treewide: replace dev->trans_start update with helper
[cascardo/linux.git] / drivers / net / ethernet / hisilicon / hns / hns_enet.c
1 /*
2  * Copyright (c) 2014-2015 Hisilicon Limited.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  */
9
10 #include <linux/clk.h>
11 #include <linux/cpumask.h>
12 #include <linux/etherdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ip.h>
17 #include <linux/ipv6.h>
18 #include <linux/module.h>
19 #include <linux/phy.h>
20 #include <linux/platform_device.h>
21 #include <linux/skbuff.h>
22
23 #include "hnae.h"
24 #include "hns_enet.h"
25
26 #define NIC_MAX_Q_PER_VF 16
27 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
28
29 #define SERVICE_TIMER_HZ (1 * HZ)
30
31 #define NIC_TX_CLEAN_MAX_NUM 256
32 #define NIC_RX_CLEAN_MAX_NUM 64
33
34 #define RCB_IRQ_NOT_INITED 0
35 #define RCB_IRQ_INITED 1
36 #define HNS_BUFFER_SIZE_2048 2048
37
38 #define BD_MAX_SEND_SIZE 8191
39 #define SKB_TMP_LEN(SKB) \
40         (((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB))
41
42 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
43                          int size, dma_addr_t dma, int frag_end,
44                          int buf_num, enum hns_desc_type type, int mtu)
45 {
46         struct hnae_desc *desc = &ring->desc[ring->next_to_use];
47         struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
48         struct iphdr *iphdr;
49         struct ipv6hdr *ipv6hdr;
50         struct sk_buff *skb;
51         __be16 protocol;
52         u8 bn_pid = 0;
53         u8 rrcfv = 0;
54         u8 ip_offset = 0;
55         u8 tvsvsn = 0;
56         u16 mss = 0;
57         u8 l4_len = 0;
58         u16 paylen = 0;
59
60         desc_cb->priv = priv;
61         desc_cb->length = size;
62         desc_cb->dma = dma;
63         desc_cb->type = type;
64
65         desc->addr = cpu_to_le64(dma);
66         desc->tx.send_size = cpu_to_le16((u16)size);
67
68         /* config bd buffer end */
69         hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
70         hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
71
72         /* fill port_id in the tx bd for sending management pkts */
73         hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
74                        HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);
75
76         if (type == DESC_TYPE_SKB) {
77                 skb = (struct sk_buff *)priv;
78
79                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
80                         skb_reset_mac_len(skb);
81                         protocol = skb->protocol;
82                         ip_offset = ETH_HLEN;
83
84                         if (protocol == htons(ETH_P_8021Q)) {
85                                 ip_offset += VLAN_HLEN;
86                                 protocol = vlan_get_protocol(skb);
87                                 skb->protocol = protocol;
88                         }
89
90                         if (skb->protocol == htons(ETH_P_IP)) {
91                                 iphdr = ip_hdr(skb);
92                                 hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
93                                 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
94
95                                 /* check for tcp/udp header */
96                                 if (iphdr->protocol == IPPROTO_TCP &&
97                                     skb_is_gso(skb)) {
98                                         hnae_set_bit(tvsvsn,
99                                                      HNSV2_TXD_TSE_B, 1);
100                                         l4_len = tcp_hdrlen(skb);
101                                         mss = skb_shinfo(skb)->gso_size;
102                                         paylen = skb->len - SKB_TMP_LEN(skb);
103                                 }
104                         } else if (skb->protocol == htons(ETH_P_IPV6)) {
105                                 hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
106                                 ipv6hdr = ipv6_hdr(skb);
107                                 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
108
109                                 /* check for tcp/udp header */
110                                 if (ipv6hdr->nexthdr == IPPROTO_TCP &&
111                                     skb_is_gso(skb) && skb_is_gso_v6(skb)) {
112                                         hnae_set_bit(tvsvsn,
113                                                      HNSV2_TXD_TSE_B, 1);
114                                         l4_len = tcp_hdrlen(skb);
115                                         mss = skb_shinfo(skb)->gso_size;
116                                         paylen = skb->len - SKB_TMP_LEN(skb);
117                                 }
118                         }
119                         desc->tx.ip_offset = ip_offset;
120                         desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
121                         desc->tx.mss = cpu_to_le16(mss);
122                         desc->tx.l4_len = l4_len;
123                         desc->tx.paylen = cpu_to_le16(paylen);
124                 }
125         }
126
127         hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
128
129         desc->tx.bn_pid = bn_pid;
130         desc->tx.ra_ri_cs_fe_vld = rrcfv;
131
132         ring_ptr_move_fw(ring, next_to_use);
133 }
134
135 static void fill_desc(struct hnae_ring *ring, void *priv,
136                       int size, dma_addr_t dma, int frag_end,
137                       int buf_num, enum hns_desc_type type, int mtu)
138 {
139         struct hnae_desc *desc = &ring->desc[ring->next_to_use];
140         struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
141         struct sk_buff *skb;
142         __be16 protocol;
143         u32 ip_offset;
144         u32 asid_bufnum_pid = 0;
145         u32 flag_ipoffset = 0;
146
147         desc_cb->priv = priv;
148         desc_cb->length = size;
149         desc_cb->dma = dma;
150         desc_cb->type = type;
151
152         desc->addr = cpu_to_le64(dma);
153         desc->tx.send_size = cpu_to_le16((u16)size);
154
155         /*config bd buffer end */
156         flag_ipoffset |= 1 << HNS_TXD_VLD_B;
157
158         asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
159
160         if (type == DESC_TYPE_SKB) {
161                 skb = (struct sk_buff *)priv;
162
163                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
164                         protocol = skb->protocol;
165                         ip_offset = ETH_HLEN;
166
167                         /*if it is a SW VLAN check the next protocol*/
168                         if (protocol == htons(ETH_P_8021Q)) {
169                                 ip_offset += VLAN_HLEN;
170                                 protocol = vlan_get_protocol(skb);
171                                 skb->protocol = protocol;
172                         }
173
174                         if (skb->protocol == htons(ETH_P_IP)) {
175                                 flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
176                                 /* check for tcp/udp header */
177                                 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
178
179                         } else if (skb->protocol == htons(ETH_P_IPV6)) {
180                                 /* ipv6 has not l3 cs, check for L4 header */
181                                 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
182                         }
183
184                         flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
185                 }
186         }
187
188         flag_ipoffset |= frag_end << HNS_TXD_FE_B;
189
190         desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
191         desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
192
193         ring_ptr_move_fw(ring, next_to_use);
194 }
195
196 static void unfill_desc(struct hnae_ring *ring)
197 {
198         ring_ptr_move_bw(ring, next_to_use);
199 }
200
201 static int hns_nic_maybe_stop_tx(
202         struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
203 {
204         struct sk_buff *skb = *out_skb;
205         struct sk_buff *new_skb = NULL;
206         int buf_num;
207
208         /* no. of segments (plus a header) */
209         buf_num = skb_shinfo(skb)->nr_frags + 1;
210
211         if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
212                 if (ring_space(ring) < 1)
213                         return -EBUSY;
214
215                 new_skb = skb_copy(skb, GFP_ATOMIC);
216                 if (!new_skb)
217                         return -ENOMEM;
218
219                 dev_kfree_skb_any(skb);
220                 *out_skb = new_skb;
221                 buf_num = 1;
222         } else if (buf_num > ring_space(ring)) {
223                 return -EBUSY;
224         }
225
226         *bnum = buf_num;
227         return 0;
228 }
229
230 static int hns_nic_maybe_stop_tso(
231         struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
232 {
233         int i;
234         int size;
235         int buf_num;
236         int frag_num;
237         struct sk_buff *skb = *out_skb;
238         struct sk_buff *new_skb = NULL;
239         struct skb_frag_struct *frag;
240
241         size = skb_headlen(skb);
242         buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
243
244         frag_num = skb_shinfo(skb)->nr_frags;
245         for (i = 0; i < frag_num; i++) {
246                 frag = &skb_shinfo(skb)->frags[i];
247                 size = skb_frag_size(frag);
248                 buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
249         }
250
251         if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
252                 buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
253                 if (ring_space(ring) < buf_num)
254                         return -EBUSY;
255                 /* manual split the send packet */
256                 new_skb = skb_copy(skb, GFP_ATOMIC);
257                 if (!new_skb)
258                         return -ENOMEM;
259                 dev_kfree_skb_any(skb);
260                 *out_skb = new_skb;
261
262         } else if (ring_space(ring) < buf_num) {
263                 return -EBUSY;
264         }
265
266         *bnum = buf_num;
267         return 0;
268 }
269
270 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
271                           int size, dma_addr_t dma, int frag_end,
272                           int buf_num, enum hns_desc_type type, int mtu)
273 {
274         int frag_buf_num;
275         int sizeoflast;
276         int k;
277
278         frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
279         sizeoflast = size % BD_MAX_SEND_SIZE;
280         sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
281
282         /* when the frag size is bigger than hardware, split this frag */
283         for (k = 0; k < frag_buf_num; k++)
284                 fill_v2_desc(ring, priv,
285                              (k == frag_buf_num - 1) ?
286                                         sizeoflast : BD_MAX_SEND_SIZE,
287                              dma + BD_MAX_SEND_SIZE * k,
288                              frag_end && (k == frag_buf_num - 1) ? 1 : 0,
289                              buf_num,
290                              (type == DESC_TYPE_SKB && !k) ?
291                                         DESC_TYPE_SKB : DESC_TYPE_PAGE,
292                              mtu);
293 }
294
295 int hns_nic_net_xmit_hw(struct net_device *ndev,
296                         struct sk_buff *skb,
297                         struct hns_nic_ring_data *ring_data)
298 {
299         struct hns_nic_priv *priv = netdev_priv(ndev);
300         struct device *dev = priv->dev;
301         struct hnae_ring *ring = ring_data->ring;
302         struct netdev_queue *dev_queue;
303         struct skb_frag_struct *frag;
304         int buf_num;
305         int seg_num;
306         dma_addr_t dma;
307         int size, next_to_use;
308         int i;
309
310         switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
311         case -EBUSY:
312                 ring->stats.tx_busy++;
313                 goto out_net_tx_busy;
314         case -ENOMEM:
315                 ring->stats.sw_err_cnt++;
316                 netdev_err(ndev, "no memory to xmit!\n");
317                 goto out_err_tx_ok;
318         default:
319                 break;
320         }
321
322         /* no. of segments (plus a header) */
323         seg_num = skb_shinfo(skb)->nr_frags + 1;
324         next_to_use = ring->next_to_use;
325
326         /* fill the first part */
327         size = skb_headlen(skb);
328         dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
329         if (dma_mapping_error(dev, dma)) {
330                 netdev_err(ndev, "TX head DMA map failed\n");
331                 ring->stats.sw_err_cnt++;
332                 goto out_err_tx_ok;
333         }
334         priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
335                             buf_num, DESC_TYPE_SKB, ndev->mtu);
336
337         /* fill the fragments */
338         for (i = 1; i < seg_num; i++) {
339                 frag = &skb_shinfo(skb)->frags[i - 1];
340                 size = skb_frag_size(frag);
341                 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
342                 if (dma_mapping_error(dev, dma)) {
343                         netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
344                         ring->stats.sw_err_cnt++;
345                         goto out_map_frag_fail;
346                 }
347                 priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
348                                     seg_num - 1 == i ? 1 : 0, buf_num,
349                                     DESC_TYPE_PAGE, ndev->mtu);
350         }
351
352         /*complete translate all packets*/
353         dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
354         netdev_tx_sent_queue(dev_queue, skb->len);
355
356         wmb(); /* commit all data before submit */
357         assert(skb->queue_mapping < priv->ae_handle->q_num);
358         hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
359         ring->stats.tx_pkts++;
360         ring->stats.tx_bytes += skb->len;
361
362         return NETDEV_TX_OK;
363
364 out_map_frag_fail:
365
366         while (ring->next_to_use != next_to_use) {
367                 unfill_desc(ring);
368                 if (ring->next_to_use != next_to_use)
369                         dma_unmap_page(dev,
370                                        ring->desc_cb[ring->next_to_use].dma,
371                                        ring->desc_cb[ring->next_to_use].length,
372                                        DMA_TO_DEVICE);
373                 else
374                         dma_unmap_single(dev,
375                                          ring->desc_cb[next_to_use].dma,
376                                          ring->desc_cb[next_to_use].length,
377                                          DMA_TO_DEVICE);
378         }
379
380 out_err_tx_ok:
381
382         dev_kfree_skb_any(skb);
383         return NETDEV_TX_OK;
384
385 out_net_tx_busy:
386
387         netif_stop_subqueue(ndev, skb->queue_mapping);
388
389         /* Herbert's original patch had:
390          *  smp_mb__after_netif_stop_queue();
391          * but since that doesn't exist yet, just open code it.
392          */
393         smp_mb();
394         return NETDEV_TX_BUSY;
395 }
396
397 /**
398  * hns_nic_get_headlen - determine size of header for RSC/LRO/GRO/FCOE
399  * @data: pointer to the start of the headers
400  * @max: total length of section to find headers in
401  *
402  * This function is meant to determine the length of headers that will
403  * be recognized by hardware for LRO, GRO, and RSC offloads.  The main
404  * motivation of doing this is to only perform one pull for IPv4 TCP
405  * packets so that we can do basic things like calculating the gso_size
406  * based on the average data per packet.
407  **/
408 static unsigned int hns_nic_get_headlen(unsigned char *data, u32 flag,
409                                         unsigned int max_size)
410 {
411         unsigned char *network;
412         u8 hlen;
413
414         /* this should never happen, but better safe than sorry */
415         if (max_size < ETH_HLEN)
416                 return max_size;
417
418         /* initialize network frame pointer */
419         network = data;
420
421         /* set first protocol and move network header forward */
422         network += ETH_HLEN;
423
424         /* handle any vlan tag if present */
425         if (hnae_get_field(flag, HNS_RXD_VLAN_M, HNS_RXD_VLAN_S)
426                 == HNS_RX_FLAG_VLAN_PRESENT) {
427                 if ((typeof(max_size))(network - data) > (max_size - VLAN_HLEN))
428                         return max_size;
429
430                 network += VLAN_HLEN;
431         }
432
433         /* handle L3 protocols */
434         if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
435                 == HNS_RX_FLAG_L3ID_IPV4) {
436                 if ((typeof(max_size))(network - data) >
437                     (max_size - sizeof(struct iphdr)))
438                         return max_size;
439
440                 /* access ihl as a u8 to avoid unaligned access on ia64 */
441                 hlen = (network[0] & 0x0F) << 2;
442
443                 /* verify hlen meets minimum size requirements */
444                 if (hlen < sizeof(struct iphdr))
445                         return network - data;
446
447                 /* record next protocol if header is present */
448         } else if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
449                 == HNS_RX_FLAG_L3ID_IPV6) {
450                 if ((typeof(max_size))(network - data) >
451                     (max_size - sizeof(struct ipv6hdr)))
452                         return max_size;
453
454                 /* record next protocol */
455                 hlen = sizeof(struct ipv6hdr);
456         } else {
457                 return network - data;
458         }
459
460         /* relocate pointer to start of L4 header */
461         network += hlen;
462
463         /* finally sort out TCP/UDP */
464         if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
465                 == HNS_RX_FLAG_L4ID_TCP) {
466                 if ((typeof(max_size))(network - data) >
467                     (max_size - sizeof(struct tcphdr)))
468                         return max_size;
469
470                 /* access doff as a u8 to avoid unaligned access on ia64 */
471                 hlen = (network[12] & 0xF0) >> 2;
472
473                 /* verify hlen meets minimum size requirements */
474                 if (hlen < sizeof(struct tcphdr))
475                         return network - data;
476
477                 network += hlen;
478         } else if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
479                 == HNS_RX_FLAG_L4ID_UDP) {
480                 if ((typeof(max_size))(network - data) >
481                     (max_size - sizeof(struct udphdr)))
482                         return max_size;
483
484                 network += sizeof(struct udphdr);
485         }
486
487         /* If everything has gone correctly network should be the
488          * data section of the packet and will be the end of the header.
489          * If not then it probably represents the end of the last recognized
490          * header.
491          */
492         if ((typeof(max_size))(network - data) < max_size)
493                 return network - data;
494         else
495                 return max_size;
496 }
497
498 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
499                                struct hnae_ring *ring, int pull_len,
500                                struct hnae_desc_cb *desc_cb)
501 {
502         struct hnae_desc *desc;
503         int truesize, size;
504         int last_offset;
505         bool twobufs;
506
507         twobufs = ((PAGE_SIZE < 8192) && hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
508
509         desc = &ring->desc[ring->next_to_clean];
510         size = le16_to_cpu(desc->rx.size);
511
512         if (twobufs) {
513                 truesize = hnae_buf_size(ring);
514         } else {
515                 truesize = ALIGN(size, L1_CACHE_BYTES);
516                 last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
517         }
518
519         skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
520                         size - pull_len, truesize - pull_len);
521
522          /* avoid re-using remote pages,flag default unreuse */
523         if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
524                 return;
525
526         if (twobufs) {
527                 /* if we are only owner of page we can reuse it */
528                 if (likely(page_count(desc_cb->priv) == 1)) {
529                         /* flip page offset to other buffer */
530                         desc_cb->page_offset ^= truesize;
531
532                         desc_cb->reuse_flag = 1;
533                         /* bump ref count on page before it is given*/
534                         get_page(desc_cb->priv);
535                 }
536                 return;
537         }
538
539         /* move offset up to the next cache line */
540         desc_cb->page_offset += truesize;
541
542         if (desc_cb->page_offset <= last_offset) {
543                 desc_cb->reuse_flag = 1;
544                 /* bump ref count on page before it is given*/
545                 get_page(desc_cb->priv);
546         }
547 }
548
549 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
550 {
551         *out_bnum = hnae_get_field(bnum_flag,
552                                    HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
553 }
554
555 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
556 {
557         *out_bnum = hnae_get_field(bnum_flag,
558                                    HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
559 }
560
561 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
562                                struct sk_buff **out_skb, int *out_bnum)
563 {
564         struct hnae_ring *ring = ring_data->ring;
565         struct net_device *ndev = ring_data->napi.dev;
566         struct hns_nic_priv *priv = netdev_priv(ndev);
567         struct sk_buff *skb;
568         struct hnae_desc *desc;
569         struct hnae_desc_cb *desc_cb;
570         struct ethhdr *eh;
571         unsigned char *va;
572         int bnum, length, i;
573         int pull_len;
574         u32 bnum_flag;
575
576         desc = &ring->desc[ring->next_to_clean];
577         desc_cb = &ring->desc_cb[ring->next_to_clean];
578
579         prefetch(desc);
580
581         va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
582
583         /* prefetch first cache line of first page */
584         prefetch(va);
585 #if L1_CACHE_BYTES < 128
586         prefetch(va + L1_CACHE_BYTES);
587 #endif
588
589         skb = *out_skb = napi_alloc_skb(&ring_data->napi,
590                                         HNS_RX_HEAD_SIZE);
591         if (unlikely(!skb)) {
592                 netdev_err(ndev, "alloc rx skb fail\n");
593                 ring->stats.sw_err_cnt++;
594                 return -ENOMEM;
595         }
596
597         prefetchw(skb->data);
598         length = le16_to_cpu(desc->rx.pkt_len);
599         bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
600         priv->ops.get_rxd_bnum(bnum_flag, &bnum);
601         *out_bnum = bnum;
602
603         if (length <= HNS_RX_HEAD_SIZE) {
604                 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
605
606                 /* we can reuse buffer as-is, just make sure it is local */
607                 if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
608                         desc_cb->reuse_flag = 1;
609                 else /* this page cannot be reused so discard it */
610                         put_page(desc_cb->priv);
611
612                 ring_ptr_move_fw(ring, next_to_clean);
613
614                 if (unlikely(bnum != 1)) { /* check err*/
615                         *out_bnum = 1;
616                         goto out_bnum_err;
617                 }
618         } else {
619                 ring->stats.seg_pkt_cnt++;
620
621                 pull_len = hns_nic_get_headlen(va, bnum_flag, HNS_RX_HEAD_SIZE);
622                 memcpy(__skb_put(skb, pull_len), va,
623                        ALIGN(pull_len, sizeof(long)));
624
625                 hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
626                 ring_ptr_move_fw(ring, next_to_clean);
627
628                 if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
629                         *out_bnum = 1;
630                         goto out_bnum_err;
631                 }
632                 for (i = 1; i < bnum; i++) {
633                         desc = &ring->desc[ring->next_to_clean];
634                         desc_cb = &ring->desc_cb[ring->next_to_clean];
635
636                         hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
637                         ring_ptr_move_fw(ring, next_to_clean);
638                 }
639         }
640
641         /* check except process, free skb and jump the desc */
642         if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
643 out_bnum_err:
644                 *out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
645                 netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
646                            bnum, ring->max_desc_num_per_pkt,
647                            length, (int)MAX_SKB_FRAGS,
648                            ((u64 *)desc)[0], ((u64 *)desc)[1]);
649                 ring->stats.err_bd_num++;
650                 dev_kfree_skb_any(skb);
651                 return -EDOM;
652         }
653
654         bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
655
656         if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
657                 netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
658                            ((u64 *)desc)[0], ((u64 *)desc)[1]);
659                 ring->stats.non_vld_descs++;
660                 dev_kfree_skb_any(skb);
661                 return -EINVAL;
662         }
663
664         if (unlikely((!desc->rx.pkt_len) ||
665                      hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
666                 ring->stats.err_pkt_len++;
667                 dev_kfree_skb_any(skb);
668                 return -EFAULT;
669         }
670
671         if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
672                 ring->stats.l2_err++;
673                 dev_kfree_skb_any(skb);
674                 return -EFAULT;
675         }
676
677         /* filter out multicast pkt with the same src mac as this port */
678         eh = eth_hdr(skb);
679         if (unlikely(is_multicast_ether_addr(eh->h_dest) &&
680                      ether_addr_equal(ndev->dev_addr, eh->h_source))) {
681                 dev_kfree_skb_any(skb);
682                 return -EFAULT;
683         }
684
685         ring->stats.rx_pkts++;
686         ring->stats.rx_bytes += skb->len;
687
688         if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L3E_B) ||
689                      hnae_get_bit(bnum_flag, HNS_RXD_L4E_B))) {
690                 ring->stats.l3l4_csum_err++;
691                 return 0;
692         }
693
694         skb->ip_summed = CHECKSUM_UNNECESSARY;
695
696         return 0;
697 }
698
699 static void
700 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
701 {
702         int i, ret;
703         struct hnae_desc_cb res_cbs;
704         struct hnae_desc_cb *desc_cb;
705         struct hnae_ring *ring = ring_data->ring;
706         struct net_device *ndev = ring_data->napi.dev;
707
708         for (i = 0; i < cleand_count; i++) {
709                 desc_cb = &ring->desc_cb[ring->next_to_use];
710                 if (desc_cb->reuse_flag) {
711                         ring->stats.reuse_pg_cnt++;
712                         hnae_reuse_buffer(ring, ring->next_to_use);
713                 } else {
714                         ret = hnae_reserve_buffer_map(ring, &res_cbs);
715                         if (ret) {
716                                 ring->stats.sw_err_cnt++;
717                                 netdev_err(ndev, "hnae reserve buffer map failed.\n");
718                                 break;
719                         }
720                         hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
721                 }
722
723                 ring_ptr_move_fw(ring, next_to_use);
724         }
725
726         wmb(); /* make all data has been write before submit */
727         writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
728 }
729
730 /* return error number for error or number of desc left to take
731  */
732 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
733                               struct sk_buff *skb)
734 {
735         struct net_device *ndev = ring_data->napi.dev;
736
737         skb->protocol = eth_type_trans(skb, ndev);
738         (void)napi_gro_receive(&ring_data->napi, skb);
739         ndev->last_rx = jiffies;
740 }
741
742 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
743                                int budget, void *v)
744 {
745         struct hnae_ring *ring = ring_data->ring;
746         struct sk_buff *skb;
747         int num, bnum, ex_num;
748 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
749         int recv_pkts, recv_bds, clean_count, err;
750
751         num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
752         rmb(); /* make sure num taken effect before the other data is touched */
753
754         recv_pkts = 0, recv_bds = 0, clean_count = 0;
755 recv:
756         while (recv_pkts < budget && recv_bds < num) {
757                 /* reuse or realloc buffers*/
758                 if (clean_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
759                         hns_nic_alloc_rx_buffers(ring_data, clean_count);
760                         clean_count = 0;
761                 }
762
763                 /* poll one pkg*/
764                 err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
765                 if (unlikely(!skb)) /* this fault cannot be repaired */
766                         break;
767
768                 recv_bds += bnum;
769                 clean_count += bnum;
770                 if (unlikely(err)) {  /* do jump the err */
771                         recv_pkts++;
772                         continue;
773                 }
774
775                 /* do update ip stack process*/
776                 ((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
777                                                         ring_data, skb);
778                 recv_pkts++;
779         }
780
781         /* make all data has been write before submit */
782         if (recv_pkts < budget) {
783                 ex_num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
784
785                 if (ex_num > clean_count) {
786                         num += ex_num - clean_count;
787                         rmb(); /*complete read rx ring bd number*/
788                         goto recv;
789                 }
790         }
791
792         /* make all data has been write before submit */
793         if (clean_count > 0)
794                 hns_nic_alloc_rx_buffers(ring_data, clean_count);
795
796         return recv_pkts;
797 }
798
799 static void hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
800 {
801         struct hnae_ring *ring = ring_data->ring;
802         int num = 0;
803
804         /* for hardware bug fixed */
805         num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
806
807         if (num > 0) {
808                 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
809                         ring_data->ring, 1);
810
811                 napi_schedule(&ring_data->napi);
812         }
813 }
814
815 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
816                                             int *bytes, int *pkts)
817 {
818         struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
819
820         (*pkts) += (desc_cb->type == DESC_TYPE_SKB);
821         (*bytes) += desc_cb->length;
822         /* desc_cb will be cleaned, after hnae_free_buffer_detach*/
823         hnae_free_buffer_detach(ring, ring->next_to_clean);
824
825         ring_ptr_move_fw(ring, next_to_clean);
826 }
827
828 static int is_valid_clean_head(struct hnae_ring *ring, int h)
829 {
830         int u = ring->next_to_use;
831         int c = ring->next_to_clean;
832
833         if (unlikely(h > ring->desc_num))
834                 return 0;
835
836         assert(u > 0 && u < ring->desc_num);
837         assert(c > 0 && c < ring->desc_num);
838         assert(u != c && h != c); /* must be checked before call this func */
839
840         return u > c ? (h > c && h <= u) : (h > c || h <= u);
841 }
842
843 /* netif_tx_lock will turn down the performance, set only when necessary */
844 #ifdef CONFIG_NET_POLL_CONTROLLER
845 #define NETIF_TX_LOCK(ndev) netif_tx_lock(ndev)
846 #define NETIF_TX_UNLOCK(ndev) netif_tx_unlock(ndev)
847 #else
848 #define NETIF_TX_LOCK(ndev)
849 #define NETIF_TX_UNLOCK(ndev)
850 #endif
851 /* reclaim all desc in one budget
852  * return error or number of desc left
853  */
854 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
855                                int budget, void *v)
856 {
857         struct hnae_ring *ring = ring_data->ring;
858         struct net_device *ndev = ring_data->napi.dev;
859         struct netdev_queue *dev_queue;
860         struct hns_nic_priv *priv = netdev_priv(ndev);
861         int head;
862         int bytes, pkts;
863
864         NETIF_TX_LOCK(ndev);
865
866         head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
867         rmb(); /* make sure head is ready before touch any data */
868
869         if (is_ring_empty(ring) || head == ring->next_to_clean) {
870                 NETIF_TX_UNLOCK(ndev);
871                 return 0; /* no data to poll */
872         }
873
874         if (!is_valid_clean_head(ring, head)) {
875                 netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
876                            ring->next_to_use, ring->next_to_clean);
877                 ring->stats.io_err_cnt++;
878                 NETIF_TX_UNLOCK(ndev);
879                 return -EIO;
880         }
881
882         bytes = 0;
883         pkts = 0;
884         while (head != ring->next_to_clean) {
885                 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
886                 /* issue prefetch for next Tx descriptor */
887                 prefetch(&ring->desc_cb[ring->next_to_clean]);
888         }
889
890         NETIF_TX_UNLOCK(ndev);
891
892         dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
893         netdev_tx_completed_queue(dev_queue, pkts, bytes);
894
895         if (unlikely(priv->link && !netif_carrier_ok(ndev)))
896                 netif_carrier_on(ndev);
897
898         if (unlikely(pkts && netif_carrier_ok(ndev) &&
899                      (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
900                 /* Make sure that anybody stopping the queue after this
901                  * sees the new next_to_clean.
902                  */
903                 smp_mb();
904                 if (netif_tx_queue_stopped(dev_queue) &&
905                     !test_bit(NIC_STATE_DOWN, &priv->state)) {
906                         netif_tx_wake_queue(dev_queue);
907                         ring->stats.restart_queue++;
908                 }
909         }
910         return 0;
911 }
912
913 static void hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
914 {
915         struct hnae_ring *ring = ring_data->ring;
916         int head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
917
918         if (head != ring->next_to_clean) {
919                 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
920                         ring_data->ring, 1);
921
922                 napi_schedule(&ring_data->napi);
923         }
924 }
925
926 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
927 {
928         struct hnae_ring *ring = ring_data->ring;
929         struct net_device *ndev = ring_data->napi.dev;
930         struct netdev_queue *dev_queue;
931         int head;
932         int bytes, pkts;
933
934         NETIF_TX_LOCK(ndev);
935
936         head = ring->next_to_use; /* ntu :soft setted ring position*/
937         bytes = 0;
938         pkts = 0;
939         while (head != ring->next_to_clean)
940                 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
941
942         NETIF_TX_UNLOCK(ndev);
943
944         dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
945         netdev_tx_reset_queue(dev_queue);
946 }
947
948 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
949 {
950         struct hns_nic_ring_data *ring_data =
951                 container_of(napi, struct hns_nic_ring_data, napi);
952         int clean_complete = ring_data->poll_one(
953                                 ring_data, budget, ring_data->ex_process);
954
955         if (clean_complete >= 0 && clean_complete < budget) {
956                 napi_complete(napi);
957                 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
958                         ring_data->ring, 0);
959                 if (ring_data->fini_process)
960                         ring_data->fini_process(ring_data);
961                 return 0;
962         }
963
964         return clean_complete;
965 }
966
967 static irqreturn_t hns_irq_handle(int irq, void *dev)
968 {
969         struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
970
971         ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
972                 ring_data->ring, 1);
973         napi_schedule(&ring_data->napi);
974
975         return IRQ_HANDLED;
976 }
977
978 /**
979  *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
980  *@ndev: net device
981  */
982 static void hns_nic_adjust_link(struct net_device *ndev)
983 {
984         struct hns_nic_priv *priv = netdev_priv(ndev);
985         struct hnae_handle *h = priv->ae_handle;
986
987         h->dev->ops->adjust_link(h, ndev->phydev->speed, ndev->phydev->duplex);
988 }
989
990 /**
991  *hns_nic_init_phy - init phy
992  *@ndev: net device
993  *@h: ae handle
994  * Return 0 on success, negative on failure
995  */
996 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
997 {
998         struct hns_nic_priv *priv = netdev_priv(ndev);
999         struct phy_device *phy_dev = NULL;
1000
1001         if (!h->phy_node)
1002                 return 0;
1003
1004         if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1005                 phy_dev = of_phy_connect(ndev, h->phy_node,
1006                                          hns_nic_adjust_link, 0, h->phy_if);
1007         else
1008                 phy_dev = of_phy_attach(ndev, h->phy_node, 0, h->phy_if);
1009
1010         if (unlikely(!phy_dev) || IS_ERR(phy_dev))
1011                 return !phy_dev ? -ENODEV : PTR_ERR(phy_dev);
1012
1013         phy_dev->supported &= h->if_support;
1014         phy_dev->advertising = phy_dev->supported;
1015
1016         if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1017                 phy_dev->autoneg = false;
1018
1019         priv->phy = phy_dev;
1020
1021         return 0;
1022 }
1023
1024 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1025 {
1026         struct hns_nic_priv *priv = netdev_priv(netdev);
1027         struct hnae_handle *h = priv->ae_handle;
1028
1029         napi_enable(&priv->ring_data[idx].napi);
1030
1031         enable_irq(priv->ring_data[idx].ring->irq);
1032         h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1033
1034         return 0;
1035 }
1036
1037 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1038 {
1039         struct hns_nic_priv *priv = netdev_priv(ndev);
1040         struct hnae_handle *h = priv->ae_handle;
1041         struct sockaddr *mac_addr = p;
1042         int ret;
1043
1044         if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1045                 return -EADDRNOTAVAIL;
1046
1047         ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1048         if (ret) {
1049                 netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1050                 return ret;
1051         }
1052
1053         memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len);
1054
1055         return 0;
1056 }
1057
1058 void hns_nic_update_stats(struct net_device *netdev)
1059 {
1060         struct hns_nic_priv *priv = netdev_priv(netdev);
1061         struct hnae_handle *h = priv->ae_handle;
1062
1063         h->dev->ops->update_stats(h, &netdev->stats);
1064 }
1065
1066 /* set mac addr if it is configed. or leave it to the AE driver */
1067 static void hns_init_mac_addr(struct net_device *ndev)
1068 {
1069         struct hns_nic_priv *priv = netdev_priv(ndev);
1070         struct device_node *node = priv->dev->of_node;
1071         const void *mac_addr_temp;
1072
1073         mac_addr_temp = of_get_mac_address(node);
1074         if (mac_addr_temp && is_valid_ether_addr(mac_addr_temp)) {
1075                 memcpy(ndev->dev_addr, mac_addr_temp, ndev->addr_len);
1076         } else {
1077                 eth_hw_addr_random(ndev);
1078                 dev_warn(priv->dev, "No valid mac, use random mac %pM",
1079                          ndev->dev_addr);
1080         }
1081 }
1082
1083 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1084 {
1085         struct hns_nic_priv *priv = netdev_priv(netdev);
1086         struct hnae_handle *h = priv->ae_handle;
1087
1088         h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1089         disable_irq(priv->ring_data[idx].ring->irq);
1090
1091         napi_disable(&priv->ring_data[idx].napi);
1092 }
1093
1094 static void hns_set_irq_affinity(struct hns_nic_priv *priv)
1095 {
1096         struct hnae_handle *h = priv->ae_handle;
1097         struct hns_nic_ring_data *rd;
1098         int i;
1099         int cpu;
1100         cpumask_t mask;
1101
1102         /*diffrent irq banlance for 16core and 32core*/
1103         if (h->q_num == num_possible_cpus()) {
1104                 for (i = 0; i < h->q_num * 2; i++) {
1105                         rd = &priv->ring_data[i];
1106                         if (cpu_online(rd->queue_index)) {
1107                                 cpumask_clear(&mask);
1108                                 cpu = rd->queue_index;
1109                                 cpumask_set_cpu(cpu, &mask);
1110                                 (void)irq_set_affinity_hint(rd->ring->irq,
1111                                                             &mask);
1112                         }
1113                 }
1114         } else {
1115                 for (i = 0; i < h->q_num; i++) {
1116                         rd = &priv->ring_data[i];
1117                         if (cpu_online(rd->queue_index * 2)) {
1118                                 cpumask_clear(&mask);
1119                                 cpu = rd->queue_index * 2;
1120                                 cpumask_set_cpu(cpu, &mask);
1121                                 (void)irq_set_affinity_hint(rd->ring->irq,
1122                                                             &mask);
1123                         }
1124                 }
1125
1126                 for (i = h->q_num; i < h->q_num * 2; i++) {
1127                         rd = &priv->ring_data[i];
1128                         if (cpu_online(rd->queue_index * 2 + 1)) {
1129                                 cpumask_clear(&mask);
1130                                 cpu = rd->queue_index * 2 + 1;
1131                                 cpumask_set_cpu(cpu, &mask);
1132                                 (void)irq_set_affinity_hint(rd->ring->irq,
1133                                                             &mask);
1134                         }
1135                 }
1136         }
1137 }
1138
1139 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1140 {
1141         struct hnae_handle *h = priv->ae_handle;
1142         struct hns_nic_ring_data *rd;
1143         int i;
1144         int ret;
1145
1146         for (i = 0; i < h->q_num * 2; i++) {
1147                 rd = &priv->ring_data[i];
1148
1149                 if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1150                         break;
1151
1152                 snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1153                          "%s-%s%d", priv->netdev->name,
1154                          (i < h->q_num ? "tx" : "rx"), rd->queue_index);
1155
1156                 rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1157
1158                 ret = request_irq(rd->ring->irq,
1159                                   hns_irq_handle, 0, rd->ring->ring_name, rd);
1160                 if (ret) {
1161                         netdev_err(priv->netdev, "request irq(%d) fail\n",
1162                                    rd->ring->irq);
1163                         return ret;
1164                 }
1165                 disable_irq(rd->ring->irq);
1166                 rd->ring->irq_init_flag = RCB_IRQ_INITED;
1167         }
1168
1169         /*set cpu affinity*/
1170         hns_set_irq_affinity(priv);
1171
1172         return 0;
1173 }
1174
1175 static int hns_nic_net_up(struct net_device *ndev)
1176 {
1177         struct hns_nic_priv *priv = netdev_priv(ndev);
1178         struct hnae_handle *h = priv->ae_handle;
1179         int i, j, k;
1180         int ret;
1181
1182         ret = hns_nic_init_irq(priv);
1183         if (ret != 0) {
1184                 netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1185                 return ret;
1186         }
1187
1188         for (i = 0; i < h->q_num * 2; i++) {
1189                 ret = hns_nic_ring_open(ndev, i);
1190                 if (ret)
1191                         goto out_has_some_queues;
1192         }
1193
1194         for (k = 0; k < h->q_num; k++)
1195                 h->dev->ops->toggle_queue_status(h->qs[k], 1);
1196
1197         ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1198         if (ret)
1199                 goto out_set_mac_addr_err;
1200
1201         ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1202         if (ret)
1203                 goto out_start_err;
1204
1205         if (priv->phy)
1206                 phy_start(priv->phy);
1207
1208         clear_bit(NIC_STATE_DOWN, &priv->state);
1209         (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1210
1211         return 0;
1212
1213 out_start_err:
1214         netif_stop_queue(ndev);
1215 out_set_mac_addr_err:
1216         for (k = 0; k < h->q_num; k++)
1217                 h->dev->ops->toggle_queue_status(h->qs[k], 0);
1218 out_has_some_queues:
1219         for (j = i - 1; j >= 0; j--)
1220                 hns_nic_ring_close(ndev, j);
1221
1222         set_bit(NIC_STATE_DOWN, &priv->state);
1223
1224         return ret;
1225 }
1226
1227 static void hns_nic_net_down(struct net_device *ndev)
1228 {
1229         int i;
1230         struct hnae_ae_ops *ops;
1231         struct hns_nic_priv *priv = netdev_priv(ndev);
1232
1233         if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1234                 return;
1235
1236         (void)del_timer_sync(&priv->service_timer);
1237         netif_tx_stop_all_queues(ndev);
1238         netif_carrier_off(ndev);
1239         netif_tx_disable(ndev);
1240         priv->link = 0;
1241
1242         if (priv->phy)
1243                 phy_stop(priv->phy);
1244
1245         ops = priv->ae_handle->dev->ops;
1246
1247         if (ops->stop)
1248                 ops->stop(priv->ae_handle);
1249
1250         netif_tx_stop_all_queues(ndev);
1251
1252         for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1253                 hns_nic_ring_close(ndev, i);
1254                 hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1255
1256                 /* clean tx buffers*/
1257                 hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1258         }
1259 }
1260
1261 void hns_nic_net_reset(struct net_device *ndev)
1262 {
1263         struct hns_nic_priv *priv = netdev_priv(ndev);
1264         struct hnae_handle *handle = priv->ae_handle;
1265
1266         while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1267                 usleep_range(1000, 2000);
1268
1269         (void)hnae_reinit_handle(handle);
1270
1271         clear_bit(NIC_STATE_RESETTING, &priv->state);
1272 }
1273
1274 void hns_nic_net_reinit(struct net_device *netdev)
1275 {
1276         struct hns_nic_priv *priv = netdev_priv(netdev);
1277
1278         netif_trans_update(priv->netdev);
1279         while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1280                 usleep_range(1000, 2000);
1281
1282         hns_nic_net_down(netdev);
1283         hns_nic_net_reset(netdev);
1284         (void)hns_nic_net_up(netdev);
1285         clear_bit(NIC_STATE_REINITING, &priv->state);
1286 }
1287
1288 static int hns_nic_net_open(struct net_device *ndev)
1289 {
1290         struct hns_nic_priv *priv = netdev_priv(ndev);
1291         struct hnae_handle *h = priv->ae_handle;
1292         int ret;
1293
1294         if (test_bit(NIC_STATE_TESTING, &priv->state))
1295                 return -EBUSY;
1296
1297         priv->link = 0;
1298         netif_carrier_off(ndev);
1299
1300         ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1301         if (ret < 0) {
1302                 netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1303                            ret);
1304                 return ret;
1305         }
1306
1307         ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1308         if (ret < 0) {
1309                 netdev_err(ndev,
1310                            "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1311                 return ret;
1312         }
1313
1314         ret = hns_nic_net_up(ndev);
1315         if (ret) {
1316                 netdev_err(ndev,
1317                            "hns net up fail, ret=%d!\n", ret);
1318                 return ret;
1319         }
1320
1321         return 0;
1322 }
1323
1324 static int hns_nic_net_stop(struct net_device *ndev)
1325 {
1326         hns_nic_net_down(ndev);
1327
1328         return 0;
1329 }
1330
1331 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1332 static void hns_nic_net_timeout(struct net_device *ndev)
1333 {
1334         struct hns_nic_priv *priv = netdev_priv(ndev);
1335
1336         hns_tx_timeout_reset(priv);
1337 }
1338
1339 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr,
1340                             int cmd)
1341 {
1342         struct hns_nic_priv *priv = netdev_priv(netdev);
1343         struct phy_device *phy_dev = priv->phy;
1344
1345         if (!netif_running(netdev))
1346                 return -EINVAL;
1347
1348         if (!phy_dev)
1349                 return -ENOTSUPP;
1350
1351         return phy_mii_ioctl(phy_dev, ifr, cmd);
1352 }
1353
1354 /* use only for netconsole to poll with the device without interrupt */
1355 #ifdef CONFIG_NET_POLL_CONTROLLER
1356 void hns_nic_poll_controller(struct net_device *ndev)
1357 {
1358         struct hns_nic_priv *priv = netdev_priv(ndev);
1359         unsigned long flags;
1360         int i;
1361
1362         local_irq_save(flags);
1363         for (i = 0; i < priv->ae_handle->q_num * 2; i++)
1364                 napi_schedule(&priv->ring_data[i].napi);
1365         local_irq_restore(flags);
1366 }
1367 #endif
1368
1369 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1370                                     struct net_device *ndev)
1371 {
1372         struct hns_nic_priv *priv = netdev_priv(ndev);
1373         int ret;
1374
1375         assert(skb->queue_mapping < ndev->ae_handle->q_num);
1376         ret = hns_nic_net_xmit_hw(ndev, skb,
1377                                   &tx_ring_data(priv, skb->queue_mapping));
1378         if (ret == NETDEV_TX_OK) {
1379                 netif_trans_update(ndev);
1380                 ndev->stats.tx_bytes += skb->len;
1381                 ndev->stats.tx_packets++;
1382         }
1383         return (netdev_tx_t)ret;
1384 }
1385
1386 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1387 {
1388         struct hns_nic_priv *priv = netdev_priv(ndev);
1389         struct hnae_handle *h = priv->ae_handle;
1390         int ret;
1391
1392         /* MTU < 68 is an error and causes problems on some kernels */
1393         if (new_mtu < 68)
1394                 return -EINVAL;
1395
1396         if (!h->dev->ops->set_mtu)
1397                 return -ENOTSUPP;
1398
1399         if (netif_running(ndev)) {
1400                 (void)hns_nic_net_stop(ndev);
1401                 msleep(100);
1402
1403                 ret = h->dev->ops->set_mtu(h, new_mtu);
1404                 if (ret)
1405                         netdev_err(ndev, "set mtu fail, return value %d\n",
1406                                    ret);
1407
1408                 if (hns_nic_net_open(ndev))
1409                         netdev_err(ndev, "hns net open fail\n");
1410         } else {
1411                 ret = h->dev->ops->set_mtu(h, new_mtu);
1412         }
1413
1414         if (!ret)
1415                 ndev->mtu = new_mtu;
1416
1417         return ret;
1418 }
1419
1420 static int hns_nic_set_features(struct net_device *netdev,
1421                                 netdev_features_t features)
1422 {
1423         struct hns_nic_priv *priv = netdev_priv(netdev);
1424         struct hnae_handle *h = priv->ae_handle;
1425
1426         switch (priv->enet_ver) {
1427         case AE_VERSION_1:
1428                 if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1429                         netdev_info(netdev, "enet v1 do not support tso!\n");
1430                 break;
1431         default:
1432                 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1433                         priv->ops.fill_desc = fill_tso_desc;
1434                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1435                         /* The chip only support 7*4096 */
1436                         netif_set_gso_max_size(netdev, 7 * 4096);
1437                         h->dev->ops->set_tso_stats(h, 1);
1438                 } else {
1439                         priv->ops.fill_desc = fill_v2_desc;
1440                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1441                         h->dev->ops->set_tso_stats(h, 0);
1442                 }
1443                 break;
1444         }
1445         netdev->features = features;
1446         return 0;
1447 }
1448
1449 static netdev_features_t hns_nic_fix_features(
1450                 struct net_device *netdev, netdev_features_t features)
1451 {
1452         struct hns_nic_priv *priv = netdev_priv(netdev);
1453
1454         switch (priv->enet_ver) {
1455         case AE_VERSION_1:
1456                 features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1457                                 NETIF_F_HW_VLAN_CTAG_FILTER);
1458                 break;
1459         default:
1460                 break;
1461         }
1462         return features;
1463 }
1464
1465 /**
1466  * nic_set_multicast_list - set mutl mac address
1467  * @netdev: net device
1468  * @p: mac address
1469  *
1470  * return void
1471  */
1472 void hns_set_multicast_list(struct net_device *ndev)
1473 {
1474         struct hns_nic_priv *priv = netdev_priv(ndev);
1475         struct hnae_handle *h = priv->ae_handle;
1476         struct netdev_hw_addr *ha = NULL;
1477
1478         if (!h) {
1479                 netdev_err(ndev, "hnae handle is null\n");
1480                 return;
1481         }
1482
1483         if (h->dev->ops->set_mc_addr) {
1484                 netdev_for_each_mc_addr(ha, ndev)
1485                         if (h->dev->ops->set_mc_addr(h, ha->addr))
1486                                 netdev_err(ndev, "set multicast fail\n");
1487         }
1488 }
1489
1490 void hns_nic_set_rx_mode(struct net_device *ndev)
1491 {
1492         struct hns_nic_priv *priv = netdev_priv(ndev);
1493         struct hnae_handle *h = priv->ae_handle;
1494
1495         if (h->dev->ops->set_promisc_mode) {
1496                 if (ndev->flags & IFF_PROMISC)
1497                         h->dev->ops->set_promisc_mode(h, 1);
1498                 else
1499                         h->dev->ops->set_promisc_mode(h, 0);
1500         }
1501
1502         hns_set_multicast_list(ndev);
1503 }
1504
1505 struct rtnl_link_stats64 *hns_nic_get_stats64(struct net_device *ndev,
1506                                               struct rtnl_link_stats64 *stats)
1507 {
1508         int idx = 0;
1509         u64 tx_bytes = 0;
1510         u64 rx_bytes = 0;
1511         u64 tx_pkts = 0;
1512         u64 rx_pkts = 0;
1513         struct hns_nic_priv *priv = netdev_priv(ndev);
1514         struct hnae_handle *h = priv->ae_handle;
1515
1516         for (idx = 0; idx < h->q_num; idx++) {
1517                 tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
1518                 tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
1519                 rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
1520                 rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
1521         }
1522
1523         stats->tx_bytes = tx_bytes;
1524         stats->tx_packets = tx_pkts;
1525         stats->rx_bytes = rx_bytes;
1526         stats->rx_packets = rx_pkts;
1527
1528         stats->rx_errors = ndev->stats.rx_errors;
1529         stats->multicast = ndev->stats.multicast;
1530         stats->rx_length_errors = ndev->stats.rx_length_errors;
1531         stats->rx_crc_errors = ndev->stats.rx_crc_errors;
1532         stats->rx_missed_errors = ndev->stats.rx_missed_errors;
1533
1534         stats->tx_errors = ndev->stats.tx_errors;
1535         stats->rx_dropped = ndev->stats.rx_dropped;
1536         stats->tx_dropped = ndev->stats.tx_dropped;
1537         stats->collisions = ndev->stats.collisions;
1538         stats->rx_over_errors = ndev->stats.rx_over_errors;
1539         stats->rx_frame_errors = ndev->stats.rx_frame_errors;
1540         stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
1541         stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
1542         stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
1543         stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
1544         stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
1545         stats->tx_window_errors = ndev->stats.tx_window_errors;
1546         stats->rx_compressed = ndev->stats.rx_compressed;
1547         stats->tx_compressed = ndev->stats.tx_compressed;
1548
1549         return stats;
1550 }
1551
1552 static const struct net_device_ops hns_nic_netdev_ops = {
1553         .ndo_open = hns_nic_net_open,
1554         .ndo_stop = hns_nic_net_stop,
1555         .ndo_start_xmit = hns_nic_net_xmit,
1556         .ndo_tx_timeout = hns_nic_net_timeout,
1557         .ndo_set_mac_address = hns_nic_net_set_mac_address,
1558         .ndo_change_mtu = hns_nic_change_mtu,
1559         .ndo_do_ioctl = hns_nic_do_ioctl,
1560         .ndo_set_features = hns_nic_set_features,
1561         .ndo_fix_features = hns_nic_fix_features,
1562         .ndo_get_stats64 = hns_nic_get_stats64,
1563 #ifdef CONFIG_NET_POLL_CONTROLLER
1564         .ndo_poll_controller = hns_nic_poll_controller,
1565 #endif
1566         .ndo_set_rx_mode = hns_nic_set_rx_mode,
1567 };
1568
1569 static void hns_nic_update_link_status(struct net_device *netdev)
1570 {
1571         struct hns_nic_priv *priv = netdev_priv(netdev);
1572
1573         struct hnae_handle *h = priv->ae_handle;
1574         int state = 1;
1575
1576         if (priv->phy) {
1577                 if (!genphy_update_link(priv->phy))
1578                         state = priv->phy->link;
1579                 else
1580                         state = 0;
1581         }
1582         state = state && h->dev->ops->get_status(h);
1583
1584         if (state != priv->link) {
1585                 if (state) {
1586                         netif_carrier_on(netdev);
1587                         netif_tx_wake_all_queues(netdev);
1588                         netdev_info(netdev, "link up\n");
1589                 } else {
1590                         netif_carrier_off(netdev);
1591                         netdev_info(netdev, "link down\n");
1592                 }
1593                 priv->link = state;
1594         }
1595 }
1596
1597 /* for dumping key regs*/
1598 static void hns_nic_dump(struct hns_nic_priv *priv)
1599 {
1600         struct hnae_handle *h = priv->ae_handle;
1601         struct hnae_ae_ops *ops = h->dev->ops;
1602         u32 *data, reg_num, i;
1603
1604         if (ops->get_regs_len && ops->get_regs) {
1605                 reg_num = ops->get_regs_len(priv->ae_handle);
1606                 reg_num = (reg_num + 3ul) & ~3ul;
1607                 data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
1608                 if (data) {
1609                         ops->get_regs(priv->ae_handle, data);
1610                         for (i = 0; i < reg_num; i += 4)
1611                                 pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1612                                         i, data[i], data[i + 1],
1613                                         data[i + 2], data[i + 3]);
1614                         kfree(data);
1615                 }
1616         }
1617
1618         for (i = 0; i < h->q_num; i++) {
1619                 pr_info("tx_queue%d_next_to_clean:%d\n",
1620                         i, h->qs[i]->tx_ring.next_to_clean);
1621                 pr_info("tx_queue%d_next_to_use:%d\n",
1622                         i, h->qs[i]->tx_ring.next_to_use);
1623                 pr_info("rx_queue%d_next_to_clean:%d\n",
1624                         i, h->qs[i]->rx_ring.next_to_clean);
1625                 pr_info("rx_queue%d_next_to_use:%d\n",
1626                         i, h->qs[i]->rx_ring.next_to_use);
1627         }
1628 }
1629
1630 /* for resetting suntask*/
1631 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
1632 {
1633         enum hnae_port_type type = priv->ae_handle->port_type;
1634
1635         if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
1636                 return;
1637         clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
1638
1639         /* If we're already down, removing or resetting, just bail */
1640         if (test_bit(NIC_STATE_DOWN, &priv->state) ||
1641             test_bit(NIC_STATE_REMOVING, &priv->state) ||
1642             test_bit(NIC_STATE_RESETTING, &priv->state))
1643                 return;
1644
1645         hns_nic_dump(priv);
1646         netdev_info(priv->netdev, "try to reset %s port!\n",
1647                     (type == HNAE_PORT_DEBUG ? "debug" : "service"));
1648
1649         rtnl_lock();
1650         /* put off any impending NetWatchDogTimeout */
1651         netif_trans_update(priv->netdev);
1652
1653         if (type == HNAE_PORT_DEBUG) {
1654                 hns_nic_net_reinit(priv->netdev);
1655         } else {
1656                 netif_carrier_off(priv->netdev);
1657                 netif_tx_disable(priv->netdev);
1658         }
1659         rtnl_unlock();
1660 }
1661
1662 /* for doing service complete*/
1663 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
1664 {
1665         WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
1666
1667         smp_mb__before_atomic();
1668         clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
1669 }
1670
1671 static void hns_nic_service_task(struct work_struct *work)
1672 {
1673         struct hns_nic_priv *priv
1674                 = container_of(work, struct hns_nic_priv, service_task);
1675         struct hnae_handle *h = priv->ae_handle;
1676
1677         hns_nic_update_link_status(priv->netdev);
1678         h->dev->ops->update_led_status(h);
1679         hns_nic_update_stats(priv->netdev);
1680
1681         hns_nic_reset_subtask(priv);
1682         hns_nic_service_event_complete(priv);
1683 }
1684
1685 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
1686 {
1687         if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
1688             !test_bit(NIC_STATE_REMOVING, &priv->state) &&
1689             !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
1690                 (void)schedule_work(&priv->service_task);
1691 }
1692
1693 static void hns_nic_service_timer(unsigned long data)
1694 {
1695         struct hns_nic_priv *priv = (struct hns_nic_priv *)data;
1696
1697         (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1698
1699         hns_nic_task_schedule(priv);
1700 }
1701
1702 /**
1703  * hns_tx_timeout_reset - initiate reset due to Tx timeout
1704  * @priv: driver private struct
1705  **/
1706 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
1707 {
1708         /* Do the reset outside of interrupt context */
1709         if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
1710                 set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
1711                 netdev_warn(priv->netdev,
1712                             "initiating reset due to tx timeout(%llu,0x%lx)\n",
1713                             priv->tx_timeout_count, priv->state);
1714                 priv->tx_timeout_count++;
1715                 hns_nic_task_schedule(priv);
1716         }
1717 }
1718
1719 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
1720 {
1721         struct hnae_handle *h = priv->ae_handle;
1722         struct hns_nic_ring_data *rd;
1723         bool is_ver1 = AE_IS_VER1(priv->enet_ver);
1724         int i;
1725
1726         if (h->q_num > NIC_MAX_Q_PER_VF) {
1727                 netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
1728                 return -EINVAL;
1729         }
1730
1731         priv->ring_data = kzalloc(h->q_num * sizeof(*priv->ring_data) * 2,
1732                                   GFP_KERNEL);
1733         if (!priv->ring_data)
1734                 return -ENOMEM;
1735
1736         for (i = 0; i < h->q_num; i++) {
1737                 rd = &priv->ring_data[i];
1738                 rd->queue_index = i;
1739                 rd->ring = &h->qs[i]->tx_ring;
1740                 rd->poll_one = hns_nic_tx_poll_one;
1741                 rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro : NULL;
1742
1743                 netif_napi_add(priv->netdev, &rd->napi,
1744                                hns_nic_common_poll, NIC_TX_CLEAN_MAX_NUM);
1745                 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
1746         }
1747         for (i = h->q_num; i < h->q_num * 2; i++) {
1748                 rd = &priv->ring_data[i];
1749                 rd->queue_index = i - h->q_num;
1750                 rd->ring = &h->qs[i - h->q_num]->rx_ring;
1751                 rd->poll_one = hns_nic_rx_poll_one;
1752                 rd->ex_process = hns_nic_rx_up_pro;
1753                 rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro : NULL;
1754
1755                 netif_napi_add(priv->netdev, &rd->napi,
1756                                hns_nic_common_poll, NIC_RX_CLEAN_MAX_NUM);
1757                 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
1758         }
1759
1760         return 0;
1761 }
1762
1763 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
1764 {
1765         struct hnae_handle *h = priv->ae_handle;
1766         int i;
1767
1768         for (i = 0; i < h->q_num * 2; i++) {
1769                 netif_napi_del(&priv->ring_data[i].napi);
1770                 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
1771                         (void)irq_set_affinity_hint(
1772                                 priv->ring_data[i].ring->irq,
1773                                 NULL);
1774                         free_irq(priv->ring_data[i].ring->irq,
1775                                  &priv->ring_data[i]);
1776                 }
1777
1778                 priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
1779         }
1780         kfree(priv->ring_data);
1781 }
1782
1783 static void hns_nic_set_priv_ops(struct net_device *netdev)
1784 {
1785         struct hns_nic_priv *priv = netdev_priv(netdev);
1786         struct hnae_handle *h = priv->ae_handle;
1787
1788         if (AE_IS_VER1(priv->enet_ver)) {
1789                 priv->ops.fill_desc = fill_desc;
1790                 priv->ops.get_rxd_bnum = get_rx_desc_bnum;
1791                 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1792         } else {
1793                 priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
1794                 if ((netdev->features & NETIF_F_TSO) ||
1795                     (netdev->features & NETIF_F_TSO6)) {
1796                         priv->ops.fill_desc = fill_tso_desc;
1797                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1798                         /* This chip only support 7*4096 */
1799                         netif_set_gso_max_size(netdev, 7 * 4096);
1800                         h->dev->ops->set_tso_stats(h, 1);
1801                 } else {
1802                         priv->ops.fill_desc = fill_v2_desc;
1803                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1804                 }
1805         }
1806 }
1807
1808 static int hns_nic_try_get_ae(struct net_device *ndev)
1809 {
1810         struct hns_nic_priv *priv = netdev_priv(ndev);
1811         struct hnae_handle *h;
1812         int ret;
1813
1814         h = hnae_get_handle(&priv->netdev->dev,
1815                             priv->ae_node, priv->port_id, NULL);
1816         if (IS_ERR_OR_NULL(h)) {
1817                 ret = -ENODEV;
1818                 dev_dbg(priv->dev, "has not handle, register notifier!\n");
1819                 goto out;
1820         }
1821         priv->ae_handle = h;
1822
1823         ret = hns_nic_init_phy(ndev, h);
1824         if (ret) {
1825                 dev_err(priv->dev, "probe phy device fail!\n");
1826                 goto out_init_phy;
1827         }
1828
1829         ret = hns_nic_init_ring_data(priv);
1830         if (ret) {
1831                 ret = -ENOMEM;
1832                 goto out_init_ring_data;
1833         }
1834
1835         hns_nic_set_priv_ops(ndev);
1836
1837         ret = register_netdev(ndev);
1838         if (ret) {
1839                 dev_err(priv->dev, "probe register netdev fail!\n");
1840                 goto out_reg_ndev_fail;
1841         }
1842         return 0;
1843
1844 out_reg_ndev_fail:
1845         hns_nic_uninit_ring_data(priv);
1846         priv->ring_data = NULL;
1847 out_init_phy:
1848 out_init_ring_data:
1849         hnae_put_handle(priv->ae_handle);
1850         priv->ae_handle = NULL;
1851 out:
1852         return ret;
1853 }
1854
1855 static int hns_nic_notifier_action(struct notifier_block *nb,
1856                                    unsigned long action, void *data)
1857 {
1858         struct hns_nic_priv *priv =
1859                 container_of(nb, struct hns_nic_priv, notifier_block);
1860
1861         assert(action == HNAE_AE_REGISTER);
1862
1863         if (!hns_nic_try_get_ae(priv->netdev)) {
1864                 hnae_unregister_notifier(&priv->notifier_block);
1865                 priv->notifier_block.notifier_call = NULL;
1866         }
1867         return 0;
1868 }
1869
1870 static int hns_nic_dev_probe(struct platform_device *pdev)
1871 {
1872         struct device *dev = &pdev->dev;
1873         struct net_device *ndev;
1874         struct hns_nic_priv *priv;
1875         struct device_node *node = dev->of_node;
1876         u32 port_id;
1877         int ret;
1878
1879         ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
1880         if (!ndev)
1881                 return -ENOMEM;
1882
1883         platform_set_drvdata(pdev, ndev);
1884
1885         priv = netdev_priv(ndev);
1886         priv->dev = dev;
1887         priv->netdev = ndev;
1888
1889         if (of_device_is_compatible(node, "hisilicon,hns-nic-v1"))
1890                 priv->enet_ver = AE_VERSION_1;
1891         else
1892                 priv->enet_ver = AE_VERSION_2;
1893
1894         priv->ae_node = (void *)of_parse_phandle(node, "ae-handle", 0);
1895         if (IS_ERR_OR_NULL(priv->ae_node)) {
1896                 ret = PTR_ERR(priv->ae_node);
1897                 dev_err(dev, "not find ae-handle\n");
1898                 goto out_read_prop_fail;
1899         }
1900         /* try to find port-idx-in-ae first */
1901         ret = of_property_read_u32(node, "port-idx-in-ae", &port_id);
1902         if (ret) {
1903                 /* only for old code compatible */
1904                 ret = of_property_read_u32(node, "port-id", &port_id);
1905                 if (ret)
1906                         goto out_read_prop_fail;
1907                 /* for old dts, we need to caculate the port offset */
1908                 port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET
1909                         : port_id - HNS_SRV_OFFSET;
1910         }
1911         priv->port_id = port_id;
1912
1913         hns_init_mac_addr(ndev);
1914
1915         ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
1916         ndev->priv_flags |= IFF_UNICAST_FLT;
1917         ndev->netdev_ops = &hns_nic_netdev_ops;
1918         hns_ethtool_set_ops(ndev);
1919
1920         ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1921                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1922                 NETIF_F_GRO;
1923         ndev->vlan_features |=
1924                 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
1925         ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
1926
1927         switch (priv->enet_ver) {
1928         case AE_VERSION_2:
1929                 ndev->features |= NETIF_F_TSO | NETIF_F_TSO6;
1930                 ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1931                         NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1932                         NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
1933                 break;
1934         default:
1935                 break;
1936         }
1937
1938         SET_NETDEV_DEV(ndev, dev);
1939
1940         if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
1941                 dev_dbg(dev, "set mask to 64bit\n");
1942         else
1943                 dev_err(dev, "set mask to 32bit fail!\n");
1944
1945         /* carrier off reporting is important to ethtool even BEFORE open */
1946         netif_carrier_off(ndev);
1947
1948         setup_timer(&priv->service_timer, hns_nic_service_timer,
1949                     (unsigned long)priv);
1950         INIT_WORK(&priv->service_task, hns_nic_service_task);
1951
1952         set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
1953         clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
1954         set_bit(NIC_STATE_DOWN, &priv->state);
1955
1956         if (hns_nic_try_get_ae(priv->netdev)) {
1957                 priv->notifier_block.notifier_call = hns_nic_notifier_action;
1958                 ret = hnae_register_notifier(&priv->notifier_block);
1959                 if (ret) {
1960                         dev_err(dev, "register notifier fail!\n");
1961                         goto out_notify_fail;
1962                 }
1963                 dev_dbg(dev, "has not handle, register notifier!\n");
1964         }
1965
1966         return 0;
1967
1968 out_notify_fail:
1969         (void)cancel_work_sync(&priv->service_task);
1970 out_read_prop_fail:
1971         free_netdev(ndev);
1972         return ret;
1973 }
1974
1975 static int hns_nic_dev_remove(struct platform_device *pdev)
1976 {
1977         struct net_device *ndev = platform_get_drvdata(pdev);
1978         struct hns_nic_priv *priv = netdev_priv(ndev);
1979
1980         if (ndev->reg_state != NETREG_UNINITIALIZED)
1981                 unregister_netdev(ndev);
1982
1983         if (priv->ring_data)
1984                 hns_nic_uninit_ring_data(priv);
1985         priv->ring_data = NULL;
1986
1987         if (priv->phy)
1988                 phy_disconnect(priv->phy);
1989         priv->phy = NULL;
1990
1991         if (!IS_ERR_OR_NULL(priv->ae_handle))
1992                 hnae_put_handle(priv->ae_handle);
1993         priv->ae_handle = NULL;
1994         if (priv->notifier_block.notifier_call)
1995                 hnae_unregister_notifier(&priv->notifier_block);
1996         priv->notifier_block.notifier_call = NULL;
1997
1998         set_bit(NIC_STATE_REMOVING, &priv->state);
1999         (void)cancel_work_sync(&priv->service_task);
2000
2001         free_netdev(ndev);
2002         return 0;
2003 }
2004
2005 static const struct of_device_id hns_enet_of_match[] = {
2006         {.compatible = "hisilicon,hns-nic-v1",},
2007         {.compatible = "hisilicon,hns-nic-v2",},
2008         {},
2009 };
2010
2011 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
2012
2013 static struct platform_driver hns_nic_dev_driver = {
2014         .driver = {
2015                 .name = "hns-nic",
2016                 .of_match_table = hns_enet_of_match,
2017         },
2018         .probe = hns_nic_dev_probe,
2019         .remove = hns_nic_dev_remove,
2020 };
2021
2022 module_platform_driver(hns_nic_dev_driver);
2023
2024 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2025 MODULE_AUTHOR("Hisilicon, Inc.");
2026 MODULE_LICENSE("GPL");
2027 MODULE_ALIAS("platform:hns-nic");