3771                  * against
3772                  */
3773                 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3774                 if (fw_info == NULL) {
3775                         dev_err(adap->pdev_dev,
3776                                 "unable to get firmware info for chip %d.\n",
3777                                 CHELSIO_CHIP_VERSION(adap->params.chip));
3778                         return -EINVAL;
3779                 }
3780
3781                 /* allocate memory to read the header of the firmware on the
3782                  * card
3783                  */
3784                 card_fw = t4_alloc_mem(sizeof(*card_fw));
3785
3786                 /* Get FW from from /lib/firmware/ */
3787                 ret = request_firmware(&fw, fw_info->fw_mod_name,
3788                                        adap->pdev_dev);
3789                 if (ret < 0) {
3790                         dev_err(adap->pdev_dev,
3791                                 "unable to load firmware image %s, error %d\n",
3792                                 fw_info->fw_mod_name, ret);
3793                 } else {
3794                         fw_data = fw->data;
3795                         fw_size = fw->size;
3796                 }
3797
3798                 /* upgrade FW logic */
3799                 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3800                                  state, &reset);
3801
3802                 /* Cleaning up */
3803                 release_firmware(fw);
3804                 t4_free_mem(card_fw);
3805
3806                 if (ret < 0)
3807                         goto bye;
3808         }
3809
3810         /*
3811          * Grab VPD parameters.  This should be done after we establish a
3812          * connection to the firmware since some of the VPD parameters
3813          * (notably the Core Clock frequency) are retrieved via requests to
3814          * the firmware.  On the other hand, we need these fairly early on
3815          * so we do this right after getting ahold of the firmware.
3816          */
3817         ret = t4_get_vpd_params(adap, &adap->params.vpd);
3818         if (ret < 0)
3819                 goto bye;
3820
3821         /*
3822          * Find out what ports are available to us.  Note that we need to do
3823          * this before calling adap_init0_no_config() since it needs nports
3824          * and portvec ...
3825          */
3826         v =
3827             FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3828             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3829         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3830         if (ret < 0)
3831                 goto bye;
3832
3833         adap->params.nports = hweight32(port_vec);
3834         adap->params.portvec = port_vec;
3835
3836         /* If the firmware is initialized already, emit a simply note to that
3837          * effect. Otherwise, it's time to try initializing the adapter.
3838          */
3839         if (state == DEV_STATE_INIT) {
3840                 dev_info(adap->pdev_dev, "Coming up as %s: "\
3841                          "Adapter already initialized\n",
3842                          adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3843         } else {
3844                 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3845                          "Initializing adapter\n");
3846
3847                 /* Find out whether we're dealing with a version of the
3848                  * firmware which has configuration file support.
3849                  */
3850                 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3851                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3852                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3853                                       params, val);
3854
3855                 /* If the firmware doesn't support Configuration Files,
3856                  * return an error.
3857                  */
3858                 if (ret < 0) {
3859                         dev_err(adap->pdev_dev, "firmware doesn't support "
3860                                 "Firmware Configuration Files\n");
3861                         goto bye;
3862                 }
3863
3864                 /* The firmware provides us with a memory buffer where we can
3865                  * load a Configuration File from the host if we want to
3866                  * override the Configuration File in flash.
3867                  */
3868                 ret = adap_init0_config(adap, reset);
3869                 if (ret == -ENOENT) {
3870                         dev_err(adap->pdev_dev, "no Configuration File "
3871                                 "present on adapter.\n");
3872                         goto bye;
3873                 }
3874                 if (ret < 0) {
3875                         dev_err(adap->pdev_dev, "could not initialize "
3876                                 "adapter, error %d\n", -ret);
3877                         goto bye;
3878                 }
3879         }
3880
3881         /* Give the SGE code a chance to pull in anything that it needs ...
3882          * Note that this must be called after we retrieve our VPD parameters
3883          * in order to know how to convert core ticks to seconds, etc.
3884          */
3885         ret = t4_sge_init(adap);
3886         if (ret < 0)
3887                 goto bye;
3888
3889         if (is_bypass_device(adap->pdev->device))
3890                 adap->params.bypass = 1;
3891
3892         /*
3893          * Grab some of our basic fundamental operating parameters.
3894          */
3895 #define FW_PARAM_DEV(param) \
3896         (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3897         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3898
3899 #define FW_PARAM_PFVF(param) \
3900         FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3901         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
3902         FW_PARAMS_PARAM_Y_V(0) | \
3903         FW_PARAMS_PARAM_Z_V(0)
3904
3905         params[0] = FW_PARAM_PFVF(EQ_START);
3906         params[1] = FW_PARAM_PFVF(L2T_START);
3907         params[2] = FW_PARAM_PFVF(L2T_END);
3908         params[3] = FW_PARAM_PFVF(FILTER_START);
3909         params[4] = FW_PARAM_PFVF(FILTER_END);
3910         params[5] = FW_PARAM_PFVF(IQFLINT_START);
3911         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
3912         if (ret < 0)
3913                 goto bye;
3914         adap->sge.egr_start = val[0];
3915         adap->l2t_start = val[1];
3916         adap->l2t_end = val[2];
3917         adap->tids.ftid_base = val[3];
3918         adap->tids.nftids = val[4] - val[3] + 1;
3919         adap->sge.ingr_start = val[5];
3920
3921         /* qids (ingress/egress) returned from firmware can be anywhere
3922          * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3923          * Hence driver needs to allocate memory for this range to
3924          * store the queue info. Get the highest IQFLINT/EQ index returned
3925          * in FW_EQ_*_CMD.alloc command.
3926          */
3927         params[0] = FW_PARAM_PFVF(EQ_END);
3928         params[1] = FW_PARAM_PFVF(IQFLINT_END);
3929         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3930         if (ret < 0)
3931                 goto bye;
3932         adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3933         adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3934
3935         adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3936                                     sizeof(*adap->sge.egr_map), GFP_KERNEL);
3937         if (!adap->sge.egr_map) {
3938                 ret = -ENOMEM;
3939                 goto bye;
3940         }
3941
3942         adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3943                                      sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3944         if (!adap->sge.ingr_map) {
3945                 ret = -ENOMEM;
3946                 goto bye;
3947         }
3948
3949         /* Allocate the memory for the vaious egress queue bitmaps
3950          * ie starving_fl, txq_maperr and blocked_fl.
3951          */
3952         adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3953                                         sizeof(long), GFP_KERNEL);
3954         if (!adap->sge.starving_fl) {
3955                 ret = -ENOMEM;
3956                 goto bye;
3957         }
3958
3959         adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3960                                        sizeof(long), GFP_KERNEL);
3961         if (!adap->sge.txq_maperr) {
3962                 ret = -ENOMEM;
3963                 goto bye;
3964         }
3965
3966 #ifdef CONFIG_DEBUG_FS
3967         adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3968                                        sizeof(long), GFP_KERNEL);
3969         if (!adap->sge.blocked_fl) {
3970                 ret = -ENOMEM;
3971                 goto bye;
3972         }
3973 #endif
3974
3975         params[0] = FW_PARAM_PFVF(CLIP_START);
3976         params[1] = FW_PARAM_PFVF(CLIP_END);
3977         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3978         if (ret < 0)
3979                 goto bye;
3980         adap->clipt_start = val[0];
3981         adap->clipt_end = val[1];
3982
3983         /* query params related to active filter region */
3984         params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3985         params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3986         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3987         /* If Active filter size is set we enable establishing
3988          * offload connection through firmware work request
3989          */
3990         if ((val[0] != val[1]) && (ret >= 0)) {
3991                 adap->flags |= FW_OFLD_CONN;
3992                 adap->tids.aftid_base = val[0];
3993                 adap->tids.aftid_end = val[1];
3994         }
3995
3996         /* If we're running on newer firmware, let it know that we're
3997          * prepared to deal with encapsulated CPL messages.  Older
3998          * firmware won't understand this and we'll just get
3999          * unencapsulated messages ...
4000          */
4001         params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
4002         val[0] = 1;
4003         (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
4004
4005         /*
4006          * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
4007          * capability.  Earlier versions of the firmware didn't have the
4008          * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
4009          * permission to use ULPTX MEMWRITE DSGL.
4010          */
4011         if (is_t4(adap->params.chip)) {
4012                 adap->params.ulptx_memwrite_dsgl = false;
4013         } else {
4014                 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
4015                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4016                                       1, params, val);
4017                 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
4018         }
4019
4020         /*
4021          * Get device capabilities so we can determine what resources we need
4022          * to manage.
4023          */
4024         memset(&caps_cmd, 0, sizeof(caps_cmd));
4025         caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4026                                      FW_CMD_REQUEST_F | FW_CMD_READ_F);
4027         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4028         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
4029                          &caps_cmd);
4030         if (ret < 0)
4031                 goto bye;
4032
4033         if (caps_cmd.ofldcaps) {
4034                 /* query offload-related parameters */
4035                 params[0] = FW_PARAM_DEV(NTID);
4036                 params[1] = FW_PARAM_PFVF(SERVER_START);
4037                 params[2] = FW_PARAM_PFVF(SERVER_END);
4038                 params[3] = FW_PARAM_PFVF(TDDP_START);
4039                 params[4] = FW_PARAM_PFVF(TDDP_END);
4040                 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4041                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4042                                       params, val);
4043                 if (ret < 0)
4044                         goto bye;
4045                 adap->tids.ntids = val[0];
4046                 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
4047                 adap->tids.stid_base = val[1];
4048                 adap->tids.nstids = val[2] - val[1] + 1;
4049                 /*
4050                  * Setup server filter region. Divide the available filter
4051                  * region into two parts. Regular filters get 1/3rd and server
4052                  * filters get 2/3rd part. This is only enabled if workarond
4053                  * path is enabled.
4054                  * 1. For regular filters.
4055                  * 2. Server filter: This are special filters which are used
4056                  * to redirect SYN packets to offload queue.
4057                  */
4058                 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
4059                         adap->tids.sftid_base = adap->tids.ftid_base +
4060                                         DIV_ROUND_UP(adap->tids.nftids, 3);
4061                         adap->tids.nsftids = adap->tids.nftids -
4062                                          DIV_ROUND_UP(adap->tids.nftids, 3);
4063                         adap->tids.nftids = adap->tids.sftid_base -
4064                                                 adap->tids.ftid_base;
4065                 }
4066                 adap->vres.ddp.start = val[3];
4067                 adap->vres.ddp.size = val[4] - val[3] + 1;
4068                 adap->params.ofldq_wr_cred = val[5];
4069
4070                 adap->params.offload = 1;
4071         }
4072         if (caps_cmd.rdmacaps) {
4073                 params[0] = FW_PARAM_PFVF(STAG_START);
4074                 params[1] = FW_PARAM_PFVF(STAG_END);
4075                 params[2] = FW_PARAM_PFVF(RQ_START);
4076                 params[3] = FW_PARAM_PFVF(RQ_END);
4077                 params[4] = FW_PARAM_PFVF(PBL_START);
4078                 params[5] = FW_PARAM_PFVF(PBL_END);
4079                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4080                                       params, val);
4081                 if (ret < 0)
4082                         goto bye;
4083                 adap->vres.stag.start = val[0];
4084                 adap->vres.stag.size = val[1] - val[0] + 1;
4085                 adap->vres.rq.start = val[2];
4086                 adap->vres.rq.size = val[3] - val[2] + 1;
4087                 adap->vres.pbl.start = val[4];
4088                 adap->vres.pbl.size = val[5] - val[4] + 1;
4089
4090                 params[0] = FW_PARAM_PFVF(SQRQ_START);
4091                 params[1] = FW_PARAM_PFVF(SQRQ_END);
4092                 params[2] = FW_PARAM_PFVF(CQ_START);
4093                 params[3] = FW_PARAM_PFVF(CQ_END);
4094                 params[4] = FW_PARAM_PFVF(OCQ_START);
4095                 params[5] = FW_PARAM_PFVF(OCQ_END);
4096                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4097                                       val);
4098                 if (ret < 0)
4099                         goto bye;
4100                 adap->vres.qp.start = val[0];
4101                 adap->vres.qp.size = val[1] - val[0] + 1;
4102                 adap->vres.cq.start = val[2];
4103                 adap->vres.cq.size = val[3] - val[2] + 1;
4104                 adap->vres.ocq.start = val[4];
4105                 adap->vres.ocq.size = val[5] - val[4] + 1;
4106
4107                 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4108                 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4109                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
4110                                       val);
4111                 if (ret < 0) {
4112                         adap->params.max_ordird_qp = 8;
4113                         adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4114                         ret = 0;
4115                 } else {
4116                         adap->params.max_ordird_qp = val[0];
4117                         adap->params.max_ird_adapter = val[1];
4118                 }
4119                 dev_info(adap->pdev_dev,
4120                          "max_ordird_qp %d max_ird_adapter %d\n",
4121                          adap->params.max_ordird_qp,
4122                          adap->params.max_ird_adapter);
4123         }
4124         if (caps_cmd.iscsicaps) {
4125                 params[0] = FW_PARAM_PFVF(ISCSI_START);
4126                 params[1] = FW_PARAM_PFVF(ISCSI_END);
4127                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4128                                       params, val);
4129                 if (ret < 0)
4130                         goto bye;
4131                 adap->vres.iscsi.start = val[0];
4132                 adap->vres.iscsi.size = val[1] - val[0] + 1;
4133         }
4134 #undef FW_PARAM_PFVF
4135 #undef FW_PARAM_DEV
4136
4137         /* The MTU/MSS Table is initialized by now, so load their values.  If
4138          * we're initializing the adapter, then we'll make any modifications
4139          * we want to the MTU/MSS Table and also initialize the congestion
4140          * parameters.
4141          */
4142         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4143         if (state != DEV_STATE_INIT) {
4144                 int i;
4145
4146                 /* The default MTU Table contains values 1492 and 1500.
4147                  * However, for TCP, it's better to have two values which are
4148                  * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4149                  * This allows us to have a TCP Data Payload which is a
4150                  * multiple of 8 regardless of what combination of TCP Options
4151                  * are in use (always a multiple of 4 bytes) which is
4152                  * important for performance reasons.  For instance, if no
4153                  * options are in use, then we have a 20-byte IP header and a
4154                  * 20-byte TCP header.  In this case, a 1500-byte MSS would
4155                  * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4156                  * which is not a multiple of 8.  So using an MSS of 1488 in
4157                  * this case results in a TCP Data Payload of 1448 bytes which
4158                  * is a multiple of 8.  On the other hand, if 12-byte TCP Time
4159                  * Stamps have been negotiated, then an MTU of 1500 bytes
4160                  * results in a TCP Data Payload of 1448 bytes which, as
4161                  * above, is a multiple of 8 bytes ...
4162                  */
4163                 for (i = 0; i < NMTUS; i++)
4164                         if (adap->params.mtus[i] == 1492) {
4165                                 adap->params.mtus[i] = 1488;
4166                                 break;
4167                         }
4168
4169                 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4170                              adap->params.b_wnd);
4171         }
4172         t4_init_sge_params(adap);
4173         adap->flags |= FW_OK;
4174         t4_init_tp_params(adap);
4175         return 0;
4176
4177         /*
4178          * Something bad happened.  If a command timed out or failed with EIO
4179          * FW does not operate within its spec or something catastrophic
4180          * happened to HW/FW, stop issuing commands.
4181          */
4182 bye:
4183         kfree(adap->sge.egr_map);
4184         kfree(adap->sge.ingr_map);
4185         kfree(adap->sge.starving_fl);
4186         kfree(adap->sge.txq_maperr);
4187 #ifdef CONFIG_DEBUG_FS
4188         kfree(adap->sge.blocked_fl);
4189 #endif
4190         if (ret != -ETIMEDOUT && ret != -EIO)
4191                 t4_fw_bye(adap, adap->mbox);
4192         return ret;
4193 }
4194
4195 /* EEH callbacks */
4196
4197 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4198                                          pci_channel_state_t state)
4199 {
4200         int i;
4201         struct adapter *adap = pci_get_drvdata(pdev);
4202
4203         if (!adap)
4204                 goto out;
4205
4206         rtnl_lock();
4207         adap->flags &= ~FW_OK;
4208         notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4209         spin_lock(&adap->stats_lock);
4210         for_each_port(adap, i) {
4211                 struct net_device *dev = adap->port[i];
4212
4213                 netif_device_detach(dev);
4214                 netif_carrier_off(dev);
4215         }
4216         spin_unlock(&adap->stats_lock);
4217         disable_interrupts(adap);
4218         if (adap->flags & FULL_INIT_DONE)
4219                 cxgb_down(adap);
4220         rtnl_unlock();
4221         if ((adap->flags & DEV_ENABLED)) {
4222                 pci_disable_device(pdev);
4223                 adap->flags &= ~DEV_ENABLED;
4224         }
4225 out:    return state == pci_channel_io_perm_failure ?
4226                 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4227 }
4228
4229 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4230 {
4231         int i, ret;
4232         struct fw_caps_config_cmd c;
4233         struct adapter *adap = pci_get_drvdata(pdev);
4234
4235         if (!adap) {
4236                 pci_restore_state(pdev);
4237                 pci_save_state(pdev);
4238                 return PCI_ERS_RESULT_RECOVERED;
4239         }
4240
4241         if (!(adap->flags & DEV_ENABLED)) {
4242                 if (pci_enable_device(pdev)) {
4243                         dev_err(&pdev->dev, "Cannot reenable PCI "
4244                                             "device after reset\n");
4245                         return PCI_ERS_RESULT_DISCONNECT;
4246                 }
4247                 adap->flags |= DEV_ENABLED;
4248         }
4249
4250         pci_set_master(pdev);
4251         pci_restore_state(pdev);
4252         pci_save_state(pdev);
4253         pci_cleanup_aer_uncorrect_error_status(pdev);
4254
4255         if (t4_wait_dev_ready(adap->regs) < 0)
4256                 return PCI_ERS_RESULT_DISCONNECT;
4257         if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
4258                 return PCI_ERS_RESULT_DISCONNECT;
4259         adap->flags |= FW_OK;
4260         if (adap_init1(adap, &c))
4261                 return PCI_ERS_RESULT_DISCONNECT;
4262
4263         for_each_port(adap, i) {
4264                 struct port_info *p = adap2pinfo(adap, i);
4265
4266                 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
4267                                   NULL, NULL);
4268                 if (ret < 0)
4269                         return PCI_ERS_RESULT_DISCONNECT;
4270                 p->viid = ret;
4271                 p->xact_addr_filt = -1;
4272         }
4273
4274         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4275                      adap->params.b_wnd);
4276         setup_memwin(adap);
4277         if (cxgb_up(adap))
4278                 return PCI_ERS_RESULT_DISCONNECT;
4279         return PCI_ERS_RESULT_RECOVERED;
4280 }
4281
4282 static void eeh_resume(struct pci_dev *pdev)
4283 {
4284         int i;
4285         struct adapter *adap = pci_get_drvdata(pdev);
4286
4287         if (!adap)
4288                 return;
4289
4290         rtnl_lock();
4291         for_each_port(adap, i) {
4292                 struct net_device *dev = adap->port[i];
4293
4294                 if (netif_running(dev)) {
4295                         link_start(dev);
4296                         cxgb_set_rxmode(dev);
4297                 }
4298                 netif_device_attach(dev);
4299         }
4300         rtnl_unlock();
4301 }
4302
4303 static const struct pci_error_handlers cxgb4_eeh = {
4304         .error_detected = eeh_err_detected,
4305         .slot_reset     = eeh_slot_reset,
4306         .resume         = eeh_resume,
4307 };
4308
4309 static inline bool is_x_10g_port(const struct link_config *lc)
4310 {
4311         return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
4312                (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
4313 }
4314
4315 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
4316                              unsigned int us, unsigned int cnt,
4317                              unsigned int size, unsigned int iqe_size)
4318 {
4319         q->adap = adap;
4320         cxgb4_set_rspq_intr_params(q, us, cnt);
4321         q->iqe_len = iqe_size;
4322         q->size = size;
4323 }
4324
4325 /*
4326  * Perform default configuration of DMA queues depending on the number and type
4327  * of ports we found and the number of available CPUs.  Most settings can be
4328  * modified by the admin prior to actual use.
4329  */
4330 static void cfg_queues(struct adapter *adap)
4331 {
4332         struct sge *s = &adap->sge;
4333         int i, n10g = 0, qidx = 0;
4334 #ifndef CONFIG_CHELSIO_T4_DCB
4335         int q10g = 0;
4336 #endif
4337         int ciq_size;
4338
4339         for_each_port(adap, i)
4340                 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4341 #ifdef CONFIG_CHELSIO_T4_DCB
4342         /* For Data Center Bridging support we need to be able to support up
4343          * to 8 Traffic Priorities; each of which will be assigned to its
4344          * own TX Queue in order to prevent Head-Of-Line Blocking.
4345          */
4346         if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4347                 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4348                         MAX_ETH_QSETS, adap->params.nports * 8);
4349                 BUG_ON(1);
4350         }
4351
4352         for_each_port(adap, i) {
4353                 struct port_info *pi = adap2pinfo(adap, i);
4354
4355                 pi->first_qset = qidx;
4356                 pi->nqsets = 8;
4357                 qidx += pi->nqsets;
4358         }
4359 #else /* !CONFIG_CHELSIO_T4_DCB */
4360         /*
4361          * We default to 1 queue per non-10G port and up to # of cores queues
4362          * per 10G port.
4363          */
4364         if (n10g)
4365                 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4366         if (q10g > netif_get_num_default_rss_queues())
4367                 q10g = netif_get_num_default_rss_queues();
4368
4369         for_each_port(adap, i) {
4370                 struct port_info *pi = adap2pinfo(adap, i);
4371
4372                 pi->first_qset = qidx;
4373                 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4374                 qidx += pi->nqsets;
4375         }
4376 #endif /* !CONFIG_CHELSIO_T4_DCB */
4377
4378         s->ethqsets = qidx;
4379         s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4380
4381         if (is_offload(adap)) {
4382                 /*
4383                  * For offload we use 1 queue/channel if all ports are up to 1G,
4384                  * otherwise we divide all available queues amongst the channels
4385                  * capped by the number of available cores.
4386                  */
4387                 if (n10g) {
4388                         i = min_t(int, ARRAY_SIZE(s->iscsirxq),
4389                                   num_online_cpus());
4390                         s->iscsiqsets = roundup(i, adap->params.nports);
4391                 } else
4392                         s->iscsiqsets = adap->params.nports;
4393                 /* For RDMA one Rx queue per channel suffices */
4394                 s->rdmaqs = adap->params.nports;
4395                 /* Try and allow at least 1 CIQ per cpu rounding down
4396                  * to the number of ports, with a minimum of 1 per port.
4397                  * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port.
4398                  * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port.
4399                  * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port.
4400                  */
4401                 s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus());
4402                 s->rdmaciqs = (s->rdmaciqs / adap->params.nports) *
4403                                 adap->params.nports;
4404                 s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports);
4405
4406                 if (!is_t4(adap->params.chip))
4407                         s->niscsitq = s->iscsiqsets;
4408         }
4409
4410         for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4411                 struct sge_eth_rxq *r = &s->ethrxq[i];
4412
4413                 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4414                 r->fl.size = 72;
4415         }
4416
4417         for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4418                 s->ethtxq[i].q.size = 1024;
4419
4420         for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4421                 s->ctrlq[i].q.size = 512;
4422
4423         for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4424                 s->ofldtxq[i].q.size = 1024;
4425
4426         for (i = 0; i < ARRAY_SIZE(s->iscsirxq); i++) {
4427                 struct sge_ofld_rxq *r = &s->iscsirxq[i];
4428
4429                 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4430                 r->rspq.uld = CXGB4_ULD_ISCSI;
4431                 r->fl.size = 72;
4432         }
4433
4434         if (!is_t4(adap->params.chip)) {
4435                 for (i = 0; i < ARRAY_SIZE(s->iscsitrxq); i++) {
4436                         struct sge_ofld_rxq *r = &s->iscsitrxq[i];
4437
4438                         init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4439                         r->rspq.uld = CXGB4_ULD_ISCSIT;
4440                         r->fl.size = 72;
4441                 }
4442         }
4443
4444         for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
4445                 struct sge_ofld_rxq *r = &s->rdmarxq[i];
4446
4447                 init_rspq(adap, &r->rspq, 5, 1, 511, 64);
4448                 r->rspq.uld = CXGB4_ULD_RDMA;
4449                 r->fl.size = 72;
4450         }
4451
4452         ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
4453         if (ciq_size > SGE_MAX_IQ_SIZE) {
4454                 CH_WARN(adap, "CIQ size too small for available IQs\n");
4455                 ciq_size = SGE_MAX_IQ_SIZE;
4456         }
4457
4458         for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
4459                 struct sge_ofld_rxq *r = &s->rdmaciq[i];
4460
4461                 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
4462                 r->rspq.uld = CXGB4_ULD_RDMA;
4463         }
4464
4465         init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4466         init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
4467 }
4468
4469 /*
4470  * Reduce the number of Ethernet queues across all ports to at most n.
4471  * n provides at least one queue per port.
4472  */
4473 static void reduce_ethqs(struct adapter *adap, int n)
4474 {
4475         int i;
4476         struct port_info *pi;
4477
4478         while (n < adap->sge.ethqsets)
4479                 for_each_port(adap, i) {
4480                         pi = adap2pinfo(adap, i);
4481                         if (pi->nqsets > 1) {
4482                                 pi->nqsets--;
4483                                 adap->sge.ethqsets--;
4484                                 if (adap->sge.ethqsets <= n)
4485                                         break;
4486                         }
4487                 }
4488
4489         n = 0;
4490         for_each_port(adap, i) {
4491                 pi = adap2pinfo(adap, i);
4492                 pi->first_qset = n;
4493                 n += pi->nqsets;
4494         }
4495 }
4496
4497 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4498 #define EXTRA_VECS 2
4499
4500 static int enable_msix(struct adapter *adap)
4501 {
4502         int ofld_need = 0;
4503         int i, want, need, allocated;
4504         struct sge *s = &adap->sge;
4505         unsigned int nchan = adap->params.nports;
4506         struct msix_entry *entries;
4507
4508         entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1),
4509                           GFP_KERNEL);
4510         if (!entries)
4511                 return -ENOMEM;
4512
4513         for (i = 0; i < MAX_INGQ + 1; ++i)
4514                 entries[i].entry = i;
4515
4516         want = s->max_ethqsets + EXTRA_VECS;
4517         if (is_offload(adap)) {
4518                 want += s->rdmaqs + s->rdmaciqs + s->iscsiqsets +
4519                         s->niscsitq;
4520                 /* need nchan for each possible ULD */
4521                 if (is_t4(adap->params.chip))
4522                         ofld_need = 3 * nchan;
4523                 else
4524                         ofld_need = 4 * nchan;
4525         }
4526 #ifdef CONFIG_CHELSIO_T4_DCB
4527         /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4528          * each port.
4529          */
4530         need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
4531 #else
4532         need = adap->params.nports + EXTRA_VECS + ofld_need;
4533 #endif
4534         allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4535         if (allocated < 0) {
4536                 dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4537                          " not using MSI-X\n");
4538                 kfree(entries);
4539                 return allocated;
4540         }
4541
4542         /* Distribute available vectors to the various queue groups.
4543          * Every group gets its minimum requirement and NIC gets top
4544          * priority for leftovers.
4545          */
4546         i = allocated - EXTRA_VECS - ofld_need;
4547         if (i < s->max_ethqsets) {
4548                 s->max_ethqsets = i;
4549                 if (i < s->ethqsets)
4550                         reduce_ethqs(adap, i);
4551         }
4552         if (is_offload(adap)) {
4553                 if (allocated < want) {
4554                         s->rdmaqs = nchan;
4555                         s->rdmaciqs = nchan;
4556
4557                         if (!is_t4(adap->params.chip))
4558                                 s->niscsitq = nchan;
4559                 }
4560
4561                 /* leftovers go to OFLD */
4562                 i = allocated - EXTRA_VECS - s->max_ethqsets -
4563                     s->rdmaqs - s->rdmaciqs - s->niscsitq;
4564                 s->iscsiqsets = (i / nchan) * nchan;  /* round down */
4565
4566         }
4567         for (i = 0; i < allocated; ++i)
4568                 adap->msix_info[i].vec = entries[i].vector;
4569         dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
4570                  "nic %d iscsi %d rdma cpl %d rdma ciq %d\n",
4571                  allocated, s->max_ethqsets, s->iscsiqsets, s->rdmaqs,
4572                  s->rdmaciqs);
4573
4574         kfree(entries);
4575         return 0;
4576 }
4577
4578 #undef EXTRA_VECS
4579
4580 static int init_rss(struct adapter *adap)
4581 {
4582         unsigned int i;
4583         int err;
4584
4585         err = t4_init_rss_mode(adap, adap->mbox);
4586         if (err)
4587                 return err;
4588
4589         for_each_port(adap, i) {
4590                 struct port_info *pi = adap2pinfo(adap, i);
4591
4592                 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4593                 if (!pi->rss)
4594                         return -ENOMEM;
4595         }
4596         return 0;
4597 }
4598
4599 static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap,
4600                                         enum pci_bus_speed *speed,
4601                                         enum pcie_link_width *width)
4602 {
4603         u32 lnkcap1, lnkcap2;
4604         int err1, err2;
4605
4606 #define  PCIE_MLW_CAP_SHIFT 4   /* start of MLW mask in link capabilities */
4607
4608         *speed = PCI_SPEED_UNKNOWN;
4609         *width = PCIE_LNK_WIDTH_UNKNOWN;
4610
4611         err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP,
4612                                           &lnkcap1);
4613         err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2,
4614                                           &lnkcap2);
4615         if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */
4616                 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
4617                         *speed = PCIE_SPEED_8_0GT;
4618                 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
4619                         *speed = PCIE_SPEED_5_0GT;
4620                 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
4621                         *speed = PCIE_SPEED_2_5GT;
4622         }
4623         if (!err1) {
4624                 *width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT;
4625                 if (!lnkcap2) { /* pre-r3.0 */
4626                         if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB)
4627                                 *speed = PCIE_SPEED_5_0GT;
4628                         else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB)
4629                                 *speed = PCIE_SPEED_2_5GT;
4630                 }
4631         }
4632
4633         if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
4634                 return err1 ? err1 : err2 ? err2 : -EINVAL;
4635         return 0;
4636 }
4637
4638 static void cxgb4_check_pcie_caps(struct adapter *adap)
4639 {
4640         enum pcie_link_width width, width_cap;
4641         enum pci_bus_speed speed, speed_cap;
4642
4643 #define PCIE_SPEED_STR(speed) \
4644         (speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \
4645          speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \
4646          speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \
4647          "Unknown")
4648
4649         if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) {
4650                 dev_warn(adap->pdev_dev,
4651                          "Unable to determine PCIe device BW capabilities\n");
4652                 return;
4653         }
4654
4655         if (pcie_get_minimum_link(adap->pdev, &speed, &width) ||
4656             speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) {
4657                 dev_warn(adap->pdev_dev,
4658                          "Unable to determine PCI Express bandwidth.\n");
4659                 return;
4660         }
4661
4662         dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n",
4663                  PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap));
4664         dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n",
4665                  width, width_cap);
4666         if (speed < speed_cap || width < width_cap)
4667                 dev_info(adap->pdev_dev,
4668                          "A slot with more lanes and/or higher speed is "
4669                          "suggested for optimal performance.\n");
4670 }
4671
4672 /* Dump basic information about the adapter */
4673 static void print_adapter_info(struct adapter *adapter)
4674 {
4675         /* Device information */
4676         dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
4677                  adapter->params.vpd.id,
4678                  CHELSIO_CHIP_RELEASE(adapter->params.chip));
4679         dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
4680                  adapter->params.vpd.sn, adapter->params.vpd.pn);
4681
4682         /* Firmware Version */
4683         if (!adapter->params.fw_vers)
4684                 dev_warn(adapter->pdev_dev, "No firmware loaded\n");
4685         else
4686                 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
4687                          FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
4688                          FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
4689                          FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
4690                          FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
4691
4692         /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
4693          * Firmware, so dev_info() is more appropriate here.)
4694          */
4695         if (!adapter->params.bs_vers)
4696                 dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
4697         else
4698                 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
4699                          FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
4700                          FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
4701                          FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
4702                          FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
4703
4704         /* TP Microcode Version */
4705         if (!adapter->params.tp_vers)
4706                 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
4707         else
4708                 dev_info(adapter->pdev_dev,
4709                          "TP Microcode version: %u.%u.%u.%u\n",
4710                          FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
4711                          FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
4712                          FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
4713                          FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
4714
4715         /* Expansion ROM version */
4716         if (!adapter->params.er_vers)
4717                 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
4718         else
4719                 dev_info(adapter->pdev_dev,
4720                          "Expansion ROM version: %u.%u.%u.%u\n",
4721                          FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
4722                          FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
4723                          FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
4724                          FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
4725
4726         /* Software/Hardware configuration */
4727         dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
4728                  is_offload(adapter) ? "R" : "",
4729                  ((adapter->flags & USING_MSIX) ? "MSI-X" :
4730                   (adapter->flags & USING_MSI) ? "MSI" : ""),
4731                  is_offload(adapter) ? "Offload" : "non-Offload");
4732 }
4733
4734 static void print_port_info(const struct net_device *dev)
4735 {
4736         char buf[80];
4737         char *bufp = buf;
4738         const char *spd = "";
4739         const struct port_info *pi = netdev_priv(dev);
4740         const struct adapter *adap = pi->adapter;
4741
4742         if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4743                 spd = " 2.5 GT/s";
4744         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4745                 spd = " 5 GT/s";
4746         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4747                 spd = " 8 GT/s";
4748
4749         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4750                 bufp += sprintf(bufp, "100/");
4751         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4752                 bufp += sprintf(bufp, "1000/");
4753         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4754                 bufp += sprintf(bufp, "10G/");
4755         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4756                 bufp += sprintf(bufp, "40G/");
4757         if (bufp != buf)
4758                 --bufp;
4759         sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4760
4761         netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
4762                     dev->name, adap->params.vpd.id, adap->name, buf);
4763 }
4764
4765 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4766 {
4767         pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4768 }
4769
4770 /*
4771  * Free the following resources:
4772  * - memory used for tables
4773  * - MSI/MSI-X
4774  * - net devices
4775  * - resources FW is holding for us
4776  */
4777 static void free_some_resources(struct adapter *adapter)
4778 {
4779         unsigned int i;
4780
4781         t4_free_mem(adapter->l2t);
4782         t4_free_mem(adapter->tids.tid_tab);
4783         kfree(adapter->sge.egr_map);
4784         kfree(adapter->sge.ingr_map);
4785         kfree(adapter->sge.starving_fl);
4786         kfree(adapter->sge.txq_maperr);
4787 #ifdef CONFIG_DEBUG_FS
4788         kfree(adapter->sge.blocked_fl);
4789 #endif
4790         disable_msi(adapter);
4791
4792         for_each_port(adapter, i)
4793                 if (adapter->port[i]) {
4794                         struct port_info *pi = adap2pinfo(adapter, i);
4795
4796                         if (pi->viid != 0)
4797                                 t4_free_vi(adapter, adapter->mbox, adapter->pf,
4798                                            0, pi->viid);
4799                         kfree(adap2pinfo(adapter, i)->rss);
4800                         free_netdev(adapter->port[i]);
4801                 }
4802         if (adapter->flags & FW_OK)
4803                 t4_fw_bye(adapter, adapter->pf);
4804 }
4805
4806 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4807 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4808                    NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4809 #define SEGMENT_SIZE 128
4810
4811 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
4812 {
4813         u16 device_id;
4814
4815         /* Retrieve adapter's device ID */
4816         pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
4817
4818         switch (device_id >> 12) {
4819         case CHELSIO_T4:
4820                 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4821         case CHELSIO_T5:
4822                 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4823         case CHELSIO_T6:
4824                 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4825         default:
4826                 dev_err(&pdev->dev, "Device %d is not supported\n",
4827                         device_id);
4828         }
4829         return -EINVAL;
4830 }
4831
4832 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4833 {
4834         int func, i, err, s_qpp, qpp, num_seg;
4835         struct port_info *pi;
4836         bool highdma = false;
4837         struct adapter *adapter = NULL;
4838         void __iomem *regs;
4839         u32 whoami, pl_rev;
4840         enum chip_type chip;
4841
4842         printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4843
4844         err = pci_request_regions(pdev, KBUILD_MODNAME);
4845         if (err) {
4846                 /* Just info, some other driver may have claimed the device. */
4847                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4848                 return err;
4849         }
4850
4851         err = pci_enable_device(pdev);
4852         if (err) {
4853                 dev_err(&pdev->dev, "cannot enable PCI device\n");
4854                 goto out_release_regions;
4855         }
4856
4857         regs = pci_ioremap_bar(pdev, 0);
4858         if (!regs) {
4859                 dev_err(&pdev->dev, "cannot map device registers\n");
4860                 err = -ENOMEM;
4861                 goto out_disable_device;
4862         }
4863
4864         err = t4_wait_dev_ready(regs);
4865         if (err < 0)
4866                 goto out_unmap_bar0;
4867
4868         /* We control everything through one PF */
4869         whoami = readl(regs + PL_WHOAMI_A);
4870         pl_rev = REV_G(readl(regs + PL_REV_A));
4871         chip = get_chip_type(pdev, pl_rev);
4872         func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
4873                 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4874         if (func != ent->driver_data) {
4875                 iounmap(regs);
4876                 pci_disable_device(pdev);
4877                 pci_save_state(pdev);        /* to restore SR-IOV later */
4878                 goto sriov;
4879         }
4880
4881         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4882                 highdma = true;
4883                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4884                 if (err) {
4885                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4886                                 "coherent allocations\n");
4887                         goto out_unmap_bar0;
4888                 }
4889         } else {
4890                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4891                 if (err) {
4892                         dev_err(&pdev->dev, "no usable DMA configuration\n");
4893                         goto out_unmap_bar0;
4894                 }
4895         }
4896
4897         pci_enable_pcie_error_reporting(pdev);
4898         enable_pcie_relaxed_ordering(pdev);
4899         pci_set_master(pdev);
4900         pci_save_state(pdev);
4901
4902         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4903         if (!adapter) {
4904                 err = -ENOMEM;
4905                 goto out_unmap_bar0;
4906         }
4907
4908         adapter->workq = create_singlethread_workqueue("cxgb4");
4909         if (!adapter->workq) {
4910                 err = -ENOMEM;
4911                 goto out_free_adapter;
4912         }
4913
4914         adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
4915                                     (sizeof(struct mbox_cmd) *
4916                                      T4_OS_LOG_MBOX_CMDS),
4917                                     GFP_KERNEL);
4918         if (!adapter->mbox_log) {
4919                 err = -ENOMEM;
4920                 goto out_free_adapter;
4921         }
4922         adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
4923
4924         /* PCI device has been enabled */
4925         adapter->flags |= DEV_ENABLED;
4926
4927         adapter->regs = regs;
4928         adapter->pdev = pdev;
4929         adapter->pdev_dev = &pdev->dev;
4930         adapter->name = pci_name(pdev);
4931         adapter->mbox = func;
4932         adapter->pf = func;
4933         adapter->msg_enable = dflt_msg_enable;
4934         memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4935
4936         spin_lock_init(&adapter->stats_lock);
4937         spin_lock_init(&adapter->tid_release_lock);
4938         spin_lock_init(&adapter->win0_lock);
4939
4940         INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4941         INIT_WORK(&adapter->db_full_task, process_db_full);
4942         INIT_WORK(&adapter->db_drop_task, process_db_drop);
4943
4944         err = t4_prep_adapter(adapter);
4945         if (err)
4946                 goto out_free_adapter;
4947
4948
4949         if (!is_t4(adapter->params.chip)) {
4950                 s_qpp = (QUEUESPERPAGEPF0_S +
4951                         (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4952                         adapter->pf);
4953                 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4954                       SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4955                 num_seg = PAGE_SIZE / SEGMENT_SIZE;
4956
4957                 /* Each segment size is 128B. Write coalescing is enabled only
4958                  * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4959                  * queue is less no of segments that can be accommodated in
4960                  * a page size.
4961                  */
4962                 if (qpp > num_seg) {
4963                         dev_err(&pdev->dev,
4964                                 "Incorrect number of egress queues per page\n");
4965                         err = -EINVAL;
4966                         goto out_free_adapter;
4967                 }
4968                 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4969                 pci_resource_len(pdev, 2));
4970                 if (!adapter->bar2) {
4971                         dev_err(&pdev->dev, "cannot map device bar2 region\n");
4972                         err = -ENOMEM;
4973                         goto out_free_adapter;
4974                 }
4975         }
4976
4977         setup_memwin(adapter);
4978         err = adap_init0(adapter);
4979 #ifdef CONFIG_DEBUG_FS
4980         bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
4981 #endif
4982         setup_memwin_rdma(adapter);
4983         if (err)
4984                 goto out_unmap_bar;
4985
4986         /* configure SGE_STAT_CFG_A to read WC stats */
4987         if (!is_t4(adapter->params.chip))
4988                 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
4989                              (is_t5(adapter->params.chip) ? STATMODE_V(0) :
4990                               T6_STATMODE_V(0)));
4991
4992         for_each_port(adapter, i) {
4993                 struct net_device *netdev;
4994
4995                 netdev = alloc_etherdev_mq(sizeof(struct port_info),
4996                                            MAX_ETH_QSETS);
4997                 if (!netdev) {
4998                         err = -ENOMEM;
4999                         goto out_free_dev;
5000                 }
5001
5002                 SET_NETDEV_DEV(netdev, &pdev->dev);
5003
5004                 adapter->port[i] = netdev;
5005                 pi = netdev_priv(netdev);
5006                 pi->adapter = adapter;
5007                 pi->xact_addr_filt = -1;
5008                 pi->port_id = i;
5009                 netdev->irq = pdev->irq;
5010
5011                 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
5012                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5013                         NETIF_F_RXCSUM | NETIF_F_RXHASH |
5014                         NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
5015                 if (highdma)
5016                         netdev->hw_features |= NETIF_F_HIGHDMA;
5017                 netdev->features |= netdev->hw_features;
5018                 netdev->vlan_features = netdev->features & VLAN_FEAT;
5019
5020                 netdev->priv_flags |= IFF_UNICAST_FLT;
5021
5022                 netdev->netdev_ops = &cxgb4_netdev_ops;
5023 #ifdef CONFIG_CHELSIO_T4_DCB
5024                 netdev->dcbnl_ops = &cxgb4_dcb_ops;
5025                 cxgb4_dcb_state_init(netdev);
5026 #endif
5027                 cxgb4_set_ethtool_ops(netdev);
5028         }
5029
5030         pci_set_drvdata(pdev, adapter);
5031
5032         if (adapter->flags & FW_OK) {
5033                 err = t4_port_init(adapter, func, func, 0);
5034                 if (err)
5035                         goto out_free_dev;
5036         } else if (adapter->params.nports == 1) {
5037                 /* If we don't have a connection to the firmware -- possibly
5038                  * because of an error -- grab the raw VPD parameters so we
5039                  * can set the proper MAC Address on the debug network
5040                  * interface that we've created.
5041                  */
5042                 u8 hw_addr[ETH_ALEN];
5043                 u8 *na = adapter->params.vpd.na;
5044
5045                 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
5046                 if (!err) {
5047                         for (i = 0; i < ETH_ALEN; i++)
5048                                 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
5049                                               hex2val(na[2 * i + 1]));
5050                         t4_set_hw_addr(adapter, 0, hw_addr);
5051                 }
5052         }
5053
5054         /* Configure queues and allocate tables now, they can be needed as
5055          * soon as the first register_netdev completes.
5056          */
5057         cfg_queues(adapter);
5058
5059         adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
5060         if (!adapter->l2t) {
5061                 /* We tolerate a lack of L2T, giving up some functionality */
5062                 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
5063                 adapter->params.offload = 0;
5064         }
5065
5066 #if IS_ENABLED(CONFIG_IPV6)
5067         if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) &&
5068             (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
5069                 /* CLIP functionality is not present in hardware,
5070                  * hence disable all offload features
5071                  */
5072                 dev_warn(&pdev->dev,
5073                          "CLIP not enabled in hardware, continuing\n");
5074                 adapter->params.offload = 0;
5075         } else {
5076                 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
5077                                                   adapter->clipt_end);
5078                 if (!adapter->clipt) {
5079                         /* We tolerate a lack of clip_table, giving up
5080                          * some functionality
5081                          */
5082                         dev_warn(&pdev->dev,
5083                                  "could not allocate Clip table, continuing\n");
5084                         adapter->params.offload = 0;
5085                 }
5086         }
5087 #endif
5088         if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
5089                 dev_warn(&pdev->dev, "could not allocate TID table, "
5090                          "continuing\n");
5091                 adapter->params.offload = 0;
5092         }
5093
5094         if (is_offload(adapter)) {
5095                 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
5096                         u32 hash_base, hash_reg;
5097
5098                         if (chip <= CHELSIO_T5) {
5099                                 hash_reg = LE_DB_TID_HASHBASE_A;
5100                                 hash_base = t4_read_reg(adapter, hash_reg);
5101                                 adapter->tids.hash_base = hash_base / 4;
5102                         } else {
5103                                 hash_reg = T6_LE_DB_HASH_TID_BASE_A;
5104                                 hash_base = t4_read_reg(adapter, hash_reg);
5105                                 adapter->tids.hash_base = hash_base;
5106                         }
5107                 }
5108         }
5109
5110         /* See what interrupts we'll be using */
5111         if (msi > 1 && enable_msix(adapter) == 0)
5112                 adapter->flags |= USING_MSIX;
5113         else if (msi > 0 && pci_enable_msi(pdev) == 0)
5114                 adapter->flags |= USING_MSI;
5115
5116         /* check for PCI Express bandwidth capabiltites */
5117         cxgb4_check_pcie_caps(adapter);
5118
5119         err = init_rss(adapter);
5120         if (err)
5121                 goto out_free_dev;
5122
5123         /*
5124          * The card is now ready to go.  If any errors occur during device
5125          * registration we do not fail the whole card but rather proceed only
5126          * with the ports we manage to register successfully.  However we must
5127          * register at least one net device.
5128          */
5129         for_each_port(adapter, i) {
5130                 pi = adap2pinfo(adapter, i);
5131                 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
5132                 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
5133
5134                 err = register_netdev(adapter->port[i]);
5135                 if (err)
5136                         break;
5137                 adapter->chan_map[pi->tx_chan] = i;
5138                 print_port_info(adapter->port[i]);
5139         }
5140         if (i == 0) {
5141                 dev_err(&pdev->dev, "could not register any net devices\n");
5142                 goto out_free_dev;
5143         }
5144         if (err) {
5145                 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
5146                 err = 0;
5147         }
5148
5149         if (cxgb4_debugfs_root) {
5150                 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
5151                                                            cxgb4_debugfs_root);
5152                 setup_debugfs(adapter);
5153         }
5154
5155         /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
5156         pdev->needs_freset = 1;
5157
5158         if (is_offload(adapter))
5159                 attach_ulds(adapter);
5160
5161         print_adapter_info(adapter);
5162
5163 sriov:
5164 #ifdef CONFIG_PCI_IOV
5165         if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
5166                 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
5167                         dev_info(&pdev->dev,
5168                                  "instantiated %u virtual functions\n",
5169                                  num_vf[func]);
5170 #endif
5171         return 0;
5172
5173  out_free_dev:
5174         free_some_resources(adapter);
5175  out_unmap_bar:
5176         if (!is_t4(adapter->params.chip))
5177                 iounmap(adapter->bar2);
5178  out_free_adapter:
5179         if (adapter->workq)
5180                 destroy_workqueue(adapter->workq);
5181
5182         kfree(adapter->mbox_log);
5183         kfree(adapter);
5184  out_unmap_bar0:
5185         iounmap(regs);
5186  out_disable_device:
5187         pci_disable_pcie_error_reporting(pdev);
5188         pci_disable_device(pdev);
5189  out_release_regions:
5190         pci_release_regions(pdev);
5191         return err;
5192 }
5193
5194 static void remove_one(struct pci_dev *pdev)
5195 {
5196         struct adapter *adapter = pci_get_drvdata(pdev);
5197
5198 #ifdef CONFIG_PCI_IOV
5199         pci_disable_sriov(pdev);
5200
5201 #endif
5202
5203         if (adapter) {
5204                 int i;
5205
5206                 /* Tear down per-adapter Work Queue first since it can contain
5207                  * references to our adapter data structure.
5208                  */
5209                 destroy_workqueue(adapter->workq);
5210
5211                 if (is_offload(adapter))
5212                         detach_ulds(adapter);
5213
5214                 disable_interrupts(adapter);
5215
5216                 for_each_port(adapter, i)
5217                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5218                                 unregister_netdev(adapter->port[i]);
5219
5220                 debugfs_remove_recursive(adapter->debugfs_root);
5221
5222                 /* If we allocated filters, free up state associated with any
5223                  * valid filters ...
5224                  */
5225                 if (adapter->tids.ftid_tab) {
5226                         struct filter_entry *f = &adapter->tids.ftid_tab[0];
5227                         for (i = 0; i < (adapter->tids.nftids +
5228                                         adapter->tids.nsftids); i++, f++)
5229                                 if (f->valid)
5230                                         clear_filter(adapter, f);
5231                 }
5232
5233                 if (adapter->flags & FULL_INIT_DONE)
5234                         cxgb_down(adapter);
5235
5236                 free_some_resources(adapter);
5237 #if IS_ENABLED(CONFIG_IPV6)
5238                 t4_cleanup_clip_tbl(adapter);
5239 #endif
5240                 iounmap(adapter->regs);
5241                 if (!is_t4(adapter->params.chip))
5242                         iounmap(adapter->bar2);
5243                 pci_disable_pcie_error_reporting(pdev);
5244                 if ((adapter->flags & DEV_ENABLED)) {
5245                         pci_disable_device(pdev);
5246                         adapter->flags &= ~DEV_ENABLED;
5247                 }
5248                 pci_release_regions(pdev);
5249                 kfree(adapter->mbox_log);
5250                 synchronize_rcu();
5251                 kfree(adapter);
5252         } else
5253                 pci_release_regions(pdev);
5254 }
5255
5256 static struct pci_driver cxgb4_driver = {
5257         .name     = KBUILD_MODNAME,
5258         .id_table = cxgb4_pci_tbl,
5259         .probe    = init_one,
5260         .remove   = remove_one,
5261         .shutdown = remove_one,
5262         .err_handler = &cxgb4_eeh,
5263 };
5264
5265 static int __init cxgb4_init_module(void)
5266 {
5267         int ret;
5268
5269         /* Debugfs support is optional, just warn if this fails */
5270         cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5271         if (!cxgb4_debugfs_root)
5272                 pr_warn("could not create debugfs entry, continuing\n");
5273
5274         ret = pci_register_driver(&cxgb4_driver);
5275         if (ret < 0)
5276                 debugfs_remove(cxgb4_debugfs_root);
5277
5278 #if IS_ENABLED(CONFIG_IPV6)
5279         if (!inet6addr_registered) {
5280                 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5281                 inet6addr_registered = true;
5282         }
5283 #endif
5284
5285         return ret;
5286 }
5287
5288 static void __exit cxgb4_cleanup_module(void)
5289 {
5290 #if IS_ENABLED(CONFIG_IPV6)
5291         if (inet6addr_registered) {
5292                 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5293                 inet6addr_registered = false;
5294         }
5295 #endif
5296         pci_unregister_driver(&cxgb4_driver);
5297         debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
5298 }
5299
5300 module_init(cxgb4_init_module);
5301 module_exit(cxgb4_cleanup_module);