i40e/i40evf: fix bug in throttle rate math
[cascardo/linux.git] / drivers / net / ethernet / intel / i40e / i40e_txrx.c
1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Driver
4  * Copyright(c) 2013 - 2014 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26
27 #include <linux/prefetch.h>
28 #include <net/busy_poll.h>
29 #include "i40e.h"
30 #include "i40e_prototype.h"
31
32 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
33                                 u32 td_tag)
34 {
35         return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
36                            ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
37                            ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
38                            ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
39                            ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
40 }
41
42 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
43 #define I40E_FD_CLEAN_DELAY 10
44 /**
45  * i40e_program_fdir_filter - Program a Flow Director filter
46  * @fdir_data: Packet data that will be filter parameters
47  * @raw_packet: the pre-allocated packet buffer for FDir
48  * @pf: The PF pointer
49  * @add: True for add/update, False for remove
50  **/
51 int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, u8 *raw_packet,
52                              struct i40e_pf *pf, bool add)
53 {
54         struct i40e_filter_program_desc *fdir_desc;
55         struct i40e_tx_buffer *tx_buf, *first;
56         struct i40e_tx_desc *tx_desc;
57         struct i40e_ring *tx_ring;
58         unsigned int fpt, dcc;
59         struct i40e_vsi *vsi;
60         struct device *dev;
61         dma_addr_t dma;
62         u32 td_cmd = 0;
63         u16 delay = 0;
64         u16 i;
65
66         /* find existing FDIR VSI */
67         vsi = NULL;
68         for (i = 0; i < pf->num_alloc_vsi; i++)
69                 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR)
70                         vsi = pf->vsi[i];
71         if (!vsi)
72                 return -ENOENT;
73
74         tx_ring = vsi->tx_rings[0];
75         dev = tx_ring->dev;
76
77         /* we need two descriptors to add/del a filter and we can wait */
78         do {
79                 if (I40E_DESC_UNUSED(tx_ring) > 1)
80                         break;
81                 msleep_interruptible(1);
82                 delay++;
83         } while (delay < I40E_FD_CLEAN_DELAY);
84
85         if (!(I40E_DESC_UNUSED(tx_ring) > 1))
86                 return -EAGAIN;
87
88         dma = dma_map_single(dev, raw_packet,
89                              I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
90         if (dma_mapping_error(dev, dma))
91                 goto dma_fail;
92
93         /* grab the next descriptor */
94         i = tx_ring->next_to_use;
95         fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
96         first = &tx_ring->tx_bi[i];
97         memset(first, 0, sizeof(struct i40e_tx_buffer));
98
99         tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
100
101         fpt = (fdir_data->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
102               I40E_TXD_FLTR_QW0_QINDEX_MASK;
103
104         fpt |= (fdir_data->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT) &
105                I40E_TXD_FLTR_QW0_FLEXOFF_MASK;
106
107         fpt |= (fdir_data->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) &
108                I40E_TXD_FLTR_QW0_PCTYPE_MASK;
109
110         /* Use LAN VSI Id if not programmed by user */
111         if (fdir_data->dest_vsi == 0)
112                 fpt |= (pf->vsi[pf->lan_vsi]->id) <<
113                        I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
114         else
115                 fpt |= ((u32)fdir_data->dest_vsi <<
116                         I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT) &
117                        I40E_TXD_FLTR_QW0_DEST_VSI_MASK;
118
119         dcc = I40E_TX_DESC_DTYPE_FILTER_PROG;
120
121         if (add)
122                 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
123                        I40E_TXD_FLTR_QW1_PCMD_SHIFT;
124         else
125                 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
126                        I40E_TXD_FLTR_QW1_PCMD_SHIFT;
127
128         dcc |= (fdir_data->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT) &
129                I40E_TXD_FLTR_QW1_DEST_MASK;
130
131         dcc |= (fdir_data->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT) &
132                I40E_TXD_FLTR_QW1_FD_STATUS_MASK;
133
134         if (fdir_data->cnt_index != 0) {
135                 dcc |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
136                 dcc |= ((u32)fdir_data->cnt_index <<
137                         I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
138                         I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
139         }
140
141         fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(fpt);
142         fdir_desc->rsvd = cpu_to_le32(0);
143         fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dcc);
144         fdir_desc->fd_id = cpu_to_le32(fdir_data->fd_id);
145
146         /* Now program a dummy descriptor */
147         i = tx_ring->next_to_use;
148         tx_desc = I40E_TX_DESC(tx_ring, i);
149         tx_buf = &tx_ring->tx_bi[i];
150
151         tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
152
153         memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
154
155         /* record length, and DMA address */
156         dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
157         dma_unmap_addr_set(tx_buf, dma, dma);
158
159         tx_desc->buffer_addr = cpu_to_le64(dma);
160         td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
161
162         tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
163         tx_buf->raw_buf = (void *)raw_packet;
164
165         tx_desc->cmd_type_offset_bsz =
166                 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
167
168         /* Force memory writes to complete before letting h/w
169          * know there are new descriptors to fetch.
170          */
171         wmb();
172
173         /* Mark the data descriptor to be watched */
174         first->next_to_watch = tx_desc;
175
176         writel(tx_ring->next_to_use, tx_ring->tail);
177         return 0;
178
179 dma_fail:
180         return -1;
181 }
182
183 #define IP_HEADER_OFFSET 14
184 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
185 /**
186  * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
187  * @vsi: pointer to the targeted VSI
188  * @fd_data: the flow director data required for the FDir descriptor
189  * @add: true adds a filter, false removes it
190  *
191  * Returns 0 if the filters were successfully added or removed
192  **/
193 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
194                                    struct i40e_fdir_filter *fd_data,
195                                    bool add)
196 {
197         struct i40e_pf *pf = vsi->back;
198         struct udphdr *udp;
199         struct iphdr *ip;
200         bool err = false;
201         u8 *raw_packet;
202         int ret;
203         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
204                 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
205                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
206
207         raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
208         if (!raw_packet)
209                 return -ENOMEM;
210         memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
211
212         ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
213         udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
214               + sizeof(struct iphdr));
215
216         ip->daddr = fd_data->dst_ip[0];
217         udp->dest = fd_data->dst_port;
218         ip->saddr = fd_data->src_ip[0];
219         udp->source = fd_data->src_port;
220
221         fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
222         ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
223         if (ret) {
224                 dev_info(&pf->pdev->dev,
225                          "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
226                          fd_data->pctype, fd_data->fd_id, ret);
227                 err = true;
228         } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
229                 if (add)
230                         dev_info(&pf->pdev->dev,
231                                  "Filter OK for PCTYPE %d loc = %d\n",
232                                  fd_data->pctype, fd_data->fd_id);
233                 else
234                         dev_info(&pf->pdev->dev,
235                                  "Filter deleted for PCTYPE %d loc = %d\n",
236                                  fd_data->pctype, fd_data->fd_id);
237         }
238         return err ? -EOPNOTSUPP : 0;
239 }
240
241 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
242 /**
243  * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
244  * @vsi: pointer to the targeted VSI
245  * @fd_data: the flow director data required for the FDir descriptor
246  * @add: true adds a filter, false removes it
247  *
248  * Returns 0 if the filters were successfully added or removed
249  **/
250 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
251                                    struct i40e_fdir_filter *fd_data,
252                                    bool add)
253 {
254         struct i40e_pf *pf = vsi->back;
255         struct tcphdr *tcp;
256         struct iphdr *ip;
257         bool err = false;
258         u8 *raw_packet;
259         int ret;
260         /* Dummy packet */
261         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
262                 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
263                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
264                 0x0, 0x72, 0, 0, 0, 0};
265
266         raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
267         if (!raw_packet)
268                 return -ENOMEM;
269         memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
270
271         ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
272         tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
273               + sizeof(struct iphdr));
274
275         ip->daddr = fd_data->dst_ip[0];
276         tcp->dest = fd_data->dst_port;
277         ip->saddr = fd_data->src_ip[0];
278         tcp->source = fd_data->src_port;
279
280         if (add) {
281                 pf->fd_tcp_rule++;
282                 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) {
283                         if (I40E_DEBUG_FD & pf->hw.debug_mask)
284                                 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
285                         pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED;
286                 }
287         } else {
288                 pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ?
289                                   (pf->fd_tcp_rule - 1) : 0;
290                 if (pf->fd_tcp_rule == 0) {
291                         pf->flags |= I40E_FLAG_FD_ATR_ENABLED;
292                         if (I40E_DEBUG_FD & pf->hw.debug_mask)
293                                 dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
294                 }
295         }
296
297         fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
298         ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
299
300         if (ret) {
301                 dev_info(&pf->pdev->dev,
302                          "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
303                          fd_data->pctype, fd_data->fd_id, ret);
304                 err = true;
305         } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
306                 if (add)
307                         dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
308                                  fd_data->pctype, fd_data->fd_id);
309                 else
310                         dev_info(&pf->pdev->dev,
311                                  "Filter deleted for PCTYPE %d loc = %d\n",
312                                  fd_data->pctype, fd_data->fd_id);
313         }
314
315         return err ? -EOPNOTSUPP : 0;
316 }
317
318 /**
319  * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
320  * a specific flow spec
321  * @vsi: pointer to the targeted VSI
322  * @fd_data: the flow director data required for the FDir descriptor
323  * @add: true adds a filter, false removes it
324  *
325  * Always returns -EOPNOTSUPP
326  **/
327 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
328                                     struct i40e_fdir_filter *fd_data,
329                                     bool add)
330 {
331         return -EOPNOTSUPP;
332 }
333
334 #define I40E_IP_DUMMY_PACKET_LEN 34
335 /**
336  * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
337  * a specific flow spec
338  * @vsi: pointer to the targeted VSI
339  * @fd_data: the flow director data required for the FDir descriptor
340  * @add: true adds a filter, false removes it
341  *
342  * Returns 0 if the filters were successfully added or removed
343  **/
344 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
345                                   struct i40e_fdir_filter *fd_data,
346                                   bool add)
347 {
348         struct i40e_pf *pf = vsi->back;
349         struct iphdr *ip;
350         bool err = false;
351         u8 *raw_packet;
352         int ret;
353         int i;
354         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
355                 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
356                 0, 0, 0, 0};
357
358         for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
359              i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
360                 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
361                 if (!raw_packet)
362                         return -ENOMEM;
363                 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
364                 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
365
366                 ip->saddr = fd_data->src_ip[0];
367                 ip->daddr = fd_data->dst_ip[0];
368                 ip->protocol = 0;
369
370                 fd_data->pctype = i;
371                 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
372
373                 if (ret) {
374                         dev_info(&pf->pdev->dev,
375                                  "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
376                                  fd_data->pctype, fd_data->fd_id, ret);
377                         err = true;
378                 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
379                         if (add)
380                                 dev_info(&pf->pdev->dev,
381                                          "Filter OK for PCTYPE %d loc = %d\n",
382                                          fd_data->pctype, fd_data->fd_id);
383                         else
384                                 dev_info(&pf->pdev->dev,
385                                          "Filter deleted for PCTYPE %d loc = %d\n",
386                                          fd_data->pctype, fd_data->fd_id);
387                 }
388         }
389
390         return err ? -EOPNOTSUPP : 0;
391 }
392
393 /**
394  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
395  * @vsi: pointer to the targeted VSI
396  * @cmd: command to get or set RX flow classification rules
397  * @add: true adds a filter, false removes it
398  *
399  **/
400 int i40e_add_del_fdir(struct i40e_vsi *vsi,
401                       struct i40e_fdir_filter *input, bool add)
402 {
403         struct i40e_pf *pf = vsi->back;
404         int ret;
405
406         switch (input->flow_type & ~FLOW_EXT) {
407         case TCP_V4_FLOW:
408                 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
409                 break;
410         case UDP_V4_FLOW:
411                 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
412                 break;
413         case SCTP_V4_FLOW:
414                 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
415                 break;
416         case IPV4_FLOW:
417                 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
418                 break;
419         case IP_USER_FLOW:
420                 switch (input->ip4_proto) {
421                 case IPPROTO_TCP:
422                         ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
423                         break;
424                 case IPPROTO_UDP:
425                         ret = i40e_add_del_fdir_udpv4(vsi, input, add);
426                         break;
427                 case IPPROTO_SCTP:
428                         ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
429                         break;
430                 default:
431                         ret = i40e_add_del_fdir_ipv4(vsi, input, add);
432                         break;
433                 }
434                 break;
435         default:
436                 dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
437                          input->flow_type);
438                 ret = -EINVAL;
439         }
440
441         /* The buffer allocated here is freed by the i40e_clean_tx_ring() */
442         return ret;
443 }
444
445 /**
446  * i40e_fd_handle_status - check the Programming Status for FD
447  * @rx_ring: the Rx ring for this descriptor
448  * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
449  * @prog_id: the id originally used for programming
450  *
451  * This is used to verify if the FD programming or invalidation
452  * requested by SW to the HW is successful or not and take actions accordingly.
453  **/
454 static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
455                                   union i40e_rx_desc *rx_desc, u8 prog_id)
456 {
457         struct i40e_pf *pf = rx_ring->vsi->back;
458         struct pci_dev *pdev = pf->pdev;
459         u32 fcnt_prog, fcnt_avail;
460         u32 error;
461         u64 qw;
462
463         qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
464         error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
465                 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
466
467         if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
468                 pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
469                 if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
470                     (I40E_DEBUG_FD & pf->hw.debug_mask))
471                         dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
472                                  pf->fd_inv);
473
474                 /* Check if the programming error is for ATR.
475                  * If so, auto disable ATR and set a state for
476                  * flush in progress. Next time we come here if flush is in
477                  * progress do nothing, once flush is complete the state will
478                  * be cleared.
479                  */
480                 if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state))
481                         return;
482
483                 pf->fd_add_err++;
484                 /* store the current atr filter count */
485                 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
486
487                 if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
488                     (pf->auto_disable_flags & I40E_FLAG_FD_SB_ENABLED)) {
489                         pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
490                         set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state);
491                 }
492
493                 /* filter programming failed most likely due to table full */
494                 fcnt_prog = i40e_get_global_fd_count(pf);
495                 fcnt_avail = pf->fdir_pf_filter_count;
496                 /* If ATR is running fcnt_prog can quickly change,
497                  * if we are very close to full, it makes sense to disable
498                  * FD ATR/SB and then re-enable it when there is room.
499                  */
500                 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
501                         if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
502                             !(pf->auto_disable_flags &
503                                      I40E_FLAG_FD_SB_ENABLED)) {
504                                 if (I40E_DEBUG_FD & pf->hw.debug_mask)
505                                         dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
506                                 pf->auto_disable_flags |=
507                                                         I40E_FLAG_FD_SB_ENABLED;
508                         }
509                 } else {
510                         dev_info(&pdev->dev,
511                                 "FD filter programming failed due to incorrect filter parameters\n");
512                 }
513         } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
514                 if (I40E_DEBUG_FD & pf->hw.debug_mask)
515                         dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
516                                  rx_desc->wb.qword0.hi_dword.fd_id);
517         }
518 }
519
520 /**
521  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
522  * @ring:      the ring that owns the buffer
523  * @tx_buffer: the buffer to free
524  **/
525 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
526                                             struct i40e_tx_buffer *tx_buffer)
527 {
528         if (tx_buffer->skb) {
529                 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
530                         kfree(tx_buffer->raw_buf);
531                 else
532                         dev_kfree_skb_any(tx_buffer->skb);
533
534                 if (dma_unmap_len(tx_buffer, len))
535                         dma_unmap_single(ring->dev,
536                                          dma_unmap_addr(tx_buffer, dma),
537                                          dma_unmap_len(tx_buffer, len),
538                                          DMA_TO_DEVICE);
539         } else if (dma_unmap_len(tx_buffer, len)) {
540                 dma_unmap_page(ring->dev,
541                                dma_unmap_addr(tx_buffer, dma),
542                                dma_unmap_len(tx_buffer, len),
543                                DMA_TO_DEVICE);
544         }
545         tx_buffer->next_to_watch = NULL;
546         tx_buffer->skb = NULL;
547         dma_unmap_len_set(tx_buffer, len, 0);
548         /* tx_buffer must be completely set up in the transmit path */
549 }
550
551 /**
552  * i40e_clean_tx_ring - Free any empty Tx buffers
553  * @tx_ring: ring to be cleaned
554  **/
555 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
556 {
557         unsigned long bi_size;
558         u16 i;
559
560         /* ring already cleared, nothing to do */
561         if (!tx_ring->tx_bi)
562                 return;
563
564         /* Free all the Tx ring sk_buffs */
565         for (i = 0; i < tx_ring->count; i++)
566                 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
567
568         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
569         memset(tx_ring->tx_bi, 0, bi_size);
570
571         /* Zero out the descriptor ring */
572         memset(tx_ring->desc, 0, tx_ring->size);
573
574         tx_ring->next_to_use = 0;
575         tx_ring->next_to_clean = 0;
576
577         if (!tx_ring->netdev)
578                 return;
579
580         /* cleanup Tx queue statistics */
581         netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
582                                                   tx_ring->queue_index));
583 }
584
585 /**
586  * i40e_free_tx_resources - Free Tx resources per queue
587  * @tx_ring: Tx descriptor ring for a specific queue
588  *
589  * Free all transmit software resources
590  **/
591 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
592 {
593         i40e_clean_tx_ring(tx_ring);
594         kfree(tx_ring->tx_bi);
595         tx_ring->tx_bi = NULL;
596
597         if (tx_ring->desc) {
598                 dma_free_coherent(tx_ring->dev, tx_ring->size,
599                                   tx_ring->desc, tx_ring->dma);
600                 tx_ring->desc = NULL;
601         }
602 }
603
604 /**
605  * i40e_get_tx_pending - how many tx descriptors not processed
606  * @tx_ring: the ring of descriptors
607  *
608  * Since there is no access to the ring head register
609  * in XL710, we need to use our local copies
610  **/
611 u32 i40e_get_tx_pending(struct i40e_ring *ring)
612 {
613         u32 head, tail;
614
615         head = i40e_get_head(ring);
616         tail = readl(ring->tail);
617
618         if (head != tail)
619                 return (head < tail) ?
620                         tail - head : (tail + ring->count - head);
621
622         return 0;
623 }
624
625 #define WB_STRIDE 0x3
626
627 /**
628  * i40e_clean_tx_irq - Reclaim resources after transmit completes
629  * @tx_ring:  tx ring to clean
630  * @budget:   how many cleans we're allowed
631  *
632  * Returns true if there's any budget left (e.g. the clean is finished)
633  **/
634 static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
635 {
636         u16 i = tx_ring->next_to_clean;
637         struct i40e_tx_buffer *tx_buf;
638         struct i40e_tx_desc *tx_head;
639         struct i40e_tx_desc *tx_desc;
640         unsigned int total_packets = 0;
641         unsigned int total_bytes = 0;
642
643         tx_buf = &tx_ring->tx_bi[i];
644         tx_desc = I40E_TX_DESC(tx_ring, i);
645         i -= tx_ring->count;
646
647         tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
648
649         do {
650                 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
651
652                 /* if next_to_watch is not set then there is no work pending */
653                 if (!eop_desc)
654                         break;
655
656                 /* prevent any other reads prior to eop_desc */
657                 read_barrier_depends();
658
659                 /* we have caught up to head, no work left to do */
660                 if (tx_head == tx_desc)
661                         break;
662
663                 /* clear next_to_watch to prevent false hangs */
664                 tx_buf->next_to_watch = NULL;
665
666                 /* update the statistics for this packet */
667                 total_bytes += tx_buf->bytecount;
668                 total_packets += tx_buf->gso_segs;
669
670                 /* free the skb */
671                 dev_consume_skb_any(tx_buf->skb);
672
673                 /* unmap skb header data */
674                 dma_unmap_single(tx_ring->dev,
675                                  dma_unmap_addr(tx_buf, dma),
676                                  dma_unmap_len(tx_buf, len),
677                                  DMA_TO_DEVICE);
678
679                 /* clear tx_buffer data */
680                 tx_buf->skb = NULL;
681                 dma_unmap_len_set(tx_buf, len, 0);
682
683                 /* unmap remaining buffers */
684                 while (tx_desc != eop_desc) {
685
686                         tx_buf++;
687                         tx_desc++;
688                         i++;
689                         if (unlikely(!i)) {
690                                 i -= tx_ring->count;
691                                 tx_buf = tx_ring->tx_bi;
692                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
693                         }
694
695                         /* unmap any remaining paged data */
696                         if (dma_unmap_len(tx_buf, len)) {
697                                 dma_unmap_page(tx_ring->dev,
698                                                dma_unmap_addr(tx_buf, dma),
699                                                dma_unmap_len(tx_buf, len),
700                                                DMA_TO_DEVICE);
701                                 dma_unmap_len_set(tx_buf, len, 0);
702                         }
703                 }
704
705                 /* move us one more past the eop_desc for start of next pkt */
706                 tx_buf++;
707                 tx_desc++;
708                 i++;
709                 if (unlikely(!i)) {
710                         i -= tx_ring->count;
711                         tx_buf = tx_ring->tx_bi;
712                         tx_desc = I40E_TX_DESC(tx_ring, 0);
713                 }
714
715                 prefetch(tx_desc);
716
717                 /* update budget accounting */
718                 budget--;
719         } while (likely(budget));
720
721         i += tx_ring->count;
722         tx_ring->next_to_clean = i;
723         u64_stats_update_begin(&tx_ring->syncp);
724         tx_ring->stats.bytes += total_bytes;
725         tx_ring->stats.packets += total_packets;
726         u64_stats_update_end(&tx_ring->syncp);
727         tx_ring->q_vector->tx.total_bytes += total_bytes;
728         tx_ring->q_vector->tx.total_packets += total_packets;
729
730         if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
731                 unsigned int j = 0;
732
733                 /* check to see if there are < 4 descriptors
734                  * waiting to be written back, then kick the hardware to force
735                  * them to be written back in case we stay in NAPI.
736                  * In this mode on X722 we do not enable Interrupt.
737                  */
738                 j = i40e_get_tx_pending(tx_ring);
739
740                 if (budget &&
741                     ((j / (WB_STRIDE + 1)) == 0) && (j != 0) &&
742                     !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
743                     (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
744                         tx_ring->arm_wb = true;
745         }
746
747         netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
748                                                       tx_ring->queue_index),
749                                   total_packets, total_bytes);
750
751 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
752         if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
753                      (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
754                 /* Make sure that anybody stopping the queue after this
755                  * sees the new next_to_clean.
756                  */
757                 smp_mb();
758                 if (__netif_subqueue_stopped(tx_ring->netdev,
759                                              tx_ring->queue_index) &&
760                    !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
761                         netif_wake_subqueue(tx_ring->netdev,
762                                             tx_ring->queue_index);
763                         ++tx_ring->tx_stats.restart_queue;
764                 }
765         }
766
767         return !!budget;
768 }
769
770 /**
771  * i40e_force_wb - Arm hardware to do a wb on noncache aligned descriptors
772  * @vsi: the VSI we care about
773  * @q_vector: the vector  on which to force writeback
774  *
775  **/
776 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
777 {
778         u16 flags = q_vector->tx.ring[0].flags;
779
780         if (flags & I40E_TXR_FLAGS_WB_ON_ITR) {
781                 u32 val;
782
783                 if (q_vector->arm_wb_state)
784                         return;
785
786                 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK;
787
788                 wr32(&vsi->back->hw,
789                      I40E_PFINT_DYN_CTLN(q_vector->v_idx +
790                                          vsi->base_vector - 1),
791                      val);
792                 q_vector->arm_wb_state = true;
793         } else if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
794                 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
795                           I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
796                           I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
797                           I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
798                           /* allow 00 to be written to the index */
799
800                 wr32(&vsi->back->hw,
801                      I40E_PFINT_DYN_CTLN(q_vector->v_idx +
802                                          vsi->base_vector - 1), val);
803         } else {
804                 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
805                           I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
806                           I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
807                           I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
808                         /* allow 00 to be written to the index */
809
810                 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
811         }
812 }
813
814 /**
815  * i40e_set_new_dynamic_itr - Find new ITR level
816  * @rc: structure containing ring performance data
817  *
818  * Returns true if ITR changed, false if not
819  *
820  * Stores a new ITR value based on packets and byte counts during
821  * the last interrupt.  The advantage of per interrupt computation
822  * is faster updates and more accurate ITR for the current traffic
823  * pattern.  Constants in this function were computed based on
824  * theoretical maximum wire speed and thresholds were set based on
825  * testing data as well as attempting to minimize response time
826  * while increasing bulk throughput.
827  **/
828 static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
829 {
830         enum i40e_latency_range new_latency_range = rc->latency_range;
831         u32 new_itr = rc->itr;
832         int bytes_per_int;
833         int usecs;
834
835         if (rc->total_packets == 0 || !rc->itr)
836                 return false;
837
838         /* simple throttlerate management
839          *   0-10MB/s   lowest (100000 ints/s)
840          *  10-20MB/s   low    (20000 ints/s)
841          *  20-1249MB/s bulk   (8000 ints/s)
842          *
843          * The math works out because the divisor is in 10^(-6) which
844          * turns the bytes/us input value into MB/s values, but
845          * make sure to use usecs, as the register values written
846          * are in 2 usec increments in the ITR registers.
847          */
848         usecs = (rc->itr << 1);
849         bytes_per_int = rc->total_bytes / usecs;
850         switch (new_latency_range) {
851         case I40E_LOWEST_LATENCY:
852                 if (bytes_per_int > 10)
853                         new_latency_range = I40E_LOW_LATENCY;
854                 break;
855         case I40E_LOW_LATENCY:
856                 if (bytes_per_int > 20)
857                         new_latency_range = I40E_BULK_LATENCY;
858                 else if (bytes_per_int <= 10)
859                         new_latency_range = I40E_LOWEST_LATENCY;
860                 break;
861         case I40E_BULK_LATENCY:
862                 if (bytes_per_int <= 20)
863                         new_latency_range = I40E_LOW_LATENCY;
864                 break;
865         default:
866                 if (bytes_per_int <= 20)
867                         new_latency_range = I40E_LOW_LATENCY;
868                 break;
869         }
870         rc->latency_range = new_latency_range;
871
872         switch (new_latency_range) {
873         case I40E_LOWEST_LATENCY:
874                 new_itr = I40E_ITR_100K;
875                 break;
876         case I40E_LOW_LATENCY:
877                 new_itr = I40E_ITR_20K;
878                 break;
879         case I40E_BULK_LATENCY:
880                 new_itr = I40E_ITR_8K;
881                 break;
882         default:
883                 break;
884         }
885
886         rc->total_bytes = 0;
887         rc->total_packets = 0;
888
889         if (new_itr != rc->itr) {
890                 rc->itr = new_itr;
891                 return true;
892         }
893
894         return false;
895 }
896
897 /**
898  * i40e_clean_programming_status - clean the programming status descriptor
899  * @rx_ring: the rx ring that has this descriptor
900  * @rx_desc: the rx descriptor written back by HW
901  *
902  * Flow director should handle FD_FILTER_STATUS to check its filter programming
903  * status being successful or not and take actions accordingly. FCoE should
904  * handle its context/filter programming/invalidation status and take actions.
905  *
906  **/
907 static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
908                                           union i40e_rx_desc *rx_desc)
909 {
910         u64 qw;
911         u8 id;
912
913         qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
914         id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
915                   I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
916
917         if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
918                 i40e_fd_handle_status(rx_ring, rx_desc, id);
919 #ifdef I40E_FCOE
920         else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
921                  (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
922                 i40e_fcoe_handle_status(rx_ring, rx_desc, id);
923 #endif
924 }
925
926 /**
927  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
928  * @tx_ring: the tx ring to set up
929  *
930  * Return 0 on success, negative on error
931  **/
932 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
933 {
934         struct device *dev = tx_ring->dev;
935         int bi_size;
936
937         if (!dev)
938                 return -ENOMEM;
939
940         /* warn if we are about to overwrite the pointer */
941         WARN_ON(tx_ring->tx_bi);
942         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
943         tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
944         if (!tx_ring->tx_bi)
945                 goto err;
946
947         /* round up to nearest 4K */
948         tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
949         /* add u32 for head writeback, align after this takes care of
950          * guaranteeing this is at least one cache line in size
951          */
952         tx_ring->size += sizeof(u32);
953         tx_ring->size = ALIGN(tx_ring->size, 4096);
954         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
955                                            &tx_ring->dma, GFP_KERNEL);
956         if (!tx_ring->desc) {
957                 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
958                          tx_ring->size);
959                 goto err;
960         }
961
962         tx_ring->next_to_use = 0;
963         tx_ring->next_to_clean = 0;
964         return 0;
965
966 err:
967         kfree(tx_ring->tx_bi);
968         tx_ring->tx_bi = NULL;
969         return -ENOMEM;
970 }
971
972 /**
973  * i40e_clean_rx_ring - Free Rx buffers
974  * @rx_ring: ring to be cleaned
975  **/
976 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
977 {
978         struct device *dev = rx_ring->dev;
979         struct i40e_rx_buffer *rx_bi;
980         unsigned long bi_size;
981         u16 i;
982
983         /* ring already cleared, nothing to do */
984         if (!rx_ring->rx_bi)
985                 return;
986
987         if (ring_is_ps_enabled(rx_ring)) {
988                 int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
989
990                 rx_bi = &rx_ring->rx_bi[0];
991                 if (rx_bi->hdr_buf) {
992                         dma_free_coherent(dev,
993                                           bufsz,
994                                           rx_bi->hdr_buf,
995                                           rx_bi->dma);
996                         for (i = 0; i < rx_ring->count; i++) {
997                                 rx_bi = &rx_ring->rx_bi[i];
998                                 rx_bi->dma = 0;
999                                 rx_bi->hdr_buf = NULL;
1000                         }
1001                 }
1002         }
1003         /* Free all the Rx ring sk_buffs */
1004         for (i = 0; i < rx_ring->count; i++) {
1005                 rx_bi = &rx_ring->rx_bi[i];
1006                 if (rx_bi->dma) {
1007                         dma_unmap_single(dev,
1008                                          rx_bi->dma,
1009                                          rx_ring->rx_buf_len,
1010                                          DMA_FROM_DEVICE);
1011                         rx_bi->dma = 0;
1012                 }
1013                 if (rx_bi->skb) {
1014                         dev_kfree_skb(rx_bi->skb);
1015                         rx_bi->skb = NULL;
1016                 }
1017                 if (rx_bi->page) {
1018                         if (rx_bi->page_dma) {
1019                                 dma_unmap_page(dev,
1020                                                rx_bi->page_dma,
1021                                                PAGE_SIZE / 2,
1022                                                DMA_FROM_DEVICE);
1023                                 rx_bi->page_dma = 0;
1024                         }
1025                         __free_page(rx_bi->page);
1026                         rx_bi->page = NULL;
1027                         rx_bi->page_offset = 0;
1028                 }
1029         }
1030
1031         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1032         memset(rx_ring->rx_bi, 0, bi_size);
1033
1034         /* Zero out the descriptor ring */
1035         memset(rx_ring->desc, 0, rx_ring->size);
1036
1037         rx_ring->next_to_clean = 0;
1038         rx_ring->next_to_use = 0;
1039 }
1040
1041 /**
1042  * i40e_free_rx_resources - Free Rx resources
1043  * @rx_ring: ring to clean the resources from
1044  *
1045  * Free all receive software resources
1046  **/
1047 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1048 {
1049         i40e_clean_rx_ring(rx_ring);
1050         kfree(rx_ring->rx_bi);
1051         rx_ring->rx_bi = NULL;
1052
1053         if (rx_ring->desc) {
1054                 dma_free_coherent(rx_ring->dev, rx_ring->size,
1055                                   rx_ring->desc, rx_ring->dma);
1056                 rx_ring->desc = NULL;
1057         }
1058 }
1059
1060 /**
1061  * i40e_alloc_rx_headers - allocate rx header buffers
1062  * @rx_ring: ring to alloc buffers
1063  *
1064  * Allocate rx header buffers for the entire ring. As these are static,
1065  * this is only called when setting up a new ring.
1066  **/
1067 void i40e_alloc_rx_headers(struct i40e_ring *rx_ring)
1068 {
1069         struct device *dev = rx_ring->dev;
1070         struct i40e_rx_buffer *rx_bi;
1071         dma_addr_t dma;
1072         void *buffer;
1073         int buf_size;
1074         int i;
1075
1076         if (rx_ring->rx_bi[0].hdr_buf)
1077                 return;
1078         /* Make sure the buffers don't cross cache line boundaries. */
1079         buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
1080         buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
1081                                     &dma, GFP_KERNEL);
1082         if (!buffer)
1083                 return;
1084         for (i = 0; i < rx_ring->count; i++) {
1085                 rx_bi = &rx_ring->rx_bi[i];
1086                 rx_bi->dma = dma + (i * buf_size);
1087                 rx_bi->hdr_buf = buffer + (i * buf_size);
1088         }
1089 }
1090
1091 /**
1092  * i40e_setup_rx_descriptors - Allocate Rx descriptors
1093  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1094  *
1095  * Returns 0 on success, negative on failure
1096  **/
1097 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1098 {
1099         struct device *dev = rx_ring->dev;
1100         int bi_size;
1101
1102         /* warn if we are about to overwrite the pointer */
1103         WARN_ON(rx_ring->rx_bi);
1104         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1105         rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1106         if (!rx_ring->rx_bi)
1107                 goto err;
1108
1109         u64_stats_init(&rx_ring->syncp);
1110
1111         /* Round up to nearest 4K */
1112         rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
1113                 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
1114                 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1115         rx_ring->size = ALIGN(rx_ring->size, 4096);
1116         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1117                                            &rx_ring->dma, GFP_KERNEL);
1118
1119         if (!rx_ring->desc) {
1120                 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1121                          rx_ring->size);
1122                 goto err;
1123         }
1124
1125         rx_ring->next_to_clean = 0;
1126         rx_ring->next_to_use = 0;
1127
1128         return 0;
1129 err:
1130         kfree(rx_ring->rx_bi);
1131         rx_ring->rx_bi = NULL;
1132         return -ENOMEM;
1133 }
1134
1135 /**
1136  * i40e_release_rx_desc - Store the new tail and head values
1137  * @rx_ring: ring to bump
1138  * @val: new head index
1139  **/
1140 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1141 {
1142         rx_ring->next_to_use = val;
1143         /* Force memory writes to complete before letting h/w
1144          * know there are new descriptors to fetch.  (Only
1145          * applicable for weak-ordered memory model archs,
1146          * such as IA-64).
1147          */
1148         wmb();
1149         writel(val, rx_ring->tail);
1150 }
1151
1152 /**
1153  * i40e_alloc_rx_buffers_ps - Replace used receive buffers; packet split
1154  * @rx_ring: ring to place buffers on
1155  * @cleaned_count: number of buffers to replace
1156  **/
1157 void i40e_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
1158 {
1159         u16 i = rx_ring->next_to_use;
1160         union i40e_rx_desc *rx_desc;
1161         struct i40e_rx_buffer *bi;
1162
1163         /* do nothing if no valid netdev defined */
1164         if (!rx_ring->netdev || !cleaned_count)
1165                 return;
1166
1167         while (cleaned_count--) {
1168                 rx_desc = I40E_RX_DESC(rx_ring, i);
1169                 bi = &rx_ring->rx_bi[i];
1170
1171                 if (bi->skb) /* desc is in use */
1172                         goto no_buffers;
1173                 if (!bi->page) {
1174                         bi->page = alloc_page(GFP_ATOMIC);
1175                         if (!bi->page) {
1176                                 rx_ring->rx_stats.alloc_page_failed++;
1177                                 goto no_buffers;
1178                         }
1179                 }
1180
1181                 if (!bi->page_dma) {
1182                         /* use a half page if we're re-using */
1183                         bi->page_offset ^= PAGE_SIZE / 2;
1184                         bi->page_dma = dma_map_page(rx_ring->dev,
1185                                                     bi->page,
1186                                                     bi->page_offset,
1187                                                     PAGE_SIZE / 2,
1188                                                     DMA_FROM_DEVICE);
1189                         if (dma_mapping_error(rx_ring->dev,
1190                                               bi->page_dma)) {
1191                                 rx_ring->rx_stats.alloc_page_failed++;
1192                                 bi->page_dma = 0;
1193                                 goto no_buffers;
1194                         }
1195                 }
1196
1197                 dma_sync_single_range_for_device(rx_ring->dev,
1198                                                  bi->dma,
1199                                                  0,
1200                                                  rx_ring->rx_hdr_len,
1201                                                  DMA_FROM_DEVICE);
1202                 /* Refresh the desc even if buffer_addrs didn't change
1203                  * because each write-back erases this info.
1204                  */
1205                 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
1206                 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
1207                 i++;
1208                 if (i == rx_ring->count)
1209                         i = 0;
1210         }
1211
1212 no_buffers:
1213         if (rx_ring->next_to_use != i)
1214                 i40e_release_rx_desc(rx_ring, i);
1215 }
1216
1217 /**
1218  * i40e_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
1219  * @rx_ring: ring to place buffers on
1220  * @cleaned_count: number of buffers to replace
1221  **/
1222 void i40e_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
1223 {
1224         u16 i = rx_ring->next_to_use;
1225         union i40e_rx_desc *rx_desc;
1226         struct i40e_rx_buffer *bi;
1227         struct sk_buff *skb;
1228
1229         /* do nothing if no valid netdev defined */
1230         if (!rx_ring->netdev || !cleaned_count)
1231                 return;
1232
1233         while (cleaned_count--) {
1234                 rx_desc = I40E_RX_DESC(rx_ring, i);
1235                 bi = &rx_ring->rx_bi[i];
1236                 skb = bi->skb;
1237
1238                 if (!skb) {
1239                         skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1240                                                         rx_ring->rx_buf_len);
1241                         if (!skb) {
1242                                 rx_ring->rx_stats.alloc_buff_failed++;
1243                                 goto no_buffers;
1244                         }
1245                         /* initialize queue mapping */
1246                         skb_record_rx_queue(skb, rx_ring->queue_index);
1247                         bi->skb = skb;
1248                 }
1249
1250                 if (!bi->dma) {
1251                         bi->dma = dma_map_single(rx_ring->dev,
1252                                                  skb->data,
1253                                                  rx_ring->rx_buf_len,
1254                                                  DMA_FROM_DEVICE);
1255                         if (dma_mapping_error(rx_ring->dev, bi->dma)) {
1256                                 rx_ring->rx_stats.alloc_buff_failed++;
1257                                 bi->dma = 0;
1258                                 goto no_buffers;
1259                         }
1260                 }
1261
1262                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
1263                 rx_desc->read.hdr_addr = 0;
1264                 i++;
1265                 if (i == rx_ring->count)
1266                         i = 0;
1267         }
1268
1269 no_buffers:
1270         if (rx_ring->next_to_use != i)
1271                 i40e_release_rx_desc(rx_ring, i);
1272 }
1273
1274 /**
1275  * i40e_receive_skb - Send a completed packet up the stack
1276  * @rx_ring:  rx ring in play
1277  * @skb: packet to send up
1278  * @vlan_tag: vlan tag for packet
1279  **/
1280 static void i40e_receive_skb(struct i40e_ring *rx_ring,
1281                              struct sk_buff *skb, u16 vlan_tag)
1282 {
1283         struct i40e_q_vector *q_vector = rx_ring->q_vector;
1284
1285         if (vlan_tag & VLAN_VID_MASK)
1286                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1287
1288         napi_gro_receive(&q_vector->napi, skb);
1289 }
1290
1291 /**
1292  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1293  * @vsi: the VSI we care about
1294  * @skb: skb currently being received and modified
1295  * @rx_status: status value of last descriptor in packet
1296  * @rx_error: error value of last descriptor in packet
1297  * @rx_ptype: ptype value of last descriptor in packet
1298  **/
1299 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1300                                     struct sk_buff *skb,
1301                                     u32 rx_status,
1302                                     u32 rx_error,
1303                                     u16 rx_ptype)
1304 {
1305         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
1306         bool ipv4 = false, ipv6 = false;
1307         bool ipv4_tunnel, ipv6_tunnel;
1308         __wsum rx_udp_csum;
1309         struct iphdr *iph;
1310         __sum16 csum;
1311
1312         ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
1313                      (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
1314         ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
1315                      (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
1316
1317         skb->ip_summed = CHECKSUM_NONE;
1318
1319         /* Rx csum enabled and ip headers found? */
1320         if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1321                 return;
1322
1323         /* did the hardware decode the packet and checksum? */
1324         if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1325                 return;
1326
1327         /* both known and outer_ip must be set for the below code to work */
1328         if (!(decoded.known && decoded.outer_ip))
1329                 return;
1330
1331         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1332             decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
1333                 ipv4 = true;
1334         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1335                  decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
1336                 ipv6 = true;
1337
1338         if (ipv4 &&
1339             (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1340                          BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1341                 goto checksum_fail;
1342
1343         /* likely incorrect csum if alternate IP extension headers found */
1344         if (ipv6 &&
1345             rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1346                 /* don't increment checksum err here, non-fatal err */
1347                 return;
1348
1349         /* there was some L4 error, count error and punt packet to the stack */
1350         if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1351                 goto checksum_fail;
1352
1353         /* handle packets that were not able to be checksummed due
1354          * to arrival speed, in this case the stack can compute
1355          * the csum.
1356          */
1357         if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1358                 return;
1359
1360         /* If VXLAN traffic has an outer UDPv4 checksum we need to check
1361          * it in the driver, hardware does not do it for us.
1362          * Since L3L4P bit was set we assume a valid IHL value (>=5)
1363          * so the total length of IPv4 header is IHL*4 bytes
1364          * The UDP_0 bit *may* bet set if the *inner* header is UDP
1365          */
1366         if (!(vsi->back->flags & I40E_FLAG_OUTER_UDP_CSUM_CAPABLE) &&
1367             (ipv4_tunnel)) {
1368                 skb->transport_header = skb->mac_header +
1369                                         sizeof(struct ethhdr) +
1370                                         (ip_hdr(skb)->ihl * 4);
1371
1372                 /* Add 4 bytes for VLAN tagged packets */
1373                 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
1374                                           skb->protocol == htons(ETH_P_8021AD))
1375                                           ? VLAN_HLEN : 0;
1376
1377                 if ((ip_hdr(skb)->protocol == IPPROTO_UDP) &&
1378                     (udp_hdr(skb)->check != 0)) {
1379                         rx_udp_csum = udp_csum(skb);
1380                         iph = ip_hdr(skb);
1381                         csum = csum_tcpudp_magic(
1382                                         iph->saddr, iph->daddr,
1383                                         (skb->len - skb_transport_offset(skb)),
1384                                         IPPROTO_UDP, rx_udp_csum);
1385
1386                         if (udp_hdr(skb)->check != csum)
1387                                 goto checksum_fail;
1388
1389                 } /* else its GRE and so no outer UDP header */
1390         }
1391
1392         skb->ip_summed = CHECKSUM_UNNECESSARY;
1393         skb->csum_level = ipv4_tunnel || ipv6_tunnel;
1394
1395         return;
1396
1397 checksum_fail:
1398         vsi->back->hw_csum_rx_error++;
1399 }
1400
1401 /**
1402  * i40e_rx_hash - returns the hash value from the Rx descriptor
1403  * @ring: descriptor ring
1404  * @rx_desc: specific descriptor
1405  **/
1406 static inline u32 i40e_rx_hash(struct i40e_ring *ring,
1407                                union i40e_rx_desc *rx_desc)
1408 {
1409         const __le64 rss_mask =
1410                 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1411                             I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1412
1413         if ((ring->netdev->features & NETIF_F_RXHASH) &&
1414             (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
1415                 return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1416         else
1417                 return 0;
1418 }
1419
1420 /**
1421  * i40e_ptype_to_hash - get a hash type
1422  * @ptype: the ptype value from the descriptor
1423  *
1424  * Returns a hash type to be used by skb_set_hash
1425  **/
1426 static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
1427 {
1428         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1429
1430         if (!decoded.known)
1431                 return PKT_HASH_TYPE_NONE;
1432
1433         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1434             decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1435                 return PKT_HASH_TYPE_L4;
1436         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1437                  decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1438                 return PKT_HASH_TYPE_L3;
1439         else
1440                 return PKT_HASH_TYPE_L2;
1441 }
1442
1443 /**
1444  * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
1445  * @rx_ring:  rx ring to clean
1446  * @budget:   how many cleans we're allowed
1447  *
1448  * Returns true if there's any budget left (e.g. the clean is finished)
1449  **/
1450 static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, int budget)
1451 {
1452         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1453         u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
1454         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1455         const int current_node = numa_mem_id();
1456         struct i40e_vsi *vsi = rx_ring->vsi;
1457         u16 i = rx_ring->next_to_clean;
1458         union i40e_rx_desc *rx_desc;
1459         u32 rx_error, rx_status;
1460         u8 rx_ptype;
1461         u64 qword;
1462
1463         if (budget <= 0)
1464                 return 0;
1465
1466         do {
1467                 struct i40e_rx_buffer *rx_bi;
1468                 struct sk_buff *skb;
1469                 u16 vlan_tag;
1470                 /* return some buffers to hardware, one at a time is too slow */
1471                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1472                         i40e_alloc_rx_buffers_ps(rx_ring, cleaned_count);
1473                         cleaned_count = 0;
1474                 }
1475
1476                 i = rx_ring->next_to_clean;
1477                 rx_desc = I40E_RX_DESC(rx_ring, i);
1478                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1479                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1480                         I40E_RXD_QW1_STATUS_SHIFT;
1481
1482                 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1483                         break;
1484
1485                 /* This memory barrier is needed to keep us from reading
1486                  * any other fields out of the rx_desc until we know the
1487                  * DD bit is set.
1488                  */
1489                 dma_rmb();
1490                 if (i40e_rx_is_programming_status(qword)) {
1491                         i40e_clean_programming_status(rx_ring, rx_desc);
1492                         I40E_RX_INCREMENT(rx_ring, i);
1493                         continue;
1494                 }
1495                 rx_bi = &rx_ring->rx_bi[i];
1496                 skb = rx_bi->skb;
1497                 if (likely(!skb)) {
1498                         skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1499                                                         rx_ring->rx_hdr_len);
1500                         if (!skb) {
1501                                 rx_ring->rx_stats.alloc_buff_failed++;
1502                                 break;
1503                         }
1504
1505                         /* initialize queue mapping */
1506                         skb_record_rx_queue(skb, rx_ring->queue_index);
1507                         /* we are reusing so sync this buffer for CPU use */
1508                         dma_sync_single_range_for_cpu(rx_ring->dev,
1509                                                       rx_bi->dma,
1510                                                       0,
1511                                                       rx_ring->rx_hdr_len,
1512                                                       DMA_FROM_DEVICE);
1513                 }
1514                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1515                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1516                 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1517                                 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1518                 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1519                          I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1520
1521                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1522                            I40E_RXD_QW1_ERROR_SHIFT;
1523                 rx_hbo = rx_error & BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1524                 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1525
1526                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1527                            I40E_RXD_QW1_PTYPE_SHIFT;
1528                 prefetch(rx_bi->page);
1529                 rx_bi->skb = NULL;
1530                 cleaned_count++;
1531                 if (rx_hbo || rx_sph) {
1532                         int len;
1533
1534                         if (rx_hbo)
1535                                 len = I40E_RX_HDR_SIZE;
1536                         else
1537                                 len = rx_header_len;
1538                         memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
1539                 } else if (skb->len == 0) {
1540                         int len;
1541
1542                         len = (rx_packet_len > skb_headlen(skb) ?
1543                                 skb_headlen(skb) : rx_packet_len);
1544                         memcpy(__skb_put(skb, len),
1545                                rx_bi->page + rx_bi->page_offset,
1546                                len);
1547                         rx_bi->page_offset += len;
1548                         rx_packet_len -= len;
1549                 }
1550
1551                 /* Get the rest of the data if this was a header split */
1552                 if (rx_packet_len) {
1553                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1554                                            rx_bi->page,
1555                                            rx_bi->page_offset,
1556                                            rx_packet_len);
1557
1558                         skb->len += rx_packet_len;
1559                         skb->data_len += rx_packet_len;
1560                         skb->truesize += rx_packet_len;
1561
1562                         if ((page_count(rx_bi->page) == 1) &&
1563                             (page_to_nid(rx_bi->page) == current_node))
1564                                 get_page(rx_bi->page);
1565                         else
1566                                 rx_bi->page = NULL;
1567
1568                         dma_unmap_page(rx_ring->dev,
1569                                        rx_bi->page_dma,
1570                                        PAGE_SIZE / 2,
1571                                        DMA_FROM_DEVICE);
1572                         rx_bi->page_dma = 0;
1573                 }
1574                 I40E_RX_INCREMENT(rx_ring, i);
1575
1576                 if (unlikely(
1577                     !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1578                         struct i40e_rx_buffer *next_buffer;
1579
1580                         next_buffer = &rx_ring->rx_bi[i];
1581                         next_buffer->skb = skb;
1582                         rx_ring->rx_stats.non_eop_descs++;
1583                         continue;
1584                 }
1585
1586                 /* ERR_MASK will only have valid bits if EOP set */
1587                 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1588                         dev_kfree_skb_any(skb);
1589                         continue;
1590                 }
1591
1592                 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1593                              i40e_ptype_to_hash(rx_ptype));
1594                 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1595                         i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1596                                            I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1597                                            I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1598                         rx_ring->last_rx_timestamp = jiffies;
1599                 }
1600
1601                 /* probably a little skewed due to removing CRC */
1602                 total_rx_bytes += skb->len;
1603                 total_rx_packets++;
1604
1605                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1606
1607                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1608
1609                 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1610                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1611                          : 0;
1612 #ifdef I40E_FCOE
1613                 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1614                         dev_kfree_skb_any(skb);
1615                         continue;
1616                 }
1617 #endif
1618                 skb_mark_napi_id(skb, &rx_ring->q_vector->napi);
1619                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1620
1621                 rx_desc->wb.qword1.status_error_len = 0;
1622
1623         } while (likely(total_rx_packets < budget));
1624
1625         u64_stats_update_begin(&rx_ring->syncp);
1626         rx_ring->stats.packets += total_rx_packets;
1627         rx_ring->stats.bytes += total_rx_bytes;
1628         u64_stats_update_end(&rx_ring->syncp);
1629         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1630         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1631
1632         return total_rx_packets;
1633 }
1634
1635 /**
1636  * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
1637  * @rx_ring:  rx ring to clean
1638  * @budget:   how many cleans we're allowed
1639  *
1640  * Returns number of packets cleaned
1641  **/
1642 static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
1643 {
1644         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1645         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1646         struct i40e_vsi *vsi = rx_ring->vsi;
1647         union i40e_rx_desc *rx_desc;
1648         u32 rx_error, rx_status;
1649         u16 rx_packet_len;
1650         u8 rx_ptype;
1651         u64 qword;
1652         u16 i;
1653
1654         do {
1655                 struct i40e_rx_buffer *rx_bi;
1656                 struct sk_buff *skb;
1657                 u16 vlan_tag;
1658                 /* return some buffers to hardware, one at a time is too slow */
1659                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1660                         i40e_alloc_rx_buffers_1buf(rx_ring, cleaned_count);
1661                         cleaned_count = 0;
1662                 }
1663
1664                 i = rx_ring->next_to_clean;
1665                 rx_desc = I40E_RX_DESC(rx_ring, i);
1666                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1667                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1668                         I40E_RXD_QW1_STATUS_SHIFT;
1669
1670                 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1671                         break;
1672
1673                 /* This memory barrier is needed to keep us from reading
1674                  * any other fields out of the rx_desc until we know the
1675                  * DD bit is set.
1676                  */
1677                 dma_rmb();
1678
1679                 if (i40e_rx_is_programming_status(qword)) {
1680                         i40e_clean_programming_status(rx_ring, rx_desc);
1681                         I40E_RX_INCREMENT(rx_ring, i);
1682                         continue;
1683                 }
1684                 rx_bi = &rx_ring->rx_bi[i];
1685                 skb = rx_bi->skb;
1686                 prefetch(skb->data);
1687
1688                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1689                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1690
1691                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1692                            I40E_RXD_QW1_ERROR_SHIFT;
1693                 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1694
1695                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1696                            I40E_RXD_QW1_PTYPE_SHIFT;
1697                 rx_bi->skb = NULL;
1698                 cleaned_count++;
1699
1700                 /* Get the header and possibly the whole packet
1701                  * If this is an skb from previous receive dma will be 0
1702                  */
1703                 skb_put(skb, rx_packet_len);
1704                 dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
1705                                  DMA_FROM_DEVICE);
1706                 rx_bi->dma = 0;
1707
1708                 I40E_RX_INCREMENT(rx_ring, i);
1709
1710                 if (unlikely(
1711                     !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1712                         rx_ring->rx_stats.non_eop_descs++;
1713                         continue;
1714                 }
1715
1716                 /* ERR_MASK will only have valid bits if EOP set */
1717                 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1718                         dev_kfree_skb_any(skb);
1719                         continue;
1720                 }
1721
1722                 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1723                              i40e_ptype_to_hash(rx_ptype));
1724                 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1725                         i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1726                                            I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1727                                            I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1728                         rx_ring->last_rx_timestamp = jiffies;
1729                 }
1730
1731                 /* probably a little skewed due to removing CRC */
1732                 total_rx_bytes += skb->len;
1733                 total_rx_packets++;
1734
1735                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1736
1737                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1738
1739                 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1740                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1741                          : 0;
1742 #ifdef I40E_FCOE
1743                 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1744                         dev_kfree_skb_any(skb);
1745                         continue;
1746                 }
1747 #endif
1748                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1749
1750                 rx_desc->wb.qword1.status_error_len = 0;
1751         } while (likely(total_rx_packets < budget));
1752
1753         u64_stats_update_begin(&rx_ring->syncp);
1754         rx_ring->stats.packets += total_rx_packets;
1755         rx_ring->stats.bytes += total_rx_bytes;
1756         u64_stats_update_end(&rx_ring->syncp);
1757         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1758         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1759
1760         return total_rx_packets;
1761 }
1762
1763 static u32 i40e_buildreg_itr(const int type, const u16 itr)
1764 {
1765         u32 val;
1766
1767         val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1768               I40E_PFINT_DYN_CTLN_CLEARPBA_MASK |
1769               (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
1770               (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);
1771
1772         return val;
1773 }
1774
1775 /* a small macro to shorten up some long lines */
1776 #define INTREG I40E_PFINT_DYN_CTLN
1777
1778 /**
1779  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1780  * @vsi: the VSI we care about
1781  * @q_vector: q_vector for which itr is being updated and interrupt enabled
1782  *
1783  **/
1784 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1785                                           struct i40e_q_vector *q_vector)
1786 {
1787         struct i40e_hw *hw = &vsi->back->hw;
1788         bool rx = false, tx = false;
1789         u32 rxval, txval;
1790         int vector;
1791
1792         vector = (q_vector->v_idx + vsi->base_vector);
1793
1794         rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1795
1796         if (ITR_IS_DYNAMIC(vsi->rx_itr_setting)) {
1797                 rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1798                 rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1799         }
1800
1801         if (ITR_IS_DYNAMIC(vsi->tx_itr_setting)) {
1802                 tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1803                 txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1804         }
1805
1806         if (rx || tx) {
1807                 /* get the higher of the two ITR adjustments and
1808                  * use the same value for both ITR registers
1809                  * when in adaptive mode (Rx and/or Tx)
1810                  */
1811                 u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1812
1813                 q_vector->tx.itr = q_vector->rx.itr = itr;
1814                 txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1815                 tx = true;
1816                 rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1817                 rx = true;
1818         }
1819
1820         /* only need to enable the interrupt once, but need
1821          * to possibly update both ITR values
1822          */
1823         if (rx) {
1824                 /* set the INTENA_MSK_MASK so that this first write
1825                  * won't actually enable the interrupt, instead just
1826                  * updating the ITR (it's bit 31 PF and VF)
1827                  */
1828                 rxval |= BIT(31);
1829                 /* don't check _DOWN because interrupt isn't being enabled */
1830                 wr32(hw, INTREG(vector - 1), rxval);
1831         }
1832
1833         if (!test_bit(__I40E_DOWN, &vsi->state))
1834                 wr32(hw, INTREG(vector - 1), txval);
1835 }
1836
1837 /**
1838  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
1839  * @napi: napi struct with our devices info in it
1840  * @budget: amount of work driver is allowed to do this pass, in packets
1841  *
1842  * This function will clean all queues associated with a q_vector.
1843  *
1844  * Returns the amount of work done
1845  **/
1846 int i40e_napi_poll(struct napi_struct *napi, int budget)
1847 {
1848         struct i40e_q_vector *q_vector =
1849                                container_of(napi, struct i40e_q_vector, napi);
1850         struct i40e_vsi *vsi = q_vector->vsi;
1851         struct i40e_ring *ring;
1852         bool clean_complete = true;
1853         bool arm_wb = false;
1854         int budget_per_ring;
1855         int work_done = 0;
1856
1857         if (test_bit(__I40E_DOWN, &vsi->state)) {
1858                 napi_complete(napi);
1859                 return 0;
1860         }
1861
1862         /* Since the actual Tx work is minimal, we can give the Tx a larger
1863          * budget and be more aggressive about cleaning up the Tx descriptors.
1864          */
1865         i40e_for_each_ring(ring, q_vector->tx) {
1866                 clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
1867                 arm_wb |= ring->arm_wb;
1868                 ring->arm_wb = false;
1869         }
1870
1871         /* Handle case where we are called by netpoll with a budget of 0 */
1872         if (budget <= 0)
1873                 goto tx_only;
1874
1875         /* We attempt to distribute budget to each Rx queue fairly, but don't
1876          * allow the budget to go below 1 because that would exit polling early.
1877          */
1878         budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1879
1880         i40e_for_each_ring(ring, q_vector->rx) {
1881                 int cleaned;
1882
1883                 if (ring_is_ps_enabled(ring))
1884                         cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
1885                 else
1886                         cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
1887
1888                 work_done += cleaned;
1889                 /* if we didn't clean as many as budgeted, we must be done */
1890                 clean_complete &= (budget_per_ring != cleaned);
1891         }
1892
1893         /* If work not completed, return budget and polling will return */
1894         if (!clean_complete) {
1895 tx_only:
1896                 if (arm_wb)
1897                         i40e_force_wb(vsi, q_vector);
1898                 return budget;
1899         }
1900
1901         if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
1902                 q_vector->arm_wb_state = false;
1903
1904         /* Work is done so exit the polling mode and re-enable the interrupt */
1905         napi_complete_done(napi, work_done);
1906         if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1907                 i40e_update_enable_itr(vsi, q_vector);
1908         } else { /* Legacy mode */
1909                 struct i40e_hw *hw = &vsi->back->hw;
1910                 /* We re-enable the queue 0 cause, but
1911                  * don't worry about dynamic_enable
1912                  * because we left it on for the other
1913                  * possible interrupts during napi
1914                  */
1915                 u32 qval = rd32(hw, I40E_QINT_RQCTL(0)) |
1916                            I40E_QINT_RQCTL_CAUSE_ENA_MASK;
1917
1918                 wr32(hw, I40E_QINT_RQCTL(0), qval);
1919                 qval = rd32(hw, I40E_QINT_TQCTL(0)) |
1920                        I40E_QINT_TQCTL_CAUSE_ENA_MASK;
1921                 wr32(hw, I40E_QINT_TQCTL(0), qval);
1922                 i40e_irq_dynamic_enable_icr0(vsi->back);
1923         }
1924         return 0;
1925 }
1926
1927 /**
1928  * i40e_atr - Add a Flow Director ATR filter
1929  * @tx_ring:  ring to add programming descriptor to
1930  * @skb:      send buffer
1931  * @tx_flags: send tx flags
1932  * @protocol: wire protocol
1933  **/
1934 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
1935                      u32 tx_flags, __be16 protocol)
1936 {
1937         struct i40e_filter_program_desc *fdir_desc;
1938         struct i40e_pf *pf = tx_ring->vsi->back;
1939         union {
1940                 unsigned char *network;
1941                 struct iphdr *ipv4;
1942                 struct ipv6hdr *ipv6;
1943         } hdr;
1944         struct tcphdr *th;
1945         unsigned int hlen;
1946         u32 flex_ptype, dtype_cmd;
1947         u16 i;
1948
1949         /* make sure ATR is enabled */
1950         if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
1951                 return;
1952
1953         if ((pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
1954                 return;
1955
1956         /* if sampling is disabled do nothing */
1957         if (!tx_ring->atr_sample_rate)
1958                 return;
1959
1960         if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
1961                 return;
1962
1963         if (!(tx_flags & I40E_TX_FLAGS_VXLAN_TUNNEL)) {
1964                 /* snag network header to get L4 type and address */
1965                 hdr.network = skb_network_header(skb);
1966
1967                 /* Currently only IPv4/IPv6 with TCP is supported
1968                  * access ihl as u8 to avoid unaligned access on ia64
1969                  */
1970                 if (tx_flags & I40E_TX_FLAGS_IPV4)
1971                         hlen = (hdr.network[0] & 0x0F) << 2;
1972                 else if (protocol == htons(ETH_P_IPV6))
1973                         hlen = sizeof(struct ipv6hdr);
1974                 else
1975                         return;
1976         } else {
1977                 hdr.network = skb_inner_network_header(skb);
1978                 hlen = skb_inner_network_header_len(skb);
1979         }
1980
1981         /* Currently only IPv4/IPv6 with TCP is supported
1982          * Note: tx_flags gets modified to reflect inner protocols in
1983          * tx_enable_csum function if encap is enabled.
1984          */
1985         if ((tx_flags & I40E_TX_FLAGS_IPV4) &&
1986             (hdr.ipv4->protocol != IPPROTO_TCP))
1987                 return;
1988         else if ((tx_flags & I40E_TX_FLAGS_IPV6) &&
1989                  (hdr.ipv6->nexthdr != IPPROTO_TCP))
1990                 return;
1991
1992         th = (struct tcphdr *)(hdr.network + hlen);
1993
1994         /* Due to lack of space, no more new filters can be programmed */
1995         if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
1996                 return;
1997         if (pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) {
1998                 /* HW ATR eviction will take care of removing filters on FIN
1999                  * and RST packets.
2000                  */
2001                 if (th->fin || th->rst)
2002                         return;
2003         }
2004
2005         tx_ring->atr_count++;
2006
2007         /* sample on all syn/fin/rst packets or once every atr sample rate */
2008         if (!th->fin &&
2009             !th->syn &&
2010             !th->rst &&
2011             (tx_ring->atr_count < tx_ring->atr_sample_rate))
2012                 return;
2013
2014         tx_ring->atr_count = 0;
2015
2016         /* grab the next descriptor */
2017         i = tx_ring->next_to_use;
2018         fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2019
2020         i++;
2021         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2022
2023         flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2024                       I40E_TXD_FLTR_QW0_QINDEX_MASK;
2025         flex_ptype |= (protocol == htons(ETH_P_IP)) ?
2026                       (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2027                        I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2028                       (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2029                        I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2030
2031         flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2032
2033         dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2034
2035         dtype_cmd |= (th->fin || th->rst) ?
2036                      (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2037                       I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2038                      (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2039                       I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2040
2041         dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2042                      I40E_TXD_FLTR_QW1_DEST_SHIFT;
2043
2044         dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2045                      I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2046
2047         dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2048         if (!(tx_flags & I40E_TX_FLAGS_VXLAN_TUNNEL))
2049                 dtype_cmd |=
2050                         ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2051                         I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2052                         I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2053         else
2054                 dtype_cmd |=
2055                         ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2056                         I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2057                         I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2058
2059         if (pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE)
2060                 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2061
2062         fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2063         fdir_desc->rsvd = cpu_to_le32(0);
2064         fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2065         fdir_desc->fd_id = cpu_to_le32(0);
2066 }
2067
2068 /**
2069  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2070  * @skb:     send buffer
2071  * @tx_ring: ring to send buffer on
2072  * @flags:   the tx flags to be set
2073  *
2074  * Checks the skb and set up correspondingly several generic transmit flags
2075  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2076  *
2077  * Returns error code indicate the frame should be dropped upon error and the
2078  * otherwise  returns 0 to indicate the flags has been set properly.
2079  **/
2080 #ifdef I40E_FCOE
2081 inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2082                                       struct i40e_ring *tx_ring,
2083                                       u32 *flags)
2084 #else
2085 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2086                                              struct i40e_ring *tx_ring,
2087                                              u32 *flags)
2088 #endif
2089 {
2090         __be16 protocol = skb->protocol;
2091         u32  tx_flags = 0;
2092
2093         if (protocol == htons(ETH_P_8021Q) &&
2094             !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2095                 /* When HW VLAN acceleration is turned off by the user the
2096                  * stack sets the protocol to 8021q so that the driver
2097                  * can take any steps required to support the SW only
2098                  * VLAN handling.  In our case the driver doesn't need
2099                  * to take any further steps so just set the protocol
2100                  * to the encapsulated ethertype.
2101                  */
2102                 skb->protocol = vlan_get_protocol(skb);
2103                 goto out;
2104         }
2105
2106         /* if we have a HW VLAN tag being added, default to the HW one */
2107         if (skb_vlan_tag_present(skb)) {
2108                 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2109                 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2110         /* else if it is a SW VLAN, check the next protocol and store the tag */
2111         } else if (protocol == htons(ETH_P_8021Q)) {
2112                 struct vlan_hdr *vhdr, _vhdr;
2113
2114                 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2115                 if (!vhdr)
2116                         return -EINVAL;
2117
2118                 protocol = vhdr->h_vlan_encapsulated_proto;
2119                 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2120                 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2121         }
2122
2123         if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2124                 goto out;
2125
2126         /* Insert 802.1p priority into VLAN header */
2127         if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2128             (skb->priority != TC_PRIO_CONTROL)) {
2129                 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2130                 tx_flags |= (skb->priority & 0x7) <<
2131                                 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2132                 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2133                         struct vlan_ethhdr *vhdr;
2134                         int rc;
2135
2136                         rc = skb_cow_head(skb, 0);
2137                         if (rc < 0)
2138                                 return rc;
2139                         vhdr = (struct vlan_ethhdr *)skb->data;
2140                         vhdr->h_vlan_TCI = htons(tx_flags >>
2141                                                  I40E_TX_FLAGS_VLAN_SHIFT);
2142                 } else {
2143                         tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2144                 }
2145         }
2146
2147 out:
2148         *flags = tx_flags;
2149         return 0;
2150 }
2151
2152 /**
2153  * i40e_tso - set up the tso context descriptor
2154  * @tx_ring:  ptr to the ring to send
2155  * @skb:      ptr to the skb we're sending
2156  * @hdr_len:  ptr to the size of the packet header
2157  * @cd_tunneling: ptr to context descriptor bits
2158  *
2159  * Returns 0 if no TSO can happen, 1 if tso is going, or error
2160  **/
2161 static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
2162                     u8 *hdr_len, u64 *cd_type_cmd_tso_mss,
2163                     u32 *cd_tunneling)
2164 {
2165         u32 cd_cmd, cd_tso_len, cd_mss;
2166         struct ipv6hdr *ipv6h;
2167         struct tcphdr *tcph;
2168         struct iphdr *iph;
2169         u32 l4len;
2170         int err;
2171
2172         if (!skb_is_gso(skb))
2173                 return 0;
2174
2175         err = skb_cow_head(skb, 0);
2176         if (err < 0)
2177                 return err;
2178
2179         iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
2180         ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
2181
2182         if (iph->version == 4) {
2183                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
2184                 iph->tot_len = 0;
2185                 iph->check = 0;
2186                 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
2187                                                  0, IPPROTO_TCP, 0);
2188         } else if (ipv6h->version == 6) {
2189                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
2190                 ipv6h->payload_len = 0;
2191                 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
2192                                                0, IPPROTO_TCP, 0);
2193         }
2194
2195         l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
2196         *hdr_len = (skb->encapsulation
2197                     ? (skb_inner_transport_header(skb) - skb->data)
2198                     : skb_transport_offset(skb)) + l4len;
2199
2200         /* find the field values */
2201         cd_cmd = I40E_TX_CTX_DESC_TSO;
2202         cd_tso_len = skb->len - *hdr_len;
2203         cd_mss = skb_shinfo(skb)->gso_size;
2204         *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2205                                 ((u64)cd_tso_len <<
2206                                  I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2207                                 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2208         return 1;
2209 }
2210
2211 /**
2212  * i40e_tsyn - set up the tsyn context descriptor
2213  * @tx_ring:  ptr to the ring to send
2214  * @skb:      ptr to the skb we're sending
2215  * @tx_flags: the collected send information
2216  *
2217  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2218  **/
2219 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2220                      u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2221 {
2222         struct i40e_pf *pf;
2223
2224         if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2225                 return 0;
2226
2227         /* Tx timestamps cannot be sampled when doing TSO */
2228         if (tx_flags & I40E_TX_FLAGS_TSO)
2229                 return 0;
2230
2231         /* only timestamp the outbound packet if the user has requested it and
2232          * we are not already transmitting a packet to be timestamped
2233          */
2234         pf = i40e_netdev_to_pf(tx_ring->netdev);
2235         if (!(pf->flags & I40E_FLAG_PTP))
2236                 return 0;
2237
2238         if (pf->ptp_tx &&
2239             !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
2240                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2241                 pf->ptp_tx_skb = skb_get(skb);
2242         } else {
2243                 return 0;
2244         }
2245
2246         *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
2247                                 I40E_TXD_CTX_QW1_CMD_SHIFT;
2248
2249         return 1;
2250 }
2251
2252 /**
2253  * i40e_tx_enable_csum - Enable Tx checksum offloads
2254  * @skb: send buffer
2255  * @tx_flags: pointer to Tx flags currently set
2256  * @td_cmd: Tx descriptor command bits to set
2257  * @td_offset: Tx descriptor header offsets to set
2258  * @cd_tunneling: ptr to context desc bits
2259  **/
2260 static void i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
2261                                 u32 *td_cmd, u32 *td_offset,
2262                                 struct i40e_ring *tx_ring,
2263                                 u32 *cd_tunneling)
2264 {
2265         struct ipv6hdr *this_ipv6_hdr;
2266         unsigned int this_tcp_hdrlen;
2267         struct iphdr *this_ip_hdr;
2268         u32 network_hdr_len;
2269         u8 l4_hdr = 0;
2270         struct udphdr *oudph;
2271         struct iphdr *oiph;
2272         u32 l4_tunnel = 0;
2273
2274         if (skb->encapsulation) {
2275                 switch (ip_hdr(skb)->protocol) {
2276                 case IPPROTO_UDP:
2277                         oudph = udp_hdr(skb);
2278                         oiph = ip_hdr(skb);
2279                         l4_tunnel = I40E_TXD_CTX_UDP_TUNNELING;
2280                         *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
2281                         break;
2282                 case IPPROTO_GRE:
2283                         l4_tunnel = I40E_TXD_CTX_GRE_TUNNELING;
2284                         break;
2285                 default:
2286                         return;
2287                 }
2288                 network_hdr_len = skb_inner_network_header_len(skb);
2289                 this_ip_hdr = inner_ip_hdr(skb);
2290                 this_ipv6_hdr = inner_ipv6_hdr(skb);
2291                 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
2292
2293                 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2294                         if (*tx_flags & I40E_TX_FLAGS_TSO) {
2295                                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
2296                                 ip_hdr(skb)->check = 0;
2297                         } else {
2298                                 *cd_tunneling |=
2299                                          I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2300                         }
2301                 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2302                         *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
2303                         if (*tx_flags & I40E_TX_FLAGS_TSO)
2304                                 ip_hdr(skb)->check = 0;
2305                 }
2306
2307                 /* Now set the ctx descriptor fields */
2308                 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
2309                                    I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT      |
2310                                    l4_tunnel                             |
2311                                    ((skb_inner_network_offset(skb) -
2312                                         skb_transport_offset(skb)) >> 1) <<
2313                                    I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2314                 if (this_ip_hdr->version == 6) {
2315                         *tx_flags &= ~I40E_TX_FLAGS_IPV4;
2316                         *tx_flags |= I40E_TX_FLAGS_IPV6;
2317                 }
2318                 if ((tx_ring->flags & I40E_TXR_FLAGS_OUTER_UDP_CSUM) &&
2319                     (l4_tunnel == I40E_TXD_CTX_UDP_TUNNELING)        &&
2320                     (*cd_tunneling & I40E_TXD_CTX_QW0_EXT_IP_MASK)) {
2321                         oudph->check = ~csum_tcpudp_magic(oiph->saddr,
2322                                         oiph->daddr,
2323                                         (skb->len - skb_transport_offset(skb)),
2324                                         IPPROTO_UDP, 0);
2325                         *cd_tunneling |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
2326                 }
2327         } else {
2328                 network_hdr_len = skb_network_header_len(skb);
2329                 this_ip_hdr = ip_hdr(skb);
2330                 this_ipv6_hdr = ipv6_hdr(skb);
2331                 this_tcp_hdrlen = tcp_hdrlen(skb);
2332         }
2333
2334         /* Enable IP checksum offloads */
2335         if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2336                 l4_hdr = this_ip_hdr->protocol;
2337                 /* the stack computes the IP header already, the only time we
2338                  * need the hardware to recompute it is in the case of TSO.
2339                  */
2340                 if (*tx_flags & I40E_TX_FLAGS_TSO) {
2341                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
2342                         this_ip_hdr->check = 0;
2343                 } else {
2344                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
2345                 }
2346                 /* Now set the td_offset for IP header length */
2347                 *td_offset = (network_hdr_len >> 2) <<
2348                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2349         } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2350                 l4_hdr = this_ipv6_hdr->nexthdr;
2351                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2352                 /* Now set the td_offset for IP header length */
2353                 *td_offset = (network_hdr_len >> 2) <<
2354                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2355         }
2356         /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
2357         *td_offset |= (skb_network_offset(skb) >> 1) <<
2358                        I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2359
2360         /* Enable L4 checksum offloads */
2361         switch (l4_hdr) {
2362         case IPPROTO_TCP:
2363                 /* enable checksum offloads */
2364                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2365                 *td_offset |= (this_tcp_hdrlen >> 2) <<
2366                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2367                 break;
2368         case IPPROTO_SCTP:
2369                 /* enable SCTP checksum offload */
2370                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2371                 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
2372                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2373                 break;
2374         case IPPROTO_UDP:
2375                 /* enable UDP checksum offload */
2376                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2377                 *td_offset |= (sizeof(struct udphdr) >> 2) <<
2378                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2379                 break;
2380         default:
2381                 break;
2382         }
2383 }
2384
2385 /**
2386  * i40e_create_tx_ctx Build the Tx context descriptor
2387  * @tx_ring:  ring to create the descriptor on
2388  * @cd_type_cmd_tso_mss: Quad Word 1
2389  * @cd_tunneling: Quad Word 0 - bits 0-31
2390  * @cd_l2tag2: Quad Word 0 - bits 32-63
2391  **/
2392 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2393                                const u64 cd_type_cmd_tso_mss,
2394                                const u32 cd_tunneling, const u32 cd_l2tag2)
2395 {
2396         struct i40e_tx_context_desc *context_desc;
2397         int i = tx_ring->next_to_use;
2398
2399         if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2400             !cd_tunneling && !cd_l2tag2)
2401                 return;
2402
2403         /* grab the next descriptor */
2404         context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2405
2406         i++;
2407         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2408
2409         /* cpu_to_le32 and assign to struct fields */
2410         context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2411         context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2412         context_desc->rsvd = cpu_to_le16(0);
2413         context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2414 }
2415
2416 /**
2417  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2418  * @tx_ring: the ring to be checked
2419  * @size:    the size buffer we want to assure is available
2420  *
2421  * Returns -EBUSY if a stop is needed, else 0
2422  **/
2423 static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2424 {
2425         netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2426         /* Memory barrier before checking head and tail */
2427         smp_mb();
2428
2429         /* Check again in a case another CPU has just made room available. */
2430         if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2431                 return -EBUSY;
2432
2433         /* A reprieve! - use start_queue because it doesn't call schedule */
2434         netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2435         ++tx_ring->tx_stats.restart_queue;
2436         return 0;
2437 }
2438
2439 /**
2440  * i40e_maybe_stop_tx - 1st level check for tx stop conditions
2441  * @tx_ring: the ring to be checked
2442  * @size:    the size buffer we want to assure is available
2443  *
2444  * Returns 0 if stop is not needed
2445  **/
2446 #ifdef I40E_FCOE
2447 inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2448 #else
2449 static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2450 #endif
2451 {
2452         if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
2453                 return 0;
2454         return __i40e_maybe_stop_tx(tx_ring, size);
2455 }
2456
2457 /**
2458  * i40e_chk_linearize - Check if there are more than 8 fragments per packet
2459  * @skb:      send buffer
2460  * @tx_flags: collected send information
2461  *
2462  * Note: Our HW can't scatter-gather more than 8 fragments to build
2463  * a packet on the wire and so we need to figure out the cases where we
2464  * need to linearize the skb.
2465  **/
2466 static bool i40e_chk_linearize(struct sk_buff *skb, u32 tx_flags)
2467 {
2468         struct skb_frag_struct *frag;
2469         bool linearize = false;
2470         unsigned int size = 0;
2471         u16 num_frags;
2472         u16 gso_segs;
2473
2474         num_frags = skb_shinfo(skb)->nr_frags;
2475         gso_segs = skb_shinfo(skb)->gso_segs;
2476
2477         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) {
2478                 u16 j = 0;
2479
2480                 if (num_frags < (I40E_MAX_BUFFER_TXD))
2481                         goto linearize_chk_done;
2482                 /* try the simple math, if we have too many frags per segment */
2483                 if (DIV_ROUND_UP((num_frags + gso_segs), gso_segs) >
2484                     I40E_MAX_BUFFER_TXD) {
2485                         linearize = true;
2486                         goto linearize_chk_done;
2487                 }
2488                 frag = &skb_shinfo(skb)->frags[0];
2489                 /* we might still have more fragments per segment */
2490                 do {
2491                         size += skb_frag_size(frag);
2492                         frag++; j++;
2493                         if ((size >= skb_shinfo(skb)->gso_size) &&
2494                             (j < I40E_MAX_BUFFER_TXD)) {
2495                                 size = (size % skb_shinfo(skb)->gso_size);
2496                                 j = (size) ? 1 : 0;
2497                         }
2498                         if (j == I40E_MAX_BUFFER_TXD) {
2499                                 linearize = true;
2500                                 break;
2501                         }
2502                         num_frags--;
2503                 } while (num_frags);
2504         } else {
2505                 if (num_frags >= I40E_MAX_BUFFER_TXD)
2506                         linearize = true;
2507         }
2508
2509 linearize_chk_done:
2510         return linearize;
2511 }
2512
2513 /**
2514  * i40e_tx_map - Build the Tx descriptor
2515  * @tx_ring:  ring to send buffer on
2516  * @skb:      send buffer
2517  * @first:    first buffer info buffer to use
2518  * @tx_flags: collected send information
2519  * @hdr_len:  size of the packet header
2520  * @td_cmd:   the command field in the descriptor
2521  * @td_offset: offset for checksum or crc
2522  **/
2523 #ifdef I40E_FCOE
2524 inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2525                         struct i40e_tx_buffer *first, u32 tx_flags,
2526                         const u8 hdr_len, u32 td_cmd, u32 td_offset)
2527 #else
2528 static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2529                                struct i40e_tx_buffer *first, u32 tx_flags,
2530                                const u8 hdr_len, u32 td_cmd, u32 td_offset)
2531 #endif
2532 {
2533         unsigned int data_len = skb->data_len;
2534         unsigned int size = skb_headlen(skb);
2535         struct skb_frag_struct *frag;
2536         struct i40e_tx_buffer *tx_bi;
2537         struct i40e_tx_desc *tx_desc;
2538         u16 i = tx_ring->next_to_use;
2539         u32 td_tag = 0;
2540         dma_addr_t dma;
2541         u16 gso_segs;
2542         u16 desc_count = 0;
2543         bool tail_bump = true;
2544         bool do_rs = false;
2545
2546         if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2547                 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2548                 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2549                          I40E_TX_FLAGS_VLAN_SHIFT;
2550         }
2551
2552         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
2553                 gso_segs = skb_shinfo(skb)->gso_segs;
2554         else
2555                 gso_segs = 1;
2556
2557         /* multiply data chunks by size of headers */
2558         first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
2559         first->gso_segs = gso_segs;
2560         first->skb = skb;
2561         first->tx_flags = tx_flags;
2562
2563         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2564
2565         tx_desc = I40E_TX_DESC(tx_ring, i);
2566         tx_bi = first;
2567
2568         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2569                 if (dma_mapping_error(tx_ring->dev, dma))
2570                         goto dma_error;
2571
2572                 /* record length, and DMA address */
2573                 dma_unmap_len_set(tx_bi, len, size);
2574                 dma_unmap_addr_set(tx_bi, dma, dma);
2575
2576                 tx_desc->buffer_addr = cpu_to_le64(dma);
2577
2578                 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2579                         tx_desc->cmd_type_offset_bsz =
2580                                 build_ctob(td_cmd, td_offset,
2581                                            I40E_MAX_DATA_PER_TXD, td_tag);
2582
2583                         tx_desc++;
2584                         i++;
2585                         desc_count++;
2586
2587                         if (i == tx_ring->count) {
2588                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
2589                                 i = 0;
2590                         }
2591
2592                         dma += I40E_MAX_DATA_PER_TXD;
2593                         size -= I40E_MAX_DATA_PER_TXD;
2594
2595                         tx_desc->buffer_addr = cpu_to_le64(dma);
2596                 }
2597
2598                 if (likely(!data_len))
2599                         break;
2600
2601                 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2602                                                           size, td_tag);
2603
2604                 tx_desc++;
2605                 i++;
2606                 desc_count++;
2607
2608                 if (i == tx_ring->count) {
2609                         tx_desc = I40E_TX_DESC(tx_ring, 0);
2610                         i = 0;
2611                 }
2612
2613                 size = skb_frag_size(frag);
2614                 data_len -= size;
2615
2616                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2617                                        DMA_TO_DEVICE);
2618
2619                 tx_bi = &tx_ring->tx_bi[i];
2620         }
2621
2622         /* set next_to_watch value indicating a packet is present */
2623         first->next_to_watch = tx_desc;
2624
2625         i++;
2626         if (i == tx_ring->count)
2627                 i = 0;
2628
2629         tx_ring->next_to_use = i;
2630
2631         netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
2632                                                  tx_ring->queue_index),
2633                                                  first->bytecount);
2634         i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2635
2636         /* Algorithm to optimize tail and RS bit setting:
2637          * if xmit_more is supported
2638          *      if xmit_more is true
2639          *              do not update tail and do not mark RS bit.
2640          *      if xmit_more is false and last xmit_more was false
2641          *              if every packet spanned less than 4 desc
2642          *                      then set RS bit on 4th packet and update tail
2643          *                      on every packet
2644          *              else
2645          *                      update tail and set RS bit on every packet.
2646          *      if xmit_more is false and last_xmit_more was true
2647          *              update tail and set RS bit.
2648          *
2649          * Optimization: wmb to be issued only in case of tail update.
2650          * Also optimize the Descriptor WB path for RS bit with the same
2651          * algorithm.
2652          *
2653          * Note: If there are less than 4 packets
2654          * pending and interrupts were disabled the service task will
2655          * trigger a force WB.
2656          */
2657         if (skb->xmit_more  &&
2658             !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2659                                                     tx_ring->queue_index))) {
2660                 tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2661                 tail_bump = false;
2662         } else if (!skb->xmit_more &&
2663                    !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2664                                                        tx_ring->queue_index)) &&
2665                    (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) &&
2666                    (tx_ring->packet_stride < WB_STRIDE) &&
2667                    (desc_count < WB_STRIDE)) {
2668                 tx_ring->packet_stride++;
2669         } else {
2670                 tx_ring->packet_stride = 0;
2671                 tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2672                 do_rs = true;
2673         }
2674         if (do_rs)
2675                 tx_ring->packet_stride = 0;
2676
2677         tx_desc->cmd_type_offset_bsz =
2678                         build_ctob(td_cmd, td_offset, size, td_tag) |
2679                         cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD :
2680                                                   I40E_TX_DESC_CMD_EOP) <<
2681                                                   I40E_TXD_QW1_CMD_SHIFT);
2682
2683         /* notify HW of packet */
2684         if (!tail_bump)
2685                 prefetchw(tx_desc + 1);
2686
2687         if (tail_bump) {
2688                 /* Force memory writes to complete before letting h/w
2689                  * know there are new descriptors to fetch.  (Only
2690                  * applicable for weak-ordered memory model archs,
2691                  * such as IA-64).
2692                  */
2693                 wmb();
2694                 writel(i, tx_ring->tail);
2695         }
2696
2697         return;
2698
2699 dma_error:
2700         dev_info(tx_ring->dev, "TX DMA map failed\n");
2701
2702         /* clear dma mappings for failed tx_bi map */
2703         for (;;) {
2704                 tx_bi = &tx_ring->tx_bi[i];
2705                 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2706                 if (tx_bi == first)
2707                         break;
2708                 if (i == 0)
2709                         i = tx_ring->count;
2710                 i--;
2711         }
2712
2713         tx_ring->next_to_use = i;
2714 }
2715
2716 /**
2717  * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
2718  * @skb:     send buffer
2719  * @tx_ring: ring to send buffer on
2720  *
2721  * Returns number of data descriptors needed for this skb. Returns 0 to indicate
2722  * there is not enough descriptors available in this ring since we need at least
2723  * one descriptor.
2724  **/
2725 #ifdef I40E_FCOE
2726 inline int i40e_xmit_descriptor_count(struct sk_buff *skb,
2727                                       struct i40e_ring *tx_ring)
2728 #else
2729 static inline int i40e_xmit_descriptor_count(struct sk_buff *skb,
2730                                              struct i40e_ring *tx_ring)
2731 #endif
2732 {
2733         unsigned int f;
2734         int count = 0;
2735
2736         /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2737          *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2738          *       + 4 desc gap to avoid the cache line where head is,
2739          *       + 1 desc for context descriptor,
2740          * otherwise try next time
2741          */
2742         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
2743                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
2744
2745         count += TXD_USE_COUNT(skb_headlen(skb));
2746         if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2747                 tx_ring->tx_stats.tx_busy++;
2748                 return 0;
2749         }
2750         return count;
2751 }
2752
2753 /**
2754  * i40e_xmit_frame_ring - Sends buffer on Tx ring
2755  * @skb:     send buffer
2756  * @tx_ring: ring to send buffer on
2757  *
2758  * Returns NETDEV_TX_OK if sent, else an error code
2759  **/
2760 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2761                                         struct i40e_ring *tx_ring)
2762 {
2763         u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2764         u32 cd_tunneling = 0, cd_l2tag2 = 0;
2765         struct i40e_tx_buffer *first;
2766         u32 td_offset = 0;
2767         u32 tx_flags = 0;
2768         __be16 protocol;
2769         u32 td_cmd = 0;
2770         u8 hdr_len = 0;
2771         int tsyn;
2772         int tso;
2773
2774         if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
2775                 return NETDEV_TX_BUSY;
2776
2777         /* prepare the xmit flags */
2778         if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2779                 goto out_drop;
2780
2781         /* obtain protocol of skb */
2782         protocol = vlan_get_protocol(skb);
2783
2784         /* record the location of the first descriptor for this packet */
2785         first = &tx_ring->tx_bi[tx_ring->next_to_use];
2786
2787         /* setup IPv4/IPv6 offloads */
2788         if (protocol == htons(ETH_P_IP))
2789                 tx_flags |= I40E_TX_FLAGS_IPV4;
2790         else if (protocol == htons(ETH_P_IPV6))
2791                 tx_flags |= I40E_TX_FLAGS_IPV6;
2792
2793         tso = i40e_tso(tx_ring, skb, &hdr_len,
2794                        &cd_type_cmd_tso_mss, &cd_tunneling);
2795
2796         if (tso < 0)
2797                 goto out_drop;
2798         else if (tso)
2799                 tx_flags |= I40E_TX_FLAGS_TSO;
2800
2801         tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
2802
2803         if (tsyn)
2804                 tx_flags |= I40E_TX_FLAGS_TSYN;
2805
2806         if (i40e_chk_linearize(skb, tx_flags)) {
2807                 if (skb_linearize(skb))
2808                         goto out_drop;
2809                 tx_ring->tx_stats.tx_linearize++;
2810         }
2811         skb_tx_timestamp(skb);
2812
2813         /* always enable CRC insertion offload */
2814         td_cmd |= I40E_TX_DESC_CMD_ICRC;
2815
2816         /* Always offload the checksum, since it's in the data descriptor */
2817         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2818                 tx_flags |= I40E_TX_FLAGS_CSUM;
2819
2820                 i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2821                                     tx_ring, &cd_tunneling);
2822         }
2823
2824         i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2825                            cd_tunneling, cd_l2tag2);
2826
2827         /* Add Flow Director ATR if it's enabled.
2828          *
2829          * NOTE: this must always be directly before the data descriptor.
2830          */
2831         i40e_atr(tx_ring, skb, tx_flags, protocol);
2832
2833         i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2834                     td_cmd, td_offset);
2835
2836         return NETDEV_TX_OK;
2837
2838 out_drop:
2839         dev_kfree_skb_any(skb);
2840         return NETDEV_TX_OK;
2841 }
2842
2843 /**
2844  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2845  * @skb:    send buffer
2846  * @netdev: network interface device structure
2847  *
2848  * Returns NETDEV_TX_OK if sent, else an error code
2849  **/
2850 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2851 {
2852         struct i40e_netdev_priv *np = netdev_priv(netdev);
2853         struct i40e_vsi *vsi = np->vsi;
2854         struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
2855
2856         /* hardware can't handle really short frames, hardware padding works
2857          * beyond this point
2858          */
2859         if (skb_put_padto(skb, I40E_MIN_TX_LEN))
2860                 return NETDEV_TX_OK;
2861
2862         return i40e_xmit_frame_ring(skb, tx_ring);
2863 }