i40e/i40evf: prefetch skb data on transmit
[cascardo/linux.git] / drivers / net / ethernet / intel / i40e / i40e_txrx.c
1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Driver
4  * Copyright(c) 2013 - 2014 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26
27 #include <linux/prefetch.h>
28 #include <net/busy_poll.h>
29 #include "i40e.h"
30 #include "i40e_prototype.h"
31
32 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
33                                 u32 td_tag)
34 {
35         return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
36                            ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
37                            ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
38                            ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
39                            ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
40 }
41
42 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
43 #define I40E_FD_CLEAN_DELAY 10
44 /**
45  * i40e_program_fdir_filter - Program a Flow Director filter
46  * @fdir_data: Packet data that will be filter parameters
47  * @raw_packet: the pre-allocated packet buffer for FDir
48  * @pf: The PF pointer
49  * @add: True for add/update, False for remove
50  **/
51 int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, u8 *raw_packet,
52                              struct i40e_pf *pf, bool add)
53 {
54         struct i40e_filter_program_desc *fdir_desc;
55         struct i40e_tx_buffer *tx_buf, *first;
56         struct i40e_tx_desc *tx_desc;
57         struct i40e_ring *tx_ring;
58         unsigned int fpt, dcc;
59         struct i40e_vsi *vsi;
60         struct device *dev;
61         dma_addr_t dma;
62         u32 td_cmd = 0;
63         u16 delay = 0;
64         u16 i;
65
66         /* find existing FDIR VSI */
67         vsi = NULL;
68         for (i = 0; i < pf->num_alloc_vsi; i++)
69                 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR)
70                         vsi = pf->vsi[i];
71         if (!vsi)
72                 return -ENOENT;
73
74         tx_ring = vsi->tx_rings[0];
75         dev = tx_ring->dev;
76
77         /* we need two descriptors to add/del a filter and we can wait */
78         do {
79                 if (I40E_DESC_UNUSED(tx_ring) > 1)
80                         break;
81                 msleep_interruptible(1);
82                 delay++;
83         } while (delay < I40E_FD_CLEAN_DELAY);
84
85         if (!(I40E_DESC_UNUSED(tx_ring) > 1))
86                 return -EAGAIN;
87
88         dma = dma_map_single(dev, raw_packet,
89                              I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
90         if (dma_mapping_error(dev, dma))
91                 goto dma_fail;
92
93         /* grab the next descriptor */
94         i = tx_ring->next_to_use;
95         fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
96         first = &tx_ring->tx_bi[i];
97         memset(first, 0, sizeof(struct i40e_tx_buffer));
98
99         tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
100
101         fpt = (fdir_data->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
102               I40E_TXD_FLTR_QW0_QINDEX_MASK;
103
104         fpt |= (fdir_data->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT) &
105                I40E_TXD_FLTR_QW0_FLEXOFF_MASK;
106
107         fpt |= (fdir_data->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) &
108                I40E_TXD_FLTR_QW0_PCTYPE_MASK;
109
110         /* Use LAN VSI Id if not programmed by user */
111         if (fdir_data->dest_vsi == 0)
112                 fpt |= (pf->vsi[pf->lan_vsi]->id) <<
113                        I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
114         else
115                 fpt |= ((u32)fdir_data->dest_vsi <<
116                         I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT) &
117                        I40E_TXD_FLTR_QW0_DEST_VSI_MASK;
118
119         dcc = I40E_TX_DESC_DTYPE_FILTER_PROG;
120
121         if (add)
122                 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
123                        I40E_TXD_FLTR_QW1_PCMD_SHIFT;
124         else
125                 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
126                        I40E_TXD_FLTR_QW1_PCMD_SHIFT;
127
128         dcc |= (fdir_data->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT) &
129                I40E_TXD_FLTR_QW1_DEST_MASK;
130
131         dcc |= (fdir_data->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT) &
132                I40E_TXD_FLTR_QW1_FD_STATUS_MASK;
133
134         if (fdir_data->cnt_index != 0) {
135                 dcc |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
136                 dcc |= ((u32)fdir_data->cnt_index <<
137                         I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
138                         I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
139         }
140
141         fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(fpt);
142         fdir_desc->rsvd = cpu_to_le32(0);
143         fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dcc);
144         fdir_desc->fd_id = cpu_to_le32(fdir_data->fd_id);
145
146         /* Now program a dummy descriptor */
147         i = tx_ring->next_to_use;
148         tx_desc = I40E_TX_DESC(tx_ring, i);
149         tx_buf = &tx_ring->tx_bi[i];
150
151         tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
152
153         memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
154
155         /* record length, and DMA address */
156         dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
157         dma_unmap_addr_set(tx_buf, dma, dma);
158
159         tx_desc->buffer_addr = cpu_to_le64(dma);
160         td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
161
162         tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
163         tx_buf->raw_buf = (void *)raw_packet;
164
165         tx_desc->cmd_type_offset_bsz =
166                 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
167
168         /* Force memory writes to complete before letting h/w
169          * know there are new descriptors to fetch.
170          */
171         wmb();
172
173         /* Mark the data descriptor to be watched */
174         first->next_to_watch = tx_desc;
175
176         writel(tx_ring->next_to_use, tx_ring->tail);
177         return 0;
178
179 dma_fail:
180         return -1;
181 }
182
183 #define IP_HEADER_OFFSET 14
184 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
185 /**
186  * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
187  * @vsi: pointer to the targeted VSI
188  * @fd_data: the flow director data required for the FDir descriptor
189  * @add: true adds a filter, false removes it
190  *
191  * Returns 0 if the filters were successfully added or removed
192  **/
193 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
194                                    struct i40e_fdir_filter *fd_data,
195                                    bool add)
196 {
197         struct i40e_pf *pf = vsi->back;
198         struct udphdr *udp;
199         struct iphdr *ip;
200         bool err = false;
201         u8 *raw_packet;
202         int ret;
203         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
204                 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
205                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
206
207         raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
208         if (!raw_packet)
209                 return -ENOMEM;
210         memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
211
212         ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
213         udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
214               + sizeof(struct iphdr));
215
216         ip->daddr = fd_data->dst_ip[0];
217         udp->dest = fd_data->dst_port;
218         ip->saddr = fd_data->src_ip[0];
219         udp->source = fd_data->src_port;
220
221         fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
222         ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
223         if (ret) {
224                 dev_info(&pf->pdev->dev,
225                          "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
226                          fd_data->pctype, fd_data->fd_id, ret);
227                 err = true;
228         } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
229                 if (add)
230                         dev_info(&pf->pdev->dev,
231                                  "Filter OK for PCTYPE %d loc = %d\n",
232                                  fd_data->pctype, fd_data->fd_id);
233                 else
234                         dev_info(&pf->pdev->dev,
235                                  "Filter deleted for PCTYPE %d loc = %d\n",
236                                  fd_data->pctype, fd_data->fd_id);
237         }
238         return err ? -EOPNOTSUPP : 0;
239 }
240
241 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
242 /**
243  * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
244  * @vsi: pointer to the targeted VSI
245  * @fd_data: the flow director data required for the FDir descriptor
246  * @add: true adds a filter, false removes it
247  *
248  * Returns 0 if the filters were successfully added or removed
249  **/
250 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
251                                    struct i40e_fdir_filter *fd_data,
252                                    bool add)
253 {
254         struct i40e_pf *pf = vsi->back;
255         struct tcphdr *tcp;
256         struct iphdr *ip;
257         bool err = false;
258         u8 *raw_packet;
259         int ret;
260         /* Dummy packet */
261         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
262                 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
263                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
264                 0x0, 0x72, 0, 0, 0, 0};
265
266         raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
267         if (!raw_packet)
268                 return -ENOMEM;
269         memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
270
271         ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
272         tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
273               + sizeof(struct iphdr));
274
275         ip->daddr = fd_data->dst_ip[0];
276         tcp->dest = fd_data->dst_port;
277         ip->saddr = fd_data->src_ip[0];
278         tcp->source = fd_data->src_port;
279
280         if (add) {
281                 pf->fd_tcp_rule++;
282                 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) {
283                         if (I40E_DEBUG_FD & pf->hw.debug_mask)
284                                 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
285                         pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED;
286                 }
287         } else {
288                 pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ?
289                                   (pf->fd_tcp_rule - 1) : 0;
290                 if (pf->fd_tcp_rule == 0) {
291                         pf->flags |= I40E_FLAG_FD_ATR_ENABLED;
292                         if (I40E_DEBUG_FD & pf->hw.debug_mask)
293                                 dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
294                 }
295         }
296
297         fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
298         ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
299
300         if (ret) {
301                 dev_info(&pf->pdev->dev,
302                          "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
303                          fd_data->pctype, fd_data->fd_id, ret);
304                 err = true;
305         } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
306                 if (add)
307                         dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
308                                  fd_data->pctype, fd_data->fd_id);
309                 else
310                         dev_info(&pf->pdev->dev,
311                                  "Filter deleted for PCTYPE %d loc = %d\n",
312                                  fd_data->pctype, fd_data->fd_id);
313         }
314
315         return err ? -EOPNOTSUPP : 0;
316 }
317
318 /**
319  * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
320  * a specific flow spec
321  * @vsi: pointer to the targeted VSI
322  * @fd_data: the flow director data required for the FDir descriptor
323  * @add: true adds a filter, false removes it
324  *
325  * Always returns -EOPNOTSUPP
326  **/
327 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
328                                     struct i40e_fdir_filter *fd_data,
329                                     bool add)
330 {
331         return -EOPNOTSUPP;
332 }
333
334 #define I40E_IP_DUMMY_PACKET_LEN 34
335 /**
336  * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
337  * a specific flow spec
338  * @vsi: pointer to the targeted VSI
339  * @fd_data: the flow director data required for the FDir descriptor
340  * @add: true adds a filter, false removes it
341  *
342  * Returns 0 if the filters were successfully added or removed
343  **/
344 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
345                                   struct i40e_fdir_filter *fd_data,
346                                   bool add)
347 {
348         struct i40e_pf *pf = vsi->back;
349         struct iphdr *ip;
350         bool err = false;
351         u8 *raw_packet;
352         int ret;
353         int i;
354         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
355                 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
356                 0, 0, 0, 0};
357
358         for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
359              i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
360                 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
361                 if (!raw_packet)
362                         return -ENOMEM;
363                 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
364                 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
365
366                 ip->saddr = fd_data->src_ip[0];
367                 ip->daddr = fd_data->dst_ip[0];
368                 ip->protocol = 0;
369
370                 fd_data->pctype = i;
371                 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
372
373                 if (ret) {
374                         dev_info(&pf->pdev->dev,
375                                  "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
376                                  fd_data->pctype, fd_data->fd_id, ret);
377                         err = true;
378                 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
379                         if (add)
380                                 dev_info(&pf->pdev->dev,
381                                          "Filter OK for PCTYPE %d loc = %d\n",
382                                          fd_data->pctype, fd_data->fd_id);
383                         else
384                                 dev_info(&pf->pdev->dev,
385                                          "Filter deleted for PCTYPE %d loc = %d\n",
386                                          fd_data->pctype, fd_data->fd_id);
387                 }
388         }
389
390         return err ? -EOPNOTSUPP : 0;
391 }
392
393 /**
394  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
395  * @vsi: pointer to the targeted VSI
396  * @cmd: command to get or set RX flow classification rules
397  * @add: true adds a filter, false removes it
398  *
399  **/
400 int i40e_add_del_fdir(struct i40e_vsi *vsi,
401                       struct i40e_fdir_filter *input, bool add)
402 {
403         struct i40e_pf *pf = vsi->back;
404         int ret;
405
406         switch (input->flow_type & ~FLOW_EXT) {
407         case TCP_V4_FLOW:
408                 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
409                 break;
410         case UDP_V4_FLOW:
411                 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
412                 break;
413         case SCTP_V4_FLOW:
414                 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
415                 break;
416         case IPV4_FLOW:
417                 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
418                 break;
419         case IP_USER_FLOW:
420                 switch (input->ip4_proto) {
421                 case IPPROTO_TCP:
422                         ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
423                         break;
424                 case IPPROTO_UDP:
425                         ret = i40e_add_del_fdir_udpv4(vsi, input, add);
426                         break;
427                 case IPPROTO_SCTP:
428                         ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
429                         break;
430                 default:
431                         ret = i40e_add_del_fdir_ipv4(vsi, input, add);
432                         break;
433                 }
434                 break;
435         default:
436                 dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
437                          input->flow_type);
438                 ret = -EINVAL;
439         }
440
441         /* The buffer allocated here is freed by the i40e_clean_tx_ring() */
442         return ret;
443 }
444
445 /**
446  * i40e_fd_handle_status - check the Programming Status for FD
447  * @rx_ring: the Rx ring for this descriptor
448  * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
449  * @prog_id: the id originally used for programming
450  *
451  * This is used to verify if the FD programming or invalidation
452  * requested by SW to the HW is successful or not and take actions accordingly.
453  **/
454 static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
455                                   union i40e_rx_desc *rx_desc, u8 prog_id)
456 {
457         struct i40e_pf *pf = rx_ring->vsi->back;
458         struct pci_dev *pdev = pf->pdev;
459         u32 fcnt_prog, fcnt_avail;
460         u32 error;
461         u64 qw;
462
463         qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
464         error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
465                 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
466
467         if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
468                 pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
469                 if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
470                     (I40E_DEBUG_FD & pf->hw.debug_mask))
471                         dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
472                                  pf->fd_inv);
473
474                 /* Check if the programming error is for ATR.
475                  * If so, auto disable ATR and set a state for
476                  * flush in progress. Next time we come here if flush is in
477                  * progress do nothing, once flush is complete the state will
478                  * be cleared.
479                  */
480                 if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state))
481                         return;
482
483                 pf->fd_add_err++;
484                 /* store the current atr filter count */
485                 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
486
487                 if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
488                     (pf->auto_disable_flags & I40E_FLAG_FD_SB_ENABLED)) {
489                         pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
490                         set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state);
491                 }
492
493                 /* filter programming failed most likely due to table full */
494                 fcnt_prog = i40e_get_global_fd_count(pf);
495                 fcnt_avail = pf->fdir_pf_filter_count;
496                 /* If ATR is running fcnt_prog can quickly change,
497                  * if we are very close to full, it makes sense to disable
498                  * FD ATR/SB and then re-enable it when there is room.
499                  */
500                 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
501                         if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
502                             !(pf->auto_disable_flags &
503                                      I40E_FLAG_FD_SB_ENABLED)) {
504                                 if (I40E_DEBUG_FD & pf->hw.debug_mask)
505                                         dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
506                                 pf->auto_disable_flags |=
507                                                         I40E_FLAG_FD_SB_ENABLED;
508                         }
509                 } else {
510                         dev_info(&pdev->dev,
511                                 "FD filter programming failed due to incorrect filter parameters\n");
512                 }
513         } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
514                 if (I40E_DEBUG_FD & pf->hw.debug_mask)
515                         dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
516                                  rx_desc->wb.qword0.hi_dword.fd_id);
517         }
518 }
519
520 /**
521  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
522  * @ring:      the ring that owns the buffer
523  * @tx_buffer: the buffer to free
524  **/
525 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
526                                             struct i40e_tx_buffer *tx_buffer)
527 {
528         if (tx_buffer->skb) {
529                 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
530                         kfree(tx_buffer->raw_buf);
531                 else
532                         dev_kfree_skb_any(tx_buffer->skb);
533
534                 if (dma_unmap_len(tx_buffer, len))
535                         dma_unmap_single(ring->dev,
536                                          dma_unmap_addr(tx_buffer, dma),
537                                          dma_unmap_len(tx_buffer, len),
538                                          DMA_TO_DEVICE);
539         } else if (dma_unmap_len(tx_buffer, len)) {
540                 dma_unmap_page(ring->dev,
541                                dma_unmap_addr(tx_buffer, dma),
542                                dma_unmap_len(tx_buffer, len),
543                                DMA_TO_DEVICE);
544         }
545         tx_buffer->next_to_watch = NULL;
546         tx_buffer->skb = NULL;
547         dma_unmap_len_set(tx_buffer, len, 0);
548         /* tx_buffer must be completely set up in the transmit path */
549 }
550
551 /**
552  * i40e_clean_tx_ring - Free any empty Tx buffers
553  * @tx_ring: ring to be cleaned
554  **/
555 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
556 {
557         unsigned long bi_size;
558         u16 i;
559
560         /* ring already cleared, nothing to do */
561         if (!tx_ring->tx_bi)
562                 return;
563
564         /* Free all the Tx ring sk_buffs */
565         for (i = 0; i < tx_ring->count; i++)
566                 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
567
568         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
569         memset(tx_ring->tx_bi, 0, bi_size);
570
571         /* Zero out the descriptor ring */
572         memset(tx_ring->desc, 0, tx_ring->size);
573
574         tx_ring->next_to_use = 0;
575         tx_ring->next_to_clean = 0;
576
577         if (!tx_ring->netdev)
578                 return;
579
580         /* cleanup Tx queue statistics */
581         netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
582                                                   tx_ring->queue_index));
583 }
584
585 /**
586  * i40e_free_tx_resources - Free Tx resources per queue
587  * @tx_ring: Tx descriptor ring for a specific queue
588  *
589  * Free all transmit software resources
590  **/
591 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
592 {
593         i40e_clean_tx_ring(tx_ring);
594         kfree(tx_ring->tx_bi);
595         tx_ring->tx_bi = NULL;
596
597         if (tx_ring->desc) {
598                 dma_free_coherent(tx_ring->dev, tx_ring->size,
599                                   tx_ring->desc, tx_ring->dma);
600                 tx_ring->desc = NULL;
601         }
602 }
603
604 /**
605  * i40e_get_tx_pending - how many tx descriptors not processed
606  * @tx_ring: the ring of descriptors
607  *
608  * Since there is no access to the ring head register
609  * in XL710, we need to use our local copies
610  **/
611 u32 i40e_get_tx_pending(struct i40e_ring *ring)
612 {
613         u32 head, tail;
614
615         head = i40e_get_head(ring);
616         tail = readl(ring->tail);
617
618         if (head != tail)
619                 return (head < tail) ?
620                         tail - head : (tail + ring->count - head);
621
622         return 0;
623 }
624
625 #define WB_STRIDE 0x3
626
627 /**
628  * i40e_clean_tx_irq - Reclaim resources after transmit completes
629  * @tx_ring:  tx ring to clean
630  * @budget:   how many cleans we're allowed
631  *
632  * Returns true if there's any budget left (e.g. the clean is finished)
633  **/
634 static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
635 {
636         u16 i = tx_ring->next_to_clean;
637         struct i40e_tx_buffer *tx_buf;
638         struct i40e_tx_desc *tx_head;
639         struct i40e_tx_desc *tx_desc;
640         unsigned int total_packets = 0;
641         unsigned int total_bytes = 0;
642
643         tx_buf = &tx_ring->tx_bi[i];
644         tx_desc = I40E_TX_DESC(tx_ring, i);
645         i -= tx_ring->count;
646
647         tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
648
649         do {
650                 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
651
652                 /* if next_to_watch is not set then there is no work pending */
653                 if (!eop_desc)
654                         break;
655
656                 /* prevent any other reads prior to eop_desc */
657                 read_barrier_depends();
658
659                 /* we have caught up to head, no work left to do */
660                 if (tx_head == tx_desc)
661                         break;
662
663                 /* clear next_to_watch to prevent false hangs */
664                 tx_buf->next_to_watch = NULL;
665
666                 /* update the statistics for this packet */
667                 total_bytes += tx_buf->bytecount;
668                 total_packets += tx_buf->gso_segs;
669
670                 /* free the skb */
671                 dev_consume_skb_any(tx_buf->skb);
672
673                 /* unmap skb header data */
674                 dma_unmap_single(tx_ring->dev,
675                                  dma_unmap_addr(tx_buf, dma),
676                                  dma_unmap_len(tx_buf, len),
677                                  DMA_TO_DEVICE);
678
679                 /* clear tx_buffer data */
680                 tx_buf->skb = NULL;
681                 dma_unmap_len_set(tx_buf, len, 0);
682
683                 /* unmap remaining buffers */
684                 while (tx_desc != eop_desc) {
685
686                         tx_buf++;
687                         tx_desc++;
688                         i++;
689                         if (unlikely(!i)) {
690                                 i -= tx_ring->count;
691                                 tx_buf = tx_ring->tx_bi;
692                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
693                         }
694
695                         /* unmap any remaining paged data */
696                         if (dma_unmap_len(tx_buf, len)) {
697                                 dma_unmap_page(tx_ring->dev,
698                                                dma_unmap_addr(tx_buf, dma),
699                                                dma_unmap_len(tx_buf, len),
700                                                DMA_TO_DEVICE);
701                                 dma_unmap_len_set(tx_buf, len, 0);
702                         }
703                 }
704
705                 /* move us one more past the eop_desc for start of next pkt */
706                 tx_buf++;
707                 tx_desc++;
708                 i++;
709                 if (unlikely(!i)) {
710                         i -= tx_ring->count;
711                         tx_buf = tx_ring->tx_bi;
712                         tx_desc = I40E_TX_DESC(tx_ring, 0);
713                 }
714
715                 prefetch(tx_desc);
716
717                 /* update budget accounting */
718                 budget--;
719         } while (likely(budget));
720
721         i += tx_ring->count;
722         tx_ring->next_to_clean = i;
723         u64_stats_update_begin(&tx_ring->syncp);
724         tx_ring->stats.bytes += total_bytes;
725         tx_ring->stats.packets += total_packets;
726         u64_stats_update_end(&tx_ring->syncp);
727         tx_ring->q_vector->tx.total_bytes += total_bytes;
728         tx_ring->q_vector->tx.total_packets += total_packets;
729
730         if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
731                 unsigned int j = 0;
732
733                 /* check to see if there are < 4 descriptors
734                  * waiting to be written back, then kick the hardware to force
735                  * them to be written back in case we stay in NAPI.
736                  * In this mode on X722 we do not enable Interrupt.
737                  */
738                 j = i40e_get_tx_pending(tx_ring);
739
740                 if (budget &&
741                     ((j / (WB_STRIDE + 1)) == 0) && (j != 0) &&
742                     !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
743                     (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
744                         tx_ring->arm_wb = true;
745         }
746
747         netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
748                                                       tx_ring->queue_index),
749                                   total_packets, total_bytes);
750
751 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
752         if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
753                      (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
754                 /* Make sure that anybody stopping the queue after this
755                  * sees the new next_to_clean.
756                  */
757                 smp_mb();
758                 if (__netif_subqueue_stopped(tx_ring->netdev,
759                                              tx_ring->queue_index) &&
760                    !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
761                         netif_wake_subqueue(tx_ring->netdev,
762                                             tx_ring->queue_index);
763                         ++tx_ring->tx_stats.restart_queue;
764                 }
765         }
766
767         return !!budget;
768 }
769
770 /**
771  * i40e_force_wb - Arm hardware to do a wb on noncache aligned descriptors
772  * @vsi: the VSI we care about
773  * @q_vector: the vector  on which to force writeback
774  *
775  **/
776 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
777 {
778         u16 flags = q_vector->tx.ring[0].flags;
779
780         if (flags & I40E_TXR_FLAGS_WB_ON_ITR) {
781                 u32 val;
782
783                 if (q_vector->arm_wb_state)
784                         return;
785
786                 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK;
787
788                 wr32(&vsi->back->hw,
789                      I40E_PFINT_DYN_CTLN(q_vector->v_idx +
790                                          vsi->base_vector - 1),
791                      val);
792                 q_vector->arm_wb_state = true;
793         } else if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
794                 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
795                           I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
796                           I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
797                           I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
798                           /* allow 00 to be written to the index */
799
800                 wr32(&vsi->back->hw,
801                      I40E_PFINT_DYN_CTLN(q_vector->v_idx +
802                                          vsi->base_vector - 1), val);
803         } else {
804                 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
805                           I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
806                           I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
807                           I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
808                         /* allow 00 to be written to the index */
809
810                 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
811         }
812 }
813
814 /**
815  * i40e_set_new_dynamic_itr - Find new ITR level
816  * @rc: structure containing ring performance data
817  *
818  * Returns true if ITR changed, false if not
819  *
820  * Stores a new ITR value based on packets and byte counts during
821  * the last interrupt.  The advantage of per interrupt computation
822  * is faster updates and more accurate ITR for the current traffic
823  * pattern.  Constants in this function were computed based on
824  * theoretical maximum wire speed and thresholds were set based on
825  * testing data as well as attempting to minimize response time
826  * while increasing bulk throughput.
827  **/
828 static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
829 {
830         enum i40e_latency_range new_latency_range = rc->latency_range;
831         struct i40e_q_vector *qv = rc->ring->q_vector;
832         u32 new_itr = rc->itr;
833         int bytes_per_int;
834         int usecs;
835
836         if (rc->total_packets == 0 || !rc->itr)
837                 return false;
838
839         /* simple throttlerate management
840          *   0-10MB/s   lowest (50000 ints/s)
841          *  10-20MB/s   low    (20000 ints/s)
842          *  20-1249MB/s bulk   (18000 ints/s)
843          *  > 40000 Rx packets per second (8000 ints/s)
844          *
845          * The math works out because the divisor is in 10^(-6) which
846          * turns the bytes/us input value into MB/s values, but
847          * make sure to use usecs, as the register values written
848          * are in 2 usec increments in the ITR registers, and make sure
849          * to use the smoothed values that the countdown timer gives us.
850          */
851         usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
852         bytes_per_int = rc->total_bytes / usecs;
853
854         switch (new_latency_range) {
855         case I40E_LOWEST_LATENCY:
856                 if (bytes_per_int > 10)
857                         new_latency_range = I40E_LOW_LATENCY;
858                 break;
859         case I40E_LOW_LATENCY:
860                 if (bytes_per_int > 20)
861                         new_latency_range = I40E_BULK_LATENCY;
862                 else if (bytes_per_int <= 10)
863                         new_latency_range = I40E_LOWEST_LATENCY;
864                 break;
865         case I40E_BULK_LATENCY:
866         case I40E_ULTRA_LATENCY:
867         default:
868                 if (bytes_per_int <= 20)
869                         new_latency_range = I40E_LOW_LATENCY;
870                 break;
871         }
872
873         /* this is to adjust RX more aggressively when streaming small
874          * packets.  The value of 40000 was picked as it is just beyond
875          * what the hardware can receive per second if in low latency
876          * mode.
877          */
878 #define RX_ULTRA_PACKET_RATE 40000
879
880         if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
881             (&qv->rx == rc))
882                 new_latency_range = I40E_ULTRA_LATENCY;
883
884         rc->latency_range = new_latency_range;
885
886         switch (new_latency_range) {
887         case I40E_LOWEST_LATENCY:
888                 new_itr = I40E_ITR_50K;
889                 break;
890         case I40E_LOW_LATENCY:
891                 new_itr = I40E_ITR_20K;
892                 break;
893         case I40E_BULK_LATENCY:
894                 new_itr = I40E_ITR_18K;
895                 break;
896         case I40E_ULTRA_LATENCY:
897                 new_itr = I40E_ITR_8K;
898                 break;
899         default:
900                 break;
901         }
902
903         rc->total_bytes = 0;
904         rc->total_packets = 0;
905
906         if (new_itr != rc->itr) {
907                 rc->itr = new_itr;
908                 return true;
909         }
910
911         return false;
912 }
913
914 /**
915  * i40e_clean_programming_status - clean the programming status descriptor
916  * @rx_ring: the rx ring that has this descriptor
917  * @rx_desc: the rx descriptor written back by HW
918  *
919  * Flow director should handle FD_FILTER_STATUS to check its filter programming
920  * status being successful or not and take actions accordingly. FCoE should
921  * handle its context/filter programming/invalidation status and take actions.
922  *
923  **/
924 static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
925                                           union i40e_rx_desc *rx_desc)
926 {
927         u64 qw;
928         u8 id;
929
930         qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
931         id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
932                   I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
933
934         if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
935                 i40e_fd_handle_status(rx_ring, rx_desc, id);
936 #ifdef I40E_FCOE
937         else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
938                  (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
939                 i40e_fcoe_handle_status(rx_ring, rx_desc, id);
940 #endif
941 }
942
943 /**
944  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
945  * @tx_ring: the tx ring to set up
946  *
947  * Return 0 on success, negative on error
948  **/
949 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
950 {
951         struct device *dev = tx_ring->dev;
952         int bi_size;
953
954         if (!dev)
955                 return -ENOMEM;
956
957         /* warn if we are about to overwrite the pointer */
958         WARN_ON(tx_ring->tx_bi);
959         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
960         tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
961         if (!tx_ring->tx_bi)
962                 goto err;
963
964         /* round up to nearest 4K */
965         tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
966         /* add u32 for head writeback, align after this takes care of
967          * guaranteeing this is at least one cache line in size
968          */
969         tx_ring->size += sizeof(u32);
970         tx_ring->size = ALIGN(tx_ring->size, 4096);
971         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
972                                            &tx_ring->dma, GFP_KERNEL);
973         if (!tx_ring->desc) {
974                 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
975                          tx_ring->size);
976                 goto err;
977         }
978
979         tx_ring->next_to_use = 0;
980         tx_ring->next_to_clean = 0;
981         return 0;
982
983 err:
984         kfree(tx_ring->tx_bi);
985         tx_ring->tx_bi = NULL;
986         return -ENOMEM;
987 }
988
989 /**
990  * i40e_clean_rx_ring - Free Rx buffers
991  * @rx_ring: ring to be cleaned
992  **/
993 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
994 {
995         struct device *dev = rx_ring->dev;
996         struct i40e_rx_buffer *rx_bi;
997         unsigned long bi_size;
998         u16 i;
999
1000         /* ring already cleared, nothing to do */
1001         if (!rx_ring->rx_bi)
1002                 return;
1003
1004         if (ring_is_ps_enabled(rx_ring)) {
1005                 int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
1006
1007                 rx_bi = &rx_ring->rx_bi[0];
1008                 if (rx_bi->hdr_buf) {
1009                         dma_free_coherent(dev,
1010                                           bufsz,
1011                                           rx_bi->hdr_buf,
1012                                           rx_bi->dma);
1013                         for (i = 0; i < rx_ring->count; i++) {
1014                                 rx_bi = &rx_ring->rx_bi[i];
1015                                 rx_bi->dma = 0;
1016                                 rx_bi->hdr_buf = NULL;
1017                         }
1018                 }
1019         }
1020         /* Free all the Rx ring sk_buffs */
1021         for (i = 0; i < rx_ring->count; i++) {
1022                 rx_bi = &rx_ring->rx_bi[i];
1023                 if (rx_bi->dma) {
1024                         dma_unmap_single(dev,
1025                                          rx_bi->dma,
1026                                          rx_ring->rx_buf_len,
1027                                          DMA_FROM_DEVICE);
1028                         rx_bi->dma = 0;
1029                 }
1030                 if (rx_bi->skb) {
1031                         dev_kfree_skb(rx_bi->skb);
1032                         rx_bi->skb = NULL;
1033                 }
1034                 if (rx_bi->page) {
1035                         if (rx_bi->page_dma) {
1036                                 dma_unmap_page(dev,
1037                                                rx_bi->page_dma,
1038                                                PAGE_SIZE / 2,
1039                                                DMA_FROM_DEVICE);
1040                                 rx_bi->page_dma = 0;
1041                         }
1042                         __free_page(rx_bi->page);
1043                         rx_bi->page = NULL;
1044                         rx_bi->page_offset = 0;
1045                 }
1046         }
1047
1048         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1049         memset(rx_ring->rx_bi, 0, bi_size);
1050
1051         /* Zero out the descriptor ring */
1052         memset(rx_ring->desc, 0, rx_ring->size);
1053
1054         rx_ring->next_to_clean = 0;
1055         rx_ring->next_to_use = 0;
1056 }
1057
1058 /**
1059  * i40e_free_rx_resources - Free Rx resources
1060  * @rx_ring: ring to clean the resources from
1061  *
1062  * Free all receive software resources
1063  **/
1064 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1065 {
1066         i40e_clean_rx_ring(rx_ring);
1067         kfree(rx_ring->rx_bi);
1068         rx_ring->rx_bi = NULL;
1069
1070         if (rx_ring->desc) {
1071                 dma_free_coherent(rx_ring->dev, rx_ring->size,
1072                                   rx_ring->desc, rx_ring->dma);
1073                 rx_ring->desc = NULL;
1074         }
1075 }
1076
1077 /**
1078  * i40e_alloc_rx_headers - allocate rx header buffers
1079  * @rx_ring: ring to alloc buffers
1080  *
1081  * Allocate rx header buffers for the entire ring. As these are static,
1082  * this is only called when setting up a new ring.
1083  **/
1084 void i40e_alloc_rx_headers(struct i40e_ring *rx_ring)
1085 {
1086         struct device *dev = rx_ring->dev;
1087         struct i40e_rx_buffer *rx_bi;
1088         dma_addr_t dma;
1089         void *buffer;
1090         int buf_size;
1091         int i;
1092
1093         if (rx_ring->rx_bi[0].hdr_buf)
1094                 return;
1095         /* Make sure the buffers don't cross cache line boundaries. */
1096         buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
1097         buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
1098                                     &dma, GFP_KERNEL);
1099         if (!buffer)
1100                 return;
1101         for (i = 0; i < rx_ring->count; i++) {
1102                 rx_bi = &rx_ring->rx_bi[i];
1103                 rx_bi->dma = dma + (i * buf_size);
1104                 rx_bi->hdr_buf = buffer + (i * buf_size);
1105         }
1106 }
1107
1108 /**
1109  * i40e_setup_rx_descriptors - Allocate Rx descriptors
1110  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1111  *
1112  * Returns 0 on success, negative on failure
1113  **/
1114 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1115 {
1116         struct device *dev = rx_ring->dev;
1117         int bi_size;
1118
1119         /* warn if we are about to overwrite the pointer */
1120         WARN_ON(rx_ring->rx_bi);
1121         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1122         rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1123         if (!rx_ring->rx_bi)
1124                 goto err;
1125
1126         u64_stats_init(&rx_ring->syncp);
1127
1128         /* Round up to nearest 4K */
1129         rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
1130                 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
1131                 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1132         rx_ring->size = ALIGN(rx_ring->size, 4096);
1133         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1134                                            &rx_ring->dma, GFP_KERNEL);
1135
1136         if (!rx_ring->desc) {
1137                 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1138                          rx_ring->size);
1139                 goto err;
1140         }
1141
1142         rx_ring->next_to_clean = 0;
1143         rx_ring->next_to_use = 0;
1144
1145         return 0;
1146 err:
1147         kfree(rx_ring->rx_bi);
1148         rx_ring->rx_bi = NULL;
1149         return -ENOMEM;
1150 }
1151
1152 /**
1153  * i40e_release_rx_desc - Store the new tail and head values
1154  * @rx_ring: ring to bump
1155  * @val: new head index
1156  **/
1157 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1158 {
1159         rx_ring->next_to_use = val;
1160         /* Force memory writes to complete before letting h/w
1161          * know there are new descriptors to fetch.  (Only
1162          * applicable for weak-ordered memory model archs,
1163          * such as IA-64).
1164          */
1165         wmb();
1166         writel(val, rx_ring->tail);
1167 }
1168
1169 /**
1170  * i40e_alloc_rx_buffers_ps - Replace used receive buffers; packet split
1171  * @rx_ring: ring to place buffers on
1172  * @cleaned_count: number of buffers to replace
1173  **/
1174 void i40e_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
1175 {
1176         u16 i = rx_ring->next_to_use;
1177         union i40e_rx_desc *rx_desc;
1178         struct i40e_rx_buffer *bi;
1179
1180         /* do nothing if no valid netdev defined */
1181         if (!rx_ring->netdev || !cleaned_count)
1182                 return;
1183
1184         while (cleaned_count--) {
1185                 rx_desc = I40E_RX_DESC(rx_ring, i);
1186                 bi = &rx_ring->rx_bi[i];
1187
1188                 if (bi->skb) /* desc is in use */
1189                         goto no_buffers;
1190                 if (!bi->page) {
1191                         bi->page = alloc_page(GFP_ATOMIC);
1192                         if (!bi->page) {
1193                                 rx_ring->rx_stats.alloc_page_failed++;
1194                                 goto no_buffers;
1195                         }
1196                 }
1197
1198                 if (!bi->page_dma) {
1199                         /* use a half page if we're re-using */
1200                         bi->page_offset ^= PAGE_SIZE / 2;
1201                         bi->page_dma = dma_map_page(rx_ring->dev,
1202                                                     bi->page,
1203                                                     bi->page_offset,
1204                                                     PAGE_SIZE / 2,
1205                                                     DMA_FROM_DEVICE);
1206                         if (dma_mapping_error(rx_ring->dev,
1207                                               bi->page_dma)) {
1208                                 rx_ring->rx_stats.alloc_page_failed++;
1209                                 bi->page_dma = 0;
1210                                 goto no_buffers;
1211                         }
1212                 }
1213
1214                 dma_sync_single_range_for_device(rx_ring->dev,
1215                                                  bi->dma,
1216                                                  0,
1217                                                  rx_ring->rx_hdr_len,
1218                                                  DMA_FROM_DEVICE);
1219                 /* Refresh the desc even if buffer_addrs didn't change
1220                  * because each write-back erases this info.
1221                  */
1222                 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
1223                 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
1224                 i++;
1225                 if (i == rx_ring->count)
1226                         i = 0;
1227         }
1228
1229 no_buffers:
1230         if (rx_ring->next_to_use != i)
1231                 i40e_release_rx_desc(rx_ring, i);
1232 }
1233
1234 /**
1235  * i40e_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
1236  * @rx_ring: ring to place buffers on
1237  * @cleaned_count: number of buffers to replace
1238  **/
1239 void i40e_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
1240 {
1241         u16 i = rx_ring->next_to_use;
1242         union i40e_rx_desc *rx_desc;
1243         struct i40e_rx_buffer *bi;
1244         struct sk_buff *skb;
1245
1246         /* do nothing if no valid netdev defined */
1247         if (!rx_ring->netdev || !cleaned_count)
1248                 return;
1249
1250         while (cleaned_count--) {
1251                 rx_desc = I40E_RX_DESC(rx_ring, i);
1252                 bi = &rx_ring->rx_bi[i];
1253                 skb = bi->skb;
1254
1255                 if (!skb) {
1256                         skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1257                                                         rx_ring->rx_buf_len);
1258                         if (!skb) {
1259                                 rx_ring->rx_stats.alloc_buff_failed++;
1260                                 goto no_buffers;
1261                         }
1262                         /* initialize queue mapping */
1263                         skb_record_rx_queue(skb, rx_ring->queue_index);
1264                         bi->skb = skb;
1265                 }
1266
1267                 if (!bi->dma) {
1268                         bi->dma = dma_map_single(rx_ring->dev,
1269                                                  skb->data,
1270                                                  rx_ring->rx_buf_len,
1271                                                  DMA_FROM_DEVICE);
1272                         if (dma_mapping_error(rx_ring->dev, bi->dma)) {
1273                                 rx_ring->rx_stats.alloc_buff_failed++;
1274                                 bi->dma = 0;
1275                                 goto no_buffers;
1276                         }
1277                 }
1278
1279                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
1280                 rx_desc->read.hdr_addr = 0;
1281                 i++;
1282                 if (i == rx_ring->count)
1283                         i = 0;
1284         }
1285
1286 no_buffers:
1287         if (rx_ring->next_to_use != i)
1288                 i40e_release_rx_desc(rx_ring, i);
1289 }
1290
1291 /**
1292  * i40e_receive_skb - Send a completed packet up the stack
1293  * @rx_ring:  rx ring in play
1294  * @skb: packet to send up
1295  * @vlan_tag: vlan tag for packet
1296  **/
1297 static void i40e_receive_skb(struct i40e_ring *rx_ring,
1298                              struct sk_buff *skb, u16 vlan_tag)
1299 {
1300         struct i40e_q_vector *q_vector = rx_ring->q_vector;
1301
1302         if (vlan_tag & VLAN_VID_MASK)
1303                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1304
1305         napi_gro_receive(&q_vector->napi, skb);
1306 }
1307
1308 /**
1309  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1310  * @vsi: the VSI we care about
1311  * @skb: skb currently being received and modified
1312  * @rx_status: status value of last descriptor in packet
1313  * @rx_error: error value of last descriptor in packet
1314  * @rx_ptype: ptype value of last descriptor in packet
1315  **/
1316 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1317                                     struct sk_buff *skb,
1318                                     u32 rx_status,
1319                                     u32 rx_error,
1320                                     u16 rx_ptype)
1321 {
1322         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
1323         bool ipv4 = false, ipv6 = false;
1324         bool ipv4_tunnel, ipv6_tunnel;
1325         __wsum rx_udp_csum;
1326         struct iphdr *iph;
1327         __sum16 csum;
1328
1329         ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
1330                      (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
1331         ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
1332                      (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
1333
1334         skb->ip_summed = CHECKSUM_NONE;
1335
1336         /* Rx csum enabled and ip headers found? */
1337         if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1338                 return;
1339
1340         /* did the hardware decode the packet and checksum? */
1341         if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1342                 return;
1343
1344         /* both known and outer_ip must be set for the below code to work */
1345         if (!(decoded.known && decoded.outer_ip))
1346                 return;
1347
1348         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1349             decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
1350                 ipv4 = true;
1351         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1352                  decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
1353                 ipv6 = true;
1354
1355         if (ipv4 &&
1356             (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1357                          BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1358                 goto checksum_fail;
1359
1360         /* likely incorrect csum if alternate IP extension headers found */
1361         if (ipv6 &&
1362             rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1363                 /* don't increment checksum err here, non-fatal err */
1364                 return;
1365
1366         /* there was some L4 error, count error and punt packet to the stack */
1367         if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1368                 goto checksum_fail;
1369
1370         /* handle packets that were not able to be checksummed due
1371          * to arrival speed, in this case the stack can compute
1372          * the csum.
1373          */
1374         if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1375                 return;
1376
1377         /* If VXLAN traffic has an outer UDPv4 checksum we need to check
1378          * it in the driver, hardware does not do it for us.
1379          * Since L3L4P bit was set we assume a valid IHL value (>=5)
1380          * so the total length of IPv4 header is IHL*4 bytes
1381          * The UDP_0 bit *may* bet set if the *inner* header is UDP
1382          */
1383         if (!(vsi->back->flags & I40E_FLAG_OUTER_UDP_CSUM_CAPABLE) &&
1384             (ipv4_tunnel)) {
1385                 skb->transport_header = skb->mac_header +
1386                                         sizeof(struct ethhdr) +
1387                                         (ip_hdr(skb)->ihl * 4);
1388
1389                 /* Add 4 bytes for VLAN tagged packets */
1390                 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
1391                                           skb->protocol == htons(ETH_P_8021AD))
1392                                           ? VLAN_HLEN : 0;
1393
1394                 if ((ip_hdr(skb)->protocol == IPPROTO_UDP) &&
1395                     (udp_hdr(skb)->check != 0)) {
1396                         rx_udp_csum = udp_csum(skb);
1397                         iph = ip_hdr(skb);
1398                         csum = csum_tcpudp_magic(
1399                                         iph->saddr, iph->daddr,
1400                                         (skb->len - skb_transport_offset(skb)),
1401                                         IPPROTO_UDP, rx_udp_csum);
1402
1403                         if (udp_hdr(skb)->check != csum)
1404                                 goto checksum_fail;
1405
1406                 } /* else its GRE and so no outer UDP header */
1407         }
1408
1409         skb->ip_summed = CHECKSUM_UNNECESSARY;
1410         skb->csum_level = ipv4_tunnel || ipv6_tunnel;
1411
1412         return;
1413
1414 checksum_fail:
1415         vsi->back->hw_csum_rx_error++;
1416 }
1417
1418 /**
1419  * i40e_rx_hash - returns the hash value from the Rx descriptor
1420  * @ring: descriptor ring
1421  * @rx_desc: specific descriptor
1422  **/
1423 static inline u32 i40e_rx_hash(struct i40e_ring *ring,
1424                                union i40e_rx_desc *rx_desc)
1425 {
1426         const __le64 rss_mask =
1427                 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1428                             I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1429
1430         if ((ring->netdev->features & NETIF_F_RXHASH) &&
1431             (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
1432                 return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1433         else
1434                 return 0;
1435 }
1436
1437 /**
1438  * i40e_ptype_to_hash - get a hash type
1439  * @ptype: the ptype value from the descriptor
1440  *
1441  * Returns a hash type to be used by skb_set_hash
1442  **/
1443 static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
1444 {
1445         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1446
1447         if (!decoded.known)
1448                 return PKT_HASH_TYPE_NONE;
1449
1450         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1451             decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1452                 return PKT_HASH_TYPE_L4;
1453         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1454                  decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1455                 return PKT_HASH_TYPE_L3;
1456         else
1457                 return PKT_HASH_TYPE_L2;
1458 }
1459
1460 /**
1461  * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
1462  * @rx_ring:  rx ring to clean
1463  * @budget:   how many cleans we're allowed
1464  *
1465  * Returns true if there's any budget left (e.g. the clean is finished)
1466  **/
1467 static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, int budget)
1468 {
1469         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1470         u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
1471         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1472         const int current_node = numa_mem_id();
1473         struct i40e_vsi *vsi = rx_ring->vsi;
1474         u16 i = rx_ring->next_to_clean;
1475         union i40e_rx_desc *rx_desc;
1476         u32 rx_error, rx_status;
1477         u8 rx_ptype;
1478         u64 qword;
1479
1480         if (budget <= 0)
1481                 return 0;
1482
1483         do {
1484                 struct i40e_rx_buffer *rx_bi;
1485                 struct sk_buff *skb;
1486                 u16 vlan_tag;
1487                 /* return some buffers to hardware, one at a time is too slow */
1488                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1489                         i40e_alloc_rx_buffers_ps(rx_ring, cleaned_count);
1490                         cleaned_count = 0;
1491                 }
1492
1493                 i = rx_ring->next_to_clean;
1494                 rx_desc = I40E_RX_DESC(rx_ring, i);
1495                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1496                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1497                         I40E_RXD_QW1_STATUS_SHIFT;
1498
1499                 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1500                         break;
1501
1502                 /* This memory barrier is needed to keep us from reading
1503                  * any other fields out of the rx_desc until we know the
1504                  * DD bit is set.
1505                  */
1506                 dma_rmb();
1507                 if (i40e_rx_is_programming_status(qword)) {
1508                         i40e_clean_programming_status(rx_ring, rx_desc);
1509                         I40E_RX_INCREMENT(rx_ring, i);
1510                         continue;
1511                 }
1512                 rx_bi = &rx_ring->rx_bi[i];
1513                 skb = rx_bi->skb;
1514                 if (likely(!skb)) {
1515                         skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1516                                                         rx_ring->rx_hdr_len);
1517                         if (!skb) {
1518                                 rx_ring->rx_stats.alloc_buff_failed++;
1519                                 break;
1520                         }
1521
1522                         /* initialize queue mapping */
1523                         skb_record_rx_queue(skb, rx_ring->queue_index);
1524                         /* we are reusing so sync this buffer for CPU use */
1525                         dma_sync_single_range_for_cpu(rx_ring->dev,
1526                                                       rx_bi->dma,
1527                                                       0,
1528                                                       rx_ring->rx_hdr_len,
1529                                                       DMA_FROM_DEVICE);
1530                 }
1531                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1532                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1533                 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1534                                 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1535                 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1536                          I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1537
1538                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1539                            I40E_RXD_QW1_ERROR_SHIFT;
1540                 rx_hbo = rx_error & BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1541                 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1542
1543                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1544                            I40E_RXD_QW1_PTYPE_SHIFT;
1545                 prefetch(rx_bi->page);
1546                 rx_bi->skb = NULL;
1547                 cleaned_count++;
1548                 if (rx_hbo || rx_sph) {
1549                         int len;
1550
1551                         if (rx_hbo)
1552                                 len = I40E_RX_HDR_SIZE;
1553                         else
1554                                 len = rx_header_len;
1555                         memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
1556                 } else if (skb->len == 0) {
1557                         int len;
1558
1559                         len = (rx_packet_len > skb_headlen(skb) ?
1560                                 skb_headlen(skb) : rx_packet_len);
1561                         memcpy(__skb_put(skb, len),
1562                                rx_bi->page + rx_bi->page_offset,
1563                                len);
1564                         rx_bi->page_offset += len;
1565                         rx_packet_len -= len;
1566                 }
1567
1568                 /* Get the rest of the data if this was a header split */
1569                 if (rx_packet_len) {
1570                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1571                                            rx_bi->page,
1572                                            rx_bi->page_offset,
1573                                            rx_packet_len);
1574
1575                         skb->len += rx_packet_len;
1576                         skb->data_len += rx_packet_len;
1577                         skb->truesize += rx_packet_len;
1578
1579                         if ((page_count(rx_bi->page) == 1) &&
1580                             (page_to_nid(rx_bi->page) == current_node))
1581                                 get_page(rx_bi->page);
1582                         else
1583                                 rx_bi->page = NULL;
1584
1585                         dma_unmap_page(rx_ring->dev,
1586                                        rx_bi->page_dma,
1587                                        PAGE_SIZE / 2,
1588                                        DMA_FROM_DEVICE);
1589                         rx_bi->page_dma = 0;
1590                 }
1591                 I40E_RX_INCREMENT(rx_ring, i);
1592
1593                 if (unlikely(
1594                     !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1595                         struct i40e_rx_buffer *next_buffer;
1596
1597                         next_buffer = &rx_ring->rx_bi[i];
1598                         next_buffer->skb = skb;
1599                         rx_ring->rx_stats.non_eop_descs++;
1600                         continue;
1601                 }
1602
1603                 /* ERR_MASK will only have valid bits if EOP set */
1604                 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1605                         dev_kfree_skb_any(skb);
1606                         continue;
1607                 }
1608
1609                 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1610                              i40e_ptype_to_hash(rx_ptype));
1611                 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1612                         i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1613                                            I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1614                                            I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1615                         rx_ring->last_rx_timestamp = jiffies;
1616                 }
1617
1618                 /* probably a little skewed due to removing CRC */
1619                 total_rx_bytes += skb->len;
1620                 total_rx_packets++;
1621
1622                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1623
1624                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1625
1626                 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1627                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1628                          : 0;
1629 #ifdef I40E_FCOE
1630                 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1631                         dev_kfree_skb_any(skb);
1632                         continue;
1633                 }
1634 #endif
1635                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1636
1637                 rx_desc->wb.qword1.status_error_len = 0;
1638
1639         } while (likely(total_rx_packets < budget));
1640
1641         u64_stats_update_begin(&rx_ring->syncp);
1642         rx_ring->stats.packets += total_rx_packets;
1643         rx_ring->stats.bytes += total_rx_bytes;
1644         u64_stats_update_end(&rx_ring->syncp);
1645         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1646         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1647
1648         return total_rx_packets;
1649 }
1650
1651 /**
1652  * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
1653  * @rx_ring:  rx ring to clean
1654  * @budget:   how many cleans we're allowed
1655  *
1656  * Returns number of packets cleaned
1657  **/
1658 static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
1659 {
1660         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1661         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1662         struct i40e_vsi *vsi = rx_ring->vsi;
1663         union i40e_rx_desc *rx_desc;
1664         u32 rx_error, rx_status;
1665         u16 rx_packet_len;
1666         u8 rx_ptype;
1667         u64 qword;
1668         u16 i;
1669
1670         do {
1671                 struct i40e_rx_buffer *rx_bi;
1672                 struct sk_buff *skb;
1673                 u16 vlan_tag;
1674                 /* return some buffers to hardware, one at a time is too slow */
1675                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1676                         i40e_alloc_rx_buffers_1buf(rx_ring, cleaned_count);
1677                         cleaned_count = 0;
1678                 }
1679
1680                 i = rx_ring->next_to_clean;
1681                 rx_desc = I40E_RX_DESC(rx_ring, i);
1682                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1683                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1684                         I40E_RXD_QW1_STATUS_SHIFT;
1685
1686                 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1687                         break;
1688
1689                 /* This memory barrier is needed to keep us from reading
1690                  * any other fields out of the rx_desc until we know the
1691                  * DD bit is set.
1692                  */
1693                 dma_rmb();
1694
1695                 if (i40e_rx_is_programming_status(qword)) {
1696                         i40e_clean_programming_status(rx_ring, rx_desc);
1697                         I40E_RX_INCREMENT(rx_ring, i);
1698                         continue;
1699                 }
1700                 rx_bi = &rx_ring->rx_bi[i];
1701                 skb = rx_bi->skb;
1702                 prefetch(skb->data);
1703
1704                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1705                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1706
1707                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1708                            I40E_RXD_QW1_ERROR_SHIFT;
1709                 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1710
1711                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1712                            I40E_RXD_QW1_PTYPE_SHIFT;
1713                 rx_bi->skb = NULL;
1714                 cleaned_count++;
1715
1716                 /* Get the header and possibly the whole packet
1717                  * If this is an skb from previous receive dma will be 0
1718                  */
1719                 skb_put(skb, rx_packet_len);
1720                 dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
1721                                  DMA_FROM_DEVICE);
1722                 rx_bi->dma = 0;
1723
1724                 I40E_RX_INCREMENT(rx_ring, i);
1725
1726                 if (unlikely(
1727                     !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1728                         rx_ring->rx_stats.non_eop_descs++;
1729                         continue;
1730                 }
1731
1732                 /* ERR_MASK will only have valid bits if EOP set */
1733                 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1734                         dev_kfree_skb_any(skb);
1735                         continue;
1736                 }
1737
1738                 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1739                              i40e_ptype_to_hash(rx_ptype));
1740                 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1741                         i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1742                                            I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1743                                            I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1744                         rx_ring->last_rx_timestamp = jiffies;
1745                 }
1746
1747                 /* probably a little skewed due to removing CRC */
1748                 total_rx_bytes += skb->len;
1749                 total_rx_packets++;
1750
1751                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1752
1753                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1754
1755                 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1756                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1757                          : 0;
1758 #ifdef I40E_FCOE
1759                 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1760                         dev_kfree_skb_any(skb);
1761                         continue;
1762                 }
1763 #endif
1764                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1765
1766                 rx_desc->wb.qword1.status_error_len = 0;
1767         } while (likely(total_rx_packets < budget));
1768
1769         u64_stats_update_begin(&rx_ring->syncp);
1770         rx_ring->stats.packets += total_rx_packets;
1771         rx_ring->stats.bytes += total_rx_bytes;
1772         u64_stats_update_end(&rx_ring->syncp);
1773         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1774         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1775
1776         return total_rx_packets;
1777 }
1778
1779 static u32 i40e_buildreg_itr(const int type, const u16 itr)
1780 {
1781         u32 val;
1782
1783         val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1784               I40E_PFINT_DYN_CTLN_CLEARPBA_MASK |
1785               (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
1786               (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);
1787
1788         return val;
1789 }
1790
1791 /* a small macro to shorten up some long lines */
1792 #define INTREG I40E_PFINT_DYN_CTLN
1793
1794 /**
1795  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1796  * @vsi: the VSI we care about
1797  * @q_vector: q_vector for which itr is being updated and interrupt enabled
1798  *
1799  **/
1800 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1801                                           struct i40e_q_vector *q_vector)
1802 {
1803         struct i40e_hw *hw = &vsi->back->hw;
1804         bool rx = false, tx = false;
1805         u32 rxval, txval;
1806         int vector;
1807
1808         vector = (q_vector->v_idx + vsi->base_vector);
1809
1810         /* avoid dynamic calculation if in countdown mode OR if
1811          * all dynamic is disabled
1812          */
1813         rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1814
1815         if (q_vector->itr_countdown > 0 ||
1816             (!ITR_IS_DYNAMIC(vsi->rx_itr_setting) &&
1817              !ITR_IS_DYNAMIC(vsi->tx_itr_setting))) {
1818                 goto enable_int;
1819         }
1820
1821         if (ITR_IS_DYNAMIC(vsi->rx_itr_setting)) {
1822                 rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1823                 rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1824         }
1825
1826         if (ITR_IS_DYNAMIC(vsi->tx_itr_setting)) {
1827                 tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1828                 txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1829         }
1830
1831         if (rx || tx) {
1832                 /* get the higher of the two ITR adjustments and
1833                  * use the same value for both ITR registers
1834                  * when in adaptive mode (Rx and/or Tx)
1835                  */
1836                 u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1837
1838                 q_vector->tx.itr = q_vector->rx.itr = itr;
1839                 txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1840                 tx = true;
1841                 rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1842                 rx = true;
1843         }
1844
1845         /* only need to enable the interrupt once, but need
1846          * to possibly update both ITR values
1847          */
1848         if (rx) {
1849                 /* set the INTENA_MSK_MASK so that this first write
1850                  * won't actually enable the interrupt, instead just
1851                  * updating the ITR (it's bit 31 PF and VF)
1852                  */
1853                 rxval |= BIT(31);
1854                 /* don't check _DOWN because interrupt isn't being enabled */
1855                 wr32(hw, INTREG(vector - 1), rxval);
1856         }
1857
1858 enable_int:
1859         if (!test_bit(__I40E_DOWN, &vsi->state))
1860                 wr32(hw, INTREG(vector - 1), txval);
1861
1862         if (q_vector->itr_countdown)
1863                 q_vector->itr_countdown--;
1864         else
1865                 q_vector->itr_countdown = ITR_COUNTDOWN_START;
1866
1867 }
1868
1869 /**
1870  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
1871  * @napi: napi struct with our devices info in it
1872  * @budget: amount of work driver is allowed to do this pass, in packets
1873  *
1874  * This function will clean all queues associated with a q_vector.
1875  *
1876  * Returns the amount of work done
1877  **/
1878 int i40e_napi_poll(struct napi_struct *napi, int budget)
1879 {
1880         struct i40e_q_vector *q_vector =
1881                                container_of(napi, struct i40e_q_vector, napi);
1882         struct i40e_vsi *vsi = q_vector->vsi;
1883         struct i40e_ring *ring;
1884         bool clean_complete = true;
1885         bool arm_wb = false;
1886         int budget_per_ring;
1887         int work_done = 0;
1888
1889         if (test_bit(__I40E_DOWN, &vsi->state)) {
1890                 napi_complete(napi);
1891                 return 0;
1892         }
1893
1894         /* Since the actual Tx work is minimal, we can give the Tx a larger
1895          * budget and be more aggressive about cleaning up the Tx descriptors.
1896          */
1897         i40e_for_each_ring(ring, q_vector->tx) {
1898                 clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
1899                 arm_wb |= ring->arm_wb;
1900                 ring->arm_wb = false;
1901         }
1902
1903         /* Handle case where we are called by netpoll with a budget of 0 */
1904         if (budget <= 0)
1905                 goto tx_only;
1906
1907         /* We attempt to distribute budget to each Rx queue fairly, but don't
1908          * allow the budget to go below 1 because that would exit polling early.
1909          */
1910         budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1911
1912         i40e_for_each_ring(ring, q_vector->rx) {
1913                 int cleaned;
1914
1915                 if (ring_is_ps_enabled(ring))
1916                         cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
1917                 else
1918                         cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
1919
1920                 work_done += cleaned;
1921                 /* if we didn't clean as many as budgeted, we must be done */
1922                 clean_complete &= (budget_per_ring != cleaned);
1923         }
1924
1925         /* If work not completed, return budget and polling will return */
1926         if (!clean_complete) {
1927 tx_only:
1928                 if (arm_wb) {
1929                         q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1930                         i40e_force_wb(vsi, q_vector);
1931                 }
1932                 return budget;
1933         }
1934
1935         if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
1936                 q_vector->arm_wb_state = false;
1937
1938         /* Work is done so exit the polling mode and re-enable the interrupt */
1939         napi_complete_done(napi, work_done);
1940         if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1941                 i40e_update_enable_itr(vsi, q_vector);
1942         } else { /* Legacy mode */
1943                 struct i40e_hw *hw = &vsi->back->hw;
1944                 /* We re-enable the queue 0 cause, but
1945                  * don't worry about dynamic_enable
1946                  * because we left it on for the other
1947                  * possible interrupts during napi
1948                  */
1949                 u32 qval = rd32(hw, I40E_QINT_RQCTL(0)) |
1950                            I40E_QINT_RQCTL_CAUSE_ENA_MASK;
1951
1952                 wr32(hw, I40E_QINT_RQCTL(0), qval);
1953                 qval = rd32(hw, I40E_QINT_TQCTL(0)) |
1954                        I40E_QINT_TQCTL_CAUSE_ENA_MASK;
1955                 wr32(hw, I40E_QINT_TQCTL(0), qval);
1956                 i40e_irq_dynamic_enable_icr0(vsi->back);
1957         }
1958         return 0;
1959 }
1960
1961 /**
1962  * i40e_atr - Add a Flow Director ATR filter
1963  * @tx_ring:  ring to add programming descriptor to
1964  * @skb:      send buffer
1965  * @tx_flags: send tx flags
1966  * @protocol: wire protocol
1967  **/
1968 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
1969                      u32 tx_flags, __be16 protocol)
1970 {
1971         struct i40e_filter_program_desc *fdir_desc;
1972         struct i40e_pf *pf = tx_ring->vsi->back;
1973         union {
1974                 unsigned char *network;
1975                 struct iphdr *ipv4;
1976                 struct ipv6hdr *ipv6;
1977         } hdr;
1978         struct tcphdr *th;
1979         unsigned int hlen;
1980         u32 flex_ptype, dtype_cmd;
1981         u16 i;
1982
1983         /* make sure ATR is enabled */
1984         if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
1985                 return;
1986
1987         if ((pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
1988                 return;
1989
1990         /* if sampling is disabled do nothing */
1991         if (!tx_ring->atr_sample_rate)
1992                 return;
1993
1994         if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
1995                 return;
1996
1997         if (!(tx_flags & I40E_TX_FLAGS_VXLAN_TUNNEL)) {
1998                 /* snag network header to get L4 type and address */
1999                 hdr.network = skb_network_header(skb);
2000
2001                 /* Currently only IPv4/IPv6 with TCP is supported
2002                  * access ihl as u8 to avoid unaligned access on ia64
2003                  */
2004                 if (tx_flags & I40E_TX_FLAGS_IPV4)
2005                         hlen = (hdr.network[0] & 0x0F) << 2;
2006                 else if (protocol == htons(ETH_P_IPV6))
2007                         hlen = sizeof(struct ipv6hdr);
2008                 else
2009                         return;
2010         } else {
2011                 hdr.network = skb_inner_network_header(skb);
2012                 hlen = skb_inner_network_header_len(skb);
2013         }
2014
2015         /* Currently only IPv4/IPv6 with TCP is supported
2016          * Note: tx_flags gets modified to reflect inner protocols in
2017          * tx_enable_csum function if encap is enabled.
2018          */
2019         if ((tx_flags & I40E_TX_FLAGS_IPV4) &&
2020             (hdr.ipv4->protocol != IPPROTO_TCP))
2021                 return;
2022         else if ((tx_flags & I40E_TX_FLAGS_IPV6) &&
2023                  (hdr.ipv6->nexthdr != IPPROTO_TCP))
2024                 return;
2025
2026         th = (struct tcphdr *)(hdr.network + hlen);
2027
2028         /* Due to lack of space, no more new filters can be programmed */
2029         if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
2030                 return;
2031         if (pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) {
2032                 /* HW ATR eviction will take care of removing filters on FIN
2033                  * and RST packets.
2034                  */
2035                 if (th->fin || th->rst)
2036                         return;
2037         }
2038
2039         tx_ring->atr_count++;
2040
2041         /* sample on all syn/fin/rst packets or once every atr sample rate */
2042         if (!th->fin &&
2043             !th->syn &&
2044             !th->rst &&
2045             (tx_ring->atr_count < tx_ring->atr_sample_rate))
2046                 return;
2047
2048         tx_ring->atr_count = 0;
2049
2050         /* grab the next descriptor */
2051         i = tx_ring->next_to_use;
2052         fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2053
2054         i++;
2055         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2056
2057         flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2058                       I40E_TXD_FLTR_QW0_QINDEX_MASK;
2059         flex_ptype |= (protocol == htons(ETH_P_IP)) ?
2060                       (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2061                        I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2062                       (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2063                        I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2064
2065         flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2066
2067         dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2068
2069         dtype_cmd |= (th->fin || th->rst) ?
2070                      (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2071                       I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2072                      (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2073                       I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2074
2075         dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2076                      I40E_TXD_FLTR_QW1_DEST_SHIFT;
2077
2078         dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2079                      I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2080
2081         dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2082         if (!(tx_flags & I40E_TX_FLAGS_VXLAN_TUNNEL))
2083                 dtype_cmd |=
2084                         ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2085                         I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2086                         I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2087         else
2088                 dtype_cmd |=
2089                         ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2090                         I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2091                         I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2092
2093         if (pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE)
2094                 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2095
2096         fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2097         fdir_desc->rsvd = cpu_to_le32(0);
2098         fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2099         fdir_desc->fd_id = cpu_to_le32(0);
2100 }
2101
2102 /**
2103  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2104  * @skb:     send buffer
2105  * @tx_ring: ring to send buffer on
2106  * @flags:   the tx flags to be set
2107  *
2108  * Checks the skb and set up correspondingly several generic transmit flags
2109  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2110  *
2111  * Returns error code indicate the frame should be dropped upon error and the
2112  * otherwise  returns 0 to indicate the flags has been set properly.
2113  **/
2114 #ifdef I40E_FCOE
2115 inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2116                                       struct i40e_ring *tx_ring,
2117                                       u32 *flags)
2118 #else
2119 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2120                                              struct i40e_ring *tx_ring,
2121                                              u32 *flags)
2122 #endif
2123 {
2124         __be16 protocol = skb->protocol;
2125         u32  tx_flags = 0;
2126
2127         if (protocol == htons(ETH_P_8021Q) &&
2128             !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2129                 /* When HW VLAN acceleration is turned off by the user the
2130                  * stack sets the protocol to 8021q so that the driver
2131                  * can take any steps required to support the SW only
2132                  * VLAN handling.  In our case the driver doesn't need
2133                  * to take any further steps so just set the protocol
2134                  * to the encapsulated ethertype.
2135                  */
2136                 skb->protocol = vlan_get_protocol(skb);
2137                 goto out;
2138         }
2139
2140         /* if we have a HW VLAN tag being added, default to the HW one */
2141         if (skb_vlan_tag_present(skb)) {
2142                 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2143                 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2144         /* else if it is a SW VLAN, check the next protocol and store the tag */
2145         } else if (protocol == htons(ETH_P_8021Q)) {
2146                 struct vlan_hdr *vhdr, _vhdr;
2147
2148                 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2149                 if (!vhdr)
2150                         return -EINVAL;
2151
2152                 protocol = vhdr->h_vlan_encapsulated_proto;
2153                 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2154                 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2155         }
2156
2157         if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2158                 goto out;
2159
2160         /* Insert 802.1p priority into VLAN header */
2161         if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2162             (skb->priority != TC_PRIO_CONTROL)) {
2163                 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2164                 tx_flags |= (skb->priority & 0x7) <<
2165                                 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2166                 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2167                         struct vlan_ethhdr *vhdr;
2168                         int rc;
2169
2170                         rc = skb_cow_head(skb, 0);
2171                         if (rc < 0)
2172                                 return rc;
2173                         vhdr = (struct vlan_ethhdr *)skb->data;
2174                         vhdr->h_vlan_TCI = htons(tx_flags >>
2175                                                  I40E_TX_FLAGS_VLAN_SHIFT);
2176                 } else {
2177                         tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2178                 }
2179         }
2180
2181 out:
2182         *flags = tx_flags;
2183         return 0;
2184 }
2185
2186 /**
2187  * i40e_tso - set up the tso context descriptor
2188  * @tx_ring:  ptr to the ring to send
2189  * @skb:      ptr to the skb we're sending
2190  * @hdr_len:  ptr to the size of the packet header
2191  * @cd_type_cmd_tso_mss: Quad Word 1
2192  *
2193  * Returns 0 if no TSO can happen, 1 if tso is going, or error
2194  **/
2195 static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
2196                     u8 *hdr_len, u64 *cd_type_cmd_tso_mss)
2197 {
2198         u32 cd_cmd, cd_tso_len, cd_mss;
2199         struct ipv6hdr *ipv6h;
2200         struct tcphdr *tcph;
2201         struct iphdr *iph;
2202         u32 l4len;
2203         int err;
2204
2205         if (!skb_is_gso(skb))
2206                 return 0;
2207
2208         err = skb_cow_head(skb, 0);
2209         if (err < 0)
2210                 return err;
2211
2212         iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
2213         ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
2214
2215         if (iph->version == 4) {
2216                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
2217                 iph->tot_len = 0;
2218                 iph->check = 0;
2219                 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
2220                                                  0, IPPROTO_TCP, 0);
2221         } else if (ipv6h->version == 6) {
2222                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
2223                 ipv6h->payload_len = 0;
2224                 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
2225                                                0, IPPROTO_TCP, 0);
2226         }
2227
2228         l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
2229         *hdr_len = (skb->encapsulation
2230                     ? (skb_inner_transport_header(skb) - skb->data)
2231                     : skb_transport_offset(skb)) + l4len;
2232
2233         /* find the field values */
2234         cd_cmd = I40E_TX_CTX_DESC_TSO;
2235         cd_tso_len = skb->len - *hdr_len;
2236         cd_mss = skb_shinfo(skb)->gso_size;
2237         *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2238                                 ((u64)cd_tso_len <<
2239                                  I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2240                                 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2241         return 1;
2242 }
2243
2244 /**
2245  * i40e_tsyn - set up the tsyn context descriptor
2246  * @tx_ring:  ptr to the ring to send
2247  * @skb:      ptr to the skb we're sending
2248  * @tx_flags: the collected send information
2249  * @cd_type_cmd_tso_mss: Quad Word 1
2250  *
2251  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2252  **/
2253 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2254                      u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2255 {
2256         struct i40e_pf *pf;
2257
2258         if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2259                 return 0;
2260
2261         /* Tx timestamps cannot be sampled when doing TSO */
2262         if (tx_flags & I40E_TX_FLAGS_TSO)
2263                 return 0;
2264
2265         /* only timestamp the outbound packet if the user has requested it and
2266          * we are not already transmitting a packet to be timestamped
2267          */
2268         pf = i40e_netdev_to_pf(tx_ring->netdev);
2269         if (!(pf->flags & I40E_FLAG_PTP))
2270                 return 0;
2271
2272         if (pf->ptp_tx &&
2273             !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
2274                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2275                 pf->ptp_tx_skb = skb_get(skb);
2276         } else {
2277                 return 0;
2278         }
2279
2280         *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
2281                                 I40E_TXD_CTX_QW1_CMD_SHIFT;
2282
2283         return 1;
2284 }
2285
2286 /**
2287  * i40e_tx_enable_csum - Enable Tx checksum offloads
2288  * @skb: send buffer
2289  * @tx_flags: pointer to Tx flags currently set
2290  * @td_cmd: Tx descriptor command bits to set
2291  * @td_offset: Tx descriptor header offsets to set
2292  * @tx_ring: Tx descriptor ring
2293  * @cd_tunneling: ptr to context desc bits
2294  **/
2295 static void i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
2296                                 u32 *td_cmd, u32 *td_offset,
2297                                 struct i40e_ring *tx_ring,
2298                                 u32 *cd_tunneling)
2299 {
2300         struct ipv6hdr *this_ipv6_hdr;
2301         unsigned int this_tcp_hdrlen;
2302         struct iphdr *this_ip_hdr;
2303         u32 network_hdr_len;
2304         u8 l4_hdr = 0;
2305         struct udphdr *oudph;
2306         struct iphdr *oiph;
2307         u32 l4_tunnel = 0;
2308
2309         if (skb->encapsulation) {
2310                 switch (ip_hdr(skb)->protocol) {
2311                 case IPPROTO_UDP:
2312                         oudph = udp_hdr(skb);
2313                         oiph = ip_hdr(skb);
2314                         l4_tunnel = I40E_TXD_CTX_UDP_TUNNELING;
2315                         *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
2316                         break;
2317                 case IPPROTO_GRE:
2318                         l4_tunnel = I40E_TXD_CTX_GRE_TUNNELING;
2319                         break;
2320                 default:
2321                         return;
2322                 }
2323                 network_hdr_len = skb_inner_network_header_len(skb);
2324                 this_ip_hdr = inner_ip_hdr(skb);
2325                 this_ipv6_hdr = inner_ipv6_hdr(skb);
2326                 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
2327
2328                 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2329                         if (*tx_flags & I40E_TX_FLAGS_TSO) {
2330                                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
2331                                 ip_hdr(skb)->check = 0;
2332                         } else {
2333                                 *cd_tunneling |=
2334                                          I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2335                         }
2336                 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2337                         *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
2338                         if (*tx_flags & I40E_TX_FLAGS_TSO)
2339                                 ip_hdr(skb)->check = 0;
2340                 }
2341
2342                 /* Now set the ctx descriptor fields */
2343                 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
2344                                    I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT      |
2345                                    l4_tunnel                             |
2346                                    ((skb_inner_network_offset(skb) -
2347                                         skb_transport_offset(skb)) >> 1) <<
2348                                    I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2349                 if (this_ip_hdr->version == 6) {
2350                         *tx_flags &= ~I40E_TX_FLAGS_IPV4;
2351                         *tx_flags |= I40E_TX_FLAGS_IPV6;
2352                 }
2353                 if ((tx_ring->flags & I40E_TXR_FLAGS_OUTER_UDP_CSUM) &&
2354                     (l4_tunnel == I40E_TXD_CTX_UDP_TUNNELING)        &&
2355                     (*cd_tunneling & I40E_TXD_CTX_QW0_EXT_IP_MASK)) {
2356                         oudph->check = ~csum_tcpudp_magic(oiph->saddr,
2357                                         oiph->daddr,
2358                                         (skb->len - skb_transport_offset(skb)),
2359                                         IPPROTO_UDP, 0);
2360                         *cd_tunneling |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
2361                 }
2362         } else {
2363                 network_hdr_len = skb_network_header_len(skb);
2364                 this_ip_hdr = ip_hdr(skb);
2365                 this_ipv6_hdr = ipv6_hdr(skb);
2366                 this_tcp_hdrlen = tcp_hdrlen(skb);
2367         }
2368
2369         /* Enable IP checksum offloads */
2370         if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2371                 l4_hdr = this_ip_hdr->protocol;
2372                 /* the stack computes the IP header already, the only time we
2373                  * need the hardware to recompute it is in the case of TSO.
2374                  */
2375                 if (*tx_flags & I40E_TX_FLAGS_TSO) {
2376                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
2377                         this_ip_hdr->check = 0;
2378                 } else {
2379                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
2380                 }
2381                 /* Now set the td_offset for IP header length */
2382                 *td_offset = (network_hdr_len >> 2) <<
2383                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2384         } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2385                 l4_hdr = this_ipv6_hdr->nexthdr;
2386                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2387                 /* Now set the td_offset for IP header length */
2388                 *td_offset = (network_hdr_len >> 2) <<
2389                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2390         }
2391         /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
2392         *td_offset |= (skb_network_offset(skb) >> 1) <<
2393                        I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2394
2395         /* Enable L4 checksum offloads */
2396         switch (l4_hdr) {
2397         case IPPROTO_TCP:
2398                 /* enable checksum offloads */
2399                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2400                 *td_offset |= (this_tcp_hdrlen >> 2) <<
2401                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2402                 break;
2403         case IPPROTO_SCTP:
2404                 /* enable SCTP checksum offload */
2405                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2406                 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
2407                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2408                 break;
2409         case IPPROTO_UDP:
2410                 /* enable UDP checksum offload */
2411                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2412                 *td_offset |= (sizeof(struct udphdr) >> 2) <<
2413                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2414                 break;
2415         default:
2416                 break;
2417         }
2418 }
2419
2420 /**
2421  * i40e_create_tx_ctx Build the Tx context descriptor
2422  * @tx_ring:  ring to create the descriptor on
2423  * @cd_type_cmd_tso_mss: Quad Word 1
2424  * @cd_tunneling: Quad Word 0 - bits 0-31
2425  * @cd_l2tag2: Quad Word 0 - bits 32-63
2426  **/
2427 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2428                                const u64 cd_type_cmd_tso_mss,
2429                                const u32 cd_tunneling, const u32 cd_l2tag2)
2430 {
2431         struct i40e_tx_context_desc *context_desc;
2432         int i = tx_ring->next_to_use;
2433
2434         if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2435             !cd_tunneling && !cd_l2tag2)
2436                 return;
2437
2438         /* grab the next descriptor */
2439         context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2440
2441         i++;
2442         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2443
2444         /* cpu_to_le32 and assign to struct fields */
2445         context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2446         context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2447         context_desc->rsvd = cpu_to_le16(0);
2448         context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2449 }
2450
2451 /**
2452  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2453  * @tx_ring: the ring to be checked
2454  * @size:    the size buffer we want to assure is available
2455  *
2456  * Returns -EBUSY if a stop is needed, else 0
2457  **/
2458 static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2459 {
2460         netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2461         /* Memory barrier before checking head and tail */
2462         smp_mb();
2463
2464         /* Check again in a case another CPU has just made room available. */
2465         if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2466                 return -EBUSY;
2467
2468         /* A reprieve! - use start_queue because it doesn't call schedule */
2469         netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2470         ++tx_ring->tx_stats.restart_queue;
2471         return 0;
2472 }
2473
2474 /**
2475  * i40e_maybe_stop_tx - 1st level check for tx stop conditions
2476  * @tx_ring: the ring to be checked
2477  * @size:    the size buffer we want to assure is available
2478  *
2479  * Returns 0 if stop is not needed
2480  **/
2481 #ifdef I40E_FCOE
2482 inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2483 #else
2484 static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2485 #endif
2486 {
2487         if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
2488                 return 0;
2489         return __i40e_maybe_stop_tx(tx_ring, size);
2490 }
2491
2492 /**
2493  * i40e_chk_linearize - Check if there are more than 8 fragments per packet
2494  * @skb:      send buffer
2495  * @tx_flags: collected send information
2496  *
2497  * Note: Our HW can't scatter-gather more than 8 fragments to build
2498  * a packet on the wire and so we need to figure out the cases where we
2499  * need to linearize the skb.
2500  **/
2501 static bool i40e_chk_linearize(struct sk_buff *skb, u32 tx_flags)
2502 {
2503         struct skb_frag_struct *frag;
2504         bool linearize = false;
2505         unsigned int size = 0;
2506         u16 num_frags;
2507         u16 gso_segs;
2508
2509         num_frags = skb_shinfo(skb)->nr_frags;
2510         gso_segs = skb_shinfo(skb)->gso_segs;
2511
2512         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) {
2513                 u16 j = 0;
2514
2515                 if (num_frags < (I40E_MAX_BUFFER_TXD))
2516                         goto linearize_chk_done;
2517                 /* try the simple math, if we have too many frags per segment */
2518                 if (DIV_ROUND_UP((num_frags + gso_segs), gso_segs) >
2519                     I40E_MAX_BUFFER_TXD) {
2520                         linearize = true;
2521                         goto linearize_chk_done;
2522                 }
2523                 frag = &skb_shinfo(skb)->frags[0];
2524                 /* we might still have more fragments per segment */
2525                 do {
2526                         size += skb_frag_size(frag);
2527                         frag++; j++;
2528                         if ((size >= skb_shinfo(skb)->gso_size) &&
2529                             (j < I40E_MAX_BUFFER_TXD)) {
2530                                 size = (size % skb_shinfo(skb)->gso_size);
2531                                 j = (size) ? 1 : 0;
2532                         }
2533                         if (j == I40E_MAX_BUFFER_TXD) {
2534                                 linearize = true;
2535                                 break;
2536                         }
2537                         num_frags--;
2538                 } while (num_frags);
2539         } else {
2540                 if (num_frags >= I40E_MAX_BUFFER_TXD)
2541                         linearize = true;
2542         }
2543
2544 linearize_chk_done:
2545         return linearize;
2546 }
2547
2548 /**
2549  * i40e_tx_map - Build the Tx descriptor
2550  * @tx_ring:  ring to send buffer on
2551  * @skb:      send buffer
2552  * @first:    first buffer info buffer to use
2553  * @tx_flags: collected send information
2554  * @hdr_len:  size of the packet header
2555  * @td_cmd:   the command field in the descriptor
2556  * @td_offset: offset for checksum or crc
2557  **/
2558 #ifdef I40E_FCOE
2559 inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2560                         struct i40e_tx_buffer *first, u32 tx_flags,
2561                         const u8 hdr_len, u32 td_cmd, u32 td_offset)
2562 #else
2563 static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2564                                struct i40e_tx_buffer *first, u32 tx_flags,
2565                                const u8 hdr_len, u32 td_cmd, u32 td_offset)
2566 #endif
2567 {
2568         unsigned int data_len = skb->data_len;
2569         unsigned int size = skb_headlen(skb);
2570         struct skb_frag_struct *frag;
2571         struct i40e_tx_buffer *tx_bi;
2572         struct i40e_tx_desc *tx_desc;
2573         u16 i = tx_ring->next_to_use;
2574         u32 td_tag = 0;
2575         dma_addr_t dma;
2576         u16 gso_segs;
2577         u16 desc_count = 0;
2578         bool tail_bump = true;
2579         bool do_rs = false;
2580
2581         if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2582                 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2583                 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2584                          I40E_TX_FLAGS_VLAN_SHIFT;
2585         }
2586
2587         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
2588                 gso_segs = skb_shinfo(skb)->gso_segs;
2589         else
2590                 gso_segs = 1;
2591
2592         /* multiply data chunks by size of headers */
2593         first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
2594         first->gso_segs = gso_segs;
2595         first->skb = skb;
2596         first->tx_flags = tx_flags;
2597
2598         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2599
2600         tx_desc = I40E_TX_DESC(tx_ring, i);
2601         tx_bi = first;
2602
2603         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2604                 if (dma_mapping_error(tx_ring->dev, dma))
2605                         goto dma_error;
2606
2607                 /* record length, and DMA address */
2608                 dma_unmap_len_set(tx_bi, len, size);
2609                 dma_unmap_addr_set(tx_bi, dma, dma);
2610
2611                 tx_desc->buffer_addr = cpu_to_le64(dma);
2612
2613                 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2614                         tx_desc->cmd_type_offset_bsz =
2615                                 build_ctob(td_cmd, td_offset,
2616                                            I40E_MAX_DATA_PER_TXD, td_tag);
2617
2618                         tx_desc++;
2619                         i++;
2620                         desc_count++;
2621
2622                         if (i == tx_ring->count) {
2623                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
2624                                 i = 0;
2625                         }
2626
2627                         dma += I40E_MAX_DATA_PER_TXD;
2628                         size -= I40E_MAX_DATA_PER_TXD;
2629
2630                         tx_desc->buffer_addr = cpu_to_le64(dma);
2631                 }
2632
2633                 if (likely(!data_len))
2634                         break;
2635
2636                 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2637                                                           size, td_tag);
2638
2639                 tx_desc++;
2640                 i++;
2641                 desc_count++;
2642
2643                 if (i == tx_ring->count) {
2644                         tx_desc = I40E_TX_DESC(tx_ring, 0);
2645                         i = 0;
2646                 }
2647
2648                 size = skb_frag_size(frag);
2649                 data_len -= size;
2650
2651                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2652                                        DMA_TO_DEVICE);
2653
2654                 tx_bi = &tx_ring->tx_bi[i];
2655         }
2656
2657         /* set next_to_watch value indicating a packet is present */
2658         first->next_to_watch = tx_desc;
2659
2660         i++;
2661         if (i == tx_ring->count)
2662                 i = 0;
2663
2664         tx_ring->next_to_use = i;
2665
2666         netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
2667                                                  tx_ring->queue_index),
2668                                                  first->bytecount);
2669         i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2670
2671         /* Algorithm to optimize tail and RS bit setting:
2672          * if xmit_more is supported
2673          *      if xmit_more is true
2674          *              do not update tail and do not mark RS bit.
2675          *      if xmit_more is false and last xmit_more was false
2676          *              if every packet spanned less than 4 desc
2677          *                      then set RS bit on 4th packet and update tail
2678          *                      on every packet
2679          *              else
2680          *                      update tail and set RS bit on every packet.
2681          *      if xmit_more is false and last_xmit_more was true
2682          *              update tail and set RS bit.
2683          *
2684          * Optimization: wmb to be issued only in case of tail update.
2685          * Also optimize the Descriptor WB path for RS bit with the same
2686          * algorithm.
2687          *
2688          * Note: If there are less than 4 packets
2689          * pending and interrupts were disabled the service task will
2690          * trigger a force WB.
2691          */
2692         if (skb->xmit_more  &&
2693             !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2694                                                     tx_ring->queue_index))) {
2695                 tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2696                 tail_bump = false;
2697         } else if (!skb->xmit_more &&
2698                    !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2699                                                        tx_ring->queue_index)) &&
2700                    (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) &&
2701                    (tx_ring->packet_stride < WB_STRIDE) &&
2702                    (desc_count < WB_STRIDE)) {
2703                 tx_ring->packet_stride++;
2704         } else {
2705                 tx_ring->packet_stride = 0;
2706                 tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2707                 do_rs = true;
2708         }
2709         if (do_rs)
2710                 tx_ring->packet_stride = 0;
2711
2712         tx_desc->cmd_type_offset_bsz =
2713                         build_ctob(td_cmd, td_offset, size, td_tag) |
2714                         cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD :
2715                                                   I40E_TX_DESC_CMD_EOP) <<
2716                                                   I40E_TXD_QW1_CMD_SHIFT);
2717
2718         /* notify HW of packet */
2719         if (!tail_bump)
2720                 prefetchw(tx_desc + 1);
2721
2722         if (tail_bump) {
2723                 /* Force memory writes to complete before letting h/w
2724                  * know there are new descriptors to fetch.  (Only
2725                  * applicable for weak-ordered memory model archs,
2726                  * such as IA-64).
2727                  */
2728                 wmb();
2729                 writel(i, tx_ring->tail);
2730         }
2731
2732         return;
2733
2734 dma_error:
2735         dev_info(tx_ring->dev, "TX DMA map failed\n");
2736
2737         /* clear dma mappings for failed tx_bi map */
2738         for (;;) {
2739                 tx_bi = &tx_ring->tx_bi[i];
2740                 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2741                 if (tx_bi == first)
2742                         break;
2743                 if (i == 0)
2744                         i = tx_ring->count;
2745                 i--;
2746         }
2747
2748         tx_ring->next_to_use = i;
2749 }
2750
2751 /**
2752  * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
2753  * @skb:     send buffer
2754  * @tx_ring: ring to send buffer on
2755  *
2756  * Returns number of data descriptors needed for this skb. Returns 0 to indicate
2757  * there is not enough descriptors available in this ring since we need at least
2758  * one descriptor.
2759  **/
2760 #ifdef I40E_FCOE
2761 inline int i40e_xmit_descriptor_count(struct sk_buff *skb,
2762                                       struct i40e_ring *tx_ring)
2763 #else
2764 static inline int i40e_xmit_descriptor_count(struct sk_buff *skb,
2765                                              struct i40e_ring *tx_ring)
2766 #endif
2767 {
2768         unsigned int f;
2769         int count = 0;
2770
2771         /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2772          *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2773          *       + 4 desc gap to avoid the cache line where head is,
2774          *       + 1 desc for context descriptor,
2775          * otherwise try next time
2776          */
2777         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
2778                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
2779
2780         count += TXD_USE_COUNT(skb_headlen(skb));
2781         if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2782                 tx_ring->tx_stats.tx_busy++;
2783                 return 0;
2784         }
2785         return count;
2786 }
2787
2788 /**
2789  * i40e_xmit_frame_ring - Sends buffer on Tx ring
2790  * @skb:     send buffer
2791  * @tx_ring: ring to send buffer on
2792  *
2793  * Returns NETDEV_TX_OK if sent, else an error code
2794  **/
2795 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2796                                         struct i40e_ring *tx_ring)
2797 {
2798         u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2799         u32 cd_tunneling = 0, cd_l2tag2 = 0;
2800         struct i40e_tx_buffer *first;
2801         u32 td_offset = 0;
2802         u32 tx_flags = 0;
2803         __be16 protocol;
2804         u32 td_cmd = 0;
2805         u8 hdr_len = 0;
2806         int tsyn;
2807         int tso;
2808
2809         /* prefetch the data, we'll need it later */
2810         prefetch(skb->data);
2811
2812         if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
2813                 return NETDEV_TX_BUSY;
2814
2815         /* prepare the xmit flags */
2816         if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2817                 goto out_drop;
2818
2819         /* obtain protocol of skb */
2820         protocol = vlan_get_protocol(skb);
2821
2822         /* record the location of the first descriptor for this packet */
2823         first = &tx_ring->tx_bi[tx_ring->next_to_use];
2824
2825         /* setup IPv4/IPv6 offloads */
2826         if (protocol == htons(ETH_P_IP))
2827                 tx_flags |= I40E_TX_FLAGS_IPV4;
2828         else if (protocol == htons(ETH_P_IPV6))
2829                 tx_flags |= I40E_TX_FLAGS_IPV6;
2830
2831         tso = i40e_tso(tx_ring, skb, &hdr_len, &cd_type_cmd_tso_mss);
2832
2833         if (tso < 0)
2834                 goto out_drop;
2835         else if (tso)
2836                 tx_flags |= I40E_TX_FLAGS_TSO;
2837
2838         tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
2839
2840         if (tsyn)
2841                 tx_flags |= I40E_TX_FLAGS_TSYN;
2842
2843         if (i40e_chk_linearize(skb, tx_flags)) {
2844                 if (skb_linearize(skb))
2845                         goto out_drop;
2846                 tx_ring->tx_stats.tx_linearize++;
2847         }
2848         skb_tx_timestamp(skb);
2849
2850         /* always enable CRC insertion offload */
2851         td_cmd |= I40E_TX_DESC_CMD_ICRC;
2852
2853         /* Always offload the checksum, since it's in the data descriptor */
2854         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2855                 tx_flags |= I40E_TX_FLAGS_CSUM;
2856
2857                 i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2858                                     tx_ring, &cd_tunneling);
2859         }
2860
2861         i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2862                            cd_tunneling, cd_l2tag2);
2863
2864         /* Add Flow Director ATR if it's enabled.
2865          *
2866          * NOTE: this must always be directly before the data descriptor.
2867          */
2868         i40e_atr(tx_ring, skb, tx_flags, protocol);
2869
2870         i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2871                     td_cmd, td_offset);
2872
2873         return NETDEV_TX_OK;
2874
2875 out_drop:
2876         dev_kfree_skb_any(skb);
2877         return NETDEV_TX_OK;
2878 }
2879
2880 /**
2881  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2882  * @skb:    send buffer
2883  * @netdev: network interface device structure
2884  *
2885  * Returns NETDEV_TX_OK if sent, else an error code
2886  **/
2887 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2888 {
2889         struct i40e_netdev_priv *np = netdev_priv(netdev);
2890         struct i40e_vsi *vsi = np->vsi;
2891         struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
2892
2893         /* hardware can't handle really short frames, hardware padding works
2894          * beyond this point
2895          */
2896         if (skb_put_padto(skb, I40E_MIN_TX_LEN))
2897                 return NETDEV_TX_OK;
2898
2899         return i40e_xmit_frame_ring(skb, tx_ring);
2900 }