Merge git://git.jan-o-sch.net/btrfs-unstable into for-linus
[cascardo/linux.git] / drivers / net / ethernet / intel / e1000e / netdev.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2011 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/interrupt.h>
40 #include <linux/tcp.h>
41 #include <linux/ipv6.h>
42 #include <linux/slab.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <linux/mii.h>
46 #include <linux/ethtool.h>
47 #include <linux/if_vlan.h>
48 #include <linux/cpu.h>
49 #include <linux/smp.h>
50 #include <linux/pm_qos.h>
51 #include <linux/pm_runtime.h>
52 #include <linux/aer.h>
53 #include <linux/prefetch.h>
54
55 #include "e1000.h"
56
57 #define DRV_EXTRAVERSION "-k"
58
59 #define DRV_VERSION "1.5.1" DRV_EXTRAVERSION
60 char e1000e_driver_name[] = "e1000e";
61 const char e1000e_driver_version[] = DRV_VERSION;
62
63 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);
64
65 static const struct e1000_info *e1000_info_tbl[] = {
66         [board_82571]           = &e1000_82571_info,
67         [board_82572]           = &e1000_82572_info,
68         [board_82573]           = &e1000_82573_info,
69         [board_82574]           = &e1000_82574_info,
70         [board_82583]           = &e1000_82583_info,
71         [board_80003es2lan]     = &e1000_es2_info,
72         [board_ich8lan]         = &e1000_ich8_info,
73         [board_ich9lan]         = &e1000_ich9_info,
74         [board_ich10lan]        = &e1000_ich10_info,
75         [board_pchlan]          = &e1000_pch_info,
76         [board_pch2lan]         = &e1000_pch2_info,
77 };
78
79 struct e1000_reg_info {
80         u32 ofs;
81         char *name;
82 };
83
84 #define E1000_RDFH      0x02410 /* Rx Data FIFO Head - RW */
85 #define E1000_RDFT      0x02418 /* Rx Data FIFO Tail - RW */
86 #define E1000_RDFHS     0x02420 /* Rx Data FIFO Head Saved - RW */
87 #define E1000_RDFTS     0x02428 /* Rx Data FIFO Tail Saved - RW */
88 #define E1000_RDFPC     0x02430 /* Rx Data FIFO Packet Count - RW */
89
90 #define E1000_TDFH      0x03410 /* Tx Data FIFO Head - RW */
91 #define E1000_TDFT      0x03418 /* Tx Data FIFO Tail - RW */
92 #define E1000_TDFHS     0x03420 /* Tx Data FIFO Head Saved - RW */
93 #define E1000_TDFTS     0x03428 /* Tx Data FIFO Tail Saved - RW */
94 #define E1000_TDFPC     0x03430 /* Tx Data FIFO Packet Count - RW */
95
96 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
97
98         /* General Registers */
99         {E1000_CTRL, "CTRL"},
100         {E1000_STATUS, "STATUS"},
101         {E1000_CTRL_EXT, "CTRL_EXT"},
102
103         /* Interrupt Registers */
104         {E1000_ICR, "ICR"},
105
106         /* Rx Registers */
107         {E1000_RCTL, "RCTL"},
108         {E1000_RDLEN, "RDLEN"},
109         {E1000_RDH, "RDH"},
110         {E1000_RDT, "RDT"},
111         {E1000_RDTR, "RDTR"},
112         {E1000_RXDCTL(0), "RXDCTL"},
113         {E1000_ERT, "ERT"},
114         {E1000_RDBAL, "RDBAL"},
115         {E1000_RDBAH, "RDBAH"},
116         {E1000_RDFH, "RDFH"},
117         {E1000_RDFT, "RDFT"},
118         {E1000_RDFHS, "RDFHS"},
119         {E1000_RDFTS, "RDFTS"},
120         {E1000_RDFPC, "RDFPC"},
121
122         /* Tx Registers */
123         {E1000_TCTL, "TCTL"},
124         {E1000_TDBAL, "TDBAL"},
125         {E1000_TDBAH, "TDBAH"},
126         {E1000_TDLEN, "TDLEN"},
127         {E1000_TDH, "TDH"},
128         {E1000_TDT, "TDT"},
129         {E1000_TIDV, "TIDV"},
130         {E1000_TXDCTL(0), "TXDCTL"},
131         {E1000_TADV, "TADV"},
132         {E1000_TARC(0), "TARC"},
133         {E1000_TDFH, "TDFH"},
134         {E1000_TDFT, "TDFT"},
135         {E1000_TDFHS, "TDFHS"},
136         {E1000_TDFTS, "TDFTS"},
137         {E1000_TDFPC, "TDFPC"},
138
139         /* List Terminator */
140         {}
141 };
142
143 /*
144  * e1000_regdump - register printout routine
145  */
146 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
147 {
148         int n = 0;
149         char rname[16];
150         u32 regs[8];
151
152         switch (reginfo->ofs) {
153         case E1000_RXDCTL(0):
154                 for (n = 0; n < 2; n++)
155                         regs[n] = __er32(hw, E1000_RXDCTL(n));
156                 break;
157         case E1000_TXDCTL(0):
158                 for (n = 0; n < 2; n++)
159                         regs[n] = __er32(hw, E1000_TXDCTL(n));
160                 break;
161         case E1000_TARC(0):
162                 for (n = 0; n < 2; n++)
163                         regs[n] = __er32(hw, E1000_TARC(n));
164                 break;
165         default:
166                 pr_info("%-15s %08x\n",
167                         reginfo->name, __er32(hw, reginfo->ofs));
168                 return;
169         }
170
171         snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
172         pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
173 }
174
175 /*
176  * e1000e_dump - Print registers, Tx-ring and Rx-ring
177  */
178 static void e1000e_dump(struct e1000_adapter *adapter)
179 {
180         struct net_device *netdev = adapter->netdev;
181         struct e1000_hw *hw = &adapter->hw;
182         struct e1000_reg_info *reginfo;
183         struct e1000_ring *tx_ring = adapter->tx_ring;
184         struct e1000_tx_desc *tx_desc;
185         struct my_u0 {
186                 u64 a;
187                 u64 b;
188         } *u0;
189         struct e1000_buffer *buffer_info;
190         struct e1000_ring *rx_ring = adapter->rx_ring;
191         union e1000_rx_desc_packet_split *rx_desc_ps;
192         union e1000_rx_desc_extended *rx_desc;
193         struct my_u1 {
194                 u64 a;
195                 u64 b;
196                 u64 c;
197                 u64 d;
198         } *u1;
199         u32 staterr;
200         int i = 0;
201
202         if (!netif_msg_hw(adapter))
203                 return;
204
205         /* Print netdevice Info */
206         if (netdev) {
207                 dev_info(&adapter->pdev->dev, "Net device Info\n");
208                 pr_info("Device Name     state            trans_start      last_rx\n");
209                 pr_info("%-15s %016lX %016lX %016lX\n",
210                         netdev->name, netdev->state, netdev->trans_start,
211                         netdev->last_rx);
212         }
213
214         /* Print Registers */
215         dev_info(&adapter->pdev->dev, "Register Dump\n");
216         pr_info(" Register Name   Value\n");
217         for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
218              reginfo->name; reginfo++) {
219                 e1000_regdump(hw, reginfo);
220         }
221
222         /* Print Tx Ring Summary */
223         if (!netdev || !netif_running(netdev))
224                 goto exit;
225
226         dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
227         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
228         buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
229         pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
230                 0, tx_ring->next_to_use, tx_ring->next_to_clean,
231                 (unsigned long long)buffer_info->dma,
232                 buffer_info->length,
233                 buffer_info->next_to_watch,
234                 (unsigned long long)buffer_info->time_stamp);
235
236         /* Print Tx Ring */
237         if (!netif_msg_tx_done(adapter))
238                 goto rx_ring_summary;
239
240         dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
241
242         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
243          *
244          * Legacy Transmit Descriptor
245          *   +--------------------------------------------------------------+
246          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
247          *   +--------------------------------------------------------------+
248          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
249          *   +--------------------------------------------------------------+
250          *   63       48 47        36 35    32 31     24 23    16 15        0
251          *
252          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
253          *   63      48 47    40 39       32 31             16 15    8 7      0
254          *   +----------------------------------------------------------------+
255          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
256          *   +----------------------------------------------------------------+
257          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
258          *   +----------------------------------------------------------------+
259          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
260          *
261          * Extended Data Descriptor (DTYP=0x1)
262          *   +----------------------------------------------------------------+
263          * 0 |                     Buffer Address [63:0]                      |
264          *   +----------------------------------------------------------------+
265          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
266          *   +----------------------------------------------------------------+
267          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
268          */
269         pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
270         pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
271         pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
272         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
273                 const char *next_desc;
274                 tx_desc = E1000_TX_DESC(*tx_ring, i);
275                 buffer_info = &tx_ring->buffer_info[i];
276                 u0 = (struct my_u0 *)tx_desc;
277                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
278                         next_desc = " NTC/U";
279                 else if (i == tx_ring->next_to_use)
280                         next_desc = " NTU";
281                 else if (i == tx_ring->next_to_clean)
282                         next_desc = " NTC";
283                 else
284                         next_desc = "";
285                 pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
286                         (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
287                          ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
288                         i,
289                         (unsigned long long)le64_to_cpu(u0->a),
290                         (unsigned long long)le64_to_cpu(u0->b),
291                         (unsigned long long)buffer_info->dma,
292                         buffer_info->length, buffer_info->next_to_watch,
293                         (unsigned long long)buffer_info->time_stamp,
294                         buffer_info->skb, next_desc);
295
296                 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
297                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
298                                        16, 1, phys_to_virt(buffer_info->dma),
299                                        buffer_info->length, true);
300         }
301
302         /* Print Rx Ring Summary */
303 rx_ring_summary:
304         dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
305         pr_info("Queue [NTU] [NTC]\n");
306         pr_info(" %5d %5X %5X\n",
307                 0, rx_ring->next_to_use, rx_ring->next_to_clean);
308
309         /* Print Rx Ring */
310         if (!netif_msg_rx_status(adapter))
311                 goto exit;
312
313         dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
314         switch (adapter->rx_ps_pages) {
315         case 1:
316         case 2:
317         case 3:
318                 /* [Extended] Packet Split Receive Descriptor Format
319                  *
320                  *    +-----------------------------------------------------+
321                  *  0 |                Buffer Address 0 [63:0]              |
322                  *    +-----------------------------------------------------+
323                  *  8 |                Buffer Address 1 [63:0]              |
324                  *    +-----------------------------------------------------+
325                  * 16 |                Buffer Address 2 [63:0]              |
326                  *    +-----------------------------------------------------+
327                  * 24 |                Buffer Address 3 [63:0]              |
328                  *    +-----------------------------------------------------+
329                  */
330                 pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
331                 /* [Extended] Receive Descriptor (Write-Back) Format
332                  *
333                  *   63       48 47    32 31     13 12    8 7    4 3        0
334                  *   +------------------------------------------------------+
335                  * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
336                  *   | Checksum | Ident  |         | Queue |      |  Type   |
337                  *   +------------------------------------------------------+
338                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
339                  *   +------------------------------------------------------+
340                  *   63       48 47    32 31            20 19               0
341                  */
342                 pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
343                 for (i = 0; i < rx_ring->count; i++) {
344                         const char *next_desc;
345                         buffer_info = &rx_ring->buffer_info[i];
346                         rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
347                         u1 = (struct my_u1 *)rx_desc_ps;
348                         staterr =
349                             le32_to_cpu(rx_desc_ps->wb.middle.status_error);
350
351                         if (i == rx_ring->next_to_use)
352                                 next_desc = " NTU";
353                         else if (i == rx_ring->next_to_clean)
354                                 next_desc = " NTC";
355                         else
356                                 next_desc = "";
357
358                         if (staterr & E1000_RXD_STAT_DD) {
359                                 /* Descriptor Done */
360                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
361                                         "RWB", i,
362                                         (unsigned long long)le64_to_cpu(u1->a),
363                                         (unsigned long long)le64_to_cpu(u1->b),
364                                         (unsigned long long)le64_to_cpu(u1->c),
365                                         (unsigned long long)le64_to_cpu(u1->d),
366                                         buffer_info->skb, next_desc);
367                         } else {
368                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
369                                         "R  ", i,
370                                         (unsigned long long)le64_to_cpu(u1->a),
371                                         (unsigned long long)le64_to_cpu(u1->b),
372                                         (unsigned long long)le64_to_cpu(u1->c),
373                                         (unsigned long long)le64_to_cpu(u1->d),
374                                         (unsigned long long)buffer_info->dma,
375                                         buffer_info->skb, next_desc);
376
377                                 if (netif_msg_pktdata(adapter))
378                                         print_hex_dump(KERN_INFO, "",
379                                                 DUMP_PREFIX_ADDRESS, 16, 1,
380                                                 phys_to_virt(buffer_info->dma),
381                                                 adapter->rx_ps_bsize0, true);
382                         }
383                 }
384                 break;
385         default:
386         case 0:
387                 /* Extended Receive Descriptor (Read) Format
388                  *
389                  *   +-----------------------------------------------------+
390                  * 0 |                Buffer Address [63:0]                |
391                  *   +-----------------------------------------------------+
392                  * 8 |                      Reserved                       |
393                  *   +-----------------------------------------------------+
394                  */
395                 pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
396                 /* Extended Receive Descriptor (Write-Back) Format
397                  *
398                  *   63       48 47    32 31    24 23            4 3        0
399                  *   +------------------------------------------------------+
400                  *   |     RSS Hash      |        |               |         |
401                  * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
402                  *   | Packet   | IP     |        |               |  Type   |
403                  *   | Checksum | Ident  |        |               |         |
404                  *   +------------------------------------------------------+
405                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
406                  *   +------------------------------------------------------+
407                  *   63       48 47    32 31            20 19               0
408                  */
409                 pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
410
411                 for (i = 0; i < rx_ring->count; i++) {
412                         const char *next_desc;
413
414                         buffer_info = &rx_ring->buffer_info[i];
415                         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
416                         u1 = (struct my_u1 *)rx_desc;
417                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
418
419                         if (i == rx_ring->next_to_use)
420                                 next_desc = " NTU";
421                         else if (i == rx_ring->next_to_clean)
422                                 next_desc = " NTC";
423                         else
424                                 next_desc = "";
425
426                         if (staterr & E1000_RXD_STAT_DD) {
427                                 /* Descriptor Done */
428                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
429                                         "RWB", i,
430                                         (unsigned long long)le64_to_cpu(u1->a),
431                                         (unsigned long long)le64_to_cpu(u1->b),
432                                         buffer_info->skb, next_desc);
433                         } else {
434                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
435                                         "R  ", i,
436                                         (unsigned long long)le64_to_cpu(u1->a),
437                                         (unsigned long long)le64_to_cpu(u1->b),
438                                         (unsigned long long)buffer_info->dma,
439                                         buffer_info->skb, next_desc);
440
441                                 if (netif_msg_pktdata(adapter))
442                                         print_hex_dump(KERN_INFO, "",
443                                                        DUMP_PREFIX_ADDRESS, 16,
444                                                        1,
445                                                        phys_to_virt
446                                                        (buffer_info->dma),
447                                                        adapter->rx_buffer_len,
448                                                        true);
449                         }
450                 }
451         }
452
453 exit:
454         return;
455 }
456
457 /**
458  * e1000_desc_unused - calculate if we have unused descriptors
459  **/
460 static int e1000_desc_unused(struct e1000_ring *ring)
461 {
462         if (ring->next_to_clean > ring->next_to_use)
463                 return ring->next_to_clean - ring->next_to_use - 1;
464
465         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
466 }
467
468 /**
469  * e1000_receive_skb - helper function to handle Rx indications
470  * @adapter: board private structure
471  * @status: descriptor status field as written by hardware
472  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
473  * @skb: pointer to sk_buff to be indicated to stack
474  **/
475 static void e1000_receive_skb(struct e1000_adapter *adapter,
476                               struct net_device *netdev, struct sk_buff *skb,
477                               u8 status, __le16 vlan)
478 {
479         u16 tag = le16_to_cpu(vlan);
480         skb->protocol = eth_type_trans(skb, netdev);
481
482         if (status & E1000_RXD_STAT_VP)
483                 __vlan_hwaccel_put_tag(skb, tag);
484
485         napi_gro_receive(&adapter->napi, skb);
486 }
487
488 /**
489  * e1000_rx_checksum - Receive Checksum Offload
490  * @adapter:     board private structure
491  * @status_err:  receive descriptor status and error fields
492  * @csum:       receive descriptor csum field
493  * @sk_buff:     socket buffer with received data
494  **/
495 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
496                               u32 csum, struct sk_buff *skb)
497 {
498         u16 status = (u16)status_err;
499         u8 errors = (u8)(status_err >> 24);
500
501         skb_checksum_none_assert(skb);
502
503         /* Ignore Checksum bit is set */
504         if (status & E1000_RXD_STAT_IXSM)
505                 return;
506         /* TCP/UDP checksum error bit is set */
507         if (errors & E1000_RXD_ERR_TCPE) {
508                 /* let the stack verify checksum errors */
509                 adapter->hw_csum_err++;
510                 return;
511         }
512
513         /* TCP/UDP Checksum has not been calculated */
514         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
515                 return;
516
517         /* It must be a TCP or UDP packet with a valid checksum */
518         if (status & E1000_RXD_STAT_TCPCS) {
519                 /* TCP checksum is good */
520                 skb->ip_summed = CHECKSUM_UNNECESSARY;
521         } else {
522                 /*
523                  * IP fragment with UDP payload
524                  * Hardware complements the payload checksum, so we undo it
525                  * and then put the value in host order for further stack use.
526                  */
527                 __sum16 sum = (__force __sum16)htons(csum);
528                 skb->csum = csum_unfold(~sum);
529                 skb->ip_summed = CHECKSUM_COMPLETE;
530         }
531         adapter->hw_csum_good++;
532 }
533
534 /**
535  * e1000e_update_tail_wa - helper function for e1000e_update_[rt]dt_wa()
536  * @hw: pointer to the HW structure
537  * @tail: address of tail descriptor register
538  * @i: value to write to tail descriptor register
539  *
540  * When updating the tail register, the ME could be accessing Host CSR
541  * registers at the same time.  Normally, this is handled in h/w by an
542  * arbiter but on some parts there is a bug that acknowledges Host accesses
543  * later than it should which could result in the descriptor register to
544  * have an incorrect value.  Workaround this by checking the FWSM register
545  * which has bit 24 set while ME is accessing Host CSR registers, wait
546  * if it is set and try again a number of times.
547  **/
548 static inline s32 e1000e_update_tail_wa(struct e1000_hw *hw, u8 __iomem * tail,
549                                         unsigned int i)
550 {
551         unsigned int j = 0;
552
553         while ((j++ < E1000_ICH_FWSM_PCIM2PCI_COUNT) &&
554                (er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI))
555                 udelay(50);
556
557         writel(i, tail);
558
559         if ((j == E1000_ICH_FWSM_PCIM2PCI_COUNT) && (i != readl(tail)))
560                 return E1000_ERR_SWFW_SYNC;
561
562         return 0;
563 }
564
565 static void e1000e_update_rdt_wa(struct e1000_adapter *adapter, unsigned int i)
566 {
567         u8 __iomem *tail = (adapter->hw.hw_addr + adapter->rx_ring->tail);
568         struct e1000_hw *hw = &adapter->hw;
569
570         if (e1000e_update_tail_wa(hw, tail, i)) {
571                 u32 rctl = er32(RCTL);
572                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
573                 e_err("ME firmware caused invalid RDT - resetting\n");
574                 schedule_work(&adapter->reset_task);
575         }
576 }
577
578 static void e1000e_update_tdt_wa(struct e1000_adapter *adapter, unsigned int i)
579 {
580         u8 __iomem *tail = (adapter->hw.hw_addr + adapter->tx_ring->tail);
581         struct e1000_hw *hw = &adapter->hw;
582
583         if (e1000e_update_tail_wa(hw, tail, i)) {
584                 u32 tctl = er32(TCTL);
585                 ew32(TCTL, tctl & ~E1000_TCTL_EN);
586                 e_err("ME firmware caused invalid TDT - resetting\n");
587                 schedule_work(&adapter->reset_task);
588         }
589 }
590
591 /**
592  * e1000_alloc_rx_buffers - Replace used receive buffers
593  * @adapter: address of board private structure
594  **/
595 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
596                                    int cleaned_count, gfp_t gfp)
597 {
598         struct net_device *netdev = adapter->netdev;
599         struct pci_dev *pdev = adapter->pdev;
600         struct e1000_ring *rx_ring = adapter->rx_ring;
601         union e1000_rx_desc_extended *rx_desc;
602         struct e1000_buffer *buffer_info;
603         struct sk_buff *skb;
604         unsigned int i;
605         unsigned int bufsz = adapter->rx_buffer_len;
606
607         i = rx_ring->next_to_use;
608         buffer_info = &rx_ring->buffer_info[i];
609
610         while (cleaned_count--) {
611                 skb = buffer_info->skb;
612                 if (skb) {
613                         skb_trim(skb, 0);
614                         goto map_skb;
615                 }
616
617                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
618                 if (!skb) {
619                         /* Better luck next round */
620                         adapter->alloc_rx_buff_failed++;
621                         break;
622                 }
623
624                 buffer_info->skb = skb;
625 map_skb:
626                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
627                                                   adapter->rx_buffer_len,
628                                                   DMA_FROM_DEVICE);
629                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
630                         dev_err(&pdev->dev, "Rx DMA map failed\n");
631                         adapter->rx_dma_failed++;
632                         break;
633                 }
634
635                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
636                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
637
638                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
639                         /*
640                          * Force memory writes to complete before letting h/w
641                          * know there are new descriptors to fetch.  (Only
642                          * applicable for weak-ordered memory model archs,
643                          * such as IA-64).
644                          */
645                         wmb();
646                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
647                                 e1000e_update_rdt_wa(adapter, i);
648                         else
649                                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
650                 }
651                 i++;
652                 if (i == rx_ring->count)
653                         i = 0;
654                 buffer_info = &rx_ring->buffer_info[i];
655         }
656
657         rx_ring->next_to_use = i;
658 }
659
660 /**
661  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
662  * @adapter: address of board private structure
663  **/
664 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
665                                       int cleaned_count, gfp_t gfp)
666 {
667         struct net_device *netdev = adapter->netdev;
668         struct pci_dev *pdev = adapter->pdev;
669         union e1000_rx_desc_packet_split *rx_desc;
670         struct e1000_ring *rx_ring = adapter->rx_ring;
671         struct e1000_buffer *buffer_info;
672         struct e1000_ps_page *ps_page;
673         struct sk_buff *skb;
674         unsigned int i, j;
675
676         i = rx_ring->next_to_use;
677         buffer_info = &rx_ring->buffer_info[i];
678
679         while (cleaned_count--) {
680                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
681
682                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
683                         ps_page = &buffer_info->ps_pages[j];
684                         if (j >= adapter->rx_ps_pages) {
685                                 /* all unused desc entries get hw null ptr */
686                                 rx_desc->read.buffer_addr[j + 1] =
687                                     ~cpu_to_le64(0);
688                                 continue;
689                         }
690                         if (!ps_page->page) {
691                                 ps_page->page = alloc_page(gfp);
692                                 if (!ps_page->page) {
693                                         adapter->alloc_rx_buff_failed++;
694                                         goto no_buffers;
695                                 }
696                                 ps_page->dma = dma_map_page(&pdev->dev,
697                                                             ps_page->page,
698                                                             0, PAGE_SIZE,
699                                                             DMA_FROM_DEVICE);
700                                 if (dma_mapping_error(&pdev->dev,
701                                                       ps_page->dma)) {
702                                         dev_err(&adapter->pdev->dev,
703                                                 "Rx DMA page map failed\n");
704                                         adapter->rx_dma_failed++;
705                                         goto no_buffers;
706                                 }
707                         }
708                         /*
709                          * Refresh the desc even if buffer_addrs
710                          * didn't change because each write-back
711                          * erases this info.
712                          */
713                         rx_desc->read.buffer_addr[j + 1] =
714                             cpu_to_le64(ps_page->dma);
715                 }
716
717                 skb = __netdev_alloc_skb_ip_align(netdev,
718                                                   adapter->rx_ps_bsize0,
719                                                   gfp);
720
721                 if (!skb) {
722                         adapter->alloc_rx_buff_failed++;
723                         break;
724                 }
725
726                 buffer_info->skb = skb;
727                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
728                                                   adapter->rx_ps_bsize0,
729                                                   DMA_FROM_DEVICE);
730                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
731                         dev_err(&pdev->dev, "Rx DMA map failed\n");
732                         adapter->rx_dma_failed++;
733                         /* cleanup skb */
734                         dev_kfree_skb_any(skb);
735                         buffer_info->skb = NULL;
736                         break;
737                 }
738
739                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
740
741                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
742                         /*
743                          * Force memory writes to complete before letting h/w
744                          * know there are new descriptors to fetch.  (Only
745                          * applicable for weak-ordered memory model archs,
746                          * such as IA-64).
747                          */
748                         wmb();
749                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
750                                 e1000e_update_rdt_wa(adapter, i << 1);
751                         else
752                                 writel(i << 1,
753                                        adapter->hw.hw_addr + rx_ring->tail);
754                 }
755
756                 i++;
757                 if (i == rx_ring->count)
758                         i = 0;
759                 buffer_info = &rx_ring->buffer_info[i];
760         }
761
762 no_buffers:
763         rx_ring->next_to_use = i;
764 }
765
766 /**
767  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
768  * @adapter: address of board private structure
769  * @cleaned_count: number of buffers to allocate this pass
770  **/
771
772 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
773                                          int cleaned_count, gfp_t gfp)
774 {
775         struct net_device *netdev = adapter->netdev;
776         struct pci_dev *pdev = adapter->pdev;
777         union e1000_rx_desc_extended *rx_desc;
778         struct e1000_ring *rx_ring = adapter->rx_ring;
779         struct e1000_buffer *buffer_info;
780         struct sk_buff *skb;
781         unsigned int i;
782         unsigned int bufsz = 256 - 16 /* for skb_reserve */;
783
784         i = rx_ring->next_to_use;
785         buffer_info = &rx_ring->buffer_info[i];
786
787         while (cleaned_count--) {
788                 skb = buffer_info->skb;
789                 if (skb) {
790                         skb_trim(skb, 0);
791                         goto check_page;
792                 }
793
794                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
795                 if (unlikely(!skb)) {
796                         /* Better luck next round */
797                         adapter->alloc_rx_buff_failed++;
798                         break;
799                 }
800
801                 buffer_info->skb = skb;
802 check_page:
803                 /* allocate a new page if necessary */
804                 if (!buffer_info->page) {
805                         buffer_info->page = alloc_page(gfp);
806                         if (unlikely(!buffer_info->page)) {
807                                 adapter->alloc_rx_buff_failed++;
808                                 break;
809                         }
810                 }
811
812                 if (!buffer_info->dma)
813                         buffer_info->dma = dma_map_page(&pdev->dev,
814                                                         buffer_info->page, 0,
815                                                         PAGE_SIZE,
816                                                         DMA_FROM_DEVICE);
817
818                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
819                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
820
821                 if (unlikely(++i == rx_ring->count))
822                         i = 0;
823                 buffer_info = &rx_ring->buffer_info[i];
824         }
825
826         if (likely(rx_ring->next_to_use != i)) {
827                 rx_ring->next_to_use = i;
828                 if (unlikely(i-- == 0))
829                         i = (rx_ring->count - 1);
830
831                 /* Force memory writes to complete before letting h/w
832                  * know there are new descriptors to fetch.  (Only
833                  * applicable for weak-ordered memory model archs,
834                  * such as IA-64). */
835                 wmb();
836                 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
837                         e1000e_update_rdt_wa(adapter, i);
838                 else
839                         writel(i, adapter->hw.hw_addr + rx_ring->tail);
840         }
841 }
842
843 /**
844  * e1000_clean_rx_irq - Send received data up the network stack; legacy
845  * @adapter: board private structure
846  *
847  * the return value indicates whether actual cleaning was done, there
848  * is no guarantee that everything was cleaned
849  **/
850 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
851                                int *work_done, int work_to_do)
852 {
853         struct net_device *netdev = adapter->netdev;
854         struct pci_dev *pdev = adapter->pdev;
855         struct e1000_hw *hw = &adapter->hw;
856         struct e1000_ring *rx_ring = adapter->rx_ring;
857         union e1000_rx_desc_extended *rx_desc, *next_rxd;
858         struct e1000_buffer *buffer_info, *next_buffer;
859         u32 length, staterr;
860         unsigned int i;
861         int cleaned_count = 0;
862         bool cleaned = false;
863         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
864
865         i = rx_ring->next_to_clean;
866         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
867         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
868         buffer_info = &rx_ring->buffer_info[i];
869
870         while (staterr & E1000_RXD_STAT_DD) {
871                 struct sk_buff *skb;
872
873                 if (*work_done >= work_to_do)
874                         break;
875                 (*work_done)++;
876                 rmb();  /* read descriptor and rx_buffer_info after status DD */
877
878                 skb = buffer_info->skb;
879                 buffer_info->skb = NULL;
880
881                 prefetch(skb->data - NET_IP_ALIGN);
882
883                 i++;
884                 if (i == rx_ring->count)
885                         i = 0;
886                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
887                 prefetch(next_rxd);
888
889                 next_buffer = &rx_ring->buffer_info[i];
890
891                 cleaned = true;
892                 cleaned_count++;
893                 dma_unmap_single(&pdev->dev,
894                                  buffer_info->dma,
895                                  adapter->rx_buffer_len,
896                                  DMA_FROM_DEVICE);
897                 buffer_info->dma = 0;
898
899                 length = le16_to_cpu(rx_desc->wb.upper.length);
900
901                 /*
902                  * !EOP means multiple descriptors were used to store a single
903                  * packet, if that's the case we need to toss it.  In fact, we
904                  * need to toss every packet with the EOP bit clear and the
905                  * next frame that _does_ have the EOP bit set, as it is by
906                  * definition only a frame fragment
907                  */
908                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
909                         adapter->flags2 |= FLAG2_IS_DISCARDING;
910
911                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
912                         /* All receives must fit into a single buffer */
913                         e_dbg("Receive packet consumed multiple buffers\n");
914                         /* recycle */
915                         buffer_info->skb = skb;
916                         if (staterr & E1000_RXD_STAT_EOP)
917                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
918                         goto next_desc;
919                 }
920
921                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
922                         /* recycle */
923                         buffer_info->skb = skb;
924                         goto next_desc;
925                 }
926
927                 /* adjust length to remove Ethernet CRC */
928                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
929                         length -= 4;
930
931                 total_rx_bytes += length;
932                 total_rx_packets++;
933
934                 /*
935                  * code added for copybreak, this should improve
936                  * performance for small packets with large amounts
937                  * of reassembly being done in the stack
938                  */
939                 if (length < copybreak) {
940                         struct sk_buff *new_skb =
941                             netdev_alloc_skb_ip_align(netdev, length);
942                         if (new_skb) {
943                                 skb_copy_to_linear_data_offset(new_skb,
944                                                                -NET_IP_ALIGN,
945                                                                (skb->data -
946                                                                 NET_IP_ALIGN),
947                                                                (length +
948                                                                 NET_IP_ALIGN));
949                                 /* save the skb in buffer_info as good */
950                                 buffer_info->skb = skb;
951                                 skb = new_skb;
952                         }
953                         /* else just continue with the old one */
954                 }
955                 /* end copybreak code */
956                 skb_put(skb, length);
957
958                 /* Receive Checksum Offload */
959                 e1000_rx_checksum(adapter, staterr,
960                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.
961                                               csum_ip.csum), skb);
962
963                 e1000_receive_skb(adapter, netdev, skb, staterr,
964                                   rx_desc->wb.upper.vlan);
965
966 next_desc:
967                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
968
969                 /* return some buffers to hardware, one at a time is too slow */
970                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
971                         adapter->alloc_rx_buf(adapter, cleaned_count,
972                                               GFP_ATOMIC);
973                         cleaned_count = 0;
974                 }
975
976                 /* use prefetched values */
977                 rx_desc = next_rxd;
978                 buffer_info = next_buffer;
979
980                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
981         }
982         rx_ring->next_to_clean = i;
983
984         cleaned_count = e1000_desc_unused(rx_ring);
985         if (cleaned_count)
986                 adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC);
987
988         adapter->total_rx_bytes += total_rx_bytes;
989         adapter->total_rx_packets += total_rx_packets;
990         return cleaned;
991 }
992
993 static void e1000_put_txbuf(struct e1000_adapter *adapter,
994                              struct e1000_buffer *buffer_info)
995 {
996         if (buffer_info->dma) {
997                 if (buffer_info->mapped_as_page)
998                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
999                                        buffer_info->length, DMA_TO_DEVICE);
1000                 else
1001                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1002                                          buffer_info->length, DMA_TO_DEVICE);
1003                 buffer_info->dma = 0;
1004         }
1005         if (buffer_info->skb) {
1006                 dev_kfree_skb_any(buffer_info->skb);
1007                 buffer_info->skb = NULL;
1008         }
1009         buffer_info->time_stamp = 0;
1010 }
1011
1012 static void e1000_print_hw_hang(struct work_struct *work)
1013 {
1014         struct e1000_adapter *adapter = container_of(work,
1015                                                      struct e1000_adapter,
1016                                                      print_hang_task);
1017         struct net_device *netdev = adapter->netdev;
1018         struct e1000_ring *tx_ring = adapter->tx_ring;
1019         unsigned int i = tx_ring->next_to_clean;
1020         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1021         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1022         struct e1000_hw *hw = &adapter->hw;
1023         u16 phy_status, phy_1000t_status, phy_ext_status;
1024         u16 pci_status;
1025
1026         if (test_bit(__E1000_DOWN, &adapter->state))
1027                 return;
1028
1029         if (!adapter->tx_hang_recheck &&
1030             (adapter->flags2 & FLAG2_DMA_BURST)) {
1031                 /* May be block on write-back, flush and detect again
1032                  * flush pending descriptor writebacks to memory
1033                  */
1034                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1035                 /* execute the writes immediately */
1036                 e1e_flush();
1037                 adapter->tx_hang_recheck = true;
1038                 return;
1039         }
1040         /* Real hang detected */
1041         adapter->tx_hang_recheck = false;
1042         netif_stop_queue(netdev);
1043
1044         e1e_rphy(hw, PHY_STATUS, &phy_status);
1045         e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
1046         e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
1047
1048         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1049
1050         /* detected Hardware unit hang */
1051         e_err("Detected Hardware Unit Hang:\n"
1052               "  TDH                  <%x>\n"
1053               "  TDT                  <%x>\n"
1054               "  next_to_use          <%x>\n"
1055               "  next_to_clean        <%x>\n"
1056               "buffer_info[next_to_clean]:\n"
1057               "  time_stamp           <%lx>\n"
1058               "  next_to_watch        <%x>\n"
1059               "  jiffies              <%lx>\n"
1060               "  next_to_watch.status <%x>\n"
1061               "MAC Status             <%x>\n"
1062               "PHY Status             <%x>\n"
1063               "PHY 1000BASE-T Status  <%x>\n"
1064               "PHY Extended Status    <%x>\n"
1065               "PCI Status             <%x>\n",
1066               readl(adapter->hw.hw_addr + tx_ring->head),
1067               readl(adapter->hw.hw_addr + tx_ring->tail),
1068               tx_ring->next_to_use,
1069               tx_ring->next_to_clean,
1070               tx_ring->buffer_info[eop].time_stamp,
1071               eop,
1072               jiffies,
1073               eop_desc->upper.fields.status,
1074               er32(STATUS),
1075               phy_status,
1076               phy_1000t_status,
1077               phy_ext_status,
1078               pci_status);
1079 }
1080
1081 /**
1082  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1083  * @adapter: board private structure
1084  *
1085  * the return value indicates whether actual cleaning was done, there
1086  * is no guarantee that everything was cleaned
1087  **/
1088 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
1089 {
1090         struct net_device *netdev = adapter->netdev;
1091         struct e1000_hw *hw = &adapter->hw;
1092         struct e1000_ring *tx_ring = adapter->tx_ring;
1093         struct e1000_tx_desc *tx_desc, *eop_desc;
1094         struct e1000_buffer *buffer_info;
1095         unsigned int i, eop;
1096         unsigned int count = 0;
1097         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1098         unsigned int bytes_compl = 0, pkts_compl = 0;
1099
1100         i = tx_ring->next_to_clean;
1101         eop = tx_ring->buffer_info[i].next_to_watch;
1102         eop_desc = E1000_TX_DESC(*tx_ring, eop);
1103
1104         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1105                (count < tx_ring->count)) {
1106                 bool cleaned = false;
1107                 rmb(); /* read buffer_info after eop_desc */
1108                 for (; !cleaned; count++) {
1109                         tx_desc = E1000_TX_DESC(*tx_ring, i);
1110                         buffer_info = &tx_ring->buffer_info[i];
1111                         cleaned = (i == eop);
1112
1113                         if (cleaned) {
1114                                 total_tx_packets += buffer_info->segs;
1115                                 total_tx_bytes += buffer_info->bytecount;
1116                                 if (buffer_info->skb) {
1117                                         bytes_compl += buffer_info->skb->len;
1118                                         pkts_compl++;
1119                                 }
1120                         }
1121
1122                         e1000_put_txbuf(adapter, buffer_info);
1123                         tx_desc->upper.data = 0;
1124
1125                         i++;
1126                         if (i == tx_ring->count)
1127                                 i = 0;
1128                 }
1129
1130                 if (i == tx_ring->next_to_use)
1131                         break;
1132                 eop = tx_ring->buffer_info[i].next_to_watch;
1133                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1134         }
1135
1136         tx_ring->next_to_clean = i;
1137
1138         netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1139
1140 #define TX_WAKE_THRESHOLD 32
1141         if (count && netif_carrier_ok(netdev) &&
1142             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1143                 /* Make sure that anybody stopping the queue after this
1144                  * sees the new next_to_clean.
1145                  */
1146                 smp_mb();
1147
1148                 if (netif_queue_stopped(netdev) &&
1149                     !(test_bit(__E1000_DOWN, &adapter->state))) {
1150                         netif_wake_queue(netdev);
1151                         ++adapter->restart_queue;
1152                 }
1153         }
1154
1155         if (adapter->detect_tx_hung) {
1156                 /*
1157                  * Detect a transmit hang in hardware, this serializes the
1158                  * check with the clearing of time_stamp and movement of i
1159                  */
1160                 adapter->detect_tx_hung = false;
1161                 if (tx_ring->buffer_info[i].time_stamp &&
1162                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1163                                + (adapter->tx_timeout_factor * HZ)) &&
1164                     !(er32(STATUS) & E1000_STATUS_TXOFF))
1165                         schedule_work(&adapter->print_hang_task);
1166                 else
1167                         adapter->tx_hang_recheck = false;
1168         }
1169         adapter->total_tx_bytes += total_tx_bytes;
1170         adapter->total_tx_packets += total_tx_packets;
1171         return count < tx_ring->count;
1172 }
1173
1174 /**
1175  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1176  * @adapter: board private structure
1177  *
1178  * the return value indicates whether actual cleaning was done, there
1179  * is no guarantee that everything was cleaned
1180  **/
1181 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
1182                                   int *work_done, int work_to_do)
1183 {
1184         struct e1000_hw *hw = &adapter->hw;
1185         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1186         struct net_device *netdev = adapter->netdev;
1187         struct pci_dev *pdev = adapter->pdev;
1188         struct e1000_ring *rx_ring = adapter->rx_ring;
1189         struct e1000_buffer *buffer_info, *next_buffer;
1190         struct e1000_ps_page *ps_page;
1191         struct sk_buff *skb;
1192         unsigned int i, j;
1193         u32 length, staterr;
1194         int cleaned_count = 0;
1195         bool cleaned = false;
1196         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1197
1198         i = rx_ring->next_to_clean;
1199         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1200         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1201         buffer_info = &rx_ring->buffer_info[i];
1202
1203         while (staterr & E1000_RXD_STAT_DD) {
1204                 if (*work_done >= work_to_do)
1205                         break;
1206                 (*work_done)++;
1207                 skb = buffer_info->skb;
1208                 rmb();  /* read descriptor and rx_buffer_info after status DD */
1209
1210                 /* in the packet split case this is header only */
1211                 prefetch(skb->data - NET_IP_ALIGN);
1212
1213                 i++;
1214                 if (i == rx_ring->count)
1215                         i = 0;
1216                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1217                 prefetch(next_rxd);
1218
1219                 next_buffer = &rx_ring->buffer_info[i];
1220
1221                 cleaned = true;
1222                 cleaned_count++;
1223                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1224                                  adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1225                 buffer_info->dma = 0;
1226
1227                 /* see !EOP comment in other Rx routine */
1228                 if (!(staterr & E1000_RXD_STAT_EOP))
1229                         adapter->flags2 |= FLAG2_IS_DISCARDING;
1230
1231                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1232                         e_dbg("Packet Split buffers didn't pick up the full packet\n");
1233                         dev_kfree_skb_irq(skb);
1234                         if (staterr & E1000_RXD_STAT_EOP)
1235                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1236                         goto next_desc;
1237                 }
1238
1239                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
1240                         dev_kfree_skb_irq(skb);
1241                         goto next_desc;
1242                 }
1243
1244                 length = le16_to_cpu(rx_desc->wb.middle.length0);
1245
1246                 if (!length) {
1247                         e_dbg("Last part of the packet spanning multiple descriptors\n");
1248                         dev_kfree_skb_irq(skb);
1249                         goto next_desc;
1250                 }
1251
1252                 /* Good Receive */
1253                 skb_put(skb, length);
1254
1255                 {
1256                 /*
1257                  * this looks ugly, but it seems compiler issues make it
1258                  * more efficient than reusing j
1259                  */
1260                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1261
1262                 /*
1263                  * page alloc/put takes too long and effects small packet
1264                  * throughput, so unsplit small packets and save the alloc/put
1265                  * only valid in softirq (napi) context to call kmap_*
1266                  */
1267                 if (l1 && (l1 <= copybreak) &&
1268                     ((length + l1) <= adapter->rx_ps_bsize0)) {
1269                         u8 *vaddr;
1270
1271                         ps_page = &buffer_info->ps_pages[0];
1272
1273                         /*
1274                          * there is no documentation about how to call
1275                          * kmap_atomic, so we can't hold the mapping
1276                          * very long
1277                          */
1278                         dma_sync_single_for_cpu(&pdev->dev, ps_page->dma,
1279                                                 PAGE_SIZE, DMA_FROM_DEVICE);
1280                         vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
1281                         memcpy(skb_tail_pointer(skb), vaddr, l1);
1282                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1283                         dma_sync_single_for_device(&pdev->dev, ps_page->dma,
1284                                                    PAGE_SIZE, DMA_FROM_DEVICE);
1285
1286                         /* remove the CRC */
1287                         if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
1288                                 l1 -= 4;
1289
1290                         skb_put(skb, l1);
1291                         goto copydone;
1292                 } /* if */
1293                 }
1294
1295                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1296                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1297                         if (!length)
1298                                 break;
1299
1300                         ps_page = &buffer_info->ps_pages[j];
1301                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1302                                        DMA_FROM_DEVICE);
1303                         ps_page->dma = 0;
1304                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1305                         ps_page->page = NULL;
1306                         skb->len += length;
1307                         skb->data_len += length;
1308                         skb->truesize += PAGE_SIZE;
1309                 }
1310
1311                 /* strip the ethernet crc, problem is we're using pages now so
1312                  * this whole operation can get a little cpu intensive
1313                  */
1314                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
1315                         pskb_trim(skb, skb->len - 4);
1316
1317 copydone:
1318                 total_rx_bytes += skb->len;
1319                 total_rx_packets++;
1320
1321                 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
1322                         rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
1323
1324                 if (rx_desc->wb.upper.header_status &
1325                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1326                         adapter->rx_hdr_split++;
1327
1328                 e1000_receive_skb(adapter, netdev, skb,
1329                                   staterr, rx_desc->wb.middle.vlan);
1330
1331 next_desc:
1332                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1333                 buffer_info->skb = NULL;
1334
1335                 /* return some buffers to hardware, one at a time is too slow */
1336                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1337                         adapter->alloc_rx_buf(adapter, cleaned_count,
1338                                               GFP_ATOMIC);
1339                         cleaned_count = 0;
1340                 }
1341
1342                 /* use prefetched values */
1343                 rx_desc = next_rxd;
1344                 buffer_info = next_buffer;
1345
1346                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1347         }
1348         rx_ring->next_to_clean = i;
1349
1350         cleaned_count = e1000_desc_unused(rx_ring);
1351         if (cleaned_count)
1352                 adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC);
1353
1354         adapter->total_rx_bytes += total_rx_bytes;
1355         adapter->total_rx_packets += total_rx_packets;
1356         return cleaned;
1357 }
1358
1359 /**
1360  * e1000_consume_page - helper function
1361  **/
1362 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1363                                u16 length)
1364 {
1365         bi->page = NULL;
1366         skb->len += length;
1367         skb->data_len += length;
1368         skb->truesize += PAGE_SIZE;
1369 }
1370
1371 /**
1372  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1373  * @adapter: board private structure
1374  *
1375  * the return value indicates whether actual cleaning was done, there
1376  * is no guarantee that everything was cleaned
1377  **/
1378
1379 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
1380                                      int *work_done, int work_to_do)
1381 {
1382         struct net_device *netdev = adapter->netdev;
1383         struct pci_dev *pdev = adapter->pdev;
1384         struct e1000_ring *rx_ring = adapter->rx_ring;
1385         union e1000_rx_desc_extended *rx_desc, *next_rxd;
1386         struct e1000_buffer *buffer_info, *next_buffer;
1387         u32 length, staterr;
1388         unsigned int i;
1389         int cleaned_count = 0;
1390         bool cleaned = false;
1391         unsigned int total_rx_bytes=0, total_rx_packets=0;
1392
1393         i = rx_ring->next_to_clean;
1394         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1395         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1396         buffer_info = &rx_ring->buffer_info[i];
1397
1398         while (staterr & E1000_RXD_STAT_DD) {
1399                 struct sk_buff *skb;
1400
1401                 if (*work_done >= work_to_do)
1402                         break;
1403                 (*work_done)++;
1404                 rmb();  /* read descriptor and rx_buffer_info after status DD */
1405
1406                 skb = buffer_info->skb;
1407                 buffer_info->skb = NULL;
1408
1409                 ++i;
1410                 if (i == rx_ring->count)
1411                         i = 0;
1412                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1413                 prefetch(next_rxd);
1414
1415                 next_buffer = &rx_ring->buffer_info[i];
1416
1417                 cleaned = true;
1418                 cleaned_count++;
1419                 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1420                                DMA_FROM_DEVICE);
1421                 buffer_info->dma = 0;
1422
1423                 length = le16_to_cpu(rx_desc->wb.upper.length);
1424
1425                 /* errors is only valid for DD + EOP descriptors */
1426                 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1427                              (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK))) {
1428                         /* recycle both page and skb */
1429                         buffer_info->skb = skb;
1430                         /* an error means any chain goes out the window too */
1431                         if (rx_ring->rx_skb_top)
1432                                 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1433                         rx_ring->rx_skb_top = NULL;
1434                         goto next_desc;
1435                 }
1436
1437 #define rxtop (rx_ring->rx_skb_top)
1438                 if (!(staterr & E1000_RXD_STAT_EOP)) {
1439                         /* this descriptor is only the beginning (or middle) */
1440                         if (!rxtop) {
1441                                 /* this is the beginning of a chain */
1442                                 rxtop = skb;
1443                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1444                                                    0, length);
1445                         } else {
1446                                 /* this is the middle of a chain */
1447                                 skb_fill_page_desc(rxtop,
1448                                     skb_shinfo(rxtop)->nr_frags,
1449                                     buffer_info->page, 0, length);
1450                                 /* re-use the skb, only consumed the page */
1451                                 buffer_info->skb = skb;
1452                         }
1453                         e1000_consume_page(buffer_info, rxtop, length);
1454                         goto next_desc;
1455                 } else {
1456                         if (rxtop) {
1457                                 /* end of the chain */
1458                                 skb_fill_page_desc(rxtop,
1459                                     skb_shinfo(rxtop)->nr_frags,
1460                                     buffer_info->page, 0, length);
1461                                 /* re-use the current skb, we only consumed the
1462                                  * page */
1463                                 buffer_info->skb = skb;
1464                                 skb = rxtop;
1465                                 rxtop = NULL;
1466                                 e1000_consume_page(buffer_info, skb, length);
1467                         } else {
1468                                 /* no chain, got EOP, this buf is the packet
1469                                  * copybreak to save the put_page/alloc_page */
1470                                 if (length <= copybreak &&
1471                                     skb_tailroom(skb) >= length) {
1472                                         u8 *vaddr;
1473                                         vaddr = kmap_atomic(buffer_info->page,
1474                                                            KM_SKB_DATA_SOFTIRQ);
1475                                         memcpy(skb_tail_pointer(skb), vaddr,
1476                                                length);
1477                                         kunmap_atomic(vaddr,
1478                                                       KM_SKB_DATA_SOFTIRQ);
1479                                         /* re-use the page, so don't erase
1480                                          * buffer_info->page */
1481                                         skb_put(skb, length);
1482                                 } else {
1483                                         skb_fill_page_desc(skb, 0,
1484                                                            buffer_info->page, 0,
1485                                                            length);
1486                                         e1000_consume_page(buffer_info, skb,
1487                                                            length);
1488                                 }
1489                         }
1490                 }
1491
1492                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1493                 e1000_rx_checksum(adapter, staterr,
1494                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.
1495                                               csum_ip.csum), skb);
1496
1497                 /* probably a little skewed due to removing CRC */
1498                 total_rx_bytes += skb->len;
1499                 total_rx_packets++;
1500
1501                 /* eth type trans needs skb->data to point to something */
1502                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1503                         e_err("pskb_may_pull failed.\n");
1504                         dev_kfree_skb_irq(skb);
1505                         goto next_desc;
1506                 }
1507
1508                 e1000_receive_skb(adapter, netdev, skb, staterr,
1509                                   rx_desc->wb.upper.vlan);
1510
1511 next_desc:
1512                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1513
1514                 /* return some buffers to hardware, one at a time is too slow */
1515                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1516                         adapter->alloc_rx_buf(adapter, cleaned_count,
1517                                               GFP_ATOMIC);
1518                         cleaned_count = 0;
1519                 }
1520
1521                 /* use prefetched values */
1522                 rx_desc = next_rxd;
1523                 buffer_info = next_buffer;
1524
1525                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1526         }
1527         rx_ring->next_to_clean = i;
1528
1529         cleaned_count = e1000_desc_unused(rx_ring);
1530         if (cleaned_count)
1531                 adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC);
1532
1533         adapter->total_rx_bytes += total_rx_bytes;
1534         adapter->total_rx_packets += total_rx_packets;
1535         return cleaned;
1536 }
1537
1538 /**
1539  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1540  * @adapter: board private structure
1541  **/
1542 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1543 {
1544         struct e1000_ring *rx_ring = adapter->rx_ring;
1545         struct e1000_buffer *buffer_info;
1546         struct e1000_ps_page *ps_page;
1547         struct pci_dev *pdev = adapter->pdev;
1548         unsigned int i, j;
1549
1550         /* Free all the Rx ring sk_buffs */
1551         for (i = 0; i < rx_ring->count; i++) {
1552                 buffer_info = &rx_ring->buffer_info[i];
1553                 if (buffer_info->dma) {
1554                         if (adapter->clean_rx == e1000_clean_rx_irq)
1555                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1556                                                  adapter->rx_buffer_len,
1557                                                  DMA_FROM_DEVICE);
1558                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1559                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
1560                                                PAGE_SIZE,
1561                                                DMA_FROM_DEVICE);
1562                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1563                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1564                                                  adapter->rx_ps_bsize0,
1565                                                  DMA_FROM_DEVICE);
1566                         buffer_info->dma = 0;
1567                 }
1568
1569                 if (buffer_info->page) {
1570                         put_page(buffer_info->page);
1571                         buffer_info->page = NULL;
1572                 }
1573
1574                 if (buffer_info->skb) {
1575                         dev_kfree_skb(buffer_info->skb);
1576                         buffer_info->skb = NULL;
1577                 }
1578
1579                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1580                         ps_page = &buffer_info->ps_pages[j];
1581                         if (!ps_page->page)
1582                                 break;
1583                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1584                                        DMA_FROM_DEVICE);
1585                         ps_page->dma = 0;
1586                         put_page(ps_page->page);
1587                         ps_page->page = NULL;
1588                 }
1589         }
1590
1591         /* there also may be some cached data from a chained receive */
1592         if (rx_ring->rx_skb_top) {
1593                 dev_kfree_skb(rx_ring->rx_skb_top);
1594                 rx_ring->rx_skb_top = NULL;
1595         }
1596
1597         /* Zero out the descriptor ring */
1598         memset(rx_ring->desc, 0, rx_ring->size);
1599
1600         rx_ring->next_to_clean = 0;
1601         rx_ring->next_to_use = 0;
1602         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1603
1604         writel(0, adapter->hw.hw_addr + rx_ring->head);
1605         writel(0, adapter->hw.hw_addr + rx_ring->tail);
1606 }
1607
1608 static void e1000e_downshift_workaround(struct work_struct *work)
1609 {
1610         struct e1000_adapter *adapter = container_of(work,
1611                                         struct e1000_adapter, downshift_task);
1612
1613         if (test_bit(__E1000_DOWN, &adapter->state))
1614                 return;
1615
1616         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1617 }
1618
1619 /**
1620  * e1000_intr_msi - Interrupt Handler
1621  * @irq: interrupt number
1622  * @data: pointer to a network interface device structure
1623  **/
1624 static irqreturn_t e1000_intr_msi(int irq, void *data)
1625 {
1626         struct net_device *netdev = data;
1627         struct e1000_adapter *adapter = netdev_priv(netdev);
1628         struct e1000_hw *hw = &adapter->hw;
1629         u32 icr = er32(ICR);
1630
1631         /*
1632          * read ICR disables interrupts using IAM
1633          */
1634
1635         if (icr & E1000_ICR_LSC) {
1636                 hw->mac.get_link_status = 1;
1637                 /*
1638                  * ICH8 workaround-- Call gig speed drop workaround on cable
1639                  * disconnect (LSC) before accessing any PHY registers
1640                  */
1641                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1642                     (!(er32(STATUS) & E1000_STATUS_LU)))
1643                         schedule_work(&adapter->downshift_task);
1644
1645                 /*
1646                  * 80003ES2LAN workaround-- For packet buffer work-around on
1647                  * link down event; disable receives here in the ISR and reset
1648                  * adapter in watchdog
1649                  */
1650                 if (netif_carrier_ok(netdev) &&
1651                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1652                         /* disable receives */
1653                         u32 rctl = er32(RCTL);
1654                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1655                         adapter->flags |= FLAG_RX_RESTART_NOW;
1656                 }
1657                 /* guard against interrupt when we're going down */
1658                 if (!test_bit(__E1000_DOWN, &adapter->state))
1659                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1660         }
1661
1662         if (napi_schedule_prep(&adapter->napi)) {
1663                 adapter->total_tx_bytes = 0;
1664                 adapter->total_tx_packets = 0;
1665                 adapter->total_rx_bytes = 0;
1666                 adapter->total_rx_packets = 0;
1667                 __napi_schedule(&adapter->napi);
1668         }
1669
1670         return IRQ_HANDLED;
1671 }
1672
1673 /**
1674  * e1000_intr - Interrupt Handler
1675  * @irq: interrupt number
1676  * @data: pointer to a network interface device structure
1677  **/
1678 static irqreturn_t e1000_intr(int irq, void *data)
1679 {
1680         struct net_device *netdev = data;
1681         struct e1000_adapter *adapter = netdev_priv(netdev);
1682         struct e1000_hw *hw = &adapter->hw;
1683         u32 rctl, icr = er32(ICR);
1684
1685         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1686                 return IRQ_NONE;  /* Not our interrupt */
1687
1688         /*
1689          * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1690          * not set, then the adapter didn't send an interrupt
1691          */
1692         if (!(icr & E1000_ICR_INT_ASSERTED))
1693                 return IRQ_NONE;
1694
1695         /*
1696          * Interrupt Auto-Mask...upon reading ICR,
1697          * interrupts are masked.  No need for the
1698          * IMC write
1699          */
1700
1701         if (icr & E1000_ICR_LSC) {
1702                 hw->mac.get_link_status = 1;
1703                 /*
1704                  * ICH8 workaround-- Call gig speed drop workaround on cable
1705                  * disconnect (LSC) before accessing any PHY registers
1706                  */
1707                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1708                     (!(er32(STATUS) & E1000_STATUS_LU)))
1709                         schedule_work(&adapter->downshift_task);
1710
1711                 /*
1712                  * 80003ES2LAN workaround--
1713                  * For packet buffer work-around on link down event;
1714                  * disable receives here in the ISR and
1715                  * reset adapter in watchdog
1716                  */
1717                 if (netif_carrier_ok(netdev) &&
1718                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1719                         /* disable receives */
1720                         rctl = er32(RCTL);
1721                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1722                         adapter->flags |= FLAG_RX_RESTART_NOW;
1723                 }
1724                 /* guard against interrupt when we're going down */
1725                 if (!test_bit(__E1000_DOWN, &adapter->state))
1726                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1727         }
1728
1729         if (napi_schedule_prep(&adapter->napi)) {
1730                 adapter->total_tx_bytes = 0;
1731                 adapter->total_tx_packets = 0;
1732                 adapter->total_rx_bytes = 0;
1733                 adapter->total_rx_packets = 0;
1734                 __napi_schedule(&adapter->napi);
1735         }
1736
1737         return IRQ_HANDLED;
1738 }
1739
1740 static irqreturn_t e1000_msix_other(int irq, void *data)
1741 {
1742         struct net_device *netdev = data;
1743         struct e1000_adapter *adapter = netdev_priv(netdev);
1744         struct e1000_hw *hw = &adapter->hw;
1745         u32 icr = er32(ICR);
1746
1747         if (!(icr & E1000_ICR_INT_ASSERTED)) {
1748                 if (!test_bit(__E1000_DOWN, &adapter->state))
1749                         ew32(IMS, E1000_IMS_OTHER);
1750                 return IRQ_NONE;
1751         }
1752
1753         if (icr & adapter->eiac_mask)
1754                 ew32(ICS, (icr & adapter->eiac_mask));
1755
1756         if (icr & E1000_ICR_OTHER) {
1757                 if (!(icr & E1000_ICR_LSC))
1758                         goto no_link_interrupt;
1759                 hw->mac.get_link_status = 1;
1760                 /* guard against interrupt when we're going down */
1761                 if (!test_bit(__E1000_DOWN, &adapter->state))
1762                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1763         }
1764
1765 no_link_interrupt:
1766         if (!test_bit(__E1000_DOWN, &adapter->state))
1767                 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1768
1769         return IRQ_HANDLED;
1770 }
1771
1772
1773 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1774 {
1775         struct net_device *netdev = data;
1776         struct e1000_adapter *adapter = netdev_priv(netdev);
1777         struct e1000_hw *hw = &adapter->hw;
1778         struct e1000_ring *tx_ring = adapter->tx_ring;
1779
1780
1781         adapter->total_tx_bytes = 0;
1782         adapter->total_tx_packets = 0;
1783
1784         if (!e1000_clean_tx_irq(adapter))
1785                 /* Ring was not completely cleaned, so fire another interrupt */
1786                 ew32(ICS, tx_ring->ims_val);
1787
1788         return IRQ_HANDLED;
1789 }
1790
1791 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1792 {
1793         struct net_device *netdev = data;
1794         struct e1000_adapter *adapter = netdev_priv(netdev);
1795
1796         /* Write the ITR value calculated at the end of the
1797          * previous interrupt.
1798          */
1799         if (adapter->rx_ring->set_itr) {
1800                 writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1801                        adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1802                 adapter->rx_ring->set_itr = 0;
1803         }
1804
1805         if (napi_schedule_prep(&adapter->napi)) {
1806                 adapter->total_rx_bytes = 0;
1807                 adapter->total_rx_packets = 0;
1808                 __napi_schedule(&adapter->napi);
1809         }
1810         return IRQ_HANDLED;
1811 }
1812
1813 /**
1814  * e1000_configure_msix - Configure MSI-X hardware
1815  *
1816  * e1000_configure_msix sets up the hardware to properly
1817  * generate MSI-X interrupts.
1818  **/
1819 static void e1000_configure_msix(struct e1000_adapter *adapter)
1820 {
1821         struct e1000_hw *hw = &adapter->hw;
1822         struct e1000_ring *rx_ring = adapter->rx_ring;
1823         struct e1000_ring *tx_ring = adapter->tx_ring;
1824         int vector = 0;
1825         u32 ctrl_ext, ivar = 0;
1826
1827         adapter->eiac_mask = 0;
1828
1829         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1830         if (hw->mac.type == e1000_82574) {
1831                 u32 rfctl = er32(RFCTL);
1832                 rfctl |= E1000_RFCTL_ACK_DIS;
1833                 ew32(RFCTL, rfctl);
1834         }
1835
1836 #define E1000_IVAR_INT_ALLOC_VALID      0x8
1837         /* Configure Rx vector */
1838         rx_ring->ims_val = E1000_IMS_RXQ0;
1839         adapter->eiac_mask |= rx_ring->ims_val;
1840         if (rx_ring->itr_val)
1841                 writel(1000000000 / (rx_ring->itr_val * 256),
1842                        hw->hw_addr + rx_ring->itr_register);
1843         else
1844                 writel(1, hw->hw_addr + rx_ring->itr_register);
1845         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1846
1847         /* Configure Tx vector */
1848         tx_ring->ims_val = E1000_IMS_TXQ0;
1849         vector++;
1850         if (tx_ring->itr_val)
1851                 writel(1000000000 / (tx_ring->itr_val * 256),
1852                        hw->hw_addr + tx_ring->itr_register);
1853         else
1854                 writel(1, hw->hw_addr + tx_ring->itr_register);
1855         adapter->eiac_mask |= tx_ring->ims_val;
1856         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1857
1858         /* set vector for Other Causes, e.g. link changes */
1859         vector++;
1860         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1861         if (rx_ring->itr_val)
1862                 writel(1000000000 / (rx_ring->itr_val * 256),
1863                        hw->hw_addr + E1000_EITR_82574(vector));
1864         else
1865                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1866
1867         /* Cause Tx interrupts on every write back */
1868         ivar |= (1 << 31);
1869
1870         ew32(IVAR, ivar);
1871
1872         /* enable MSI-X PBA support */
1873         ctrl_ext = er32(CTRL_EXT);
1874         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1875
1876         /* Auto-Mask Other interrupts upon ICR read */
1877 #define E1000_EIAC_MASK_82574   0x01F00000
1878         ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1879         ctrl_ext |= E1000_CTRL_EXT_EIAME;
1880         ew32(CTRL_EXT, ctrl_ext);
1881         e1e_flush();
1882 }
1883
1884 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1885 {
1886         if (adapter->msix_entries) {
1887                 pci_disable_msix(adapter->pdev);
1888                 kfree(adapter->msix_entries);
1889                 adapter->msix_entries = NULL;
1890         } else if (adapter->flags & FLAG_MSI_ENABLED) {
1891                 pci_disable_msi(adapter->pdev);
1892                 adapter->flags &= ~FLAG_MSI_ENABLED;
1893         }
1894 }
1895
1896 /**
1897  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1898  *
1899  * Attempt to configure interrupts using the best available
1900  * capabilities of the hardware and kernel.
1901  **/
1902 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1903 {
1904         int err;
1905         int i;
1906
1907         switch (adapter->int_mode) {
1908         case E1000E_INT_MODE_MSIX:
1909                 if (adapter->flags & FLAG_HAS_MSIX) {
1910                         adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
1911                         adapter->msix_entries = kcalloc(adapter->num_vectors,
1912                                                       sizeof(struct msix_entry),
1913                                                       GFP_KERNEL);
1914                         if (adapter->msix_entries) {
1915                                 for (i = 0; i < adapter->num_vectors; i++)
1916                                         adapter->msix_entries[i].entry = i;
1917
1918                                 err = pci_enable_msix(adapter->pdev,
1919                                                       adapter->msix_entries,
1920                                                       adapter->num_vectors);
1921                                 if (err == 0)
1922                                         return;
1923                         }
1924                         /* MSI-X failed, so fall through and try MSI */
1925                         e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
1926                         e1000e_reset_interrupt_capability(adapter);
1927                 }
1928                 adapter->int_mode = E1000E_INT_MODE_MSI;
1929                 /* Fall through */
1930         case E1000E_INT_MODE_MSI:
1931                 if (!pci_enable_msi(adapter->pdev)) {
1932                         adapter->flags |= FLAG_MSI_ENABLED;
1933                 } else {
1934                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
1935                         e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
1936                 }
1937                 /* Fall through */
1938         case E1000E_INT_MODE_LEGACY:
1939                 /* Don't do anything; this is the system default */
1940                 break;
1941         }
1942
1943         /* store the number of vectors being used */
1944         adapter->num_vectors = 1;
1945 }
1946
1947 /**
1948  * e1000_request_msix - Initialize MSI-X interrupts
1949  *
1950  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1951  * kernel.
1952  **/
1953 static int e1000_request_msix(struct e1000_adapter *adapter)
1954 {
1955         struct net_device *netdev = adapter->netdev;
1956         int err = 0, vector = 0;
1957
1958         if (strlen(netdev->name) < (IFNAMSIZ - 5))
1959                 snprintf(adapter->rx_ring->name,
1960                          sizeof(adapter->rx_ring->name) - 1,
1961                          "%s-rx-0", netdev->name);
1962         else
1963                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1964         err = request_irq(adapter->msix_entries[vector].vector,
1965                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1966                           netdev);
1967         if (err)
1968                 goto out;
1969         adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1970         adapter->rx_ring->itr_val = adapter->itr;
1971         vector++;
1972
1973         if (strlen(netdev->name) < (IFNAMSIZ - 5))
1974                 snprintf(adapter->tx_ring->name,
1975                          sizeof(adapter->tx_ring->name) - 1,
1976                          "%s-tx-0", netdev->name);
1977         else
1978                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1979         err = request_irq(adapter->msix_entries[vector].vector,
1980                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1981                           netdev);
1982         if (err)
1983                 goto out;
1984         adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1985         adapter->tx_ring->itr_val = adapter->itr;
1986         vector++;
1987
1988         err = request_irq(adapter->msix_entries[vector].vector,
1989                           e1000_msix_other, 0, netdev->name, netdev);
1990         if (err)
1991                 goto out;
1992
1993         e1000_configure_msix(adapter);
1994         return 0;
1995 out:
1996         return err;
1997 }
1998
1999 /**
2000  * e1000_request_irq - initialize interrupts
2001  *
2002  * Attempts to configure interrupts using the best available
2003  * capabilities of the hardware and kernel.
2004  **/
2005 static int e1000_request_irq(struct e1000_adapter *adapter)
2006 {
2007         struct net_device *netdev = adapter->netdev;
2008         int err;
2009
2010         if (adapter->msix_entries) {
2011                 err = e1000_request_msix(adapter);
2012                 if (!err)
2013                         return err;
2014                 /* fall back to MSI */
2015                 e1000e_reset_interrupt_capability(adapter);
2016                 adapter->int_mode = E1000E_INT_MODE_MSI;
2017                 e1000e_set_interrupt_capability(adapter);
2018         }
2019         if (adapter->flags & FLAG_MSI_ENABLED) {
2020                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2021                                   netdev->name, netdev);
2022                 if (!err)
2023                         return err;
2024
2025                 /* fall back to legacy interrupt */
2026                 e1000e_reset_interrupt_capability(adapter);
2027                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2028         }
2029
2030         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2031                           netdev->name, netdev);
2032         if (err)
2033                 e_err("Unable to allocate interrupt, Error: %d\n", err);
2034
2035         return err;
2036 }
2037
2038 static void e1000_free_irq(struct e1000_adapter *adapter)
2039 {
2040         struct net_device *netdev = adapter->netdev;
2041
2042         if (adapter->msix_entries) {
2043                 int vector = 0;
2044
2045                 free_irq(adapter->msix_entries[vector].vector, netdev);
2046                 vector++;
2047
2048                 free_irq(adapter->msix_entries[vector].vector, netdev);
2049                 vector++;
2050
2051                 /* Other Causes interrupt vector */
2052                 free_irq(adapter->msix_entries[vector].vector, netdev);
2053                 return;
2054         }
2055
2056         free_irq(adapter->pdev->irq, netdev);
2057 }
2058
2059 /**
2060  * e1000_irq_disable - Mask off interrupt generation on the NIC
2061  **/
2062 static void e1000_irq_disable(struct e1000_adapter *adapter)
2063 {
2064         struct e1000_hw *hw = &adapter->hw;
2065
2066         ew32(IMC, ~0);
2067         if (adapter->msix_entries)
2068                 ew32(EIAC_82574, 0);
2069         e1e_flush();
2070
2071         if (adapter->msix_entries) {
2072                 int i;
2073                 for (i = 0; i < adapter->num_vectors; i++)
2074                         synchronize_irq(adapter->msix_entries[i].vector);
2075         } else {
2076                 synchronize_irq(adapter->pdev->irq);
2077         }
2078 }
2079
2080 /**
2081  * e1000_irq_enable - Enable default interrupt generation settings
2082  **/
2083 static void e1000_irq_enable(struct e1000_adapter *adapter)
2084 {
2085         struct e1000_hw *hw = &adapter->hw;
2086
2087         if (adapter->msix_entries) {
2088                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2089                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
2090         } else {
2091                 ew32(IMS, IMS_ENABLE_MASK);
2092         }
2093         e1e_flush();
2094 }
2095
2096 /**
2097  * e1000e_get_hw_control - get control of the h/w from f/w
2098  * @adapter: address of board private structure
2099  *
2100  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2101  * For ASF and Pass Through versions of f/w this means that
2102  * the driver is loaded. For AMT version (only with 82573)
2103  * of the f/w this means that the network i/f is open.
2104  **/
2105 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2106 {
2107         struct e1000_hw *hw = &adapter->hw;
2108         u32 ctrl_ext;
2109         u32 swsm;
2110
2111         /* Let firmware know the driver has taken over */
2112         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2113                 swsm = er32(SWSM);
2114                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2115         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2116                 ctrl_ext = er32(CTRL_EXT);
2117                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2118         }
2119 }
2120
2121 /**
2122  * e1000e_release_hw_control - release control of the h/w to f/w
2123  * @adapter: address of board private structure
2124  *
2125  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2126  * For ASF and Pass Through versions of f/w this means that the
2127  * driver is no longer loaded. For AMT version (only with 82573) i
2128  * of the f/w this means that the network i/f is closed.
2129  *
2130  **/
2131 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2132 {
2133         struct e1000_hw *hw = &adapter->hw;
2134         u32 ctrl_ext;
2135         u32 swsm;
2136
2137         /* Let firmware taken over control of h/w */
2138         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2139                 swsm = er32(SWSM);
2140                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2141         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2142                 ctrl_ext = er32(CTRL_EXT);
2143                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2144         }
2145 }
2146
2147 /**
2148  * @e1000_alloc_ring - allocate memory for a ring structure
2149  **/
2150 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2151                                 struct e1000_ring *ring)
2152 {
2153         struct pci_dev *pdev = adapter->pdev;
2154
2155         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2156                                         GFP_KERNEL);
2157         if (!ring->desc)
2158                 return -ENOMEM;
2159
2160         return 0;
2161 }
2162
2163 /**
2164  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2165  * @adapter: board private structure
2166  *
2167  * Return 0 on success, negative on failure
2168  **/
2169 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
2170 {
2171         struct e1000_ring *tx_ring = adapter->tx_ring;
2172         int err = -ENOMEM, size;
2173
2174         size = sizeof(struct e1000_buffer) * tx_ring->count;
2175         tx_ring->buffer_info = vzalloc(size);
2176         if (!tx_ring->buffer_info)
2177                 goto err;
2178
2179         /* round up to nearest 4K */
2180         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2181         tx_ring->size = ALIGN(tx_ring->size, 4096);
2182
2183         err = e1000_alloc_ring_dma(adapter, tx_ring);
2184         if (err)
2185                 goto err;
2186
2187         tx_ring->next_to_use = 0;
2188         tx_ring->next_to_clean = 0;
2189
2190         return 0;
2191 err:
2192         vfree(tx_ring->buffer_info);
2193         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2194         return err;
2195 }
2196
2197 /**
2198  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2199  * @adapter: board private structure
2200  *
2201  * Returns 0 on success, negative on failure
2202  **/
2203 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
2204 {
2205         struct e1000_ring *rx_ring = adapter->rx_ring;
2206         struct e1000_buffer *buffer_info;
2207         int i, size, desc_len, err = -ENOMEM;
2208
2209         size = sizeof(struct e1000_buffer) * rx_ring->count;
2210         rx_ring->buffer_info = vzalloc(size);
2211         if (!rx_ring->buffer_info)
2212                 goto err;
2213
2214         for (i = 0; i < rx_ring->count; i++) {
2215                 buffer_info = &rx_ring->buffer_info[i];
2216                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2217                                                 sizeof(struct e1000_ps_page),
2218                                                 GFP_KERNEL);
2219                 if (!buffer_info->ps_pages)
2220                         goto err_pages;
2221         }
2222
2223         desc_len = sizeof(union e1000_rx_desc_packet_split);
2224
2225         /* Round up to nearest 4K */
2226         rx_ring->size = rx_ring->count * desc_len;
2227         rx_ring->size = ALIGN(rx_ring->size, 4096);
2228
2229         err = e1000_alloc_ring_dma(adapter, rx_ring);
2230         if (err)
2231                 goto err_pages;
2232
2233         rx_ring->next_to_clean = 0;
2234         rx_ring->next_to_use = 0;
2235         rx_ring->rx_skb_top = NULL;
2236
2237         return 0;
2238
2239 err_pages:
2240         for (i = 0; i < rx_ring->count; i++) {
2241                 buffer_info = &rx_ring->buffer_info[i];
2242                 kfree(buffer_info->ps_pages);
2243         }
2244 err:
2245         vfree(rx_ring->buffer_info);
2246         e_err("Unable to allocate memory for the receive descriptor ring\n");
2247         return err;
2248 }
2249
2250 /**
2251  * e1000_clean_tx_ring - Free Tx Buffers
2252  * @adapter: board private structure
2253  **/
2254 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
2255 {
2256         struct e1000_ring *tx_ring = adapter->tx_ring;
2257         struct e1000_buffer *buffer_info;
2258         unsigned long size;
2259         unsigned int i;
2260
2261         for (i = 0; i < tx_ring->count; i++) {
2262                 buffer_info = &tx_ring->buffer_info[i];
2263                 e1000_put_txbuf(adapter, buffer_info);
2264         }
2265
2266         netdev_reset_queue(adapter->netdev);
2267         size = sizeof(struct e1000_buffer) * tx_ring->count;
2268         memset(tx_ring->buffer_info, 0, size);
2269
2270         memset(tx_ring->desc, 0, tx_ring->size);
2271
2272         tx_ring->next_to_use = 0;
2273         tx_ring->next_to_clean = 0;
2274
2275         writel(0, adapter->hw.hw_addr + tx_ring->head);
2276         writel(0, adapter->hw.hw_addr + tx_ring->tail);
2277 }
2278
2279 /**
2280  * e1000e_free_tx_resources - Free Tx Resources per Queue
2281  * @adapter: board private structure
2282  *
2283  * Free all transmit software resources
2284  **/
2285 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
2286 {
2287         struct pci_dev *pdev = adapter->pdev;
2288         struct e1000_ring *tx_ring = adapter->tx_ring;
2289
2290         e1000_clean_tx_ring(adapter);
2291
2292         vfree(tx_ring->buffer_info);
2293         tx_ring->buffer_info = NULL;
2294
2295         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2296                           tx_ring->dma);
2297         tx_ring->desc = NULL;
2298 }
2299
2300 /**
2301  * e1000e_free_rx_resources - Free Rx Resources
2302  * @adapter: board private structure
2303  *
2304  * Free all receive software resources
2305  **/
2306
2307 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
2308 {
2309         struct pci_dev *pdev = adapter->pdev;
2310         struct e1000_ring *rx_ring = adapter->rx_ring;
2311         int i;
2312
2313         e1000_clean_rx_ring(adapter);
2314
2315         for (i = 0; i < rx_ring->count; i++)
2316                 kfree(rx_ring->buffer_info[i].ps_pages);
2317
2318         vfree(rx_ring->buffer_info);
2319         rx_ring->buffer_info = NULL;
2320
2321         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2322                           rx_ring->dma);
2323         rx_ring->desc = NULL;
2324 }
2325
2326 /**
2327  * e1000_update_itr - update the dynamic ITR value based on statistics
2328  * @adapter: pointer to adapter
2329  * @itr_setting: current adapter->itr
2330  * @packets: the number of packets during this measurement interval
2331  * @bytes: the number of bytes during this measurement interval
2332  *
2333  *      Stores a new ITR value based on packets and byte
2334  *      counts during the last interrupt.  The advantage of per interrupt
2335  *      computation is faster updates and more accurate ITR for the current
2336  *      traffic pattern.  Constants in this function were computed
2337  *      based on theoretical maximum wire speed and thresholds were set based
2338  *      on testing data as well as attempting to minimize response time
2339  *      while increasing bulk throughput.  This functionality is controlled
2340  *      by the InterruptThrottleRate module parameter.
2341  **/
2342 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2343                                      u16 itr_setting, int packets,
2344                                      int bytes)
2345 {
2346         unsigned int retval = itr_setting;
2347
2348         if (packets == 0)
2349                 goto update_itr_done;
2350
2351         switch (itr_setting) {
2352         case lowest_latency:
2353                 /* handle TSO and jumbo frames */
2354                 if (bytes/packets > 8000)
2355                         retval = bulk_latency;
2356                 else if ((packets < 5) && (bytes > 512))
2357                         retval = low_latency;
2358                 break;
2359         case low_latency:  /* 50 usec aka 20000 ints/s */
2360                 if (bytes > 10000) {
2361                         /* this if handles the TSO accounting */
2362                         if (bytes/packets > 8000)
2363                                 retval = bulk_latency;
2364                         else if ((packets < 10) || ((bytes/packets) > 1200))
2365                                 retval = bulk_latency;
2366                         else if ((packets > 35))
2367                                 retval = lowest_latency;
2368                 } else if (bytes/packets > 2000) {
2369                         retval = bulk_latency;
2370                 } else if (packets <= 2 && bytes < 512) {
2371                         retval = lowest_latency;
2372                 }
2373                 break;
2374         case bulk_latency: /* 250 usec aka 4000 ints/s */
2375                 if (bytes > 25000) {
2376                         if (packets > 35)
2377                                 retval = low_latency;
2378                 } else if (bytes < 6000) {
2379                         retval = low_latency;
2380                 }
2381                 break;
2382         }
2383
2384 update_itr_done:
2385         return retval;
2386 }
2387
2388 static void e1000_set_itr(struct e1000_adapter *adapter)
2389 {
2390         struct e1000_hw *hw = &adapter->hw;
2391         u16 current_itr;
2392         u32 new_itr = adapter->itr;
2393
2394         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2395         if (adapter->link_speed != SPEED_1000) {
2396                 current_itr = 0;
2397                 new_itr = 4000;
2398                 goto set_itr_now;
2399         }
2400
2401         if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2402                 new_itr = 0;
2403                 goto set_itr_now;
2404         }
2405
2406         adapter->tx_itr = e1000_update_itr(adapter,
2407                                     adapter->tx_itr,
2408                                     adapter->total_tx_packets,
2409                                     adapter->total_tx_bytes);
2410         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2411         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2412                 adapter->tx_itr = low_latency;
2413
2414         adapter->rx_itr = e1000_update_itr(adapter,
2415                                     adapter->rx_itr,
2416                                     adapter->total_rx_packets,
2417                                     adapter->total_rx_bytes);
2418         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2419         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2420                 adapter->rx_itr = low_latency;
2421
2422         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2423
2424         switch (current_itr) {
2425         /* counts and packets in update_itr are dependent on these numbers */
2426         case lowest_latency:
2427                 new_itr = 70000;
2428                 break;
2429         case low_latency:
2430                 new_itr = 20000; /* aka hwitr = ~200 */
2431                 break;
2432         case bulk_latency:
2433                 new_itr = 4000;
2434                 break;
2435         default:
2436                 break;
2437         }
2438
2439 set_itr_now:
2440         if (new_itr != adapter->itr) {
2441                 /*
2442                  * this attempts to bias the interrupt rate towards Bulk
2443                  * by adding intermediate steps when interrupt rate is
2444                  * increasing
2445                  */
2446                 new_itr = new_itr > adapter->itr ?
2447                              min(adapter->itr + (new_itr >> 2), new_itr) :
2448                              new_itr;
2449                 adapter->itr = new_itr;
2450                 adapter->rx_ring->itr_val = new_itr;
2451                 if (adapter->msix_entries)
2452                         adapter->rx_ring->set_itr = 1;
2453                 else
2454                         if (new_itr)
2455                                 ew32(ITR, 1000000000 / (new_itr * 256));
2456                         else
2457                                 ew32(ITR, 0);
2458         }
2459 }
2460
2461 /**
2462  * e1000_alloc_queues - Allocate memory for all rings
2463  * @adapter: board private structure to initialize
2464  **/
2465 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
2466 {
2467         adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2468         if (!adapter->tx_ring)
2469                 goto err;
2470
2471         adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2472         if (!adapter->rx_ring)
2473                 goto err;
2474
2475         return 0;
2476 err:
2477         e_err("Unable to allocate memory for queues\n");
2478         kfree(adapter->rx_ring);
2479         kfree(adapter->tx_ring);
2480         return -ENOMEM;
2481 }
2482
2483 /**
2484  * e1000_clean - NAPI Rx polling callback
2485  * @napi: struct associated with this polling callback
2486  * @budget: amount of packets driver is allowed to process this poll
2487  **/
2488 static int e1000_clean(struct napi_struct *napi, int budget)
2489 {
2490         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
2491         struct e1000_hw *hw = &adapter->hw;
2492         struct net_device *poll_dev = adapter->netdev;
2493         int tx_cleaned = 1, work_done = 0;
2494
2495         adapter = netdev_priv(poll_dev);
2496
2497         if (adapter->msix_entries &&
2498             !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2499                 goto clean_rx;
2500
2501         tx_cleaned = e1000_clean_tx_irq(adapter);
2502
2503 clean_rx:
2504         adapter->clean_rx(adapter, &work_done, budget);
2505
2506         if (!tx_cleaned)
2507                 work_done = budget;
2508
2509         /* If budget not fully consumed, exit the polling mode */
2510         if (work_done < budget) {
2511                 if (adapter->itr_setting & 3)
2512                         e1000_set_itr(adapter);
2513                 napi_complete(napi);
2514                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2515                         if (adapter->msix_entries)
2516                                 ew32(IMS, adapter->rx_ring->ims_val);
2517                         else
2518                                 e1000_irq_enable(adapter);
2519                 }
2520         }
2521
2522         return work_done;
2523 }
2524
2525 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2526 {
2527         struct e1000_adapter *adapter = netdev_priv(netdev);
2528         struct e1000_hw *hw = &adapter->hw;
2529         u32 vfta, index;
2530
2531         /* don't update vlan cookie if already programmed */
2532         if ((adapter->hw.mng_cookie.status &
2533              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2534             (vid == adapter->mng_vlan_id))
2535                 return 0;
2536
2537         /* add VID to filter table */
2538         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2539                 index = (vid >> 5) & 0x7F;
2540                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2541                 vfta |= (1 << (vid & 0x1F));
2542                 hw->mac.ops.write_vfta(hw, index, vfta);
2543         }
2544
2545         set_bit(vid, adapter->active_vlans);
2546
2547         return 0;
2548 }
2549
2550 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2551 {
2552         struct e1000_adapter *adapter = netdev_priv(netdev);
2553         struct e1000_hw *hw = &adapter->hw;
2554         u32 vfta, index;
2555
2556         if ((adapter->hw.mng_cookie.status &
2557              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2558             (vid == adapter->mng_vlan_id)) {
2559                 /* release control to f/w */
2560                 e1000e_release_hw_control(adapter);
2561                 return 0;
2562         }
2563
2564         /* remove VID from filter table */
2565         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2566                 index = (vid >> 5) & 0x7F;
2567                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2568                 vfta &= ~(1 << (vid & 0x1F));
2569                 hw->mac.ops.write_vfta(hw, index, vfta);
2570         }
2571
2572         clear_bit(vid, adapter->active_vlans);
2573
2574         return 0;
2575 }
2576
2577 /**
2578  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2579  * @adapter: board private structure to initialize
2580  **/
2581 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2582 {
2583         struct net_device *netdev = adapter->netdev;
2584         struct e1000_hw *hw = &adapter->hw;
2585         u32 rctl;
2586
2587         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2588                 /* disable VLAN receive filtering */
2589                 rctl = er32(RCTL);
2590                 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2591                 ew32(RCTL, rctl);
2592
2593                 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2594                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2595                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2596                 }
2597         }
2598 }
2599
2600 /**
2601  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2602  * @adapter: board private structure to initialize
2603  **/
2604 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2605 {
2606         struct e1000_hw *hw = &adapter->hw;
2607         u32 rctl;
2608
2609         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2610                 /* enable VLAN receive filtering */
2611                 rctl = er32(RCTL);
2612                 rctl |= E1000_RCTL_VFE;
2613                 rctl &= ~E1000_RCTL_CFIEN;
2614                 ew32(RCTL, rctl);
2615         }
2616 }
2617
2618 /**
2619  * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2620  * @adapter: board private structure to initialize
2621  **/
2622 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2623 {
2624         struct e1000_hw *hw = &adapter->hw;
2625         u32 ctrl;
2626
2627         /* disable VLAN tag insert/strip */
2628         ctrl = er32(CTRL);
2629         ctrl &= ~E1000_CTRL_VME;
2630         ew32(CTRL, ctrl);
2631 }
2632
2633 /**
2634  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2635  * @adapter: board private structure to initialize
2636  **/
2637 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2638 {
2639         struct e1000_hw *hw = &adapter->hw;
2640         u32 ctrl;
2641
2642         /* enable VLAN tag insert/strip */
2643         ctrl = er32(CTRL);
2644         ctrl |= E1000_CTRL_VME;
2645         ew32(CTRL, ctrl);
2646 }
2647
2648 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2649 {
2650         struct net_device *netdev = adapter->netdev;
2651         u16 vid = adapter->hw.mng_cookie.vlan_id;
2652         u16 old_vid = adapter->mng_vlan_id;
2653
2654         if (adapter->hw.mng_cookie.status &
2655             E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2656                 e1000_vlan_rx_add_vid(netdev, vid);
2657                 adapter->mng_vlan_id = vid;
2658         }
2659
2660         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2661                 e1000_vlan_rx_kill_vid(netdev, old_vid);
2662 }
2663
2664 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2665 {
2666         u16 vid;
2667
2668         e1000_vlan_rx_add_vid(adapter->netdev, 0);
2669
2670         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2671                 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2672 }
2673
2674 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2675 {
2676         struct e1000_hw *hw = &adapter->hw;
2677         u32 manc, manc2h, mdef, i, j;
2678
2679         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2680                 return;
2681
2682         manc = er32(MANC);
2683
2684         /*
2685          * enable receiving management packets to the host. this will probably
2686          * generate destination unreachable messages from the host OS, but
2687          * the packets will be handled on SMBUS
2688          */
2689         manc |= E1000_MANC_EN_MNG2HOST;
2690         manc2h = er32(MANC2H);
2691
2692         switch (hw->mac.type) {
2693         default:
2694                 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2695                 break;
2696         case e1000_82574:
2697         case e1000_82583:
2698                 /*
2699                  * Check if IPMI pass-through decision filter already exists;
2700                  * if so, enable it.
2701                  */
2702                 for (i = 0, j = 0; i < 8; i++) {
2703                         mdef = er32(MDEF(i));
2704
2705                         /* Ignore filters with anything other than IPMI ports */
2706                         if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2707                                 continue;
2708
2709                         /* Enable this decision filter in MANC2H */
2710                         if (mdef)
2711                                 manc2h |= (1 << i);
2712
2713                         j |= mdef;
2714                 }
2715
2716                 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2717                         break;
2718
2719                 /* Create new decision filter in an empty filter */
2720                 for (i = 0, j = 0; i < 8; i++)
2721                         if (er32(MDEF(i)) == 0) {
2722                                 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2723                                                E1000_MDEF_PORT_664));
2724                                 manc2h |= (1 << 1);
2725                                 j++;
2726                                 break;
2727                         }
2728
2729                 if (!j)
2730                         e_warn("Unable to create IPMI pass-through filter\n");
2731                 break;
2732         }
2733
2734         ew32(MANC2H, manc2h);
2735         ew32(MANC, manc);
2736 }
2737
2738 /**
2739  * e1000_configure_tx - Configure Transmit Unit after Reset
2740  * @adapter: board private structure
2741  *
2742  * Configure the Tx unit of the MAC after a reset.
2743  **/
2744 static void e1000_configure_tx(struct e1000_adapter *adapter)
2745 {
2746         struct e1000_hw *hw = &adapter->hw;
2747         struct e1000_ring *tx_ring = adapter->tx_ring;
2748         u64 tdba;
2749         u32 tdlen, tctl, tipg, tarc;
2750         u32 ipgr1, ipgr2;
2751
2752         /* Setup the HW Tx Head and Tail descriptor pointers */
2753         tdba = tx_ring->dma;
2754         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2755         ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2756         ew32(TDBAH, (tdba >> 32));
2757         ew32(TDLEN, tdlen);
2758         ew32(TDH, 0);
2759         ew32(TDT, 0);
2760         tx_ring->head = E1000_TDH;
2761         tx_ring->tail = E1000_TDT;
2762
2763         /* Set the default values for the Tx Inter Packet Gap timer */
2764         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
2765         ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
2766         ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */
2767
2768         if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2769                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */
2770
2771         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2772         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2773         ew32(TIPG, tipg);
2774
2775         /* Set the Tx Interrupt Delay register */
2776         ew32(TIDV, adapter->tx_int_delay);
2777         /* Tx irq moderation */
2778         ew32(TADV, adapter->tx_abs_int_delay);
2779
2780         if (adapter->flags2 & FLAG2_DMA_BURST) {
2781                 u32 txdctl = er32(TXDCTL(0));
2782                 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2783                             E1000_TXDCTL_WTHRESH);
2784                 /*
2785                  * set up some performance related parameters to encourage the
2786                  * hardware to use the bus more efficiently in bursts, depends
2787                  * on the tx_int_delay to be enabled,
2788                  * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
2789                  * hthresh = 1 ==> prefetch when one or more available
2790                  * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2791                  * BEWARE: this seems to work but should be considered first if
2792                  * there are Tx hangs or other Tx related bugs
2793                  */
2794                 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2795                 ew32(TXDCTL(0), txdctl);
2796                 /* erratum work around: set txdctl the same for both queues */
2797                 ew32(TXDCTL(1), txdctl);
2798         }
2799
2800         /* Program the Transmit Control Register */
2801         tctl = er32(TCTL);
2802         tctl &= ~E1000_TCTL_CT;
2803         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2804                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2805
2806         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2807                 tarc = er32(TARC(0));
2808                 /*
2809                  * set the speed mode bit, we'll clear it if we're not at
2810                  * gigabit link later
2811                  */
2812 #define SPEED_MODE_BIT (1 << 21)
2813                 tarc |= SPEED_MODE_BIT;
2814                 ew32(TARC(0), tarc);
2815         }
2816
2817         /* errata: program both queues to unweighted RR */
2818         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2819                 tarc = er32(TARC(0));
2820                 tarc |= 1;
2821                 ew32(TARC(0), tarc);
2822                 tarc = er32(TARC(1));
2823                 tarc |= 1;
2824                 ew32(TARC(1), tarc);
2825         }
2826
2827         /* Setup Transmit Descriptor Settings for eop descriptor */
2828         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2829
2830         /* only set IDE if we are delaying interrupts using the timers */
2831         if (adapter->tx_int_delay)
2832                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2833
2834         /* enable Report Status bit */
2835         adapter->txd_cmd |= E1000_TXD_CMD_RS;
2836
2837         ew32(TCTL, tctl);
2838
2839         e1000e_config_collision_dist(hw);
2840 }
2841
2842 /**
2843  * e1000_setup_rctl - configure the receive control registers
2844  * @adapter: Board private structure
2845  **/
2846 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2847                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2848 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2849 {
2850         struct e1000_hw *hw = &adapter->hw;
2851         u32 rctl, rfctl;
2852         u32 pages = 0;
2853
2854         /* Workaround Si errata on 82579 - configure jumbo frame flow */
2855         if (hw->mac.type == e1000_pch2lan) {
2856                 s32 ret_val;
2857
2858                 if (adapter->netdev->mtu > ETH_DATA_LEN)
2859                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
2860                 else
2861                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2862
2863                 if (ret_val)
2864                         e_dbg("failed to enable jumbo frame workaround mode\n");
2865         }
2866
2867         /* Program MC offset vector base */
2868         rctl = er32(RCTL);
2869         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2870         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2871                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2872                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2873
2874         /* Do not Store bad packets */
2875         rctl &= ~E1000_RCTL_SBP;
2876
2877         /* Enable Long Packet receive */
2878         if (adapter->netdev->mtu <= ETH_DATA_LEN)
2879                 rctl &= ~E1000_RCTL_LPE;
2880         else
2881                 rctl |= E1000_RCTL_LPE;
2882
2883         /* Some systems expect that the CRC is included in SMBUS traffic. The
2884          * hardware strips the CRC before sending to both SMBUS (BMC) and to
2885          * host memory when this is enabled
2886          */
2887         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2888                 rctl |= E1000_RCTL_SECRC;
2889
2890         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2891         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2892                 u16 phy_data;
2893
2894                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2895                 phy_data &= 0xfff8;
2896                 phy_data |= (1 << 2);
2897                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2898
2899                 e1e_rphy(hw, 22, &phy_data);
2900                 phy_data &= 0x0fff;
2901                 phy_data |= (1 << 14);
2902                 e1e_wphy(hw, 0x10, 0x2823);
2903                 e1e_wphy(hw, 0x11, 0x0003);
2904                 e1e_wphy(hw, 22, phy_data);
2905         }
2906
2907         /* Setup buffer sizes */
2908         rctl &= ~E1000_RCTL_SZ_4096;
2909         rctl |= E1000_RCTL_BSEX;
2910         switch (adapter->rx_buffer_len) {
2911         case 2048:
2912         default:
2913                 rctl |= E1000_RCTL_SZ_2048;
2914                 rctl &= ~E1000_RCTL_BSEX;
2915                 break;
2916         case 4096:
2917                 rctl |= E1000_RCTL_SZ_4096;
2918                 break;
2919         case 8192:
2920                 rctl |= E1000_RCTL_SZ_8192;
2921                 break;
2922         case 16384:
2923                 rctl |= E1000_RCTL_SZ_16384;
2924                 break;
2925         }
2926
2927         /* Enable Extended Status in all Receive Descriptors */
2928         rfctl = er32(RFCTL);
2929         rfctl |= E1000_RFCTL_EXTEN;
2930
2931         /*
2932          * 82571 and greater support packet-split where the protocol
2933          * header is placed in skb->data and the packet data is
2934          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2935          * In the case of a non-split, skb->data is linearly filled,
2936          * followed by the page buffers.  Therefore, skb->data is
2937          * sized to hold the largest protocol header.
2938          *
2939          * allocations using alloc_page take too long for regular MTU
2940          * so only enable packet split for jumbo frames
2941          *
2942          * Using pages when the page size is greater than 16k wastes
2943          * a lot of memory, since we allocate 3 pages at all times
2944          * per packet.
2945          */
2946         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2947         if (!(adapter->flags & FLAG_HAS_ERT) && (pages <= 3) &&
2948             (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2949                 adapter->rx_ps_pages = pages;
2950         else
2951                 adapter->rx_ps_pages = 0;
2952
2953         if (adapter->rx_ps_pages) {
2954                 u32 psrctl = 0;
2955
2956                 /*
2957                  * disable packet split support for IPv6 extension headers,
2958                  * because some malformed IPv6 headers can hang the Rx
2959                  */
2960                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2961                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
2962
2963                 /* Enable Packet split descriptors */
2964                 rctl |= E1000_RCTL_DTYP_PS;
2965
2966                 psrctl |= adapter->rx_ps_bsize0 >>
2967                         E1000_PSRCTL_BSIZE0_SHIFT;
2968
2969                 switch (adapter->rx_ps_pages) {
2970                 case 3:
2971                         psrctl |= PAGE_SIZE <<
2972                                 E1000_PSRCTL_BSIZE3_SHIFT;
2973                 case 2:
2974                         psrctl |= PAGE_SIZE <<
2975                                 E1000_PSRCTL_BSIZE2_SHIFT;
2976                 case 1:
2977                         psrctl |= PAGE_SIZE >>
2978                                 E1000_PSRCTL_BSIZE1_SHIFT;
2979                         break;
2980                 }
2981
2982                 ew32(PSRCTL, psrctl);
2983         }
2984
2985         ew32(RFCTL, rfctl);
2986         ew32(RCTL, rctl);
2987         /* just started the receive unit, no need to restart */
2988         adapter->flags &= ~FLAG_RX_RESTART_NOW;
2989 }
2990
2991 /**
2992  * e1000_configure_rx - Configure Receive Unit after Reset
2993  * @adapter: board private structure
2994  *
2995  * Configure the Rx unit of the MAC after a reset.
2996  **/
2997 static void e1000_configure_rx(struct e1000_adapter *adapter)
2998 {
2999         struct e1000_hw *hw = &adapter->hw;
3000         struct e1000_ring *rx_ring = adapter->rx_ring;
3001         u64 rdba;
3002         u32 rdlen, rctl, rxcsum, ctrl_ext;
3003
3004         if (adapter->rx_ps_pages) {
3005                 /* this is a 32 byte descriptor */
3006                 rdlen = rx_ring->count *
3007                     sizeof(union e1000_rx_desc_packet_split);
3008                 adapter->clean_rx = e1000_clean_rx_irq_ps;
3009                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3010         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3011                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3012                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3013                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3014         } else {
3015                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3016                 adapter->clean_rx = e1000_clean_rx_irq;
3017                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3018         }
3019
3020         /* disable receives while setting up the descriptors */
3021         rctl = er32(RCTL);
3022         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3023                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3024         e1e_flush();
3025         usleep_range(10000, 20000);
3026
3027         if (adapter->flags2 & FLAG2_DMA_BURST) {
3028                 /*
3029                  * set the writeback threshold (only takes effect if the RDTR
3030                  * is set). set GRAN=1 and write back up to 0x4 worth, and
3031                  * enable prefetching of 0x20 Rx descriptors
3032                  * granularity = 01
3033                  * wthresh = 04,
3034                  * hthresh = 04,
3035                  * pthresh = 0x20
3036                  */
3037                 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3038                 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3039
3040                 /*
3041                  * override the delay timers for enabling bursting, only if
3042                  * the value was not set by the user via module options
3043                  */
3044                 if (adapter->rx_int_delay == DEFAULT_RDTR)
3045                         adapter->rx_int_delay = BURST_RDTR;
3046                 if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3047                         adapter->rx_abs_int_delay = BURST_RADV;
3048         }
3049
3050         /* set the Receive Delay Timer Register */
3051         ew32(RDTR, adapter->rx_int_delay);
3052
3053         /* irq moderation */
3054         ew32(RADV, adapter->rx_abs_int_delay);
3055         if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3056                 ew32(ITR, 1000000000 / (adapter->itr * 256));
3057
3058         ctrl_ext = er32(CTRL_EXT);
3059         /* Auto-Mask interrupts upon ICR access */
3060         ctrl_ext |= E1000_CTRL_EXT_IAME;
3061         ew32(IAM, 0xffffffff);
3062         ew32(CTRL_EXT, ctrl_ext);
3063         e1e_flush();
3064
3065         /*
3066          * Setup the HW Rx Head and Tail Descriptor Pointers and
3067          * the Base and Length of the Rx Descriptor Ring
3068          */
3069         rdba = rx_ring->dma;
3070         ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
3071         ew32(RDBAH, (rdba >> 32));
3072         ew32(RDLEN, rdlen);
3073         ew32(RDH, 0);
3074         ew32(RDT, 0);
3075         rx_ring->head = E1000_RDH;
3076         rx_ring->tail = E1000_RDT;
3077
3078         /* Enable Receive Checksum Offload for TCP and UDP */
3079         rxcsum = er32(RXCSUM);
3080         if (adapter->netdev->features & NETIF_F_RXCSUM) {
3081                 rxcsum |= E1000_RXCSUM_TUOFL;
3082
3083                 /*
3084                  * IPv4 payload checksum for UDP fragments must be
3085                  * used in conjunction with packet-split.
3086                  */
3087                 if (adapter->rx_ps_pages)
3088                         rxcsum |= E1000_RXCSUM_IPPCSE;
3089         } else {
3090                 rxcsum &= ~E1000_RXCSUM_TUOFL;
3091                 /* no need to clear IPPCSE as it defaults to 0 */
3092         }
3093         ew32(RXCSUM, rxcsum);
3094
3095         /*
3096          * Enable early receives on supported devices, only takes effect when
3097          * packet size is equal or larger than the specified value (in 8 byte
3098          * units), e.g. using jumbo frames when setting to E1000_ERT_2048
3099          */
3100         if ((adapter->flags & FLAG_HAS_ERT) ||
3101             (adapter->hw.mac.type == e1000_pch2lan)) {
3102                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3103                         u32 rxdctl = er32(RXDCTL(0));
3104                         ew32(RXDCTL(0), rxdctl | 0x3);
3105                         if (adapter->flags & FLAG_HAS_ERT)
3106                                 ew32(ERT, E1000_ERT_2048 | (1 << 13));
3107                         /*
3108                          * With jumbo frames and early-receive enabled,
3109                          * excessive C-state transition latencies result in
3110                          * dropped transactions.
3111                          */
3112                         pm_qos_update_request(&adapter->netdev->pm_qos_req, 55);
3113                 } else {
3114                         pm_qos_update_request(&adapter->netdev->pm_qos_req,
3115                                               PM_QOS_DEFAULT_VALUE);
3116                 }
3117         }
3118
3119         /* Enable Receives */
3120         ew32(RCTL, rctl);
3121 }
3122
3123 /**
3124  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3125  * @netdev: network interface device structure
3126  *
3127  * Writes multicast address list to the MTA hash table.
3128  * Returns: -ENOMEM on failure
3129  *                0 on no addresses written
3130  *                X on writing X addresses to MTA
3131  */
3132 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3133 {
3134         struct e1000_adapter *adapter = netdev_priv(netdev);
3135         struct e1000_hw *hw = &adapter->hw;
3136         struct netdev_hw_addr *ha;
3137         u8 *mta_list;
3138         int i;
3139
3140         if (netdev_mc_empty(netdev)) {
3141                 /* nothing to program, so clear mc list */
3142                 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3143                 return 0;
3144         }
3145
3146         mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3147         if (!mta_list)
3148                 return -ENOMEM;
3149
3150         /* update_mc_addr_list expects a packed array of only addresses. */
3151         i = 0;
3152         netdev_for_each_mc_addr(ha, netdev)
3153                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3154
3155         hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3156         kfree(mta_list);
3157
3158         return netdev_mc_count(netdev);
3159 }
3160
3161 /**
3162  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3163  * @netdev: network interface device structure
3164  *
3165  * Writes unicast address list to the RAR table.
3166  * Returns: -ENOMEM on failure/insufficient address space
3167  *                0 on no addresses written
3168  *                X on writing X addresses to the RAR table
3169  **/
3170 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3171 {
3172         struct e1000_adapter *adapter = netdev_priv(netdev);
3173         struct e1000_hw *hw = &adapter->hw;
3174         unsigned int rar_entries = hw->mac.rar_entry_count;
3175         int count = 0;
3176
3177         /* save a rar entry for our hardware address */
3178         rar_entries--;
3179
3180         /* save a rar entry for the LAA workaround */
3181         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3182                 rar_entries--;
3183
3184         /* return ENOMEM indicating insufficient memory for addresses */
3185         if (netdev_uc_count(netdev) > rar_entries)
3186                 return -ENOMEM;
3187
3188         if (!netdev_uc_empty(netdev) && rar_entries) {
3189                 struct netdev_hw_addr *ha;
3190
3191                 /*
3192                  * write the addresses in reverse order to avoid write
3193                  * combining
3194                  */
3195                 netdev_for_each_uc_addr(ha, netdev) {
3196                         if (!rar_entries)
3197                                 break;
3198                         e1000e_rar_set(hw, ha->addr, rar_entries--);
3199                         count++;
3200                 }
3201         }
3202
3203         /* zero out the remaining RAR entries not used above */
3204         for (; rar_entries > 0; rar_entries--) {
3205                 ew32(RAH(rar_entries), 0);
3206                 ew32(RAL(rar_entries), 0);
3207         }
3208         e1e_flush();
3209
3210         return count;
3211 }
3212
3213 /**
3214  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3215  * @netdev: network interface device structure
3216  *
3217  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3218  * address list or the network interface flags are updated.  This routine is
3219  * responsible for configuring the hardware for proper unicast, multicast,
3220  * promiscuous mode, and all-multi behavior.
3221  **/
3222 static void e1000e_set_rx_mode(struct net_device *netdev)
3223 {
3224         struct e1000_adapter *adapter = netdev_priv(netdev);
3225         struct e1000_hw *hw = &adapter->hw;
3226         u32 rctl;
3227
3228         /* Check for Promiscuous and All Multicast modes */
3229         rctl = er32(RCTL);
3230
3231         /* clear the affected bits */
3232         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3233
3234         if (netdev->flags & IFF_PROMISC) {
3235                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3236                 /* Do not hardware filter VLANs in promisc mode */
3237                 e1000e_vlan_filter_disable(adapter);
3238         } else {
3239                 int count;
3240                 if (netdev->flags & IFF_ALLMULTI) {
3241                         rctl |= E1000_RCTL_MPE;
3242                 } else {
3243                         /*
3244                          * Write addresses to the MTA, if the attempt fails
3245                          * then we should just turn on promiscuous mode so
3246                          * that we can at least receive multicast traffic
3247                          */
3248                         count = e1000e_write_mc_addr_list(netdev);
3249                         if (count < 0)
3250                                 rctl |= E1000_RCTL_MPE;
3251                 }
3252                 e1000e_vlan_filter_enable(adapter);
3253                 /*
3254                  * Write addresses to available RAR registers, if there is not
3255                  * sufficient space to store all the addresses then enable
3256                  * unicast promiscuous mode
3257                  */
3258                 count = e1000e_write_uc_addr_list(netdev);
3259                 if (count < 0)
3260                         rctl |= E1000_RCTL_UPE;
3261         }
3262
3263         ew32(RCTL, rctl);
3264
3265         if (netdev->features & NETIF_F_HW_VLAN_RX)
3266                 e1000e_vlan_strip_enable(adapter);
3267         else
3268                 e1000e_vlan_strip_disable(adapter);
3269 }
3270
3271 /**
3272  * e1000_configure - configure the hardware for Rx and Tx
3273  * @adapter: private board structure
3274  **/
3275 static void e1000_configure(struct e1000_adapter *adapter)
3276 {
3277         e1000e_set_rx_mode(adapter->netdev);
3278
3279         e1000_restore_vlan(adapter);
3280         e1000_init_manageability_pt(adapter);
3281
3282         e1000_configure_tx(adapter);
3283         e1000_setup_rctl(adapter);
3284         e1000_configure_rx(adapter);
3285         adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring),
3286                               GFP_KERNEL);
3287 }
3288
3289 /**
3290  * e1000e_power_up_phy - restore link in case the phy was powered down
3291  * @adapter: address of board private structure
3292  *
3293  * The phy may be powered down to save power and turn off link when the
3294  * driver is unloaded and wake on lan is not enabled (among others)
3295  * *** this routine MUST be followed by a call to e1000e_reset ***
3296  **/
3297 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3298 {
3299         if (adapter->hw.phy.ops.power_up)
3300                 adapter->hw.phy.ops.power_up(&adapter->hw);
3301
3302         adapter->hw.mac.ops.setup_link(&adapter->hw);
3303 }
3304
3305 /**
3306  * e1000_power_down_phy - Power down the PHY
3307  *
3308  * Power down the PHY so no link is implied when interface is down.
3309  * The PHY cannot be powered down if management or WoL is active.
3310  */
3311 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3312 {
3313         /* WoL is enabled */
3314         if (adapter->wol)
3315                 return;
3316
3317         if (adapter->hw.phy.ops.power_down)
3318                 adapter->hw.phy.ops.power_down(&adapter->hw);
3319 }
3320
3321 /**
3322  * e1000e_reset - bring the hardware into a known good state
3323  *
3324  * This function boots the hardware and enables some settings that
3325  * require a configuration cycle of the hardware - those cannot be
3326  * set/changed during runtime. After reset the device needs to be
3327  * properly configured for Rx, Tx etc.
3328  */
3329 void e1000e_reset(struct e1000_adapter *adapter)
3330 {
3331         struct e1000_mac_info *mac = &adapter->hw.mac;
3332         struct e1000_fc_info *fc = &adapter->hw.fc;
3333         struct e1000_hw *hw = &adapter->hw;
3334         u32 tx_space, min_tx_space, min_rx_space;
3335         u32 pba = adapter->pba;
3336         u16 hwm;
3337
3338         /* reset Packet Buffer Allocation to default */
3339         ew32(PBA, pba);
3340
3341         if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3342                 /*
3343                  * To maintain wire speed transmits, the Tx FIFO should be
3344                  * large enough to accommodate two full transmit packets,
3345                  * rounded up to the next 1KB and expressed in KB.  Likewise,
3346                  * the Rx FIFO should be large enough to accommodate at least
3347                  * one full receive packet and is similarly rounded up and
3348                  * expressed in KB.
3349                  */
3350                 pba = er32(PBA);
3351                 /* upper 16 bits has Tx packet buffer allocation size in KB */
3352                 tx_space = pba >> 16;
3353                 /* lower 16 bits has Rx packet buffer allocation size in KB */
3354                 pba &= 0xffff;
3355                 /*
3356                  * the Tx fifo also stores 16 bytes of information about the Tx
3357                  * but don't include ethernet FCS because hardware appends it
3358                  */
3359                 min_tx_space = (adapter->max_frame_size +
3360                                 sizeof(struct e1000_tx_desc) -
3361                                 ETH_FCS_LEN) * 2;
3362                 min_tx_space = ALIGN(min_tx_space, 1024);
3363                 min_tx_space >>= 10;
3364                 /* software strips receive CRC, so leave room for it */
3365                 min_rx_space = adapter->max_frame_size;
3366                 min_rx_space = ALIGN(min_rx_space, 1024);
3367                 min_rx_space >>= 10;
3368
3369                 /*
3370                  * If current Tx allocation is less than the min Tx FIFO size,
3371                  * and the min Tx FIFO size is less than the current Rx FIFO
3372                  * allocation, take space away from current Rx allocation
3373                  */
3374                 if ((tx_space < min_tx_space) &&
3375                     ((min_tx_space - tx_space) < pba)) {
3376                         pba -= min_tx_space - tx_space;
3377
3378                         /*
3379                          * if short on Rx space, Rx wins and must trump Tx
3380                          * adjustment or use Early Receive if available
3381                          */
3382                         if ((pba < min_rx_space) &&
3383                             (!(adapter->flags & FLAG_HAS_ERT)))
3384                                 /* ERT enabled in e1000_configure_rx */
3385                                 pba = min_rx_space;
3386                 }
3387
3388                 ew32(PBA, pba);
3389         }
3390
3391         /*
3392          * flow control settings
3393          *
3394          * The high water mark must be low enough to fit one full frame
3395          * (or the size used for early receive) above it in the Rx FIFO.
3396          * Set it to the lower of:
3397          * - 90% of the Rx FIFO size, and
3398          * - the full Rx FIFO size minus the early receive size (for parts
3399          *   with ERT support assuming ERT set to E1000_ERT_2048), or
3400          * - the full Rx FIFO size minus one full frame
3401          */
3402         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3403                 fc->pause_time = 0xFFFF;
3404         else
3405                 fc->pause_time = E1000_FC_PAUSE_TIME;
3406         fc->send_xon = 1;
3407         fc->current_mode = fc->requested_mode;
3408
3409         switch (hw->mac.type) {
3410         default:
3411                 if ((adapter->flags & FLAG_HAS_ERT) &&
3412                     (adapter->netdev->mtu > ETH_DATA_LEN))
3413                         hwm = min(((pba << 10) * 9 / 10),
3414                                   ((pba << 10) - (E1000_ERT_2048 << 3)));
3415                 else
3416                         hwm = min(((pba << 10) * 9 / 10),
3417                                   ((pba << 10) - adapter->max_frame_size));
3418
3419                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3420                 fc->low_water = fc->high_water - 8;
3421                 break;
3422         case e1000_pchlan:
3423                 /*
3424                  * Workaround PCH LOM adapter hangs with certain network
3425                  * loads.  If hangs persist, try disabling Tx flow control.
3426                  */
3427                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3428                         fc->high_water = 0x3500;
3429                         fc->low_water  = 0x1500;
3430                 } else {
3431                         fc->high_water = 0x5000;
3432                         fc->low_water  = 0x3000;
3433                 }
3434                 fc->refresh_time = 0x1000;
3435                 break;
3436         case e1000_pch2lan:
3437                 fc->high_water = 0x05C20;
3438                 fc->low_water = 0x05048;
3439                 fc->pause_time = 0x0650;
3440                 fc->refresh_time = 0x0400;
3441                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3442                         pba = 14;
3443                         ew32(PBA, pba);
3444                 }
3445                 break;
3446         }
3447
3448         /*
3449          * Disable Adaptive Interrupt Moderation if 2 full packets cannot
3450          * fit in receive buffer and early-receive not supported.
3451          */
3452         if (adapter->itr_setting & 0x3) {
3453                 if (((adapter->max_frame_size * 2) > (pba << 10)) &&
3454                     !(adapter->flags & FLAG_HAS_ERT)) {
3455                         if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3456                                 dev_info(&adapter->pdev->dev,
3457                                         "Interrupt Throttle Rate turned off\n");
3458                                 adapter->flags2 |= FLAG2_DISABLE_AIM;
3459                                 ew32(ITR, 0);
3460                         }
3461                 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3462                         dev_info(&adapter->pdev->dev,
3463                                  "Interrupt Throttle Rate turned on\n");
3464                         adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3465                         adapter->itr = 20000;
3466                         ew32(ITR, 1000000000 / (adapter->itr * 256));
3467                 }
3468         }
3469
3470         /* Allow time for pending master requests to run */
3471         mac->ops.reset_hw(hw);
3472
3473         /*
3474          * For parts with AMT enabled, let the firmware know
3475          * that the network interface is in control
3476          */
3477         if (adapter->flags & FLAG_HAS_AMT)
3478                 e1000e_get_hw_control(adapter);
3479
3480         ew32(WUC, 0);
3481
3482         if (mac->ops.init_hw(hw))
3483                 e_err("Hardware Error\n");
3484
3485         e1000_update_mng_vlan(adapter);
3486
3487         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3488         ew32(VET, ETH_P_8021Q);
3489
3490         e1000e_reset_adaptive(hw);
3491
3492         if (!netif_running(adapter->netdev) &&
3493             !test_bit(__E1000_TESTING, &adapter->state)) {
3494                 e1000_power_down_phy(adapter);
3495                 return;
3496         }
3497
3498         e1000_get_phy_info(hw);
3499
3500         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3501             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3502                 u16 phy_data = 0;
3503                 /*
3504                  * speed up time to link by disabling smart power down, ignore
3505                  * the return value of this function because there is nothing
3506                  * different we would do if it failed
3507                  */
3508                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3509                 phy_data &= ~IGP02E1000_PM_SPD;
3510                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3511         }
3512 }
3513
3514 int e1000e_up(struct e1000_adapter *adapter)
3515 {
3516         struct e1000_hw *hw = &adapter->hw;
3517
3518         /* hardware has been reset, we need to reload some things */
3519         e1000_configure(adapter);
3520
3521         clear_bit(__E1000_DOWN, &adapter->state);
3522
3523         if (adapter->msix_entries)
3524                 e1000_configure_msix(adapter);
3525         e1000_irq_enable(adapter);
3526
3527         netif_start_queue(adapter->netdev);
3528
3529         /* fire a link change interrupt to start the watchdog */
3530         if (adapter->msix_entries)
3531                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3532         else
3533                 ew32(ICS, E1000_ICS_LSC);
3534
3535         return 0;
3536 }
3537
3538 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
3539 {
3540         struct e1000_hw *hw = &adapter->hw;
3541
3542         if (!(adapter->flags2 & FLAG2_DMA_BURST))
3543                 return;
3544
3545         /* flush pending descriptor writebacks to memory */
3546         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3547         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3548
3549         /* execute the writes immediately */
3550         e1e_flush();
3551 }
3552
3553 static void e1000e_update_stats(struct e1000_adapter *adapter);
3554
3555 void e1000e_down(struct e1000_adapter *adapter)
3556 {
3557         struct net_device *netdev = adapter->netdev;
3558         struct e1000_hw *hw = &adapter->hw;
3559         u32 tctl, rctl;
3560
3561         /*
3562          * signal that we're down so the interrupt handler does not
3563          * reschedule our watchdog timer
3564          */
3565         set_bit(__E1000_DOWN, &adapter->state);
3566
3567         /* disable receives in the hardware */
3568         rctl = er32(RCTL);
3569         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3570                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3571         /* flush and sleep below */
3572
3573         netif_stop_queue(netdev);
3574
3575         /* disable transmits in the hardware */
3576         tctl = er32(TCTL);
3577         tctl &= ~E1000_TCTL_EN;
3578         ew32(TCTL, tctl);
3579
3580         /* flush both disables and wait for them to finish */
3581         e1e_flush();
3582         usleep_range(10000, 20000);
3583
3584         e1000_irq_disable(adapter);
3585
3586         del_timer_sync(&adapter->watchdog_timer);
3587         del_timer_sync(&adapter->phy_info_timer);
3588
3589         netif_carrier_off(netdev);
3590
3591         spin_lock(&adapter->stats64_lock);
3592         e1000e_update_stats(adapter);
3593         spin_unlock(&adapter->stats64_lock);
3594
3595         e1000e_flush_descriptors(adapter);
3596         e1000_clean_tx_ring(adapter);
3597         e1000_clean_rx_ring(adapter);
3598
3599         adapter->link_speed = 0;
3600         adapter->link_duplex = 0;
3601
3602         if (!pci_channel_offline(adapter->pdev))
3603                 e1000e_reset(adapter);
3604
3605         /*
3606          * TODO: for power management, we could drop the link and
3607          * pci_disable_device here.
3608          */
3609 }
3610
3611 void e1000e_reinit_locked(struct e1000_adapter *adapter)
3612 {
3613         might_sleep();
3614         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3615                 usleep_range(1000, 2000);
3616         e1000e_down(adapter);
3617         e1000e_up(adapter);
3618         clear_bit(__E1000_RESETTING, &adapter->state);
3619 }
3620
3621 /**
3622  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
3623  * @adapter: board private structure to initialize
3624  *
3625  * e1000_sw_init initializes the Adapter private data structure.
3626  * Fields are initialized based on PCI device information and
3627  * OS network device settings (MTU size).
3628  **/
3629 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
3630 {
3631         struct net_device *netdev = adapter->netdev;
3632
3633         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
3634         adapter->rx_ps_bsize0 = 128;
3635         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
3636         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3637
3638         spin_lock_init(&adapter->stats64_lock);
3639
3640         e1000e_set_interrupt_capability(adapter);
3641
3642         if (e1000_alloc_queues(adapter))
3643                 return -ENOMEM;
3644
3645         /* Explicitly disable IRQ since the NIC can be in any state. */
3646         e1000_irq_disable(adapter);
3647
3648         set_bit(__E1000_DOWN, &adapter->state);
3649         return 0;
3650 }
3651
3652 /**
3653  * e1000_intr_msi_test - Interrupt Handler
3654  * @irq: interrupt number
3655  * @data: pointer to a network interface device structure
3656  **/
3657 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
3658 {
3659         struct net_device *netdev = data;
3660         struct e1000_adapter *adapter = netdev_priv(netdev);
3661         struct e1000_hw *hw = &adapter->hw;
3662         u32 icr = er32(ICR);
3663
3664         e_dbg("icr is %08X\n", icr);
3665         if (icr & E1000_ICR_RXSEQ) {
3666                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
3667                 wmb();
3668         }
3669
3670         return IRQ_HANDLED;
3671 }
3672
3673 /**
3674  * e1000_test_msi_interrupt - Returns 0 for successful test
3675  * @adapter: board private struct
3676  *
3677  * code flow taken from tg3.c
3678  **/
3679 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
3680 {
3681         struct net_device *netdev = adapter->netdev;
3682         struct e1000_hw *hw = &adapter->hw;
3683         int err;
3684
3685         /* poll_enable hasn't been called yet, so don't need disable */
3686         /* clear any pending events */
3687         er32(ICR);
3688
3689         /* free the real vector and request a test handler */
3690         e1000_free_irq(adapter);
3691         e1000e_reset_interrupt_capability(adapter);
3692
3693         /* Assume that the test fails, if it succeeds then the test
3694          * MSI irq handler will unset this flag */
3695         adapter->flags |= FLAG_MSI_TEST_FAILED;
3696
3697         err = pci_enable_msi(adapter->pdev);
3698         if (err)
3699                 goto msi_test_failed;
3700
3701         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3702                           netdev->name, netdev);
3703         if (err) {
3704                 pci_disable_msi(adapter->pdev);
3705                 goto msi_test_failed;
3706         }
3707
3708         wmb();
3709
3710         e1000_irq_enable(adapter);
3711
3712         /* fire an unusual interrupt on the test handler */
3713         ew32(ICS, E1000_ICS_RXSEQ);
3714         e1e_flush();
3715         msleep(50);
3716
3717         e1000_irq_disable(adapter);
3718
3719         rmb();
3720
3721         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3722                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
3723                 e_info("MSI interrupt test failed, using legacy interrupt.\n");
3724         } else
3725                 e_dbg("MSI interrupt test succeeded!\n");
3726
3727         free_irq(adapter->pdev->irq, netdev);
3728         pci_disable_msi(adapter->pdev);
3729
3730 msi_test_failed:
3731         e1000e_set_interrupt_capability(adapter);
3732         return e1000_request_irq(adapter);
3733 }
3734
3735 /**
3736  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3737  * @adapter: board private struct
3738  *
3739  * code flow taken from tg3.c, called with e1000 interrupts disabled.
3740  **/
3741 static int e1000_test_msi(struct e1000_adapter *adapter)
3742 {
3743         int err;
3744         u16 pci_cmd;
3745
3746         if (!(adapter->flags & FLAG_MSI_ENABLED))
3747                 return 0;
3748
3749         /* disable SERR in case the MSI write causes a master abort */
3750         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3751         if (pci_cmd & PCI_COMMAND_SERR)
3752                 pci_write_config_word(adapter->pdev, PCI_COMMAND,
3753                                       pci_cmd & ~PCI_COMMAND_SERR);
3754
3755         err = e1000_test_msi_interrupt(adapter);
3756
3757         /* re-enable SERR */
3758         if (pci_cmd & PCI_COMMAND_SERR) {
3759                 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3760                 pci_cmd |= PCI_COMMAND_SERR;
3761                 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3762         }
3763
3764         return err;
3765 }
3766
3767 /**
3768  * e1000_open - Called when a network interface is made active
3769  * @netdev: network interface device structure
3770  *
3771  * Returns 0 on success, negative value on failure
3772  *
3773  * The open entry point is called when a network interface is made
3774  * active by the system (IFF_UP).  At this point all resources needed
3775  * for transmit and receive operations are allocated, the interrupt
3776  * handler is registered with the OS, the watchdog timer is started,
3777  * and the stack is notified that the interface is ready.
3778  **/
3779 static int e1000_open(struct net_device *netdev)
3780 {
3781         struct e1000_adapter *adapter = netdev_priv(netdev);
3782         struct e1000_hw *hw = &adapter->hw;
3783         struct pci_dev *pdev = adapter->pdev;
3784         int err;
3785
3786         /* disallow open during test */
3787         if (test_bit(__E1000_TESTING, &adapter->state))
3788                 return -EBUSY;
3789
3790         pm_runtime_get_sync(&pdev->dev);
3791
3792         netif_carrier_off(netdev);
3793
3794         /* allocate transmit descriptors */
3795         err = e1000e_setup_tx_resources(adapter);
3796         if (err)
3797                 goto err_setup_tx;
3798
3799         /* allocate receive descriptors */
3800         err = e1000e_setup_rx_resources(adapter);
3801         if (err)
3802                 goto err_setup_rx;
3803
3804         /*
3805          * If AMT is enabled, let the firmware know that the network
3806          * interface is now open and reset the part to a known state.
3807          */
3808         if (adapter->flags & FLAG_HAS_AMT) {
3809                 e1000e_get_hw_control(adapter);
3810                 e1000e_reset(adapter);
3811         }
3812
3813         e1000e_power_up_phy(adapter);
3814
3815         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3816         if ((adapter->hw.mng_cookie.status &
3817              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3818                 e1000_update_mng_vlan(adapter);
3819
3820         /* DMA latency requirement to workaround early-receive/jumbo issue */
3821         if ((adapter->flags & FLAG_HAS_ERT) ||
3822             (adapter->hw.mac.type == e1000_pch2lan))
3823                 pm_qos_add_request(&adapter->netdev->pm_qos_req,
3824                                    PM_QOS_CPU_DMA_LATENCY,
3825                                    PM_QOS_DEFAULT_VALUE);
3826
3827         /*
3828          * before we allocate an interrupt, we must be ready to handle it.
3829          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3830          * as soon as we call pci_request_irq, so we have to setup our
3831          * clean_rx handler before we do so.
3832          */
3833         e1000_configure(adapter);
3834
3835         err = e1000_request_irq(adapter);
3836         if (err)
3837                 goto err_req_irq;
3838
3839         /*
3840          * Work around PCIe errata with MSI interrupts causing some chipsets to
3841          * ignore e1000e MSI messages, which means we need to test our MSI
3842          * interrupt now
3843          */
3844         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3845                 err = e1000_test_msi(adapter);
3846                 if (err) {
3847                         e_err("Interrupt allocation failed\n");
3848                         goto err_req_irq;
3849                 }
3850         }
3851
3852         /* From here on the code is the same as e1000e_up() */
3853         clear_bit(__E1000_DOWN, &adapter->state);
3854
3855         napi_enable(&adapter->napi);
3856
3857         e1000_irq_enable(adapter);
3858
3859         adapter->tx_hang_recheck = false;
3860         netif_start_queue(netdev);
3861
3862         adapter->idle_check = true;
3863         pm_runtime_put(&pdev->dev);
3864
3865         /* fire a link status change interrupt to start the watchdog */
3866         if (adapter->msix_entries)
3867                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3868         else
3869                 ew32(ICS, E1000_ICS_LSC);
3870
3871         return 0;
3872
3873 err_req_irq:
3874         e1000e_release_hw_control(adapter);
3875         e1000_power_down_phy(adapter);
3876         e1000e_free_rx_resources(adapter);
3877 err_setup_rx:
3878         e1000e_free_tx_resources(adapter);
3879 err_setup_tx:
3880         e1000e_reset(adapter);
3881         pm_runtime_put_sync(&pdev->dev);
3882
3883         return err;
3884 }
3885
3886 /**
3887  * e1000_close - Disables a network interface
3888  * @netdev: network interface device structure
3889  *
3890  * Returns 0, this is not allowed to fail
3891  *
3892  * The close entry point is called when an interface is de-activated
3893  * by the OS.  The hardware is still under the drivers control, but
3894  * needs to be disabled.  A global MAC reset is issued to stop the
3895  * hardware, and all transmit and receive resources are freed.
3896  **/
3897 static int e1000_close(struct net_device *netdev)
3898 {
3899         struct e1000_adapter *adapter = netdev_priv(netdev);
3900         struct pci_dev *pdev = adapter->pdev;
3901
3902         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3903
3904         pm_runtime_get_sync(&pdev->dev);
3905
3906         napi_disable(&adapter->napi);
3907
3908         if (!test_bit(__E1000_DOWN, &adapter->state)) {
3909                 e1000e_down(adapter);
3910                 e1000_free_irq(adapter);
3911         }
3912         e1000_power_down_phy(adapter);
3913
3914         e1000e_free_tx_resources(adapter);
3915         e1000e_free_rx_resources(adapter);
3916
3917         /*
3918          * kill manageability vlan ID if supported, but not if a vlan with
3919          * the same ID is registered on the host OS (let 8021q kill it)
3920          */
3921         if (adapter->hw.mng_cookie.status &
3922             E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
3923                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3924
3925         /*
3926          * If AMT is enabled, let the firmware know that the network
3927          * interface is now closed
3928          */
3929         if ((adapter->flags & FLAG_HAS_AMT) &&
3930             !test_bit(__E1000_TESTING, &adapter->state))
3931                 e1000e_release_hw_control(adapter);
3932
3933         if ((adapter->flags & FLAG_HAS_ERT) ||
3934             (adapter->hw.mac.type == e1000_pch2lan))
3935                 pm_qos_remove_request(&adapter->netdev->pm_qos_req);
3936
3937         pm_runtime_put_sync(&pdev->dev);
3938
3939         return 0;
3940 }
3941 /**
3942  * e1000_set_mac - Change the Ethernet Address of the NIC
3943  * @netdev: network interface device structure
3944  * @p: pointer to an address structure
3945  *
3946  * Returns 0 on success, negative on failure
3947  **/
3948 static int e1000_set_mac(struct net_device *netdev, void *p)
3949 {
3950         struct e1000_adapter *adapter = netdev_priv(netdev);
3951         struct sockaddr *addr = p;
3952
3953         if (!is_valid_ether_addr(addr->sa_data))
3954                 return -EADDRNOTAVAIL;
3955
3956         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3957         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
3958
3959         e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
3960
3961         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
3962                 /* activate the work around */
3963                 e1000e_set_laa_state_82571(&adapter->hw, 1);
3964
3965                 /*
3966                  * Hold a copy of the LAA in RAR[14] This is done so that
3967                  * between the time RAR[0] gets clobbered  and the time it
3968                  * gets fixed (in e1000_watchdog), the actual LAA is in one
3969                  * of the RARs and no incoming packets directed to this port
3970                  * are dropped. Eventually the LAA will be in RAR[0] and
3971                  * RAR[14]
3972                  */
3973                 e1000e_rar_set(&adapter->hw,
3974                               adapter->hw.mac.addr,
3975                               adapter->hw.mac.rar_entry_count - 1);
3976         }
3977
3978         return 0;
3979 }
3980
3981 /**
3982  * e1000e_update_phy_task - work thread to update phy
3983  * @work: pointer to our work struct
3984  *
3985  * this worker thread exists because we must acquire a
3986  * semaphore to read the phy, which we could msleep while
3987  * waiting for it, and we can't msleep in a timer.
3988  **/
3989 static void e1000e_update_phy_task(struct work_struct *work)
3990 {
3991         struct e1000_adapter *adapter = container_of(work,
3992                                         struct e1000_adapter, update_phy_task);
3993
3994         if (test_bit(__E1000_DOWN, &adapter->state))
3995                 return;
3996
3997         e1000_get_phy_info(&adapter->hw);
3998 }
3999
4000 /*
4001  * Need to wait a few seconds after link up to get diagnostic information from
4002  * the phy
4003  */
4004 static void e1000_update_phy_info(unsigned long data)
4005 {
4006         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4007
4008         if (test_bit(__E1000_DOWN, &adapter->state))
4009                 return;
4010
4011         schedule_work(&adapter->update_phy_task);
4012 }
4013
4014 /**
4015  * e1000e_update_phy_stats - Update the PHY statistics counters
4016  * @adapter: board private structure
4017  *
4018  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4019  **/
4020 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4021 {
4022         struct e1000_hw *hw = &adapter->hw;
4023         s32 ret_val;
4024         u16 phy_data;
4025
4026         ret_val = hw->phy.ops.acquire(hw);
4027         if (ret_val)
4028                 return;
4029
4030         /*
4031          * A page set is expensive so check if already on desired page.
4032          * If not, set to the page with the PHY status registers.
4033          */
4034         hw->phy.addr = 1;
4035         ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4036                                            &phy_data);
4037         if (ret_val)
4038                 goto release;
4039         if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4040                 ret_val = hw->phy.ops.set_page(hw,
4041                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
4042                 if (ret_val)
4043                         goto release;
4044         }
4045
4046         /* Single Collision Count */
4047         hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4048         ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4049         if (!ret_val)
4050                 adapter->stats.scc += phy_data;
4051
4052         /* Excessive Collision Count */
4053         hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4054         ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4055         if (!ret_val)
4056                 adapter->stats.ecol += phy_data;
4057
4058         /* Multiple Collision Count */
4059         hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4060         ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4061         if (!ret_val)
4062                 adapter->stats.mcc += phy_data;
4063
4064         /* Late Collision Count */
4065         hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4066         ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4067         if (!ret_val)
4068                 adapter->stats.latecol += phy_data;
4069
4070         /* Collision Count - also used for adaptive IFS */
4071         hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4072         ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4073         if (!ret_val)
4074                 hw->mac.collision_delta = phy_data;
4075
4076         /* Defer Count */
4077         hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4078         ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4079         if (!ret_val)
4080                 adapter->stats.dc += phy_data;
4081
4082         /* Transmit with no CRS */
4083         hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4084         ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4085         if (!ret_val)
4086                 adapter->stats.tncrs += phy_data;
4087
4088 release:
4089         hw->phy.ops.release(hw);
4090 }
4091
4092 /**
4093  * e1000e_update_stats - Update the board statistics counters
4094  * @adapter: board private structure
4095  **/
4096 static void e1000e_update_stats(struct e1000_adapter *adapter)
4097 {
4098         struct net_device *netdev = adapter->netdev;
4099         struct e1000_hw *hw = &adapter->hw;
4100         struct pci_dev *pdev = adapter->pdev;
4101
4102         /*
4103          * Prevent stats update while adapter is being reset, or if the pci
4104          * connection is down.
4105          */
4106         if (adapter->link_speed == 0)
4107                 return;
4108         if (pci_channel_offline(pdev))
4109                 return;
4110
4111         adapter->stats.crcerrs += er32(CRCERRS);
4112         adapter->stats.gprc += er32(GPRC);
4113         adapter->stats.gorc += er32(GORCL);
4114         er32(GORCH); /* Clear gorc */
4115         adapter->stats.bprc += er32(BPRC);
4116         adapter->stats.mprc += er32(MPRC);
4117         adapter->stats.roc += er32(ROC);
4118
4119         adapter->stats.mpc += er32(MPC);
4120
4121         /* Half-duplex statistics */
4122         if (adapter->link_duplex == HALF_DUPLEX) {
4123                 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4124                         e1000e_update_phy_stats(adapter);
4125                 } else {
4126                         adapter->stats.scc += er32(SCC);
4127                         adapter->stats.ecol += er32(ECOL);
4128                         adapter->stats.mcc += er32(MCC);
4129                         adapter->stats.latecol += er32(LATECOL);
4130                         adapter->stats.dc += er32(DC);
4131
4132                         hw->mac.collision_delta = er32(COLC);
4133
4134                         if ((hw->mac.type != e1000_82574) &&
4135                             (hw->mac.type != e1000_82583))
4136                                 adapter->stats.tncrs += er32(TNCRS);
4137                 }
4138                 adapter->stats.colc += hw->mac.collision_delta;
4139         }
4140
4141         adapter->stats.xonrxc += er32(XONRXC);
4142         adapter->stats.xontxc += er32(XONTXC);
4143         adapter->stats.xoffrxc += er32(XOFFRXC);
4144         adapter->stats.xofftxc += er32(XOFFTXC);
4145         adapter->stats.gptc += er32(GPTC);
4146         adapter->stats.gotc += er32(GOTCL);
4147         er32(GOTCH); /* Clear gotc */
4148         adapter->stats.rnbc += er32(RNBC);
4149         adapter->stats.ruc += er32(RUC);
4150
4151         adapter->stats.mptc += er32(MPTC);
4152         adapter->stats.bptc += er32(BPTC);
4153
4154         /* used for adaptive IFS */
4155
4156         hw->mac.tx_packet_delta = er32(TPT);
4157         adapter->stats.tpt += hw->mac.tx_packet_delta;
4158
4159         adapter->stats.algnerrc += er32(ALGNERRC);
4160         adapter->stats.rxerrc += er32(RXERRC);
4161         adapter->stats.cexterr += er32(CEXTERR);
4162         adapter->stats.tsctc += er32(TSCTC);
4163         adapter->stats.tsctfc += er32(TSCTFC);
4164
4165         /* Fill out the OS statistics structure */
4166         netdev->stats.multicast = adapter->stats.mprc;
4167         netdev->stats.collisions = adapter->stats.colc;
4168
4169         /* Rx Errors */
4170
4171         /*
4172          * RLEC on some newer hardware can be incorrect so build
4173          * our own version based on RUC and ROC
4174          */
4175         netdev->stats.rx_errors = adapter->stats.rxerrc +
4176                 adapter->stats.crcerrs + adapter->stats.algnerrc +
4177                 adapter->stats.ruc + adapter->stats.roc +
4178                 adapter->stats.cexterr;
4179         netdev->stats.rx_length_errors = adapter->stats.ruc +
4180                                               adapter->stats.roc;
4181         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4182         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4183         netdev->stats.rx_missed_errors = adapter->stats.mpc;
4184
4185         /* Tx Errors */
4186         netdev->stats.tx_errors = adapter->stats.ecol +
4187                                        adapter->stats.latecol;
4188         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4189         netdev->stats.tx_window_errors = adapter->stats.latecol;
4190         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4191
4192         /* Tx Dropped needs to be maintained elsewhere */
4193
4194         /* Management Stats */
4195         adapter->stats.mgptc += er32(MGTPTC);
4196         adapter->stats.mgprc += er32(MGTPRC);
4197         adapter->stats.mgpdc += er32(MGTPDC);
4198 }
4199
4200 /**
4201  * e1000_phy_read_status - Update the PHY register status snapshot
4202  * @adapter: board private structure
4203  **/
4204 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4205 {
4206         struct e1000_hw *hw = &adapter->hw;
4207         struct e1000_phy_regs *phy = &adapter->phy_regs;
4208
4209         if ((er32(STATUS) & E1000_STATUS_LU) &&
4210             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4211                 int ret_val;
4212
4213                 ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
4214                 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
4215                 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
4216                 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
4217                 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
4218                 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
4219                 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
4220                 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
4221                 if (ret_val)
4222                         e_warn("Error reading PHY register\n");
4223         } else {
4224                 /*
4225                  * Do not read PHY registers if link is not up
4226                  * Set values to typical power-on defaults
4227                  */
4228                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4229                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4230                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4231                              BMSR_ERCAP);
4232                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4233                                   ADVERTISE_ALL | ADVERTISE_CSMA);
4234                 phy->lpa = 0;
4235                 phy->expansion = EXPANSION_ENABLENPAGE;
4236                 phy->ctrl1000 = ADVERTISE_1000FULL;
4237                 phy->stat1000 = 0;
4238                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4239         }
4240 }
4241
4242 static void e1000_print_link_info(struct e1000_adapter *adapter)
4243 {
4244         struct e1000_hw *hw = &adapter->hw;
4245         u32 ctrl = er32(CTRL);
4246
4247         /* Link status message must follow this format for user tools */
4248         printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4249                 adapter->netdev->name,
4250                 adapter->link_speed,
4251                 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4252                 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4253                 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
4254                 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4255 }
4256
4257 static bool e1000e_has_link(struct e1000_adapter *adapter)
4258 {
4259         struct e1000_hw *hw = &adapter->hw;
4260         bool link_active = false;
4261         s32 ret_val = 0;
4262
4263         /*
4264          * get_link_status is set on LSC (link status) interrupt or
4265          * Rx sequence error interrupt.  get_link_status will stay
4266          * false until the check_for_link establishes link
4267          * for copper adapters ONLY
4268          */
4269         switch (hw->phy.media_type) {
4270         case e1000_media_type_copper:
4271                 if (hw->mac.get_link_status) {
4272                         ret_val = hw->mac.ops.check_for_link(hw);
4273                         link_active = !hw->mac.get_link_status;
4274                 } else {
4275                         link_active = true;
4276                 }
4277                 break;
4278         case e1000_media_type_fiber:
4279                 ret_val = hw->mac.ops.check_for_link(hw);
4280                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4281                 break;
4282         case e1000_media_type_internal_serdes:
4283                 ret_val = hw->mac.ops.check_for_link(hw);
4284                 link_active = adapter->hw.mac.serdes_has_link;
4285                 break;
4286         default:
4287         case e1000_media_type_unknown:
4288                 break;
4289         }
4290
4291         if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4292             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4293                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4294                 e_info("Gigabit has been disabled, downgrading speed\n");
4295         }
4296
4297         return link_active;
4298 }
4299
4300 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4301 {
4302         /* make sure the receive unit is started */
4303         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4304             (adapter->flags & FLAG_RX_RESTART_NOW)) {
4305                 struct e1000_hw *hw = &adapter->hw;
4306                 u32 rctl = er32(RCTL);
4307                 ew32(RCTL, rctl | E1000_RCTL_EN);
4308                 adapter->flags &= ~FLAG_RX_RESTART_NOW;
4309         }
4310 }
4311
4312 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4313 {
4314         struct e1000_hw *hw = &adapter->hw;
4315
4316         /*
4317          * With 82574 controllers, PHY needs to be checked periodically
4318          * for hung state and reset, if two calls return true
4319          */
4320         if (e1000_check_phy_82574(hw))
4321                 adapter->phy_hang_count++;
4322         else
4323                 adapter->phy_hang_count = 0;
4324
4325         if (adapter->phy_hang_count > 1) {
4326                 adapter->phy_hang_count = 0;
4327                 schedule_work(&adapter->reset_task);
4328         }
4329 }
4330
4331 /**
4332  * e1000_watchdog - Timer Call-back
4333  * @data: pointer to adapter cast into an unsigned long
4334  **/
4335 static void e1000_watchdog(unsigned long data)
4336 {
4337         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4338
4339         /* Do the rest outside of interrupt context */
4340         schedule_work(&adapter->watchdog_task);
4341
4342         /* TODO: make this use queue_delayed_work() */
4343 }
4344
4345 static void e1000_watchdog_task(struct work_struct *work)
4346 {
4347         struct e1000_adapter *adapter = container_of(work,
4348                                         struct e1000_adapter, watchdog_task);
4349         struct net_device *netdev = adapter->netdev;
4350         struct e1000_mac_info *mac = &adapter->hw.mac;
4351         struct e1000_phy_info *phy = &adapter->hw.phy;
4352         struct e1000_ring *tx_ring = adapter->tx_ring;
4353         struct e1000_hw *hw = &adapter->hw;
4354         u32 link, tctl;
4355
4356         if (test_bit(__E1000_DOWN, &adapter->state))
4357                 return;
4358
4359         link = e1000e_has_link(adapter);
4360         if ((netif_carrier_ok(netdev)) && link) {
4361                 /* Cancel scheduled suspend requests. */
4362                 pm_runtime_resume(netdev->dev.parent);
4363
4364                 e1000e_enable_receives(adapter);
4365                 goto link_up;
4366         }
4367
4368         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4369             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4370                 e1000_update_mng_vlan(adapter);
4371
4372         if (link) {
4373                 if (!netif_carrier_ok(netdev)) {
4374                         bool txb2b = true;
4375
4376                         /* Cancel scheduled suspend requests. */
4377                         pm_runtime_resume(netdev->dev.parent);
4378
4379                         /* update snapshot of PHY registers on LSC */
4380                         e1000_phy_read_status(adapter);
4381                         mac->ops.get_link_up_info(&adapter->hw,
4382                                                    &adapter->link_speed,
4383                                                    &adapter->link_duplex);
4384                         e1000_print_link_info(adapter);
4385                         /*
4386                          * On supported PHYs, check for duplex mismatch only
4387                          * if link has autonegotiated at 10/100 half
4388                          */
4389                         if ((hw->phy.type == e1000_phy_igp_3 ||
4390                              hw->phy.type == e1000_phy_bm) &&
4391                             (hw->mac.autoneg == true) &&
4392                             (adapter->link_speed == SPEED_10 ||
4393                              adapter->link_speed == SPEED_100) &&
4394                             (adapter->link_duplex == HALF_DUPLEX)) {
4395                                 u16 autoneg_exp;
4396
4397                                 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
4398
4399                                 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
4400                                         e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
4401                         }
4402
4403                         /* adjust timeout factor according to speed/duplex */
4404                         adapter->tx_timeout_factor = 1;
4405                         switch (adapter->link_speed) {
4406                         case SPEED_10:
4407                                 txb2b = false;
4408                                 adapter->tx_timeout_factor = 16;
4409                                 break;
4410                         case SPEED_100:
4411                                 txb2b = false;
4412                                 adapter->tx_timeout_factor = 10;
4413                                 break;
4414                         }
4415
4416                         /*
4417                          * workaround: re-program speed mode bit after
4418                          * link-up event
4419                          */
4420                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4421                             !txb2b) {
4422                                 u32 tarc0;
4423                                 tarc0 = er32(TARC(0));
4424                                 tarc0 &= ~SPEED_MODE_BIT;
4425                                 ew32(TARC(0), tarc0);
4426                         }
4427
4428                         /*
4429                          * disable TSO for pcie and 10/100 speeds, to avoid
4430                          * some hardware issues
4431                          */
4432                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
4433                                 switch (adapter->link_speed) {
4434                                 case SPEED_10:
4435                                 case SPEED_100:
4436                                         e_info("10/100 speed: disabling TSO\n");
4437                                         netdev->features &= ~NETIF_F_TSO;
4438                                         netdev->features &= ~NETIF_F_TSO6;
4439                                         break;
4440                                 case SPEED_1000:
4441                                         netdev->features |= NETIF_F_TSO;
4442                                         netdev->features |= NETIF_F_TSO6;
4443                                         break;
4444                                 default:
4445                                         /* oops */
4446                                         break;
4447                                 }
4448                         }
4449
4450                         /*
4451                          * enable transmits in the hardware, need to do this
4452                          * after setting TARC(0)
4453                          */
4454                         tctl = er32(TCTL);
4455                         tctl |= E1000_TCTL_EN;
4456                         ew32(TCTL, tctl);
4457
4458                         /*
4459                          * Perform any post-link-up configuration before
4460                          * reporting link up.
4461                          */
4462                         if (phy->ops.cfg_on_link_up)
4463                                 phy->ops.cfg_on_link_up(hw);
4464
4465                         netif_carrier_on(netdev);
4466
4467                         if (!test_bit(__E1000_DOWN, &adapter->state))
4468                                 mod_timer(&adapter->phy_info_timer,
4469                                           round_jiffies(jiffies + 2 * HZ));
4470                 }
4471         } else {
4472                 if (netif_carrier_ok(netdev)) {
4473                         adapter->link_speed = 0;
4474                         adapter->link_duplex = 0;
4475                         /* Link status message must follow this format */
4476                         printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
4477                                adapter->netdev->name);
4478                         netif_carrier_off(netdev);
4479                         if (!test_bit(__E1000_DOWN, &adapter->state))
4480                                 mod_timer(&adapter->phy_info_timer,
4481                                           round_jiffies(jiffies + 2 * HZ));
4482
4483                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
4484                                 schedule_work(&adapter->reset_task);
4485                         else
4486                                 pm_schedule_suspend(netdev->dev.parent,
4487                                                         LINK_TIMEOUT);
4488                 }
4489         }
4490
4491 link_up:
4492         spin_lock(&adapter->stats64_lock);
4493         e1000e_update_stats(adapter);
4494
4495         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
4496         adapter->tpt_old = adapter->stats.tpt;
4497         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
4498         adapter->colc_old = adapter->stats.colc;
4499
4500         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
4501         adapter->gorc_old = adapter->stats.gorc;
4502         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
4503         adapter->gotc_old = adapter->stats.gotc;
4504         spin_unlock(&adapter->stats64_lock);
4505
4506         e1000e_update_adaptive(&adapter->hw);
4507
4508         if (!netif_carrier_ok(netdev) &&
4509             (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) {
4510                 /*
4511                  * We've lost link, so the controller stops DMA,
4512                  * but we've got queued Tx work that's never going
4513                  * to get done, so reset controller to flush Tx.
4514                  * (Do the reset outside of interrupt context).
4515                  */
4516                 schedule_work(&adapter->reset_task);
4517                 /* return immediately since reset is imminent */
4518                 return;
4519         }
4520
4521         /* Simple mode for Interrupt Throttle Rate (ITR) */
4522         if (adapter->itr_setting == 4) {
4523                 /*
4524                  * Symmetric Tx/Rx gets a reduced ITR=2000;
4525                  * Total asymmetrical Tx or Rx gets ITR=8000;
4526                  * everyone else is between 2000-8000.
4527                  */
4528                 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
4529                 u32 dif = (adapter->gotc > adapter->gorc ?
4530                             adapter->gotc - adapter->gorc :
4531                             adapter->gorc - adapter->gotc) / 10000;
4532                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
4533
4534                 ew32(ITR, 1000000000 / (itr * 256));
4535         }
4536
4537         /* Cause software interrupt to ensure Rx ring is cleaned */
4538         if (adapter->msix_entries)
4539                 ew32(ICS, adapter->rx_ring->ims_val);
4540         else
4541                 ew32(ICS, E1000_ICS_RXDMT0);
4542
4543         /* flush pending descriptors to memory before detecting Tx hang */
4544         e1000e_flush_descriptors(adapter);
4545
4546         /* Force detection of hung controller every watchdog period */
4547         adapter->detect_tx_hung = true;
4548
4549         /*
4550          * With 82571 controllers, LAA may be overwritten due to controller
4551          * reset from the other port. Set the appropriate LAA in RAR[0]
4552          */
4553         if (e1000e_get_laa_state_82571(hw))
4554                 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
4555
4556         if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
4557                 e1000e_check_82574_phy_workaround(adapter);
4558
4559         /* Reset the timer */
4560         if (!test_bit(__E1000_DOWN, &adapter->state))
4561                 mod_timer(&adapter->watchdog_timer,
4562                           round_jiffies(jiffies + 2 * HZ));
4563 }
4564
4565 #define E1000_TX_FLAGS_CSUM             0x00000001
4566 #define E1000_TX_FLAGS_VLAN             0x00000002
4567 #define E1000_TX_FLAGS_TSO              0x00000004
4568 #define E1000_TX_FLAGS_IPV4             0x00000008
4569 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
4570 #define E1000_TX_FLAGS_VLAN_SHIFT       16
4571
4572 static int e1000_tso(struct e1000_adapter *adapter,
4573                      struct sk_buff *skb)
4574 {
4575         struct e1000_ring *tx_ring = adapter->tx_ring;
4576         struct e1000_context_desc *context_desc;
4577         struct e1000_buffer *buffer_info;
4578         unsigned int i;
4579         u32 cmd_length = 0;
4580         u16 ipcse = 0, tucse, mss;
4581         u8 ipcss, ipcso, tucss, tucso, hdr_len;
4582
4583         if (!skb_is_gso(skb))
4584                 return 0;
4585
4586         if (skb_header_cloned(skb)) {
4587                 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4588
4589                 if (err)
4590                         return err;
4591         }
4592
4593         hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4594         mss = skb_shinfo(skb)->gso_size;
4595         if (skb->protocol == htons(ETH_P_IP)) {
4596                 struct iphdr *iph = ip_hdr(skb);
4597                 iph->tot_len = 0;
4598                 iph->check = 0;
4599                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
4600                                                          0, IPPROTO_TCP, 0);
4601                 cmd_length = E1000_TXD_CMD_IP;
4602                 ipcse = skb_transport_offset(skb) - 1;
4603         } else if (skb_is_gso_v6(skb)) {
4604                 ipv6_hdr(skb)->payload_len = 0;
4605                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4606                                                        &ipv6_hdr(skb)->daddr,
4607                                                        0, IPPROTO_TCP, 0);
4608                 ipcse = 0;
4609         }
4610         ipcss = skb_network_offset(skb);
4611         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
4612         tucss = skb_transport_offset(skb);
4613         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
4614         tucse = 0;
4615
4616         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
4617                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
4618
4619         i = tx_ring->next_to_use;
4620         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4621         buffer_info = &tx_ring->buffer_info[i];
4622
4623         context_desc->lower_setup.ip_fields.ipcss  = ipcss;
4624         context_desc->lower_setup.ip_fields.ipcso  = ipcso;
4625         context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
4626         context_desc->upper_setup.tcp_fields.tucss = tucss;
4627         context_desc->upper_setup.tcp_fields.tucso = tucso;
4628         context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
4629         context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
4630         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
4631         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
4632
4633         buffer_info->time_stamp = jiffies;
4634         buffer_info->next_to_watch = i;
4635
4636         i++;
4637         if (i == tx_ring->count)
4638                 i = 0;
4639         tx_ring->next_to_use = i;
4640
4641         return 1;
4642 }
4643
4644 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
4645 {
4646         struct e1000_ring *tx_ring = adapter->tx_ring;
4647         struct e1000_context_desc *context_desc;
4648         struct e1000_buffer *buffer_info;
4649         unsigned int i;
4650         u8 css;
4651         u32 cmd_len = E1000_TXD_CMD_DEXT;
4652         __be16 protocol;
4653
4654         if (skb->ip_summed != CHECKSUM_PARTIAL)
4655                 return 0;
4656
4657         if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
4658                 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
4659         else
4660                 protocol = skb->protocol;
4661
4662         switch (protocol) {
4663         case cpu_to_be16(ETH_P_IP):
4664                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
4665                         cmd_len |= E1000_TXD_CMD_TCP;
4666                 break;
4667         case cpu_to_be16(ETH_P_IPV6):
4668                 /* XXX not handling all IPV6 headers */
4669                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
4670                         cmd_len |= E1000_TXD_CMD_TCP;
4671                 break;
4672         default:
4673                 if (unlikely(net_ratelimit()))
4674                         e_warn("checksum_partial proto=%x!\n",
4675                                be16_to_cpu(protocol));
4676                 break;
4677         }
4678
4679         css = skb_checksum_start_offset(skb);
4680
4681         i = tx_ring->next_to_use;
4682         buffer_info = &tx_ring->buffer_info[i];
4683         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4684
4685         context_desc->lower_setup.ip_config = 0;
4686         context_desc->upper_setup.tcp_fields.tucss = css;
4687         context_desc->upper_setup.tcp_fields.tucso =
4688                                 css + skb->csum_offset;
4689         context_desc->upper_setup.tcp_fields.tucse = 0;
4690         context_desc->tcp_seg_setup.data = 0;
4691         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
4692
4693         buffer_info->time_stamp = jiffies;
4694         buffer_info->next_to_watch = i;
4695
4696         i++;
4697         if (i == tx_ring->count)
4698                 i = 0;
4699         tx_ring->next_to_use = i;
4700
4701         return 1;
4702 }
4703
4704 #define E1000_MAX_PER_TXD       8192
4705 #define E1000_MAX_TXD_PWR       12
4706
4707 static int e1000_tx_map(struct e1000_adapter *adapter,
4708                         struct sk_buff *skb, unsigned int first,
4709                         unsigned int max_per_txd, unsigned int nr_frags,
4710                         unsigned int mss)
4711 {
4712         struct e1000_ring *tx_ring = adapter->tx_ring;
4713         struct pci_dev *pdev = adapter->pdev;
4714         struct e1000_buffer *buffer_info;
4715         unsigned int len = skb_headlen(skb);
4716         unsigned int offset = 0, size, count = 0, i;
4717         unsigned int f, bytecount, segs;
4718
4719         i = tx_ring->next_to_use;
4720
4721         while (len) {
4722                 buffer_info = &tx_ring->buffer_info[i];
4723                 size = min(len, max_per_txd);
4724
4725                 buffer_info->length = size;
4726                 buffer_info->time_stamp = jiffies;
4727                 buffer_info->next_to_watch = i;
4728                 buffer_info->dma = dma_map_single(&pdev->dev,
4729                                                   skb->data + offset,
4730                                                   size, DMA_TO_DEVICE);
4731                 buffer_info->mapped_as_page = false;
4732                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4733                         goto dma_error;
4734
4735                 len -= size;
4736                 offset += size;
4737                 count++;
4738
4739                 if (len) {
4740                         i++;
4741                         if (i == tx_ring->count)
4742                                 i = 0;
4743                 }
4744         }
4745
4746         for (f = 0; f < nr_frags; f++) {
4747                 const struct skb_frag_struct *frag;
4748
4749                 frag = &skb_shinfo(skb)->frags[f];
4750                 len = skb_frag_size(frag);
4751                 offset = 0;
4752
4753                 while (len) {
4754                         i++;
4755                         if (i == tx_ring->count)
4756                                 i = 0;
4757
4758                         buffer_info = &tx_ring->buffer_info[i];
4759                         size = min(len, max_per_txd);
4760
4761                         buffer_info->length = size;
4762                         buffer_info->time_stamp = jiffies;
4763                         buffer_info->next_to_watch = i;
4764                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
4765                                                 offset, size, DMA_TO_DEVICE);
4766                         buffer_info->mapped_as_page = true;
4767                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4768                                 goto dma_error;
4769
4770                         len -= size;
4771                         offset += size;
4772                         count++;
4773                 }
4774         }
4775
4776         segs = skb_shinfo(skb)->gso_segs ? : 1;
4777         /* multiply data chunks by size of headers */
4778         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
4779
4780         tx_ring->buffer_info[i].skb = skb;
4781         tx_ring->buffer_info[i].segs = segs;
4782         tx_ring->buffer_info[i].bytecount = bytecount;
4783         tx_ring->buffer_info[first].next_to_watch = i;
4784
4785         return count;
4786
4787 dma_error:
4788         dev_err(&pdev->dev, "Tx DMA map failed\n");
4789         buffer_info->dma = 0;
4790         if (count)
4791                 count--;
4792
4793         while (count--) {
4794                 if (i == 0)
4795                         i += tx_ring->count;
4796                 i--;
4797                 buffer_info = &tx_ring->buffer_info[i];
4798                 e1000_put_txbuf(adapter, buffer_info);
4799         }
4800
4801         return 0;
4802 }
4803
4804 static void e1000_tx_queue(struct e1000_adapter *adapter,
4805                            int tx_flags, int count)
4806 {
4807         struct e1000_ring *tx_ring = adapter->tx_ring;
4808         struct e1000_tx_desc *tx_desc = NULL;
4809         struct e1000_buffer *buffer_info;
4810         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
4811         unsigned int i;
4812
4813         if (tx_flags & E1000_TX_FLAGS_TSO) {
4814                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
4815                              E1000_TXD_CMD_TSE;
4816                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4817
4818                 if (tx_flags & E1000_TX_FLAGS_IPV4)
4819                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
4820         }
4821
4822         if (tx_flags & E1000_TX_FLAGS_CSUM) {
4823                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
4824                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4825         }
4826
4827         if (tx_flags & E1000_TX_FLAGS_VLAN) {
4828                 txd_lower |= E1000_TXD_CMD_VLE;
4829                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
4830         }
4831
4832         i = tx_ring->next_to_use;
4833
4834         do {
4835                 buffer_info = &tx_ring->buffer_info[i];
4836                 tx_desc = E1000_TX_DESC(*tx_ring, i);
4837                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4838                 tx_desc->lower.data =
4839                         cpu_to_le32(txd_lower | buffer_info->length);
4840                 tx_desc->upper.data = cpu_to_le32(txd_upper);
4841
4842                 i++;
4843                 if (i == tx_ring->count)
4844                         i = 0;
4845         } while (--count > 0);
4846
4847         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
4848
4849         /*
4850          * Force memory writes to complete before letting h/w
4851          * know there are new descriptors to fetch.  (Only
4852          * applicable for weak-ordered memory model archs,
4853          * such as IA-64).
4854          */
4855         wmb();
4856
4857         tx_ring->next_to_use = i;
4858
4859         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
4860                 e1000e_update_tdt_wa(adapter, i);
4861         else
4862                 writel(i, adapter->hw.hw_addr + tx_ring->tail);
4863
4864         /*
4865          * we need this if more than one processor can write to our tail
4866          * at a time, it synchronizes IO on IA64/Altix systems
4867          */
4868         mmiowb();
4869 }
4870
4871 #define MINIMUM_DHCP_PACKET_SIZE 282
4872 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
4873                                     struct sk_buff *skb)
4874 {
4875         struct e1000_hw *hw =  &adapter->hw;
4876         u16 length, offset;
4877
4878         if (vlan_tx_tag_present(skb)) {
4879                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
4880                     (adapter->hw.mng_cookie.status &
4881                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4882                         return 0;
4883         }
4884
4885         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4886                 return 0;
4887
4888         if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4889                 return 0;
4890
4891         {
4892                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4893                 struct udphdr *udp;
4894
4895                 if (ip->protocol != IPPROTO_UDP)
4896                         return 0;
4897
4898                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4899                 if (ntohs(udp->dest) != 67)
4900                         return 0;
4901
4902                 offset = (u8 *)udp + 8 - skb->data;
4903                 length = skb->len - offset;
4904                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4905         }
4906
4907         return 0;
4908 }
4909
4910 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
4911 {
4912         struct e1000_adapter *adapter = netdev_priv(netdev);
4913
4914         netif_stop_queue(netdev);
4915         /*
4916          * Herbert's original patch had:
4917          *  smp_mb__after_netif_stop_queue();
4918          * but since that doesn't exist yet, just open code it.
4919          */
4920         smp_mb();
4921
4922         /*
4923          * We need to check again in a case another CPU has just
4924          * made room available.
4925          */
4926         if (e1000_desc_unused(adapter->tx_ring) < size)
4927                 return -EBUSY;
4928
4929         /* A reprieve! */
4930         netif_start_queue(netdev);
4931         ++adapter->restart_queue;
4932         return 0;
4933 }
4934
4935 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
4936 {
4937         struct e1000_adapter *adapter = netdev_priv(netdev);
4938
4939         if (e1000_desc_unused(adapter->tx_ring) >= size)
4940                 return 0;
4941         return __e1000_maybe_stop_tx(netdev, size);
4942 }
4943
4944 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4945 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
4946                                     struct net_device *netdev)
4947 {
4948         struct e1000_adapter *adapter = netdev_priv(netdev);
4949         struct e1000_ring *tx_ring = adapter->tx_ring;
4950         unsigned int first;
4951         unsigned int max_per_txd = E1000_MAX_PER_TXD;
4952         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
4953         unsigned int tx_flags = 0;
4954         unsigned int len = skb_headlen(skb);
4955         unsigned int nr_frags;
4956         unsigned int mss;
4957         int count = 0;
4958         int tso;
4959         unsigned int f;
4960
4961         if (test_bit(__E1000_DOWN, &adapter->state)) {
4962                 dev_kfree_skb_any(skb);
4963                 return NETDEV_TX_OK;
4964         }
4965
4966         if (skb->len <= 0) {
4967                 dev_kfree_skb_any(skb);
4968                 return NETDEV_TX_OK;
4969         }
4970
4971         mss = skb_shinfo(skb)->gso_size;
4972         /*
4973          * The controller does a simple calculation to
4974          * make sure there is enough room in the FIFO before
4975          * initiating the DMA for each buffer.  The calc is:
4976          * 4 = ceil(buffer len/mss).  To make sure we don't
4977          * overrun the FIFO, adjust the max buffer len if mss
4978          * drops.
4979          */
4980         if (mss) {
4981                 u8 hdr_len;
4982                 max_per_txd = min(mss << 2, max_per_txd);
4983                 max_txd_pwr = fls(max_per_txd) - 1;
4984
4985                 /*
4986                  * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4987                  * points to just header, pull a few bytes of payload from
4988                  * frags into skb->data
4989                  */
4990                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4991                 /*
4992                  * we do this workaround for ES2LAN, but it is un-necessary,
4993                  * avoiding it could save a lot of cycles
4994                  */
4995                 if (skb->data_len && (hdr_len == len)) {
4996                         unsigned int pull_size;
4997
4998                         pull_size = min((unsigned int)4, skb->data_len);
4999                         if (!__pskb_pull_tail(skb, pull_size)) {
5000                                 e_err("__pskb_pull_tail failed.\n");
5001                                 dev_kfree_skb_any(skb);
5002                                 return NETDEV_TX_OK;
5003                         }
5004                         len = skb_headlen(skb);
5005                 }
5006         }
5007
5008         /* reserve a descriptor for the offload context */
5009         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5010                 count++;
5011         count++;
5012
5013         count += TXD_USE_COUNT(len, max_txd_pwr);
5014
5015         nr_frags = skb_shinfo(skb)->nr_frags;
5016         for (f = 0; f < nr_frags; f++)
5017                 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5018                                        max_txd_pwr);
5019
5020         if (adapter->hw.mac.tx_pkt_filtering)
5021                 e1000_transfer_dhcp_info(adapter, skb);
5022
5023         /*
5024          * need: count + 2 desc gap to keep tail from touching
5025          * head, otherwise try next time
5026          */
5027         if (e1000_maybe_stop_tx(netdev, count + 2))
5028                 return NETDEV_TX_BUSY;
5029
5030         if (vlan_tx_tag_present(skb)) {
5031                 tx_flags |= E1000_TX_FLAGS_VLAN;
5032                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
5033         }
5034
5035         first = tx_ring->next_to_use;
5036
5037         tso = e1000_tso(adapter, skb);
5038         if (tso < 0) {
5039                 dev_kfree_skb_any(skb);
5040                 return NETDEV_TX_OK;
5041         }
5042
5043         if (tso)
5044                 tx_flags |= E1000_TX_FLAGS_TSO;
5045         else if (e1000_tx_csum(adapter, skb))
5046                 tx_flags |= E1000_TX_FLAGS_CSUM;
5047
5048         /*
5049          * Old method was to assume IPv4 packet by default if TSO was enabled.
5050          * 82571 hardware supports TSO capabilities for IPv6 as well...
5051          * no longer assume, we must.
5052          */
5053         if (skb->protocol == htons(ETH_P_IP))
5054                 tx_flags |= E1000_TX_FLAGS_IPV4;
5055
5056         /* if count is 0 then mapping error has occurred */
5057         count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
5058         if (count) {
5059                 netdev_sent_queue(netdev, skb->len);
5060                 e1000_tx_queue(adapter, tx_flags, count);
5061                 /* Make sure there is space in the ring for the next send. */
5062                 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
5063
5064         } else {
5065                 dev_kfree_skb_any(skb);
5066                 tx_ring->buffer_info[first].time_stamp = 0;
5067                 tx_ring->next_to_use = first;
5068         }
5069
5070         return NETDEV_TX_OK;
5071 }
5072
5073 /**
5074  * e1000_tx_timeout - Respond to a Tx Hang
5075  * @netdev: network interface device structure
5076  **/
5077 static void e1000_tx_timeout(struct net_device *netdev)
5078 {
5079         struct e1000_adapter *adapter = netdev_priv(netdev);
5080
5081         /* Do the reset outside of interrupt context */
5082         adapter->tx_timeout_count++;
5083         schedule_work(&adapter->reset_task);
5084 }
5085
5086 static void e1000_reset_task(struct work_struct *work)
5087 {
5088         struct e1000_adapter *adapter;
5089         adapter = container_of(work, struct e1000_adapter, reset_task);
5090
5091         /* don't run the task if already down */
5092         if (test_bit(__E1000_DOWN, &adapter->state))
5093                 return;
5094
5095         if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5096               (adapter->flags & FLAG_RX_RESTART_NOW))) {
5097                 e1000e_dump(adapter);
5098                 e_err("Reset adapter\n");
5099         }
5100         e1000e_reinit_locked(adapter);
5101 }
5102
5103 /**
5104  * e1000_get_stats64 - Get System Network Statistics
5105  * @netdev: network interface device structure
5106  * @stats: rtnl_link_stats64 pointer
5107  *
5108  * Returns the address of the device statistics structure.
5109  **/
5110 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5111                                              struct rtnl_link_stats64 *stats)
5112 {
5113         struct e1000_adapter *adapter = netdev_priv(netdev);
5114
5115         memset(stats, 0, sizeof(struct rtnl_link_stats64));
5116         spin_lock(&adapter->stats64_lock);
5117         e1000e_update_stats(adapter);
5118         /* Fill out the OS statistics structure */
5119         stats->rx_bytes = adapter->stats.gorc;
5120         stats->rx_packets = adapter->stats.gprc;
5121         stats->tx_bytes = adapter->stats.gotc;
5122         stats->tx_packets = adapter->stats.gptc;
5123         stats->multicast = adapter->stats.mprc;
5124         stats->collisions = adapter->stats.colc;
5125
5126         /* Rx Errors */
5127
5128         /*
5129          * RLEC on some newer hardware can be incorrect so build
5130          * our own version based on RUC and ROC
5131          */
5132         stats->rx_errors = adapter->stats.rxerrc +
5133                 adapter->stats.crcerrs + adapter->stats.algnerrc +
5134                 adapter->stats.ruc + adapter->stats.roc +
5135                 adapter->stats.cexterr;
5136         stats->rx_length_errors = adapter->stats.ruc +
5137                                               adapter->stats.roc;
5138         stats->rx_crc_errors = adapter->stats.crcerrs;
5139         stats->rx_frame_errors = adapter->stats.algnerrc;
5140         stats->rx_missed_errors = adapter->stats.mpc;
5141
5142         /* Tx Errors */
5143         stats->tx_errors = adapter->stats.ecol +
5144                                        adapter->stats.latecol;
5145         stats->tx_aborted_errors = adapter->stats.ecol;
5146         stats->tx_window_errors = adapter->stats.latecol;
5147         stats->tx_carrier_errors = adapter->stats.tncrs;
5148
5149         /* Tx Dropped needs to be maintained elsewhere */
5150
5151         spin_unlock(&adapter->stats64_lock);
5152         return stats;
5153 }
5154
5155 /**
5156  * e1000_change_mtu - Change the Maximum Transfer Unit
5157  * @netdev: network interface device structure
5158  * @new_mtu: new value for maximum frame size
5159  *
5160  * Returns 0 on success, negative on failure
5161  **/
5162 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5163 {
5164         struct e1000_adapter *adapter = netdev_priv(netdev);
5165         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
5166
5167         /* Jumbo frame support */
5168         if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
5169             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5170                 e_err("Jumbo Frames not supported.\n");
5171                 return -EINVAL;
5172         }
5173
5174         /* Supported frame sizes */
5175         if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
5176             (max_frame > adapter->max_hw_frame_size)) {
5177                 e_err("Unsupported MTU setting\n");
5178                 return -EINVAL;
5179         }
5180
5181         /* Jumbo frame workaround on 82579 requires CRC be stripped */
5182         if ((adapter->hw.mac.type == e1000_pch2lan) &&
5183             !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5184             (new_mtu > ETH_DATA_LEN)) {
5185                 e_err("Jumbo Frames not supported on 82579 when CRC stripping is disabled.\n");
5186                 return -EINVAL;
5187         }
5188
5189         /* 82573 Errata 17 */
5190         if (((adapter->hw.mac.type == e1000_82573) ||
5191              (adapter->hw.mac.type == e1000_82574)) &&
5192             (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) {
5193                 adapter->flags2 |= FLAG2_DISABLE_ASPM_L1;
5194                 e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1);
5195         }
5196
5197         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5198                 usleep_range(1000, 2000);
5199         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5200         adapter->max_frame_size = max_frame;
5201         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5202         netdev->mtu = new_mtu;
5203         if (netif_running(netdev))
5204                 e1000e_down(adapter);
5205
5206         /*
5207          * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5208          * means we reserve 2 more, this pushes us to allocate from the next
5209          * larger slab size.
5210          * i.e. RXBUFFER_2048 --> size-4096 slab
5211          * However with the new *_jumbo_rx* routines, jumbo receives will use
5212          * fragmented skbs
5213          */
5214
5215         if (max_frame <= 2048)
5216                 adapter->rx_buffer_len = 2048;
5217         else
5218                 adapter->rx_buffer_len = 4096;
5219
5220         /* adjust allocation if LPE protects us, and we aren't using SBP */
5221         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
5222              (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
5223                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5224                                          + ETH_FCS_LEN;
5225
5226         if (netif_running(netdev))
5227                 e1000e_up(adapter);
5228         else
5229                 e1000e_reset(adapter);
5230
5231         clear_bit(__E1000_RESETTING, &adapter->state);
5232
5233         return 0;
5234 }
5235
5236 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5237                            int cmd)
5238 {
5239         struct e1000_adapter *adapter = netdev_priv(netdev);
5240         struct mii_ioctl_data *data = if_mii(ifr);
5241
5242         if (adapter->hw.phy.media_type != e1000_media_type_copper)
5243                 return -EOPNOTSUPP;
5244
5245         switch (cmd) {
5246         case SIOCGMIIPHY:
5247                 data->phy_id = adapter->hw.phy.addr;
5248                 break;
5249         case SIOCGMIIREG:
5250                 e1000_phy_read_status(adapter);
5251
5252                 switch (data->reg_num & 0x1F) {
5253                 case MII_BMCR:
5254                         data->val_out = adapter->phy_regs.bmcr;
5255                         break;
5256                 case MII_BMSR:
5257                         data->val_out = adapter->phy_regs.bmsr;
5258                         break;
5259                 case MII_PHYSID1:
5260                         data->val_out = (adapter->hw.phy.id >> 16);
5261                         break;
5262                 case MII_PHYSID2:
5263                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
5264                         break;
5265                 case MII_ADVERTISE:
5266                         data->val_out = adapter->phy_regs.advertise;
5267                         break;
5268                 case MII_LPA:
5269                         data->val_out = adapter->phy_regs.lpa;
5270                         break;
5271                 case MII_EXPANSION:
5272                         data->val_out = adapter->phy_regs.expansion;
5273                         break;
5274                 case MII_CTRL1000:
5275                         data->val_out = adapter->phy_regs.ctrl1000;
5276                         break;
5277                 case MII_STAT1000:
5278                         data->val_out = adapter->phy_regs.stat1000;
5279                         break;
5280                 case MII_ESTATUS:
5281                         data->val_out = adapter->phy_regs.estatus;
5282                         break;
5283                 default:
5284                         return -EIO;
5285                 }
5286                 break;
5287         case SIOCSMIIREG:
5288         default:
5289                 return -EOPNOTSUPP;
5290         }
5291         return 0;
5292 }
5293
5294 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5295 {
5296         switch (cmd) {
5297         case SIOCGMIIPHY:
5298         case SIOCGMIIREG:
5299         case SIOCSMIIREG:
5300                 return e1000_mii_ioctl(netdev, ifr, cmd);
5301         default:
5302                 return -EOPNOTSUPP;
5303         }
5304 }
5305
5306 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5307 {
5308         struct e1000_hw *hw = &adapter->hw;
5309         u32 i, mac_reg;
5310         u16 phy_reg, wuc_enable;
5311         int retval = 0;
5312
5313         /* copy MAC RARs to PHY RARs */
5314         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5315
5316         retval = hw->phy.ops.acquire(hw);
5317         if (retval) {
5318                 e_err("Could not acquire PHY\n");
5319                 return retval;
5320         }
5321
5322         /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5323         retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5324         if (retval)
5325                 goto out;
5326
5327         /* copy MAC MTA to PHY MTA - only needed for pchlan */
5328         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5329                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5330                 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
5331                                            (u16)(mac_reg & 0xFFFF));
5332                 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
5333                                            (u16)((mac_reg >> 16) & 0xFFFF));
5334         }
5335
5336         /* configure PHY Rx Control register */
5337         hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5338         mac_reg = er32(RCTL);
5339         if (mac_reg & E1000_RCTL_UPE)
5340                 phy_reg |= BM_RCTL_UPE;
5341         if (mac_reg & E1000_RCTL_MPE)
5342                 phy_reg |= BM_RCTL_MPE;
5343         phy_reg &= ~(BM_RCTL_MO_MASK);
5344         if (mac_reg & E1000_RCTL_MO_3)
5345                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5346                                 << BM_RCTL_MO_SHIFT);
5347         if (mac_reg & E1000_RCTL_BAM)
5348                 phy_reg |= BM_RCTL_BAM;
5349         if (mac_reg & E1000_RCTL_PMCF)
5350                 phy_reg |= BM_RCTL_PMCF;
5351         mac_reg = er32(CTRL);
5352         if (mac_reg & E1000_CTRL_RFCE)
5353                 phy_reg |= BM_RCTL_RFCE;
5354         hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5355
5356         /* enable PHY wakeup in MAC register */
5357         ew32(WUFC, wufc);
5358         ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
5359
5360         /* configure and enable PHY wakeup in PHY registers */
5361         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
5362         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5363
5364         /* activate PHY wakeup */
5365         wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5366         retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5367         if (retval)
5368                 e_err("Could not set PHY Host Wakeup bit\n");
5369 out:
5370         hw->phy.ops.release(hw);
5371
5372         return retval;
5373 }
5374
5375 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
5376                             bool runtime)
5377 {
5378         struct net_device *netdev = pci_get_drvdata(pdev);
5379         struct e1000_adapter *adapter = netdev_priv(netdev);
5380         struct e1000_hw *hw = &adapter->hw;
5381         u32 ctrl, ctrl_ext, rctl, status;
5382         /* Runtime suspend should only enable wakeup for link changes */
5383         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5384         int retval = 0;
5385
5386         netif_device_detach(netdev);
5387
5388         if (netif_running(netdev)) {
5389                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5390                 e1000e_down(adapter);
5391                 e1000_free_irq(adapter);
5392         }
5393         e1000e_reset_interrupt_capability(adapter);
5394
5395         retval = pci_save_state(pdev);
5396         if (retval)
5397                 return retval;
5398
5399         status = er32(STATUS);
5400         if (status & E1000_STATUS_LU)
5401                 wufc &= ~E1000_WUFC_LNKC;
5402
5403         if (wufc) {
5404                 e1000_setup_rctl(adapter);
5405                 e1000e_set_rx_mode(netdev);
5406
5407                 /* turn on all-multi mode if wake on multicast is enabled */
5408                 if (wufc & E1000_WUFC_MC) {
5409                         rctl = er32(RCTL);
5410                         rctl |= E1000_RCTL_MPE;
5411                         ew32(RCTL, rctl);
5412                 }
5413
5414                 ctrl = er32(CTRL);
5415                 /* advertise wake from D3Cold */
5416                 #define E1000_CTRL_ADVD3WUC 0x00100000
5417                 /* phy power management enable */
5418                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5419                 ctrl |= E1000_CTRL_ADVD3WUC;
5420                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
5421                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5422                 ew32(CTRL, ctrl);
5423
5424                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
5425                     adapter->hw.phy.media_type ==
5426                     e1000_media_type_internal_serdes) {
5427                         /* keep the laser running in D3 */
5428                         ctrl_ext = er32(CTRL_EXT);
5429                         ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5430                         ew32(CTRL_EXT, ctrl_ext);
5431                 }
5432
5433                 if (adapter->flags & FLAG_IS_ICH)
5434                         e1000_suspend_workarounds_ich8lan(&adapter->hw);
5435
5436                 /* Allow time for pending master requests to run */
5437                 e1000e_disable_pcie_master(&adapter->hw);
5438
5439                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5440                         /* enable wakeup by the PHY */
5441                         retval = e1000_init_phy_wakeup(adapter, wufc);
5442                         if (retval)
5443                                 return retval;
5444                 } else {
5445                         /* enable wakeup by the MAC */
5446                         ew32(WUFC, wufc);
5447                         ew32(WUC, E1000_WUC_PME_EN);
5448                 }
5449         } else {
5450                 ew32(WUC, 0);
5451                 ew32(WUFC, 0);
5452         }
5453
5454         *enable_wake = !!wufc;
5455
5456         /* make sure adapter isn't asleep if manageability is enabled */
5457         if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
5458             (hw->mac.ops.check_mng_mode(hw)))
5459                 *enable_wake = true;
5460
5461         if (adapter->hw.phy.type == e1000_phy_igp_3)
5462                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
5463
5464         /*
5465          * Release control of h/w to f/w.  If f/w is AMT enabled, this
5466          * would have already happened in close and is redundant.
5467          */
5468         e1000e_release_hw_control(adapter);
5469
5470         pci_disable_device(pdev);
5471
5472         return 0;
5473 }
5474
5475 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
5476 {
5477         if (sleep && wake) {
5478                 pci_prepare_to_sleep(pdev);
5479                 return;
5480         }
5481
5482         pci_wake_from_d3(pdev, wake);
5483         pci_set_power_state(pdev, PCI_D3hot);
5484 }
5485
5486 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
5487                                     bool wake)
5488 {
5489         struct net_device *netdev = pci_get_drvdata(pdev);
5490         struct e1000_adapter *adapter = netdev_priv(netdev);
5491
5492         /*
5493          * The pci-e switch on some quad port adapters will report a
5494          * correctable error when the MAC transitions from D0 to D3.  To
5495          * prevent this we need to mask off the correctable errors on the
5496          * downstream port of the pci-e switch.
5497          */
5498         if (adapter->flags & FLAG_IS_QUAD_PORT) {
5499                 struct pci_dev *us_dev = pdev->bus->self;
5500                 int pos = pci_pcie_cap(us_dev);
5501                 u16 devctl;
5502
5503                 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
5504                 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
5505                                       (devctl & ~PCI_EXP_DEVCTL_CERE));
5506
5507                 e1000_power_off(pdev, sleep, wake);
5508
5509                 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
5510         } else {
5511                 e1000_power_off(pdev, sleep, wake);
5512         }
5513 }
5514
5515 #ifdef CONFIG_PCIEASPM
5516 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5517 {
5518         pci_disable_link_state_locked(pdev, state);
5519 }
5520 #else
5521 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5522 {
5523         int pos;
5524         u16 reg16;
5525
5526         /*
5527          * Both device and parent should have the same ASPM setting.
5528          * Disable ASPM in downstream component first and then upstream.
5529          */
5530         pos = pci_pcie_cap(pdev);
5531         pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
5532         reg16 &= ~state;
5533         pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);
5534
5535         if (!pdev->bus->self)
5536                 return;
5537
5538         pos = pci_pcie_cap(pdev->bus->self);
5539         pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
5540         reg16 &= ~state;
5541         pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
5542 }
5543 #endif
5544 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5545 {
5546         dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
5547                  (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
5548                  (state & PCIE_LINK_STATE_L1) ? "L1" : "");
5549
5550         __e1000e_disable_aspm(pdev, state);
5551 }
5552
5553 #ifdef CONFIG_PM
5554 static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5555 {
5556         return !!adapter->tx_ring->buffer_info;
5557 }
5558
5559 static int __e1000_resume(struct pci_dev *pdev)
5560 {
5561         struct net_device *netdev = pci_get_drvdata(pdev);
5562         struct e1000_adapter *adapter = netdev_priv(netdev);
5563         struct e1000_hw *hw = &adapter->hw;
5564         u16 aspm_disable_flag = 0;
5565         u32 err;
5566
5567         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5568                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
5569         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5570                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
5571         if (aspm_disable_flag)
5572                 e1000e_disable_aspm(pdev, aspm_disable_flag);
5573
5574         pci_set_power_state(pdev, PCI_D0);
5575         pci_restore_state(pdev);
5576         pci_save_state(pdev);
5577
5578         e1000e_set_interrupt_capability(adapter);
5579         if (netif_running(netdev)) {
5580                 err = e1000_request_irq(adapter);
5581                 if (err)
5582                         return err;
5583         }
5584
5585         if (hw->mac.type == e1000_pch2lan)
5586                 e1000_resume_workarounds_pchlan(&adapter->hw);
5587
5588         e1000e_power_up_phy(adapter);
5589
5590         /* report the system wakeup cause from S3/S4 */
5591         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5592                 u16 phy_data;
5593
5594                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
5595                 if (phy_data) {
5596                         e_info("PHY Wakeup cause - %s\n",
5597                                 phy_data & E1000_WUS_EX ? "Unicast Packet" :
5598                                 phy_data & E1000_WUS_MC ? "Multicast Packet" :
5599                                 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
5600                                 phy_data & E1000_WUS_MAG ? "Magic Packet" :
5601                                 phy_data & E1000_WUS_LNKC ?
5602                                 "Link Status Change" : "other");
5603                 }
5604                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
5605         } else {
5606                 u32 wus = er32(WUS);
5607                 if (wus) {
5608                         e_info("MAC Wakeup cause - %s\n",
5609                                 wus & E1000_WUS_EX ? "Unicast Packet" :
5610                                 wus & E1000_WUS_MC ? "Multicast Packet" :
5611                                 wus & E1000_WUS_BC ? "Broadcast Packet" :
5612                                 wus & E1000_WUS_MAG ? "Magic Packet" :
5613                                 wus & E1000_WUS_LNKC ? "Link Status Change" :
5614                                 "other");
5615                 }
5616                 ew32(WUS, ~0);
5617         }
5618
5619         e1000e_reset(adapter);
5620
5621         e1000_init_manageability_pt(adapter);
5622
5623         if (netif_running(netdev))
5624                 e1000e_up(adapter);
5625
5626         netif_device_attach(netdev);
5627
5628         /*
5629          * If the controller has AMT, do not set DRV_LOAD until the interface
5630          * is up.  For all other cases, let the f/w know that the h/w is now
5631          * under the control of the driver.
5632          */
5633         if (!(adapter->flags & FLAG_HAS_AMT))
5634                 e1000e_get_hw_control(adapter);
5635
5636         return 0;
5637 }
5638
5639 #ifdef CONFIG_PM_SLEEP
5640 static int e1000_suspend(struct device *dev)
5641 {
5642         struct pci_dev *pdev = to_pci_dev(dev);
5643         int retval;
5644         bool wake;
5645
5646         retval = __e1000_shutdown(pdev, &wake, false);
5647         if (!retval)
5648                 e1000_complete_shutdown(pdev, true, wake);
5649
5650         return retval;
5651 }
5652
5653 static int e1000_resume(struct device *dev)
5654 {
5655         struct pci_dev *pdev = to_pci_dev(dev);
5656         struct net_device *netdev = pci_get_drvdata(pdev);
5657         struct e1000_adapter *adapter = netdev_priv(netdev);
5658
5659         if (e1000e_pm_ready(adapter))
5660                 adapter->idle_check = true;
5661
5662         return __e1000_resume(pdev);
5663 }
5664 #endif /* CONFIG_PM_SLEEP */
5665
5666 #ifdef CONFIG_PM_RUNTIME
5667 static int e1000_runtime_suspend(struct device *dev)
5668 {
5669         struct pci_dev *pdev = to_pci_dev(dev);
5670         struct net_device *netdev = pci_get_drvdata(pdev);
5671         struct e1000_adapter *adapter = netdev_priv(netdev);
5672
5673         if (e1000e_pm_ready(adapter)) {
5674                 bool wake;
5675
5676                 __e1000_shutdown(pdev, &wake, true);
5677         }
5678
5679         return 0;
5680 }
5681
5682 static int e1000_idle(struct device *dev)
5683 {
5684         struct pci_dev *pdev = to_pci_dev(dev);
5685         struct net_device *netdev = pci_get_drvdata(pdev);
5686         struct e1000_adapter *adapter = netdev_priv(netdev);
5687
5688         if (!e1000e_pm_ready(adapter))
5689                 return 0;
5690
5691         if (adapter->idle_check) {
5692                 adapter->idle_check = false;
5693                 if (!e1000e_has_link(adapter))
5694                         pm_schedule_suspend(dev, MSEC_PER_SEC);
5695         }
5696
5697         return -EBUSY;
5698 }
5699
5700 static int e1000_runtime_resume(struct device *dev)
5701 {
5702         struct pci_dev *pdev = to_pci_dev(dev);
5703         struct net_device *netdev = pci_get_drvdata(pdev);
5704         struct e1000_adapter *adapter = netdev_priv(netdev);
5705
5706         if (!e1000e_pm_ready(adapter))
5707                 return 0;
5708
5709         adapter->idle_check = !dev->power.runtime_auto;
5710         return __e1000_resume(pdev);
5711 }
5712 #endif /* CONFIG_PM_RUNTIME */
5713 #endif /* CONFIG_PM */
5714
5715 static void e1000_shutdown(struct pci_dev *pdev)
5716 {
5717         bool wake = false;
5718
5719         __e1000_shutdown(pdev, &wake, false);
5720
5721         if (system_state == SYSTEM_POWER_OFF)
5722                 e1000_complete_shutdown(pdev, false, wake);
5723 }
5724
5725 #ifdef CONFIG_NET_POLL_CONTROLLER
5726
5727 static irqreturn_t e1000_intr_msix(int irq, void *data)
5728 {
5729         struct net_device *netdev = data;
5730         struct e1000_adapter *adapter = netdev_priv(netdev);
5731
5732         if (adapter->msix_entries) {
5733                 int vector, msix_irq;
5734
5735                 vector = 0;
5736                 msix_irq = adapter->msix_entries[vector].vector;
5737                 disable_irq(msix_irq);
5738                 e1000_intr_msix_rx(msix_irq, netdev);
5739                 enable_irq(msix_irq);
5740
5741                 vector++;
5742                 msix_irq = adapter->msix_entries[vector].vector;
5743                 disable_irq(msix_irq);
5744                 e1000_intr_msix_tx(msix_irq, netdev);
5745                 enable_irq(msix_irq);
5746
5747                 vector++;
5748                 msix_irq = adapter->msix_entries[vector].vector;
5749                 disable_irq(msix_irq);
5750                 e1000_msix_other(msix_irq, netdev);
5751                 enable_irq(msix_irq);
5752         }
5753
5754         return IRQ_HANDLED;
5755 }
5756
5757 /*
5758  * Polling 'interrupt' - used by things like netconsole to send skbs
5759  * without having to re-enable interrupts. It's not called while
5760  * the interrupt routine is executing.
5761  */
5762 static void e1000_netpoll(struct net_device *netdev)
5763 {
5764         struct e1000_adapter *adapter = netdev_priv(netdev);
5765
5766         switch (adapter->int_mode) {
5767         case E1000E_INT_MODE_MSIX:
5768                 e1000_intr_msix(adapter->pdev->irq, netdev);
5769                 break;
5770         case E1000E_INT_MODE_MSI:
5771                 disable_irq(adapter->pdev->irq);
5772                 e1000_intr_msi(adapter->pdev->irq, netdev);
5773                 enable_irq(adapter->pdev->irq);
5774                 break;
5775         default: /* E1000E_INT_MODE_LEGACY */
5776                 disable_irq(adapter->pdev->irq);
5777                 e1000_intr(adapter->pdev->irq, netdev);
5778                 enable_irq(adapter->pdev->irq);
5779                 break;
5780         }
5781 }
5782 #endif
5783
5784 /**
5785  * e1000_io_error_detected - called when PCI error is detected
5786  * @pdev: Pointer to PCI device
5787  * @state: The current pci connection state
5788  *
5789  * This function is called after a PCI bus error affecting
5790  * this device has been detected.
5791  */
5792 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5793                                                 pci_channel_state_t state)
5794 {
5795         struct net_device *netdev = pci_get_drvdata(pdev);
5796         struct e1000_adapter *adapter = netdev_priv(netdev);
5797
5798         netif_device_detach(netdev);
5799
5800         if (state == pci_channel_io_perm_failure)
5801                 return PCI_ERS_RESULT_DISCONNECT;
5802
5803         if (netif_running(netdev))
5804                 e1000e_down(adapter);
5805         pci_disable_device(pdev);
5806
5807         /* Request a slot slot reset. */
5808         return PCI_ERS_RESULT_NEED_RESET;
5809 }
5810
5811 /**
5812  * e1000_io_slot_reset - called after the pci bus has been reset.
5813  * @pdev: Pointer to PCI device
5814  *
5815  * Restart the card from scratch, as if from a cold-boot. Implementation
5816  * resembles the first-half of the e1000_resume routine.
5817  */
5818 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5819 {
5820         struct net_device *netdev = pci_get_drvdata(pdev);
5821         struct e1000_adapter *adapter = netdev_priv(netdev);
5822         struct e1000_hw *hw = &adapter->hw;
5823         u16 aspm_disable_flag = 0;
5824         int err;
5825         pci_ers_result_t result;
5826
5827         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5828                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
5829         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5830                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
5831         if (aspm_disable_flag)
5832                 e1000e_disable_aspm(pdev, aspm_disable_flag);
5833
5834         err = pci_enable_device_mem(pdev);
5835         if (err) {
5836                 dev_err(&pdev->dev,
5837                         "Cannot re-enable PCI device after reset.\n");
5838                 result = PCI_ERS_RESULT_DISCONNECT;
5839         } else {
5840                 pci_set_master(pdev);
5841                 pdev->state_saved = true;
5842                 pci_restore_state(pdev);
5843
5844                 pci_enable_wake(pdev, PCI_D3hot, 0);
5845                 pci_enable_wake(pdev, PCI_D3cold, 0);
5846
5847                 e1000e_reset(adapter);
5848                 ew32(WUS, ~0);
5849                 result = PCI_ERS_RESULT_RECOVERED;
5850         }
5851
5852         pci_cleanup_aer_uncorrect_error_status(pdev);
5853
5854         return result;
5855 }
5856
5857 /**
5858  * e1000_io_resume - called when traffic can start flowing again.
5859  * @pdev: Pointer to PCI device
5860  *
5861  * This callback is called when the error recovery driver tells us that
5862  * its OK to resume normal operation. Implementation resembles the
5863  * second-half of the e1000_resume routine.
5864  */
5865 static void e1000_io_resume(struct pci_dev *pdev)
5866 {
5867         struct net_device *netdev = pci_get_drvdata(pdev);
5868         struct e1000_adapter *adapter = netdev_priv(netdev);
5869
5870         e1000_init_manageability_pt(adapter);
5871
5872         if (netif_running(netdev)) {
5873                 if (e1000e_up(adapter)) {
5874                         dev_err(&pdev->dev,
5875                                 "can't bring device back up after reset\n");
5876                         return;
5877                 }
5878         }
5879
5880         netif_device_attach(netdev);
5881
5882         /*
5883          * If the controller has AMT, do not set DRV_LOAD until the interface
5884          * is up.  For all other cases, let the f/w know that the h/w is now
5885          * under the control of the driver.
5886          */
5887         if (!(adapter->flags & FLAG_HAS_AMT))
5888                 e1000e_get_hw_control(adapter);
5889
5890 }
5891
5892 static void e1000_print_device_info(struct e1000_adapter *adapter)
5893 {
5894         struct e1000_hw *hw = &adapter->hw;
5895         struct net_device *netdev = adapter->netdev;
5896         u32 ret_val;
5897         u8 pba_str[E1000_PBANUM_LENGTH];
5898
5899         /* print bus type/speed/width info */
5900         e_info("(PCI Express:2.5GT/s:%s) %pM\n",
5901                /* bus width */
5902                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
5903                 "Width x1"),
5904                /* MAC address */
5905                netdev->dev_addr);
5906         e_info("Intel(R) PRO/%s Network Connection\n",
5907                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
5908         ret_val = e1000_read_pba_string_generic(hw, pba_str,
5909                                                 E1000_PBANUM_LENGTH);
5910         if (ret_val)
5911                 strncpy((char *)pba_str, "Unknown", sizeof(pba_str) - 1);
5912         e_info("MAC: %d, PHY: %d, PBA No: %s\n",
5913                hw->mac.type, hw->phy.type, pba_str);
5914 }
5915
5916 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
5917 {
5918         struct e1000_hw *hw = &adapter->hw;
5919         int ret_val;
5920         u16 buf = 0;
5921
5922         if (hw->mac.type != e1000_82573)
5923                 return;
5924
5925         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
5926         if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
5927                 /* Deep Smart Power Down (DSPD) */
5928                 dev_warn(&adapter->pdev->dev,
5929                          "Warning: detected DSPD enabled in EEPROM\n");
5930         }
5931 }
5932
5933 static int e1000_set_features(struct net_device *netdev,
5934         netdev_features_t features)
5935 {
5936         struct e1000_adapter *adapter = netdev_priv(netdev);
5937         netdev_features_t changed = features ^ netdev->features;
5938
5939         if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
5940                 adapter->flags |= FLAG_TSO_FORCE;
5941
5942         if (!(changed & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX |
5943                          NETIF_F_RXCSUM)))
5944                 return 0;
5945
5946         if (netif_running(netdev))
5947                 e1000e_reinit_locked(adapter);
5948         else
5949                 e1000e_reset(adapter);
5950
5951         return 0;
5952 }
5953
5954 static const struct net_device_ops e1000e_netdev_ops = {
5955         .ndo_open               = e1000_open,
5956         .ndo_stop               = e1000_close,
5957         .ndo_start_xmit         = e1000_xmit_frame,
5958         .ndo_get_stats64        = e1000e_get_stats64,
5959         .ndo_set_rx_mode        = e1000e_set_rx_mode,
5960         .ndo_set_mac_address    = e1000_set_mac,
5961         .ndo_change_mtu         = e1000_change_mtu,
5962         .ndo_do_ioctl           = e1000_ioctl,
5963         .ndo_tx_timeout         = e1000_tx_timeout,
5964         .ndo_validate_addr      = eth_validate_addr,
5965
5966         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
5967         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
5968 #ifdef CONFIG_NET_POLL_CONTROLLER
5969         .ndo_poll_controller    = e1000_netpoll,
5970 #endif
5971         .ndo_set_features = e1000_set_features,
5972 };
5973
5974 /**
5975  * e1000_probe - Device Initialization Routine
5976  * @pdev: PCI device information struct
5977  * @ent: entry in e1000_pci_tbl
5978  *
5979  * Returns 0 on success, negative on failure
5980  *
5981  * e1000_probe initializes an adapter identified by a pci_dev structure.
5982  * The OS initialization, configuring of the adapter private structure,
5983  * and a hardware reset occur.
5984  **/
5985 static int __devinit e1000_probe(struct pci_dev *pdev,
5986                                  const struct pci_device_id *ent)
5987 {
5988         struct net_device *netdev;
5989         struct e1000_adapter *adapter;
5990         struct e1000_hw *hw;
5991         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
5992         resource_size_t mmio_start, mmio_len;
5993         resource_size_t flash_start, flash_len;
5994
5995         static int cards_found;
5996         u16 aspm_disable_flag = 0;
5997         int i, err, pci_using_dac;
5998         u16 eeprom_data = 0;
5999         u16 eeprom_apme_mask = E1000_EEPROM_APME;
6000
6001         if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6002                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6003         if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6004                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6005         if (aspm_disable_flag)
6006                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6007
6008         err = pci_enable_device_mem(pdev);
6009         if (err)
6010                 return err;
6011
6012         pci_using_dac = 0;
6013         err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
6014         if (!err) {
6015                 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
6016                 if (!err)
6017                         pci_using_dac = 1;
6018         } else {
6019                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
6020                 if (err) {
6021                         err = dma_set_coherent_mask(&pdev->dev,
6022                                                     DMA_BIT_MASK(32));
6023                         if (err) {
6024                                 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
6025                                 goto err_dma;
6026                         }
6027                 }
6028         }
6029
6030         err = pci_request_selected_regions_exclusive(pdev,
6031                                           pci_select_bars(pdev, IORESOURCE_MEM),
6032                                           e1000e_driver_name);
6033         if (err)
6034                 goto err_pci_reg;
6035
6036         /* AER (Advanced Error Reporting) hooks */
6037         pci_enable_pcie_error_reporting(pdev);
6038
6039         pci_set_master(pdev);
6040         /* PCI config space info */
6041         err = pci_save_state(pdev);
6042         if (err)
6043                 goto err_alloc_etherdev;
6044
6045         err = -ENOMEM;
6046         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6047         if (!netdev)
6048                 goto err_alloc_etherdev;
6049
6050         SET_NETDEV_DEV(netdev, &pdev->dev);
6051
6052         netdev->irq = pdev->irq;
6053
6054         pci_set_drvdata(pdev, netdev);
6055         adapter = netdev_priv(netdev);
6056         hw = &adapter->hw;
6057         adapter->netdev = netdev;
6058         adapter->pdev = pdev;
6059         adapter->ei = ei;
6060         adapter->pba = ei->pba;
6061         adapter->flags = ei->flags;
6062         adapter->flags2 = ei->flags2;
6063         adapter->hw.adapter = adapter;
6064         adapter->hw.mac.type = ei->mac;
6065         adapter->max_hw_frame_size = ei->max_hw_frame_size;
6066         adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
6067
6068         mmio_start = pci_resource_start(pdev, 0);
6069         mmio_len = pci_resource_len(pdev, 0);
6070
6071         err = -EIO;
6072         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
6073         if (!adapter->hw.hw_addr)
6074                 goto err_ioremap;
6075
6076         if ((adapter->flags & FLAG_HAS_FLASH) &&
6077             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
6078                 flash_start = pci_resource_start(pdev, 1);
6079                 flash_len = pci_resource_len(pdev, 1);
6080                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
6081                 if (!adapter->hw.flash_address)
6082                         goto err_flashmap;
6083         }
6084
6085         /* construct the net_device struct */
6086         netdev->netdev_ops              = &e1000e_netdev_ops;
6087         e1000e_set_ethtool_ops(netdev);
6088         netdev->watchdog_timeo          = 5 * HZ;
6089         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
6090         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
6091
6092         netdev->mem_start = mmio_start;
6093         netdev->mem_end = mmio_start + mmio_len;
6094
6095         adapter->bd_number = cards_found++;
6096
6097         e1000e_check_options(adapter);
6098
6099         /* setup adapter struct */
6100         err = e1000_sw_init(adapter);
6101         if (err)
6102                 goto err_sw_init;
6103
6104         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6105         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
6106         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6107
6108         err = ei->get_variants(adapter);
6109         if (err)
6110                 goto err_hw_init;
6111
6112         if ((adapter->flags & FLAG_IS_ICH) &&
6113             (adapter->flags & FLAG_READ_ONLY_NVM))
6114                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
6115
6116         hw->mac.ops.get_bus_info(&adapter->hw);
6117
6118         adapter->hw.phy.autoneg_wait_to_complete = 0;
6119
6120         /* Copper options */
6121         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6122                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
6123                 adapter->hw.phy.disable_polarity_correction = 0;
6124                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
6125         }
6126
6127         if (e1000_check_reset_block(&adapter->hw))
6128                 e_info("PHY reset is blocked due to SOL/IDER session.\n");
6129
6130         /* Set initial default active device features */
6131         netdev->features = (NETIF_F_SG |
6132                             NETIF_F_HW_VLAN_RX |
6133                             NETIF_F_HW_VLAN_TX |
6134                             NETIF_F_TSO |
6135                             NETIF_F_TSO6 |
6136                             NETIF_F_RXCSUM |
6137                             NETIF_F_HW_CSUM);
6138
6139         /* Set user-changeable features (subset of all device features) */
6140         netdev->hw_features = netdev->features;
6141
6142         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
6143                 netdev->features |= NETIF_F_HW_VLAN_FILTER;
6144
6145         netdev->vlan_features |= (NETIF_F_SG |
6146                                   NETIF_F_TSO |
6147                                   NETIF_F_TSO6 |
6148                                   NETIF_F_HW_CSUM);
6149
6150         netdev->priv_flags |= IFF_UNICAST_FLT;
6151
6152         if (pci_using_dac) {
6153                 netdev->features |= NETIF_F_HIGHDMA;
6154                 netdev->vlan_features |= NETIF_F_HIGHDMA;
6155         }
6156
6157         if (e1000e_enable_mng_pass_thru(&adapter->hw))
6158                 adapter->flags |= FLAG_MNG_PT_ENABLED;
6159
6160         /*
6161          * before reading the NVM, reset the controller to
6162          * put the device in a known good starting state
6163          */
6164         adapter->hw.mac.ops.reset_hw(&adapter->hw);
6165
6166         /*
6167          * systems with ASPM and others may see the checksum fail on the first
6168          * attempt. Let's give it a few tries
6169          */
6170         for (i = 0;; i++) {
6171                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
6172                         break;
6173                 if (i == 2) {
6174                         e_err("The NVM Checksum Is Not Valid\n");
6175                         err = -EIO;
6176                         goto err_eeprom;
6177                 }
6178         }
6179
6180         e1000_eeprom_checks(adapter);
6181
6182         /* copy the MAC address */
6183         if (e1000e_read_mac_addr(&adapter->hw))
6184                 e_err("NVM Read Error while reading MAC address\n");
6185
6186         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
6187         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
6188
6189         if (!is_valid_ether_addr(netdev->perm_addr)) {
6190                 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
6191                 err = -EIO;
6192                 goto err_eeprom;
6193         }
6194
6195         init_timer(&adapter->watchdog_timer);
6196         adapter->watchdog_timer.function = e1000_watchdog;
6197         adapter->watchdog_timer.data = (unsigned long) adapter;
6198
6199         init_timer(&adapter->phy_info_timer);
6200         adapter->phy_info_timer.function = e1000_update_phy_info;
6201         adapter->phy_info_timer.data = (unsigned long) adapter;
6202
6203         INIT_WORK(&adapter->reset_task, e1000_reset_task);
6204         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6205         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6206         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6207         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6208
6209         /* Initialize link parameters. User can change them with ethtool */
6210         adapter->hw.mac.autoneg = 1;
6211         adapter->fc_autoneg = true;
6212         adapter->hw.fc.requested_mode = e1000_fc_default;
6213         adapter->hw.fc.current_mode = e1000_fc_default;
6214         adapter->hw.phy.autoneg_advertised = 0x2f;
6215
6216         /* ring size defaults */
6217         adapter->rx_ring->count = 256;
6218         adapter->tx_ring->count = 256;
6219
6220         /*
6221          * Initial Wake on LAN setting - If APM wake is enabled in
6222          * the EEPROM, enable the ACPI Magic Packet filter
6223          */
6224         if (adapter->flags & FLAG_APME_IN_WUC) {
6225                 /* APME bit in EEPROM is mapped to WUC.APME */
6226                 eeprom_data = er32(WUC);
6227                 eeprom_apme_mask = E1000_WUC_APME;
6228                 if ((hw->mac.type > e1000_ich10lan) &&
6229                     (eeprom_data & E1000_WUC_PHY_WAKE))
6230                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6231         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
6232                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
6233                     (adapter->hw.bus.func == 1))
6234                         e1000_read_nvm(&adapter->hw,
6235                                 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
6236                 else
6237                         e1000_read_nvm(&adapter->hw,
6238                                 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
6239         }
6240
6241         /* fetch WoL from EEPROM */
6242         if (eeprom_data & eeprom_apme_mask)
6243                 adapter->eeprom_wol |= E1000_WUFC_MAG;
6244
6245         /*
6246          * now that we have the eeprom settings, apply the special cases
6247          * where the eeprom may be wrong or the board simply won't support
6248          * wake on lan on a particular port
6249          */
6250         if (!(adapter->flags & FLAG_HAS_WOL))
6251                 adapter->eeprom_wol = 0;
6252
6253         /* initialize the wol settings based on the eeprom settings */
6254         adapter->wol = adapter->eeprom_wol;
6255         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
6256
6257         /* save off EEPROM version number */
6258         e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
6259
6260         /* reset the hardware with the new settings */
6261         e1000e_reset(adapter);
6262
6263         /*
6264          * If the controller has AMT, do not set DRV_LOAD until the interface
6265          * is up.  For all other cases, let the f/w know that the h/w is now
6266          * under the control of the driver.
6267          */
6268         if (!(adapter->flags & FLAG_HAS_AMT))
6269                 e1000e_get_hw_control(adapter);
6270
6271         strncpy(netdev->name, "eth%d", sizeof(netdev->name) - 1);
6272         err = register_netdev(netdev);
6273         if (err)
6274                 goto err_register;
6275
6276         /* carrier off reporting is important to ethtool even BEFORE open */
6277         netif_carrier_off(netdev);
6278
6279         e1000_print_device_info(adapter);
6280
6281         if (pci_dev_run_wake(pdev))
6282                 pm_runtime_put_noidle(&pdev->dev);
6283
6284         return 0;
6285
6286 err_register:
6287         if (!(adapter->flags & FLAG_HAS_AMT))
6288                 e1000e_release_hw_control(adapter);
6289 err_eeprom:
6290         if (!e1000_check_reset_block(&adapter->hw))
6291                 e1000_phy_hw_reset(&adapter->hw);
6292 err_hw_init:
6293         kfree(adapter->tx_ring);
6294         kfree(adapter->rx_ring);
6295 err_sw_init:
6296         if (adapter->hw.flash_address)
6297                 iounmap(adapter->hw.flash_address);
6298         e1000e_reset_interrupt_capability(adapter);
6299 err_flashmap:
6300         iounmap(adapter->hw.hw_addr);
6301 err_ioremap:
6302         free_netdev(netdev);
6303 err_alloc_etherdev:
6304         pci_release_selected_regions(pdev,
6305                                      pci_select_bars(pdev, IORESOURCE_MEM));
6306 err_pci_reg:
6307 err_dma:
6308         pci_disable_device(pdev);
6309         return err;
6310 }
6311
6312 /**
6313  * e1000_remove - Device Removal Routine
6314  * @pdev: PCI device information struct
6315  *
6316  * e1000_remove is called by the PCI subsystem to alert the driver
6317  * that it should release a PCI device.  The could be caused by a
6318  * Hot-Plug event, or because the driver is going to be removed from
6319  * memory.
6320  **/
6321 static void __devexit e1000_remove(struct pci_dev *pdev)
6322 {
6323         struct net_device *netdev = pci_get_drvdata(pdev);
6324         struct e1000_adapter *adapter = netdev_priv(netdev);
6325         bool down = test_bit(__E1000_DOWN, &adapter->state);
6326
6327         /*
6328          * The timers may be rescheduled, so explicitly disable them
6329          * from being rescheduled.
6330          */
6331         if (!down)
6332                 set_bit(__E1000_DOWN, &adapter->state);
6333         del_timer_sync(&adapter->watchdog_timer);
6334         del_timer_sync(&adapter->phy_info_timer);
6335
6336         cancel_work_sync(&adapter->reset_task);
6337         cancel_work_sync(&adapter->watchdog_task);
6338         cancel_work_sync(&adapter->downshift_task);
6339         cancel_work_sync(&adapter->update_phy_task);
6340         cancel_work_sync(&adapter->print_hang_task);
6341
6342         if (!(netdev->flags & IFF_UP))
6343                 e1000_power_down_phy(adapter);
6344
6345         /* Don't lie to e1000_close() down the road. */
6346         if (!down)
6347                 clear_bit(__E1000_DOWN, &adapter->state);
6348         unregister_netdev(netdev);
6349
6350         if (pci_dev_run_wake(pdev))
6351                 pm_runtime_get_noresume(&pdev->dev);
6352
6353         /*
6354          * Release control of h/w to f/w.  If f/w is AMT enabled, this
6355          * would have already happened in close and is redundant.
6356          */
6357         e1000e_release_hw_control(adapter);
6358
6359         e1000e_reset_interrupt_capability(adapter);
6360         kfree(adapter->tx_ring);
6361         kfree(adapter->rx_ring);
6362
6363         iounmap(adapter->hw.hw_addr);
6364         if (adapter->hw.flash_address)
6365                 iounmap(adapter->hw.flash_address);
6366         pci_release_selected_regions(pdev,
6367                                      pci_select_bars(pdev, IORESOURCE_MEM));
6368
6369         free_netdev(netdev);
6370
6371         /* AER disable */
6372         pci_disable_pcie_error_reporting(pdev);
6373
6374         pci_disable_device(pdev);
6375 }
6376
6377 /* PCI Error Recovery (ERS) */
6378 static struct pci_error_handlers e1000_err_handler = {
6379         .error_detected = e1000_io_error_detected,
6380         .slot_reset = e1000_io_slot_reset,
6381         .resume = e1000_io_resume,
6382 };
6383
6384 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6385         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
6386         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
6387         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
6388         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
6389         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
6390         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6391         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
6392         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
6393         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6394
6395         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
6396         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
6397         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
6398         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6399
6400         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
6401         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
6402         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6403
6404         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6405         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6406         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6407
6408         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
6409           board_80003es2lan },
6410         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
6411           board_80003es2lan },
6412         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
6413           board_80003es2lan },
6414         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
6415           board_80003es2lan },
6416
6417         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
6418         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
6419         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
6420         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
6421         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
6422         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
6423         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
6424         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6425
6426         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
6427         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
6428         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
6429         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
6430         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6431         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6432         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
6433         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
6434         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
6435
6436         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
6437         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
6438         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6439
6440         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
6441         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6442         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6443
6444         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
6445         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
6446         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
6447         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
6448
6449         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
6450         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
6451
6452         { }     /* terminate list */
6453 };
6454 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
6455
6456 #ifdef CONFIG_PM
6457 static const struct dev_pm_ops e1000_pm_ops = {
6458         SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
6459         SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
6460                                 e1000_runtime_resume, e1000_idle)
6461 };
6462 #endif
6463
6464 /* PCI Device API Driver */
6465 static struct pci_driver e1000_driver = {
6466         .name     = e1000e_driver_name,
6467         .id_table = e1000_pci_tbl,
6468         .probe    = e1000_probe,
6469         .remove   = __devexit_p(e1000_remove),
6470 #ifdef CONFIG_PM
6471         .driver.pm = &e1000_pm_ops,
6472 #endif
6473         .shutdown = e1000_shutdown,
6474         .err_handler = &e1000_err_handler
6475 };
6476
6477 /**
6478  * e1000_init_module - Driver Registration Routine
6479  *
6480  * e1000_init_module is the first routine called when the driver is
6481  * loaded. All it does is register with the PCI subsystem.
6482  **/
6483 static int __init e1000_init_module(void)
6484 {
6485         int ret;
6486         pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
6487                 e1000e_driver_version);
6488         pr_info("Copyright(c) 1999 - 2011 Intel Corporation.\n");
6489         ret = pci_register_driver(&e1000_driver);
6490
6491         return ret;
6492 }
6493 module_init(e1000_init_module);
6494
6495 /**
6496  * e1000_exit_module - Driver Exit Cleanup Routine
6497  *
6498  * e1000_exit_module is called just before the driver is removed
6499  * from memory.
6500  **/
6501 static void __exit e1000_exit_module(void)
6502 {
6503         pci_unregister_driver(&e1000_driver);
6504 }
6505 module_exit(e1000_exit_module);
6506
6507
6508 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
6509 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
6510 MODULE_LICENSE("GPL");
6511 MODULE_VERSION(DRV_VERSION);
6512
6513 /* e1000_main.c */