i40e/i40evf: Fix TSO checksum pseudo-header adjustment
[cascardo/linux.git] / drivers / net / ethernet / intel / i40e / i40e_txrx.c
1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Driver
4  * Copyright(c) 2013 - 2016 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26
27 #include <linux/prefetch.h>
28 #include <net/busy_poll.h>
29 #include "i40e.h"
30 #include "i40e_prototype.h"
31
32 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
33                                 u32 td_tag)
34 {
35         return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
36                            ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
37                            ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
38                            ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
39                            ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
40 }
41
42 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
43 #define I40E_FD_CLEAN_DELAY 10
44 /**
45  * i40e_program_fdir_filter - Program a Flow Director filter
46  * @fdir_data: Packet data that will be filter parameters
47  * @raw_packet: the pre-allocated packet buffer for FDir
48  * @pf: The PF pointer
49  * @add: True for add/update, False for remove
50  **/
51 int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, u8 *raw_packet,
52                              struct i40e_pf *pf, bool add)
53 {
54         struct i40e_filter_program_desc *fdir_desc;
55         struct i40e_tx_buffer *tx_buf, *first;
56         struct i40e_tx_desc *tx_desc;
57         struct i40e_ring *tx_ring;
58         unsigned int fpt, dcc;
59         struct i40e_vsi *vsi;
60         struct device *dev;
61         dma_addr_t dma;
62         u32 td_cmd = 0;
63         u16 delay = 0;
64         u16 i;
65
66         /* find existing FDIR VSI */
67         vsi = NULL;
68         for (i = 0; i < pf->num_alloc_vsi; i++)
69                 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR)
70                         vsi = pf->vsi[i];
71         if (!vsi)
72                 return -ENOENT;
73
74         tx_ring = vsi->tx_rings[0];
75         dev = tx_ring->dev;
76
77         /* we need two descriptors to add/del a filter and we can wait */
78         do {
79                 if (I40E_DESC_UNUSED(tx_ring) > 1)
80                         break;
81                 msleep_interruptible(1);
82                 delay++;
83         } while (delay < I40E_FD_CLEAN_DELAY);
84
85         if (!(I40E_DESC_UNUSED(tx_ring) > 1))
86                 return -EAGAIN;
87
88         dma = dma_map_single(dev, raw_packet,
89                              I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
90         if (dma_mapping_error(dev, dma))
91                 goto dma_fail;
92
93         /* grab the next descriptor */
94         i = tx_ring->next_to_use;
95         fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
96         first = &tx_ring->tx_bi[i];
97         memset(first, 0, sizeof(struct i40e_tx_buffer));
98
99         tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
100
101         fpt = (fdir_data->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
102               I40E_TXD_FLTR_QW0_QINDEX_MASK;
103
104         fpt |= (fdir_data->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT) &
105                I40E_TXD_FLTR_QW0_FLEXOFF_MASK;
106
107         fpt |= (fdir_data->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) &
108                I40E_TXD_FLTR_QW0_PCTYPE_MASK;
109
110         /* Use LAN VSI Id if not programmed by user */
111         if (fdir_data->dest_vsi == 0)
112                 fpt |= (pf->vsi[pf->lan_vsi]->id) <<
113                        I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
114         else
115                 fpt |= ((u32)fdir_data->dest_vsi <<
116                         I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT) &
117                        I40E_TXD_FLTR_QW0_DEST_VSI_MASK;
118
119         dcc = I40E_TX_DESC_DTYPE_FILTER_PROG;
120
121         if (add)
122                 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
123                        I40E_TXD_FLTR_QW1_PCMD_SHIFT;
124         else
125                 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
126                        I40E_TXD_FLTR_QW1_PCMD_SHIFT;
127
128         dcc |= (fdir_data->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT) &
129                I40E_TXD_FLTR_QW1_DEST_MASK;
130
131         dcc |= (fdir_data->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT) &
132                I40E_TXD_FLTR_QW1_FD_STATUS_MASK;
133
134         if (fdir_data->cnt_index != 0) {
135                 dcc |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
136                 dcc |= ((u32)fdir_data->cnt_index <<
137                         I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
138                         I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
139         }
140
141         fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(fpt);
142         fdir_desc->rsvd = cpu_to_le32(0);
143         fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dcc);
144         fdir_desc->fd_id = cpu_to_le32(fdir_data->fd_id);
145
146         /* Now program a dummy descriptor */
147         i = tx_ring->next_to_use;
148         tx_desc = I40E_TX_DESC(tx_ring, i);
149         tx_buf = &tx_ring->tx_bi[i];
150
151         tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
152
153         memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
154
155         /* record length, and DMA address */
156         dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
157         dma_unmap_addr_set(tx_buf, dma, dma);
158
159         tx_desc->buffer_addr = cpu_to_le64(dma);
160         td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
161
162         tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
163         tx_buf->raw_buf = (void *)raw_packet;
164
165         tx_desc->cmd_type_offset_bsz =
166                 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
167
168         /* Force memory writes to complete before letting h/w
169          * know there are new descriptors to fetch.
170          */
171         wmb();
172
173         /* Mark the data descriptor to be watched */
174         first->next_to_watch = tx_desc;
175
176         writel(tx_ring->next_to_use, tx_ring->tail);
177         return 0;
178
179 dma_fail:
180         return -1;
181 }
182
183 #define IP_HEADER_OFFSET 14
184 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
185 /**
186  * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
187  * @vsi: pointer to the targeted VSI
188  * @fd_data: the flow director data required for the FDir descriptor
189  * @add: true adds a filter, false removes it
190  *
191  * Returns 0 if the filters were successfully added or removed
192  **/
193 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
194                                    struct i40e_fdir_filter *fd_data,
195                                    bool add)
196 {
197         struct i40e_pf *pf = vsi->back;
198         struct udphdr *udp;
199         struct iphdr *ip;
200         bool err = false;
201         u8 *raw_packet;
202         int ret;
203         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
204                 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
205                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
206
207         raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
208         if (!raw_packet)
209                 return -ENOMEM;
210         memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
211
212         ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
213         udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
214               + sizeof(struct iphdr));
215
216         ip->daddr = fd_data->dst_ip[0];
217         udp->dest = fd_data->dst_port;
218         ip->saddr = fd_data->src_ip[0];
219         udp->source = fd_data->src_port;
220
221         fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
222         ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
223         if (ret) {
224                 dev_info(&pf->pdev->dev,
225                          "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
226                          fd_data->pctype, fd_data->fd_id, ret);
227                 err = true;
228         } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
229                 if (add)
230                         dev_info(&pf->pdev->dev,
231                                  "Filter OK for PCTYPE %d loc = %d\n",
232                                  fd_data->pctype, fd_data->fd_id);
233                 else
234                         dev_info(&pf->pdev->dev,
235                                  "Filter deleted for PCTYPE %d loc = %d\n",
236                                  fd_data->pctype, fd_data->fd_id);
237         }
238         if (err)
239                 kfree(raw_packet);
240
241         return err ? -EOPNOTSUPP : 0;
242 }
243
244 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
245 /**
246  * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
247  * @vsi: pointer to the targeted VSI
248  * @fd_data: the flow director data required for the FDir descriptor
249  * @add: true adds a filter, false removes it
250  *
251  * Returns 0 if the filters were successfully added or removed
252  **/
253 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
254                                    struct i40e_fdir_filter *fd_data,
255                                    bool add)
256 {
257         struct i40e_pf *pf = vsi->back;
258         struct tcphdr *tcp;
259         struct iphdr *ip;
260         bool err = false;
261         u8 *raw_packet;
262         int ret;
263         /* Dummy packet */
264         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
265                 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
266                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
267                 0x0, 0x72, 0, 0, 0, 0};
268
269         raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
270         if (!raw_packet)
271                 return -ENOMEM;
272         memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
273
274         ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
275         tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
276               + sizeof(struct iphdr));
277
278         ip->daddr = fd_data->dst_ip[0];
279         tcp->dest = fd_data->dst_port;
280         ip->saddr = fd_data->src_ip[0];
281         tcp->source = fd_data->src_port;
282
283         if (add) {
284                 pf->fd_tcp_rule++;
285                 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) {
286                         if (I40E_DEBUG_FD & pf->hw.debug_mask)
287                                 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
288                         pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED;
289                 }
290         } else {
291                 pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ?
292                                   (pf->fd_tcp_rule - 1) : 0;
293                 if (pf->fd_tcp_rule == 0) {
294                         pf->flags |= I40E_FLAG_FD_ATR_ENABLED;
295                         if (I40E_DEBUG_FD & pf->hw.debug_mask)
296                                 dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
297                 }
298         }
299
300         fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
301         ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
302
303         if (ret) {
304                 dev_info(&pf->pdev->dev,
305                          "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
306                          fd_data->pctype, fd_data->fd_id, ret);
307                 err = true;
308         } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
309                 if (add)
310                         dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
311                                  fd_data->pctype, fd_data->fd_id);
312                 else
313                         dev_info(&pf->pdev->dev,
314                                  "Filter deleted for PCTYPE %d loc = %d\n",
315                                  fd_data->pctype, fd_data->fd_id);
316         }
317
318         if (err)
319                 kfree(raw_packet);
320
321         return err ? -EOPNOTSUPP : 0;
322 }
323
324 /**
325  * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
326  * a specific flow spec
327  * @vsi: pointer to the targeted VSI
328  * @fd_data: the flow director data required for the FDir descriptor
329  * @add: true adds a filter, false removes it
330  *
331  * Returns 0 if the filters were successfully added or removed
332  **/
333 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
334                                     struct i40e_fdir_filter *fd_data,
335                                     bool add)
336 {
337         return -EOPNOTSUPP;
338 }
339
340 #define I40E_IP_DUMMY_PACKET_LEN 34
341 /**
342  * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
343  * a specific flow spec
344  * @vsi: pointer to the targeted VSI
345  * @fd_data: the flow director data required for the FDir descriptor
346  * @add: true adds a filter, false removes it
347  *
348  * Returns 0 if the filters were successfully added or removed
349  **/
350 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
351                                   struct i40e_fdir_filter *fd_data,
352                                   bool add)
353 {
354         struct i40e_pf *pf = vsi->back;
355         struct iphdr *ip;
356         bool err = false;
357         u8 *raw_packet;
358         int ret;
359         int i;
360         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
361                 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
362                 0, 0, 0, 0};
363
364         for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
365              i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
366                 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
367                 if (!raw_packet)
368                         return -ENOMEM;
369                 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
370                 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
371
372                 ip->saddr = fd_data->src_ip[0];
373                 ip->daddr = fd_data->dst_ip[0];
374                 ip->protocol = 0;
375
376                 fd_data->pctype = i;
377                 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
378
379                 if (ret) {
380                         dev_info(&pf->pdev->dev,
381                                  "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
382                                  fd_data->pctype, fd_data->fd_id, ret);
383                         err = true;
384                 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
385                         if (add)
386                                 dev_info(&pf->pdev->dev,
387                                          "Filter OK for PCTYPE %d loc = %d\n",
388                                          fd_data->pctype, fd_data->fd_id);
389                         else
390                                 dev_info(&pf->pdev->dev,
391                                          "Filter deleted for PCTYPE %d loc = %d\n",
392                                          fd_data->pctype, fd_data->fd_id);
393                 }
394         }
395
396         if (err)
397                 kfree(raw_packet);
398
399         return err ? -EOPNOTSUPP : 0;
400 }
401
402 /**
403  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
404  * @vsi: pointer to the targeted VSI
405  * @cmd: command to get or set RX flow classification rules
406  * @add: true adds a filter, false removes it
407  *
408  **/
409 int i40e_add_del_fdir(struct i40e_vsi *vsi,
410                       struct i40e_fdir_filter *input, bool add)
411 {
412         struct i40e_pf *pf = vsi->back;
413         int ret;
414
415         switch (input->flow_type & ~FLOW_EXT) {
416         case TCP_V4_FLOW:
417                 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
418                 break;
419         case UDP_V4_FLOW:
420                 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
421                 break;
422         case SCTP_V4_FLOW:
423                 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
424                 break;
425         case IPV4_FLOW:
426                 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
427                 break;
428         case IP_USER_FLOW:
429                 switch (input->ip4_proto) {
430                 case IPPROTO_TCP:
431                         ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
432                         break;
433                 case IPPROTO_UDP:
434                         ret = i40e_add_del_fdir_udpv4(vsi, input, add);
435                         break;
436                 case IPPROTO_SCTP:
437                         ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
438                         break;
439                 default:
440                         ret = i40e_add_del_fdir_ipv4(vsi, input, add);
441                         break;
442                 }
443                 break;
444         default:
445                 dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
446                          input->flow_type);
447                 ret = -EINVAL;
448         }
449
450         /* The buffer allocated here is freed by the i40e_clean_tx_ring() */
451         return ret;
452 }
453
454 /**
455  * i40e_fd_handle_status - check the Programming Status for FD
456  * @rx_ring: the Rx ring for this descriptor
457  * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
458  * @prog_id: the id originally used for programming
459  *
460  * This is used to verify if the FD programming or invalidation
461  * requested by SW to the HW is successful or not and take actions accordingly.
462  **/
463 static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
464                                   union i40e_rx_desc *rx_desc, u8 prog_id)
465 {
466         struct i40e_pf *pf = rx_ring->vsi->back;
467         struct pci_dev *pdev = pf->pdev;
468         u32 fcnt_prog, fcnt_avail;
469         u32 error;
470         u64 qw;
471
472         qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
473         error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
474                 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
475
476         if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
477                 pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
478                 if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
479                     (I40E_DEBUG_FD & pf->hw.debug_mask))
480                         dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
481                                  pf->fd_inv);
482
483                 /* Check if the programming error is for ATR.
484                  * If so, auto disable ATR and set a state for
485                  * flush in progress. Next time we come here if flush is in
486                  * progress do nothing, once flush is complete the state will
487                  * be cleared.
488                  */
489                 if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state))
490                         return;
491
492                 pf->fd_add_err++;
493                 /* store the current atr filter count */
494                 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
495
496                 if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
497                     (pf->auto_disable_flags & I40E_FLAG_FD_SB_ENABLED)) {
498                         pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
499                         set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state);
500                 }
501
502                 /* filter programming failed most likely due to table full */
503                 fcnt_prog = i40e_get_global_fd_count(pf);
504                 fcnt_avail = pf->fdir_pf_filter_count;
505                 /* If ATR is running fcnt_prog can quickly change,
506                  * if we are very close to full, it makes sense to disable
507                  * FD ATR/SB and then re-enable it when there is room.
508                  */
509                 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
510                         if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
511                             !(pf->auto_disable_flags &
512                                      I40E_FLAG_FD_SB_ENABLED)) {
513                                 if (I40E_DEBUG_FD & pf->hw.debug_mask)
514                                         dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
515                                 pf->auto_disable_flags |=
516                                                         I40E_FLAG_FD_SB_ENABLED;
517                         }
518                 }
519         } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
520                 if (I40E_DEBUG_FD & pf->hw.debug_mask)
521                         dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
522                                  rx_desc->wb.qword0.hi_dword.fd_id);
523         }
524 }
525
526 /**
527  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
528  * @ring:      the ring that owns the buffer
529  * @tx_buffer: the buffer to free
530  **/
531 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
532                                             struct i40e_tx_buffer *tx_buffer)
533 {
534         if (tx_buffer->skb) {
535                 dev_kfree_skb_any(tx_buffer->skb);
536                 if (dma_unmap_len(tx_buffer, len))
537                         dma_unmap_single(ring->dev,
538                                          dma_unmap_addr(tx_buffer, dma),
539                                          dma_unmap_len(tx_buffer, len),
540                                          DMA_TO_DEVICE);
541         } else if (dma_unmap_len(tx_buffer, len)) {
542                 dma_unmap_page(ring->dev,
543                                dma_unmap_addr(tx_buffer, dma),
544                                dma_unmap_len(tx_buffer, len),
545                                DMA_TO_DEVICE);
546         }
547
548         if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
549                 kfree(tx_buffer->raw_buf);
550
551         tx_buffer->next_to_watch = NULL;
552         tx_buffer->skb = NULL;
553         dma_unmap_len_set(tx_buffer, len, 0);
554         /* tx_buffer must be completely set up in the transmit path */
555 }
556
557 /**
558  * i40e_clean_tx_ring - Free any empty Tx buffers
559  * @tx_ring: ring to be cleaned
560  **/
561 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
562 {
563         unsigned long bi_size;
564         u16 i;
565
566         /* ring already cleared, nothing to do */
567         if (!tx_ring->tx_bi)
568                 return;
569
570         /* Free all the Tx ring sk_buffs */
571         for (i = 0; i < tx_ring->count; i++)
572                 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
573
574         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
575         memset(tx_ring->tx_bi, 0, bi_size);
576
577         /* Zero out the descriptor ring */
578         memset(tx_ring->desc, 0, tx_ring->size);
579
580         tx_ring->next_to_use = 0;
581         tx_ring->next_to_clean = 0;
582
583         if (!tx_ring->netdev)
584                 return;
585
586         /* cleanup Tx queue statistics */
587         netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
588                                                   tx_ring->queue_index));
589 }
590
591 /**
592  * i40e_free_tx_resources - Free Tx resources per queue
593  * @tx_ring: Tx descriptor ring for a specific queue
594  *
595  * Free all transmit software resources
596  **/
597 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
598 {
599         i40e_clean_tx_ring(tx_ring);
600         kfree(tx_ring->tx_bi);
601         tx_ring->tx_bi = NULL;
602
603         if (tx_ring->desc) {
604                 dma_free_coherent(tx_ring->dev, tx_ring->size,
605                                   tx_ring->desc, tx_ring->dma);
606                 tx_ring->desc = NULL;
607         }
608 }
609
610 /**
611  * i40e_get_tx_pending - how many tx descriptors not processed
612  * @tx_ring: the ring of descriptors
613  * @in_sw: is tx_pending being checked in SW or HW
614  *
615  * Since there is no access to the ring head register
616  * in XL710, we need to use our local copies
617  **/
618 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
619 {
620         u32 head, tail;
621
622         if (!in_sw)
623                 head = i40e_get_head(ring);
624         else
625                 head = ring->next_to_clean;
626         tail = readl(ring->tail);
627
628         if (head != tail)
629                 return (head < tail) ?
630                         tail - head : (tail + ring->count - head);
631
632         return 0;
633 }
634
635 #define WB_STRIDE 0x3
636
637 /**
638  * i40e_clean_tx_irq - Reclaim resources after transmit completes
639  * @vsi: the VSI we care about
640  * @tx_ring: Tx ring to clean
641  * @napi_budget: Used to determine if we are in netpoll
642  *
643  * Returns true if there's any budget left (e.g. the clean is finished)
644  **/
645 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
646                               struct i40e_ring *tx_ring, int napi_budget)
647 {
648         u16 i = tx_ring->next_to_clean;
649         struct i40e_tx_buffer *tx_buf;
650         struct i40e_tx_desc *tx_head;
651         struct i40e_tx_desc *tx_desc;
652         unsigned int total_bytes = 0, total_packets = 0;
653         unsigned int budget = vsi->work_limit;
654
655         tx_buf = &tx_ring->tx_bi[i];
656         tx_desc = I40E_TX_DESC(tx_ring, i);
657         i -= tx_ring->count;
658
659         tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
660
661         do {
662                 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
663
664                 /* if next_to_watch is not set then there is no work pending */
665                 if (!eop_desc)
666                         break;
667
668                 /* prevent any other reads prior to eop_desc */
669                 read_barrier_depends();
670
671                 /* we have caught up to head, no work left to do */
672                 if (tx_head == tx_desc)
673                         break;
674
675                 /* clear next_to_watch to prevent false hangs */
676                 tx_buf->next_to_watch = NULL;
677
678                 /* update the statistics for this packet */
679                 total_bytes += tx_buf->bytecount;
680                 total_packets += tx_buf->gso_segs;
681
682                 /* free the skb */
683                 napi_consume_skb(tx_buf->skb, napi_budget);
684
685                 /* unmap skb header data */
686                 dma_unmap_single(tx_ring->dev,
687                                  dma_unmap_addr(tx_buf, dma),
688                                  dma_unmap_len(tx_buf, len),
689                                  DMA_TO_DEVICE);
690
691                 /* clear tx_buffer data */
692                 tx_buf->skb = NULL;
693                 dma_unmap_len_set(tx_buf, len, 0);
694
695                 /* unmap remaining buffers */
696                 while (tx_desc != eop_desc) {
697
698                         tx_buf++;
699                         tx_desc++;
700                         i++;
701                         if (unlikely(!i)) {
702                                 i -= tx_ring->count;
703                                 tx_buf = tx_ring->tx_bi;
704                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
705                         }
706
707                         /* unmap any remaining paged data */
708                         if (dma_unmap_len(tx_buf, len)) {
709                                 dma_unmap_page(tx_ring->dev,
710                                                dma_unmap_addr(tx_buf, dma),
711                                                dma_unmap_len(tx_buf, len),
712                                                DMA_TO_DEVICE);
713                                 dma_unmap_len_set(tx_buf, len, 0);
714                         }
715                 }
716
717                 /* move us one more past the eop_desc for start of next pkt */
718                 tx_buf++;
719                 tx_desc++;
720                 i++;
721                 if (unlikely(!i)) {
722                         i -= tx_ring->count;
723                         tx_buf = tx_ring->tx_bi;
724                         tx_desc = I40E_TX_DESC(tx_ring, 0);
725                 }
726
727                 prefetch(tx_desc);
728
729                 /* update budget accounting */
730                 budget--;
731         } while (likely(budget));
732
733         i += tx_ring->count;
734         tx_ring->next_to_clean = i;
735         u64_stats_update_begin(&tx_ring->syncp);
736         tx_ring->stats.bytes += total_bytes;
737         tx_ring->stats.packets += total_packets;
738         u64_stats_update_end(&tx_ring->syncp);
739         tx_ring->q_vector->tx.total_bytes += total_bytes;
740         tx_ring->q_vector->tx.total_packets += total_packets;
741
742         if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
743                 unsigned int j = 0;
744
745                 /* check to see if there are < 4 descriptors
746                  * waiting to be written back, then kick the hardware to force
747                  * them to be written back in case we stay in NAPI.
748                  * In this mode on X722 we do not enable Interrupt.
749                  */
750                 j = i40e_get_tx_pending(tx_ring, false);
751
752                 if (budget &&
753                     ((j / (WB_STRIDE + 1)) == 0) && (j != 0) &&
754                     !test_bit(__I40E_DOWN, &vsi->state) &&
755                     (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
756                         tx_ring->arm_wb = true;
757         }
758
759         netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
760                                                       tx_ring->queue_index),
761                                   total_packets, total_bytes);
762
763 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
764         if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
765                      (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
766                 /* Make sure that anybody stopping the queue after this
767                  * sees the new next_to_clean.
768                  */
769                 smp_mb();
770                 if (__netif_subqueue_stopped(tx_ring->netdev,
771                                              tx_ring->queue_index) &&
772                    !test_bit(__I40E_DOWN, &vsi->state)) {
773                         netif_wake_subqueue(tx_ring->netdev,
774                                             tx_ring->queue_index);
775                         ++tx_ring->tx_stats.restart_queue;
776                 }
777         }
778
779         return !!budget;
780 }
781
782 /**
783  * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
784  * @vsi: the VSI we care about
785  * @q_vector: the vector on which to enable writeback
786  *
787  **/
788 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
789                                   struct i40e_q_vector *q_vector)
790 {
791         u16 flags = q_vector->tx.ring[0].flags;
792         u32 val;
793
794         if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
795                 return;
796
797         if (q_vector->arm_wb_state)
798                 return;
799
800         if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
801                 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
802                       I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
803
804                 wr32(&vsi->back->hw,
805                      I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
806                      val);
807         } else {
808                 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
809                       I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
810
811                 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
812         }
813         q_vector->arm_wb_state = true;
814 }
815
816 /**
817  * i40e_force_wb - Issue SW Interrupt so HW does a wb
818  * @vsi: the VSI we care about
819  * @q_vector: the vector  on which to force writeback
820  *
821  **/
822 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
823 {
824         if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
825                 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
826                           I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
827                           I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
828                           I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
829                           /* allow 00 to be written to the index */
830
831                 wr32(&vsi->back->hw,
832                      I40E_PFINT_DYN_CTLN(q_vector->v_idx +
833                                          vsi->base_vector - 1), val);
834         } else {
835                 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
836                           I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
837                           I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
838                           I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
839                         /* allow 00 to be written to the index */
840
841                 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
842         }
843 }
844
845 /**
846  * i40e_set_new_dynamic_itr - Find new ITR level
847  * @rc: structure containing ring performance data
848  *
849  * Returns true if ITR changed, false if not
850  *
851  * Stores a new ITR value based on packets and byte counts during
852  * the last interrupt.  The advantage of per interrupt computation
853  * is faster updates and more accurate ITR for the current traffic
854  * pattern.  Constants in this function were computed based on
855  * theoretical maximum wire speed and thresholds were set based on
856  * testing data as well as attempting to minimize response time
857  * while increasing bulk throughput.
858  **/
859 static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
860 {
861         enum i40e_latency_range new_latency_range = rc->latency_range;
862         struct i40e_q_vector *qv = rc->ring->q_vector;
863         u32 new_itr = rc->itr;
864         int bytes_per_int;
865         int usecs;
866
867         if (rc->total_packets == 0 || !rc->itr)
868                 return false;
869
870         /* simple throttlerate management
871          *   0-10MB/s   lowest (50000 ints/s)
872          *  10-20MB/s   low    (20000 ints/s)
873          *  20-1249MB/s bulk   (18000 ints/s)
874          *  > 40000 Rx packets per second (8000 ints/s)
875          *
876          * The math works out because the divisor is in 10^(-6) which
877          * turns the bytes/us input value into MB/s values, but
878          * make sure to use usecs, as the register values written
879          * are in 2 usec increments in the ITR registers, and make sure
880          * to use the smoothed values that the countdown timer gives us.
881          */
882         usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
883         bytes_per_int = rc->total_bytes / usecs;
884
885         switch (new_latency_range) {
886         case I40E_LOWEST_LATENCY:
887                 if (bytes_per_int > 10)
888                         new_latency_range = I40E_LOW_LATENCY;
889                 break;
890         case I40E_LOW_LATENCY:
891                 if (bytes_per_int > 20)
892                         new_latency_range = I40E_BULK_LATENCY;
893                 else if (bytes_per_int <= 10)
894                         new_latency_range = I40E_LOWEST_LATENCY;
895                 break;
896         case I40E_BULK_LATENCY:
897         case I40E_ULTRA_LATENCY:
898         default:
899                 if (bytes_per_int <= 20)
900                         new_latency_range = I40E_LOW_LATENCY;
901                 break;
902         }
903
904         /* this is to adjust RX more aggressively when streaming small
905          * packets.  The value of 40000 was picked as it is just beyond
906          * what the hardware can receive per second if in low latency
907          * mode.
908          */
909 #define RX_ULTRA_PACKET_RATE 40000
910
911         if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
912             (&qv->rx == rc))
913                 new_latency_range = I40E_ULTRA_LATENCY;
914
915         rc->latency_range = new_latency_range;
916
917         switch (new_latency_range) {
918         case I40E_LOWEST_LATENCY:
919                 new_itr = I40E_ITR_50K;
920                 break;
921         case I40E_LOW_LATENCY:
922                 new_itr = I40E_ITR_20K;
923                 break;
924         case I40E_BULK_LATENCY:
925                 new_itr = I40E_ITR_18K;
926                 break;
927         case I40E_ULTRA_LATENCY:
928                 new_itr = I40E_ITR_8K;
929                 break;
930         default:
931                 break;
932         }
933
934         rc->total_bytes = 0;
935         rc->total_packets = 0;
936
937         if (new_itr != rc->itr) {
938                 rc->itr = new_itr;
939                 return true;
940         }
941
942         return false;
943 }
944
945 /**
946  * i40e_clean_programming_status - clean the programming status descriptor
947  * @rx_ring: the rx ring that has this descriptor
948  * @rx_desc: the rx descriptor written back by HW
949  *
950  * Flow director should handle FD_FILTER_STATUS to check its filter programming
951  * status being successful or not and take actions accordingly. FCoE should
952  * handle its context/filter programming/invalidation status and take actions.
953  *
954  **/
955 static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
956                                           union i40e_rx_desc *rx_desc)
957 {
958         u64 qw;
959         u8 id;
960
961         qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
962         id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
963                   I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
964
965         if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
966                 i40e_fd_handle_status(rx_ring, rx_desc, id);
967 #ifdef I40E_FCOE
968         else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
969                  (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
970                 i40e_fcoe_handle_status(rx_ring, rx_desc, id);
971 #endif
972 }
973
974 /**
975  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
976  * @tx_ring: the tx ring to set up
977  *
978  * Return 0 on success, negative on error
979  **/
980 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
981 {
982         struct device *dev = tx_ring->dev;
983         int bi_size;
984
985         if (!dev)
986                 return -ENOMEM;
987
988         /* warn if we are about to overwrite the pointer */
989         WARN_ON(tx_ring->tx_bi);
990         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
991         tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
992         if (!tx_ring->tx_bi)
993                 goto err;
994
995         /* round up to nearest 4K */
996         tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
997         /* add u32 for head writeback, align after this takes care of
998          * guaranteeing this is at least one cache line in size
999          */
1000         tx_ring->size += sizeof(u32);
1001         tx_ring->size = ALIGN(tx_ring->size, 4096);
1002         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1003                                            &tx_ring->dma, GFP_KERNEL);
1004         if (!tx_ring->desc) {
1005                 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1006                          tx_ring->size);
1007                 goto err;
1008         }
1009
1010         tx_ring->next_to_use = 0;
1011         tx_ring->next_to_clean = 0;
1012         return 0;
1013
1014 err:
1015         kfree(tx_ring->tx_bi);
1016         tx_ring->tx_bi = NULL;
1017         return -ENOMEM;
1018 }
1019
1020 /**
1021  * i40e_clean_rx_ring - Free Rx buffers
1022  * @rx_ring: ring to be cleaned
1023  **/
1024 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1025 {
1026         struct device *dev = rx_ring->dev;
1027         struct i40e_rx_buffer *rx_bi;
1028         unsigned long bi_size;
1029         u16 i;
1030
1031         /* ring already cleared, nothing to do */
1032         if (!rx_ring->rx_bi)
1033                 return;
1034
1035         if (ring_is_ps_enabled(rx_ring)) {
1036                 int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
1037
1038                 rx_bi = &rx_ring->rx_bi[0];
1039                 if (rx_bi->hdr_buf) {
1040                         dma_free_coherent(dev,
1041                                           bufsz,
1042                                           rx_bi->hdr_buf,
1043                                           rx_bi->dma);
1044                         for (i = 0; i < rx_ring->count; i++) {
1045                                 rx_bi = &rx_ring->rx_bi[i];
1046                                 rx_bi->dma = 0;
1047                                 rx_bi->hdr_buf = NULL;
1048                         }
1049                 }
1050         }
1051         /* Free all the Rx ring sk_buffs */
1052         for (i = 0; i < rx_ring->count; i++) {
1053                 rx_bi = &rx_ring->rx_bi[i];
1054                 if (rx_bi->dma) {
1055                         dma_unmap_single(dev,
1056                                          rx_bi->dma,
1057                                          rx_ring->rx_buf_len,
1058                                          DMA_FROM_DEVICE);
1059                         rx_bi->dma = 0;
1060                 }
1061                 if (rx_bi->skb) {
1062                         dev_kfree_skb(rx_bi->skb);
1063                         rx_bi->skb = NULL;
1064                 }
1065                 if (rx_bi->page) {
1066                         if (rx_bi->page_dma) {
1067                                 dma_unmap_page(dev,
1068                                                rx_bi->page_dma,
1069                                                PAGE_SIZE,
1070                                                DMA_FROM_DEVICE);
1071                                 rx_bi->page_dma = 0;
1072                         }
1073                         __free_page(rx_bi->page);
1074                         rx_bi->page = NULL;
1075                         rx_bi->page_offset = 0;
1076                 }
1077         }
1078
1079         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1080         memset(rx_ring->rx_bi, 0, bi_size);
1081
1082         /* Zero out the descriptor ring */
1083         memset(rx_ring->desc, 0, rx_ring->size);
1084
1085         rx_ring->next_to_clean = 0;
1086         rx_ring->next_to_use = 0;
1087 }
1088
1089 /**
1090  * i40e_free_rx_resources - Free Rx resources
1091  * @rx_ring: ring to clean the resources from
1092  *
1093  * Free all receive software resources
1094  **/
1095 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1096 {
1097         i40e_clean_rx_ring(rx_ring);
1098         kfree(rx_ring->rx_bi);
1099         rx_ring->rx_bi = NULL;
1100
1101         if (rx_ring->desc) {
1102                 dma_free_coherent(rx_ring->dev, rx_ring->size,
1103                                   rx_ring->desc, rx_ring->dma);
1104                 rx_ring->desc = NULL;
1105         }
1106 }
1107
1108 /**
1109  * i40e_alloc_rx_headers - allocate rx header buffers
1110  * @rx_ring: ring to alloc buffers
1111  *
1112  * Allocate rx header buffers for the entire ring. As these are static,
1113  * this is only called when setting up a new ring.
1114  **/
1115 void i40e_alloc_rx_headers(struct i40e_ring *rx_ring)
1116 {
1117         struct device *dev = rx_ring->dev;
1118         struct i40e_rx_buffer *rx_bi;
1119         dma_addr_t dma;
1120         void *buffer;
1121         int buf_size;
1122         int i;
1123
1124         if (rx_ring->rx_bi[0].hdr_buf)
1125                 return;
1126         /* Make sure the buffers don't cross cache line boundaries. */
1127         buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
1128         buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
1129                                     &dma, GFP_KERNEL);
1130         if (!buffer)
1131                 return;
1132         for (i = 0; i < rx_ring->count; i++) {
1133                 rx_bi = &rx_ring->rx_bi[i];
1134                 rx_bi->dma = dma + (i * buf_size);
1135                 rx_bi->hdr_buf = buffer + (i * buf_size);
1136         }
1137 }
1138
1139 /**
1140  * i40e_setup_rx_descriptors - Allocate Rx descriptors
1141  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1142  *
1143  * Returns 0 on success, negative on failure
1144  **/
1145 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1146 {
1147         struct device *dev = rx_ring->dev;
1148         int bi_size;
1149
1150         /* warn if we are about to overwrite the pointer */
1151         WARN_ON(rx_ring->rx_bi);
1152         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1153         rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1154         if (!rx_ring->rx_bi)
1155                 goto err;
1156
1157         u64_stats_init(&rx_ring->syncp);
1158
1159         /* Round up to nearest 4K */
1160         rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
1161                 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
1162                 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1163         rx_ring->size = ALIGN(rx_ring->size, 4096);
1164         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1165                                            &rx_ring->dma, GFP_KERNEL);
1166
1167         if (!rx_ring->desc) {
1168                 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1169                          rx_ring->size);
1170                 goto err;
1171         }
1172
1173         rx_ring->next_to_clean = 0;
1174         rx_ring->next_to_use = 0;
1175
1176         return 0;
1177 err:
1178         kfree(rx_ring->rx_bi);
1179         rx_ring->rx_bi = NULL;
1180         return -ENOMEM;
1181 }
1182
1183 /**
1184  * i40e_release_rx_desc - Store the new tail and head values
1185  * @rx_ring: ring to bump
1186  * @val: new head index
1187  **/
1188 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1189 {
1190         rx_ring->next_to_use = val;
1191         /* Force memory writes to complete before letting h/w
1192          * know there are new descriptors to fetch.  (Only
1193          * applicable for weak-ordered memory model archs,
1194          * such as IA-64).
1195          */
1196         wmb();
1197         writel(val, rx_ring->tail);
1198 }
1199
1200 /**
1201  * i40e_alloc_rx_buffers_ps - Replace used receive buffers; packet split
1202  * @rx_ring: ring to place buffers on
1203  * @cleaned_count: number of buffers to replace
1204  *
1205  * Returns true if any errors on allocation
1206  **/
1207 bool i40e_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
1208 {
1209         u16 i = rx_ring->next_to_use;
1210         union i40e_rx_desc *rx_desc;
1211         struct i40e_rx_buffer *bi;
1212         const int current_node = numa_node_id();
1213
1214         /* do nothing if no valid netdev defined */
1215         if (!rx_ring->netdev || !cleaned_count)
1216                 return false;
1217
1218         while (cleaned_count--) {
1219                 rx_desc = I40E_RX_DESC(rx_ring, i);
1220                 bi = &rx_ring->rx_bi[i];
1221
1222                 if (bi->skb) /* desc is in use */
1223                         goto no_buffers;
1224
1225         /* If we've been moved to a different NUMA node, release the
1226          * page so we can get a new one on the current node.
1227          */
1228                 if (bi->page &&  page_to_nid(bi->page) != current_node) {
1229                         dma_unmap_page(rx_ring->dev,
1230                                        bi->page_dma,
1231                                        PAGE_SIZE,
1232                                        DMA_FROM_DEVICE);
1233                         __free_page(bi->page);
1234                         bi->page = NULL;
1235                         bi->page_dma = 0;
1236                         rx_ring->rx_stats.realloc_count++;
1237                 } else if (bi->page) {
1238                         rx_ring->rx_stats.page_reuse_count++;
1239                 }
1240
1241                 if (!bi->page) {
1242                         bi->page = alloc_page(GFP_ATOMIC);
1243                         if (!bi->page) {
1244                                 rx_ring->rx_stats.alloc_page_failed++;
1245                                 goto no_buffers;
1246                         }
1247                         bi->page_dma = dma_map_page(rx_ring->dev,
1248                                                     bi->page,
1249                                                     0,
1250                                                     PAGE_SIZE,
1251                                                     DMA_FROM_DEVICE);
1252                         if (dma_mapping_error(rx_ring->dev, bi->page_dma)) {
1253                                 rx_ring->rx_stats.alloc_page_failed++;
1254                                 __free_page(bi->page);
1255                                 bi->page = NULL;
1256                                 bi->page_dma = 0;
1257                                 bi->page_offset = 0;
1258                                 goto no_buffers;
1259                         }
1260                         bi->page_offset = 0;
1261                 }
1262
1263                 /* Refresh the desc even if buffer_addrs didn't change
1264                  * because each write-back erases this info.
1265                  */
1266                 rx_desc->read.pkt_addr =
1267                                 cpu_to_le64(bi->page_dma + bi->page_offset);
1268                 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
1269                 i++;
1270                 if (i == rx_ring->count)
1271                         i = 0;
1272         }
1273
1274         if (rx_ring->next_to_use != i)
1275                 i40e_release_rx_desc(rx_ring, i);
1276
1277         return false;
1278
1279 no_buffers:
1280         if (rx_ring->next_to_use != i)
1281                 i40e_release_rx_desc(rx_ring, i);
1282
1283         /* make sure to come back via polling to try again after
1284          * allocation failure
1285          */
1286         return true;
1287 }
1288
1289 /**
1290  * i40e_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
1291  * @rx_ring: ring to place buffers on
1292  * @cleaned_count: number of buffers to replace
1293  *
1294  * Returns true if any errors on allocation
1295  **/
1296 bool i40e_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
1297 {
1298         u16 i = rx_ring->next_to_use;
1299         union i40e_rx_desc *rx_desc;
1300         struct i40e_rx_buffer *bi;
1301         struct sk_buff *skb;
1302
1303         /* do nothing if no valid netdev defined */
1304         if (!rx_ring->netdev || !cleaned_count)
1305                 return false;
1306
1307         while (cleaned_count--) {
1308                 rx_desc = I40E_RX_DESC(rx_ring, i);
1309                 bi = &rx_ring->rx_bi[i];
1310                 skb = bi->skb;
1311
1312                 if (!skb) {
1313                         skb = __netdev_alloc_skb_ip_align(rx_ring->netdev,
1314                                                           rx_ring->rx_buf_len,
1315                                                           GFP_ATOMIC |
1316                                                           __GFP_NOWARN);
1317                         if (!skb) {
1318                                 rx_ring->rx_stats.alloc_buff_failed++;
1319                                 goto no_buffers;
1320                         }
1321                         /* initialize queue mapping */
1322                         skb_record_rx_queue(skb, rx_ring->queue_index);
1323                         bi->skb = skb;
1324                 }
1325
1326                 if (!bi->dma) {
1327                         bi->dma = dma_map_single(rx_ring->dev,
1328                                                  skb->data,
1329                                                  rx_ring->rx_buf_len,
1330                                                  DMA_FROM_DEVICE);
1331                         if (dma_mapping_error(rx_ring->dev, bi->dma)) {
1332                                 rx_ring->rx_stats.alloc_buff_failed++;
1333                                 bi->dma = 0;
1334                                 dev_kfree_skb(bi->skb);
1335                                 bi->skb = NULL;
1336                                 goto no_buffers;
1337                         }
1338                 }
1339
1340                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
1341                 rx_desc->read.hdr_addr = 0;
1342                 i++;
1343                 if (i == rx_ring->count)
1344                         i = 0;
1345         }
1346
1347         if (rx_ring->next_to_use != i)
1348                 i40e_release_rx_desc(rx_ring, i);
1349
1350         return false;
1351
1352 no_buffers:
1353         if (rx_ring->next_to_use != i)
1354                 i40e_release_rx_desc(rx_ring, i);
1355
1356         /* make sure to come back via polling to try again after
1357          * allocation failure
1358          */
1359         return true;
1360 }
1361
1362 /**
1363  * i40e_receive_skb - Send a completed packet up the stack
1364  * @rx_ring:  rx ring in play
1365  * @skb: packet to send up
1366  * @vlan_tag: vlan tag for packet
1367  **/
1368 static void i40e_receive_skb(struct i40e_ring *rx_ring,
1369                              struct sk_buff *skb, u16 vlan_tag)
1370 {
1371         struct i40e_q_vector *q_vector = rx_ring->q_vector;
1372
1373         if (vlan_tag & VLAN_VID_MASK)
1374                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1375
1376         napi_gro_receive(&q_vector->napi, skb);
1377 }
1378
1379 /**
1380  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1381  * @vsi: the VSI we care about
1382  * @skb: skb currently being received and modified
1383  * @rx_status: status value of last descriptor in packet
1384  * @rx_error: error value of last descriptor in packet
1385  * @rx_ptype: ptype value of last descriptor in packet
1386  **/
1387 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1388                                     struct sk_buff *skb,
1389                                     u32 rx_status,
1390                                     u32 rx_error,
1391                                     u16 rx_ptype)
1392 {
1393         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
1394         bool ipv4, ipv6, ipv4_tunnel, ipv6_tunnel;
1395
1396         skb->ip_summed = CHECKSUM_NONE;
1397
1398         /* Rx csum enabled and ip headers found? */
1399         if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1400                 return;
1401
1402         /* did the hardware decode the packet and checksum? */
1403         if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1404                 return;
1405
1406         /* both known and outer_ip must be set for the below code to work */
1407         if (!(decoded.known && decoded.outer_ip))
1408                 return;
1409
1410         ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1411                (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1412         ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1413                (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1414
1415         if (ipv4 &&
1416             (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1417                          BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1418                 goto checksum_fail;
1419
1420         /* likely incorrect csum if alternate IP extension headers found */
1421         if (ipv6 &&
1422             rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1423                 /* don't increment checksum err here, non-fatal err */
1424                 return;
1425
1426         /* there was some L4 error, count error and punt packet to the stack */
1427         if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1428                 goto checksum_fail;
1429
1430         /* handle packets that were not able to be checksummed due
1431          * to arrival speed, in this case the stack can compute
1432          * the csum.
1433          */
1434         if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1435                 return;
1436
1437         /* The hardware supported by this driver does not validate outer
1438          * checksums for tunneled VXLAN or GENEVE frames.  I don't agree
1439          * with it but the specification states that you "MAY validate", it
1440          * doesn't make it a hard requirement so if we have validated the
1441          * inner checksum report CHECKSUM_UNNECESSARY.
1442          */
1443
1444         ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
1445                      (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
1446         ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
1447                      (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
1448
1449         skb->ip_summed = CHECKSUM_UNNECESSARY;
1450         skb->csum_level = ipv4_tunnel || ipv6_tunnel;
1451
1452         return;
1453
1454 checksum_fail:
1455         vsi->back->hw_csum_rx_error++;
1456 }
1457
1458 /**
1459  * i40e_ptype_to_htype - get a hash type
1460  * @ptype: the ptype value from the descriptor
1461  *
1462  * Returns a hash type to be used by skb_set_hash
1463  **/
1464 static inline enum pkt_hash_types i40e_ptype_to_htype(u8 ptype)
1465 {
1466         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1467
1468         if (!decoded.known)
1469                 return PKT_HASH_TYPE_NONE;
1470
1471         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1472             decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1473                 return PKT_HASH_TYPE_L4;
1474         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1475                  decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1476                 return PKT_HASH_TYPE_L3;
1477         else
1478                 return PKT_HASH_TYPE_L2;
1479 }
1480
1481 /**
1482  * i40e_rx_hash - set the hash value in the skb
1483  * @ring: descriptor ring
1484  * @rx_desc: specific descriptor
1485  **/
1486 static inline void i40e_rx_hash(struct i40e_ring *ring,
1487                                 union i40e_rx_desc *rx_desc,
1488                                 struct sk_buff *skb,
1489                                 u8 rx_ptype)
1490 {
1491         u32 hash;
1492         const __le64 rss_mask  =
1493                 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1494                             I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1495
1496         if (ring->netdev->features & NETIF_F_RXHASH)
1497                 return;
1498
1499         if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1500                 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1501                 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1502         }
1503 }
1504
1505 /**
1506  * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
1507  * @rx_ring:  rx ring to clean
1508  * @budget:   how many cleans we're allowed
1509  *
1510  * Returns true if there's any budget left (e.g. the clean is finished)
1511  **/
1512 static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, const int budget)
1513 {
1514         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1515         u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
1516         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1517         struct i40e_vsi *vsi = rx_ring->vsi;
1518         u16 i = rx_ring->next_to_clean;
1519         union i40e_rx_desc *rx_desc;
1520         u32 rx_error, rx_status;
1521         bool failure = false;
1522         u8 rx_ptype;
1523         u64 qword;
1524         u32 copysize;
1525
1526         if (budget <= 0)
1527                 return 0;
1528
1529         do {
1530                 struct i40e_rx_buffer *rx_bi;
1531                 struct sk_buff *skb;
1532                 u16 vlan_tag;
1533                 /* return some buffers to hardware, one at a time is too slow */
1534                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1535                         failure = failure ||
1536                                   i40e_alloc_rx_buffers_ps(rx_ring,
1537                                                            cleaned_count);
1538                         cleaned_count = 0;
1539                 }
1540
1541                 i = rx_ring->next_to_clean;
1542                 rx_desc = I40E_RX_DESC(rx_ring, i);
1543                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1544                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1545                         I40E_RXD_QW1_STATUS_SHIFT;
1546
1547                 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1548                         break;
1549
1550                 /* This memory barrier is needed to keep us from reading
1551                  * any other fields out of the rx_desc until we know the
1552                  * DD bit is set.
1553                  */
1554                 dma_rmb();
1555                 /* sync header buffer for reading */
1556                 dma_sync_single_range_for_cpu(rx_ring->dev,
1557                                               rx_ring->rx_bi[0].dma,
1558                                               i * rx_ring->rx_hdr_len,
1559                                               rx_ring->rx_hdr_len,
1560                                               DMA_FROM_DEVICE);
1561                 if (i40e_rx_is_programming_status(qword)) {
1562                         i40e_clean_programming_status(rx_ring, rx_desc);
1563                         I40E_RX_INCREMENT(rx_ring, i);
1564                         continue;
1565                 }
1566                 rx_bi = &rx_ring->rx_bi[i];
1567                 skb = rx_bi->skb;
1568                 if (likely(!skb)) {
1569                         skb = __netdev_alloc_skb_ip_align(rx_ring->netdev,
1570                                                           rx_ring->rx_hdr_len,
1571                                                           GFP_ATOMIC |
1572                                                           __GFP_NOWARN);
1573                         if (!skb) {
1574                                 rx_ring->rx_stats.alloc_buff_failed++;
1575                                 failure = true;
1576                                 break;
1577                         }
1578
1579                         /* initialize queue mapping */
1580                         skb_record_rx_queue(skb, rx_ring->queue_index);
1581                         /* we are reusing so sync this buffer for CPU use */
1582                         dma_sync_single_range_for_cpu(rx_ring->dev,
1583                                                       rx_ring->rx_bi[0].dma,
1584                                                       i * rx_ring->rx_hdr_len,
1585                                                       rx_ring->rx_hdr_len,
1586                                                       DMA_FROM_DEVICE);
1587                 }
1588                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1589                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1590                 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1591                                 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1592                 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1593                          I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1594
1595                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1596                            I40E_RXD_QW1_ERROR_SHIFT;
1597                 rx_hbo = rx_error & BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1598                 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1599
1600                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1601                            I40E_RXD_QW1_PTYPE_SHIFT;
1602                 /* sync half-page for reading */
1603                 dma_sync_single_range_for_cpu(rx_ring->dev,
1604                                               rx_bi->page_dma,
1605                                               rx_bi->page_offset,
1606                                               PAGE_SIZE / 2,
1607                                               DMA_FROM_DEVICE);
1608                 prefetch(page_address(rx_bi->page) + rx_bi->page_offset);
1609                 rx_bi->skb = NULL;
1610                 cleaned_count++;
1611                 copysize = 0;
1612                 if (rx_hbo || rx_sph) {
1613                         int len;
1614
1615                         if (rx_hbo)
1616                                 len = I40E_RX_HDR_SIZE;
1617                         else
1618                                 len = rx_header_len;
1619                         memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
1620                 } else if (skb->len == 0) {
1621                         int len;
1622                         unsigned char *va = page_address(rx_bi->page) +
1623                                             rx_bi->page_offset;
1624
1625                         len = min(rx_packet_len, rx_ring->rx_hdr_len);
1626                         memcpy(__skb_put(skb, len), va, len);
1627                         copysize = len;
1628                         rx_packet_len -= len;
1629                 }
1630                 /* Get the rest of the data if this was a header split */
1631                 if (rx_packet_len) {
1632                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
1633                                         rx_bi->page,
1634                                         rx_bi->page_offset + copysize,
1635                                         rx_packet_len, I40E_RXBUFFER_2048);
1636
1637                         /* If the page count is more than 2, then both halves
1638                          * of the page are used and we need to free it. Do it
1639                          * here instead of in the alloc code. Otherwise one
1640                          * of the half-pages might be released between now and
1641                          * then, and we wouldn't know which one to use.
1642                          * Don't call get_page and free_page since those are
1643                          * both expensive atomic operations that just change
1644                          * the refcount in opposite directions. Just give the
1645                          * page to the stack; he can have our refcount.
1646                          */
1647                         if (page_count(rx_bi->page) > 2) {
1648                                 dma_unmap_page(rx_ring->dev,
1649                                                rx_bi->page_dma,
1650                                                PAGE_SIZE,
1651                                                DMA_FROM_DEVICE);
1652                                 rx_bi->page = NULL;
1653                                 rx_bi->page_dma = 0;
1654                                 rx_ring->rx_stats.realloc_count++;
1655                         } else {
1656                                 get_page(rx_bi->page);
1657                                 /* switch to the other half-page here; the
1658                                  * allocation code programs the right addr
1659                                  * into HW. If we haven't used this half-page,
1660                                  * the address won't be changed, and HW can
1661                                  * just use it next time through.
1662                                  */
1663                                 rx_bi->page_offset ^= PAGE_SIZE / 2;
1664                         }
1665
1666                 }
1667                 I40E_RX_INCREMENT(rx_ring, i);
1668
1669                 if (unlikely(
1670                     !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1671                         struct i40e_rx_buffer *next_buffer;
1672
1673                         next_buffer = &rx_ring->rx_bi[i];
1674                         next_buffer->skb = skb;
1675                         rx_ring->rx_stats.non_eop_descs++;
1676                         continue;
1677                 }
1678
1679                 /* ERR_MASK will only have valid bits if EOP set */
1680                 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1681                         dev_kfree_skb_any(skb);
1682                         continue;
1683                 }
1684
1685                 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1686
1687                 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1688                         i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1689                                            I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1690                                            I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1691                         rx_ring->last_rx_timestamp = jiffies;
1692                 }
1693
1694                 /* probably a little skewed due to removing CRC */
1695                 total_rx_bytes += skb->len;
1696                 total_rx_packets++;
1697
1698                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1699
1700                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1701
1702                 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1703                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1704                          : 0;
1705 #ifdef I40E_FCOE
1706                 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1707                         dev_kfree_skb_any(skb);
1708                         continue;
1709                 }
1710 #endif
1711                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1712
1713                 rx_desc->wb.qword1.status_error_len = 0;
1714
1715         } while (likely(total_rx_packets < budget));
1716
1717         u64_stats_update_begin(&rx_ring->syncp);
1718         rx_ring->stats.packets += total_rx_packets;
1719         rx_ring->stats.bytes += total_rx_bytes;
1720         u64_stats_update_end(&rx_ring->syncp);
1721         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1722         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1723
1724         return failure ? budget : total_rx_packets;
1725 }
1726
1727 /**
1728  * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
1729  * @rx_ring:  rx ring to clean
1730  * @budget:   how many cleans we're allowed
1731  *
1732  * Returns number of packets cleaned
1733  **/
1734 static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
1735 {
1736         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1737         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1738         struct i40e_vsi *vsi = rx_ring->vsi;
1739         union i40e_rx_desc *rx_desc;
1740         u32 rx_error, rx_status;
1741         u16 rx_packet_len;
1742         bool failure = false;
1743         u8 rx_ptype;
1744         u64 qword;
1745         u16 i;
1746
1747         do {
1748                 struct i40e_rx_buffer *rx_bi;
1749                 struct sk_buff *skb;
1750                 u16 vlan_tag;
1751                 /* return some buffers to hardware, one at a time is too slow */
1752                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1753                         failure = failure ||
1754                                   i40e_alloc_rx_buffers_1buf(rx_ring,
1755                                                              cleaned_count);
1756                         cleaned_count = 0;
1757                 }
1758
1759                 i = rx_ring->next_to_clean;
1760                 rx_desc = I40E_RX_DESC(rx_ring, i);
1761                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1762                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1763                         I40E_RXD_QW1_STATUS_SHIFT;
1764
1765                 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1766                         break;
1767
1768                 /* This memory barrier is needed to keep us from reading
1769                  * any other fields out of the rx_desc until we know the
1770                  * DD bit is set.
1771                  */
1772                 dma_rmb();
1773
1774                 if (i40e_rx_is_programming_status(qword)) {
1775                         i40e_clean_programming_status(rx_ring, rx_desc);
1776                         I40E_RX_INCREMENT(rx_ring, i);
1777                         continue;
1778                 }
1779                 rx_bi = &rx_ring->rx_bi[i];
1780                 skb = rx_bi->skb;
1781                 prefetch(skb->data);
1782
1783                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1784                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1785
1786                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1787                            I40E_RXD_QW1_ERROR_SHIFT;
1788                 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1789
1790                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1791                            I40E_RXD_QW1_PTYPE_SHIFT;
1792                 rx_bi->skb = NULL;
1793                 cleaned_count++;
1794
1795                 /* Get the header and possibly the whole packet
1796                  * If this is an skb from previous receive dma will be 0
1797                  */
1798                 skb_put(skb, rx_packet_len);
1799                 dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
1800                                  DMA_FROM_DEVICE);
1801                 rx_bi->dma = 0;
1802
1803                 I40E_RX_INCREMENT(rx_ring, i);
1804
1805                 if (unlikely(
1806                     !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1807                         rx_ring->rx_stats.non_eop_descs++;
1808                         continue;
1809                 }
1810
1811                 /* ERR_MASK will only have valid bits if EOP set */
1812                 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1813                         dev_kfree_skb_any(skb);
1814                         continue;
1815                 }
1816
1817                 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1818                 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1819                         i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1820                                            I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1821                                            I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1822                         rx_ring->last_rx_timestamp = jiffies;
1823                 }
1824
1825                 /* probably a little skewed due to removing CRC */
1826                 total_rx_bytes += skb->len;
1827                 total_rx_packets++;
1828
1829                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1830
1831                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1832
1833                 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1834                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1835                          : 0;
1836 #ifdef I40E_FCOE
1837                 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1838                         dev_kfree_skb_any(skb);
1839                         continue;
1840                 }
1841 #endif
1842                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1843
1844                 rx_desc->wb.qword1.status_error_len = 0;
1845         } while (likely(total_rx_packets < budget));
1846
1847         u64_stats_update_begin(&rx_ring->syncp);
1848         rx_ring->stats.packets += total_rx_packets;
1849         rx_ring->stats.bytes += total_rx_bytes;
1850         u64_stats_update_end(&rx_ring->syncp);
1851         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1852         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1853
1854         return failure ? budget : total_rx_packets;
1855 }
1856
1857 static u32 i40e_buildreg_itr(const int type, const u16 itr)
1858 {
1859         u32 val;
1860
1861         val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1862               /* Don't clear PBA because that can cause lost interrupts that
1863                * came in while we were cleaning/polling
1864                */
1865               (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
1866               (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);
1867
1868         return val;
1869 }
1870
1871 /* a small macro to shorten up some long lines */
1872 #define INTREG I40E_PFINT_DYN_CTLN
1873
1874 /**
1875  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1876  * @vsi: the VSI we care about
1877  * @q_vector: q_vector for which itr is being updated and interrupt enabled
1878  *
1879  **/
1880 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1881                                           struct i40e_q_vector *q_vector)
1882 {
1883         struct i40e_hw *hw = &vsi->back->hw;
1884         bool rx = false, tx = false;
1885         u32 rxval, txval;
1886         int vector;
1887         int idx = q_vector->v_idx;
1888
1889         vector = (q_vector->v_idx + vsi->base_vector);
1890
1891         /* avoid dynamic calculation if in countdown mode OR if
1892          * all dynamic is disabled
1893          */
1894         rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1895
1896         if (q_vector->itr_countdown > 0 ||
1897             (!ITR_IS_DYNAMIC(vsi->rx_rings[idx]->rx_itr_setting) &&
1898              !ITR_IS_DYNAMIC(vsi->tx_rings[idx]->tx_itr_setting))) {
1899                 goto enable_int;
1900         }
1901
1902         if (ITR_IS_DYNAMIC(vsi->rx_rings[idx]->rx_itr_setting)) {
1903                 rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1904                 rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1905         }
1906
1907         if (ITR_IS_DYNAMIC(vsi->tx_rings[idx]->tx_itr_setting)) {
1908                 tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1909                 txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1910         }
1911
1912         if (rx || tx) {
1913                 /* get the higher of the two ITR adjustments and
1914                  * use the same value for both ITR registers
1915                  * when in adaptive mode (Rx and/or Tx)
1916                  */
1917                 u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1918
1919                 q_vector->tx.itr = q_vector->rx.itr = itr;
1920                 txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1921                 tx = true;
1922                 rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1923                 rx = true;
1924         }
1925
1926         /* only need to enable the interrupt once, but need
1927          * to possibly update both ITR values
1928          */
1929         if (rx) {
1930                 /* set the INTENA_MSK_MASK so that this first write
1931                  * won't actually enable the interrupt, instead just
1932                  * updating the ITR (it's bit 31 PF and VF)
1933                  */
1934                 rxval |= BIT(31);
1935                 /* don't check _DOWN because interrupt isn't being enabled */
1936                 wr32(hw, INTREG(vector - 1), rxval);
1937         }
1938
1939 enable_int:
1940         if (!test_bit(__I40E_DOWN, &vsi->state))
1941                 wr32(hw, INTREG(vector - 1), txval);
1942
1943         if (q_vector->itr_countdown)
1944                 q_vector->itr_countdown--;
1945         else
1946                 q_vector->itr_countdown = ITR_COUNTDOWN_START;
1947 }
1948
1949 /**
1950  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
1951  * @napi: napi struct with our devices info in it
1952  * @budget: amount of work driver is allowed to do this pass, in packets
1953  *
1954  * This function will clean all queues associated with a q_vector.
1955  *
1956  * Returns the amount of work done
1957  **/
1958 int i40e_napi_poll(struct napi_struct *napi, int budget)
1959 {
1960         struct i40e_q_vector *q_vector =
1961                                container_of(napi, struct i40e_q_vector, napi);
1962         struct i40e_vsi *vsi = q_vector->vsi;
1963         struct i40e_ring *ring;
1964         bool clean_complete = true;
1965         bool arm_wb = false;
1966         int budget_per_ring;
1967         int work_done = 0;
1968
1969         if (test_bit(__I40E_DOWN, &vsi->state)) {
1970                 napi_complete(napi);
1971                 return 0;
1972         }
1973
1974         /* Clear hung_detected bit */
1975         clear_bit(I40E_Q_VECTOR_HUNG_DETECT, &q_vector->hung_detected);
1976         /* Since the actual Tx work is minimal, we can give the Tx a larger
1977          * budget and be more aggressive about cleaning up the Tx descriptors.
1978          */
1979         i40e_for_each_ring(ring, q_vector->tx) {
1980                 if (!i40e_clean_tx_irq(vsi, ring, budget)) {
1981                         clean_complete = false;
1982                         continue;
1983                 }
1984                 arm_wb |= ring->arm_wb;
1985                 ring->arm_wb = false;
1986         }
1987
1988         /* Handle case where we are called by netpoll with a budget of 0 */
1989         if (budget <= 0)
1990                 goto tx_only;
1991
1992         /* We attempt to distribute budget to each Rx queue fairly, but don't
1993          * allow the budget to go below 1 because that would exit polling early.
1994          */
1995         budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1996
1997         i40e_for_each_ring(ring, q_vector->rx) {
1998                 int cleaned;
1999
2000                 if (ring_is_ps_enabled(ring))
2001                         cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
2002                 else
2003                         cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
2004
2005                 work_done += cleaned;
2006                 /* if we clean as many as budgeted, we must not be done */
2007                 if (cleaned >= budget_per_ring)
2008                         clean_complete = false;
2009         }
2010
2011         /* If work not completed, return budget and polling will return */
2012         if (!clean_complete) {
2013 tx_only:
2014                 if (arm_wb) {
2015                         q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2016                         i40e_enable_wb_on_itr(vsi, q_vector);
2017                 }
2018                 return budget;
2019         }
2020
2021         if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2022                 q_vector->arm_wb_state = false;
2023
2024         /* Work is done so exit the polling mode and re-enable the interrupt */
2025         napi_complete_done(napi, work_done);
2026         if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
2027                 i40e_update_enable_itr(vsi, q_vector);
2028         } else { /* Legacy mode */
2029                 i40e_irq_dynamic_enable_icr0(vsi->back, false);
2030         }
2031         return 0;
2032 }
2033
2034 /**
2035  * i40e_atr - Add a Flow Director ATR filter
2036  * @tx_ring:  ring to add programming descriptor to
2037  * @skb:      send buffer
2038  * @tx_flags: send tx flags
2039  **/
2040 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2041                      u32 tx_flags)
2042 {
2043         struct i40e_filter_program_desc *fdir_desc;
2044         struct i40e_pf *pf = tx_ring->vsi->back;
2045         union {
2046                 unsigned char *network;
2047                 struct iphdr *ipv4;
2048                 struct ipv6hdr *ipv6;
2049         } hdr;
2050         struct tcphdr *th;
2051         unsigned int hlen;
2052         u32 flex_ptype, dtype_cmd;
2053         int l4_proto;
2054         u16 i;
2055
2056         /* make sure ATR is enabled */
2057         if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2058                 return;
2059
2060         if ((pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
2061                 return;
2062
2063         /* if sampling is disabled do nothing */
2064         if (!tx_ring->atr_sample_rate)
2065                 return;
2066
2067         /* Currently only IPv4/IPv6 with TCP is supported */
2068         if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2069                 return;
2070
2071         /* snag network header to get L4 type and address */
2072         hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2073                       skb_inner_network_header(skb) : skb_network_header(skb);
2074
2075         /* Note: tx_flags gets modified to reflect inner protocols in
2076          * tx_enable_csum function if encap is enabled.
2077          */
2078         if (tx_flags & I40E_TX_FLAGS_IPV4) {
2079                 /* access ihl as u8 to avoid unaligned access on ia64 */
2080                 hlen = (hdr.network[0] & 0x0F) << 2;
2081                 l4_proto = hdr.ipv4->protocol;
2082         } else {
2083                 hlen = hdr.network - skb->data;
2084                 l4_proto = ipv6_find_hdr(skb, &hlen, IPPROTO_TCP, NULL, NULL);
2085                 hlen -= hdr.network - skb->data;
2086         }
2087
2088         if (l4_proto != IPPROTO_TCP)
2089                 return;
2090
2091         th = (struct tcphdr *)(hdr.network + hlen);
2092
2093         /* Due to lack of space, no more new filters can be programmed */
2094         if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
2095                 return;
2096         if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
2097             (!(pf->auto_disable_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE))) {
2098                 /* HW ATR eviction will take care of removing filters on FIN
2099                  * and RST packets.
2100                  */
2101                 if (th->fin || th->rst)
2102                         return;
2103         }
2104
2105         tx_ring->atr_count++;
2106
2107         /* sample on all syn/fin/rst packets or once every atr sample rate */
2108         if (!th->fin &&
2109             !th->syn &&
2110             !th->rst &&
2111             (tx_ring->atr_count < tx_ring->atr_sample_rate))
2112                 return;
2113
2114         tx_ring->atr_count = 0;
2115
2116         /* grab the next descriptor */
2117         i = tx_ring->next_to_use;
2118         fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2119
2120         i++;
2121         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2122
2123         flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2124                       I40E_TXD_FLTR_QW0_QINDEX_MASK;
2125         flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2126                       (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2127                        I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2128                       (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2129                        I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2130
2131         flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2132
2133         dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2134
2135         dtype_cmd |= (th->fin || th->rst) ?
2136                      (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2137                       I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2138                      (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2139                       I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2140
2141         dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2142                      I40E_TXD_FLTR_QW1_DEST_SHIFT;
2143
2144         dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2145                      I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2146
2147         dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2148         if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2149                 dtype_cmd |=
2150                         ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2151                         I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2152                         I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2153         else
2154                 dtype_cmd |=
2155                         ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2156                         I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2157                         I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2158
2159         if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
2160             (!(pf->auto_disable_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE)))
2161                 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2162
2163         fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2164         fdir_desc->rsvd = cpu_to_le32(0);
2165         fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2166         fdir_desc->fd_id = cpu_to_le32(0);
2167 }
2168
2169 /**
2170  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2171  * @skb:     send buffer
2172  * @tx_ring: ring to send buffer on
2173  * @flags:   the tx flags to be set
2174  *
2175  * Checks the skb and set up correspondingly several generic transmit flags
2176  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2177  *
2178  * Returns error code indicate the frame should be dropped upon error and the
2179  * otherwise  returns 0 to indicate the flags has been set properly.
2180  **/
2181 #ifdef I40E_FCOE
2182 inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2183                                       struct i40e_ring *tx_ring,
2184                                       u32 *flags)
2185 #else
2186 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2187                                              struct i40e_ring *tx_ring,
2188                                              u32 *flags)
2189 #endif
2190 {
2191         __be16 protocol = skb->protocol;
2192         u32  tx_flags = 0;
2193
2194         if (protocol == htons(ETH_P_8021Q) &&
2195             !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2196                 /* When HW VLAN acceleration is turned off by the user the
2197                  * stack sets the protocol to 8021q so that the driver
2198                  * can take any steps required to support the SW only
2199                  * VLAN handling.  In our case the driver doesn't need
2200                  * to take any further steps so just set the protocol
2201                  * to the encapsulated ethertype.
2202                  */
2203                 skb->protocol = vlan_get_protocol(skb);
2204                 goto out;
2205         }
2206
2207         /* if we have a HW VLAN tag being added, default to the HW one */
2208         if (skb_vlan_tag_present(skb)) {
2209                 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2210                 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2211         /* else if it is a SW VLAN, check the next protocol and store the tag */
2212         } else if (protocol == htons(ETH_P_8021Q)) {
2213                 struct vlan_hdr *vhdr, _vhdr;
2214
2215                 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2216                 if (!vhdr)
2217                         return -EINVAL;
2218
2219                 protocol = vhdr->h_vlan_encapsulated_proto;
2220                 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2221                 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2222         }
2223
2224         if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2225                 goto out;
2226
2227         /* Insert 802.1p priority into VLAN header */
2228         if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2229             (skb->priority != TC_PRIO_CONTROL)) {
2230                 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2231                 tx_flags |= (skb->priority & 0x7) <<
2232                                 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2233                 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2234                         struct vlan_ethhdr *vhdr;
2235                         int rc;
2236
2237                         rc = skb_cow_head(skb, 0);
2238                         if (rc < 0)
2239                                 return rc;
2240                         vhdr = (struct vlan_ethhdr *)skb->data;
2241                         vhdr->h_vlan_TCI = htons(tx_flags >>
2242                                                  I40E_TX_FLAGS_VLAN_SHIFT);
2243                 } else {
2244                         tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2245                 }
2246         }
2247
2248 out:
2249         *flags = tx_flags;
2250         return 0;
2251 }
2252
2253 /**
2254  * i40e_tso - set up the tso context descriptor
2255  * @tx_ring:  ptr to the ring to send
2256  * @skb:      ptr to the skb we're sending
2257  * @hdr_len:  ptr to the size of the packet header
2258  * @cd_type_cmd_tso_mss: Quad Word 1
2259  *
2260  * Returns 0 if no TSO can happen, 1 if tso is going, or error
2261  **/
2262 static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
2263                     u8 *hdr_len, u64 *cd_type_cmd_tso_mss)
2264 {
2265         u64 cd_cmd, cd_tso_len, cd_mss;
2266         union {
2267                 struct iphdr *v4;
2268                 struct ipv6hdr *v6;
2269                 unsigned char *hdr;
2270         } ip;
2271         union {
2272                 struct tcphdr *tcp;
2273                 struct udphdr *udp;
2274                 unsigned char *hdr;
2275         } l4;
2276         u32 paylen, l4_offset;
2277         int err;
2278
2279         if (skb->ip_summed != CHECKSUM_PARTIAL)
2280                 return 0;
2281
2282         if (!skb_is_gso(skb))
2283                 return 0;
2284
2285         err = skb_cow_head(skb, 0);
2286         if (err < 0)
2287                 return err;
2288
2289         ip.hdr = skb_network_header(skb);
2290         l4.hdr = skb_transport_header(skb);
2291
2292         /* initialize outer IP header fields */
2293         if (ip.v4->version == 4) {
2294                 ip.v4->tot_len = 0;
2295                 ip.v4->check = 0;
2296         } else {
2297                 ip.v6->payload_len = 0;
2298         }
2299
2300         if (skb_shinfo(skb)->gso_type & (SKB_GSO_UDP_TUNNEL | SKB_GSO_GRE |
2301                                          SKB_GSO_UDP_TUNNEL_CSUM)) {
2302                 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM) {
2303                         /* determine offset of outer transport header */
2304                         l4_offset = l4.hdr - skb->data;
2305
2306                         /* remove payload length from outer checksum */
2307                         paylen = skb->len - l4_offset;
2308                         csum_replace_by_diff(&l4.udp->check, htonl(paylen));
2309                 }
2310
2311                 /* reset pointers to inner headers */
2312                 ip.hdr = skb_inner_network_header(skb);
2313                 l4.hdr = skb_inner_transport_header(skb);
2314
2315                 /* initialize inner IP header fields */
2316                 if (ip.v4->version == 4) {
2317                         ip.v4->tot_len = 0;
2318                         ip.v4->check = 0;
2319                 } else {
2320                         ip.v6->payload_len = 0;
2321                 }
2322         }
2323
2324         /* determine offset of inner transport header */
2325         l4_offset = l4.hdr - skb->data;
2326
2327         /* remove payload length from inner checksum */
2328         paylen = skb->len - l4_offset;
2329         csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
2330
2331         /* compute length of segmentation header */
2332         *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2333
2334         /* find the field values */
2335         cd_cmd = I40E_TX_CTX_DESC_TSO;
2336         cd_tso_len = skb->len - *hdr_len;
2337         cd_mss = skb_shinfo(skb)->gso_size;
2338         *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2339                                 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2340                                 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2341         return 1;
2342 }
2343
2344 /**
2345  * i40e_tsyn - set up the tsyn context descriptor
2346  * @tx_ring:  ptr to the ring to send
2347  * @skb:      ptr to the skb we're sending
2348  * @tx_flags: the collected send information
2349  * @cd_type_cmd_tso_mss: Quad Word 1
2350  *
2351  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2352  **/
2353 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2354                      u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2355 {
2356         struct i40e_pf *pf;
2357
2358         if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2359                 return 0;
2360
2361         /* Tx timestamps cannot be sampled when doing TSO */
2362         if (tx_flags & I40E_TX_FLAGS_TSO)
2363                 return 0;
2364
2365         /* only timestamp the outbound packet if the user has requested it and
2366          * we are not already transmitting a packet to be timestamped
2367          */
2368         pf = i40e_netdev_to_pf(tx_ring->netdev);
2369         if (!(pf->flags & I40E_FLAG_PTP))
2370                 return 0;
2371
2372         if (pf->ptp_tx &&
2373             !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
2374                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2375                 pf->ptp_tx_skb = skb_get(skb);
2376         } else {
2377                 return 0;
2378         }
2379
2380         *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
2381                                 I40E_TXD_CTX_QW1_CMD_SHIFT;
2382
2383         return 1;
2384 }
2385
2386 /**
2387  * i40e_tx_enable_csum - Enable Tx checksum offloads
2388  * @skb: send buffer
2389  * @tx_flags: pointer to Tx flags currently set
2390  * @td_cmd: Tx descriptor command bits to set
2391  * @td_offset: Tx descriptor header offsets to set
2392  * @tx_ring: Tx descriptor ring
2393  * @cd_tunneling: ptr to context desc bits
2394  **/
2395 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
2396                                u32 *td_cmd, u32 *td_offset,
2397                                struct i40e_ring *tx_ring,
2398                                u32 *cd_tunneling)
2399 {
2400         union {
2401                 struct iphdr *v4;
2402                 struct ipv6hdr *v6;
2403                 unsigned char *hdr;
2404         } ip;
2405         union {
2406                 struct tcphdr *tcp;
2407                 struct udphdr *udp;
2408                 unsigned char *hdr;
2409         } l4;
2410         unsigned char *exthdr;
2411         u32 offset, cmd = 0, tunnel = 0;
2412         __be16 frag_off;
2413         u8 l4_proto = 0;
2414
2415         if (skb->ip_summed != CHECKSUM_PARTIAL)
2416                 return 0;
2417
2418         ip.hdr = skb_network_header(skb);
2419         l4.hdr = skb_transport_header(skb);
2420
2421         /* compute outer L2 header size */
2422         offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2423
2424         if (skb->encapsulation) {
2425                 /* define outer network header type */
2426                 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2427                         tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2428                                   I40E_TX_CTX_EXT_IP_IPV4 :
2429                                   I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2430
2431                         l4_proto = ip.v4->protocol;
2432                 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2433                         tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
2434
2435                         exthdr = ip.hdr + sizeof(*ip.v6);
2436                         l4_proto = ip.v6->nexthdr;
2437                         if (l4.hdr != exthdr)
2438                                 ipv6_skip_exthdr(skb, exthdr - skb->data,
2439                                                  &l4_proto, &frag_off);
2440                 }
2441
2442                 /* compute outer L3 header size */
2443                 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
2444                           I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
2445
2446                 /* switch IP header pointer from outer to inner header */
2447                 ip.hdr = skb_inner_network_header(skb);
2448
2449                 /* define outer transport */
2450                 switch (l4_proto) {
2451                 case IPPROTO_UDP:
2452                         tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
2453                         *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2454                         break;
2455                 case IPPROTO_GRE:
2456                         tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
2457                         *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2458                         break;
2459                 default:
2460                         if (*tx_flags & I40E_TX_FLAGS_TSO)
2461                                 return -1;
2462
2463                         skb_checksum_help(skb);
2464                         return 0;
2465                 }
2466
2467                 /* compute tunnel header size */
2468                 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
2469                           I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2470
2471                 /* indicate if we need to offload outer UDP header */
2472                 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
2473                     (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
2474                         tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
2475
2476                 /* record tunnel offload values */
2477                 *cd_tunneling |= tunnel;
2478
2479                 /* switch L4 header pointer from outer to inner */
2480                 l4.hdr = skb_inner_transport_header(skb);
2481                 l4_proto = 0;
2482
2483                 /* reset type as we transition from outer to inner headers */
2484                 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
2485                 if (ip.v4->version == 4)
2486                         *tx_flags |= I40E_TX_FLAGS_IPV4;
2487                 if (ip.v6->version == 6)
2488                         *tx_flags |= I40E_TX_FLAGS_IPV6;
2489         }
2490
2491         /* Enable IP checksum offloads */
2492         if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2493                 l4_proto = ip.v4->protocol;
2494                 /* the stack computes the IP header already, the only time we
2495                  * need the hardware to recompute it is in the case of TSO.
2496                  */
2497                 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2498                        I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
2499                        I40E_TX_DESC_CMD_IIPT_IPV4;
2500         } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2501                 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2502
2503                 exthdr = ip.hdr + sizeof(*ip.v6);
2504                 l4_proto = ip.v6->nexthdr;
2505                 if (l4.hdr != exthdr)
2506                         ipv6_skip_exthdr(skb, exthdr - skb->data,
2507                                          &l4_proto, &frag_off);
2508         }
2509
2510         /* compute inner L3 header size */
2511         offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2512
2513         /* Enable L4 checksum offloads */
2514         switch (l4_proto) {
2515         case IPPROTO_TCP:
2516                 /* enable checksum offloads */
2517                 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2518                 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2519                 break;
2520         case IPPROTO_SCTP:
2521                 /* enable SCTP checksum offload */
2522                 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2523                 offset |= (sizeof(struct sctphdr) >> 2) <<
2524                           I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2525                 break;
2526         case IPPROTO_UDP:
2527                 /* enable UDP checksum offload */
2528                 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2529                 offset |= (sizeof(struct udphdr) >> 2) <<
2530                           I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2531                 break;
2532         default:
2533                 if (*tx_flags & I40E_TX_FLAGS_TSO)
2534                         return -1;
2535                 skb_checksum_help(skb);
2536                 return 0;
2537         }
2538
2539         *td_cmd |= cmd;
2540         *td_offset |= offset;
2541
2542         return 1;
2543 }
2544
2545 /**
2546  * i40e_create_tx_ctx Build the Tx context descriptor
2547  * @tx_ring:  ring to create the descriptor on
2548  * @cd_type_cmd_tso_mss: Quad Word 1
2549  * @cd_tunneling: Quad Word 0 - bits 0-31
2550  * @cd_l2tag2: Quad Word 0 - bits 32-63
2551  **/
2552 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2553                                const u64 cd_type_cmd_tso_mss,
2554                                const u32 cd_tunneling, const u32 cd_l2tag2)
2555 {
2556         struct i40e_tx_context_desc *context_desc;
2557         int i = tx_ring->next_to_use;
2558
2559         if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2560             !cd_tunneling && !cd_l2tag2)
2561                 return;
2562
2563         /* grab the next descriptor */
2564         context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2565
2566         i++;
2567         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2568
2569         /* cpu_to_le32 and assign to struct fields */
2570         context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2571         context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2572         context_desc->rsvd = cpu_to_le16(0);
2573         context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2574 }
2575
2576 /**
2577  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2578  * @tx_ring: the ring to be checked
2579  * @size:    the size buffer we want to assure is available
2580  *
2581  * Returns -EBUSY if a stop is needed, else 0
2582  **/
2583 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2584 {
2585         netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2586         /* Memory barrier before checking head and tail */
2587         smp_mb();
2588
2589         /* Check again in a case another CPU has just made room available. */
2590         if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2591                 return -EBUSY;
2592
2593         /* A reprieve! - use start_queue because it doesn't call schedule */
2594         netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2595         ++tx_ring->tx_stats.restart_queue;
2596         return 0;
2597 }
2598
2599 /**
2600  * __i40e_chk_linearize - Check if there are more than 8 fragments per packet
2601  * @skb:      send buffer
2602  *
2603  * Note: Our HW can't scatter-gather more than 8 fragments to build
2604  * a packet on the wire and so we need to figure out the cases where we
2605  * need to linearize the skb.
2606  **/
2607 bool __i40e_chk_linearize(struct sk_buff *skb)
2608 {
2609         const struct skb_frag_struct *frag, *stale;
2610         int gso_size, nr_frags, sum;
2611
2612         /* check to see if TSO is enabled, if so we may get a repreive */
2613         gso_size = skb_shinfo(skb)->gso_size;
2614         if (unlikely(!gso_size))
2615                 return true;
2616
2617         /* no need to check if number of frags is less than 8 */
2618         nr_frags = skb_shinfo(skb)->nr_frags;
2619         if (nr_frags < I40E_MAX_BUFFER_TXD)
2620                 return false;
2621
2622         /* We need to walk through the list and validate that each group
2623          * of 6 fragments totals at least gso_size.  However we don't need
2624          * to perform such validation on the first or last 6 since the first
2625          * 6 cannot inherit any data from a descriptor before them, and the
2626          * last 6 cannot inherit any data from a descriptor after them.
2627          */
2628         nr_frags -= I40E_MAX_BUFFER_TXD - 1;
2629         frag = &skb_shinfo(skb)->frags[0];
2630
2631         /* Initialize size to the negative value of gso_size minus 1.  We
2632          * use this as the worst case scenerio in which the frag ahead
2633          * of us only provides one byte which is why we are limited to 6
2634          * descriptors for a single transmit as the header and previous
2635          * fragment are already consuming 2 descriptors.
2636          */
2637         sum = 1 - gso_size;
2638
2639         /* Add size of frags 1 through 5 to create our initial sum */
2640         sum += skb_frag_size(++frag);
2641         sum += skb_frag_size(++frag);
2642         sum += skb_frag_size(++frag);
2643         sum += skb_frag_size(++frag);
2644         sum += skb_frag_size(++frag);
2645
2646         /* Walk through fragments adding latest fragment, testing it, and
2647          * then removing stale fragments from the sum.
2648          */
2649         stale = &skb_shinfo(skb)->frags[0];
2650         for (;;) {
2651                 sum += skb_frag_size(++frag);
2652
2653                 /* if sum is negative we failed to make sufficient progress */
2654                 if (sum < 0)
2655                         return true;
2656
2657                 /* use pre-decrement to avoid processing last fragment */
2658                 if (!--nr_frags)
2659                         break;
2660
2661                 sum -= skb_frag_size(++stale);
2662         }
2663
2664         return false;
2665 }
2666
2667 /**
2668  * i40e_tx_map - Build the Tx descriptor
2669  * @tx_ring:  ring to send buffer on
2670  * @skb:      send buffer
2671  * @first:    first buffer info buffer to use
2672  * @tx_flags: collected send information
2673  * @hdr_len:  size of the packet header
2674  * @td_cmd:   the command field in the descriptor
2675  * @td_offset: offset for checksum or crc
2676  **/
2677 #ifdef I40E_FCOE
2678 inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2679                         struct i40e_tx_buffer *first, u32 tx_flags,
2680                         const u8 hdr_len, u32 td_cmd, u32 td_offset)
2681 #else
2682 static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2683                                struct i40e_tx_buffer *first, u32 tx_flags,
2684                                const u8 hdr_len, u32 td_cmd, u32 td_offset)
2685 #endif
2686 {
2687         unsigned int data_len = skb->data_len;
2688         unsigned int size = skb_headlen(skb);
2689         struct skb_frag_struct *frag;
2690         struct i40e_tx_buffer *tx_bi;
2691         struct i40e_tx_desc *tx_desc;
2692         u16 i = tx_ring->next_to_use;
2693         u32 td_tag = 0;
2694         dma_addr_t dma;
2695         u16 gso_segs;
2696         u16 desc_count = 0;
2697         bool tail_bump = true;
2698         bool do_rs = false;
2699
2700         if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2701                 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2702                 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2703                          I40E_TX_FLAGS_VLAN_SHIFT;
2704         }
2705
2706         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
2707                 gso_segs = skb_shinfo(skb)->gso_segs;
2708         else
2709                 gso_segs = 1;
2710
2711         /* multiply data chunks by size of headers */
2712         first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
2713         first->gso_segs = gso_segs;
2714         first->skb = skb;
2715         first->tx_flags = tx_flags;
2716
2717         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2718
2719         tx_desc = I40E_TX_DESC(tx_ring, i);
2720         tx_bi = first;
2721
2722         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2723                 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
2724
2725                 if (dma_mapping_error(tx_ring->dev, dma))
2726                         goto dma_error;
2727
2728                 /* record length, and DMA address */
2729                 dma_unmap_len_set(tx_bi, len, size);
2730                 dma_unmap_addr_set(tx_bi, dma, dma);
2731
2732                 /* align size to end of page */
2733                 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
2734                 tx_desc->buffer_addr = cpu_to_le64(dma);
2735
2736                 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2737                         tx_desc->cmd_type_offset_bsz =
2738                                 build_ctob(td_cmd, td_offset,
2739                                            max_data, td_tag);
2740
2741                         tx_desc++;
2742                         i++;
2743                         desc_count++;
2744
2745                         if (i == tx_ring->count) {
2746                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
2747                                 i = 0;
2748                         }
2749
2750                         dma += max_data;
2751                         size -= max_data;
2752
2753                         max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
2754                         tx_desc->buffer_addr = cpu_to_le64(dma);
2755                 }
2756
2757                 if (likely(!data_len))
2758                         break;
2759
2760                 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2761                                                           size, td_tag);
2762
2763                 tx_desc++;
2764                 i++;
2765                 desc_count++;
2766
2767                 if (i == tx_ring->count) {
2768                         tx_desc = I40E_TX_DESC(tx_ring, 0);
2769                         i = 0;
2770                 }
2771
2772                 size = skb_frag_size(frag);
2773                 data_len -= size;
2774
2775                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2776                                        DMA_TO_DEVICE);
2777
2778                 tx_bi = &tx_ring->tx_bi[i];
2779         }
2780
2781         /* set next_to_watch value indicating a packet is present */
2782         first->next_to_watch = tx_desc;
2783
2784         i++;
2785         if (i == tx_ring->count)
2786                 i = 0;
2787
2788         tx_ring->next_to_use = i;
2789
2790         netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
2791                                                  tx_ring->queue_index),
2792                                                  first->bytecount);
2793         i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2794
2795         /* Algorithm to optimize tail and RS bit setting:
2796          * if xmit_more is supported
2797          *      if xmit_more is true
2798          *              do not update tail and do not mark RS bit.
2799          *      if xmit_more is false and last xmit_more was false
2800          *              if every packet spanned less than 4 desc
2801          *                      then set RS bit on 4th packet and update tail
2802          *                      on every packet
2803          *              else
2804          *                      update tail and set RS bit on every packet.
2805          *      if xmit_more is false and last_xmit_more was true
2806          *              update tail and set RS bit.
2807          *
2808          * Optimization: wmb to be issued only in case of tail update.
2809          * Also optimize the Descriptor WB path for RS bit with the same
2810          * algorithm.
2811          *
2812          * Note: If there are less than 4 packets
2813          * pending and interrupts were disabled the service task will
2814          * trigger a force WB.
2815          */
2816         if (skb->xmit_more  &&
2817             !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2818                                                     tx_ring->queue_index))) {
2819                 tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2820                 tail_bump = false;
2821         } else if (!skb->xmit_more &&
2822                    !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2823                                                        tx_ring->queue_index)) &&
2824                    (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) &&
2825                    (tx_ring->packet_stride < WB_STRIDE) &&
2826                    (desc_count < WB_STRIDE)) {
2827                 tx_ring->packet_stride++;
2828         } else {
2829                 tx_ring->packet_stride = 0;
2830                 tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2831                 do_rs = true;
2832         }
2833         if (do_rs)
2834                 tx_ring->packet_stride = 0;
2835
2836         tx_desc->cmd_type_offset_bsz =
2837                         build_ctob(td_cmd, td_offset, size, td_tag) |
2838                         cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD :
2839                                                   I40E_TX_DESC_CMD_EOP) <<
2840                                                   I40E_TXD_QW1_CMD_SHIFT);
2841
2842         /* notify HW of packet */
2843         if (!tail_bump)
2844                 prefetchw(tx_desc + 1);
2845
2846         if (tail_bump) {
2847                 /* Force memory writes to complete before letting h/w
2848                  * know there are new descriptors to fetch.  (Only
2849                  * applicable for weak-ordered memory model archs,
2850                  * such as IA-64).
2851                  */
2852                 wmb();
2853                 writel(i, tx_ring->tail);
2854         }
2855
2856         return;
2857
2858 dma_error:
2859         dev_info(tx_ring->dev, "TX DMA map failed\n");
2860
2861         /* clear dma mappings for failed tx_bi map */
2862         for (;;) {
2863                 tx_bi = &tx_ring->tx_bi[i];
2864                 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2865                 if (tx_bi == first)
2866                         break;
2867                 if (i == 0)
2868                         i = tx_ring->count;
2869                 i--;
2870         }
2871
2872         tx_ring->next_to_use = i;
2873 }
2874
2875 /**
2876  * i40e_xmit_frame_ring - Sends buffer on Tx ring
2877  * @skb:     send buffer
2878  * @tx_ring: ring to send buffer on
2879  *
2880  * Returns NETDEV_TX_OK if sent, else an error code
2881  **/
2882 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2883                                         struct i40e_ring *tx_ring)
2884 {
2885         u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2886         u32 cd_tunneling = 0, cd_l2tag2 = 0;
2887         struct i40e_tx_buffer *first;
2888         u32 td_offset = 0;
2889         u32 tx_flags = 0;
2890         __be16 protocol;
2891         u32 td_cmd = 0;
2892         u8 hdr_len = 0;
2893         int tso, count;
2894         int tsyn;
2895
2896         /* prefetch the data, we'll need it later */
2897         prefetch(skb->data);
2898
2899         count = i40e_xmit_descriptor_count(skb);
2900         if (i40e_chk_linearize(skb, count)) {
2901                 if (__skb_linearize(skb))
2902                         goto out_drop;
2903                 count = i40e_txd_use_count(skb->len);
2904                 tx_ring->tx_stats.tx_linearize++;
2905         }
2906
2907         /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2908          *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2909          *       + 4 desc gap to avoid the cache line where head is,
2910          *       + 1 desc for context descriptor,
2911          * otherwise try next time
2912          */
2913         if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2914                 tx_ring->tx_stats.tx_busy++;
2915                 return NETDEV_TX_BUSY;
2916         }
2917
2918         /* prepare the xmit flags */
2919         if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2920                 goto out_drop;
2921
2922         /* obtain protocol of skb */
2923         protocol = vlan_get_protocol(skb);
2924
2925         /* record the location of the first descriptor for this packet */
2926         first = &tx_ring->tx_bi[tx_ring->next_to_use];
2927
2928         /* setup IPv4/IPv6 offloads */
2929         if (protocol == htons(ETH_P_IP))
2930                 tx_flags |= I40E_TX_FLAGS_IPV4;
2931         else if (protocol == htons(ETH_P_IPV6))
2932                 tx_flags |= I40E_TX_FLAGS_IPV6;
2933
2934         tso = i40e_tso(tx_ring, skb, &hdr_len, &cd_type_cmd_tso_mss);
2935
2936         if (tso < 0)
2937                 goto out_drop;
2938         else if (tso)
2939                 tx_flags |= I40E_TX_FLAGS_TSO;
2940
2941         /* Always offload the checksum, since it's in the data descriptor */
2942         tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2943                                   tx_ring, &cd_tunneling);
2944         if (tso < 0)
2945                 goto out_drop;
2946
2947         tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
2948
2949         if (tsyn)
2950                 tx_flags |= I40E_TX_FLAGS_TSYN;
2951
2952         skb_tx_timestamp(skb);
2953
2954         /* always enable CRC insertion offload */
2955         td_cmd |= I40E_TX_DESC_CMD_ICRC;
2956
2957         i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2958                            cd_tunneling, cd_l2tag2);
2959
2960         /* Add Flow Director ATR if it's enabled.
2961          *
2962          * NOTE: this must always be directly before the data descriptor.
2963          */
2964         i40e_atr(tx_ring, skb, tx_flags);
2965
2966         i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2967                     td_cmd, td_offset);
2968
2969         return NETDEV_TX_OK;
2970
2971 out_drop:
2972         dev_kfree_skb_any(skb);
2973         return NETDEV_TX_OK;
2974 }
2975
2976 /**
2977  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2978  * @skb:    send buffer
2979  * @netdev: network interface device structure
2980  *
2981  * Returns NETDEV_TX_OK if sent, else an error code
2982  **/
2983 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2984 {
2985         struct i40e_netdev_priv *np = netdev_priv(netdev);
2986         struct i40e_vsi *vsi = np->vsi;
2987         struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
2988
2989         /* hardware can't handle really short frames, hardware padding works
2990          * beyond this point
2991          */
2992         if (skb_put_padto(skb, I40E_MIN_TX_LEN))
2993                 return NETDEV_TX_OK;
2994
2995         return i40e_xmit_frame_ring(skb, tx_ring);
2996 }