cxgb4: Update Congestion Channel map for T6 adapter
[cascardo/linux.git] / drivers / net / ethernet / chelsio / cxgb4 / t4_hw.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41
42 /**
43  *      t4_wait_op_done_val - wait until an operation is completed
44  *      @adapter: the adapter performing the operation
45  *      @reg: the register to check for completion
46  *      @mask: a single-bit field within @reg that indicates completion
47  *      @polarity: the value of the field when the operation is completed
48  *      @attempts: number of check iterations
49  *      @delay: delay in usecs between iterations
50  *      @valp: where to store the value of the register at completion time
51  *
52  *      Wait until an operation is completed by checking a bit in a register
53  *      up to @attempts times.  If @valp is not NULL the value of the register
54  *      at the time it indicated completion is stored there.  Returns 0 if the
55  *      operation completes and -EAGAIN otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58                                int polarity, int attempts, int delay, u32 *valp)
59 {
60         while (1) {
61                 u32 val = t4_read_reg(adapter, reg);
62
63                 if (!!(val & mask) == polarity) {
64                         if (valp)
65                                 *valp = val;
66                         return 0;
67                 }
68                 if (--attempts == 0)
69                         return -EAGAIN;
70                 if (delay)
71                         udelay(delay);
72         }
73 }
74
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76                                   int polarity, int attempts, int delay)
77 {
78         return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79                                    delay, NULL);
80 }
81
82 /**
83  *      t4_set_reg_field - set a register field to a value
84  *      @adapter: the adapter to program
85  *      @addr: the register address
86  *      @mask: specifies the portion of the register to modify
87  *      @val: the new value for the register field
88  *
89  *      Sets a register field specified by the supplied mask to the
90  *      given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93                       u32 val)
94 {
95         u32 v = t4_read_reg(adapter, addr) & ~mask;
96
97         t4_write_reg(adapter, addr, v | val);
98         (void) t4_read_reg(adapter, addr);      /* flush */
99 }
100
101 /**
102  *      t4_read_indirect - read indirectly addressed registers
103  *      @adap: the adapter
104  *      @addr_reg: register holding the indirect address
105  *      @data_reg: register holding the value of the indirect register
106  *      @vals: where the read register values are stored
107  *      @nregs: how many indirect registers to read
108  *      @start_idx: index of first indirect register to read
109  *
110  *      Reads registers that are accessed indirectly through an address/data
111  *      register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114                              unsigned int data_reg, u32 *vals,
115                              unsigned int nregs, unsigned int start_idx)
116 {
117         while (nregs--) {
118                 t4_write_reg(adap, addr_reg, start_idx);
119                 *vals++ = t4_read_reg(adap, data_reg);
120                 start_idx++;
121         }
122 }
123
124 /**
125  *      t4_write_indirect - write indirectly addressed registers
126  *      @adap: the adapter
127  *      @addr_reg: register holding the indirect addresses
128  *      @data_reg: register holding the value for the indirect registers
129  *      @vals: values to write
130  *      @nregs: how many indirect registers to write
131  *      @start_idx: address of first indirect register to write
132  *
133  *      Writes a sequential block of registers that are accessed indirectly
134  *      through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137                        unsigned int data_reg, const u32 *vals,
138                        unsigned int nregs, unsigned int start_idx)
139 {
140         while (nregs--) {
141                 t4_write_reg(adap, addr_reg, start_idx++);
142                 t4_write_reg(adap, data_reg, *vals++);
143         }
144 }
145
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154         u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155
156         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157                 req |= ENABLE_F;
158         else
159                 req |= T6_ENABLE_F;
160
161         if (is_t4(adap->params.chip))
162                 req |= LOCALCFG_F;
163
164         t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165         *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166
167         /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168          * Configuration Space read.  (None of the other fields matter when
169          * ENABLE is 0 so a simple register write is easier than a
170          * read-modify-write via t4_set_reg_field().)
171          */
172         t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185         static const char *const reason[] = {
186                 "Crash",                        /* PCIE_FW_EVAL_CRASH */
187                 "During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188                 "During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189                 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
190                 "Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191                 "Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192                 "Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193                 "Reserved",                     /* reserved */
194         };
195         u32 pcie_fw;
196
197         pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198         if (pcie_fw & PCIE_FW_ERR_F)
199                 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200                         reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 }
202
203 /*
204  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
205  */
206 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
207                          u32 mbox_addr)
208 {
209         for ( ; nflit; nflit--, mbox_addr += 8)
210                 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
211 }
212
213 /*
214  * Handle a FW assertion reported in a mailbox.
215  */
216 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
217 {
218         struct fw_debug_cmd asrt;
219
220         get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
221         dev_alert(adap->pdev_dev,
222                   "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
223                   asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
224                   be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
225 }
226
227 static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
228 {
229         dev_err(adap->pdev_dev,
230                 "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
231                 (unsigned long long)t4_read_reg64(adap, data_reg),
232                 (unsigned long long)t4_read_reg64(adap, data_reg + 8),
233                 (unsigned long long)t4_read_reg64(adap, data_reg + 16),
234                 (unsigned long long)t4_read_reg64(adap, data_reg + 24),
235                 (unsigned long long)t4_read_reg64(adap, data_reg + 32),
236                 (unsigned long long)t4_read_reg64(adap, data_reg + 40),
237                 (unsigned long long)t4_read_reg64(adap, data_reg + 48),
238                 (unsigned long long)t4_read_reg64(adap, data_reg + 56));
239 }
240
241 /**
242  *      t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
243  *      @adap: the adapter
244  *      @mbox: index of the mailbox to use
245  *      @cmd: the command to write
246  *      @size: command length in bytes
247  *      @rpl: where to optionally store the reply
248  *      @sleep_ok: if true we may sleep while awaiting command completion
249  *      @timeout: time to wait for command to finish before timing out
250  *
251  *      Sends the given command to FW through the selected mailbox and waits
252  *      for the FW to execute the command.  If @rpl is not %NULL it is used to
253  *      store the FW's reply to the command.  The command and its optional
254  *      reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
255  *      to respond.  @sleep_ok determines whether we may sleep while awaiting
256  *      the response.  If sleeping is allowed we use progressive backoff
257  *      otherwise we spin.
258  *
259  *      The return value is 0 on success or a negative errno on failure.  A
260  *      failure can happen either because we are not able to execute the
261  *      command or FW executes it but signals an error.  In the latter case
262  *      the return value is the error code indicated by FW (negated).
263  */
264 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
265                             int size, void *rpl, bool sleep_ok, int timeout)
266 {
267         static const int delay[] = {
268                 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
269         };
270
271         u32 v;
272         u64 res;
273         int i, ms, delay_idx;
274         const __be64 *p = cmd;
275         u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
276         u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
277
278         if ((size & 15) || size > MBOX_LEN)
279                 return -EINVAL;
280
281         /*
282          * If the device is off-line, as in EEH, commands will time out.
283          * Fail them early so we don't waste time waiting.
284          */
285         if (adap->pdev->error_state != pci_channel_io_normal)
286                 return -EIO;
287
288         v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
289         for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
290                 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
291
292         if (v != MBOX_OWNER_DRV)
293                 return v ? -EBUSY : -ETIMEDOUT;
294
295         for (i = 0; i < size; i += 8)
296                 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
297
298         t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
299         t4_read_reg(adap, ctl_reg);          /* flush write */
300
301         delay_idx = 0;
302         ms = delay[0];
303
304         for (i = 0; i < timeout; i += ms) {
305                 if (sleep_ok) {
306                         ms = delay[delay_idx];  /* last element may repeat */
307                         if (delay_idx < ARRAY_SIZE(delay) - 1)
308                                 delay_idx++;
309                         msleep(ms);
310                 } else
311                         mdelay(ms);
312
313                 v = t4_read_reg(adap, ctl_reg);
314                 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
315                         if (!(v & MBMSGVALID_F)) {
316                                 t4_write_reg(adap, ctl_reg, 0);
317                                 continue;
318                         }
319
320                         res = t4_read_reg64(adap, data_reg);
321                         if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
322                                 fw_asrt(adap, data_reg);
323                                 res = FW_CMD_RETVAL_V(EIO);
324                         } else if (rpl) {
325                                 get_mbox_rpl(adap, rpl, size / 8, data_reg);
326                         }
327
328                         if (FW_CMD_RETVAL_G((int)res))
329                                 dump_mbox(adap, mbox, data_reg);
330                         t4_write_reg(adap, ctl_reg, 0);
331                         return -FW_CMD_RETVAL_G((int)res);
332                 }
333         }
334
335         dump_mbox(adap, mbox, data_reg);
336         dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
337                 *(const u8 *)cmd, mbox);
338         t4_report_fw_error(adap);
339         return -ETIMEDOUT;
340 }
341
342 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
343                     void *rpl, bool sleep_ok)
344 {
345         return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
346                                        FW_CMD_MAX_TIMEOUT);
347 }
348
349 static int t4_edc_err_read(struct adapter *adap, int idx)
350 {
351         u32 edc_ecc_err_addr_reg;
352         u32 rdata_reg;
353
354         if (is_t4(adap->params.chip)) {
355                 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
356                 return 0;
357         }
358         if (idx != 0 && idx != 1) {
359                 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
360                 return 0;
361         }
362
363         edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
364         rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
365
366         CH_WARN(adap,
367                 "edc%d err addr 0x%x: 0x%x.\n",
368                 idx, edc_ecc_err_addr_reg,
369                 t4_read_reg(adap, edc_ecc_err_addr_reg));
370         CH_WARN(adap,
371                 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
372                 rdata_reg,
373                 (unsigned long long)t4_read_reg64(adap, rdata_reg),
374                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
375                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
376                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
377                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
378                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
379                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
380                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
381                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
382
383         return 0;
384 }
385
386 /**
387  *      t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
388  *      @adap: the adapter
389  *      @win: PCI-E Memory Window to use
390  *      @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
391  *      @addr: address within indicated memory type
392  *      @len: amount of memory to transfer
393  *      @hbuf: host memory buffer
394  *      @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
395  *
396  *      Reads/writes an [almost] arbitrary memory region in the firmware: the
397  *      firmware memory address and host buffer must be aligned on 32-bit
398  *      boudaries; the length may be arbitrary.  The memory is transferred as
399  *      a raw byte sequence from/to the firmware's memory.  If this memory
400  *      contains data structures which contain multi-byte integers, it's the
401  *      caller's responsibility to perform appropriate byte order conversions.
402  */
403 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
404                  u32 len, void *hbuf, int dir)
405 {
406         u32 pos, offset, resid, memoffset;
407         u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
408         u32 *buf;
409
410         /* Argument sanity checks ...
411          */
412         if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
413                 return -EINVAL;
414         buf = (u32 *)hbuf;
415
416         /* It's convenient to be able to handle lengths which aren't a
417          * multiple of 32-bits because we often end up transferring files to
418          * the firmware.  So we'll handle that by normalizing the length here
419          * and then handling any residual transfer at the end.
420          */
421         resid = len & 0x3;
422         len -= resid;
423
424         /* Offset into the region of memory which is being accessed
425          * MEM_EDC0 = 0
426          * MEM_EDC1 = 1
427          * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
428          * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
429          */
430         edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
431         if (mtype != MEM_MC1)
432                 memoffset = (mtype * (edc_size * 1024 * 1024));
433         else {
434                 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
435                                                       MA_EXT_MEMORY0_BAR_A));
436                 memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
437         }
438
439         /* Determine the PCIE_MEM_ACCESS_OFFSET */
440         addr = addr + memoffset;
441
442         /* Each PCI-E Memory Window is programmed with a window size -- or
443          * "aperture" -- which controls the granularity of its mapping onto
444          * adapter memory.  We need to grab that aperture in order to know
445          * how to use the specified window.  The window is also programmed
446          * with the base address of the Memory Window in BAR0's address
447          * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
448          * the address is relative to BAR0.
449          */
450         mem_reg = t4_read_reg(adap,
451                               PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
452                                                   win));
453         mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
454         mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
455         if (is_t4(adap->params.chip))
456                 mem_base -= adap->t4_bar0;
457         win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
458
459         /* Calculate our initial PCI-E Memory Window Position and Offset into
460          * that Window.
461          */
462         pos = addr & ~(mem_aperture-1);
463         offset = addr - pos;
464
465         /* Set up initial PCI-E Memory Window to cover the start of our
466          * transfer.  (Read it back to ensure that changes propagate before we
467          * attempt to use the new value.)
468          */
469         t4_write_reg(adap,
470                      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
471                      pos | win_pf);
472         t4_read_reg(adap,
473                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
474
475         /* Transfer data to/from the adapter as long as there's an integral
476          * number of 32-bit transfers to complete.
477          *
478          * A note on Endianness issues:
479          *
480          * The "register" reads and writes below from/to the PCI-E Memory
481          * Window invoke the standard adapter Big-Endian to PCI-E Link
482          * Little-Endian "swizzel."  As a result, if we have the following
483          * data in adapter memory:
484          *
485          *     Memory:  ... | b0 | b1 | b2 | b3 | ...
486          *     Address:      i+0  i+1  i+2  i+3
487          *
488          * Then a read of the adapter memory via the PCI-E Memory Window
489          * will yield:
490          *
491          *     x = readl(i)
492          *         31                  0
493          *         [ b3 | b2 | b1 | b0 ]
494          *
495          * If this value is stored into local memory on a Little-Endian system
496          * it will show up correctly in local memory as:
497          *
498          *     ( ..., b0, b1, b2, b3, ... )
499          *
500          * But on a Big-Endian system, the store will show up in memory
501          * incorrectly swizzled as:
502          *
503          *     ( ..., b3, b2, b1, b0, ... )
504          *
505          * So we need to account for this in the reads and writes to the
506          * PCI-E Memory Window below by undoing the register read/write
507          * swizzels.
508          */
509         while (len > 0) {
510                 if (dir == T4_MEMORY_READ)
511                         *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
512                                                 mem_base + offset));
513                 else
514                         t4_write_reg(adap, mem_base + offset,
515                                      (__force u32)cpu_to_le32(*buf++));
516                 offset += sizeof(__be32);
517                 len -= sizeof(__be32);
518
519                 /* If we've reached the end of our current window aperture,
520                  * move the PCI-E Memory Window on to the next.  Note that
521                  * doing this here after "len" may be 0 allows us to set up
522                  * the PCI-E Memory Window for a possible final residual
523                  * transfer below ...
524                  */
525                 if (offset == mem_aperture) {
526                         pos += mem_aperture;
527                         offset = 0;
528                         t4_write_reg(adap,
529                                 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
530                                                     win), pos | win_pf);
531                         t4_read_reg(adap,
532                                 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
533                                                     win));
534                 }
535         }
536
537         /* If the original transfer had a length which wasn't a multiple of
538          * 32-bits, now's where we need to finish off the transfer of the
539          * residual amount.  The PCI-E Memory Window has already been moved
540          * above (if necessary) to cover this final transfer.
541          */
542         if (resid) {
543                 union {
544                         u32 word;
545                         char byte[4];
546                 } last;
547                 unsigned char *bp;
548                 int i;
549
550                 if (dir == T4_MEMORY_READ) {
551                         last.word = le32_to_cpu(
552                                         (__force __le32)t4_read_reg(adap,
553                                                 mem_base + offset));
554                         for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
555                                 bp[i] = last.byte[i];
556                 } else {
557                         last.word = *buf;
558                         for (i = resid; i < 4; i++)
559                                 last.byte[i] = 0;
560                         t4_write_reg(adap, mem_base + offset,
561                                      (__force u32)cpu_to_le32(last.word));
562                 }
563         }
564
565         return 0;
566 }
567
568 /* Return the specified PCI-E Configuration Space register from our Physical
569  * Function.  We try first via a Firmware LDST Command since we prefer to let
570  * the firmware own all of these registers, but if that fails we go for it
571  * directly ourselves.
572  */
573 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
574 {
575         u32 val, ldst_addrspace;
576
577         /* If fw_attach != 0, construct and send the Firmware LDST Command to
578          * retrieve the specified PCI-E Configuration Space register.
579          */
580         struct fw_ldst_cmd ldst_cmd;
581         int ret;
582
583         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
584         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
585         ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
586                                                FW_CMD_REQUEST_F |
587                                                FW_CMD_READ_F |
588                                                ldst_addrspace);
589         ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
590         ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
591         ldst_cmd.u.pcie.ctrl_to_fn =
592                 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
593         ldst_cmd.u.pcie.r = reg;
594
595         /* If the LDST Command succeeds, return the result, otherwise
596          * fall through to reading it directly ourselves ...
597          */
598         ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
599                          &ldst_cmd);
600         if (ret == 0)
601                 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
602         else
603                 /* Read the desired Configuration Space register via the PCI-E
604                  * Backdoor mechanism.
605                  */
606                 t4_hw_pci_read_cfg4(adap, reg, &val);
607         return val;
608 }
609
610 /* Get the window based on base passed to it.
611  * Window aperture is currently unhandled, but there is no use case for it
612  * right now
613  */
614 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
615                          u32 memwin_base)
616 {
617         u32 ret;
618
619         if (is_t4(adap->params.chip)) {
620                 u32 bar0;
621
622                 /* Truncation intentional: we only read the bottom 32-bits of
623                  * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
624                  * mechanism to read BAR0 instead of using
625                  * pci_resource_start() because we could be operating from
626                  * within a Virtual Machine which is trapping our accesses to
627                  * our Configuration Space and we need to set up the PCI-E
628                  * Memory Window decoders with the actual addresses which will
629                  * be coming across the PCI-E link.
630                  */
631                 bar0 = t4_read_pcie_cfg4(adap, pci_base);
632                 bar0 &= pci_mask;
633                 adap->t4_bar0 = bar0;
634
635                 ret = bar0 + memwin_base;
636         } else {
637                 /* For T5, only relative offset inside the PCIe BAR is passed */
638                 ret = memwin_base;
639         }
640         return ret;
641 }
642
643 /* Get the default utility window (win0) used by everyone */
644 u32 t4_get_util_window(struct adapter *adap)
645 {
646         return t4_get_window(adap, PCI_BASE_ADDRESS_0,
647                              PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
648 }
649
650 /* Set up memory window for accessing adapter memory ranges.  (Read
651  * back MA register to ensure that changes propagate before we attempt
652  * to use the new values.)
653  */
654 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
655 {
656         t4_write_reg(adap,
657                      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
658                      memwin_base | BIR_V(0) |
659                      WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
660         t4_read_reg(adap,
661                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
662 }
663
664 /**
665  *      t4_get_regs_len - return the size of the chips register set
666  *      @adapter: the adapter
667  *
668  *      Returns the size of the chip's BAR0 register space.
669  */
670 unsigned int t4_get_regs_len(struct adapter *adapter)
671 {
672         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
673
674         switch (chip_version) {
675         case CHELSIO_T4:
676                 return T4_REGMAP_SIZE;
677
678         case CHELSIO_T5:
679         case CHELSIO_T6:
680                 return T5_REGMAP_SIZE;
681         }
682
683         dev_err(adapter->pdev_dev,
684                 "Unsupported chip version %d\n", chip_version);
685         return 0;
686 }
687
688 /**
689  *      t4_get_regs - read chip registers into provided buffer
690  *      @adap: the adapter
691  *      @buf: register buffer
692  *      @buf_size: size (in bytes) of register buffer
693  *
694  *      If the provided register buffer isn't large enough for the chip's
695  *      full register range, the register dump will be truncated to the
696  *      register buffer's size.
697  */
698 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
699 {
700         static const unsigned int t4_reg_ranges[] = {
701                 0x1008, 0x1108,
702                 0x1180, 0x1184,
703                 0x1190, 0x1194,
704                 0x11a0, 0x11a4,
705                 0x11b0, 0x11b4,
706                 0x11fc, 0x123c,
707                 0x1300, 0x173c,
708                 0x1800, 0x18fc,
709                 0x3000, 0x30d8,
710                 0x30e0, 0x30e4,
711                 0x30ec, 0x5910,
712                 0x5920, 0x5924,
713                 0x5960, 0x5960,
714                 0x5968, 0x5968,
715                 0x5970, 0x5970,
716                 0x5978, 0x5978,
717                 0x5980, 0x5980,
718                 0x5988, 0x5988,
719                 0x5990, 0x5990,
720                 0x5998, 0x5998,
721                 0x59a0, 0x59d4,
722                 0x5a00, 0x5ae0,
723                 0x5ae8, 0x5ae8,
724                 0x5af0, 0x5af0,
725                 0x5af8, 0x5af8,
726                 0x6000, 0x6098,
727                 0x6100, 0x6150,
728                 0x6200, 0x6208,
729                 0x6240, 0x6248,
730                 0x6280, 0x62b0,
731                 0x62c0, 0x6338,
732                 0x6370, 0x638c,
733                 0x6400, 0x643c,
734                 0x6500, 0x6524,
735                 0x6a00, 0x6a04,
736                 0x6a14, 0x6a38,
737                 0x6a60, 0x6a70,
738                 0x6a78, 0x6a78,
739                 0x6b00, 0x6b0c,
740                 0x6b1c, 0x6b84,
741                 0x6bf0, 0x6bf8,
742                 0x6c00, 0x6c0c,
743                 0x6c1c, 0x6c84,
744                 0x6cf0, 0x6cf8,
745                 0x6d00, 0x6d0c,
746                 0x6d1c, 0x6d84,
747                 0x6df0, 0x6df8,
748                 0x6e00, 0x6e0c,
749                 0x6e1c, 0x6e84,
750                 0x6ef0, 0x6ef8,
751                 0x6f00, 0x6f0c,
752                 0x6f1c, 0x6f84,
753                 0x6ff0, 0x6ff8,
754                 0x7000, 0x700c,
755                 0x701c, 0x7084,
756                 0x70f0, 0x70f8,
757                 0x7100, 0x710c,
758                 0x711c, 0x7184,
759                 0x71f0, 0x71f8,
760                 0x7200, 0x720c,
761                 0x721c, 0x7284,
762                 0x72f0, 0x72f8,
763                 0x7300, 0x730c,
764                 0x731c, 0x7384,
765                 0x73f0, 0x73f8,
766                 0x7400, 0x7450,
767                 0x7500, 0x7530,
768                 0x7600, 0x760c,
769                 0x7614, 0x761c,
770                 0x7680, 0x76cc,
771                 0x7700, 0x7798,
772                 0x77c0, 0x77fc,
773                 0x7900, 0x79fc,
774                 0x7b00, 0x7b58,
775                 0x7b60, 0x7b84,
776                 0x7b8c, 0x7c38,
777                 0x7d00, 0x7d38,
778                 0x7d40, 0x7d80,
779                 0x7d8c, 0x7ddc,
780                 0x7de4, 0x7e04,
781                 0x7e10, 0x7e1c,
782                 0x7e24, 0x7e38,
783                 0x7e40, 0x7e44,
784                 0x7e4c, 0x7e78,
785                 0x7e80, 0x7ea4,
786                 0x7eac, 0x7edc,
787                 0x7ee8, 0x7efc,
788                 0x8dc0, 0x8e04,
789                 0x8e10, 0x8e1c,
790                 0x8e30, 0x8e78,
791                 0x8ea0, 0x8eb8,
792                 0x8ec0, 0x8f6c,
793                 0x8fc0, 0x9008,
794                 0x9010, 0x9058,
795                 0x9060, 0x9060,
796                 0x9068, 0x9074,
797                 0x90fc, 0x90fc,
798                 0x9400, 0x9408,
799                 0x9410, 0x9458,
800                 0x9600, 0x9600,
801                 0x9608, 0x9638,
802                 0x9640, 0x96bc,
803                 0x9800, 0x9808,
804                 0x9820, 0x983c,
805                 0x9850, 0x9864,
806                 0x9c00, 0x9c6c,
807                 0x9c80, 0x9cec,
808                 0x9d00, 0x9d6c,
809                 0x9d80, 0x9dec,
810                 0x9e00, 0x9e6c,
811                 0x9e80, 0x9eec,
812                 0x9f00, 0x9f6c,
813                 0x9f80, 0x9fec,
814                 0xd004, 0xd004,
815                 0xd010, 0xd03c,
816                 0xdfc0, 0xdfe0,
817                 0xe000, 0xea7c,
818                 0xf000, 0x11190,
819                 0x19040, 0x1906c,
820                 0x19078, 0x19080,
821                 0x1908c, 0x190e4,
822                 0x190f0, 0x190f8,
823                 0x19100, 0x19110,
824                 0x19120, 0x19124,
825                 0x19150, 0x19194,
826                 0x1919c, 0x191b0,
827                 0x191d0, 0x191e8,
828                 0x19238, 0x1924c,
829                 0x193f8, 0x1943c,
830                 0x1944c, 0x19474,
831                 0x19490, 0x194e0,
832                 0x194f0, 0x194f8,
833                 0x19800, 0x19c08,
834                 0x19c10, 0x19c90,
835                 0x19ca0, 0x19ce4,
836                 0x19cf0, 0x19d40,
837                 0x19d50, 0x19d94,
838                 0x19da0, 0x19de8,
839                 0x19df0, 0x19e40,
840                 0x19e50, 0x19e90,
841                 0x19ea0, 0x19f4c,
842                 0x1a000, 0x1a004,
843                 0x1a010, 0x1a06c,
844                 0x1a0b0, 0x1a0e4,
845                 0x1a0ec, 0x1a0f4,
846                 0x1a100, 0x1a108,
847                 0x1a114, 0x1a120,
848                 0x1a128, 0x1a130,
849                 0x1a138, 0x1a138,
850                 0x1a190, 0x1a1c4,
851                 0x1a1fc, 0x1a1fc,
852                 0x1e040, 0x1e04c,
853                 0x1e284, 0x1e28c,
854                 0x1e2c0, 0x1e2c0,
855                 0x1e2e0, 0x1e2e0,
856                 0x1e300, 0x1e384,
857                 0x1e3c0, 0x1e3c8,
858                 0x1e440, 0x1e44c,
859                 0x1e684, 0x1e68c,
860                 0x1e6c0, 0x1e6c0,
861                 0x1e6e0, 0x1e6e0,
862                 0x1e700, 0x1e784,
863                 0x1e7c0, 0x1e7c8,
864                 0x1e840, 0x1e84c,
865                 0x1ea84, 0x1ea8c,
866                 0x1eac0, 0x1eac0,
867                 0x1eae0, 0x1eae0,
868                 0x1eb00, 0x1eb84,
869                 0x1ebc0, 0x1ebc8,
870                 0x1ec40, 0x1ec4c,
871                 0x1ee84, 0x1ee8c,
872                 0x1eec0, 0x1eec0,
873                 0x1eee0, 0x1eee0,
874                 0x1ef00, 0x1ef84,
875                 0x1efc0, 0x1efc8,
876                 0x1f040, 0x1f04c,
877                 0x1f284, 0x1f28c,
878                 0x1f2c0, 0x1f2c0,
879                 0x1f2e0, 0x1f2e0,
880                 0x1f300, 0x1f384,
881                 0x1f3c0, 0x1f3c8,
882                 0x1f440, 0x1f44c,
883                 0x1f684, 0x1f68c,
884                 0x1f6c0, 0x1f6c0,
885                 0x1f6e0, 0x1f6e0,
886                 0x1f700, 0x1f784,
887                 0x1f7c0, 0x1f7c8,
888                 0x1f840, 0x1f84c,
889                 0x1fa84, 0x1fa8c,
890                 0x1fac0, 0x1fac0,
891                 0x1fae0, 0x1fae0,
892                 0x1fb00, 0x1fb84,
893                 0x1fbc0, 0x1fbc8,
894                 0x1fc40, 0x1fc4c,
895                 0x1fe84, 0x1fe8c,
896                 0x1fec0, 0x1fec0,
897                 0x1fee0, 0x1fee0,
898                 0x1ff00, 0x1ff84,
899                 0x1ffc0, 0x1ffc8,
900                 0x20000, 0x2002c,
901                 0x20100, 0x2013c,
902                 0x20190, 0x201a0,
903                 0x201a8, 0x201b8,
904                 0x201c4, 0x201c8,
905                 0x20200, 0x20318,
906                 0x20400, 0x204b4,
907                 0x204c0, 0x20528,
908                 0x20540, 0x20614,
909                 0x21000, 0x21040,
910                 0x2104c, 0x21060,
911                 0x210c0, 0x210ec,
912                 0x21200, 0x21268,
913                 0x21270, 0x21284,
914                 0x212fc, 0x21388,
915                 0x21400, 0x21404,
916                 0x21500, 0x21500,
917                 0x21510, 0x21518,
918                 0x2152c, 0x21530,
919                 0x2153c, 0x2153c,
920                 0x21550, 0x21554,
921                 0x21600, 0x21600,
922                 0x21608, 0x2161c,
923                 0x21624, 0x21628,
924                 0x21630, 0x21634,
925                 0x2163c, 0x2163c,
926                 0x21700, 0x2171c,
927                 0x21780, 0x2178c,
928                 0x21800, 0x21818,
929                 0x21820, 0x21828,
930                 0x21830, 0x21848,
931                 0x21850, 0x21854,
932                 0x21860, 0x21868,
933                 0x21870, 0x21870,
934                 0x21878, 0x21898,
935                 0x218a0, 0x218a8,
936                 0x218b0, 0x218c8,
937                 0x218d0, 0x218d4,
938                 0x218e0, 0x218e8,
939                 0x218f0, 0x218f0,
940                 0x218f8, 0x21a18,
941                 0x21a20, 0x21a28,
942                 0x21a30, 0x21a48,
943                 0x21a50, 0x21a54,
944                 0x21a60, 0x21a68,
945                 0x21a70, 0x21a70,
946                 0x21a78, 0x21a98,
947                 0x21aa0, 0x21aa8,
948                 0x21ab0, 0x21ac8,
949                 0x21ad0, 0x21ad4,
950                 0x21ae0, 0x21ae8,
951                 0x21af0, 0x21af0,
952                 0x21af8, 0x21c18,
953                 0x21c20, 0x21c20,
954                 0x21c28, 0x21c30,
955                 0x21c38, 0x21c38,
956                 0x21c80, 0x21c98,
957                 0x21ca0, 0x21ca8,
958                 0x21cb0, 0x21cc8,
959                 0x21cd0, 0x21cd4,
960                 0x21ce0, 0x21ce8,
961                 0x21cf0, 0x21cf0,
962                 0x21cf8, 0x21d7c,
963                 0x21e00, 0x21e04,
964                 0x22000, 0x2202c,
965                 0x22100, 0x2213c,
966                 0x22190, 0x221a0,
967                 0x221a8, 0x221b8,
968                 0x221c4, 0x221c8,
969                 0x22200, 0x22318,
970                 0x22400, 0x224b4,
971                 0x224c0, 0x22528,
972                 0x22540, 0x22614,
973                 0x23000, 0x23040,
974                 0x2304c, 0x23060,
975                 0x230c0, 0x230ec,
976                 0x23200, 0x23268,
977                 0x23270, 0x23284,
978                 0x232fc, 0x23388,
979                 0x23400, 0x23404,
980                 0x23500, 0x23500,
981                 0x23510, 0x23518,
982                 0x2352c, 0x23530,
983                 0x2353c, 0x2353c,
984                 0x23550, 0x23554,
985                 0x23600, 0x23600,
986                 0x23608, 0x2361c,
987                 0x23624, 0x23628,
988                 0x23630, 0x23634,
989                 0x2363c, 0x2363c,
990                 0x23700, 0x2371c,
991                 0x23780, 0x2378c,
992                 0x23800, 0x23818,
993                 0x23820, 0x23828,
994                 0x23830, 0x23848,
995                 0x23850, 0x23854,
996                 0x23860, 0x23868,
997                 0x23870, 0x23870,
998                 0x23878, 0x23898,
999                 0x238a0, 0x238a8,
1000                 0x238b0, 0x238c8,
1001                 0x238d0, 0x238d4,
1002                 0x238e0, 0x238e8,
1003                 0x238f0, 0x238f0,
1004                 0x238f8, 0x23a18,
1005                 0x23a20, 0x23a28,
1006                 0x23a30, 0x23a48,
1007                 0x23a50, 0x23a54,
1008                 0x23a60, 0x23a68,
1009                 0x23a70, 0x23a70,
1010                 0x23a78, 0x23a98,
1011                 0x23aa0, 0x23aa8,
1012                 0x23ab0, 0x23ac8,
1013                 0x23ad0, 0x23ad4,
1014                 0x23ae0, 0x23ae8,
1015                 0x23af0, 0x23af0,
1016                 0x23af8, 0x23c18,
1017                 0x23c20, 0x23c20,
1018                 0x23c28, 0x23c30,
1019                 0x23c38, 0x23c38,
1020                 0x23c80, 0x23c98,
1021                 0x23ca0, 0x23ca8,
1022                 0x23cb0, 0x23cc8,
1023                 0x23cd0, 0x23cd4,
1024                 0x23ce0, 0x23ce8,
1025                 0x23cf0, 0x23cf0,
1026                 0x23cf8, 0x23d7c,
1027                 0x23e00, 0x23e04,
1028                 0x24000, 0x2402c,
1029                 0x24100, 0x2413c,
1030                 0x24190, 0x241a0,
1031                 0x241a8, 0x241b8,
1032                 0x241c4, 0x241c8,
1033                 0x24200, 0x24318,
1034                 0x24400, 0x244b4,
1035                 0x244c0, 0x24528,
1036                 0x24540, 0x24614,
1037                 0x25000, 0x25040,
1038                 0x2504c, 0x25060,
1039                 0x250c0, 0x250ec,
1040                 0x25200, 0x25268,
1041                 0x25270, 0x25284,
1042                 0x252fc, 0x25388,
1043                 0x25400, 0x25404,
1044                 0x25500, 0x25500,
1045                 0x25510, 0x25518,
1046                 0x2552c, 0x25530,
1047                 0x2553c, 0x2553c,
1048                 0x25550, 0x25554,
1049                 0x25600, 0x25600,
1050                 0x25608, 0x2561c,
1051                 0x25624, 0x25628,
1052                 0x25630, 0x25634,
1053                 0x2563c, 0x2563c,
1054                 0x25700, 0x2571c,
1055                 0x25780, 0x2578c,
1056                 0x25800, 0x25818,
1057                 0x25820, 0x25828,
1058                 0x25830, 0x25848,
1059                 0x25850, 0x25854,
1060                 0x25860, 0x25868,
1061                 0x25870, 0x25870,
1062                 0x25878, 0x25898,
1063                 0x258a0, 0x258a8,
1064                 0x258b0, 0x258c8,
1065                 0x258d0, 0x258d4,
1066                 0x258e0, 0x258e8,
1067                 0x258f0, 0x258f0,
1068                 0x258f8, 0x25a18,
1069                 0x25a20, 0x25a28,
1070                 0x25a30, 0x25a48,
1071                 0x25a50, 0x25a54,
1072                 0x25a60, 0x25a68,
1073                 0x25a70, 0x25a70,
1074                 0x25a78, 0x25a98,
1075                 0x25aa0, 0x25aa8,
1076                 0x25ab0, 0x25ac8,
1077                 0x25ad0, 0x25ad4,
1078                 0x25ae0, 0x25ae8,
1079                 0x25af0, 0x25af0,
1080                 0x25af8, 0x25c18,
1081                 0x25c20, 0x25c20,
1082                 0x25c28, 0x25c30,
1083                 0x25c38, 0x25c38,
1084                 0x25c80, 0x25c98,
1085                 0x25ca0, 0x25ca8,
1086                 0x25cb0, 0x25cc8,
1087                 0x25cd0, 0x25cd4,
1088                 0x25ce0, 0x25ce8,
1089                 0x25cf0, 0x25cf0,
1090                 0x25cf8, 0x25d7c,
1091                 0x25e00, 0x25e04,
1092                 0x26000, 0x2602c,
1093                 0x26100, 0x2613c,
1094                 0x26190, 0x261a0,
1095                 0x261a8, 0x261b8,
1096                 0x261c4, 0x261c8,
1097                 0x26200, 0x26318,
1098                 0x26400, 0x264b4,
1099                 0x264c0, 0x26528,
1100                 0x26540, 0x26614,
1101                 0x27000, 0x27040,
1102                 0x2704c, 0x27060,
1103                 0x270c0, 0x270ec,
1104                 0x27200, 0x27268,
1105                 0x27270, 0x27284,
1106                 0x272fc, 0x27388,
1107                 0x27400, 0x27404,
1108                 0x27500, 0x27500,
1109                 0x27510, 0x27518,
1110                 0x2752c, 0x27530,
1111                 0x2753c, 0x2753c,
1112                 0x27550, 0x27554,
1113                 0x27600, 0x27600,
1114                 0x27608, 0x2761c,
1115                 0x27624, 0x27628,
1116                 0x27630, 0x27634,
1117                 0x2763c, 0x2763c,
1118                 0x27700, 0x2771c,
1119                 0x27780, 0x2778c,
1120                 0x27800, 0x27818,
1121                 0x27820, 0x27828,
1122                 0x27830, 0x27848,
1123                 0x27850, 0x27854,
1124                 0x27860, 0x27868,
1125                 0x27870, 0x27870,
1126                 0x27878, 0x27898,
1127                 0x278a0, 0x278a8,
1128                 0x278b0, 0x278c8,
1129                 0x278d0, 0x278d4,
1130                 0x278e0, 0x278e8,
1131                 0x278f0, 0x278f0,
1132                 0x278f8, 0x27a18,
1133                 0x27a20, 0x27a28,
1134                 0x27a30, 0x27a48,
1135                 0x27a50, 0x27a54,
1136                 0x27a60, 0x27a68,
1137                 0x27a70, 0x27a70,
1138                 0x27a78, 0x27a98,
1139                 0x27aa0, 0x27aa8,
1140                 0x27ab0, 0x27ac8,
1141                 0x27ad0, 0x27ad4,
1142                 0x27ae0, 0x27ae8,
1143                 0x27af0, 0x27af0,
1144                 0x27af8, 0x27c18,
1145                 0x27c20, 0x27c20,
1146                 0x27c28, 0x27c30,
1147                 0x27c38, 0x27c38,
1148                 0x27c80, 0x27c98,
1149                 0x27ca0, 0x27ca8,
1150                 0x27cb0, 0x27cc8,
1151                 0x27cd0, 0x27cd4,
1152                 0x27ce0, 0x27ce8,
1153                 0x27cf0, 0x27cf0,
1154                 0x27cf8, 0x27d7c,
1155                 0x27e00, 0x27e04,
1156         };
1157
1158         static const unsigned int t5_reg_ranges[] = {
1159                 0x1008, 0x10c0,
1160                 0x10cc, 0x10f8,
1161                 0x1100, 0x1100,
1162                 0x110c, 0x1148,
1163                 0x1180, 0x1184,
1164                 0x1190, 0x1194,
1165                 0x11a0, 0x11a4,
1166                 0x11b0, 0x11b4,
1167                 0x11fc, 0x123c,
1168                 0x1280, 0x173c,
1169                 0x1800, 0x18fc,
1170                 0x3000, 0x3028,
1171                 0x3060, 0x30b0,
1172                 0x30b8, 0x30d8,
1173                 0x30e0, 0x30fc,
1174                 0x3140, 0x357c,
1175                 0x35a8, 0x35cc,
1176                 0x35ec, 0x35ec,
1177                 0x3600, 0x5624,
1178                 0x56cc, 0x56ec,
1179                 0x56f4, 0x5720,
1180                 0x5728, 0x575c,
1181                 0x580c, 0x5814,
1182                 0x5890, 0x589c,
1183                 0x58a4, 0x58ac,
1184                 0x58b8, 0x58bc,
1185                 0x5940, 0x59c8,
1186                 0x59d0, 0x59dc,
1187                 0x59fc, 0x5a18,
1188                 0x5a60, 0x5a70,
1189                 0x5a80, 0x5a9c,
1190                 0x5b94, 0x5bfc,
1191                 0x6000, 0x6020,
1192                 0x6028, 0x6040,
1193                 0x6058, 0x609c,
1194                 0x60a8, 0x614c,
1195                 0x7700, 0x7798,
1196                 0x77c0, 0x78fc,
1197                 0x7b00, 0x7b58,
1198                 0x7b60, 0x7b84,
1199                 0x7b8c, 0x7c54,
1200                 0x7d00, 0x7d38,
1201                 0x7d40, 0x7d80,
1202                 0x7d8c, 0x7ddc,
1203                 0x7de4, 0x7e04,
1204                 0x7e10, 0x7e1c,
1205                 0x7e24, 0x7e38,
1206                 0x7e40, 0x7e44,
1207                 0x7e4c, 0x7e78,
1208                 0x7e80, 0x7edc,
1209                 0x7ee8, 0x7efc,
1210                 0x8dc0, 0x8de0,
1211                 0x8df8, 0x8e04,
1212                 0x8e10, 0x8e84,
1213                 0x8ea0, 0x8f84,
1214                 0x8fc0, 0x9058,
1215                 0x9060, 0x9060,
1216                 0x9068, 0x90f8,
1217                 0x9400, 0x9408,
1218                 0x9410, 0x9470,
1219                 0x9600, 0x9600,
1220                 0x9608, 0x9638,
1221                 0x9640, 0x96f4,
1222                 0x9800, 0x9808,
1223                 0x9820, 0x983c,
1224                 0x9850, 0x9864,
1225                 0x9c00, 0x9c6c,
1226                 0x9c80, 0x9cec,
1227                 0x9d00, 0x9d6c,
1228                 0x9d80, 0x9dec,
1229                 0x9e00, 0x9e6c,
1230                 0x9e80, 0x9eec,
1231                 0x9f00, 0x9f6c,
1232                 0x9f80, 0xa020,
1233                 0xd004, 0xd004,
1234                 0xd010, 0xd03c,
1235                 0xdfc0, 0xdfe0,
1236                 0xe000, 0x1106c,
1237                 0x11074, 0x11088,
1238                 0x1109c, 0x1117c,
1239                 0x11190, 0x11204,
1240                 0x19040, 0x1906c,
1241                 0x19078, 0x19080,
1242                 0x1908c, 0x190e8,
1243                 0x190f0, 0x190f8,
1244                 0x19100, 0x19110,
1245                 0x19120, 0x19124,
1246                 0x19150, 0x19194,
1247                 0x1919c, 0x191b0,
1248                 0x191d0, 0x191e8,
1249                 0x19238, 0x19290,
1250                 0x193f8, 0x19428,
1251                 0x19430, 0x19444,
1252                 0x1944c, 0x1946c,
1253                 0x19474, 0x19474,
1254                 0x19490, 0x194cc,
1255                 0x194f0, 0x194f8,
1256                 0x19c00, 0x19c08,
1257                 0x19c10, 0x19c60,
1258                 0x19c94, 0x19ce4,
1259                 0x19cf0, 0x19d40,
1260                 0x19d50, 0x19d94,
1261                 0x19da0, 0x19de8,
1262                 0x19df0, 0x19e10,
1263                 0x19e50, 0x19e90,
1264                 0x19ea0, 0x19f24,
1265                 0x19f34, 0x19f34,
1266                 0x19f40, 0x19f50,
1267                 0x19f90, 0x19fb4,
1268                 0x19fc4, 0x19fe4,
1269                 0x1a000, 0x1a004,
1270                 0x1a010, 0x1a06c,
1271                 0x1a0b0, 0x1a0e4,
1272                 0x1a0ec, 0x1a0f8,
1273                 0x1a100, 0x1a108,
1274                 0x1a114, 0x1a120,
1275                 0x1a128, 0x1a130,
1276                 0x1a138, 0x1a138,
1277                 0x1a190, 0x1a1c4,
1278                 0x1a1fc, 0x1a1fc,
1279                 0x1e008, 0x1e00c,
1280                 0x1e040, 0x1e044,
1281                 0x1e04c, 0x1e04c,
1282                 0x1e284, 0x1e290,
1283                 0x1e2c0, 0x1e2c0,
1284                 0x1e2e0, 0x1e2e0,
1285                 0x1e300, 0x1e384,
1286                 0x1e3c0, 0x1e3c8,
1287                 0x1e408, 0x1e40c,
1288                 0x1e440, 0x1e444,
1289                 0x1e44c, 0x1e44c,
1290                 0x1e684, 0x1e690,
1291                 0x1e6c0, 0x1e6c0,
1292                 0x1e6e0, 0x1e6e0,
1293                 0x1e700, 0x1e784,
1294                 0x1e7c0, 0x1e7c8,
1295                 0x1e808, 0x1e80c,
1296                 0x1e840, 0x1e844,
1297                 0x1e84c, 0x1e84c,
1298                 0x1ea84, 0x1ea90,
1299                 0x1eac0, 0x1eac0,
1300                 0x1eae0, 0x1eae0,
1301                 0x1eb00, 0x1eb84,
1302                 0x1ebc0, 0x1ebc8,
1303                 0x1ec08, 0x1ec0c,
1304                 0x1ec40, 0x1ec44,
1305                 0x1ec4c, 0x1ec4c,
1306                 0x1ee84, 0x1ee90,
1307                 0x1eec0, 0x1eec0,
1308                 0x1eee0, 0x1eee0,
1309                 0x1ef00, 0x1ef84,
1310                 0x1efc0, 0x1efc8,
1311                 0x1f008, 0x1f00c,
1312                 0x1f040, 0x1f044,
1313                 0x1f04c, 0x1f04c,
1314                 0x1f284, 0x1f290,
1315                 0x1f2c0, 0x1f2c0,
1316                 0x1f2e0, 0x1f2e0,
1317                 0x1f300, 0x1f384,
1318                 0x1f3c0, 0x1f3c8,
1319                 0x1f408, 0x1f40c,
1320                 0x1f440, 0x1f444,
1321                 0x1f44c, 0x1f44c,
1322                 0x1f684, 0x1f690,
1323                 0x1f6c0, 0x1f6c0,
1324                 0x1f6e0, 0x1f6e0,
1325                 0x1f700, 0x1f784,
1326                 0x1f7c0, 0x1f7c8,
1327                 0x1f808, 0x1f80c,
1328                 0x1f840, 0x1f844,
1329                 0x1f84c, 0x1f84c,
1330                 0x1fa84, 0x1fa90,
1331                 0x1fac0, 0x1fac0,
1332                 0x1fae0, 0x1fae0,
1333                 0x1fb00, 0x1fb84,
1334                 0x1fbc0, 0x1fbc8,
1335                 0x1fc08, 0x1fc0c,
1336                 0x1fc40, 0x1fc44,
1337                 0x1fc4c, 0x1fc4c,
1338                 0x1fe84, 0x1fe90,
1339                 0x1fec0, 0x1fec0,
1340                 0x1fee0, 0x1fee0,
1341                 0x1ff00, 0x1ff84,
1342                 0x1ffc0, 0x1ffc8,
1343                 0x30000, 0x30030,
1344                 0x30038, 0x30038,
1345                 0x30040, 0x30040,
1346                 0x30100, 0x30144,
1347                 0x30190, 0x301a0,
1348                 0x301a8, 0x301b8,
1349                 0x301c4, 0x301c8,
1350                 0x301d0, 0x301d0,
1351                 0x30200, 0x30318,
1352                 0x30400, 0x304b4,
1353                 0x304c0, 0x3052c,
1354                 0x30540, 0x3061c,
1355                 0x30800, 0x30828,
1356                 0x30834, 0x30834,
1357                 0x308c0, 0x30908,
1358                 0x30910, 0x309ac,
1359                 0x30a00, 0x30a14,
1360                 0x30a1c, 0x30a2c,
1361                 0x30a44, 0x30a50,
1362                 0x30a74, 0x30a74,
1363                 0x30a7c, 0x30afc,
1364                 0x30b08, 0x30c24,
1365                 0x30d00, 0x30d00,
1366                 0x30d08, 0x30d14,
1367                 0x30d1c, 0x30d20,
1368                 0x30d3c, 0x30d3c,
1369                 0x30d48, 0x30d50,
1370                 0x31200, 0x3120c,
1371                 0x31220, 0x31220,
1372                 0x31240, 0x31240,
1373                 0x31600, 0x3160c,
1374                 0x31a00, 0x31a1c,
1375                 0x31e00, 0x31e20,
1376                 0x31e38, 0x31e3c,
1377                 0x31e80, 0x31e80,
1378                 0x31e88, 0x31ea8,
1379                 0x31eb0, 0x31eb4,
1380                 0x31ec8, 0x31ed4,
1381                 0x31fb8, 0x32004,
1382                 0x32200, 0x32200,
1383                 0x32208, 0x32240,
1384                 0x32248, 0x32280,
1385                 0x32288, 0x322c0,
1386                 0x322c8, 0x322fc,
1387                 0x32600, 0x32630,
1388                 0x32a00, 0x32abc,
1389                 0x32b00, 0x32b10,
1390                 0x32b20, 0x32b30,
1391                 0x32b40, 0x32b50,
1392                 0x32b60, 0x32b70,
1393                 0x33000, 0x33028,
1394                 0x33030, 0x33048,
1395                 0x33060, 0x33068,
1396                 0x33070, 0x3309c,
1397                 0x330f0, 0x33128,
1398                 0x33130, 0x33148,
1399                 0x33160, 0x33168,
1400                 0x33170, 0x3319c,
1401                 0x331f0, 0x33238,
1402                 0x33240, 0x33240,
1403                 0x33248, 0x33250,
1404                 0x3325c, 0x33264,
1405                 0x33270, 0x332b8,
1406                 0x332c0, 0x332e4,
1407                 0x332f8, 0x33338,
1408                 0x33340, 0x33340,
1409                 0x33348, 0x33350,
1410                 0x3335c, 0x33364,
1411                 0x33370, 0x333b8,
1412                 0x333c0, 0x333e4,
1413                 0x333f8, 0x33428,
1414                 0x33430, 0x33448,
1415                 0x33460, 0x33468,
1416                 0x33470, 0x3349c,
1417                 0x334f0, 0x33528,
1418                 0x33530, 0x33548,
1419                 0x33560, 0x33568,
1420                 0x33570, 0x3359c,
1421                 0x335f0, 0x33638,
1422                 0x33640, 0x33640,
1423                 0x33648, 0x33650,
1424                 0x3365c, 0x33664,
1425                 0x33670, 0x336b8,
1426                 0x336c0, 0x336e4,
1427                 0x336f8, 0x33738,
1428                 0x33740, 0x33740,
1429                 0x33748, 0x33750,
1430                 0x3375c, 0x33764,
1431                 0x33770, 0x337b8,
1432                 0x337c0, 0x337e4,
1433                 0x337f8, 0x337fc,
1434                 0x33814, 0x33814,
1435                 0x3382c, 0x3382c,
1436                 0x33880, 0x3388c,
1437                 0x338e8, 0x338ec,
1438                 0x33900, 0x33928,
1439                 0x33930, 0x33948,
1440                 0x33960, 0x33968,
1441                 0x33970, 0x3399c,
1442                 0x339f0, 0x33a38,
1443                 0x33a40, 0x33a40,
1444                 0x33a48, 0x33a50,
1445                 0x33a5c, 0x33a64,
1446                 0x33a70, 0x33ab8,
1447                 0x33ac0, 0x33ae4,
1448                 0x33af8, 0x33b10,
1449                 0x33b28, 0x33b28,
1450                 0x33b3c, 0x33b50,
1451                 0x33bf0, 0x33c10,
1452                 0x33c28, 0x33c28,
1453                 0x33c3c, 0x33c50,
1454                 0x33cf0, 0x33cfc,
1455                 0x34000, 0x34030,
1456                 0x34038, 0x34038,
1457                 0x34040, 0x34040,
1458                 0x34100, 0x34144,
1459                 0x34190, 0x341a0,
1460                 0x341a8, 0x341b8,
1461                 0x341c4, 0x341c8,
1462                 0x341d0, 0x341d0,
1463                 0x34200, 0x34318,
1464                 0x34400, 0x344b4,
1465                 0x344c0, 0x3452c,
1466                 0x34540, 0x3461c,
1467                 0x34800, 0x34828,
1468                 0x34834, 0x34834,
1469                 0x348c0, 0x34908,
1470                 0x34910, 0x349ac,
1471                 0x34a00, 0x34a14,
1472                 0x34a1c, 0x34a2c,
1473                 0x34a44, 0x34a50,
1474                 0x34a74, 0x34a74,
1475                 0x34a7c, 0x34afc,
1476                 0x34b08, 0x34c24,
1477                 0x34d00, 0x34d00,
1478                 0x34d08, 0x34d14,
1479                 0x34d1c, 0x34d20,
1480                 0x34d3c, 0x34d3c,
1481                 0x34d48, 0x34d50,
1482                 0x35200, 0x3520c,
1483                 0x35220, 0x35220,
1484                 0x35240, 0x35240,
1485                 0x35600, 0x3560c,
1486                 0x35a00, 0x35a1c,
1487                 0x35e00, 0x35e20,
1488                 0x35e38, 0x35e3c,
1489                 0x35e80, 0x35e80,
1490                 0x35e88, 0x35ea8,
1491                 0x35eb0, 0x35eb4,
1492                 0x35ec8, 0x35ed4,
1493                 0x35fb8, 0x36004,
1494                 0x36200, 0x36200,
1495                 0x36208, 0x36240,
1496                 0x36248, 0x36280,
1497                 0x36288, 0x362c0,
1498                 0x362c8, 0x362fc,
1499                 0x36600, 0x36630,
1500                 0x36a00, 0x36abc,
1501                 0x36b00, 0x36b10,
1502                 0x36b20, 0x36b30,
1503                 0x36b40, 0x36b50,
1504                 0x36b60, 0x36b70,
1505                 0x37000, 0x37028,
1506                 0x37030, 0x37048,
1507                 0x37060, 0x37068,
1508                 0x37070, 0x3709c,
1509                 0x370f0, 0x37128,
1510                 0x37130, 0x37148,
1511                 0x37160, 0x37168,
1512                 0x37170, 0x3719c,
1513                 0x371f0, 0x37238,
1514                 0x37240, 0x37240,
1515                 0x37248, 0x37250,
1516                 0x3725c, 0x37264,
1517                 0x37270, 0x372b8,
1518                 0x372c0, 0x372e4,
1519                 0x372f8, 0x37338,
1520                 0x37340, 0x37340,
1521                 0x37348, 0x37350,
1522                 0x3735c, 0x37364,
1523                 0x37370, 0x373b8,
1524                 0x373c0, 0x373e4,
1525                 0x373f8, 0x37428,
1526                 0x37430, 0x37448,
1527                 0x37460, 0x37468,
1528                 0x37470, 0x3749c,
1529                 0x374f0, 0x37528,
1530                 0x37530, 0x37548,
1531                 0x37560, 0x37568,
1532                 0x37570, 0x3759c,
1533                 0x375f0, 0x37638,
1534                 0x37640, 0x37640,
1535                 0x37648, 0x37650,
1536                 0x3765c, 0x37664,
1537                 0x37670, 0x376b8,
1538                 0x376c0, 0x376e4,
1539                 0x376f8, 0x37738,
1540                 0x37740, 0x37740,
1541                 0x37748, 0x37750,
1542                 0x3775c, 0x37764,
1543                 0x37770, 0x377b8,
1544                 0x377c0, 0x377e4,
1545                 0x377f8, 0x377fc,
1546                 0x37814, 0x37814,
1547                 0x3782c, 0x3782c,
1548                 0x37880, 0x3788c,
1549                 0x378e8, 0x378ec,
1550                 0x37900, 0x37928,
1551                 0x37930, 0x37948,
1552                 0x37960, 0x37968,
1553                 0x37970, 0x3799c,
1554                 0x379f0, 0x37a38,
1555                 0x37a40, 0x37a40,
1556                 0x37a48, 0x37a50,
1557                 0x37a5c, 0x37a64,
1558                 0x37a70, 0x37ab8,
1559                 0x37ac0, 0x37ae4,
1560                 0x37af8, 0x37b10,
1561                 0x37b28, 0x37b28,
1562                 0x37b3c, 0x37b50,
1563                 0x37bf0, 0x37c10,
1564                 0x37c28, 0x37c28,
1565                 0x37c3c, 0x37c50,
1566                 0x37cf0, 0x37cfc,
1567                 0x38000, 0x38030,
1568                 0x38038, 0x38038,
1569                 0x38040, 0x38040,
1570                 0x38100, 0x38144,
1571                 0x38190, 0x381a0,
1572                 0x381a8, 0x381b8,
1573                 0x381c4, 0x381c8,
1574                 0x381d0, 0x381d0,
1575                 0x38200, 0x38318,
1576                 0x38400, 0x384b4,
1577                 0x384c0, 0x3852c,
1578                 0x38540, 0x3861c,
1579                 0x38800, 0x38828,
1580                 0x38834, 0x38834,
1581                 0x388c0, 0x38908,
1582                 0x38910, 0x389ac,
1583                 0x38a00, 0x38a14,
1584                 0x38a1c, 0x38a2c,
1585                 0x38a44, 0x38a50,
1586                 0x38a74, 0x38a74,
1587                 0x38a7c, 0x38afc,
1588                 0x38b08, 0x38c24,
1589                 0x38d00, 0x38d00,
1590                 0x38d08, 0x38d14,
1591                 0x38d1c, 0x38d20,
1592                 0x38d3c, 0x38d3c,
1593                 0x38d48, 0x38d50,
1594                 0x39200, 0x3920c,
1595                 0x39220, 0x39220,
1596                 0x39240, 0x39240,
1597                 0x39600, 0x3960c,
1598                 0x39a00, 0x39a1c,
1599                 0x39e00, 0x39e20,
1600                 0x39e38, 0x39e3c,
1601                 0x39e80, 0x39e80,
1602                 0x39e88, 0x39ea8,
1603                 0x39eb0, 0x39eb4,
1604                 0x39ec8, 0x39ed4,
1605                 0x39fb8, 0x3a004,
1606                 0x3a200, 0x3a200,
1607                 0x3a208, 0x3a240,
1608                 0x3a248, 0x3a280,
1609                 0x3a288, 0x3a2c0,
1610                 0x3a2c8, 0x3a2fc,
1611                 0x3a600, 0x3a630,
1612                 0x3aa00, 0x3aabc,
1613                 0x3ab00, 0x3ab10,
1614                 0x3ab20, 0x3ab30,
1615                 0x3ab40, 0x3ab50,
1616                 0x3ab60, 0x3ab70,
1617                 0x3b000, 0x3b028,
1618                 0x3b030, 0x3b048,
1619                 0x3b060, 0x3b068,
1620                 0x3b070, 0x3b09c,
1621                 0x3b0f0, 0x3b128,
1622                 0x3b130, 0x3b148,
1623                 0x3b160, 0x3b168,
1624                 0x3b170, 0x3b19c,
1625                 0x3b1f0, 0x3b238,
1626                 0x3b240, 0x3b240,
1627                 0x3b248, 0x3b250,
1628                 0x3b25c, 0x3b264,
1629                 0x3b270, 0x3b2b8,
1630                 0x3b2c0, 0x3b2e4,
1631                 0x3b2f8, 0x3b338,
1632                 0x3b340, 0x3b340,
1633                 0x3b348, 0x3b350,
1634                 0x3b35c, 0x3b364,
1635                 0x3b370, 0x3b3b8,
1636                 0x3b3c0, 0x3b3e4,
1637                 0x3b3f8, 0x3b428,
1638                 0x3b430, 0x3b448,
1639                 0x3b460, 0x3b468,
1640                 0x3b470, 0x3b49c,
1641                 0x3b4f0, 0x3b528,
1642                 0x3b530, 0x3b548,
1643                 0x3b560, 0x3b568,
1644                 0x3b570, 0x3b59c,
1645                 0x3b5f0, 0x3b638,
1646                 0x3b640, 0x3b640,
1647                 0x3b648, 0x3b650,
1648                 0x3b65c, 0x3b664,
1649                 0x3b670, 0x3b6b8,
1650                 0x3b6c0, 0x3b6e4,
1651                 0x3b6f8, 0x3b738,
1652                 0x3b740, 0x3b740,
1653                 0x3b748, 0x3b750,
1654                 0x3b75c, 0x3b764,
1655                 0x3b770, 0x3b7b8,
1656                 0x3b7c0, 0x3b7e4,
1657                 0x3b7f8, 0x3b7fc,
1658                 0x3b814, 0x3b814,
1659                 0x3b82c, 0x3b82c,
1660                 0x3b880, 0x3b88c,
1661                 0x3b8e8, 0x3b8ec,
1662                 0x3b900, 0x3b928,
1663                 0x3b930, 0x3b948,
1664                 0x3b960, 0x3b968,
1665                 0x3b970, 0x3b99c,
1666                 0x3b9f0, 0x3ba38,
1667                 0x3ba40, 0x3ba40,
1668                 0x3ba48, 0x3ba50,
1669                 0x3ba5c, 0x3ba64,
1670                 0x3ba70, 0x3bab8,
1671                 0x3bac0, 0x3bae4,
1672                 0x3baf8, 0x3bb10,
1673                 0x3bb28, 0x3bb28,
1674                 0x3bb3c, 0x3bb50,
1675                 0x3bbf0, 0x3bc10,
1676                 0x3bc28, 0x3bc28,
1677                 0x3bc3c, 0x3bc50,
1678                 0x3bcf0, 0x3bcfc,
1679                 0x3c000, 0x3c030,
1680                 0x3c038, 0x3c038,
1681                 0x3c040, 0x3c040,
1682                 0x3c100, 0x3c144,
1683                 0x3c190, 0x3c1a0,
1684                 0x3c1a8, 0x3c1b8,
1685                 0x3c1c4, 0x3c1c8,
1686                 0x3c1d0, 0x3c1d0,
1687                 0x3c200, 0x3c318,
1688                 0x3c400, 0x3c4b4,
1689                 0x3c4c0, 0x3c52c,
1690                 0x3c540, 0x3c61c,
1691                 0x3c800, 0x3c828,
1692                 0x3c834, 0x3c834,
1693                 0x3c8c0, 0x3c908,
1694                 0x3c910, 0x3c9ac,
1695                 0x3ca00, 0x3ca14,
1696                 0x3ca1c, 0x3ca2c,
1697                 0x3ca44, 0x3ca50,
1698                 0x3ca74, 0x3ca74,
1699                 0x3ca7c, 0x3cafc,
1700                 0x3cb08, 0x3cc24,
1701                 0x3cd00, 0x3cd00,
1702                 0x3cd08, 0x3cd14,
1703                 0x3cd1c, 0x3cd20,
1704                 0x3cd3c, 0x3cd3c,
1705                 0x3cd48, 0x3cd50,
1706                 0x3d200, 0x3d20c,
1707                 0x3d220, 0x3d220,
1708                 0x3d240, 0x3d240,
1709                 0x3d600, 0x3d60c,
1710                 0x3da00, 0x3da1c,
1711                 0x3de00, 0x3de20,
1712                 0x3de38, 0x3de3c,
1713                 0x3de80, 0x3de80,
1714                 0x3de88, 0x3dea8,
1715                 0x3deb0, 0x3deb4,
1716                 0x3dec8, 0x3ded4,
1717                 0x3dfb8, 0x3e004,
1718                 0x3e200, 0x3e200,
1719                 0x3e208, 0x3e240,
1720                 0x3e248, 0x3e280,
1721                 0x3e288, 0x3e2c0,
1722                 0x3e2c8, 0x3e2fc,
1723                 0x3e600, 0x3e630,
1724                 0x3ea00, 0x3eabc,
1725                 0x3eb00, 0x3eb10,
1726                 0x3eb20, 0x3eb30,
1727                 0x3eb40, 0x3eb50,
1728                 0x3eb60, 0x3eb70,
1729                 0x3f000, 0x3f028,
1730                 0x3f030, 0x3f048,
1731                 0x3f060, 0x3f068,
1732                 0x3f070, 0x3f09c,
1733                 0x3f0f0, 0x3f128,
1734                 0x3f130, 0x3f148,
1735                 0x3f160, 0x3f168,
1736                 0x3f170, 0x3f19c,
1737                 0x3f1f0, 0x3f238,
1738                 0x3f240, 0x3f240,
1739                 0x3f248, 0x3f250,
1740                 0x3f25c, 0x3f264,
1741                 0x3f270, 0x3f2b8,
1742                 0x3f2c0, 0x3f2e4,
1743                 0x3f2f8, 0x3f338,
1744                 0x3f340, 0x3f340,
1745                 0x3f348, 0x3f350,
1746                 0x3f35c, 0x3f364,
1747                 0x3f370, 0x3f3b8,
1748                 0x3f3c0, 0x3f3e4,
1749                 0x3f3f8, 0x3f428,
1750                 0x3f430, 0x3f448,
1751                 0x3f460, 0x3f468,
1752                 0x3f470, 0x3f49c,
1753                 0x3f4f0, 0x3f528,
1754                 0x3f530, 0x3f548,
1755                 0x3f560, 0x3f568,
1756                 0x3f570, 0x3f59c,
1757                 0x3f5f0, 0x3f638,
1758                 0x3f640, 0x3f640,
1759                 0x3f648, 0x3f650,
1760                 0x3f65c, 0x3f664,
1761                 0x3f670, 0x3f6b8,
1762                 0x3f6c0, 0x3f6e4,
1763                 0x3f6f8, 0x3f738,
1764                 0x3f740, 0x3f740,
1765                 0x3f748, 0x3f750,
1766                 0x3f75c, 0x3f764,
1767                 0x3f770, 0x3f7b8,
1768                 0x3f7c0, 0x3f7e4,
1769                 0x3f7f8, 0x3f7fc,
1770                 0x3f814, 0x3f814,
1771                 0x3f82c, 0x3f82c,
1772                 0x3f880, 0x3f88c,
1773                 0x3f8e8, 0x3f8ec,
1774                 0x3f900, 0x3f928,
1775                 0x3f930, 0x3f948,
1776                 0x3f960, 0x3f968,
1777                 0x3f970, 0x3f99c,
1778                 0x3f9f0, 0x3fa38,
1779                 0x3fa40, 0x3fa40,
1780                 0x3fa48, 0x3fa50,
1781                 0x3fa5c, 0x3fa64,
1782                 0x3fa70, 0x3fab8,
1783                 0x3fac0, 0x3fae4,
1784                 0x3faf8, 0x3fb10,
1785                 0x3fb28, 0x3fb28,
1786                 0x3fb3c, 0x3fb50,
1787                 0x3fbf0, 0x3fc10,
1788                 0x3fc28, 0x3fc28,
1789                 0x3fc3c, 0x3fc50,
1790                 0x3fcf0, 0x3fcfc,
1791                 0x40000, 0x4000c,
1792                 0x40040, 0x40050,
1793                 0x40060, 0x40068,
1794                 0x4007c, 0x4008c,
1795                 0x40094, 0x400b0,
1796                 0x400c0, 0x40144,
1797                 0x40180, 0x4018c,
1798                 0x40200, 0x40254,
1799                 0x40260, 0x40264,
1800                 0x40270, 0x40288,
1801                 0x40290, 0x40298,
1802                 0x402ac, 0x402c8,
1803                 0x402d0, 0x402e0,
1804                 0x402f0, 0x402f0,
1805                 0x40300, 0x4033c,
1806                 0x403f8, 0x403fc,
1807                 0x41304, 0x413c4,
1808                 0x41400, 0x4140c,
1809                 0x41414, 0x4141c,
1810                 0x41480, 0x414d0,
1811                 0x44000, 0x44054,
1812                 0x4405c, 0x44078,
1813                 0x440c0, 0x44174,
1814                 0x44180, 0x441ac,
1815                 0x441b4, 0x441b8,
1816                 0x441c0, 0x44254,
1817                 0x4425c, 0x44278,
1818                 0x442c0, 0x44374,
1819                 0x44380, 0x443ac,
1820                 0x443b4, 0x443b8,
1821                 0x443c0, 0x44454,
1822                 0x4445c, 0x44478,
1823                 0x444c0, 0x44574,
1824                 0x44580, 0x445ac,
1825                 0x445b4, 0x445b8,
1826                 0x445c0, 0x44654,
1827                 0x4465c, 0x44678,
1828                 0x446c0, 0x44774,
1829                 0x44780, 0x447ac,
1830                 0x447b4, 0x447b8,
1831                 0x447c0, 0x44854,
1832                 0x4485c, 0x44878,
1833                 0x448c0, 0x44974,
1834                 0x44980, 0x449ac,
1835                 0x449b4, 0x449b8,
1836                 0x449c0, 0x449fc,
1837                 0x45000, 0x45004,
1838                 0x45010, 0x45030,
1839                 0x45040, 0x45060,
1840                 0x45068, 0x45068,
1841                 0x45080, 0x45084,
1842                 0x450a0, 0x450b0,
1843                 0x45200, 0x45204,
1844                 0x45210, 0x45230,
1845                 0x45240, 0x45260,
1846                 0x45268, 0x45268,
1847                 0x45280, 0x45284,
1848                 0x452a0, 0x452b0,
1849                 0x460c0, 0x460e4,
1850                 0x47000, 0x4703c,
1851                 0x47044, 0x4708c,
1852                 0x47200, 0x47250,
1853                 0x47400, 0x47408,
1854                 0x47414, 0x47420,
1855                 0x47600, 0x47618,
1856                 0x47800, 0x47814,
1857                 0x48000, 0x4800c,
1858                 0x48040, 0x48050,
1859                 0x48060, 0x48068,
1860                 0x4807c, 0x4808c,
1861                 0x48094, 0x480b0,
1862                 0x480c0, 0x48144,
1863                 0x48180, 0x4818c,
1864                 0x48200, 0x48254,
1865                 0x48260, 0x48264,
1866                 0x48270, 0x48288,
1867                 0x48290, 0x48298,
1868                 0x482ac, 0x482c8,
1869                 0x482d0, 0x482e0,
1870                 0x482f0, 0x482f0,
1871                 0x48300, 0x4833c,
1872                 0x483f8, 0x483fc,
1873                 0x49304, 0x493c4,
1874                 0x49400, 0x4940c,
1875                 0x49414, 0x4941c,
1876                 0x49480, 0x494d0,
1877                 0x4c000, 0x4c054,
1878                 0x4c05c, 0x4c078,
1879                 0x4c0c0, 0x4c174,
1880                 0x4c180, 0x4c1ac,
1881                 0x4c1b4, 0x4c1b8,
1882                 0x4c1c0, 0x4c254,
1883                 0x4c25c, 0x4c278,
1884                 0x4c2c0, 0x4c374,
1885                 0x4c380, 0x4c3ac,
1886                 0x4c3b4, 0x4c3b8,
1887                 0x4c3c0, 0x4c454,
1888                 0x4c45c, 0x4c478,
1889                 0x4c4c0, 0x4c574,
1890                 0x4c580, 0x4c5ac,
1891                 0x4c5b4, 0x4c5b8,
1892                 0x4c5c0, 0x4c654,
1893                 0x4c65c, 0x4c678,
1894                 0x4c6c0, 0x4c774,
1895                 0x4c780, 0x4c7ac,
1896                 0x4c7b4, 0x4c7b8,
1897                 0x4c7c0, 0x4c854,
1898                 0x4c85c, 0x4c878,
1899                 0x4c8c0, 0x4c974,
1900                 0x4c980, 0x4c9ac,
1901                 0x4c9b4, 0x4c9b8,
1902                 0x4c9c0, 0x4c9fc,
1903                 0x4d000, 0x4d004,
1904                 0x4d010, 0x4d030,
1905                 0x4d040, 0x4d060,
1906                 0x4d068, 0x4d068,
1907                 0x4d080, 0x4d084,
1908                 0x4d0a0, 0x4d0b0,
1909                 0x4d200, 0x4d204,
1910                 0x4d210, 0x4d230,
1911                 0x4d240, 0x4d260,
1912                 0x4d268, 0x4d268,
1913                 0x4d280, 0x4d284,
1914                 0x4d2a0, 0x4d2b0,
1915                 0x4e0c0, 0x4e0e4,
1916                 0x4f000, 0x4f03c,
1917                 0x4f044, 0x4f08c,
1918                 0x4f200, 0x4f250,
1919                 0x4f400, 0x4f408,
1920                 0x4f414, 0x4f420,
1921                 0x4f600, 0x4f618,
1922                 0x4f800, 0x4f814,
1923                 0x50000, 0x50084,
1924                 0x50090, 0x500cc,
1925                 0x50400, 0x50400,
1926                 0x50800, 0x50884,
1927                 0x50890, 0x508cc,
1928                 0x50c00, 0x50c00,
1929                 0x51000, 0x5101c,
1930                 0x51300, 0x51308,
1931         };
1932
1933         static const unsigned int t6_reg_ranges[] = {
1934                 0x1008, 0x101c,
1935                 0x1024, 0x10a8,
1936                 0x10b4, 0x10f8,
1937                 0x1100, 0x1114,
1938                 0x111c, 0x112c,
1939                 0x1138, 0x113c,
1940                 0x1144, 0x114c,
1941                 0x1180, 0x1184,
1942                 0x1190, 0x1194,
1943                 0x11a0, 0x11a4,
1944                 0x11b0, 0x11b4,
1945                 0x11fc, 0x1258,
1946                 0x1280, 0x12d4,
1947                 0x12d9, 0x12d9,
1948                 0x12de, 0x12de,
1949                 0x12e3, 0x12e3,
1950                 0x12e8, 0x133c,
1951                 0x1800, 0x18fc,
1952                 0x3000, 0x302c,
1953                 0x3060, 0x30b0,
1954                 0x30b8, 0x30d8,
1955                 0x30e0, 0x30fc,
1956                 0x3140, 0x357c,
1957                 0x35a8, 0x35cc,
1958                 0x35ec, 0x35ec,
1959                 0x3600, 0x5624,
1960                 0x56cc, 0x56ec,
1961                 0x56f4, 0x5720,
1962                 0x5728, 0x575c,
1963                 0x580c, 0x5814,
1964                 0x5890, 0x589c,
1965                 0x58a4, 0x58ac,
1966                 0x58b8, 0x58bc,
1967                 0x5940, 0x595c,
1968                 0x5980, 0x598c,
1969                 0x59b0, 0x59c8,
1970                 0x59d0, 0x59dc,
1971                 0x59fc, 0x5a18,
1972                 0x5a60, 0x5a6c,
1973                 0x5a80, 0x5a8c,
1974                 0x5a94, 0x5a9c,
1975                 0x5b94, 0x5bfc,
1976                 0x5c10, 0x5e48,
1977                 0x5e50, 0x5e94,
1978                 0x5ea0, 0x5eb0,
1979                 0x5ec0, 0x5ec0,
1980                 0x5ec8, 0x5ed0,
1981                 0x6000, 0x6020,
1982                 0x6028, 0x6040,
1983                 0x6058, 0x609c,
1984                 0x60a8, 0x619c,
1985                 0x7700, 0x7798,
1986                 0x77c0, 0x7880,
1987                 0x78cc, 0x78fc,
1988                 0x7b00, 0x7b58,
1989                 0x7b60, 0x7b84,
1990                 0x7b8c, 0x7c54,
1991                 0x7d00, 0x7d38,
1992                 0x7d40, 0x7d84,
1993                 0x7d8c, 0x7ddc,
1994                 0x7de4, 0x7e04,
1995                 0x7e10, 0x7e1c,
1996                 0x7e24, 0x7e38,
1997                 0x7e40, 0x7e44,
1998                 0x7e4c, 0x7e78,
1999                 0x7e80, 0x7edc,
2000                 0x7ee8, 0x7efc,
2001                 0x8dc0, 0x8de4,
2002                 0x8df8, 0x8e04,
2003                 0x8e10, 0x8e84,
2004                 0x8ea0, 0x8f88,
2005                 0x8fb8, 0x9058,
2006                 0x9060, 0x9060,
2007                 0x9068, 0x90f8,
2008                 0x9100, 0x9124,
2009                 0x9400, 0x9470,
2010                 0x9600, 0x9600,
2011                 0x9608, 0x9638,
2012                 0x9640, 0x9704,
2013                 0x9710, 0x971c,
2014                 0x9800, 0x9808,
2015                 0x9820, 0x983c,
2016                 0x9850, 0x9864,
2017                 0x9c00, 0x9c6c,
2018                 0x9c80, 0x9cec,
2019                 0x9d00, 0x9d6c,
2020                 0x9d80, 0x9dec,
2021                 0x9e00, 0x9e6c,
2022                 0x9e80, 0x9eec,
2023                 0x9f00, 0x9f6c,
2024                 0x9f80, 0xa020,
2025                 0xd004, 0xd03c,
2026                 0xd100, 0xd118,
2027                 0xd200, 0xd214,
2028                 0xd220, 0xd234,
2029                 0xd240, 0xd254,
2030                 0xd260, 0xd274,
2031                 0xd280, 0xd294,
2032                 0xd2a0, 0xd2b4,
2033                 0xd2c0, 0xd2d4,
2034                 0xd2e0, 0xd2f4,
2035                 0xd300, 0xd31c,
2036                 0xdfc0, 0xdfe0,
2037                 0xe000, 0xf008,
2038                 0x11000, 0x11014,
2039                 0x11048, 0x1106c,
2040                 0x11074, 0x11088,
2041                 0x11098, 0x11120,
2042                 0x1112c, 0x1117c,
2043                 0x11190, 0x112e0,
2044                 0x11300, 0x1130c,
2045                 0x12000, 0x1206c,
2046                 0x19040, 0x1906c,
2047                 0x19078, 0x19080,
2048                 0x1908c, 0x190e8,
2049                 0x190f0, 0x190f8,
2050                 0x19100, 0x19110,
2051                 0x19120, 0x19124,
2052                 0x19150, 0x19194,
2053                 0x1919c, 0x191b0,
2054                 0x191d0, 0x191e8,
2055                 0x19238, 0x19290,
2056                 0x192a4, 0x192b0,
2057                 0x192bc, 0x192bc,
2058                 0x19348, 0x1934c,
2059                 0x193f8, 0x19418,
2060                 0x19420, 0x19428,
2061                 0x19430, 0x19444,
2062                 0x1944c, 0x1946c,
2063                 0x19474, 0x19474,
2064                 0x19490, 0x194cc,
2065                 0x194f0, 0x194f8,
2066                 0x19c00, 0x19c48,
2067                 0x19c50, 0x19c80,
2068                 0x19c94, 0x19c98,
2069                 0x19ca0, 0x19cbc,
2070                 0x19ce4, 0x19ce4,
2071                 0x19cf0, 0x19cf8,
2072                 0x19d00, 0x19d28,
2073                 0x19d50, 0x19d78,
2074                 0x19d94, 0x19d98,
2075                 0x19da0, 0x19dc8,
2076                 0x19df0, 0x19e10,
2077                 0x19e50, 0x19e6c,
2078                 0x19ea0, 0x19ebc,
2079                 0x19ec4, 0x19ef4,
2080                 0x19f04, 0x19f2c,
2081                 0x19f34, 0x19f34,
2082                 0x19f40, 0x19f50,
2083                 0x19f90, 0x19fac,
2084                 0x19fc4, 0x19fc8,
2085                 0x19fd0, 0x19fe4,
2086                 0x1a000, 0x1a004,
2087                 0x1a010, 0x1a06c,
2088                 0x1a0b0, 0x1a0e4,
2089                 0x1a0ec, 0x1a0f8,
2090                 0x1a100, 0x1a108,
2091                 0x1a114, 0x1a120,
2092                 0x1a128, 0x1a130,
2093                 0x1a138, 0x1a138,
2094                 0x1a190, 0x1a1c4,
2095                 0x1a1fc, 0x1a1fc,
2096                 0x1e008, 0x1e00c,
2097                 0x1e040, 0x1e044,
2098                 0x1e04c, 0x1e04c,
2099                 0x1e284, 0x1e290,
2100                 0x1e2c0, 0x1e2c0,
2101                 0x1e2e0, 0x1e2e0,
2102                 0x1e300, 0x1e384,
2103                 0x1e3c0, 0x1e3c8,
2104                 0x1e408, 0x1e40c,
2105                 0x1e440, 0x1e444,
2106                 0x1e44c, 0x1e44c,
2107                 0x1e684, 0x1e690,
2108                 0x1e6c0, 0x1e6c0,
2109                 0x1e6e0, 0x1e6e0,
2110                 0x1e700, 0x1e784,
2111                 0x1e7c0, 0x1e7c8,
2112                 0x1e808, 0x1e80c,
2113                 0x1e840, 0x1e844,
2114                 0x1e84c, 0x1e84c,
2115                 0x1ea84, 0x1ea90,
2116                 0x1eac0, 0x1eac0,
2117                 0x1eae0, 0x1eae0,
2118                 0x1eb00, 0x1eb84,
2119                 0x1ebc0, 0x1ebc8,
2120                 0x1ec08, 0x1ec0c,
2121                 0x1ec40, 0x1ec44,
2122                 0x1ec4c, 0x1ec4c,
2123                 0x1ee84, 0x1ee90,
2124                 0x1eec0, 0x1eec0,
2125                 0x1eee0, 0x1eee0,
2126                 0x1ef00, 0x1ef84,
2127                 0x1efc0, 0x1efc8,
2128                 0x1f008, 0x1f00c,
2129                 0x1f040, 0x1f044,
2130                 0x1f04c, 0x1f04c,
2131                 0x1f284, 0x1f290,
2132                 0x1f2c0, 0x1f2c0,
2133                 0x1f2e0, 0x1f2e0,
2134                 0x1f300, 0x1f384,
2135                 0x1f3c0, 0x1f3c8,
2136                 0x1f408, 0x1f40c,
2137                 0x1f440, 0x1f444,
2138                 0x1f44c, 0x1f44c,
2139                 0x1f684, 0x1f690,
2140                 0x1f6c0, 0x1f6c0,
2141                 0x1f6e0, 0x1f6e0,
2142                 0x1f700, 0x1f784,
2143                 0x1f7c0, 0x1f7c8,
2144                 0x1f808, 0x1f80c,
2145                 0x1f840, 0x1f844,
2146                 0x1f84c, 0x1f84c,
2147                 0x1fa84, 0x1fa90,
2148                 0x1fac0, 0x1fac0,
2149                 0x1fae0, 0x1fae0,
2150                 0x1fb00, 0x1fb84,
2151                 0x1fbc0, 0x1fbc8,
2152                 0x1fc08, 0x1fc0c,
2153                 0x1fc40, 0x1fc44,
2154                 0x1fc4c, 0x1fc4c,
2155                 0x1fe84, 0x1fe90,
2156                 0x1fec0, 0x1fec0,
2157                 0x1fee0, 0x1fee0,
2158                 0x1ff00, 0x1ff84,
2159                 0x1ffc0, 0x1ffc8,
2160                 0x30000, 0x30030,
2161                 0x30038, 0x30038,
2162                 0x30040, 0x30040,
2163                 0x30048, 0x30048,
2164                 0x30050, 0x30050,
2165                 0x3005c, 0x30060,
2166                 0x30068, 0x30068,
2167                 0x30070, 0x30070,
2168                 0x30100, 0x30168,
2169                 0x30190, 0x301a0,
2170                 0x301a8, 0x301b8,
2171                 0x301c4, 0x301c8,
2172                 0x301d0, 0x301d0,
2173                 0x30200, 0x30320,
2174                 0x30400, 0x304b4,
2175                 0x304c0, 0x3052c,
2176                 0x30540, 0x3061c,
2177                 0x30800, 0x308a0,
2178                 0x308c0, 0x30908,
2179                 0x30910, 0x309b8,
2180                 0x30a00, 0x30a04,
2181                 0x30a0c, 0x30a14,
2182                 0x30a1c, 0x30a2c,
2183                 0x30a44, 0x30a50,
2184                 0x30a74, 0x30a74,
2185                 0x30a7c, 0x30afc,
2186                 0x30b08, 0x30c24,
2187                 0x30d00, 0x30d14,
2188                 0x30d1c, 0x30d3c,
2189                 0x30d44, 0x30d4c,
2190                 0x30d54, 0x30d74,
2191                 0x30d7c, 0x30d7c,
2192                 0x30de0, 0x30de0,
2193                 0x30e00, 0x30ed4,
2194                 0x30f00, 0x30fa4,
2195                 0x30fc0, 0x30fc4,
2196                 0x31000, 0x31004,
2197                 0x31080, 0x310fc,
2198                 0x31208, 0x31220,
2199                 0x3123c, 0x31254,
2200                 0x31300, 0x31300,
2201                 0x31308, 0x3131c,
2202                 0x31338, 0x3133c,
2203                 0x31380, 0x31380,
2204                 0x31388, 0x313a8,
2205                 0x313b4, 0x313b4,
2206                 0x31400, 0x31420,
2207                 0x31438, 0x3143c,
2208                 0x31480, 0x31480,
2209                 0x314a8, 0x314a8,
2210                 0x314b0, 0x314b4,
2211                 0x314c8, 0x314d4,
2212                 0x31a40, 0x31a4c,
2213                 0x31af0, 0x31b20,
2214                 0x31b38, 0x31b3c,
2215                 0x31b80, 0x31b80,
2216                 0x31ba8, 0x31ba8,
2217                 0x31bb0, 0x31bb4,
2218                 0x31bc8, 0x31bd4,
2219                 0x32140, 0x3218c,
2220                 0x321f0, 0x321f4,
2221                 0x32200, 0x32200,
2222                 0x32218, 0x32218,
2223                 0x32400, 0x32400,
2224                 0x32408, 0x3241c,
2225                 0x32618, 0x32620,
2226                 0x32664, 0x32664,
2227                 0x326a8, 0x326a8,
2228                 0x326ec, 0x326ec,
2229                 0x32a00, 0x32abc,
2230                 0x32b00, 0x32b38,
2231                 0x32b40, 0x32b58,
2232                 0x32b60, 0x32b78,
2233                 0x32c00, 0x32c00,
2234                 0x32c08, 0x32c3c,
2235                 0x32e00, 0x32e2c,
2236                 0x32f00, 0x32f2c,
2237                 0x33000, 0x3302c,
2238                 0x33034, 0x33050,
2239                 0x33058, 0x33058,
2240                 0x33060, 0x3308c,
2241                 0x3309c, 0x330ac,
2242                 0x330c0, 0x330c0,
2243                 0x330c8, 0x330d0,
2244                 0x330d8, 0x330e0,
2245                 0x330ec, 0x3312c,
2246                 0x33134, 0x33150,
2247                 0x33158, 0x33158,
2248                 0x33160, 0x3318c,
2249                 0x3319c, 0x331ac,
2250                 0x331c0, 0x331c0,
2251                 0x331c8, 0x331d0,
2252                 0x331d8, 0x331e0,
2253                 0x331ec, 0x33290,
2254                 0x33298, 0x332c4,
2255                 0x332e4, 0x33390,
2256                 0x33398, 0x333c4,
2257                 0x333e4, 0x3342c,
2258                 0x33434, 0x33450,
2259                 0x33458, 0x33458,
2260                 0x33460, 0x3348c,
2261                 0x3349c, 0x334ac,
2262                 0x334c0, 0x334c0,
2263                 0x334c8, 0x334d0,
2264                 0x334d8, 0x334e0,
2265                 0x334ec, 0x3352c,
2266                 0x33534, 0x33550,
2267                 0x33558, 0x33558,
2268                 0x33560, 0x3358c,
2269                 0x3359c, 0x335ac,
2270                 0x335c0, 0x335c0,
2271                 0x335c8, 0x335d0,
2272                 0x335d8, 0x335e0,
2273                 0x335ec, 0x33690,
2274                 0x33698, 0x336c4,
2275                 0x336e4, 0x33790,
2276                 0x33798, 0x337c4,
2277                 0x337e4, 0x337fc,
2278                 0x33814, 0x33814,
2279                 0x33854, 0x33868,
2280                 0x33880, 0x3388c,
2281                 0x338c0, 0x338d0,
2282                 0x338e8, 0x338ec,
2283                 0x33900, 0x3392c,
2284                 0x33934, 0x33950,
2285                 0x33958, 0x33958,
2286                 0x33960, 0x3398c,
2287                 0x3399c, 0x339ac,
2288                 0x339c0, 0x339c0,
2289                 0x339c8, 0x339d0,
2290                 0x339d8, 0x339e0,
2291                 0x339ec, 0x33a90,
2292                 0x33a98, 0x33ac4,
2293                 0x33ae4, 0x33b10,
2294                 0x33b24, 0x33b28,
2295                 0x33b38, 0x33b50,
2296                 0x33bf0, 0x33c10,
2297                 0x33c24, 0x33c28,
2298                 0x33c38, 0x33c50,
2299                 0x33cf0, 0x33cfc,
2300                 0x34000, 0x34030,
2301                 0x34038, 0x34038,
2302                 0x34040, 0x34040,
2303                 0x34048, 0x34048,
2304                 0x34050, 0x34050,
2305                 0x3405c, 0x34060,
2306                 0x34068, 0x34068,
2307                 0x34070, 0x34070,
2308                 0x34100, 0x34168,
2309                 0x34190, 0x341a0,
2310                 0x341a8, 0x341b8,
2311                 0x341c4, 0x341c8,
2312                 0x341d0, 0x341d0,
2313                 0x34200, 0x34320,
2314                 0x34400, 0x344b4,
2315                 0x344c0, 0x3452c,
2316                 0x34540, 0x3461c,
2317                 0x34800, 0x348a0,
2318                 0x348c0, 0x34908,
2319                 0x34910, 0x349b8,
2320                 0x34a00, 0x34a04,
2321                 0x34a0c, 0x34a14,
2322                 0x34a1c, 0x34a2c,
2323                 0x34a44, 0x34a50,
2324                 0x34a74, 0x34a74,
2325                 0x34a7c, 0x34afc,
2326                 0x34b08, 0x34c24,
2327                 0x34d00, 0x34d14,
2328                 0x34d1c, 0x34d3c,
2329                 0x34d44, 0x34d4c,
2330                 0x34d54, 0x34d74,
2331                 0x34d7c, 0x34d7c,
2332                 0x34de0, 0x34de0,
2333                 0x34e00, 0x34ed4,
2334                 0x34f00, 0x34fa4,
2335                 0x34fc0, 0x34fc4,
2336                 0x35000, 0x35004,
2337                 0x35080, 0x350fc,
2338                 0x35208, 0x35220,
2339                 0x3523c, 0x35254,
2340                 0x35300, 0x35300,
2341                 0x35308, 0x3531c,
2342                 0x35338, 0x3533c,
2343                 0x35380, 0x35380,
2344                 0x35388, 0x353a8,
2345                 0x353b4, 0x353b4,
2346                 0x35400, 0x35420,
2347                 0x35438, 0x3543c,
2348                 0x35480, 0x35480,
2349                 0x354a8, 0x354a8,
2350                 0x354b0, 0x354b4,
2351                 0x354c8, 0x354d4,
2352                 0x35a40, 0x35a4c,
2353                 0x35af0, 0x35b20,
2354                 0x35b38, 0x35b3c,
2355                 0x35b80, 0x35b80,
2356                 0x35ba8, 0x35ba8,
2357                 0x35bb0, 0x35bb4,
2358                 0x35bc8, 0x35bd4,
2359                 0x36140, 0x3618c,
2360                 0x361f0, 0x361f4,
2361                 0x36200, 0x36200,
2362                 0x36218, 0x36218,
2363                 0x36400, 0x36400,
2364                 0x36408, 0x3641c,
2365                 0x36618, 0x36620,
2366                 0x36664, 0x36664,
2367                 0x366a8, 0x366a8,
2368                 0x366ec, 0x366ec,
2369                 0x36a00, 0x36abc,
2370                 0x36b00, 0x36b38,
2371                 0x36b40, 0x36b58,
2372                 0x36b60, 0x36b78,
2373                 0x36c00, 0x36c00,
2374                 0x36c08, 0x36c3c,
2375                 0x36e00, 0x36e2c,
2376                 0x36f00, 0x36f2c,
2377                 0x37000, 0x3702c,
2378                 0x37034, 0x37050,
2379                 0x37058, 0x37058,
2380                 0x37060, 0x3708c,
2381                 0x3709c, 0x370ac,
2382                 0x370c0, 0x370c0,
2383                 0x370c8, 0x370d0,
2384                 0x370d8, 0x370e0,
2385                 0x370ec, 0x3712c,
2386                 0x37134, 0x37150,
2387                 0x37158, 0x37158,
2388                 0x37160, 0x3718c,
2389                 0x3719c, 0x371ac,
2390                 0x371c0, 0x371c0,
2391                 0x371c8, 0x371d0,
2392                 0x371d8, 0x371e0,
2393                 0x371ec, 0x37290,
2394                 0x37298, 0x372c4,
2395                 0x372e4, 0x37390,
2396                 0x37398, 0x373c4,
2397                 0x373e4, 0x3742c,
2398                 0x37434, 0x37450,
2399                 0x37458, 0x37458,
2400                 0x37460, 0x3748c,
2401                 0x3749c, 0x374ac,
2402                 0x374c0, 0x374c0,
2403                 0x374c8, 0x374d0,
2404                 0x374d8, 0x374e0,
2405                 0x374ec, 0x3752c,
2406                 0x37534, 0x37550,
2407                 0x37558, 0x37558,
2408                 0x37560, 0x3758c,
2409                 0x3759c, 0x375ac,
2410                 0x375c0, 0x375c0,
2411                 0x375c8, 0x375d0,
2412                 0x375d8, 0x375e0,
2413                 0x375ec, 0x37690,
2414                 0x37698, 0x376c4,
2415                 0x376e4, 0x37790,
2416                 0x37798, 0x377c4,
2417                 0x377e4, 0x377fc,
2418                 0x37814, 0x37814,
2419                 0x37854, 0x37868,
2420                 0x37880, 0x3788c,
2421                 0x378c0, 0x378d0,
2422                 0x378e8, 0x378ec,
2423                 0x37900, 0x3792c,
2424                 0x37934, 0x37950,
2425                 0x37958, 0x37958,
2426                 0x37960, 0x3798c,
2427                 0x3799c, 0x379ac,
2428                 0x379c0, 0x379c0,
2429                 0x379c8, 0x379d0,
2430                 0x379d8, 0x379e0,
2431                 0x379ec, 0x37a90,
2432                 0x37a98, 0x37ac4,
2433                 0x37ae4, 0x37b10,
2434                 0x37b24, 0x37b28,
2435                 0x37b38, 0x37b50,
2436                 0x37bf0, 0x37c10,
2437                 0x37c24, 0x37c28,
2438                 0x37c38, 0x37c50,
2439                 0x37cf0, 0x37cfc,
2440                 0x40040, 0x40040,
2441                 0x40080, 0x40084,
2442                 0x40100, 0x40100,
2443                 0x40140, 0x401bc,
2444                 0x40200, 0x40214,
2445                 0x40228, 0x40228,
2446                 0x40240, 0x40258,
2447                 0x40280, 0x40280,
2448                 0x40304, 0x40304,
2449                 0x40330, 0x4033c,
2450                 0x41304, 0x413b8,
2451                 0x413c0, 0x413c8,
2452                 0x413d0, 0x413dc,
2453                 0x413f0, 0x413f0,
2454                 0x41400, 0x4140c,
2455                 0x41414, 0x4141c,
2456                 0x41480, 0x414d0,
2457                 0x44000, 0x4407c,
2458                 0x440c0, 0x441ac,
2459                 0x441b4, 0x4427c,
2460                 0x442c0, 0x443ac,
2461                 0x443b4, 0x4447c,
2462                 0x444c0, 0x445ac,
2463                 0x445b4, 0x4467c,
2464                 0x446c0, 0x447ac,
2465                 0x447b4, 0x4487c,
2466                 0x448c0, 0x449ac,
2467                 0x449b4, 0x44a7c,
2468                 0x44ac0, 0x44bac,
2469                 0x44bb4, 0x44c7c,
2470                 0x44cc0, 0x44dac,
2471                 0x44db4, 0x44e7c,
2472                 0x44ec0, 0x44fac,
2473                 0x44fb4, 0x4507c,
2474                 0x450c0, 0x451ac,
2475                 0x451b4, 0x451fc,
2476                 0x45800, 0x45804,
2477                 0x45810, 0x45830,
2478                 0x45840, 0x45860,
2479                 0x45868, 0x45868,
2480                 0x45880, 0x45884,
2481                 0x458a0, 0x458b0,
2482                 0x45a00, 0x45a04,
2483                 0x45a10, 0x45a30,
2484                 0x45a40, 0x45a60,
2485                 0x45a68, 0x45a68,
2486                 0x45a80, 0x45a84,
2487                 0x45aa0, 0x45ab0,
2488                 0x460c0, 0x460e4,
2489                 0x47000, 0x4703c,
2490                 0x47044, 0x4708c,
2491                 0x47200, 0x47250,
2492                 0x47400, 0x47408,
2493                 0x47414, 0x47420,
2494                 0x47600, 0x47618,
2495                 0x47800, 0x47814,
2496                 0x47820, 0x4782c,
2497                 0x50000, 0x50084,
2498                 0x50090, 0x500cc,
2499                 0x50300, 0x50384,
2500                 0x50400, 0x50400,
2501                 0x50800, 0x50884,
2502                 0x50890, 0x508cc,
2503                 0x50b00, 0x50b84,
2504                 0x50c00, 0x50c00,
2505                 0x51000, 0x51020,
2506                 0x51028, 0x510b0,
2507                 0x51300, 0x51324,
2508         };
2509
2510         u32 *buf_end = (u32 *)((char *)buf + buf_size);
2511         const unsigned int *reg_ranges;
2512         int reg_ranges_size, range;
2513         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2514
2515         /* Select the right set of register ranges to dump depending on the
2516          * adapter chip type.
2517          */
2518         switch (chip_version) {
2519         case CHELSIO_T4:
2520                 reg_ranges = t4_reg_ranges;
2521                 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2522                 break;
2523
2524         case CHELSIO_T5:
2525                 reg_ranges = t5_reg_ranges;
2526                 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2527                 break;
2528
2529         case CHELSIO_T6:
2530                 reg_ranges = t6_reg_ranges;
2531                 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2532                 break;
2533
2534         default:
2535                 dev_err(adap->pdev_dev,
2536                         "Unsupported chip version %d\n", chip_version);
2537                 return;
2538         }
2539
2540         /* Clear the register buffer and insert the appropriate register
2541          * values selected by the above register ranges.
2542          */
2543         memset(buf, 0, buf_size);
2544         for (range = 0; range < reg_ranges_size; range += 2) {
2545                 unsigned int reg = reg_ranges[range];
2546                 unsigned int last_reg = reg_ranges[range + 1];
2547                 u32 *bufp = (u32 *)((char *)buf + reg);
2548
2549                 /* Iterate across the register range filling in the register
2550                  * buffer but don't write past the end of the register buffer.
2551                  */
2552                 while (reg <= last_reg && bufp < buf_end) {
2553                         *bufp++ = t4_read_reg(adap, reg);
2554                         reg += sizeof(u32);
2555                 }
2556         }
2557 }
2558
2559 #define EEPROM_STAT_ADDR   0x7bfc
2560 #define VPD_BASE           0x400
2561 #define VPD_BASE_OLD       0
2562 #define VPD_LEN            1024
2563 #define CHELSIO_VPD_UNIQUE_ID 0x82
2564
2565 /**
2566  *      t4_seeprom_wp - enable/disable EEPROM write protection
2567  *      @adapter: the adapter
2568  *      @enable: whether to enable or disable write protection
2569  *
2570  *      Enables or disables write protection on the serial EEPROM.
2571  */
2572 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2573 {
2574         unsigned int v = enable ? 0xc : 0;
2575         int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2576         return ret < 0 ? ret : 0;
2577 }
2578
2579 /**
2580  *      t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2581  *      @adapter: adapter to read
2582  *      @p: where to store the parameters
2583  *
2584  *      Reads card parameters stored in VPD EEPROM.
2585  */
2586 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2587 {
2588         int i, ret = 0, addr;
2589         int ec, sn, pn, na;
2590         u8 *vpd, csum;
2591         unsigned int vpdr_len, kw_offset, id_len;
2592
2593         vpd = vmalloc(VPD_LEN);
2594         if (!vpd)
2595                 return -ENOMEM;
2596
2597         /* Card information normally starts at VPD_BASE but early cards had
2598          * it at 0.
2599          */
2600         ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2601         if (ret < 0)
2602                 goto out;
2603
2604         /* The VPD shall have a unique identifier specified by the PCI SIG.
2605          * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2606          * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2607          * is expected to automatically put this entry at the
2608          * beginning of the VPD.
2609          */
2610         addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2611
2612         ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2613         if (ret < 0)
2614                 goto out;
2615
2616         if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2617                 dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2618                 ret = -EINVAL;
2619                 goto out;
2620         }
2621
2622         id_len = pci_vpd_lrdt_size(vpd);
2623         if (id_len > ID_LEN)
2624                 id_len = ID_LEN;
2625
2626         i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2627         if (i < 0) {
2628                 dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2629                 ret = -EINVAL;
2630                 goto out;
2631         }
2632
2633         vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2634         kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2635         if (vpdr_len + kw_offset > VPD_LEN) {
2636                 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2637                 ret = -EINVAL;
2638                 goto out;
2639         }
2640
2641 #define FIND_VPD_KW(var, name) do { \
2642         var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2643         if (var < 0) { \
2644                 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2645                 ret = -EINVAL; \
2646                 goto out; \
2647         } \
2648         var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2649 } while (0)
2650
2651         FIND_VPD_KW(i, "RV");
2652         for (csum = 0; i >= 0; i--)
2653                 csum += vpd[i];
2654
2655         if (csum) {
2656                 dev_err(adapter->pdev_dev,
2657                         "corrupted VPD EEPROM, actual csum %u\n", csum);
2658                 ret = -EINVAL;
2659                 goto out;
2660         }
2661
2662         FIND_VPD_KW(ec, "EC");
2663         FIND_VPD_KW(sn, "SN");
2664         FIND_VPD_KW(pn, "PN");
2665         FIND_VPD_KW(na, "NA");
2666 #undef FIND_VPD_KW
2667
2668         memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2669         strim(p->id);
2670         memcpy(p->ec, vpd + ec, EC_LEN);
2671         strim(p->ec);
2672         i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2673         memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2674         strim(p->sn);
2675         i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2676         memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2677         strim(p->pn);
2678         memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2679         strim((char *)p->na);
2680
2681 out:
2682         vfree(vpd);
2683         return ret;
2684 }
2685
2686 /**
2687  *      t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2688  *      @adapter: adapter to read
2689  *      @p: where to store the parameters
2690  *
2691  *      Reads card parameters stored in VPD EEPROM and retrieves the Core
2692  *      Clock.  This can only be called after a connection to the firmware
2693  *      is established.
2694  */
2695 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2696 {
2697         u32 cclk_param, cclk_val;
2698         int ret;
2699
2700         /* Grab the raw VPD parameters.
2701          */
2702         ret = t4_get_raw_vpd_params(adapter, p);
2703         if (ret)
2704                 return ret;
2705
2706         /* Ask firmware for the Core Clock since it knows how to translate the
2707          * Reference Clock ('V2') VPD field into a Core Clock value ...
2708          */
2709         cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2710                       FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2711         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2712                               1, &cclk_param, &cclk_val);
2713
2714         if (ret)
2715                 return ret;
2716         p->cclk = cclk_val;
2717
2718         return 0;
2719 }
2720
2721 /* serial flash and firmware constants */
2722 enum {
2723         SF_ATTEMPTS = 10,             /* max retries for SF operations */
2724
2725         /* flash command opcodes */
2726         SF_PROG_PAGE    = 2,          /* program page */
2727         SF_WR_DISABLE   = 4,          /* disable writes */
2728         SF_RD_STATUS    = 5,          /* read status register */
2729         SF_WR_ENABLE    = 6,          /* enable writes */
2730         SF_RD_DATA_FAST = 0xb,        /* read flash */
2731         SF_RD_ID        = 0x9f,       /* read ID */
2732         SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2733
2734         FW_MAX_SIZE = 16 * SF_SEC_SIZE,
2735 };
2736
2737 /**
2738  *      sf1_read - read data from the serial flash
2739  *      @adapter: the adapter
2740  *      @byte_cnt: number of bytes to read
2741  *      @cont: whether another operation will be chained
2742  *      @lock: whether to lock SF for PL access only
2743  *      @valp: where to store the read data
2744  *
2745  *      Reads up to 4 bytes of data from the serial flash.  The location of
2746  *      the read needs to be specified prior to calling this by issuing the
2747  *      appropriate commands to the serial flash.
2748  */
2749 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2750                     int lock, u32 *valp)
2751 {
2752         int ret;
2753
2754         if (!byte_cnt || byte_cnt > 4)
2755                 return -EINVAL;
2756         if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2757                 return -EBUSY;
2758         t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2759                      SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2760         ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2761         if (!ret)
2762                 *valp = t4_read_reg(adapter, SF_DATA_A);
2763         return ret;
2764 }
2765
2766 /**
2767  *      sf1_write - write data to the serial flash
2768  *      @adapter: the adapter
2769  *      @byte_cnt: number of bytes to write
2770  *      @cont: whether another operation will be chained
2771  *      @lock: whether to lock SF for PL access only
2772  *      @val: value to write
2773  *
2774  *      Writes up to 4 bytes of data to the serial flash.  The location of
2775  *      the write needs to be specified prior to calling this by issuing the
2776  *      appropriate commands to the serial flash.
2777  */
2778 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2779                      int lock, u32 val)
2780 {
2781         if (!byte_cnt || byte_cnt > 4)
2782                 return -EINVAL;
2783         if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2784                 return -EBUSY;
2785         t4_write_reg(adapter, SF_DATA_A, val);
2786         t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2787                      SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2788         return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2789 }
2790
2791 /**
2792  *      flash_wait_op - wait for a flash operation to complete
2793  *      @adapter: the adapter
2794  *      @attempts: max number of polls of the status register
2795  *      @delay: delay between polls in ms
2796  *
2797  *      Wait for a flash operation to complete by polling the status register.
2798  */
2799 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2800 {
2801         int ret;
2802         u32 status;
2803
2804         while (1) {
2805                 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2806                     (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2807                         return ret;
2808                 if (!(status & 1))
2809                         return 0;
2810                 if (--attempts == 0)
2811                         return -EAGAIN;
2812                 if (delay)
2813                         msleep(delay);
2814         }
2815 }
2816
2817 /**
2818  *      t4_read_flash - read words from serial flash
2819  *      @adapter: the adapter
2820  *      @addr: the start address for the read
2821  *      @nwords: how many 32-bit words to read
2822  *      @data: where to store the read data
2823  *      @byte_oriented: whether to store data as bytes or as words
2824  *
2825  *      Read the specified number of 32-bit words from the serial flash.
2826  *      If @byte_oriented is set the read data is stored as a byte array
2827  *      (i.e., big-endian), otherwise as 32-bit words in the platform's
2828  *      natural endianness.
2829  */
2830 int t4_read_flash(struct adapter *adapter, unsigned int addr,
2831                   unsigned int nwords, u32 *data, int byte_oriented)
2832 {
2833         int ret;
2834
2835         if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
2836                 return -EINVAL;
2837
2838         addr = swab32(addr) | SF_RD_DATA_FAST;
2839
2840         if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
2841             (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
2842                 return ret;
2843
2844         for ( ; nwords; nwords--, data++) {
2845                 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
2846                 if (nwords == 1)
2847                         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2848                 if (ret)
2849                         return ret;
2850                 if (byte_oriented)
2851                         *data = (__force __u32)(cpu_to_be32(*data));
2852         }
2853         return 0;
2854 }
2855
2856 /**
2857  *      t4_write_flash - write up to a page of data to the serial flash
2858  *      @adapter: the adapter
2859  *      @addr: the start address to write
2860  *      @n: length of data to write in bytes
2861  *      @data: the data to write
2862  *
2863  *      Writes up to a page of data (256 bytes) to the serial flash starting
2864  *      at the given address.  All the data must be written to the same page.
2865  */
2866 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
2867                           unsigned int n, const u8 *data)
2868 {
2869         int ret;
2870         u32 buf[64];
2871         unsigned int i, c, left, val, offset = addr & 0xff;
2872
2873         if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
2874                 return -EINVAL;
2875
2876         val = swab32(addr) | SF_PROG_PAGE;
2877
2878         if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2879             (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
2880                 goto unlock;
2881
2882         for (left = n; left; left -= c) {
2883                 c = min(left, 4U);
2884                 for (val = 0, i = 0; i < c; ++i)
2885                         val = (val << 8) + *data++;
2886
2887                 ret = sf1_write(adapter, c, c != left, 1, val);
2888                 if (ret)
2889                         goto unlock;
2890         }
2891         ret = flash_wait_op(adapter, 8, 1);
2892         if (ret)
2893                 goto unlock;
2894
2895         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2896
2897         /* Read the page to verify the write succeeded */
2898         ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
2899         if (ret)
2900                 return ret;
2901
2902         if (memcmp(data - n, (u8 *)buf + offset, n)) {
2903                 dev_err(adapter->pdev_dev,
2904                         "failed to correctly write the flash page at %#x\n",
2905                         addr);
2906                 return -EIO;
2907         }
2908         return 0;
2909
2910 unlock:
2911         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2912         return ret;
2913 }
2914
2915 /**
2916  *      t4_get_fw_version - read the firmware version
2917  *      @adapter: the adapter
2918  *      @vers: where to place the version
2919  *
2920  *      Reads the FW version from flash.
2921  */
2922 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
2923 {
2924         return t4_read_flash(adapter, FLASH_FW_START +
2925                              offsetof(struct fw_hdr, fw_ver), 1,
2926                              vers, 0);
2927 }
2928
2929 /**
2930  *      t4_get_tp_version - read the TP microcode version
2931  *      @adapter: the adapter
2932  *      @vers: where to place the version
2933  *
2934  *      Reads the TP microcode version from flash.
2935  */
2936 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
2937 {
2938         return t4_read_flash(adapter, FLASH_FW_START +
2939                              offsetof(struct fw_hdr, tp_microcode_ver),
2940                              1, vers, 0);
2941 }
2942
2943 /**
2944  *      t4_get_exprom_version - return the Expansion ROM version (if any)
2945  *      @adapter: the adapter
2946  *      @vers: where to place the version
2947  *
2948  *      Reads the Expansion ROM header from FLASH and returns the version
2949  *      number (if present) through the @vers return value pointer.  We return
2950  *      this in the Firmware Version Format since it's convenient.  Return
2951  *      0 on success, -ENOENT if no Expansion ROM is present.
2952  */
2953 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
2954 {
2955         struct exprom_header {
2956                 unsigned char hdr_arr[16];      /* must start with 0x55aa */
2957                 unsigned char hdr_ver[4];       /* Expansion ROM version */
2958         } *hdr;
2959         u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
2960                                            sizeof(u32))];
2961         int ret;
2962
2963         ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
2964                             ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
2965                             0);
2966         if (ret)
2967                 return ret;
2968
2969         hdr = (struct exprom_header *)exprom_header_buf;
2970         if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
2971                 return -ENOENT;
2972
2973         *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
2974                  FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
2975                  FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
2976                  FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
2977         return 0;
2978 }
2979
2980 /**
2981  *      t4_check_fw_version - check if the FW is supported with this driver
2982  *      @adap: the adapter
2983  *
2984  *      Checks if an adapter's FW is compatible with the driver.  Returns 0
2985  *      if there's exact match, a negative error if the version could not be
2986  *      read or there's a major version mismatch
2987  */
2988 int t4_check_fw_version(struct adapter *adap)
2989 {
2990         int i, ret, major, minor, micro;
2991         int exp_major, exp_minor, exp_micro;
2992         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2993
2994         ret = t4_get_fw_version(adap, &adap->params.fw_vers);
2995         /* Try multiple times before returning error */
2996         for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
2997                 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
2998
2999         if (ret)
3000                 return ret;
3001
3002         major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3003         minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3004         micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3005
3006         switch (chip_version) {
3007         case CHELSIO_T4:
3008                 exp_major = T4FW_MIN_VERSION_MAJOR;
3009                 exp_minor = T4FW_MIN_VERSION_MINOR;
3010                 exp_micro = T4FW_MIN_VERSION_MICRO;
3011                 break;
3012         case CHELSIO_T5:
3013                 exp_major = T5FW_MIN_VERSION_MAJOR;
3014                 exp_minor = T5FW_MIN_VERSION_MINOR;
3015                 exp_micro = T5FW_MIN_VERSION_MICRO;
3016                 break;
3017         case CHELSIO_T6:
3018                 exp_major = T6FW_MIN_VERSION_MAJOR;
3019                 exp_minor = T6FW_MIN_VERSION_MINOR;
3020                 exp_micro = T6FW_MIN_VERSION_MICRO;
3021                 break;
3022         default:
3023                 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3024                         adap->chip);
3025                 return -EINVAL;
3026         }
3027
3028         if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3029             (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3030                 dev_err(adap->pdev_dev,
3031                         "Card has firmware version %u.%u.%u, minimum "
3032                         "supported firmware is %u.%u.%u.\n", major, minor,
3033                         micro, exp_major, exp_minor, exp_micro);
3034                 return -EFAULT;
3035         }
3036         return 0;
3037 }
3038
3039 /* Is the given firmware API compatible with the one the driver was compiled
3040  * with?
3041  */
3042 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3043 {
3044
3045         /* short circuit if it's the exact same firmware version */
3046         if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3047                 return 1;
3048
3049 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3050         if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3051             SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3052                 return 1;
3053 #undef SAME_INTF
3054
3055         return 0;
3056 }
3057
3058 /* The firmware in the filesystem is usable, but should it be installed?
3059  * This routine explains itself in detail if it indicates the filesystem
3060  * firmware should be installed.
3061  */
3062 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3063                                 int k, int c)
3064 {
3065         const char *reason;
3066
3067         if (!card_fw_usable) {
3068                 reason = "incompatible or unusable";
3069                 goto install;
3070         }
3071
3072         if (k > c) {
3073                 reason = "older than the version supported with this driver";
3074                 goto install;
3075         }
3076
3077         return 0;
3078
3079 install:
3080         dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3081                 "installing firmware %u.%u.%u.%u on card.\n",
3082                 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3083                 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3084                 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3085                 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3086
3087         return 1;
3088 }
3089
3090 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3091                const u8 *fw_data, unsigned int fw_size,
3092                struct fw_hdr *card_fw, enum dev_state state,
3093                int *reset)
3094 {
3095         int ret, card_fw_usable, fs_fw_usable;
3096         const struct fw_hdr *fs_fw;
3097         const struct fw_hdr *drv_fw;
3098
3099         drv_fw = &fw_info->fw_hdr;
3100
3101         /* Read the header of the firmware on the card */
3102         ret = -t4_read_flash(adap, FLASH_FW_START,
3103                             sizeof(*card_fw) / sizeof(uint32_t),
3104                             (uint32_t *)card_fw, 1);
3105         if (ret == 0) {
3106                 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3107         } else {
3108                 dev_err(adap->pdev_dev,
3109                         "Unable to read card's firmware header: %d\n", ret);
3110                 card_fw_usable = 0;
3111         }
3112
3113         if (fw_data != NULL) {
3114                 fs_fw = (const void *)fw_data;
3115                 fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3116         } else {
3117                 fs_fw = NULL;
3118                 fs_fw_usable = 0;
3119         }
3120
3121         if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3122             (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3123                 /* Common case: the firmware on the card is an exact match and
3124                  * the filesystem one is an exact match too, or the filesystem
3125                  * one is absent/incompatible.
3126                  */
3127         } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3128                    should_install_fs_fw(adap, card_fw_usable,
3129                                         be32_to_cpu(fs_fw->fw_ver),
3130                                         be32_to_cpu(card_fw->fw_ver))) {
3131                 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3132                                      fw_size, 0);
3133                 if (ret != 0) {
3134                         dev_err(adap->pdev_dev,
3135                                 "failed to install firmware: %d\n", ret);
3136                         goto bye;
3137                 }
3138
3139                 /* Installed successfully, update the cached header too. */
3140                 *card_fw = *fs_fw;
3141                 card_fw_usable = 1;
3142                 *reset = 0;     /* already reset as part of load_fw */
3143         }
3144
3145         if (!card_fw_usable) {
3146                 uint32_t d, c, k;
3147
3148                 d = be32_to_cpu(drv_fw->fw_ver);
3149                 c = be32_to_cpu(card_fw->fw_ver);
3150                 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3151
3152                 dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3153                         "chip state %d, "
3154                         "driver compiled with %d.%d.%d.%d, "
3155                         "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3156                         state,
3157                         FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3158                         FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3159                         FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3160                         FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3161                         FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3162                         FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3163                 ret = EINVAL;
3164                 goto bye;
3165         }
3166
3167         /* We're using whatever's on the card and it's known to be good. */
3168         adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3169         adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3170
3171 bye:
3172         return ret;
3173 }
3174
3175 /**
3176  *      t4_flash_erase_sectors - erase a range of flash sectors
3177  *      @adapter: the adapter
3178  *      @start: the first sector to erase
3179  *      @end: the last sector to erase
3180  *
3181  *      Erases the sectors in the given inclusive range.
3182  */
3183 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3184 {
3185         int ret = 0;
3186
3187         if (end >= adapter->params.sf_nsec)
3188                 return -EINVAL;
3189
3190         while (start <= end) {
3191                 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3192                     (ret = sf1_write(adapter, 4, 0, 1,
3193                                      SF_ERASE_SECTOR | (start << 8))) != 0 ||
3194                     (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3195                         dev_err(adapter->pdev_dev,
3196                                 "erase of flash sector %d failed, error %d\n",
3197                                 start, ret);
3198                         break;
3199                 }
3200                 start++;
3201         }
3202         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3203         return ret;
3204 }
3205
3206 /**
3207  *      t4_flash_cfg_addr - return the address of the flash configuration file
3208  *      @adapter: the adapter
3209  *
3210  *      Return the address within the flash where the Firmware Configuration
3211  *      File is stored.
3212  */
3213 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3214 {
3215         if (adapter->params.sf_size == 0x100000)
3216                 return FLASH_FPGA_CFG_START;
3217         else
3218                 return FLASH_CFG_START;
3219 }
3220
3221 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3222  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3223  * and emit an error message for mismatched firmware to save our caller the
3224  * effort ...
3225  */
3226 static bool t4_fw_matches_chip(const struct adapter *adap,
3227                                const struct fw_hdr *hdr)
3228 {
3229         /* The expression below will return FALSE for any unsupported adapter
3230          * which will keep us "honest" in the future ...
3231          */
3232         if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3233             (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3234             (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3235                 return true;
3236
3237         dev_err(adap->pdev_dev,
3238                 "FW image (%d) is not suitable for this adapter (%d)\n",
3239                 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3240         return false;
3241 }
3242
3243 /**
3244  *      t4_load_fw - download firmware
3245  *      @adap: the adapter
3246  *      @fw_data: the firmware image to write
3247  *      @size: image size
3248  *
3249  *      Write the supplied firmware image to the card's serial flash.
3250  */
3251 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3252 {
3253         u32 csum;
3254         int ret, addr;
3255         unsigned int i;
3256         u8 first_page[SF_PAGE_SIZE];
3257         const __be32 *p = (const __be32 *)fw_data;
3258         const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3259         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3260         unsigned int fw_img_start = adap->params.sf_fw_start;
3261         unsigned int fw_start_sec = fw_img_start / sf_sec_size;
3262
3263         if (!size) {
3264                 dev_err(adap->pdev_dev, "FW image has no data\n");
3265                 return -EINVAL;
3266         }
3267         if (size & 511) {
3268                 dev_err(adap->pdev_dev,
3269                         "FW image size not multiple of 512 bytes\n");
3270                 return -EINVAL;
3271         }
3272         if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3273                 dev_err(adap->pdev_dev,
3274                         "FW image size differs from size in FW header\n");
3275                 return -EINVAL;
3276         }
3277         if (size > FW_MAX_SIZE) {
3278                 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3279                         FW_MAX_SIZE);
3280                 return -EFBIG;
3281         }
3282         if (!t4_fw_matches_chip(adap, hdr))
3283                 return -EINVAL;
3284
3285         for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3286                 csum += be32_to_cpu(p[i]);
3287
3288         if (csum != 0xffffffff) {
3289                 dev_err(adap->pdev_dev,
3290                         "corrupted firmware image, checksum %#x\n", csum);
3291                 return -EINVAL;
3292         }
3293
3294         i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3295         ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3296         if (ret)
3297                 goto out;
3298
3299         /*
3300          * We write the correct version at the end so the driver can see a bad
3301          * version if the FW write fails.  Start by writing a copy of the
3302          * first page with a bad version.
3303          */
3304         memcpy(first_page, fw_data, SF_PAGE_SIZE);
3305         ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3306         ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
3307         if (ret)
3308                 goto out;
3309
3310         addr = fw_img_start;
3311         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3312                 addr += SF_PAGE_SIZE;
3313                 fw_data += SF_PAGE_SIZE;
3314                 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3315                 if (ret)
3316                         goto out;
3317         }
3318
3319         ret = t4_write_flash(adap,
3320                              fw_img_start + offsetof(struct fw_hdr, fw_ver),
3321                              sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3322 out:
3323         if (ret)
3324                 dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3325                         ret);
3326         else
3327                 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3328         return ret;
3329 }
3330
3331 /**
3332  *      t4_phy_fw_ver - return current PHY firmware version
3333  *      @adap: the adapter
3334  *      @phy_fw_ver: return value buffer for PHY firmware version
3335  *
3336  *      Returns the current version of external PHY firmware on the
3337  *      adapter.
3338  */
3339 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3340 {
3341         u32 param, val;
3342         int ret;
3343
3344         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3345                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3346                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3347                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3348         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3349                               &param, &val);
3350         if (ret < 0)
3351                 return ret;
3352         *phy_fw_ver = val;
3353         return 0;
3354 }
3355
3356 /**
3357  *      t4_load_phy_fw - download port PHY firmware
3358  *      @adap: the adapter
3359  *      @win: the PCI-E Memory Window index to use for t4_memory_rw()
3360  *      @win_lock: the lock to use to guard the memory copy
3361  *      @phy_fw_version: function to check PHY firmware versions
3362  *      @phy_fw_data: the PHY firmware image to write
3363  *      @phy_fw_size: image size
3364  *
3365  *      Transfer the specified PHY firmware to the adapter.  If a non-NULL
3366  *      @phy_fw_version is supplied, then it will be used to determine if
3367  *      it's necessary to perform the transfer by comparing the version
3368  *      of any existing adapter PHY firmware with that of the passed in
3369  *      PHY firmware image.  If @win_lock is non-NULL then it will be used
3370  *      around the call to t4_memory_rw() which transfers the PHY firmware
3371  *      to the adapter.
3372  *
3373  *      A negative error number will be returned if an error occurs.  If
3374  *      version number support is available and there's no need to upgrade
3375  *      the firmware, 0 will be returned.  If firmware is successfully
3376  *      transferred to the adapter, 1 will be retured.
3377  *
3378  *      NOTE: some adapters only have local RAM to store the PHY firmware.  As
3379  *      a result, a RESET of the adapter would cause that RAM to lose its
3380  *      contents.  Thus, loading PHY firmware on such adapters must happen
3381  *      after any FW_RESET_CMDs ...
3382  */
3383 int t4_load_phy_fw(struct adapter *adap,
3384                    int win, spinlock_t *win_lock,
3385                    int (*phy_fw_version)(const u8 *, size_t),
3386                    const u8 *phy_fw_data, size_t phy_fw_size)
3387 {
3388         unsigned long mtype = 0, maddr = 0;
3389         u32 param, val;
3390         int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3391         int ret;
3392
3393         /* If we have version number support, then check to see if the adapter
3394          * already has up-to-date PHY firmware loaded.
3395          */
3396          if (phy_fw_version) {
3397                 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3398                 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3399                 if (ret < 0)
3400                         return ret;
3401
3402                 if (cur_phy_fw_ver >= new_phy_fw_vers) {
3403                         CH_WARN(adap, "PHY Firmware already up-to-date, "
3404                                 "version %#x\n", cur_phy_fw_ver);
3405                         return 0;
3406                 }
3407         }
3408
3409         /* Ask the firmware where it wants us to copy the PHY firmware image.
3410          * The size of the file requires a special version of the READ coommand
3411          * which will pass the file size via the values field in PARAMS_CMD and
3412          * retrieve the return value from firmware and place it in the same
3413          * buffer values
3414          */
3415         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3416                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3417                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3418                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3419         val = phy_fw_size;
3420         ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3421                                  &param, &val, 1);
3422         if (ret < 0)
3423                 return ret;
3424         mtype = val >> 8;
3425         maddr = (val & 0xff) << 16;
3426
3427         /* Copy the supplied PHY Firmware image to the adapter memory location
3428          * allocated by the adapter firmware.
3429          */
3430         if (win_lock)
3431                 spin_lock_bh(win_lock);
3432         ret = t4_memory_rw(adap, win, mtype, maddr,
3433                            phy_fw_size, (__be32 *)phy_fw_data,
3434                            T4_MEMORY_WRITE);
3435         if (win_lock)
3436                 spin_unlock_bh(win_lock);
3437         if (ret)
3438                 return ret;
3439
3440         /* Tell the firmware that the PHY firmware image has been written to
3441          * RAM and it can now start copying it over to the PHYs.  The chip
3442          * firmware will RESET the affected PHYs as part of this operation
3443          * leaving them running the new PHY firmware image.
3444          */
3445         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3446                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3447                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3448                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3449         ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3450                                     &param, &val, 30000);
3451
3452         /* If we have version number support, then check to see that the new
3453          * firmware got loaded properly.
3454          */
3455         if (phy_fw_version) {
3456                 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3457                 if (ret < 0)
3458                         return ret;
3459
3460                 if (cur_phy_fw_ver != new_phy_fw_vers) {
3461                         CH_WARN(adap, "PHY Firmware did not update: "
3462                                 "version on adapter %#x, "
3463                                 "version flashed %#x\n",
3464                                 cur_phy_fw_ver, new_phy_fw_vers);
3465                         return -ENXIO;
3466                 }
3467         }
3468
3469         return 1;
3470 }
3471
3472 /**
3473  *      t4_fwcache - firmware cache operation
3474  *      @adap: the adapter
3475  *      @op  : the operation (flush or flush and invalidate)
3476  */
3477 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3478 {
3479         struct fw_params_cmd c;
3480
3481         memset(&c, 0, sizeof(c));
3482         c.op_to_vfn =
3483                 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3484                             FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3485                             FW_PARAMS_CMD_PFN_V(adap->pf) |
3486                             FW_PARAMS_CMD_VFN_V(0));
3487         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3488         c.param[0].mnem =
3489                 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3490                             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3491         c.param[0].val = (__force __be32)op;
3492
3493         return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3494 }
3495
3496 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3497                         unsigned int *pif_req_wrptr,
3498                         unsigned int *pif_rsp_wrptr)
3499 {
3500         int i, j;
3501         u32 cfg, val, req, rsp;
3502
3503         cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3504         if (cfg & LADBGEN_F)
3505                 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3506
3507         val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3508         req = POLADBGWRPTR_G(val);
3509         rsp = PILADBGWRPTR_G(val);
3510         if (pif_req_wrptr)
3511                 *pif_req_wrptr = req;
3512         if (pif_rsp_wrptr)
3513                 *pif_rsp_wrptr = rsp;
3514
3515         for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3516                 for (j = 0; j < 6; j++) {
3517                         t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3518                                      PILADBGRDPTR_V(rsp));
3519                         *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3520                         *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3521                         req++;
3522                         rsp++;
3523                 }
3524                 req = (req + 2) & POLADBGRDPTR_M;
3525                 rsp = (rsp + 2) & PILADBGRDPTR_M;
3526         }
3527         t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3528 }
3529
3530 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3531 {
3532         u32 cfg;
3533         int i, j, idx;
3534
3535         cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3536         if (cfg & LADBGEN_F)
3537                 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3538
3539         for (i = 0; i < CIM_MALA_SIZE; i++) {
3540                 for (j = 0; j < 5; j++) {
3541                         idx = 8 * i + j;
3542                         t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3543                                      PILADBGRDPTR_V(idx));
3544                         *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3545                         *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3546                 }
3547         }
3548         t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3549 }
3550
3551 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3552 {
3553         unsigned int i, j;
3554
3555         for (i = 0; i < 8; i++) {
3556                 u32 *p = la_buf + i;
3557
3558                 t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3559                 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3560                 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3561                 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3562                         *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3563         }
3564 }
3565
3566 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
3567                      FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
3568                      FW_PORT_CAP_ANEG)
3569
3570 /**
3571  *      t4_link_l1cfg - apply link configuration to MAC/PHY
3572  *      @phy: the PHY to setup
3573  *      @mac: the MAC to setup
3574  *      @lc: the requested link configuration
3575  *
3576  *      Set up a port's MAC and PHY according to a desired link configuration.
3577  *      - If the PHY can auto-negotiate first decide what to advertise, then
3578  *        enable/disable auto-negotiation as desired, and reset.
3579  *      - If the PHY does not auto-negotiate just reset it.
3580  *      - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3581  *        otherwise do it later based on the outcome of auto-negotiation.
3582  */
3583 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3584                   struct link_config *lc)
3585 {
3586         struct fw_port_cmd c;
3587         unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO);
3588
3589         lc->link_ok = 0;
3590         if (lc->requested_fc & PAUSE_RX)
3591                 fc |= FW_PORT_CAP_FC_RX;
3592         if (lc->requested_fc & PAUSE_TX)
3593                 fc |= FW_PORT_CAP_FC_TX;
3594
3595         memset(&c, 0, sizeof(c));
3596         c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3597                                      FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3598                                      FW_PORT_CMD_PORTID_V(port));
3599         c.action_to_len16 =
3600                 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3601                             FW_LEN16(c));
3602
3603         if (!(lc->supported & FW_PORT_CAP_ANEG)) {
3604                 c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
3605                                              fc);
3606                 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3607         } else if (lc->autoneg == AUTONEG_DISABLE) {
3608                 c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
3609                 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3610         } else
3611                 c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
3612
3613         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3614 }
3615
3616 /**
3617  *      t4_restart_aneg - restart autonegotiation
3618  *      @adap: the adapter
3619  *      @mbox: mbox to use for the FW command
3620  *      @port: the port id
3621  *
3622  *      Restarts autonegotiation for the selected port.
3623  */
3624 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3625 {
3626         struct fw_port_cmd c;
3627
3628         memset(&c, 0, sizeof(c));
3629         c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3630                                      FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3631                                      FW_PORT_CMD_PORTID_V(port));
3632         c.action_to_len16 =
3633                 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3634                             FW_LEN16(c));
3635         c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3636         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3637 }
3638
3639 typedef void (*int_handler_t)(struct adapter *adap);
3640
3641 struct intr_info {
3642         unsigned int mask;       /* bits to check in interrupt status */
3643         const char *msg;         /* message to print or NULL */
3644         short stat_idx;          /* stat counter to increment or -1 */
3645         unsigned short fatal;    /* whether the condition reported is fatal */
3646         int_handler_t int_handler; /* platform-specific int handler */
3647 };
3648
3649 /**
3650  *      t4_handle_intr_status - table driven interrupt handler
3651  *      @adapter: the adapter that generated the interrupt
3652  *      @reg: the interrupt status register to process
3653  *      @acts: table of interrupt actions
3654  *
3655  *      A table driven interrupt handler that applies a set of masks to an
3656  *      interrupt status word and performs the corresponding actions if the
3657  *      interrupts described by the mask have occurred.  The actions include
3658  *      optionally emitting a warning or alert message.  The table is terminated
3659  *      by an entry specifying mask 0.  Returns the number of fatal interrupt
3660  *      conditions.
3661  */
3662 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3663                                  const struct intr_info *acts)
3664 {
3665         int fatal = 0;
3666         unsigned int mask = 0;
3667         unsigned int status = t4_read_reg(adapter, reg);
3668
3669         for ( ; acts->mask; ++acts) {
3670                 if (!(status & acts->mask))
3671                         continue;
3672                 if (acts->fatal) {
3673                         fatal++;
3674                         dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3675                                   status & acts->mask);
3676                 } else if (acts->msg && printk_ratelimit())
3677                         dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3678                                  status & acts->mask);
3679                 if (acts->int_handler)
3680                         acts->int_handler(adapter);
3681                 mask |= acts->mask;
3682         }
3683         status &= mask;
3684         if (status)                           /* clear processed interrupts */
3685                 t4_write_reg(adapter, reg, status);
3686         return fatal;
3687 }
3688
3689 /*
3690  * Interrupt handler for the PCIE module.
3691  */
3692 static void pcie_intr_handler(struct adapter *adapter)
3693 {
3694         static const struct intr_info sysbus_intr_info[] = {
3695                 { RNPP_F, "RXNP array parity error", -1, 1 },
3696                 { RPCP_F, "RXPC array parity error", -1, 1 },
3697                 { RCIP_F, "RXCIF array parity error", -1, 1 },
3698                 { RCCP_F, "Rx completions control array parity error", -1, 1 },
3699                 { RFTP_F, "RXFT array parity error", -1, 1 },
3700                 { 0 }
3701         };
3702         static const struct intr_info pcie_port_intr_info[] = {
3703                 { TPCP_F, "TXPC array parity error", -1, 1 },
3704                 { TNPP_F, "TXNP array parity error", -1, 1 },
3705                 { TFTP_F, "TXFT array parity error", -1, 1 },
3706                 { TCAP_F, "TXCA array parity error", -1, 1 },
3707                 { TCIP_F, "TXCIF array parity error", -1, 1 },
3708                 { RCAP_F, "RXCA array parity error", -1, 1 },
3709                 { OTDD_F, "outbound request TLP discarded", -1, 1 },
3710                 { RDPE_F, "Rx data parity error", -1, 1 },
3711                 { TDUE_F, "Tx uncorrectable data error", -1, 1 },
3712                 { 0 }
3713         };
3714         static const struct intr_info pcie_intr_info[] = {
3715                 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
3716                 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
3717                 { MSIDATAPERR_F, "MSI data parity error", -1, 1 },
3718                 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3719                 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3720                 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3721                 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3722                 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
3723                 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
3724                 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3725                 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
3726                 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3727                 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3728                 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
3729                 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3730                 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3731                 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
3732                 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3733                 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3734                 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3735                 { FIDPERR_F, "PCI FID parity error", -1, 1 },
3736                 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
3737                 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
3738                 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3739                 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
3740                 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
3741                 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
3742                 { PCIESINT_F, "PCI core secondary fault", -1, 1 },
3743                 { PCIEPINT_F, "PCI core primary fault", -1, 1 },
3744                 { UNXSPLCPLERR_F, "PCI unexpected split completion error",
3745                   -1, 0 },
3746                 { 0 }
3747         };
3748
3749         static struct intr_info t5_pcie_intr_info[] = {
3750                 { MSTGRPPERR_F, "Master Response Read Queue parity error",
3751                   -1, 1 },
3752                 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
3753                 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
3754                 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3755                 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3756                 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3757                 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3758                 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
3759                   -1, 1 },
3760                 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
3761                   -1, 1 },
3762                 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3763                 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
3764                 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3765                 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3766                 { DREQWRPERR_F, "PCI DMA channel write request parity error",
3767                   -1, 1 },
3768                 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3769                 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3770                 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
3771                 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3772                 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3773                 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3774                 { FIDPERR_F, "PCI FID parity error", -1, 1 },
3775                 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
3776                 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
3777                 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3778                 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
3779                   -1, 1 },
3780                 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
3781                   -1, 1 },
3782                 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
3783                 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
3784                 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3785                 { READRSPERR_F, "Outbound read error", -1, 0 },
3786                 { 0 }
3787         };
3788
3789         int fat;
3790
3791         if (is_t4(adapter->params.chip))
3792                 fat = t4_handle_intr_status(adapter,
3793                                 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
3794                                 sysbus_intr_info) +
3795                         t4_handle_intr_status(adapter,
3796                                         PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
3797                                         pcie_port_intr_info) +
3798                         t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
3799                                               pcie_intr_info);
3800         else
3801                 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
3802                                             t5_pcie_intr_info);
3803
3804         if (fat)
3805                 t4_fatal_err(adapter);
3806 }
3807
3808 /*
3809  * TP interrupt handler.
3810  */
3811 static void tp_intr_handler(struct adapter *adapter)
3812 {
3813         static const struct intr_info tp_intr_info[] = {
3814                 { 0x3fffffff, "TP parity error", -1, 1 },
3815                 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
3816                 { 0 }
3817         };
3818
3819         if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
3820                 t4_fatal_err(adapter);
3821 }
3822
3823 /*
3824  * SGE interrupt handler.
3825  */
3826 static void sge_intr_handler(struct adapter *adapter)
3827 {
3828         u64 v;
3829         u32 err;
3830
3831         static const struct intr_info sge_intr_info[] = {
3832                 { ERR_CPL_EXCEED_IQE_SIZE_F,
3833                   "SGE received CPL exceeding IQE size", -1, 1 },
3834                 { ERR_INVALID_CIDX_INC_F,
3835                   "SGE GTS CIDX increment too large", -1, 0 },
3836                 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
3837                 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
3838                 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
3839                   "SGE IQID > 1023 received CPL for FL", -1, 0 },
3840                 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
3841                   0 },
3842                 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
3843                   0 },
3844                 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
3845                   0 },
3846                 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
3847                   0 },
3848                 { ERR_ING_CTXT_PRIO_F,
3849                   "SGE too many priority ingress contexts", -1, 0 },
3850                 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
3851                 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
3852                 { 0 }
3853         };
3854
3855         static struct intr_info t4t5_sge_intr_info[] = {
3856                 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
3857                 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
3858                 { ERR_EGR_CTXT_PRIO_F,
3859                   "SGE too many priority egress contexts", -1, 0 },
3860                 { 0 }
3861         };
3862
3863         v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
3864                 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
3865         if (v) {
3866                 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
3867                                 (unsigned long long)v);
3868                 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
3869                 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
3870         }
3871
3872         v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
3873         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
3874                 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
3875                                            t4t5_sge_intr_info);
3876
3877         err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
3878         if (err & ERROR_QID_VALID_F) {
3879                 dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
3880                         ERROR_QID_G(err));
3881                 if (err & UNCAPTURED_ERROR_F)
3882                         dev_err(adapter->pdev_dev,
3883                                 "SGE UNCAPTURED_ERROR set (clearing)\n");
3884                 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
3885                              UNCAPTURED_ERROR_F);
3886         }
3887
3888         if (v != 0)
3889                 t4_fatal_err(adapter);
3890 }
3891
3892 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
3893                       OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
3894 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
3895                       IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
3896
3897 /*
3898  * CIM interrupt handler.
3899  */
3900 static void cim_intr_handler(struct adapter *adapter)
3901 {
3902         static const struct intr_info cim_intr_info[] = {
3903                 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
3904                 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
3905                 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
3906                 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
3907                 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
3908                 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
3909                 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
3910                 { 0 }
3911         };
3912         static const struct intr_info cim_upintr_info[] = {
3913                 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
3914                 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
3915                 { ILLWRINT_F, "CIM illegal write", -1, 1 },
3916                 { ILLRDINT_F, "CIM illegal read", -1, 1 },
3917                 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
3918                 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
3919                 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
3920                 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
3921                 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
3922                 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
3923                 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
3924                 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
3925                 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
3926                 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
3927                 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
3928                 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
3929                 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
3930                 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
3931                 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
3932                 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
3933                 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
3934                 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
3935                 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
3936                 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
3937                 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
3938                 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
3939                 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
3940                 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
3941                 { 0 }
3942         };
3943
3944         int fat;
3945
3946         if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F)
3947                 t4_report_fw_error(adapter);
3948
3949         fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
3950                                     cim_intr_info) +
3951               t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
3952                                     cim_upintr_info);
3953         if (fat)
3954                 t4_fatal_err(adapter);
3955 }
3956
3957 /*
3958  * ULP RX interrupt handler.
3959  */
3960 static void ulprx_intr_handler(struct adapter *adapter)
3961 {
3962         static const struct intr_info ulprx_intr_info[] = {
3963                 { 0x1800000, "ULPRX context error", -1, 1 },
3964                 { 0x7fffff, "ULPRX parity error", -1, 1 },
3965                 { 0 }
3966         };
3967
3968         if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
3969                 t4_fatal_err(adapter);
3970 }
3971
3972 /*
3973  * ULP TX interrupt handler.
3974  */
3975 static void ulptx_intr_handler(struct adapter *adapter)
3976 {
3977         static const struct intr_info ulptx_intr_info[] = {
3978                 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
3979                   0 },
3980                 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
3981                   0 },
3982                 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
3983                   0 },
3984                 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
3985                   0 },
3986                 { 0xfffffff, "ULPTX parity error", -1, 1 },
3987                 { 0 }
3988         };
3989
3990         if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
3991                 t4_fatal_err(adapter);
3992 }
3993
3994 /*
3995  * PM TX interrupt handler.
3996  */
3997 static void pmtx_intr_handler(struct adapter *adapter)
3998 {
3999         static const struct intr_info pmtx_intr_info[] = {
4000                 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4001                 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4002                 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4003                 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4004                 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4005                 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4006                 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4007                   -1, 1 },
4008                 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4009                 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4010                 { 0 }
4011         };
4012
4013         if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4014                 t4_fatal_err(adapter);
4015 }
4016
4017 /*
4018  * PM RX interrupt handler.
4019  */
4020 static void pmrx_intr_handler(struct adapter *adapter)
4021 {
4022         static const struct intr_info pmrx_intr_info[] = {
4023                 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4024                 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4025                 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4026                 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4027                   -1, 1 },
4028                 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4029                 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4030                 { 0 }
4031         };
4032
4033         if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4034                 t4_fatal_err(adapter);
4035 }
4036
4037 /*
4038  * CPL switch interrupt handler.
4039  */
4040 static void cplsw_intr_handler(struct adapter *adapter)
4041 {
4042         static const struct intr_info cplsw_intr_info[] = {
4043                 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4044                 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4045                 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4046                 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4047                 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4048                 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4049                 { 0 }
4050         };
4051
4052         if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4053                 t4_fatal_err(adapter);
4054 }
4055
4056 /*
4057  * LE interrupt handler.
4058  */
4059 static void le_intr_handler(struct adapter *adap)
4060 {
4061         enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4062         static const struct intr_info le_intr_info[] = {
4063                 { LIPMISS_F, "LE LIP miss", -1, 0 },
4064                 { LIP0_F, "LE 0 LIP error", -1, 0 },
4065                 { PARITYERR_F, "LE parity error", -1, 1 },
4066                 { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4067                 { REQQPARERR_F, "LE request queue parity error", -1, 1 },
4068                 { 0 }
4069         };
4070
4071         static struct intr_info t6_le_intr_info[] = {
4072                 { T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4073                 { T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4074                 { TCAMINTPERR_F, "LE parity error", -1, 1 },
4075                 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4076                 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4077                 { 0 }
4078         };
4079
4080         if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4081                                   (chip <= CHELSIO_T5) ?
4082                                   le_intr_info : t6_le_intr_info))
4083                 t4_fatal_err(adap);
4084 }
4085
4086 /*
4087  * MPS interrupt handler.
4088  */
4089 static void mps_intr_handler(struct adapter *adapter)
4090 {
4091         static const struct intr_info mps_rx_intr_info[] = {
4092                 { 0xffffff, "MPS Rx parity error", -1, 1 },
4093                 { 0 }
4094         };
4095         static const struct intr_info mps_tx_intr_info[] = {
4096                 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4097                 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4098                 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4099                   -1, 1 },
4100                 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4101                   -1, 1 },
4102                 { BUBBLE_F, "MPS Tx underflow", -1, 1 },
4103                 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4104                 { FRMERR_F, "MPS Tx framing error", -1, 1 },
4105                 { 0 }
4106         };
4107         static const struct intr_info mps_trc_intr_info[] = {
4108                 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4109                 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4110                   -1, 1 },
4111                 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4112                 { 0 }
4113         };
4114         static const struct intr_info mps_stat_sram_intr_info[] = {
4115                 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4116                 { 0 }
4117         };
4118         static const struct intr_info mps_stat_tx_intr_info[] = {
4119                 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4120                 { 0 }
4121         };
4122         static const struct intr_info mps_stat_rx_intr_info[] = {
4123                 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4124                 { 0 }
4125         };
4126         static const struct intr_info mps_cls_intr_info[] = {
4127                 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4128                 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4129                 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4130                 { 0 }
4131         };
4132
4133         int fat;
4134
4135         fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4136                                     mps_rx_intr_info) +
4137               t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4138                                     mps_tx_intr_info) +
4139               t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4140                                     mps_trc_intr_info) +
4141               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4142                                     mps_stat_sram_intr_info) +
4143               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4144                                     mps_stat_tx_intr_info) +
4145               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4146                                     mps_stat_rx_intr_info) +
4147               t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4148                                     mps_cls_intr_info);
4149
4150         t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4151         t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4152         if (fat)
4153                 t4_fatal_err(adapter);
4154 }
4155
4156 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4157                       ECC_UE_INT_CAUSE_F)
4158
4159 /*
4160  * EDC/MC interrupt handler.
4161  */
4162 static void mem_intr_handler(struct adapter *adapter, int idx)
4163 {
4164         static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4165
4166         unsigned int addr, cnt_addr, v;
4167
4168         if (idx <= MEM_EDC1) {
4169                 addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4170                 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4171         } else if (idx == MEM_MC) {
4172                 if (is_t4(adapter->params.chip)) {
4173                         addr = MC_INT_CAUSE_A;
4174                         cnt_addr = MC_ECC_STATUS_A;
4175                 } else {
4176                         addr = MC_P_INT_CAUSE_A;
4177                         cnt_addr = MC_P_ECC_STATUS_A;
4178                 }
4179         } else {
4180                 addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4181                 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4182         }
4183
4184         v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4185         if (v & PERR_INT_CAUSE_F)
4186                 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4187                           name[idx]);
4188         if (v & ECC_CE_INT_CAUSE_F) {
4189                 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4190
4191                 t4_edc_err_read(adapter, idx);
4192
4193                 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4194                 if (printk_ratelimit())
4195                         dev_warn(adapter->pdev_dev,
4196                                  "%u %s correctable ECC data error%s\n",
4197                                  cnt, name[idx], cnt > 1 ? "s" : "");
4198         }
4199         if (v & ECC_UE_INT_CAUSE_F)
4200                 dev_alert(adapter->pdev_dev,
4201                           "%s uncorrectable ECC data error\n", name[idx]);
4202
4203         t4_write_reg(adapter, addr, v);
4204         if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4205                 t4_fatal_err(adapter);
4206 }
4207
4208 /*
4209  * MA interrupt handler.
4210  */
4211 static void ma_intr_handler(struct adapter *adap)
4212 {
4213         u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4214
4215         if (status & MEM_PERR_INT_CAUSE_F) {
4216                 dev_alert(adap->pdev_dev,
4217                           "MA parity error, parity status %#x\n",
4218                           t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4219                 if (is_t5(adap->params.chip))
4220                         dev_alert(adap->pdev_dev,
4221                                   "MA parity error, parity status %#x\n",
4222                                   t4_read_reg(adap,
4223                                               MA_PARITY_ERROR_STATUS2_A));
4224         }
4225         if (status & MEM_WRAP_INT_CAUSE_F) {
4226                 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4227                 dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4228                           "client %u to address %#x\n",
4229                           MEM_WRAP_CLIENT_NUM_G(v),
4230                           MEM_WRAP_ADDRESS_G(v) << 4);
4231         }
4232         t4_write_reg(adap, MA_INT_CAUSE_A, status);
4233         t4_fatal_err(adap);
4234 }
4235
4236 /*
4237  * SMB interrupt handler.
4238  */
4239 static void smb_intr_handler(struct adapter *adap)
4240 {
4241         static const struct intr_info smb_intr_info[] = {
4242                 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4243                 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4244                 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4245                 { 0 }
4246         };
4247
4248         if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4249                 t4_fatal_err(adap);
4250 }
4251
4252 /*
4253  * NC-SI interrupt handler.
4254  */
4255 static void ncsi_intr_handler(struct adapter *adap)
4256 {
4257         static const struct intr_info ncsi_intr_info[] = {
4258                 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4259                 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4260                 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4261                 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4262                 { 0 }
4263         };
4264
4265         if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4266                 t4_fatal_err(adap);
4267 }
4268
4269 /*
4270  * XGMAC interrupt handler.
4271  */
4272 static void xgmac_intr_handler(struct adapter *adap, int port)
4273 {
4274         u32 v, int_cause_reg;
4275
4276         if (is_t4(adap->params.chip))
4277                 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4278         else
4279                 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4280
4281         v = t4_read_reg(adap, int_cause_reg);
4282
4283         v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4284         if (!v)
4285                 return;
4286
4287         if (v & TXFIFO_PRTY_ERR_F)
4288                 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4289                           port);
4290         if (v & RXFIFO_PRTY_ERR_F)
4291                 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4292                           port);
4293         t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4294         t4_fatal_err(adap);
4295 }
4296
4297 /*
4298  * PL interrupt handler.
4299  */
4300 static void pl_intr_handler(struct adapter *adap)
4301 {
4302         static const struct intr_info pl_intr_info[] = {
4303                 { FATALPERR_F, "T4 fatal parity error", -1, 1 },
4304                 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4305                 { 0 }
4306         };
4307
4308         if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4309                 t4_fatal_err(adap);
4310 }
4311
4312 #define PF_INTR_MASK (PFSW_F)
4313 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4314                 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4315                 CPL_SWITCH_F | SGE_F | ULP_TX_F)
4316
4317 /**
4318  *      t4_slow_intr_handler - control path interrupt handler
4319  *      @adapter: the adapter
4320  *
4321  *      T4 interrupt handler for non-data global interrupt events, e.g., errors.
4322  *      The designation 'slow' is because it involves register reads, while
4323  *      data interrupts typically don't involve any MMIOs.
4324  */
4325 int t4_slow_intr_handler(struct adapter *adapter)
4326 {
4327         u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
4328
4329         if (!(cause & GLBL_INTR_MASK))
4330                 return 0;
4331         if (cause & CIM_F)
4332                 cim_intr_handler(adapter);
4333         if (cause & MPS_F)
4334                 mps_intr_handler(adapter);
4335         if (cause & NCSI_F)
4336                 ncsi_intr_handler(adapter);
4337         if (cause & PL_F)
4338                 pl_intr_handler(adapter);
4339         if (cause & SMB_F)
4340                 smb_intr_handler(adapter);
4341         if (cause & XGMAC0_F)
4342                 xgmac_intr_handler(adapter, 0);
4343         if (cause & XGMAC1_F)
4344                 xgmac_intr_handler(adapter, 1);
4345         if (cause & XGMAC_KR0_F)
4346                 xgmac_intr_handler(adapter, 2);
4347         if (cause & XGMAC_KR1_F)
4348                 xgmac_intr_handler(adapter, 3);
4349         if (cause & PCIE_F)
4350                 pcie_intr_handler(adapter);
4351         if (cause & MC_F)
4352                 mem_intr_handler(adapter, MEM_MC);
4353         if (is_t5(adapter->params.chip) && (cause & MC1_F))
4354                 mem_intr_handler(adapter, MEM_MC1);
4355         if (cause & EDC0_F)
4356                 mem_intr_handler(adapter, MEM_EDC0);
4357         if (cause & EDC1_F)
4358                 mem_intr_handler(adapter, MEM_EDC1);
4359         if (cause & LE_F)
4360                 le_intr_handler(adapter);
4361         if (cause & TP_F)
4362                 tp_intr_handler(adapter);
4363         if (cause & MA_F)
4364                 ma_intr_handler(adapter);
4365         if (cause & PM_TX_F)
4366                 pmtx_intr_handler(adapter);
4367         if (cause & PM_RX_F)
4368                 pmrx_intr_handler(adapter);
4369         if (cause & ULP_RX_F)
4370                 ulprx_intr_handler(adapter);
4371         if (cause & CPL_SWITCH_F)
4372                 cplsw_intr_handler(adapter);
4373         if (cause & SGE_F)
4374                 sge_intr_handler(adapter);
4375         if (cause & ULP_TX_F)
4376                 ulptx_intr_handler(adapter);
4377
4378         /* Clear the interrupts just processed for which we are the master. */
4379         t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
4380         (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
4381         return 1;
4382 }
4383
4384 /**
4385  *      t4_intr_enable - enable interrupts
4386  *      @adapter: the adapter whose interrupts should be enabled
4387  *
4388  *      Enable PF-specific interrupts for the calling function and the top-level
4389  *      interrupt concentrator for global interrupts.  Interrupts are already
4390  *      enabled at each module, here we just enable the roots of the interrupt
4391  *      hierarchies.
4392  *
4393  *      Note: this function should be called only when the driver manages
4394  *      non PF-specific interrupts from the various HW modules.  Only one PCI
4395  *      function at a time should be doing this.
4396  */
4397 void t4_intr_enable(struct adapter *adapter)
4398 {
4399         u32 val = 0;
4400         u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4401         u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4402                         SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4403
4404         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4405                 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
4406         t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
4407                      ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
4408                      ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
4409                      ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
4410                      ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
4411                      ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
4412                      DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
4413         t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
4414         t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
4415 }
4416
4417 /**
4418  *      t4_intr_disable - disable interrupts
4419  *      @adapter: the adapter whose interrupts should be disabled
4420  *
4421  *      Disable interrupts.  We only disable the top-level interrupt
4422  *      concentrators.  The caller must be a PCI function managing global
4423  *      interrupts.
4424  */
4425 void t4_intr_disable(struct adapter *adapter)
4426 {
4427         u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4428         u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4429                         SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4430
4431         t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
4432         t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
4433 }
4434
4435 /**
4436  *      hash_mac_addr - return the hash value of a MAC address
4437  *      @addr: the 48-bit Ethernet MAC address
4438  *
4439  *      Hashes a MAC address according to the hash function used by HW inexact
4440  *      (hash) address matching.
4441  */
4442 static int hash_mac_addr(const u8 *addr)
4443 {
4444         u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
4445         u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
4446         a ^= b;
4447         a ^= (a >> 12);
4448         a ^= (a >> 6);
4449         return a & 0x3f;
4450 }
4451
4452 /**
4453  *      t4_config_rss_range - configure a portion of the RSS mapping table
4454  *      @adapter: the adapter
4455  *      @mbox: mbox to use for the FW command
4456  *      @viid: virtual interface whose RSS subtable is to be written
4457  *      @start: start entry in the table to write
4458  *      @n: how many table entries to write
4459  *      @rspq: values for the response queue lookup table
4460  *      @nrspq: number of values in @rspq
4461  *
4462  *      Programs the selected part of the VI's RSS mapping table with the
4463  *      provided values.  If @nrspq < @n the supplied values are used repeatedly
4464  *      until the full table range is populated.
4465  *
4466  *      The caller must ensure the values in @rspq are in the range allowed for
4467  *      @viid.
4468  */
4469 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4470                         int start, int n, const u16 *rspq, unsigned int nrspq)
4471 {
4472         int ret;
4473         const u16 *rsp = rspq;
4474         const u16 *rsp_end = rspq + nrspq;
4475         struct fw_rss_ind_tbl_cmd cmd;
4476
4477         memset(&cmd, 0, sizeof(cmd));
4478         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
4479                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4480                                FW_RSS_IND_TBL_CMD_VIID_V(viid));
4481         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4482
4483         /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
4484         while (n > 0) {
4485                 int nq = min(n, 32);
4486                 __be32 *qp = &cmd.iq0_to_iq2;
4487
4488                 cmd.niqid = cpu_to_be16(nq);
4489                 cmd.startidx = cpu_to_be16(start);
4490
4491                 start += nq;
4492                 n -= nq;
4493
4494                 while (nq > 0) {
4495                         unsigned int v;
4496
4497                         v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
4498                         if (++rsp >= rsp_end)
4499                                 rsp = rspq;
4500                         v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
4501                         if (++rsp >= rsp_end)
4502                                 rsp = rspq;
4503                         v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
4504                         if (++rsp >= rsp_end)
4505                                 rsp = rspq;
4506
4507                         *qp++ = cpu_to_be32(v);
4508                         nq -= 3;
4509                 }
4510
4511                 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4512                 if (ret)
4513                         return ret;
4514         }
4515         return 0;
4516 }
4517
4518 /**
4519  *      t4_config_glbl_rss - configure the global RSS mode
4520  *      @adapter: the adapter
4521  *      @mbox: mbox to use for the FW command
4522  *      @mode: global RSS mode
4523  *      @flags: mode-specific flags
4524  *
4525  *      Sets the global RSS mode.
4526  */
4527 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4528                        unsigned int flags)
4529 {
4530         struct fw_rss_glb_config_cmd c;
4531
4532         memset(&c, 0, sizeof(c));
4533         c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
4534                                     FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4535         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4536         if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4537                 c.u.manual.mode_pkd =
4538                         cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4539         } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4540                 c.u.basicvirtual.mode_pkd =
4541                         cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4542                 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4543         } else
4544                 return -EINVAL;
4545         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4546 }
4547
4548 /**
4549  *      t4_config_vi_rss - configure per VI RSS settings
4550  *      @adapter: the adapter
4551  *      @mbox: mbox to use for the FW command
4552  *      @viid: the VI id
4553  *      @flags: RSS flags
4554  *      @defq: id of the default RSS queue for the VI.
4555  *
4556  *      Configures VI-specific RSS properties.
4557  */
4558 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4559                      unsigned int flags, unsigned int defq)
4560 {
4561         struct fw_rss_vi_config_cmd c;
4562
4563         memset(&c, 0, sizeof(c));
4564         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
4565                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4566                                    FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
4567         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4568         c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4569                                         FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
4570         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4571 }
4572
4573 /* Read an RSS table row */
4574 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4575 {
4576         t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
4577         return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
4578                                    5, 0, val);
4579 }
4580
4581 /**
4582  *      t4_read_rss - read the contents of the RSS mapping table
4583  *      @adapter: the adapter
4584  *      @map: holds the contents of the RSS mapping table
4585  *
4586  *      Reads the contents of the RSS hash->queue mapping table.
4587  */
4588 int t4_read_rss(struct adapter *adapter, u16 *map)
4589 {
4590         u32 val;
4591         int i, ret;
4592
4593         for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4594                 ret = rd_rss_row(adapter, i, &val);
4595                 if (ret)
4596                         return ret;
4597                 *map++ = LKPTBLQUEUE0_G(val);
4598                 *map++ = LKPTBLQUEUE1_G(val);
4599         }
4600         return 0;
4601 }
4602
4603 static unsigned int t4_use_ldst(struct adapter *adap)
4604 {
4605         return (adap->flags & FW_OK) || !adap->use_bd;
4606 }
4607
4608 /**
4609  *      t4_fw_tp_pio_rw - Access TP PIO through LDST
4610  *      @adap: the adapter
4611  *      @vals: where the indirect register values are stored/written
4612  *      @nregs: how many indirect registers to read/write
4613  *      @start_idx: index of first indirect register to read/write
4614  *      @rw: Read (1) or Write (0)
4615  *
4616  *      Access TP PIO registers through LDST
4617  */
4618 static void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
4619                             unsigned int start_index, unsigned int rw)
4620 {
4621         int ret, i;
4622         int cmd = FW_LDST_ADDRSPC_TP_PIO;
4623         struct fw_ldst_cmd c;
4624
4625         for (i = 0 ; i < nregs; i++) {
4626                 memset(&c, 0, sizeof(c));
4627                 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4628                                                 FW_CMD_REQUEST_F |
4629                                                 (rw ? FW_CMD_READ_F :
4630                                                       FW_CMD_WRITE_F) |
4631                                                 FW_LDST_CMD_ADDRSPACE_V(cmd));
4632                 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4633
4634                 c.u.addrval.addr = cpu_to_be32(start_index + i);
4635                 c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
4636                 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4637                 if (!ret && rw)
4638                         vals[i] = be32_to_cpu(c.u.addrval.val);
4639         }
4640 }
4641
4642 /**
4643  *      t4_read_rss_key - read the global RSS key
4644  *      @adap: the adapter
4645  *      @key: 10-entry array holding the 320-bit RSS key
4646  *
4647  *      Reads the global 320-bit RSS key.
4648  */
4649 void t4_read_rss_key(struct adapter *adap, u32 *key)
4650 {
4651         if (t4_use_ldst(adap))
4652                 t4_fw_tp_pio_rw(adap, key, 10, TP_RSS_SECRET_KEY0_A, 1);
4653         else
4654                 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4655                                  TP_RSS_SECRET_KEY0_A);
4656 }
4657
4658 /**
4659  *      t4_write_rss_key - program one of the RSS keys
4660  *      @adap: the adapter
4661  *      @key: 10-entry array holding the 320-bit RSS key
4662  *      @idx: which RSS key to write
4663  *
4664  *      Writes one of the RSS keys with the given 320-bit value.  If @idx is
4665  *      0..15 the corresponding entry in the RSS key table is written,
4666  *      otherwise the global RSS key is written.
4667  */
4668 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
4669 {
4670         u8 rss_key_addr_cnt = 16;
4671         u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
4672
4673         /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
4674          * allows access to key addresses 16-63 by using KeyWrAddrX
4675          * as index[5:4](upper 2) into key table
4676          */
4677         if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
4678             (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
4679                 rss_key_addr_cnt = 32;
4680
4681         if (t4_use_ldst(adap))
4682                 t4_fw_tp_pio_rw(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, 0);
4683         else
4684                 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4685                                   TP_RSS_SECRET_KEY0_A);
4686
4687         if (idx >= 0 && idx < rss_key_addr_cnt) {
4688                 if (rss_key_addr_cnt > 16)
4689                         t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4690                                      KEYWRADDRX_V(idx >> 4) |
4691                                      T6_VFWRADDR_V(idx) | KEYWREN_F);
4692                 else
4693                         t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4694                                      KEYWRADDR_V(idx) | KEYWREN_F);
4695         }
4696 }
4697
4698 /**
4699  *      t4_read_rss_pf_config - read PF RSS Configuration Table
4700  *      @adapter: the adapter
4701  *      @index: the entry in the PF RSS table to read
4702  *      @valp: where to store the returned value
4703  *
4704  *      Reads the PF RSS Configuration Table at the specified index and returns
4705  *      the value found there.
4706  */
4707 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
4708                            u32 *valp)
4709 {
4710         if (t4_use_ldst(adapter))
4711                 t4_fw_tp_pio_rw(adapter, valp, 1,
4712                                 TP_RSS_PF0_CONFIG_A + index, 1);
4713         else
4714                 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4715                                  valp, 1, TP_RSS_PF0_CONFIG_A + index);
4716 }
4717
4718 /**
4719  *      t4_read_rss_vf_config - read VF RSS Configuration Table
4720  *      @adapter: the adapter
4721  *      @index: the entry in the VF RSS table to read
4722  *      @vfl: where to store the returned VFL
4723  *      @vfh: where to store the returned VFH
4724  *
4725  *      Reads the VF RSS Configuration Table at the specified index and returns
4726  *      the (VFL, VFH) values found there.
4727  */
4728 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
4729                            u32 *vfl, u32 *vfh)
4730 {
4731         u32 vrt, mask, data;
4732
4733         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
4734                 mask = VFWRADDR_V(VFWRADDR_M);
4735                 data = VFWRADDR_V(index);
4736         } else {
4737                  mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
4738                  data = T6_VFWRADDR_V(index);
4739         }
4740
4741         /* Request that the index'th VF Table values be read into VFL/VFH.
4742          */
4743         vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
4744         vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
4745         vrt |= data | VFRDEN_F;
4746         t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
4747
4748         /* Grab the VFL/VFH values ...
4749          */
4750         if (t4_use_ldst(adapter)) {
4751                 t4_fw_tp_pio_rw(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, 1);
4752                 t4_fw_tp_pio_rw(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, 1);
4753         } else {
4754                 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4755                                  vfl, 1, TP_RSS_VFL_CONFIG_A);
4756                 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4757                                  vfh, 1, TP_RSS_VFH_CONFIG_A);
4758         }
4759 }
4760
4761 /**
4762  *      t4_read_rss_pf_map - read PF RSS Map
4763  *      @adapter: the adapter
4764  *
4765  *      Reads the PF RSS Map register and returns its value.
4766  */
4767 u32 t4_read_rss_pf_map(struct adapter *adapter)
4768 {
4769         u32 pfmap;
4770
4771         if (t4_use_ldst(adapter))
4772                 t4_fw_tp_pio_rw(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, 1);
4773         else
4774                 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4775                                  &pfmap, 1, TP_RSS_PF_MAP_A);
4776         return pfmap;
4777 }
4778
4779 /**
4780  *      t4_read_rss_pf_mask - read PF RSS Mask
4781  *      @adapter: the adapter
4782  *
4783  *      Reads the PF RSS Mask register and returns its value.
4784  */
4785 u32 t4_read_rss_pf_mask(struct adapter *adapter)
4786 {
4787         u32 pfmask;
4788
4789         if (t4_use_ldst(adapter))
4790                 t4_fw_tp_pio_rw(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, 1);
4791         else
4792                 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4793                                  &pfmask, 1, TP_RSS_PF_MSK_A);
4794         return pfmask;
4795 }
4796
4797 /**
4798  *      t4_tp_get_tcp_stats - read TP's TCP MIB counters
4799  *      @adap: the adapter
4800  *      @v4: holds the TCP/IP counter values
4801  *      @v6: holds the TCP/IPv6 counter values
4802  *
4803  *      Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
4804  *      Either @v4 or @v6 may be %NULL to skip the corresponding stats.
4805  */
4806 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
4807                          struct tp_tcp_stats *v6)
4808 {
4809         u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
4810
4811 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
4812 #define STAT(x)     val[STAT_IDX(x)]
4813 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
4814
4815         if (v4) {
4816                 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4817                                  ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A);
4818                 v4->tcp_out_rsts = STAT(OUT_RST);
4819                 v4->tcp_in_segs  = STAT64(IN_SEG);
4820                 v4->tcp_out_segs = STAT64(OUT_SEG);
4821                 v4->tcp_retrans_segs = STAT64(RXT_SEG);
4822         }
4823         if (v6) {
4824                 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4825                                  ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A);
4826                 v6->tcp_out_rsts = STAT(OUT_RST);
4827                 v6->tcp_in_segs  = STAT64(IN_SEG);
4828                 v6->tcp_out_segs = STAT64(OUT_SEG);
4829                 v6->tcp_retrans_segs = STAT64(RXT_SEG);
4830         }
4831 #undef STAT64
4832 #undef STAT
4833 #undef STAT_IDX
4834 }
4835
4836 /**
4837  *      t4_tp_get_err_stats - read TP's error MIB counters
4838  *      @adap: the adapter
4839  *      @st: holds the counter values
4840  *
4841  *      Returns the values of TP's error counters.
4842  */
4843 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
4844 {
4845         int nchan = adap->params.arch.nchan;
4846
4847         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4848                          st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A);
4849         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4850                          st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A);
4851         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4852                          st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A);
4853         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4854                          st->tnl_cong_drops, nchan, TP_MIB_TNL_CNG_DROP_0_A);
4855         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4856                          st->ofld_chan_drops, nchan, TP_MIB_OFD_CHN_DROP_0_A);
4857         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4858                          st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A);
4859         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4860                          st->ofld_vlan_drops, nchan, TP_MIB_OFD_VLN_DROP_0_A);
4861         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4862                          st->tcp6_in_errs, nchan, TP_MIB_TCP_V6IN_ERR_0_A);
4863
4864         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4865                          &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A);
4866 }
4867
4868 /**
4869  *      t4_tp_get_cpl_stats - read TP's CPL MIB counters
4870  *      @adap: the adapter
4871  *      @st: holds the counter values
4872  *
4873  *      Returns the values of TP's CPL counters.
4874  */
4875 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
4876 {
4877         int nchan = adap->params.arch.nchan;
4878
4879         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req,
4880                          nchan, TP_MIB_CPL_IN_REQ_0_A);
4881         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp,
4882                          nchan, TP_MIB_CPL_OUT_RSP_0_A);
4883
4884 }
4885
4886 /**
4887  *      t4_tp_get_rdma_stats - read TP's RDMA MIB counters
4888  *      @adap: the adapter
4889  *      @st: holds the counter values
4890  *
4891  *      Returns the values of TP's RDMA counters.
4892  */
4893 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
4894 {
4895         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt,
4896                          2, TP_MIB_RQE_DFR_PKT_A);
4897 }
4898
4899 /**
4900  *      t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
4901  *      @adap: the adapter
4902  *      @idx: the port index
4903  *      @st: holds the counter values
4904  *
4905  *      Returns the values of TP's FCoE counters for the selected port.
4906  */
4907 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
4908                        struct tp_fcoe_stats *st)
4909 {
4910         u32 val[2];
4911
4912         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp,
4913                          1, TP_MIB_FCOE_DDP_0_A + idx);
4914         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop,
4915                          1, TP_MIB_FCOE_DROP_0_A + idx);
4916         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4917                          2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx);
4918         st->octets_ddp = ((u64)val[0] << 32) | val[1];
4919 }
4920
4921 /**
4922  *      t4_get_usm_stats - read TP's non-TCP DDP MIB counters
4923  *      @adap: the adapter
4924  *      @st: holds the counter values
4925  *
4926  *      Returns the values of TP's counters for non-TCP directly-placed packets.
4927  */
4928 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
4929 {
4930         u32 val[4];
4931
4932         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4,
4933                          TP_MIB_USM_PKTS_A);
4934         st->frames = val[0];
4935         st->drops = val[1];
4936         st->octets = ((u64)val[2] << 32) | val[3];
4937 }
4938
4939 /**
4940  *      t4_read_mtu_tbl - returns the values in the HW path MTU table
4941  *      @adap: the adapter
4942  *      @mtus: where to store the MTU values
4943  *      @mtu_log: where to store the MTU base-2 log (may be %NULL)
4944  *
4945  *      Reads the HW path MTU table.
4946  */
4947 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
4948 {
4949         u32 v;
4950         int i;
4951
4952         for (i = 0; i < NMTUS; ++i) {
4953                 t4_write_reg(adap, TP_MTU_TABLE_A,
4954                              MTUINDEX_V(0xff) | MTUVALUE_V(i));
4955                 v = t4_read_reg(adap, TP_MTU_TABLE_A);
4956                 mtus[i] = MTUVALUE_G(v);
4957                 if (mtu_log)
4958                         mtu_log[i] = MTUWIDTH_G(v);
4959         }
4960 }
4961
4962 /**
4963  *      t4_read_cong_tbl - reads the congestion control table
4964  *      @adap: the adapter
4965  *      @incr: where to store the alpha values
4966  *
4967  *      Reads the additive increments programmed into the HW congestion
4968  *      control table.
4969  */
4970 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
4971 {
4972         unsigned int mtu, w;
4973
4974         for (mtu = 0; mtu < NMTUS; ++mtu)
4975                 for (w = 0; w < NCCTRL_WIN; ++w) {
4976                         t4_write_reg(adap, TP_CCTRL_TABLE_A,
4977                                      ROWINDEX_V(0xffff) | (mtu << 5) | w);
4978                         incr[mtu][w] = (u16)t4_read_reg(adap,
4979                                                 TP_CCTRL_TABLE_A) & 0x1fff;
4980                 }
4981 }
4982
4983 /**
4984  *      t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
4985  *      @adap: the adapter
4986  *      @addr: the indirect TP register address
4987  *      @mask: specifies the field within the register to modify
4988  *      @val: new value for the field
4989  *
4990  *      Sets a field of an indirect TP register to the given value.
4991  */
4992 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
4993                             unsigned int mask, unsigned int val)
4994 {
4995         t4_write_reg(adap, TP_PIO_ADDR_A, addr);
4996         val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
4997         t4_write_reg(adap, TP_PIO_DATA_A, val);
4998 }
4999
5000 /**
5001  *      init_cong_ctrl - initialize congestion control parameters
5002  *      @a: the alpha values for congestion control
5003  *      @b: the beta values for congestion control
5004  *
5005  *      Initialize the congestion control parameters.
5006  */
5007 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5008 {
5009         a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5010         a[9] = 2;
5011         a[10] = 3;
5012         a[11] = 4;
5013         a[12] = 5;
5014         a[13] = 6;
5015         a[14] = 7;
5016         a[15] = 8;
5017         a[16] = 9;
5018         a[17] = 10;
5019         a[18] = 14;
5020         a[19] = 17;
5021         a[20] = 21;
5022         a[21] = 25;
5023         a[22] = 30;
5024         a[23] = 35;
5025         a[24] = 45;
5026         a[25] = 60;
5027         a[26] = 80;
5028         a[27] = 100;
5029         a[28] = 200;
5030         a[29] = 300;
5031         a[30] = 400;
5032         a[31] = 500;
5033
5034         b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5035         b[9] = b[10] = 1;
5036         b[11] = b[12] = 2;
5037         b[13] = b[14] = b[15] = b[16] = 3;
5038         b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5039         b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5040         b[28] = b[29] = 6;
5041         b[30] = b[31] = 7;
5042 }
5043
5044 /* The minimum additive increment value for the congestion control table */
5045 #define CC_MIN_INCR 2U
5046
5047 /**
5048  *      t4_load_mtus - write the MTU and congestion control HW tables
5049  *      @adap: the adapter
5050  *      @mtus: the values for the MTU table
5051  *      @alpha: the values for the congestion control alpha parameter
5052  *      @beta: the values for the congestion control beta parameter
5053  *
5054  *      Write the HW MTU table with the supplied MTUs and the high-speed
5055  *      congestion control table with the supplied alpha, beta, and MTUs.
5056  *      We write the two tables together because the additive increments
5057  *      depend on the MTUs.
5058  */
5059 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5060                   const unsigned short *alpha, const unsigned short *beta)
5061 {
5062         static const unsigned int avg_pkts[NCCTRL_WIN] = {
5063                 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5064                 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5065                 28672, 40960, 57344, 81920, 114688, 163840, 229376
5066         };
5067
5068         unsigned int i, w;
5069
5070         for (i = 0; i < NMTUS; ++i) {
5071                 unsigned int mtu = mtus[i];
5072                 unsigned int log2 = fls(mtu);
5073
5074                 if (!(mtu & ((1 << log2) >> 2)))     /* round */
5075                         log2--;
5076                 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5077                              MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5078
5079                 for (w = 0; w < NCCTRL_WIN; ++w) {
5080                         unsigned int inc;
5081
5082                         inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5083                                   CC_MIN_INCR);
5084
5085                         t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5086                                      (w << 16) | (beta[w] << 13) | inc);
5087                 }
5088         }
5089 }
5090
5091 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5092  * clocks.  The formula is
5093  *
5094  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5095  *
5096  * which is equivalent to
5097  *
5098  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5099  */
5100 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5101 {
5102         u64 v = bytes256 * adap->params.vpd.cclk;
5103
5104         return v * 62 + v / 2;
5105 }
5106
5107 /**
5108  *      t4_get_chan_txrate - get the current per channel Tx rates
5109  *      @adap: the adapter
5110  *      @nic_rate: rates for NIC traffic
5111  *      @ofld_rate: rates for offloaded traffic
5112  *
5113  *      Return the current Tx rates in bytes/s for NIC and offloaded traffic
5114  *      for each channel.
5115  */
5116 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5117 {
5118         u32 v;
5119
5120         v = t4_read_reg(adap, TP_TX_TRATE_A);
5121         nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5122         nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5123         if (adap->params.arch.nchan == NCHAN) {
5124                 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5125                 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5126         }
5127
5128         v = t4_read_reg(adap, TP_TX_ORATE_A);
5129         ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5130         ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5131         if (adap->params.arch.nchan == NCHAN) {
5132                 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5133                 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5134         }
5135 }
5136
5137 /**
5138  *      t4_set_trace_filter - configure one of the tracing filters
5139  *      @adap: the adapter
5140  *      @tp: the desired trace filter parameters
5141  *      @idx: which filter to configure
5142  *      @enable: whether to enable or disable the filter
5143  *
5144  *      Configures one of the tracing filters available in HW.  If @enable is
5145  *      %0 @tp is not examined and may be %NULL. The user is responsible to
5146  *      set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5147  */
5148 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5149                         int idx, int enable)
5150 {
5151         int i, ofst = idx * 4;
5152         u32 data_reg, mask_reg, cfg;
5153         u32 multitrc = TRCMULTIFILTER_F;
5154
5155         if (!enable) {
5156                 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5157                 return 0;
5158         }
5159
5160         cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5161         if (cfg & TRCMULTIFILTER_F) {
5162                 /* If multiple tracers are enabled, then maximum
5163                  * capture size is 2.5KB (FIFO size of a single channel)
5164                  * minus 2 flits for CPL_TRACE_PKT header.
5165                  */
5166                 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5167                         return -EINVAL;
5168         } else {
5169                 /* If multiple tracers are disabled, to avoid deadlocks
5170                  * maximum packet capture size of 9600 bytes is recommended.
5171                  * Also in this mode, only trace0 can be enabled and running.
5172                  */
5173                 multitrc = 0;
5174                 if (tp->snap_len > 9600 || idx)
5175                         return -EINVAL;
5176         }
5177
5178         if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5179             tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5180             tp->min_len > TFMINPKTSIZE_M)
5181                 return -EINVAL;
5182
5183         /* stop the tracer we'll be changing */
5184         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5185
5186         idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5187         data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5188         mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5189
5190         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5191                 t4_write_reg(adap, data_reg, tp->data[i]);
5192                 t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5193         }
5194         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5195                      TFCAPTUREMAX_V(tp->snap_len) |
5196                      TFMINPKTSIZE_V(tp->min_len));
5197         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5198                      TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5199                      (is_t4(adap->params.chip) ?
5200                      TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5201                      T5_TFPORT_V(tp->port) | T5_TFEN_F |
5202                      T5_TFINVERTMATCH_V(tp->invert)));
5203
5204         return 0;
5205 }
5206
5207 /**
5208  *      t4_get_trace_filter - query one of the tracing filters
5209  *      @adap: the adapter
5210  *      @tp: the current trace filter parameters
5211  *      @idx: which trace filter to query
5212  *      @enabled: non-zero if the filter is enabled
5213  *
5214  *      Returns the current settings of one of the HW tracing filters.
5215  */
5216 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5217                          int *enabled)
5218 {
5219         u32 ctla, ctlb;
5220         int i, ofst = idx * 4;
5221         u32 data_reg, mask_reg;
5222
5223         ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
5224         ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
5225
5226         if (is_t4(adap->params.chip)) {
5227                 *enabled = !!(ctla & TFEN_F);
5228                 tp->port =  TFPORT_G(ctla);
5229                 tp->invert = !!(ctla & TFINVERTMATCH_F);
5230         } else {
5231                 *enabled = !!(ctla & T5_TFEN_F);
5232                 tp->port = T5_TFPORT_G(ctla);
5233                 tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
5234         }
5235         tp->snap_len = TFCAPTUREMAX_G(ctlb);
5236         tp->min_len = TFMINPKTSIZE_G(ctlb);
5237         tp->skip_ofst = TFOFFSET_G(ctla);
5238         tp->skip_len = TFLENGTH_G(ctla);
5239
5240         ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
5241         data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
5242         mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
5243
5244         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5245                 tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5246                 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5247         }
5248 }
5249
5250 /**
5251  *      t4_pmtx_get_stats - returns the HW stats from PMTX
5252  *      @adap: the adapter
5253  *      @cnt: where to store the count statistics
5254  *      @cycles: where to store the cycle statistics
5255  *
5256  *      Returns performance statistics from PMTX.
5257  */
5258 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5259 {
5260         int i;
5261         u32 data[2];
5262
5263         for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5264                 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
5265                 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
5266                 if (is_t4(adap->params.chip)) {
5267                         cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
5268                 } else {
5269                         t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
5270                                          PM_TX_DBG_DATA_A, data, 2,
5271                                          PM_TX_DBG_STAT_MSB_A);
5272                         cycles[i] = (((u64)data[0] << 32) | data[1]);
5273                 }
5274         }
5275 }
5276
5277 /**
5278  *      t4_pmrx_get_stats - returns the HW stats from PMRX
5279  *      @adap: the adapter
5280  *      @cnt: where to store the count statistics
5281  *      @cycles: where to store the cycle statistics
5282  *
5283  *      Returns performance statistics from PMRX.
5284  */
5285 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5286 {
5287         int i;
5288         u32 data[2];
5289
5290         for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5291                 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
5292                 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
5293                 if (is_t4(adap->params.chip)) {
5294                         cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
5295                 } else {
5296                         t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
5297                                          PM_RX_DBG_DATA_A, data, 2,
5298                                          PM_RX_DBG_STAT_MSB_A);
5299                         cycles[i] = (((u64)data[0] << 32) | data[1]);
5300                 }
5301         }
5302 }
5303
5304 /**
5305  *      t4_get_mps_bg_map - return the buffer groups associated with a port
5306  *      @adap: the adapter
5307  *      @idx: the port index
5308  *
5309  *      Returns a bitmap indicating which MPS buffer groups are associated
5310  *      with the given port.  Bit i is set if buffer group i is used by the
5311  *      port.
5312  */
5313 unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
5314 {
5315         u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
5316
5317         if (n == 0)
5318                 return idx == 0 ? 0xf : 0;
5319         /* In T6 (which is a 2 port card),
5320          * port 0 is mapped to channel 0 and port 1 is mapped to channel 1.
5321          * For 2 port T4/T5 adapter,
5322          * port 0 is mapped to channel 0 and 1,
5323          * port 1 is mapped to channel 2 and 3.
5324          */
5325         if ((n == 1) &&
5326             (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
5327                 return idx < 2 ? (3 << (2 * idx)) : 0;
5328         return 1 << idx;
5329 }
5330
5331 /**
5332  *      t4_get_port_type_description - return Port Type string description
5333  *      @port_type: firmware Port Type enumeration
5334  */
5335 const char *t4_get_port_type_description(enum fw_port_type port_type)
5336 {
5337         static const char *const port_type_description[] = {
5338                 "R XFI",
5339                 "R XAUI",
5340                 "T SGMII",
5341                 "T XFI",
5342                 "T XAUI",
5343                 "KX4",
5344                 "CX4",
5345                 "KX",
5346                 "KR",
5347                 "R SFP+",
5348                 "KR/KX",
5349                 "KR/KX/KX4",
5350                 "R QSFP_10G",
5351                 "R QSA",
5352                 "R QSFP",
5353                 "R BP40_BA",
5354         };
5355
5356         if (port_type < ARRAY_SIZE(port_type_description))
5357                 return port_type_description[port_type];
5358         return "UNKNOWN";
5359 }
5360
5361 /**
5362  *      t4_get_port_stats_offset - collect port stats relative to a previous
5363  *                                 snapshot
5364  *      @adap: The adapter
5365  *      @idx: The port
5366  *      @stats: Current stats to fill
5367  *      @offset: Previous stats snapshot
5368  */
5369 void t4_get_port_stats_offset(struct adapter *adap, int idx,
5370                               struct port_stats *stats,
5371                               struct port_stats *offset)
5372 {
5373         u64 *s, *o;
5374         int i;
5375
5376         t4_get_port_stats(adap, idx, stats);
5377         for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
5378                         i < (sizeof(struct port_stats) / sizeof(u64));
5379                         i++, s++, o++)
5380                 *s -= *o;
5381 }
5382
5383 /**
5384  *      t4_get_port_stats - collect port statistics
5385  *      @adap: the adapter
5386  *      @idx: the port index
5387  *      @p: the stats structure to fill
5388  *
5389  *      Collect statistics related to the given port from HW.
5390  */
5391 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
5392 {
5393         u32 bgmap = t4_get_mps_bg_map(adap, idx);
5394
5395 #define GET_STAT(name) \
5396         t4_read_reg64(adap, \
5397         (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
5398         T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
5399 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5400
5401         p->tx_octets           = GET_STAT(TX_PORT_BYTES);
5402         p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
5403         p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
5404         p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
5405         p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
5406         p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
5407         p->tx_frames_64        = GET_STAT(TX_PORT_64B);
5408         p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
5409         p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
5410         p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
5411         p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
5412         p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
5413         p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
5414         p->tx_drop             = GET_STAT(TX_PORT_DROP);
5415         p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
5416         p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
5417         p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
5418         p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
5419         p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
5420         p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
5421         p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
5422         p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
5423         p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
5424
5425         p->rx_octets           = GET_STAT(RX_PORT_BYTES);
5426         p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
5427         p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
5428         p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
5429         p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
5430         p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
5431         p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
5432         p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
5433         p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
5434         p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
5435         p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
5436         p->rx_frames_64        = GET_STAT(RX_PORT_64B);
5437         p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
5438         p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
5439         p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
5440         p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
5441         p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
5442         p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
5443         p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
5444         p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
5445         p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
5446         p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
5447         p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
5448         p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
5449         p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
5450         p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
5451         p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
5452
5453         p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
5454         p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
5455         p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
5456         p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
5457         p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
5458         p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
5459         p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
5460         p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
5461
5462 #undef GET_STAT
5463 #undef GET_STAT_COM
5464 }
5465
5466 /**
5467  *      t4_get_lb_stats - collect loopback port statistics
5468  *      @adap: the adapter
5469  *      @idx: the loopback port index
5470  *      @p: the stats structure to fill
5471  *
5472  *      Return HW statistics for the given loopback port.
5473  */
5474 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
5475 {
5476         u32 bgmap = t4_get_mps_bg_map(adap, idx);
5477
5478 #define GET_STAT(name) \
5479         t4_read_reg64(adap, \
5480         (is_t4(adap->params.chip) ? \
5481         PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
5482         T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
5483 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5484
5485         p->octets           = GET_STAT(BYTES);
5486         p->frames           = GET_STAT(FRAMES);
5487         p->bcast_frames     = GET_STAT(BCAST);
5488         p->mcast_frames     = GET_STAT(MCAST);
5489         p->ucast_frames     = GET_STAT(UCAST);
5490         p->error_frames     = GET_STAT(ERROR);
5491
5492         p->frames_64        = GET_STAT(64B);
5493         p->frames_65_127    = GET_STAT(65B_127B);
5494         p->frames_128_255   = GET_STAT(128B_255B);
5495         p->frames_256_511   = GET_STAT(256B_511B);
5496         p->frames_512_1023  = GET_STAT(512B_1023B);
5497         p->frames_1024_1518 = GET_STAT(1024B_1518B);
5498         p->frames_1519_max  = GET_STAT(1519B_MAX);
5499         p->drop             = GET_STAT(DROP_FRAMES);
5500
5501         p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
5502         p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
5503         p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
5504         p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
5505         p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
5506         p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
5507         p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
5508         p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
5509
5510 #undef GET_STAT
5511 #undef GET_STAT_COM
5512 }
5513
5514 /*     t4_mk_filtdelwr - create a delete filter WR
5515  *     @ftid: the filter ID
5516  *     @wr: the filter work request to populate
5517  *     @qid: ingress queue to receive the delete notification
5518  *
5519  *     Creates a filter work request to delete the supplied filter.  If @qid is
5520  *     negative the delete notification is suppressed.
5521  */
5522 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
5523 {
5524         memset(wr, 0, sizeof(*wr));
5525         wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
5526         wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
5527         wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
5528                                     FW_FILTER_WR_NOREPLY_V(qid < 0));
5529         wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
5530         if (qid >= 0)
5531                 wr->rx_chan_rx_rpl_iq =
5532                         cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
5533 }
5534
5535 #define INIT_CMD(var, cmd, rd_wr) do { \
5536         (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
5537                                         FW_CMD_REQUEST_F | \
5538                                         FW_CMD_##rd_wr##_F); \
5539         (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
5540 } while (0)
5541
5542 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
5543                           u32 addr, u32 val)
5544 {
5545         u32 ldst_addrspace;
5546         struct fw_ldst_cmd c;
5547
5548         memset(&c, 0, sizeof(c));
5549         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
5550         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5551                                         FW_CMD_REQUEST_F |
5552                                         FW_CMD_WRITE_F |
5553                                         ldst_addrspace);
5554         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5555         c.u.addrval.addr = cpu_to_be32(addr);
5556         c.u.addrval.val = cpu_to_be32(val);
5557
5558         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5559 }
5560
5561 /**
5562  *      t4_mdio_rd - read a PHY register through MDIO
5563  *      @adap: the adapter
5564  *      @mbox: mailbox to use for the FW command
5565  *      @phy_addr: the PHY address
5566  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
5567  *      @reg: the register to read
5568  *      @valp: where to store the value
5569  *
5570  *      Issues a FW command through the given mailbox to read a PHY register.
5571  */
5572 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5573                unsigned int mmd, unsigned int reg, u16 *valp)
5574 {
5575         int ret;
5576         u32 ldst_addrspace;
5577         struct fw_ldst_cmd c;
5578
5579         memset(&c, 0, sizeof(c));
5580         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5581         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5582                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
5583                                         ldst_addrspace);
5584         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5585         c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5586                                          FW_LDST_CMD_MMD_V(mmd));
5587         c.u.mdio.raddr = cpu_to_be16(reg);
5588
5589         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5590         if (ret == 0)
5591                 *valp = be16_to_cpu(c.u.mdio.rval);
5592         return ret;
5593 }
5594
5595 /**
5596  *      t4_mdio_wr - write a PHY register through MDIO
5597  *      @adap: the adapter
5598  *      @mbox: mailbox to use for the FW command
5599  *      @phy_addr: the PHY address
5600  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
5601  *      @reg: the register to write
5602  *      @valp: value to write
5603  *
5604  *      Issues a FW command through the given mailbox to write a PHY register.
5605  */
5606 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5607                unsigned int mmd, unsigned int reg, u16 val)
5608 {
5609         u32 ldst_addrspace;
5610         struct fw_ldst_cmd c;
5611
5612         memset(&c, 0, sizeof(c));
5613         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5614         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5615                                         FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5616                                         ldst_addrspace);
5617         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5618         c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5619                                          FW_LDST_CMD_MMD_V(mmd));
5620         c.u.mdio.raddr = cpu_to_be16(reg);
5621         c.u.mdio.rval = cpu_to_be16(val);
5622
5623         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5624 }
5625
5626 /**
5627  *      t4_sge_decode_idma_state - decode the idma state
5628  *      @adap: the adapter
5629  *      @state: the state idma is stuck in
5630  */
5631 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
5632 {
5633         static const char * const t4_decode[] = {
5634                 "IDMA_IDLE",
5635                 "IDMA_PUSH_MORE_CPL_FIFO",
5636                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5637                 "Not used",
5638                 "IDMA_PHYSADDR_SEND_PCIEHDR",
5639                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5640                 "IDMA_PHYSADDR_SEND_PAYLOAD",
5641                 "IDMA_SEND_FIFO_TO_IMSG",
5642                 "IDMA_FL_REQ_DATA_FL_PREP",
5643                 "IDMA_FL_REQ_DATA_FL",
5644                 "IDMA_FL_DROP",
5645                 "IDMA_FL_H_REQ_HEADER_FL",
5646                 "IDMA_FL_H_SEND_PCIEHDR",
5647                 "IDMA_FL_H_PUSH_CPL_FIFO",
5648                 "IDMA_FL_H_SEND_CPL",
5649                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
5650                 "IDMA_FL_H_SEND_IP_HDR",
5651                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5652                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5653                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
5654                 "IDMA_FL_D_SEND_PCIEHDR",
5655                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5656                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
5657                 "IDMA_FL_SEND_PCIEHDR",
5658                 "IDMA_FL_PUSH_CPL_FIFO",
5659                 "IDMA_FL_SEND_CPL",
5660                 "IDMA_FL_SEND_PAYLOAD_FIRST",
5661                 "IDMA_FL_SEND_PAYLOAD",
5662                 "IDMA_FL_REQ_NEXT_DATA_FL",
5663                 "IDMA_FL_SEND_NEXT_PCIEHDR",
5664                 "IDMA_FL_SEND_PADDING",
5665                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5666                 "IDMA_FL_SEND_FIFO_TO_IMSG",
5667                 "IDMA_FL_REQ_DATAFL_DONE",
5668                 "IDMA_FL_REQ_HEADERFL_DONE",
5669         };
5670         static const char * const t5_decode[] = {
5671                 "IDMA_IDLE",
5672                 "IDMA_ALMOST_IDLE",
5673                 "IDMA_PUSH_MORE_CPL_FIFO",
5674                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5675                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
5676                 "IDMA_PHYSADDR_SEND_PCIEHDR",
5677                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5678                 "IDMA_PHYSADDR_SEND_PAYLOAD",
5679                 "IDMA_SEND_FIFO_TO_IMSG",
5680                 "IDMA_FL_REQ_DATA_FL",
5681                 "IDMA_FL_DROP",
5682                 "IDMA_FL_DROP_SEND_INC",
5683                 "IDMA_FL_H_REQ_HEADER_FL",
5684                 "IDMA_FL_H_SEND_PCIEHDR",
5685                 "IDMA_FL_H_PUSH_CPL_FIFO",
5686                 "IDMA_FL_H_SEND_CPL",
5687                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
5688                 "IDMA_FL_H_SEND_IP_HDR",
5689                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5690                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5691                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
5692                 "IDMA_FL_D_SEND_PCIEHDR",
5693                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5694                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
5695                 "IDMA_FL_SEND_PCIEHDR",
5696                 "IDMA_FL_PUSH_CPL_FIFO",
5697                 "IDMA_FL_SEND_CPL",
5698                 "IDMA_FL_SEND_PAYLOAD_FIRST",
5699                 "IDMA_FL_SEND_PAYLOAD",
5700                 "IDMA_FL_REQ_NEXT_DATA_FL",
5701                 "IDMA_FL_SEND_NEXT_PCIEHDR",
5702                 "IDMA_FL_SEND_PADDING",
5703                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5704         };
5705         static const u32 sge_regs[] = {
5706                 SGE_DEBUG_DATA_LOW_INDEX_2_A,
5707                 SGE_DEBUG_DATA_LOW_INDEX_3_A,
5708                 SGE_DEBUG_DATA_HIGH_INDEX_10_A,
5709         };
5710         const char **sge_idma_decode;
5711         int sge_idma_decode_nstates;
5712         int i;
5713
5714         if (is_t4(adapter->params.chip)) {
5715                 sge_idma_decode = (const char **)t4_decode;
5716                 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
5717         } else {
5718                 sge_idma_decode = (const char **)t5_decode;
5719                 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
5720         }
5721
5722         if (state < sge_idma_decode_nstates)
5723                 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
5724         else
5725                 CH_WARN(adapter, "idma state %d unknown\n", state);
5726
5727         for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
5728                 CH_WARN(adapter, "SGE register %#x value %#x\n",
5729                         sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
5730 }
5731
5732 /**
5733  *      t4_sge_ctxt_flush - flush the SGE context cache
5734  *      @adap: the adapter
5735  *      @mbox: mailbox to use for the FW command
5736  *
5737  *      Issues a FW command through the given mailbox to flush the
5738  *      SGE context cache.
5739  */
5740 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
5741 {
5742         int ret;
5743         u32 ldst_addrspace;
5744         struct fw_ldst_cmd c;
5745
5746         memset(&c, 0, sizeof(c));
5747         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC);
5748         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5749                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
5750                                         ldst_addrspace);
5751         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5752         c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
5753
5754         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5755         return ret;
5756 }
5757
5758 /**
5759  *      t4_fw_hello - establish communication with FW
5760  *      @adap: the adapter
5761  *      @mbox: mailbox to use for the FW command
5762  *      @evt_mbox: mailbox to receive async FW events
5763  *      @master: specifies the caller's willingness to be the device master
5764  *      @state: returns the current device state (if non-NULL)
5765  *
5766  *      Issues a command to establish communication with FW.  Returns either
5767  *      an error (negative integer) or the mailbox of the Master PF.
5768  */
5769 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
5770                 enum dev_master master, enum dev_state *state)
5771 {
5772         int ret;
5773         struct fw_hello_cmd c;
5774         u32 v;
5775         unsigned int master_mbox;
5776         int retries = FW_CMD_HELLO_RETRIES;
5777
5778 retry:
5779         memset(&c, 0, sizeof(c));
5780         INIT_CMD(c, HELLO, WRITE);
5781         c.err_to_clearinit = cpu_to_be32(
5782                 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
5783                 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
5784                 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
5785                                         mbox : FW_HELLO_CMD_MBMASTER_M) |
5786                 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
5787                 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
5788                 FW_HELLO_CMD_CLEARINIT_F);
5789
5790         /*
5791          * Issue the HELLO command to the firmware.  If it's not successful
5792          * but indicates that we got a "busy" or "timeout" condition, retry
5793          * the HELLO until we exhaust our retry limit.  If we do exceed our
5794          * retry limit, check to see if the firmware left us any error
5795          * information and report that if so.
5796          */
5797         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5798         if (ret < 0) {
5799                 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
5800                         goto retry;
5801                 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
5802                         t4_report_fw_error(adap);
5803                 return ret;
5804         }
5805
5806         v = be32_to_cpu(c.err_to_clearinit);
5807         master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
5808         if (state) {
5809                 if (v & FW_HELLO_CMD_ERR_F)
5810                         *state = DEV_STATE_ERR;
5811                 else if (v & FW_HELLO_CMD_INIT_F)
5812                         *state = DEV_STATE_INIT;
5813                 else
5814                         *state = DEV_STATE_UNINIT;
5815         }
5816
5817         /*
5818          * If we're not the Master PF then we need to wait around for the
5819          * Master PF Driver to finish setting up the adapter.
5820          *
5821          * Note that we also do this wait if we're a non-Master-capable PF and
5822          * there is no current Master PF; a Master PF may show up momentarily
5823          * and we wouldn't want to fail pointlessly.  (This can happen when an
5824          * OS loads lots of different drivers rapidly at the same time).  In
5825          * this case, the Master PF returned by the firmware will be
5826          * PCIE_FW_MASTER_M so the test below will work ...
5827          */
5828         if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
5829             master_mbox != mbox) {
5830                 int waiting = FW_CMD_HELLO_TIMEOUT;
5831
5832                 /*
5833                  * Wait for the firmware to either indicate an error or
5834                  * initialized state.  If we see either of these we bail out
5835                  * and report the issue to the caller.  If we exhaust the
5836                  * "hello timeout" and we haven't exhausted our retries, try
5837                  * again.  Otherwise bail with a timeout error.
5838                  */
5839                 for (;;) {
5840                         u32 pcie_fw;
5841
5842                         msleep(50);
5843                         waiting -= 50;
5844
5845                         /*
5846                          * If neither Error nor Initialialized are indicated
5847                          * by the firmware keep waiting till we exaust our
5848                          * timeout ... and then retry if we haven't exhausted
5849                          * our retries ...
5850                          */
5851                         pcie_fw = t4_read_reg(adap, PCIE_FW_A);
5852                         if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
5853                                 if (waiting <= 0) {
5854                                         if (retries-- > 0)
5855                                                 goto retry;
5856
5857                                         return -ETIMEDOUT;
5858                                 }
5859                                 continue;
5860                         }
5861
5862                         /*
5863                          * We either have an Error or Initialized condition
5864                          * report errors preferentially.
5865                          */
5866                         if (state) {
5867                                 if (pcie_fw & PCIE_FW_ERR_F)
5868                                         *state = DEV_STATE_ERR;
5869                                 else if (pcie_fw & PCIE_FW_INIT_F)
5870                                         *state = DEV_STATE_INIT;
5871                         }
5872
5873                         /*
5874                          * If we arrived before a Master PF was selected and
5875                          * there's not a valid Master PF, grab its identity
5876                          * for our caller.
5877                          */
5878                         if (master_mbox == PCIE_FW_MASTER_M &&
5879                             (pcie_fw & PCIE_FW_MASTER_VLD_F))
5880                                 master_mbox = PCIE_FW_MASTER_G(pcie_fw);
5881                         break;
5882                 }
5883         }
5884
5885         return master_mbox;
5886 }
5887
5888 /**
5889  *      t4_fw_bye - end communication with FW
5890  *      @adap: the adapter
5891  *      @mbox: mailbox to use for the FW command
5892  *
5893  *      Issues a command to terminate communication with FW.
5894  */
5895 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
5896 {
5897         struct fw_bye_cmd c;
5898
5899         memset(&c, 0, sizeof(c));
5900         INIT_CMD(c, BYE, WRITE);
5901         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5902 }
5903
5904 /**
5905  *      t4_init_cmd - ask FW to initialize the device
5906  *      @adap: the adapter
5907  *      @mbox: mailbox to use for the FW command
5908  *
5909  *      Issues a command to FW to partially initialize the device.  This
5910  *      performs initialization that generally doesn't depend on user input.
5911  */
5912 int t4_early_init(struct adapter *adap, unsigned int mbox)
5913 {
5914         struct fw_initialize_cmd c;
5915
5916         memset(&c, 0, sizeof(c));
5917         INIT_CMD(c, INITIALIZE, WRITE);
5918         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5919 }
5920
5921 /**
5922  *      t4_fw_reset - issue a reset to FW
5923  *      @adap: the adapter
5924  *      @mbox: mailbox to use for the FW command
5925  *      @reset: specifies the type of reset to perform
5926  *
5927  *      Issues a reset command of the specified type to FW.
5928  */
5929 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
5930 {
5931         struct fw_reset_cmd c;
5932
5933         memset(&c, 0, sizeof(c));
5934         INIT_CMD(c, RESET, WRITE);
5935         c.val = cpu_to_be32(reset);
5936         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5937 }
5938
5939 /**
5940  *      t4_fw_halt - issue a reset/halt to FW and put uP into RESET
5941  *      @adap: the adapter
5942  *      @mbox: mailbox to use for the FW RESET command (if desired)
5943  *      @force: force uP into RESET even if FW RESET command fails
5944  *
5945  *      Issues a RESET command to firmware (if desired) with a HALT indication
5946  *      and then puts the microprocessor into RESET state.  The RESET command
5947  *      will only be issued if a legitimate mailbox is provided (mbox <=
5948  *      PCIE_FW_MASTER_M).
5949  *
5950  *      This is generally used in order for the host to safely manipulate the
5951  *      adapter without fear of conflicting with whatever the firmware might
5952  *      be doing.  The only way out of this state is to RESTART the firmware
5953  *      ...
5954  */
5955 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
5956 {
5957         int ret = 0;
5958
5959         /*
5960          * If a legitimate mailbox is provided, issue a RESET command
5961          * with a HALT indication.
5962          */
5963         if (mbox <= PCIE_FW_MASTER_M) {
5964                 struct fw_reset_cmd c;
5965
5966                 memset(&c, 0, sizeof(c));
5967                 INIT_CMD(c, RESET, WRITE);
5968                 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
5969                 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
5970                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5971         }
5972
5973         /*
5974          * Normally we won't complete the operation if the firmware RESET
5975          * command fails but if our caller insists we'll go ahead and put the
5976          * uP into RESET.  This can be useful if the firmware is hung or even
5977          * missing ...  We'll have to take the risk of putting the uP into
5978          * RESET without the cooperation of firmware in that case.
5979          *
5980          * We also force the firmware's HALT flag to be on in case we bypassed
5981          * the firmware RESET command above or we're dealing with old firmware
5982          * which doesn't have the HALT capability.  This will serve as a flag
5983          * for the incoming firmware to know that it's coming out of a HALT
5984          * rather than a RESET ... if it's new enough to understand that ...
5985          */
5986         if (ret == 0 || force) {
5987                 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
5988                 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
5989                                  PCIE_FW_HALT_F);
5990         }
5991
5992         /*
5993          * And we always return the result of the firmware RESET command
5994          * even when we force the uP into RESET ...
5995          */
5996         return ret;
5997 }
5998
5999 /**
6000  *      t4_fw_restart - restart the firmware by taking the uP out of RESET
6001  *      @adap: the adapter
6002  *      @reset: if we want to do a RESET to restart things
6003  *
6004  *      Restart firmware previously halted by t4_fw_halt().  On successful
6005  *      return the previous PF Master remains as the new PF Master and there
6006  *      is no need to issue a new HELLO command, etc.
6007  *
6008  *      We do this in two ways:
6009  *
6010  *       1. If we're dealing with newer firmware we'll simply want to take
6011  *          the chip's microprocessor out of RESET.  This will cause the
6012  *          firmware to start up from its start vector.  And then we'll loop
6013  *          until the firmware indicates it's started again (PCIE_FW.HALT
6014  *          reset to 0) or we timeout.
6015  *
6016  *       2. If we're dealing with older firmware then we'll need to RESET
6017  *          the chip since older firmware won't recognize the PCIE_FW.HALT
6018  *          flag and automatically RESET itself on startup.
6019  */
6020 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6021 {
6022         if (reset) {
6023                 /*
6024                  * Since we're directing the RESET instead of the firmware
6025                  * doing it automatically, we need to clear the PCIE_FW.HALT
6026                  * bit.
6027                  */
6028                 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
6029
6030                 /*
6031                  * If we've been given a valid mailbox, first try to get the
6032                  * firmware to do the RESET.  If that works, great and we can
6033                  * return success.  Otherwise, if we haven't been given a
6034                  * valid mailbox or the RESET command failed, fall back to
6035                  * hitting the chip with a hammer.
6036                  */
6037                 if (mbox <= PCIE_FW_MASTER_M) {
6038                         t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6039                         msleep(100);
6040                         if (t4_fw_reset(adap, mbox,
6041                                         PIORST_F | PIORSTMODE_F) == 0)
6042                                 return 0;
6043                 }
6044
6045                 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
6046                 msleep(2000);
6047         } else {
6048                 int ms;
6049
6050                 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6051                 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6052                         if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
6053                                 return 0;
6054                         msleep(100);
6055                         ms += 100;
6056                 }
6057                 return -ETIMEDOUT;
6058         }
6059         return 0;
6060 }
6061
6062 /**
6063  *      t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6064  *      @adap: the adapter
6065  *      @mbox: mailbox to use for the FW RESET command (if desired)
6066  *      @fw_data: the firmware image to write
6067  *      @size: image size
6068  *      @force: force upgrade even if firmware doesn't cooperate
6069  *
6070  *      Perform all of the steps necessary for upgrading an adapter's
6071  *      firmware image.  Normally this requires the cooperation of the
6072  *      existing firmware in order to halt all existing activities
6073  *      but if an invalid mailbox token is passed in we skip that step
6074  *      (though we'll still put the adapter microprocessor into RESET in
6075  *      that case).
6076  *
6077  *      On successful return the new firmware will have been loaded and
6078  *      the adapter will have been fully RESET losing all previous setup
6079  *      state.  On unsuccessful return the adapter may be completely hosed ...
6080  *      positive errno indicates that the adapter is ~probably~ intact, a
6081  *      negative errno indicates that things are looking bad ...
6082  */
6083 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6084                   const u8 *fw_data, unsigned int size, int force)
6085 {
6086         const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6087         int reset, ret;
6088
6089         if (!t4_fw_matches_chip(adap, fw_hdr))
6090                 return -EINVAL;
6091
6092         ret = t4_fw_halt(adap, mbox, force);
6093         if (ret < 0 && !force)
6094                 return ret;
6095
6096         ret = t4_load_fw(adap, fw_data, size);
6097         if (ret < 0)
6098                 return ret;
6099
6100         /*
6101          * Older versions of the firmware don't understand the new
6102          * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6103          * restart.  So for newly loaded older firmware we'll have to do the
6104          * RESET for it so it starts up on a clean slate.  We can tell if
6105          * the newly loaded firmware will handle this right by checking
6106          * its header flags to see if it advertises the capability.
6107          */
6108         reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6109         return t4_fw_restart(adap, mbox, reset);
6110 }
6111
6112 /**
6113  *      t4_fl_pkt_align - return the fl packet alignment
6114  *      @adap: the adapter
6115  *
6116  *      T4 has a single field to specify the packing and padding boundary.
6117  *      T5 onwards has separate fields for this and hence the alignment for
6118  *      next packet offset is maximum of these two.
6119  *
6120  */
6121 int t4_fl_pkt_align(struct adapter *adap)
6122 {
6123         u32 sge_control, sge_control2;
6124         unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
6125
6126         sge_control = t4_read_reg(adap, SGE_CONTROL_A);
6127
6128         /* T4 uses a single control field to specify both the PCIe Padding and
6129          * Packing Boundary.  T5 introduced the ability to specify these
6130          * separately.  The actual Ingress Packet Data alignment boundary
6131          * within Packed Buffer Mode is the maximum of these two
6132          * specifications.  (Note that it makes no real practical sense to
6133          * have the Pading Boudary be larger than the Packing Boundary but you
6134          * could set the chip up that way and, in fact, legacy T4 code would
6135          * end doing this because it would initialize the Padding Boundary and
6136          * leave the Packing Boundary initialized to 0 (16 bytes).)
6137          * Padding Boundary values in T6 starts from 8B,
6138          * where as it is 32B for T4 and T5.
6139          */
6140         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
6141                 ingpad_shift = INGPADBOUNDARY_SHIFT_X;
6142         else
6143                 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
6144
6145         ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
6146
6147         fl_align = ingpadboundary;
6148         if (!is_t4(adap->params.chip)) {
6149                 /* T5 has a weird interpretation of one of the PCIe Packing
6150                  * Boundary values.  No idea why ...
6151                  */
6152                 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
6153                 ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
6154                 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
6155                         ingpackboundary = 16;
6156                 else
6157                         ingpackboundary = 1 << (ingpackboundary +
6158                                                 INGPACKBOUNDARY_SHIFT_X);
6159
6160                 fl_align = max(ingpadboundary, ingpackboundary);
6161         }
6162         return fl_align;
6163 }
6164
6165 /**
6166  *      t4_fixup_host_params - fix up host-dependent parameters
6167  *      @adap: the adapter
6168  *      @page_size: the host's Base Page Size
6169  *      @cache_line_size: the host's Cache Line Size
6170  *
6171  *      Various registers in T4 contain values which are dependent on the
6172  *      host's Base Page and Cache Line Sizes.  This function will fix all of
6173  *      those registers with the appropriate values as passed in ...
6174  */
6175 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
6176                          unsigned int cache_line_size)
6177 {
6178         unsigned int page_shift = fls(page_size) - 1;
6179         unsigned int sge_hps = page_shift - 10;
6180         unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
6181         unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
6182         unsigned int fl_align_log = fls(fl_align) - 1;
6183         unsigned int ingpad;
6184
6185         t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
6186                      HOSTPAGESIZEPF0_V(sge_hps) |
6187                      HOSTPAGESIZEPF1_V(sge_hps) |
6188                      HOSTPAGESIZEPF2_V(sge_hps) |
6189                      HOSTPAGESIZEPF3_V(sge_hps) |
6190                      HOSTPAGESIZEPF4_V(sge_hps) |
6191                      HOSTPAGESIZEPF5_V(sge_hps) |
6192                      HOSTPAGESIZEPF6_V(sge_hps) |
6193                      HOSTPAGESIZEPF7_V(sge_hps));
6194
6195         if (is_t4(adap->params.chip)) {
6196                 t4_set_reg_field(adap, SGE_CONTROL_A,
6197                                  INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6198                                  EGRSTATUSPAGESIZE_F,
6199                                  INGPADBOUNDARY_V(fl_align_log -
6200                                                   INGPADBOUNDARY_SHIFT_X) |
6201                                  EGRSTATUSPAGESIZE_V(stat_len != 64));
6202         } else {
6203                 /* T5 introduced the separation of the Free List Padding and
6204                  * Packing Boundaries.  Thus, we can select a smaller Padding
6205                  * Boundary to avoid uselessly chewing up PCIe Link and Memory
6206                  * Bandwidth, and use a Packing Boundary which is large enough
6207                  * to avoid false sharing between CPUs, etc.
6208                  *
6209                  * For the PCI Link, the smaller the Padding Boundary the
6210                  * better.  For the Memory Controller, a smaller Padding
6211                  * Boundary is better until we cross under the Memory Line
6212                  * Size (the minimum unit of transfer to/from Memory).  If we
6213                  * have a Padding Boundary which is smaller than the Memory
6214                  * Line Size, that'll involve a Read-Modify-Write cycle on the
6215                  * Memory Controller which is never good.  For T5 the smallest
6216                  * Padding Boundary which we can select is 32 bytes which is
6217                  * larger than any known Memory Controller Line Size so we'll
6218                  * use that.
6219                  *
6220                  * T5 has a different interpretation of the "0" value for the
6221                  * Packing Boundary.  This corresponds to 16 bytes instead of
6222                  * the expected 32 bytes.  We never have a Packing Boundary
6223                  * less than 32 bytes so we can't use that special value but
6224                  * on the other hand, if we wanted 32 bytes, the best we can
6225                  * really do is 64 bytes.
6226                 */
6227                 if (fl_align <= 32) {
6228                         fl_align = 64;
6229                         fl_align_log = 6;
6230                 }
6231
6232                 if (is_t5(adap->params.chip))
6233                         ingpad = INGPCIEBOUNDARY_32B_X;
6234                 else
6235                         ingpad = T6_INGPADBOUNDARY_32B_X;
6236
6237                 t4_set_reg_field(adap, SGE_CONTROL_A,
6238                                  INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6239                                  EGRSTATUSPAGESIZE_F,
6240                                  INGPADBOUNDARY_V(ingpad) |
6241                                  EGRSTATUSPAGESIZE_V(stat_len != 64));
6242                 t4_set_reg_field(adap, SGE_CONTROL2_A,
6243                                  INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
6244                                  INGPACKBOUNDARY_V(fl_align_log -
6245                                                    INGPACKBOUNDARY_SHIFT_X));
6246         }
6247         /*
6248          * Adjust various SGE Free List Host Buffer Sizes.
6249          *
6250          * This is something of a crock since we're using fixed indices into
6251          * the array which are also known by the sge.c code and the T4
6252          * Firmware Configuration File.  We need to come up with a much better
6253          * approach to managing this array.  For now, the first four entries
6254          * are:
6255          *
6256          *   0: Host Page Size
6257          *   1: 64KB
6258          *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
6259          *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
6260          *
6261          * For the single-MTU buffers in unpacked mode we need to include
6262          * space for the SGE Control Packet Shift, 14 byte Ethernet header,
6263          * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
6264          * Padding boundary.  All of these are accommodated in the Factory
6265          * Default Firmware Configuration File but we need to adjust it for
6266          * this host's cache line size.
6267          */
6268         t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
6269         t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
6270                      (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
6271                      & ~(fl_align-1));
6272         t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
6273                      (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
6274                      & ~(fl_align-1));
6275
6276         t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
6277
6278         return 0;
6279 }
6280
6281 /**
6282  *      t4_fw_initialize - ask FW to initialize the device
6283  *      @adap: the adapter
6284  *      @mbox: mailbox to use for the FW command
6285  *
6286  *      Issues a command to FW to partially initialize the device.  This
6287  *      performs initialization that generally doesn't depend on user input.
6288  */
6289 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6290 {
6291         struct fw_initialize_cmd c;
6292
6293         memset(&c, 0, sizeof(c));
6294         INIT_CMD(c, INITIALIZE, WRITE);
6295         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6296 }
6297
6298 /**
6299  *      t4_query_params_rw - query FW or device parameters
6300  *      @adap: the adapter
6301  *      @mbox: mailbox to use for the FW command
6302  *      @pf: the PF
6303  *      @vf: the VF
6304  *      @nparams: the number of parameters
6305  *      @params: the parameter names
6306  *      @val: the parameter values
6307  *      @rw: Write and read flag
6308  *
6309  *      Reads the value of FW or device parameters.  Up to 7 parameters can be
6310  *      queried at once.
6311  */
6312 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6313                        unsigned int vf, unsigned int nparams, const u32 *params,
6314                        u32 *val, int rw)
6315 {
6316         int i, ret;
6317         struct fw_params_cmd c;
6318         __be32 *p = &c.param[0].mnem;
6319
6320         if (nparams > 7)
6321                 return -EINVAL;
6322
6323         memset(&c, 0, sizeof(c));
6324         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6325                                   FW_CMD_REQUEST_F | FW_CMD_READ_F |
6326                                   FW_PARAMS_CMD_PFN_V(pf) |
6327                                   FW_PARAMS_CMD_VFN_V(vf));
6328         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6329
6330         for (i = 0; i < nparams; i++) {
6331                 *p++ = cpu_to_be32(*params++);
6332                 if (rw)
6333                         *p = cpu_to_be32(*(val + i));
6334                 p++;
6335         }
6336
6337         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6338         if (ret == 0)
6339                 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
6340                         *val++ = be32_to_cpu(*p);
6341         return ret;
6342 }
6343
6344 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6345                     unsigned int vf, unsigned int nparams, const u32 *params,
6346                     u32 *val)
6347 {
6348         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6349 }
6350
6351 /**
6352  *      t4_set_params_timeout - sets FW or device parameters
6353  *      @adap: the adapter
6354  *      @mbox: mailbox to use for the FW command
6355  *      @pf: the PF
6356  *      @vf: the VF
6357  *      @nparams: the number of parameters
6358  *      @params: the parameter names
6359  *      @val: the parameter values
6360  *      @timeout: the timeout time
6361  *
6362  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
6363  *      specified at once.
6364  */
6365 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
6366                           unsigned int pf, unsigned int vf,
6367                           unsigned int nparams, const u32 *params,
6368                           const u32 *val, int timeout)
6369 {
6370         struct fw_params_cmd c;
6371         __be32 *p = &c.param[0].mnem;
6372
6373         if (nparams > 7)
6374                 return -EINVAL;
6375
6376         memset(&c, 0, sizeof(c));
6377         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6378                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6379                                   FW_PARAMS_CMD_PFN_V(pf) |
6380                                   FW_PARAMS_CMD_VFN_V(vf));
6381         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6382
6383         while (nparams--) {
6384                 *p++ = cpu_to_be32(*params++);
6385                 *p++ = cpu_to_be32(*val++);
6386         }
6387
6388         return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
6389 }
6390
6391 /**
6392  *      t4_set_params - sets FW or device parameters
6393  *      @adap: the adapter
6394  *      @mbox: mailbox to use for the FW command
6395  *      @pf: the PF
6396  *      @vf: the VF
6397  *      @nparams: the number of parameters
6398  *      @params: the parameter names
6399  *      @val: the parameter values
6400  *
6401  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
6402  *      specified at once.
6403  */
6404 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6405                   unsigned int vf, unsigned int nparams, const u32 *params,
6406                   const u32 *val)
6407 {
6408         return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
6409                                      FW_CMD_MAX_TIMEOUT);
6410 }
6411
6412 /**
6413  *      t4_cfg_pfvf - configure PF/VF resource limits
6414  *      @adap: the adapter
6415  *      @mbox: mailbox to use for the FW command
6416  *      @pf: the PF being configured
6417  *      @vf: the VF being configured
6418  *      @txq: the max number of egress queues
6419  *      @txq_eth_ctrl: the max number of egress Ethernet or control queues
6420  *      @rxqi: the max number of interrupt-capable ingress queues
6421  *      @rxq: the max number of interruptless ingress queues
6422  *      @tc: the PCI traffic class
6423  *      @vi: the max number of virtual interfaces
6424  *      @cmask: the channel access rights mask for the PF/VF
6425  *      @pmask: the port access rights mask for the PF/VF
6426  *      @nexact: the maximum number of exact MPS filters
6427  *      @rcaps: read capabilities
6428  *      @wxcaps: write/execute capabilities
6429  *
6430  *      Configures resource limits and capabilities for a physical or virtual
6431  *      function.
6432  */
6433 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
6434                 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
6435                 unsigned int rxqi, unsigned int rxq, unsigned int tc,
6436                 unsigned int vi, unsigned int cmask, unsigned int pmask,
6437                 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
6438 {
6439         struct fw_pfvf_cmd c;
6440
6441         memset(&c, 0, sizeof(c));
6442         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
6443                                   FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
6444                                   FW_PFVF_CMD_VFN_V(vf));
6445         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6446         c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
6447                                      FW_PFVF_CMD_NIQ_V(rxq));
6448         c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
6449                                     FW_PFVF_CMD_PMASK_V(pmask) |
6450                                     FW_PFVF_CMD_NEQ_V(txq));
6451         c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
6452                                       FW_PFVF_CMD_NVI_V(vi) |
6453                                       FW_PFVF_CMD_NEXACTF_V(nexact));
6454         c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
6455                                         FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
6456                                         FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
6457         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6458 }
6459
6460 /**
6461  *      t4_alloc_vi - allocate a virtual interface
6462  *      @adap: the adapter
6463  *      @mbox: mailbox to use for the FW command
6464  *      @port: physical port associated with the VI
6465  *      @pf: the PF owning the VI
6466  *      @vf: the VF owning the VI
6467  *      @nmac: number of MAC addresses needed (1 to 5)
6468  *      @mac: the MAC addresses of the VI
6469  *      @rss_size: size of RSS table slice associated with this VI
6470  *
6471  *      Allocates a virtual interface for the given physical port.  If @mac is
6472  *      not %NULL it contains the MAC addresses of the VI as assigned by FW.
6473  *      @mac should be large enough to hold @nmac Ethernet addresses, they are
6474  *      stored consecutively so the space needed is @nmac * 6 bytes.
6475  *      Returns a negative error number or the non-negative VI id.
6476  */
6477 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
6478                 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
6479                 unsigned int *rss_size)
6480 {
6481         int ret;
6482         struct fw_vi_cmd c;
6483
6484         memset(&c, 0, sizeof(c));
6485         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
6486                                   FW_CMD_WRITE_F | FW_CMD_EXEC_F |
6487                                   FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
6488         c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
6489         c.portid_pkd = FW_VI_CMD_PORTID_V(port);
6490         c.nmac = nmac - 1;
6491
6492         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6493         if (ret)
6494                 return ret;
6495
6496         if (mac) {
6497                 memcpy(mac, c.mac, sizeof(c.mac));
6498                 switch (nmac) {
6499                 case 5:
6500                         memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
6501                 case 4:
6502                         memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
6503                 case 3:
6504                         memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
6505                 case 2:
6506                         memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
6507                 }
6508         }
6509         if (rss_size)
6510                 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
6511         return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
6512 }
6513
6514 /**
6515  *      t4_free_vi - free a virtual interface
6516  *      @adap: the adapter
6517  *      @mbox: mailbox to use for the FW command
6518  *      @pf: the PF owning the VI
6519  *      @vf: the VF owning the VI
6520  *      @viid: virtual interface identifiler
6521  *
6522  *      Free a previously allocated virtual interface.
6523  */
6524 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
6525                unsigned int vf, unsigned int viid)
6526 {
6527         struct fw_vi_cmd c;
6528
6529         memset(&c, 0, sizeof(c));
6530         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
6531                                   FW_CMD_REQUEST_F |
6532                                   FW_CMD_EXEC_F |
6533                                   FW_VI_CMD_PFN_V(pf) |
6534                                   FW_VI_CMD_VFN_V(vf));
6535         c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
6536         c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
6537
6538         return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6539 }
6540
6541 /**
6542  *      t4_set_rxmode - set Rx properties of a virtual interface
6543  *      @adap: the adapter
6544  *      @mbox: mailbox to use for the FW command
6545  *      @viid: the VI id
6546  *      @mtu: the new MTU or -1
6547  *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
6548  *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
6549  *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
6550  *      @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
6551  *      @sleep_ok: if true we may sleep while awaiting command completion
6552  *
6553  *      Sets Rx properties of a virtual interface.
6554  */
6555 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
6556                   int mtu, int promisc, int all_multi, int bcast, int vlanex,
6557                   bool sleep_ok)
6558 {
6559         struct fw_vi_rxmode_cmd c;
6560
6561         /* convert to FW values */
6562         if (mtu < 0)
6563                 mtu = FW_RXMODE_MTU_NO_CHG;
6564         if (promisc < 0)
6565                 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
6566         if (all_multi < 0)
6567                 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
6568         if (bcast < 0)
6569                 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
6570         if (vlanex < 0)
6571                 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
6572
6573         memset(&c, 0, sizeof(c));
6574         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
6575                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6576                                    FW_VI_RXMODE_CMD_VIID_V(viid));
6577         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6578         c.mtu_to_vlanexen =
6579                 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
6580                             FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
6581                             FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
6582                             FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
6583                             FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
6584         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6585 }
6586
6587 /**
6588  *      t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
6589  *      @adap: the adapter
6590  *      @mbox: mailbox to use for the FW command
6591  *      @viid: the VI id
6592  *      @free: if true any existing filters for this VI id are first removed
6593  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
6594  *      @addr: the MAC address(es)
6595  *      @idx: where to store the index of each allocated filter
6596  *      @hash: pointer to hash address filter bitmap
6597  *      @sleep_ok: call is allowed to sleep
6598  *
6599  *      Allocates an exact-match filter for each of the supplied addresses and
6600  *      sets it to the corresponding address.  If @idx is not %NULL it should
6601  *      have at least @naddr entries, each of which will be set to the index of
6602  *      the filter allocated for the corresponding MAC address.  If a filter
6603  *      could not be allocated for an address its index is set to 0xffff.
6604  *      If @hash is not %NULL addresses that fail to allocate an exact filter
6605  *      are hashed and update the hash filter bitmap pointed at by @hash.
6606  *
6607  *      Returns a negative error number or the number of filters allocated.
6608  */
6609 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
6610                       unsigned int viid, bool free, unsigned int naddr,
6611                       const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
6612 {
6613         int offset, ret = 0;
6614         struct fw_vi_mac_cmd c;
6615         unsigned int nfilters = 0;
6616         unsigned int max_naddr = adap->params.arch.mps_tcam_size;
6617         unsigned int rem = naddr;
6618
6619         if (naddr > max_naddr)
6620                 return -EINVAL;
6621
6622         for (offset = 0; offset < naddr ; /**/) {
6623                 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
6624                                          rem : ARRAY_SIZE(c.u.exact));
6625                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
6626                                                      u.exact[fw_naddr]), 16);
6627                 struct fw_vi_mac_exact *p;
6628                 int i;
6629
6630                 memset(&c, 0, sizeof(c));
6631                 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6632                                            FW_CMD_REQUEST_F |
6633                                            FW_CMD_WRITE_F |
6634                                            FW_CMD_EXEC_V(free) |
6635                                            FW_VI_MAC_CMD_VIID_V(viid));
6636                 c.freemacs_to_len16 =
6637                         cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
6638                                     FW_CMD_LEN16_V(len16));
6639
6640                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6641                         p->valid_to_idx =
6642                                 cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6643                                             FW_VI_MAC_CMD_IDX_V(
6644                                                     FW_VI_MAC_ADD_MAC));
6645                         memcpy(p->macaddr, addr[offset + i],
6646                                sizeof(p->macaddr));
6647                 }
6648
6649                 /* It's okay if we run out of space in our MAC address arena.
6650                  * Some of the addresses we submit may get stored so we need
6651                  * to run through the reply to see what the results were ...
6652                  */
6653                 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
6654                 if (ret && ret != -FW_ENOMEM)
6655                         break;
6656
6657                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6658                         u16 index = FW_VI_MAC_CMD_IDX_G(
6659                                         be16_to_cpu(p->valid_to_idx));
6660
6661                         if (idx)
6662                                 idx[offset + i] = (index >= max_naddr ?
6663                                                    0xffff : index);
6664                         if (index < max_naddr)
6665                                 nfilters++;
6666                         else if (hash)
6667                                 *hash |= (1ULL <<
6668                                           hash_mac_addr(addr[offset + i]));
6669                 }
6670
6671                 free = false;
6672                 offset += fw_naddr;
6673                 rem -= fw_naddr;
6674         }
6675
6676         if (ret == 0 || ret == -FW_ENOMEM)
6677                 ret = nfilters;
6678         return ret;
6679 }
6680
6681 /**
6682  *      t4_change_mac - modifies the exact-match filter for a MAC address
6683  *      @adap: the adapter
6684  *      @mbox: mailbox to use for the FW command
6685  *      @viid: the VI id
6686  *      @idx: index of existing filter for old value of MAC address, or -1
6687  *      @addr: the new MAC address value
6688  *      @persist: whether a new MAC allocation should be persistent
6689  *      @add_smt: if true also add the address to the HW SMT
6690  *
6691  *      Modifies an exact-match filter and sets it to the new MAC address.
6692  *      Note that in general it is not possible to modify the value of a given
6693  *      filter so the generic way to modify an address filter is to free the one
6694  *      being used by the old address value and allocate a new filter for the
6695  *      new address value.  @idx can be -1 if the address is a new addition.
6696  *
6697  *      Returns a negative error number or the index of the filter with the new
6698  *      MAC value.
6699  */
6700 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
6701                   int idx, const u8 *addr, bool persist, bool add_smt)
6702 {
6703         int ret, mode;
6704         struct fw_vi_mac_cmd c;
6705         struct fw_vi_mac_exact *p = c.u.exact;
6706         unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
6707
6708         if (idx < 0)                             /* new allocation */
6709                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
6710         mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
6711
6712         memset(&c, 0, sizeof(c));
6713         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6714                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6715                                    FW_VI_MAC_CMD_VIID_V(viid));
6716         c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
6717         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6718                                       FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
6719                                       FW_VI_MAC_CMD_IDX_V(idx));
6720         memcpy(p->macaddr, addr, sizeof(p->macaddr));
6721
6722         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6723         if (ret == 0) {
6724                 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
6725                 if (ret >= max_mac_addr)
6726                         ret = -ENOMEM;
6727         }
6728         return ret;
6729 }
6730
6731 /**
6732  *      t4_set_addr_hash - program the MAC inexact-match hash filter
6733  *      @adap: the adapter
6734  *      @mbox: mailbox to use for the FW command
6735  *      @viid: the VI id
6736  *      @ucast: whether the hash filter should also match unicast addresses
6737  *      @vec: the value to be written to the hash filter
6738  *      @sleep_ok: call is allowed to sleep
6739  *
6740  *      Sets the 64-bit inexact-match hash filter for a virtual interface.
6741  */
6742 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
6743                      bool ucast, u64 vec, bool sleep_ok)
6744 {
6745         struct fw_vi_mac_cmd c;
6746
6747         memset(&c, 0, sizeof(c));
6748         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6749                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6750                                    FW_VI_ENABLE_CMD_VIID_V(viid));
6751         c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
6752                                           FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
6753                                           FW_CMD_LEN16_V(1));
6754         c.u.hash.hashvec = cpu_to_be64(vec);
6755         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6756 }
6757
6758 /**
6759  *      t4_enable_vi_params - enable/disable a virtual interface
6760  *      @adap: the adapter
6761  *      @mbox: mailbox to use for the FW command
6762  *      @viid: the VI id
6763  *      @rx_en: 1=enable Rx, 0=disable Rx
6764  *      @tx_en: 1=enable Tx, 0=disable Tx
6765  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
6766  *
6767  *      Enables/disables a virtual interface.  Note that setting DCB Enable
6768  *      only makes sense when enabling a Virtual Interface ...
6769  */
6770 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
6771                         unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
6772 {
6773         struct fw_vi_enable_cmd c;
6774
6775         memset(&c, 0, sizeof(c));
6776         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
6777                                    FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6778                                    FW_VI_ENABLE_CMD_VIID_V(viid));
6779         c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
6780                                      FW_VI_ENABLE_CMD_EEN_V(tx_en) |
6781                                      FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
6782                                      FW_LEN16(c));
6783         return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
6784 }
6785
6786 /**
6787  *      t4_enable_vi - enable/disable a virtual interface
6788  *      @adap: the adapter
6789  *      @mbox: mailbox to use for the FW command
6790  *      @viid: the VI id
6791  *      @rx_en: 1=enable Rx, 0=disable Rx
6792  *      @tx_en: 1=enable Tx, 0=disable Tx
6793  *
6794  *      Enables/disables a virtual interface.
6795  */
6796 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
6797                  bool rx_en, bool tx_en)
6798 {
6799         return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
6800 }
6801
6802 /**
6803  *      t4_identify_port - identify a VI's port by blinking its LED
6804  *      @adap: the adapter
6805  *      @mbox: mailbox to use for the FW command
6806  *      @viid: the VI id
6807  *      @nblinks: how many times to blink LED at 2.5 Hz
6808  *
6809  *      Identifies a VI's port by blinking its LED.
6810  */
6811 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
6812                      unsigned int nblinks)
6813 {
6814         struct fw_vi_enable_cmd c;
6815
6816         memset(&c, 0, sizeof(c));
6817         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
6818                                    FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6819                                    FW_VI_ENABLE_CMD_VIID_V(viid));
6820         c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
6821         c.blinkdur = cpu_to_be16(nblinks);
6822         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6823 }
6824
6825 /**
6826  *      t4_iq_free - free an ingress queue and its FLs
6827  *      @adap: the adapter
6828  *      @mbox: mailbox to use for the FW command
6829  *      @pf: the PF owning the queues
6830  *      @vf: the VF owning the queues
6831  *      @iqtype: the ingress queue type
6832  *      @iqid: ingress queue id
6833  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
6834  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
6835  *
6836  *      Frees an ingress queue and its associated FLs, if any.
6837  */
6838 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
6839                unsigned int vf, unsigned int iqtype, unsigned int iqid,
6840                unsigned int fl0id, unsigned int fl1id)
6841 {
6842         struct fw_iq_cmd c;
6843
6844         memset(&c, 0, sizeof(c));
6845         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
6846                                   FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
6847                                   FW_IQ_CMD_VFN_V(vf));
6848         c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
6849         c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
6850         c.iqid = cpu_to_be16(iqid);
6851         c.fl0id = cpu_to_be16(fl0id);
6852         c.fl1id = cpu_to_be16(fl1id);
6853         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6854 }
6855
6856 /**
6857  *      t4_eth_eq_free - free an Ethernet egress queue
6858  *      @adap: the adapter
6859  *      @mbox: mailbox to use for the FW command
6860  *      @pf: the PF owning the queue
6861  *      @vf: the VF owning the queue
6862  *      @eqid: egress queue id
6863  *
6864  *      Frees an Ethernet egress queue.
6865  */
6866 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
6867                    unsigned int vf, unsigned int eqid)
6868 {
6869         struct fw_eq_eth_cmd c;
6870
6871         memset(&c, 0, sizeof(c));
6872         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
6873                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6874                                   FW_EQ_ETH_CMD_PFN_V(pf) |
6875                                   FW_EQ_ETH_CMD_VFN_V(vf));
6876         c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
6877         c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
6878         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6879 }
6880
6881 /**
6882  *      t4_ctrl_eq_free - free a control egress queue
6883  *      @adap: the adapter
6884  *      @mbox: mailbox to use for the FW command
6885  *      @pf: the PF owning the queue
6886  *      @vf: the VF owning the queue
6887  *      @eqid: egress queue id
6888  *
6889  *      Frees a control egress queue.
6890  */
6891 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
6892                     unsigned int vf, unsigned int eqid)
6893 {
6894         struct fw_eq_ctrl_cmd c;
6895
6896         memset(&c, 0, sizeof(c));
6897         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
6898                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6899                                   FW_EQ_CTRL_CMD_PFN_V(pf) |
6900                                   FW_EQ_CTRL_CMD_VFN_V(vf));
6901         c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
6902         c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
6903         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6904 }
6905
6906 /**
6907  *      t4_ofld_eq_free - free an offload egress queue
6908  *      @adap: the adapter
6909  *      @mbox: mailbox to use for the FW command
6910  *      @pf: the PF owning the queue
6911  *      @vf: the VF owning the queue
6912  *      @eqid: egress queue id
6913  *
6914  *      Frees a control egress queue.
6915  */
6916 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
6917                     unsigned int vf, unsigned int eqid)
6918 {
6919         struct fw_eq_ofld_cmd c;
6920
6921         memset(&c, 0, sizeof(c));
6922         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
6923                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6924                                   FW_EQ_OFLD_CMD_PFN_V(pf) |
6925                                   FW_EQ_OFLD_CMD_VFN_V(vf));
6926         c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
6927         c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
6928         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6929 }
6930
6931 /**
6932  *      t4_handle_fw_rpl - process a FW reply message
6933  *      @adap: the adapter
6934  *      @rpl: start of the FW message
6935  *
6936  *      Processes a FW message, such as link state change messages.
6937  */
6938 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
6939 {
6940         u8 opcode = *(const u8 *)rpl;
6941
6942         if (opcode == FW_PORT_CMD) {    /* link/module state change message */
6943                 int speed = 0, fc = 0;
6944                 const struct fw_port_cmd *p = (void *)rpl;
6945                 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
6946                 int port = adap->chan_map[chan];
6947                 struct port_info *pi = adap2pinfo(adap, port);
6948                 struct link_config *lc = &pi->link_cfg;
6949                 u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
6950                 int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
6951                 u32 mod = FW_PORT_CMD_MODTYPE_G(stat);
6952
6953                 if (stat & FW_PORT_CMD_RXPAUSE_F)
6954                         fc |= PAUSE_RX;
6955                 if (stat & FW_PORT_CMD_TXPAUSE_F)
6956                         fc |= PAUSE_TX;
6957                 if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
6958                         speed = 100;
6959                 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
6960                         speed = 1000;
6961                 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
6962                         speed = 10000;
6963                 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
6964                         speed = 40000;
6965
6966                 if (link_ok != lc->link_ok || speed != lc->speed ||
6967                     fc != lc->fc) {                    /* something changed */
6968                         lc->link_ok = link_ok;
6969                         lc->speed = speed;
6970                         lc->fc = fc;
6971                         lc->supported = be16_to_cpu(p->u.info.pcap);
6972                         t4_os_link_changed(adap, port, link_ok);
6973                 }
6974                 if (mod != pi->mod_type) {
6975                         pi->mod_type = mod;
6976                         t4_os_portmod_changed(adap, port);
6977                 }
6978         }
6979         return 0;
6980 }
6981
6982 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
6983 {
6984         u16 val;
6985
6986         if (pci_is_pcie(adapter->pdev)) {
6987                 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
6988                 p->speed = val & PCI_EXP_LNKSTA_CLS;
6989                 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
6990         }
6991 }
6992
6993 /**
6994  *      init_link_config - initialize a link's SW state
6995  *      @lc: structure holding the link state
6996  *      @caps: link capabilities
6997  *
6998  *      Initializes the SW state maintained for each link, including the link's
6999  *      capabilities and default speed/flow-control/autonegotiation settings.
7000  */
7001 static void init_link_config(struct link_config *lc, unsigned int caps)
7002 {
7003         lc->supported = caps;
7004         lc->requested_speed = 0;
7005         lc->speed = 0;
7006         lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
7007         if (lc->supported & FW_PORT_CAP_ANEG) {
7008                 lc->advertising = lc->supported & ADVERT_MASK;
7009                 lc->autoneg = AUTONEG_ENABLE;
7010                 lc->requested_fc |= PAUSE_AUTONEG;
7011         } else {
7012                 lc->advertising = 0;
7013                 lc->autoneg = AUTONEG_DISABLE;
7014         }
7015 }
7016
7017 #define CIM_PF_NOACCESS 0xeeeeeeee
7018
7019 int t4_wait_dev_ready(void __iomem *regs)
7020 {
7021         u32 whoami;
7022
7023         whoami = readl(regs + PL_WHOAMI_A);
7024         if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
7025                 return 0;
7026
7027         msleep(500);
7028         whoami = readl(regs + PL_WHOAMI_A);
7029         return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
7030 }
7031
7032 struct flash_desc {
7033         u32 vendor_and_model_id;
7034         u32 size_mb;
7035 };
7036
7037 static int get_flash_params(struct adapter *adap)
7038 {
7039         /* Table for non-Numonix supported flash parts.  Numonix parts are left
7040          * to the preexisting code.  All flash parts have 64KB sectors.
7041          */
7042         static struct flash_desc supported_flash[] = {
7043                 { 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
7044         };
7045
7046         int ret;
7047         u32 info;
7048
7049         ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
7050         if (!ret)
7051                 ret = sf1_read(adap, 3, 0, 1, &info);
7052         t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
7053         if (ret)
7054                 return ret;
7055
7056         for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
7057                 if (supported_flash[ret].vendor_and_model_id == info) {
7058                         adap->params.sf_size = supported_flash[ret].size_mb;
7059                         adap->params.sf_nsec =
7060                                 adap->params.sf_size / SF_SEC_SIZE;
7061                         return 0;
7062                 }
7063
7064         if ((info & 0xff) != 0x20)             /* not a Numonix flash */
7065                 return -EINVAL;
7066         info >>= 16;                           /* log2 of size */
7067         if (info >= 0x14 && info < 0x18)
7068                 adap->params.sf_nsec = 1 << (info - 16);
7069         else if (info == 0x18)
7070                 adap->params.sf_nsec = 64;
7071         else
7072                 return -EINVAL;
7073         adap->params.sf_size = 1 << info;
7074         adap->params.sf_fw_start =
7075                 t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M;
7076
7077         if (adap->params.sf_size < FLASH_MIN_SIZE)
7078                 dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
7079                          adap->params.sf_size, FLASH_MIN_SIZE);
7080         return 0;
7081 }
7082
7083 static void set_pcie_completion_timeout(struct adapter *adapter, u8 range)
7084 {
7085         u16 val;
7086         u32 pcie_cap;
7087
7088         pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
7089         if (pcie_cap) {
7090                 pci_read_config_word(adapter->pdev,
7091                                      pcie_cap + PCI_EXP_DEVCTL2, &val);
7092                 val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT;
7093                 val |= range;
7094                 pci_write_config_word(adapter->pdev,
7095                                       pcie_cap + PCI_EXP_DEVCTL2, val);
7096         }
7097 }
7098
7099 /**
7100  *      t4_prep_adapter - prepare SW and HW for operation
7101  *      @adapter: the adapter
7102  *      @reset: if true perform a HW reset
7103  *
7104  *      Initialize adapter SW state for the various HW modules, set initial
7105  *      values for some adapter tunables, take PHYs out of reset, and
7106  *      initialize the MDIO interface.
7107  */
7108 int t4_prep_adapter(struct adapter *adapter)
7109 {
7110         int ret, ver;
7111         uint16_t device_id;
7112         u32 pl_rev;
7113
7114         get_pci_mode(adapter, &adapter->params.pci);
7115         pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
7116
7117         ret = get_flash_params(adapter);
7118         if (ret < 0) {
7119                 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
7120                 return ret;
7121         }
7122
7123         /* Retrieve adapter's device ID
7124          */
7125         pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
7126         ver = device_id >> 12;
7127         adapter->params.chip = 0;
7128         switch (ver) {
7129         case CHELSIO_T4:
7130                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
7131                 adapter->params.arch.sge_fl_db = DBPRIO_F;
7132                 adapter->params.arch.mps_tcam_size =
7133                                  NUM_MPS_CLS_SRAM_L_INSTANCES;
7134                 adapter->params.arch.mps_rplc_size = 128;
7135                 adapter->params.arch.nchan = NCHAN;
7136                 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
7137                 adapter->params.arch.vfcount = 128;
7138                 break;
7139         case CHELSIO_T5:
7140                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
7141                 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
7142                 adapter->params.arch.mps_tcam_size =
7143                                  NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7144                 adapter->params.arch.mps_rplc_size = 128;
7145                 adapter->params.arch.nchan = NCHAN;
7146                 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
7147                 adapter->params.arch.vfcount = 128;
7148                 break;
7149         case CHELSIO_T6:
7150                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
7151                 adapter->params.arch.sge_fl_db = 0;
7152                 adapter->params.arch.mps_tcam_size =
7153                                  NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7154                 adapter->params.arch.mps_rplc_size = 256;
7155                 adapter->params.arch.nchan = 2;
7156                 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
7157                 adapter->params.arch.vfcount = 256;
7158                 break;
7159         default:
7160                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
7161                         device_id);
7162                 return -EINVAL;
7163         }
7164
7165         adapter->params.cim_la_size = CIMLA_SIZE;
7166         init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
7167
7168         /*
7169          * Default port for debugging in case we can't reach FW.
7170          */
7171         adapter->params.nports = 1;
7172         adapter->params.portvec = 1;
7173         adapter->params.vpd.cclk = 50000;
7174
7175         /* Set pci completion timeout value to 4 seconds. */
7176         set_pcie_completion_timeout(adapter, 0xd);
7177         return 0;
7178 }
7179
7180 /**
7181  *      t4_bar2_sge_qregs - return BAR2 SGE Queue register information
7182  *      @adapter: the adapter
7183  *      @qid: the Queue ID
7184  *      @qtype: the Ingress or Egress type for @qid
7185  *      @user: true if this request is for a user mode queue
7186  *      @pbar2_qoffset: BAR2 Queue Offset
7187  *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
7188  *
7189  *      Returns the BAR2 SGE Queue Registers information associated with the
7190  *      indicated Absolute Queue ID.  These are passed back in return value
7191  *      pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
7192  *      and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
7193  *
7194  *      This may return an error which indicates that BAR2 SGE Queue
7195  *      registers aren't available.  If an error is not returned, then the
7196  *      following values are returned:
7197  *
7198  *        *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
7199  *        *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
7200  *
7201  *      If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
7202  *      require the "Inferred Queue ID" ability may be used.  E.g. the
7203  *      Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
7204  *      then these "Inferred Queue ID" register may not be used.
7205  */
7206 int t4_bar2_sge_qregs(struct adapter *adapter,
7207                       unsigned int qid,
7208                       enum t4_bar2_qtype qtype,
7209                       int user,
7210                       u64 *pbar2_qoffset,
7211                       unsigned int *pbar2_qid)
7212 {
7213         unsigned int page_shift, page_size, qpp_shift, qpp_mask;
7214         u64 bar2_page_offset, bar2_qoffset;
7215         unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
7216
7217         /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
7218         if (!user && is_t4(adapter->params.chip))
7219                 return -EINVAL;
7220
7221         /* Get our SGE Page Size parameters.
7222          */
7223         page_shift = adapter->params.sge.hps + 10;
7224         page_size = 1 << page_shift;
7225
7226         /* Get the right Queues per Page parameters for our Queue.
7227          */
7228         qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
7229                      ? adapter->params.sge.eq_qpp
7230                      : adapter->params.sge.iq_qpp);
7231         qpp_mask = (1 << qpp_shift) - 1;
7232
7233         /*  Calculate the basics of the BAR2 SGE Queue register area:
7234          *  o The BAR2 page the Queue registers will be in.
7235          *  o The BAR2 Queue ID.
7236          *  o The BAR2 Queue ID Offset into the BAR2 page.
7237          */
7238         bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
7239         bar2_qid = qid & qpp_mask;
7240         bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
7241
7242         /* If the BAR2 Queue ID Offset is less than the Page Size, then the
7243          * hardware will infer the Absolute Queue ID simply from the writes to
7244          * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
7245          * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
7246          * write to the first BAR2 SGE Queue Area within the BAR2 Page with
7247          * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
7248          * from the BAR2 Page and BAR2 Queue ID.
7249          *
7250          * One important censequence of this is that some BAR2 SGE registers
7251          * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
7252          * there.  But other registers synthesize the SGE Queue ID purely
7253          * from the writes to the registers -- the Write Combined Doorbell
7254          * Buffer is a good example.  These BAR2 SGE Registers are only
7255          * available for those BAR2 SGE Register areas where the SGE Absolute
7256          * Queue ID can be inferred from simple writes.
7257          */
7258         bar2_qoffset = bar2_page_offset;
7259         bar2_qinferred = (bar2_qid_offset < page_size);
7260         if (bar2_qinferred) {
7261                 bar2_qoffset += bar2_qid_offset;
7262                 bar2_qid = 0;
7263         }
7264
7265         *pbar2_qoffset = bar2_qoffset;
7266         *pbar2_qid = bar2_qid;
7267         return 0;
7268 }
7269
7270 /**
7271  *      t4_init_devlog_params - initialize adapter->params.devlog
7272  *      @adap: the adapter
7273  *
7274  *      Initialize various fields of the adapter's Firmware Device Log
7275  *      Parameters structure.
7276  */
7277 int t4_init_devlog_params(struct adapter *adap)
7278 {
7279         struct devlog_params *dparams = &adap->params.devlog;
7280         u32 pf_dparams;
7281         unsigned int devlog_meminfo;
7282         struct fw_devlog_cmd devlog_cmd;
7283         int ret;
7284
7285         /* If we're dealing with newer firmware, the Device Log Paramerters
7286          * are stored in a designated register which allows us to access the
7287          * Device Log even if we can't talk to the firmware.
7288          */
7289         pf_dparams =
7290                 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
7291         if (pf_dparams) {
7292                 unsigned int nentries, nentries128;
7293
7294                 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
7295                 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
7296
7297                 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
7298                 nentries = (nentries128 + 1) * 128;
7299                 dparams->size = nentries * sizeof(struct fw_devlog_e);
7300
7301                 return 0;
7302         }
7303
7304         /* Otherwise, ask the firmware for it's Device Log Parameters.
7305          */
7306         memset(&devlog_cmd, 0, sizeof(devlog_cmd));
7307         devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
7308                                              FW_CMD_REQUEST_F | FW_CMD_READ_F);
7309         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
7310         ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
7311                          &devlog_cmd);
7312         if (ret)
7313                 return ret;
7314
7315         devlog_meminfo =
7316                 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
7317         dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
7318         dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
7319         dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
7320
7321         return 0;
7322 }
7323
7324 /**
7325  *      t4_init_sge_params - initialize adap->params.sge
7326  *      @adapter: the adapter
7327  *
7328  *      Initialize various fields of the adapter's SGE Parameters structure.
7329  */
7330 int t4_init_sge_params(struct adapter *adapter)
7331 {
7332         struct sge_params *sge_params = &adapter->params.sge;
7333         u32 hps, qpp;
7334         unsigned int s_hps, s_qpp;
7335
7336         /* Extract the SGE Page Size for our PF.
7337          */
7338         hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
7339         s_hps = (HOSTPAGESIZEPF0_S +
7340                  (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
7341         sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
7342
7343         /* Extract the SGE Egress and Ingess Queues Per Page for our PF.
7344          */
7345         s_qpp = (QUEUESPERPAGEPF0_S +
7346                 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
7347         qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
7348         sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
7349         qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
7350         sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
7351
7352         return 0;
7353 }
7354
7355 /**
7356  *      t4_init_tp_params - initialize adap->params.tp
7357  *      @adap: the adapter
7358  *
7359  *      Initialize various fields of the adapter's TP Parameters structure.
7360  */
7361 int t4_init_tp_params(struct adapter *adap)
7362 {
7363         int chan;
7364         u32 v;
7365
7366         v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
7367         adap->params.tp.tre = TIMERRESOLUTION_G(v);
7368         adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
7369
7370         /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
7371         for (chan = 0; chan < NCHAN; chan++)
7372                 adap->params.tp.tx_modq[chan] = chan;
7373
7374         /* Cache the adapter's Compressed Filter Mode and global Incress
7375          * Configuration.
7376          */
7377         if (t4_use_ldst(adap)) {
7378                 t4_fw_tp_pio_rw(adap, &adap->params.tp.vlan_pri_map, 1,
7379                                 TP_VLAN_PRI_MAP_A, 1);
7380                 t4_fw_tp_pio_rw(adap, &adap->params.tp.ingress_config, 1,
7381                                 TP_INGRESS_CONFIG_A, 1);
7382         } else {
7383                 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7384                                  &adap->params.tp.vlan_pri_map, 1,
7385                                  TP_VLAN_PRI_MAP_A);
7386                 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7387                                  &adap->params.tp.ingress_config, 1,
7388                                  TP_INGRESS_CONFIG_A);
7389         }
7390
7391         /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
7392          * shift positions of several elements of the Compressed Filter Tuple
7393          * for this adapter which we need frequently ...
7394          */
7395         adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
7396         adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
7397         adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
7398         adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
7399                                                                PROTOCOL_F);
7400
7401         /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
7402          * represents the presence of an Outer VLAN instead of a VNIC ID.
7403          */
7404         if ((adap->params.tp.ingress_config & VNIC_F) == 0)
7405                 adap->params.tp.vnic_shift = -1;
7406
7407         return 0;
7408 }
7409
7410 /**
7411  *      t4_filter_field_shift - calculate filter field shift
7412  *      @adap: the adapter
7413  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
7414  *
7415  *      Return the shift position of a filter field within the Compressed
7416  *      Filter Tuple.  The filter field is specified via its selection bit
7417  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
7418  */
7419 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
7420 {
7421         unsigned int filter_mode = adap->params.tp.vlan_pri_map;
7422         unsigned int sel;
7423         int field_shift;
7424
7425         if ((filter_mode & filter_sel) == 0)
7426                 return -1;
7427
7428         for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
7429                 switch (filter_mode & sel) {
7430                 case FCOE_F:
7431                         field_shift += FT_FCOE_W;
7432                         break;
7433                 case PORT_F:
7434                         field_shift += FT_PORT_W;
7435                         break;
7436                 case VNIC_ID_F:
7437                         field_shift += FT_VNIC_ID_W;
7438                         break;
7439                 case VLAN_F:
7440                         field_shift += FT_VLAN_W;
7441                         break;
7442                 case TOS_F:
7443                         field_shift += FT_TOS_W;
7444                         break;
7445                 case PROTOCOL_F:
7446                         field_shift += FT_PROTOCOL_W;
7447                         break;
7448                 case ETHERTYPE_F:
7449                         field_shift += FT_ETHERTYPE_W;
7450                         break;
7451                 case MACMATCH_F:
7452                         field_shift += FT_MACMATCH_W;
7453                         break;
7454                 case MPSHITTYPE_F:
7455                         field_shift += FT_MPSHITTYPE_W;
7456                         break;
7457                 case FRAGMENTATION_F:
7458                         field_shift += FT_FRAGMENTATION_W;
7459                         break;
7460                 }
7461         }
7462         return field_shift;
7463 }
7464
7465 int t4_init_rss_mode(struct adapter *adap, int mbox)
7466 {
7467         int i, ret;
7468         struct fw_rss_vi_config_cmd rvc;
7469
7470         memset(&rvc, 0, sizeof(rvc));
7471
7472         for_each_port(adap, i) {
7473                 struct port_info *p = adap2pinfo(adap, i);
7474
7475                 rvc.op_to_viid =
7476                         cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
7477                                     FW_CMD_REQUEST_F | FW_CMD_READ_F |
7478                                     FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
7479                 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
7480                 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
7481                 if (ret)
7482                         return ret;
7483                 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
7484         }
7485         return 0;
7486 }
7487
7488 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
7489 {
7490         u8 addr[6];
7491         int ret, i, j = 0;
7492         struct fw_port_cmd c;
7493         struct fw_rss_vi_config_cmd rvc;
7494
7495         memset(&c, 0, sizeof(c));
7496         memset(&rvc, 0, sizeof(rvc));
7497
7498         for_each_port(adap, i) {
7499                 unsigned int rss_size;
7500                 struct port_info *p = adap2pinfo(adap, i);
7501
7502                 while ((adap->params.portvec & (1 << j)) == 0)
7503                         j++;
7504
7505                 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
7506                                              FW_CMD_REQUEST_F | FW_CMD_READ_F |
7507                                              FW_PORT_CMD_PORTID_V(j));
7508                 c.action_to_len16 = cpu_to_be32(
7509                         FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
7510                         FW_LEN16(c));
7511                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7512                 if (ret)
7513                         return ret;
7514
7515                 ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
7516                 if (ret < 0)
7517                         return ret;
7518
7519                 p->viid = ret;
7520                 p->tx_chan = j;
7521                 p->lport = j;
7522                 p->rss_size = rss_size;
7523                 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
7524                 adap->port[i]->dev_port = j;
7525
7526                 ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
7527                 p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ?
7528                         FW_PORT_CMD_MDIOADDR_G(ret) : -1;
7529                 p->port_type = FW_PORT_CMD_PTYPE_G(ret);
7530                 p->mod_type = FW_PORT_MOD_TYPE_NA;
7531
7532                 rvc.op_to_viid =
7533                         cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
7534                                     FW_CMD_REQUEST_F | FW_CMD_READ_F |
7535                                     FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
7536                 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
7537                 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
7538                 if (ret)
7539                         return ret;
7540                 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
7541
7542                 init_link_config(&p->link_cfg, be16_to_cpu(c.u.info.pcap));
7543                 j++;
7544         }
7545         return 0;
7546 }
7547
7548 /**
7549  *      t4_read_cimq_cfg - read CIM queue configuration
7550  *      @adap: the adapter
7551  *      @base: holds the queue base addresses in bytes
7552  *      @size: holds the queue sizes in bytes
7553  *      @thres: holds the queue full thresholds in bytes
7554  *
7555  *      Returns the current configuration of the CIM queues, starting with
7556  *      the IBQs, then the OBQs.
7557  */
7558 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
7559 {
7560         unsigned int i, v;
7561         int cim_num_obq = is_t4(adap->params.chip) ?
7562                                 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
7563
7564         for (i = 0; i < CIM_NUM_IBQ; i++) {
7565                 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
7566                              QUENUMSELECT_V(i));
7567                 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7568                 /* value is in 256-byte units */
7569                 *base++ = CIMQBASE_G(v) * 256;
7570                 *size++ = CIMQSIZE_G(v) * 256;
7571                 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
7572         }
7573         for (i = 0; i < cim_num_obq; i++) {
7574                 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
7575                              QUENUMSELECT_V(i));
7576                 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7577                 /* value is in 256-byte units */
7578                 *base++ = CIMQBASE_G(v) * 256;
7579                 *size++ = CIMQSIZE_G(v) * 256;
7580         }
7581 }
7582
7583 /**
7584  *      t4_read_cim_ibq - read the contents of a CIM inbound queue
7585  *      @adap: the adapter
7586  *      @qid: the queue index
7587  *      @data: where to store the queue contents
7588  *      @n: capacity of @data in 32-bit words
7589  *
7590  *      Reads the contents of the selected CIM queue starting at address 0 up
7591  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
7592  *      error and the number of 32-bit words actually read on success.
7593  */
7594 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7595 {
7596         int i, err, attempts;
7597         unsigned int addr;
7598         const unsigned int nwords = CIM_IBQ_SIZE * 4;
7599
7600         if (qid > 5 || (n & 3))
7601                 return -EINVAL;
7602
7603         addr = qid * nwords;
7604         if (n > nwords)
7605                 n = nwords;
7606
7607         /* It might take 3-10ms before the IBQ debug read access is allowed.
7608          * Wait for 1 Sec with a delay of 1 usec.
7609          */
7610         attempts = 1000000;
7611
7612         for (i = 0; i < n; i++, addr++) {
7613                 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
7614                              IBQDBGEN_F);
7615                 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
7616                                       attempts, 1);
7617                 if (err)
7618                         return err;
7619                 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
7620         }
7621         t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
7622         return i;
7623 }
7624
7625 /**
7626  *      t4_read_cim_obq - read the contents of a CIM outbound queue
7627  *      @adap: the adapter
7628  *      @qid: the queue index
7629  *      @data: where to store the queue contents
7630  *      @n: capacity of @data in 32-bit words
7631  *
7632  *      Reads the contents of the selected CIM queue starting at address 0 up
7633  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
7634  *      error and the number of 32-bit words actually read on success.
7635  */
7636 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7637 {
7638         int i, err;
7639         unsigned int addr, v, nwords;
7640         int cim_num_obq = is_t4(adap->params.chip) ?
7641                                 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
7642
7643         if ((qid > (cim_num_obq - 1)) || (n & 3))
7644                 return -EINVAL;
7645
7646         t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
7647                      QUENUMSELECT_V(qid));
7648         v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7649
7650         addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
7651         nwords = CIMQSIZE_G(v) * 64;  /* same */
7652         if (n > nwords)
7653                 n = nwords;
7654
7655         for (i = 0; i < n; i++, addr++) {
7656                 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
7657                              OBQDBGEN_F);
7658                 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
7659                                       2, 1);
7660                 if (err)
7661                         return err;
7662                 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
7663         }
7664         t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
7665         return i;
7666 }
7667
7668 /**
7669  *      t4_cim_read - read a block from CIM internal address space
7670  *      @adap: the adapter
7671  *      @addr: the start address within the CIM address space
7672  *      @n: number of words to read
7673  *      @valp: where to store the result
7674  *
7675  *      Reads a block of 4-byte words from the CIM intenal address space.
7676  */
7677 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
7678                 unsigned int *valp)
7679 {
7680         int ret = 0;
7681
7682         if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
7683                 return -EBUSY;
7684
7685         for ( ; !ret && n--; addr += 4) {
7686                 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
7687                 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
7688                                       0, 5, 2);
7689                 if (!ret)
7690                         *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
7691         }
7692         return ret;
7693 }
7694
7695 /**
7696  *      t4_cim_write - write a block into CIM internal address space
7697  *      @adap: the adapter
7698  *      @addr: the start address within the CIM address space
7699  *      @n: number of words to write
7700  *      @valp: set of values to write
7701  *
7702  *      Writes a block of 4-byte words into the CIM intenal address space.
7703  */
7704 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
7705                  const unsigned int *valp)
7706 {
7707         int ret = 0;
7708
7709         if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
7710                 return -EBUSY;
7711
7712         for ( ; !ret && n--; addr += 4) {
7713                 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
7714                 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
7715                 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
7716                                       0, 5, 2);
7717         }
7718         return ret;
7719 }
7720
7721 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
7722                          unsigned int val)
7723 {
7724         return t4_cim_write(adap, addr, 1, &val);
7725 }
7726
7727 /**
7728  *      t4_cim_read_la - read CIM LA capture buffer
7729  *      @adap: the adapter
7730  *      @la_buf: where to store the LA data
7731  *      @wrptr: the HW write pointer within the capture buffer
7732  *
7733  *      Reads the contents of the CIM LA buffer with the most recent entry at
7734  *      the end of the returned data and with the entry at @wrptr first.
7735  *      We try to leave the LA in the running state we find it in.
7736  */
7737 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
7738 {
7739         int i, ret;
7740         unsigned int cfg, val, idx;
7741
7742         ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
7743         if (ret)
7744                 return ret;
7745
7746         if (cfg & UPDBGLAEN_F) {        /* LA is running, freeze it */
7747                 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
7748                 if (ret)
7749                         return ret;
7750         }
7751
7752         ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
7753         if (ret)
7754                 goto restart;
7755
7756         idx = UPDBGLAWRPTR_G(val);
7757         if (wrptr)
7758                 *wrptr = idx;
7759
7760         for (i = 0; i < adap->params.cim_la_size; i++) {
7761                 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
7762                                     UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
7763                 if (ret)
7764                         break;
7765                 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
7766                 if (ret)
7767                         break;
7768                 if (val & UPDBGLARDEN_F) {
7769                         ret = -ETIMEDOUT;
7770                         break;
7771                 }
7772                 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
7773                 if (ret)
7774                         break;
7775                 idx = (idx + 1) & UPDBGLARDPTR_M;
7776         }
7777 restart:
7778         if (cfg & UPDBGLAEN_F) {
7779                 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
7780                                       cfg & ~UPDBGLARDEN_F);
7781                 if (!ret)
7782                         ret = r;
7783         }
7784         return ret;
7785 }
7786
7787 /**
7788  *      t4_tp_read_la - read TP LA capture buffer
7789  *      @adap: the adapter
7790  *      @la_buf: where to store the LA data
7791  *      @wrptr: the HW write pointer within the capture buffer
7792  *
7793  *      Reads the contents of the TP LA buffer with the most recent entry at
7794  *      the end of the returned data and with the entry at @wrptr first.
7795  *      We leave the LA in the running state we find it in.
7796  */
7797 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
7798 {
7799         bool last_incomplete;
7800         unsigned int i, cfg, val, idx;
7801
7802         cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
7803         if (cfg & DBGLAENABLE_F)                        /* freeze LA */
7804                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
7805                              adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
7806
7807         val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
7808         idx = DBGLAWPTR_G(val);
7809         last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
7810         if (last_incomplete)
7811                 idx = (idx + 1) & DBGLARPTR_M;
7812         if (wrptr)
7813                 *wrptr = idx;
7814
7815         val &= 0xffff;
7816         val &= ~DBGLARPTR_V(DBGLARPTR_M);
7817         val |= adap->params.tp.la_mask;
7818
7819         for (i = 0; i < TPLA_SIZE; i++) {
7820                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
7821                 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
7822                 idx = (idx + 1) & DBGLARPTR_M;
7823         }
7824
7825         /* Wipe out last entry if it isn't valid */
7826         if (last_incomplete)
7827                 la_buf[TPLA_SIZE - 1] = ~0ULL;
7828
7829         if (cfg & DBGLAENABLE_F)                    /* restore running state */
7830                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
7831                              cfg | adap->params.tp.la_mask);
7832 }
7833
7834 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
7835  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
7836  * state for more than the Warning Threshold then we'll issue a warning about
7837  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
7838  * appears to be hung every Warning Repeat second till the situation clears.
7839  * If the situation clears, we'll note that as well.
7840  */
7841 #define SGE_IDMA_WARN_THRESH 1
7842 #define SGE_IDMA_WARN_REPEAT 300
7843
7844 /**
7845  *      t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
7846  *      @adapter: the adapter
7847  *      @idma: the adapter IDMA Monitor state
7848  *
7849  *      Initialize the state of an SGE Ingress DMA Monitor.
7850  */
7851 void t4_idma_monitor_init(struct adapter *adapter,
7852                           struct sge_idma_monitor_state *idma)
7853 {
7854         /* Initialize the state variables for detecting an SGE Ingress DMA
7855          * hang.  The SGE has internal counters which count up on each clock
7856          * tick whenever the SGE finds its Ingress DMA State Engines in the
7857          * same state they were on the previous clock tick.  The clock used is
7858          * the Core Clock so we have a limit on the maximum "time" they can
7859          * record; typically a very small number of seconds.  For instance,
7860          * with a 600MHz Core Clock, we can only count up to a bit more than
7861          * 7s.  So we'll synthesize a larger counter in order to not run the
7862          * risk of having the "timers" overflow and give us the flexibility to
7863          * maintain a Hung SGE State Machine of our own which operates across
7864          * a longer time frame.
7865          */
7866         idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
7867         idma->idma_stalled[0] = 0;
7868         idma->idma_stalled[1] = 0;
7869 }
7870
7871 /**
7872  *      t4_idma_monitor - monitor SGE Ingress DMA state
7873  *      @adapter: the adapter
7874  *      @idma: the adapter IDMA Monitor state
7875  *      @hz: number of ticks/second
7876  *      @ticks: number of ticks since the last IDMA Monitor call
7877  */
7878 void t4_idma_monitor(struct adapter *adapter,
7879                      struct sge_idma_monitor_state *idma,
7880                      int hz, int ticks)
7881 {
7882         int i, idma_same_state_cnt[2];
7883
7884          /* Read the SGE Debug Ingress DMA Same State Count registers.  These
7885           * are counters inside the SGE which count up on each clock when the
7886           * SGE finds its Ingress DMA State Engines in the same states they
7887           * were in the previous clock.  The counters will peg out at
7888           * 0xffffffff without wrapping around so once they pass the 1s
7889           * threshold they'll stay above that till the IDMA state changes.
7890           */
7891         t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
7892         idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
7893         idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
7894
7895         for (i = 0; i < 2; i++) {
7896                 u32 debug0, debug11;
7897
7898                 /* If the Ingress DMA Same State Counter ("timer") is less
7899                  * than 1s, then we can reset our synthesized Stall Timer and
7900                  * continue.  If we have previously emitted warnings about a
7901                  * potential stalled Ingress Queue, issue a note indicating
7902                  * that the Ingress Queue has resumed forward progress.
7903                  */
7904                 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
7905                         if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
7906                                 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
7907                                          "resumed after %d seconds\n",
7908                                          i, idma->idma_qid[i],
7909                                          idma->idma_stalled[i] / hz);
7910                         idma->idma_stalled[i] = 0;
7911                         continue;
7912                 }
7913
7914                 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
7915                  * domain.  The first time we get here it'll be because we
7916                  * passed the 1s Threshold; each additional time it'll be
7917                  * because the RX Timer Callback is being fired on its regular
7918                  * schedule.
7919                  *
7920                  * If the stall is below our Potential Hung Ingress Queue
7921                  * Warning Threshold, continue.
7922                  */
7923                 if (idma->idma_stalled[i] == 0) {
7924                         idma->idma_stalled[i] = hz;
7925                         idma->idma_warn[i] = 0;
7926                 } else {
7927                         idma->idma_stalled[i] += ticks;
7928                         idma->idma_warn[i] -= ticks;
7929                 }
7930
7931                 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
7932                         continue;
7933
7934                 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
7935                  */
7936                 if (idma->idma_warn[i] > 0)
7937                         continue;
7938                 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
7939
7940                 /* Read and save the SGE IDMA State and Queue ID information.
7941                  * We do this every time in case it changes across time ...
7942                  * can't be too careful ...
7943                  */
7944                 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
7945                 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
7946                 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
7947
7948                 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
7949                 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
7950                 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
7951
7952                 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
7953                          "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
7954                          i, idma->idma_qid[i], idma->idma_state[i],
7955                          idma->idma_stalled[i] / hz,
7956                          debug0, debug11);
7957                 t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
7958         }
7959 }